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Abstract

Change point analysis is a method used to estimate the time point at which

a change in the mean or variance of data occurs. It is widely used as changes appear

in various datasets such as the stock market, temperature, and quality control, allowing

statisticians to take appropriate measures to mitigate financial losses, operational dis-

ruptions, or other adverse impacts. In this thesis, we develop a change point detection

procedure in the Inverse Gaussian (IG) model using the Modified Information Criterion

(MIC). The IG distribution, originating as the distribution of the first passage time of

Brownian motion with positive drift, offers flexibility and effectively models a wide range

of data shapes. Moreover, it handles outliers and skewness better than some other distri-

butions. Extensive simulation studies are conducted to illustrate the performance of our

proposed method compared to existing methods across various settings, in terms of type

I error, power, and confidence set. The results indicate that our MIC-based approach is

comparable to the Schwarz Information Criterion method. Further, the proposed method

has an advantage, especially when the change occurs at the very beginning or at the very

end of the dataset. Finally, we present two real-world data applications to demonstrate

the advantage of our proposed method.
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Chapter 1

The Inverse Gaussian Distribution

1.1 Literature Review

The Inverse Gaussian distribution is closely connected to the Gaussian distri-

bution, as implied by its name. The Inverse Gaussian (IG) distribution originates as

the distribution of the first passage time of Brownian motion with positive drift [SS99].

However, Halphen is given credit with the first formulation of what is known as the gen-

eralized Inverse Gaussian distribution. The IG distribution name is derived from the key

fact that its cumulant generating function is the inverse of the Gaussian distribution.

The fundamental properties of the IG distribution were examined by and later pioneered

by Tweedie, M. C. K. [Twe57]. Chhikara and Folks [CF77] explored the IG distribution

as a lifetime model by looking at the model’s application for studying reliability aspects

given a high occurrence of early failures.

1.2 The Inverse Gaussian Distribution Model

Originally derived by Tweedie M. C. K. [Twe57], taking only positive values

for the random variable, the probability density function for the Inverse Gaussian (IG)

distribution can be represented as

f(x;µ, λ) =

√
λ

2πx3
exp

[
− λ(x− µ)2

2µ2x

]
, for x > 0, (1.1)

where µ (> 0) and λ (> 0) are the mean and the shape parameters, respectively. These

parameters µ and λ are estimated by their maximum likelihood estimators which is dis-
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cussed further in Section 1.7.

The IG random variable X with probability density function (1.1) is written

in shorthand as X ∼ IG(µ, λ). The expected value of the random variable X is µ

(E[X] = µ). The IG distribution is an exponential distribution used to model positively

skewed, non-negative data which many real-world data sets exhibit this means the IG

model provides a better fit for data that deviates from normality but exhibits some

similarities. Ultimately, the IG model is very versatile to model data that exhibits heavy

skewness and tails.

Figure 1.1 below, displays the graph of the probability density function (1.1)

for the IG distribution with various values for both µ and λ. It can be seen that the IG

distribution exhibits a bell-shaped curve, similar to the Gaussian distribution. However,

unlike the Gaussian distribution, the tails of the IG distribution decay more rapidly. The

mean is given by µ, the shape parameter is given by λ, and the variance is determined

by µ3

λ . That is, when that ratio becomes small, the IG model becomes highly skewed.

Alternatively, when the ratio gets larger, the model tends to be more symmetric. Thus,

as the ratio tends to infinity, the IG model becomes asymptotically normal (with mean µ

and variance µ3

λ ) which as mentioned previously makes the IG distribution a good model

for normally distributed data.
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Figure 1.1: Probability Density Function

Chhikara and Folks [CF77] found that the cumulative distribution function for

the IG distribution is given by the following,

F (x;µ, λ) = Φ

(√
λ

x

(
−x

µ

))
− exp

(
2λ

µ

)
Φ

(
−
√

λ

x

(
1 +

x

µ

))
, for x > 0, (1.2)

where Φ denotes the cumulative distribution function of the standard normal distribution,

which is given by Φ(t) = (2π)−1/2
∫ t
−∞ exp(− ξ2

2 )dξ. Figure 1.2 displays the graph of the

cumulative distribution function for the IG distribution with various values for both µ

and λ.
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Figure 1.2: Cumulative Distribution Function

1.3 Properties of the Inverse Gaussian Distribution

As mentioned by Chhikara and Folks [CF77], the Inverse Gaussian (IG) distri-

bution shares many similarities with the Gaussian distribution (the bell curve). However,

unlike the Gaussian distribution which typically describes the level of a Brownian motion

at a specific time, the IG distribution characterizes the time it takes for a Brownian mo-

tion with a positive drift to reach a predetermined positive level. So, it’s the ”inverse” in

the sense that it deals with time rather than level. The IG distribution possesses several

unique properties, including additivity, being part of the exponential family, complete-

ness, and reproducibility which are all discussed further below.

1.3.1 Additivity

Following Sato and Inoue [SI93], linear combinations (the sum of variables)

follow the Inverse Gaussian (IG) distribution. That is, letting X ∼ IG(µi, λi) with

i = 1, 2, · · · , if λi

µ2
i ci

= ξ (constant) then it holds that the linear sum
∑

ciXi ∼
IG(

∑
ciµi, ξ(

∑
ciµi)

2).
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If we consider a linear combination of IG random variables from the probability

density function (1.1) such that Y =
∑

i ciXi. And, given that λi

µ2
i ci

= ξ then λi = ξµ2
i ci.

Then we can calculate both the mean and variance of Y to show the IG distribution

follows the additive property. To calculate the mean of Y , we have the following,

E(Y ) = E(
∑
i

ciXi) =
∑
i

ciE(Xi) =
∑
i

ciµi.

Now to calculate the variance of Y , we will have the following,

V ar(Y ) =
∑
i

c2iV ar(Xi) + 2
∑
i<j

cicjCov(Xi, Xj).

The covariance term will go away as the random variables are independent meaning their

covariance will be 0. Therefore, the V ar(Y ) =
∑

i c
2
iV ar(Xi). Substituting V ar(Xi) =

µ3
i

λi

and λi = ξµ2
i ci in V ar(Y ), gives us 1

ξ

∑
i ciµi. Therefore, Y follows an IG distribution

with µY =
∑

i ciµi and λY = 1
ξ

∑
i ciµi since both the mean and variance of Y satisfy

the pasteurization of the IG distribution. We can conclude that Y follows the additive

property.

1.3.2 Exponential Family

The Inverse Gaussian (IG) distribution has a deep connection within the expo-

nential family. The IG distribution belongs to the exponential family of distributions of

the form from Equation 1.1. However, as noted by Sato and Inoue [SI93], Equation 1.1

can be rewritten as,

f(x; θ1, θ2) =

√
θ1
2π

exp(
√
θ1θ2)x

(−3/2)exp

[
−1

2
(θ1x

−1 + θ2x)

]
, (1.3)

where x and x−1 are the sufficient statistics and −1
2θ1 and −1

2θ2 are the natural param-

eters. This implies that T = (X−1, X) where X−1 = 1
X which form a sufficient statistic

for the IG distribution. Using the statistics, we get the probability function,

f(X−1, X; θ1, θ2) = h(X−1, X)exp(−1

2
(θ1X−1 + θ2X)),

which is a probability density function in the exponential family. Therefore, the sufficient

statistics T with the parameter vector θ = −1
2(θ1, θ2) for the IG distribution follows the

exponential distribution.
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1.3.3 Completeness

As mentioned by Sato and Inoue [SI93], the family of Inverse Gaussian (IG)

distributions is complete meaning that since the expectation of any function of the data

under the IG distribution is zero for both of the parameters then the function itself is 0

everywhere.

Definition 1.1. A statistic T is called complete if for every parameter θ, the expected

value of any function of T is zero under the distribution, then the probability that the

function of T equals zero for all θ is one. [Pat16]

Say X ∼ IG(µ, λ). By the completeness property,
∫∞
0 g(x)∗h(x)∗f(x;µ, λ)dx =

0 for all values of µ and λ, then it must be the case that h(x) = 0 almost everywhere.

Thus, the IG distribution can represent any possible continuous distribution. If there

was a non-zero function h(x) that existed such that the integral was zero for all µ and λ,

then it would imply that the distribution could be more precisely modeled by adjusting

both parameters. However, that is not the case and the IG distribution is a complete

representation within its family of distributions.

1.3.4 Reproducibility

Noted by Sato and Inoue [SI93], ifX ∼ IG(µ, λ), then the characteristic function

CX(t) is derived as the following,

CX(t) = E[eitX ] = exp

{
λ

µ

[
1−

(
1− 2itµ2

λ

)1/2]}
. (1.4)

Positive and negative moments exist for the Inverse Gaussian (IG) characteristic function

which can be found in detail in the following subsection. In Equation 1.4, cX is given by

exp

{
λ
µ

[
1−
(
1− 2itµ2c

λ

)1/2]}
, for an arbitrary constant c > 0 and assumingX ∼ IG(µ, λ).

Pulling from the expression above, with the parameters cµ and cλ, cX follows the IG

distribution. Thus, for position transformations, the IG distribution is not closed, that

is (X + c). Implying that, for scale transformations (cX), the IG distribution is closed.
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1.4 Moments and Moment Generating Function

As noted in Section 1.2, both positive and negative moments exist for the char-

acteristic function (1.4). These moments can be obtained by calculating the moment-

generating function. The moment-generating function can be found by integrating the

Inverse Gaussian (IG) characteristic function (1.4). Thus, the moment-generating func-

tion is the following,

MX(t) =

∫ ∞

0
exp(tx)

√
λ

2πx3
exp

[
−λ(x− µ)2

2µ2x

]
dx (1.5)

= exp

{
λ

µ

[
1−

√
1− 2µ2t

λ

]}
. (1.6)

Then we can calculate the rth moment by using the following equation,

E[Xr] = µr
r−1∑
s=0

(r − 1 + s)!

s!(r − 1− s)!

(
2λ

µ

)−s

.

This expression gives a way to compute moments of various orders for the IG distribution.

Around 0, the first two moments are µ and µ2+ µ3

λ while the moments around the center

µi are µ2 =
µ3

λ and µ3 = 3µ5

λ2 . Looking at higher-order moments can give more insight into

the shape and variability of the distribution giving a better understanding of its statistical

properties. The relation between positive and negative moments is the following,

E[X−r] =
E[Xr+1]

µ2r+1
, (1.7)

where X−1 is considered as the negative moment. The skewness (β1) and kurtosis (tailed-

ness, β2) of X are
√
β1 = 3

√
µ/λ and β2 = 15µ/λ + 3, respectively. The relationship

between β1 and β1 is modeled as the following,

β2 =
5

3
β2
1 + 3, (1.8)

and is used to determine whether data is derived from the IG distribution. Moments and

moment-generating functions of other distributions, such as normal distribution or others

of the exponential family can give good insight into model selection.

1.5 The Hazard Function

Common in reliability analysis, as mentioned by Chen and Gupta [CG12], a

common change point problem deals with estimating the change point in a hazard func-
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tion. Hazard rate functions ultimately determine the chance of an event occurring at any

given point in time. Thus, the Inverse Gaussian (IG) distribution is particularly useful in

estimating change points within hazard functions. Chhikara and Folks [CF77] determined

the hazard rate for the IG distribution is defined as,

h(x, θ) =
( λ
2πx3 )

1/2exp(−λ(x−µ)2

2µ2x
)

Φ

(
−
√

λ
x

(
x
µ − 1

))
+ exp

(
2λ
µ

)
Φ

(
−
√

λ
x

(
x
µ

)
+ 1

) ,

with a given point in time, x, and parameters µ and λ. This IG hazard rate function

exhibits an unimodal pattern, rising from 0 to its maximum value before gradually de-

clining asymptotically to a constant. For this reason, the IG distribution is commonly

used in reliability and survival analysis.

1.6 Convergence in Inverse Gaussian to Normal

Sato and Inoue [SI93] discuss how under certain conditions the Inverse Gaussian

(IG) distribution converges to the normal distribution. Let X ∼ IG(µ, λ) and N ∼
N(m,σ). For Y =

√
λ(X−µ)

µ
√
X

and Z = N−m
σ , the following properties hold.

• The standard variable Y , defined above, for the IG distribution follows the stan-

dard seminormal distribution which indicates that Y closely resembles the standard

normal distribution.

• Y 2 and Z2, both defined above, exhibit a χ2 (continuous) distribution with one

degree of freedom showing their shared statistical behavior in terms of variability.

• The arithmetic mean X̄ of IG random variables Xi follows IG ∼ (µ, nλ). X̄ serves

as both the maximum likelihood estimator and the minimum variance unbiased es-

timation of µ. Similarly, the sample mean Z̄ of normal random variables Zi follows

N ∼ (m, σ
2

n ), and Z̄ serves as the maximum likelihood estimator and the minimum

variance unbiased estimation of m. This similarity shows a significant convergence

between the IG distribution and the normal distribution implying that method-

ologies developed for the normal distribution can be applied to approximate and

analyze data from the IG distribution.
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• For n independent and identically distributed IG random variablesXi, i = 1, 2, · · ·n,
the sum

∑n
i=1Xi and W =

∑n
i=1X

−1
i − X̄−1 are independent, with W following

the χ2 distribution with (n−1) degrees of freedom. Similarly, for n normal random

variables Zi, the sample variance S2 = 1
n

∑n
i=1(Zi − Z̄)2 follows the χ2 distribution

with (n− 1) degrees of freedom.

• The maximum likelihood estimation (MLE) and minimum variance unbiased esti-

mation (MVUE) have similar patterns for both distributions, the IG and normal

distributions. Specifically, for the IG distribution, the MLE of 1
λ is 1

nW , while the

MVUE is 1
n−1W . Conversely, for the normal distribution, the MLE of the parameter

σ2 is 1
nS

2 and the MVUE is 1
n−1S

2.

1.7 Generating Samples from the Inverse Gaussian Distri-

bution

Using the method by Sato and Inoue [SI93], we can generate a sample sequence

following the Inverse Gaussian (IG) distribution. We first must generate a random number

from the χ2
1 distribution with one degree of freedom. This distribution is characterized

by a probability density function, f(y) = 1
2
√
ye

−y/2 for y > 0. One of the properties

from Section 1.5 explains that Y 2 = λ(X−µ)2

µ2X
, where X follows the IG distribution, then

Y 2 follows the χ2 distribution. Next, we solve the equation λ(X−µ)2

µ2X
= Y 2 for X. This

equation yields a quadratic equation with two roots, denoted as X1 and X2. These roots

can be calculated using the formulas,

X1 =
µ

2λ

[
2λ+ µY 2 −

√
4λµY 2 + µ2Y 4

]
and,

X2 =
µ2

X1
.

Once we have X1 and X2, we select one of them as the generated random number. This

selection is based on probabilities. Specifically, X1 is chosen with probability µ
µ+X1

, and

X2 is chosen with probability X1
µ+X1

. This process is iterated as needed to generate a

sequence of random numbers following the IG distribution. Each iteration produces a

new random number from the distribution, ensuring that the generated sequence forms

a sample sequence from the IG Distribution.
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1.8 Maximum Likelihood Estimates for the Inverse Gaus-

sian Distribution

First explored by Tweedie [Twe57], however following Chhikara and Folks

[CF77], taking a random sample X1, X2, · · · , Xn, the log-likelihood corresponding to

IG(µ, λ) is

ℓ(µ, λ) =
n

2
log

(
λ

2π

)
− 3

2

n∑
i=1

log(xi)−
λ

2µ2

n∑
i=1

(xi − µ)2

xi
.

To find the maximum likelihood estimates (MLEs) of the parameters µ and λ,

we compute the partial derivatives ∂ℓ
∂µ and ∂ℓ

∂λ and set them equal to zero. The ML

estimators for µ and λ are then given by,

µ̂ = X̄ =
1

n

n∑
i=1

Xi

and

λ̂−1 =
1

n

n∑
i=1

(
1

Xi
− 1

X̄

)
.

The conditional distribution is the same for all X̄ as the conditional moment generating

function of nλλ̂−1 given X̄ is (1− 2t)−(n−1)/2. Thus, the MLEs, µ̂ and λ̂, are statistically

independent from one another. The MLE of the variance, µ3

λ , is given by,

σ̂2 =
1

n

[ n∑
i=1

X̄3

Xi
− nX̄2

]
.

The MLE of the variance for the Inverse Gaussian distribution closely resembles the MLE

of the variance for the normal distribution, 1
n

∑n
j=1(xj− µ̂)2, as mentioned in Section 1.6.

1.9 Comparing the Inverse Gaussian Distribution Densities

as model

The Inverse Gaussian (IG) distribution can be compared to other distributions

as shown in the following lemmas.

Lemma 1.2. If X ∼ IG(µ, λ), then for any arbitrary positive value a, aX ∼ IG(aµ, aλ).
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Proof. Let X follow an IG distribution, that is X ∼ IG(µ, λ). We aim to show that for

any arbitrary positive constant a, the random variable aX follows the IG distribution,

IG(aµ, aλ).

Since X follows an IG distribution, its mean and variance are µ and µ3

λ , respectively.

Now, consider aX. By the properties of expectation and variance for scaled random

variables, we have E[aX] = aE[X] = aµ and V ar[aX] = a2V ar[X] = a2 µ
3

λ = (aµ)3

aλ .

Therefore, aX follows the IG distribution with parameters aµ and aλ, as was to be

shown.

Lemma 1.3. If Xi ∼ IG(µ, λ), then
∑n

i=1Xi ∼ IG(nµ, n2λ).

Proof. Let X1, X2, · · · , Xn be independent and identically distributed random variables

following an IG distribution with parameters µ and λ. We aim to show that
∑n

i=1Xi

follows an IG distribution with parameters nµ and n2λ.

Using the moment generating function derived in Section 1.4, we have

MX(t) = E(etx) = e

λ
µ

(
1−

√
2µ2t
λ

)
.

Then,

MX1+X2+···+Xn(t) = E[et(X1+X2+···+Xn)]

= E[etX1 ∗ etX2 ∗ · · · ∗ etXn ]

= E[etX1 ] ∗ E[etX2 ] ∗ · · · ∗ E[etXn ]

= [E[etX1 ]]n

= [MX(t)]n

=

[
e

λ
µ

(
1−

√
2µ2t
λ

)]n

= e
n

(
λ
µ

(
1−

√
2µ2t
λ

))

= e
nλ
µ

(
1−

√
2µ2t
nλ

)

This moment-generating function matches the form of the moment-generating function

(1.5) of an IG distribution with parameters nµ and n2λ. Therefore,
∑n

i=1Xi follows the

IG distribution with parameters nµ and n2λ, as desired.
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Lemma 1.4. If Xi ∼ IG(µ, λ) for i = 1, 2, · · ·n, then X̄ ∼ IG(µ, nλ).

Proof. Let X1, X2, · · · , Xn be independent random variables following an IG distribution

with parameters µ and λ. We aim to show that X̄, the sample mean of these variables,

follows an IG distribution with parameters µ and nλ.

Since X̄ follows an IG distribution then we have,

E[X̄] = E

[∑
Xi

µ

]
=

1

n

∑
E[X] =

1

n
× nµ = µ,

and

V ar[X̄] = V ar

[
1

n

∑
Xi

]
=

1

n2

∑
V ar[Xi] =

1

n2
× n

(
µ3

λ

)
=

µ3

nλ
.

Therefore, X̄ follows the IG distribution with parameters µ and nλ.

Lemma 1.5. If Xi ∼ IG(µi, 2µ
2
i ) then

∑n
i=1Xi ∼ IG(

∑n
i=1 µi, 2

∑n
i=1 µ

2
i ).

Proof. Let Xi follow an IG distribution with parameters µi and 2µ2
i . That is, X1 ∼

IG(µ1, 2µ
2
1), X2 ∼ IG(µ2, 2µ

2
2), · · · , Xn ∼ IG(µn, 2µ

2
n). It suffices to show that the sum-

mation of all the following random variables follows an IG distribution with parameters∑n
i=1 µi and 2

∑n
i=1 µ

2
i .

Since Xi follows an IG distribution then we have,

E

[ n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

µi,

and

V ar

[ n∑
i=1

Xi

]
=

n∑
i=1

V ar[Xi] = 2
n∑

i=1

µ2
i .

Therefore,
∑n

i=1Xi follows an IG distribution with parameters
∑n

i=1 µi and 2
∑n

i=1 µ
2
i ,

as was to be shown.
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Chapter 2

Change Point Analysis Using the

Modified Information Criterion

2.1 Literature Review

Change point analysis is very relevant as changes appear in all sorts of data

sets such as quality control, the stock market, and temperature. It is important for

statisticians to recognize these changes as it allows them to take the appropriate measures

to best avoid and minimize losses. Change point analysis plays an important role in

identifying points in time when the probability distribution of stochastic processes or time

series changes. When a change point exists, it is not advisable to perform a statistical

analysis without taking into account of the existence of that change point because it

could lead to misleading results. Change point analysis attempts to identify the number

of change point(s) and the corresponding location(s). Change point analysis has been

extensively explored since 1954 by Page, E.S. [Pag54, Pag55]. Chernoff and Zacks (1964)

[CZ64] estimated the current mean of a normal distribution which was subjected to

changes in time by observing an object’s successive positions traveling on a path. A

Bayesian approach was taken here in order to better test whether a change in mean

occurred in the estimation problem at hand. Sen and Srivastava (1975) [SS75a, SS75b]

tested whether the means of each variable in a sequence of independent random variables

can be taken to be the same, against alternatives that a shift might have occurred after

some point. They also took a Bayesian approach enabling them to derive exact and
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asymptotic distribution functions for testing of their test statistic of a single change in

the mean of a sequence of normal random variables. Srivastava and Worsley (1986)

[SW86] studied a sequence of independent multivariate normal vectors with equal but

possible unknown variance matrices to have equal mean vectors. They tested after an

unknown change point in the sequence to see whether the mean vectors had changed.

Later, Tweedie M. C. K. [Vos81] proposed the binary segmentation procedure which

detects multiple structural changes recursively, saving a great deal of computing time.

The general description for change point analysis can be found in the book, Parametric

Statistical Change Point Analysis [CG12]. A multitude of other literature relating to the

change point(s) problem exists, however, none have studied the change point detection

procedure in the Inverse Gaussian (IG) model using the Modified Information Criterion.

2.2 The Change Point Problem

Following Chen, J. and Gupta, A. K. [CG12], the typical change point problem

lets x1, x2, . . . , xn be a sequence of independent random vectors with probability distri-

bution functions F1, F2, . . . , Fn, respectively. Then, generally, the change point problem

tests the null hypothesis,

H0 : F1 = F2 = · · · = Fn (2.1)

versus the alternative:

H1 : F1 · · · = Fk1 ̸= Fk1+1 = · · ·Fk2 ̸= Fk2+1 = · · ·Fkq ̸= Fkq+1 = · · · = Fn, (2.2)

where 1 < k1 < k2 < · · · kq < n, q is the unknown number of change points and

k1, k2, · · · , kq are the respective unknown positions that have to be estimated.

In general, the change point problem involves hypothesis testing and parameter

estimation. More specifically, we need to test the null hypothesis of no change point

versus the alternative hypothesis of having at least one change. Further, we need to

estimate the corresponding location of the change point if there are any. One of the

most popular methods of detecting change points is the use of model selection criteria.

The Schwarz Information Criterion (SIC) [Sch78] is one of the popular criteria for model



15

selection. Zhang, N. and Siegmund, D. [ZS07] noted that the conventional SIC could

detect change points more effectively when changes take place in the middle of the data.

However, Chen, J. and Gupta, A. K. [CGP06] pointed out that the conventional SIC

method did not consider the complexity of the model which may cause the redundancy

of the parameter space, especially a change occurring near the beginning or the end of

data. To tackle this issue, Chen, J. and Gupta, A. K. [CGP06] proposed the Modified

Information Criterion (MIC) by adjusting the penalty term in SIC so that it reflects

the contributions of change-point locations to model complexity. This approach assigns

a larger penalty term when the change point location is close to the first or the last

observation in the data set. Many existing methods can be used in change point analysis.

Bayesian tests, non-parametric tests, stochastic process tests, and maximum likelihood

ratio tests are among the few common, widely used tests. In this thesis, the objective is

to develop a new change point detection procedure for the Inverse Gaussian model and

establish the corresponding asymptotic properties.

2.3 Binary Segmentation Procedure

As proposed by Vostrikova [Vos81], in the case that multiple change points exist,

a common method used is the binary segmentation procedure. This method simplifies a

multiple change point problem into a single change point problem. The binary segmen-

tation procedure saves a great amount of computing time by detecting the number and

location of the change points simultaneously.

Say x1, x2, · · · , xn is a random sequence of n random variables where each ran-

dom variable xi has a probability density function Fi(θi). When testing the null hypoth-

esis versus the alternative hypothesis, the binary segmentation procedure along with a

detection method is used to look for all possible change points (if any exist). A general

summary below describes the general method of the binary segmentation procedure.

Start by assuming there is at most one change point in the probability distri-

bution functions. So, test the null hypothesis, H0 : F1 = F2 = · · · = Fn, versus the

alternative, Ha : F1 = Fk ̸= Fk+1 = · · · = Fn where k is the location of the first change

point. If H0 is rejected then a change does occur at the kth observation. However, if H0

is not rejected, then we do not have enough evidence to reject the null hypothesis (say

that there is a significant change point in the data). If no change point exists, then the
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binary segmentation procedure stops and we come to the conclusion that no change point

exists.

However, if a change point does exist, then using similar hypothesis testing, we

test the two subsequences that were derived before. The test is again the null hypothesis,

H0 : F1 = F2 = · · · = Fk, versus the alternative, Ha : F1 = Fk1 ̸= Fk1+1 = · · · = Fk

where k1 is the possible location of the change point in the first subsequence. The same

procedure is followed for the second subsequence. If change points are continued to be

found, then the data can continue to be separated and tested until there are no longer

any change points found in each subsequence.

2.4 Modified Information Criterion

The change point problem requires us to compare the null hypothesis (2.1) which

assumes no change points and the alternative hypothesis (2.2) which assumes at least one

change point. With the change point problem, if change point(s) do exist, it is imperative

to find the location(s). There are many methods to detect whether change points exist

or not.

Let x1, · · · , xn be a random sample drawn from the density function f(x; Θ).

The Schwarz Information Criterion (SIC) proposed by Schwarz [Sch78] is given by,

SIC = −2ℓn(Θ̂) + dim(Θ̂)log(n) (2.3)

where ℓn(·) is the log-likelihood function of the random sample, Θ̂ is the maximum likeli-

hood estimator (MLE) of the parameter Θ, and dim ˆ(Θk) is the dimension of the parameter

space. We denote the pre-change and post-change parameters as ΘL,ΘR, respectively.

And, we denote, Θ̂L, Θ̂R as the MLEs of the pre-change and post-change parameters,

respectively. Now, the SIC under the alternative hypothesis in the context of having at

least one change point can be represented by the following,

SIC(k) = −2ℓn(Θ̂L(k), Θ̂R(k), k) +
{
2dim(Θ̂L(k)) + 1

}
log(n), (2.4)

where 1 ≤ k < n. Again, in the above, we denote the pre-change and post-change

parameters as ΘL,ΘR, respectively. And, we denote, Θ̂L, Θ̂R as the MLEs of the pre-

change and post-change parameters, respectively. Chen et al. [CGP06], noted that

in SIC(k) (2.3), the change point location is not considered as a parameter, and this
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absence could lead to redundancy in the parameter space if the change occurs close

to the data’s beginning or end. The result of this issue brought about the Modified

Information Criterion (MIC). MIC has a modification of the penalty term used in SIC.

This modification adjusts the penalty term in SIC so that it reflects the contributions of

the change-point location to model complexity. MIC assigns a larger penalty when the

change point location is close to the first one or the last observation in the data set. Under

the null hypothesis, h0, with the assumption of no change points, SIC(n) and MIC(n)

are the same. We can define the MIC as,

MIC(n) = −2ℓn(Θ̂) + dim(Θ̂)log(n), (2.5)

where Θ̂ maximizes ℓn(Θ). Comparing, SIC(n) (2.3) and MIC(n) (2.5), it is evident that

there are no differences under Ho. However, under the alternative hypothesis, H1, the

MIC is defined as,

MIC(k) = −2ℓn(Θ̂(k), Θ̂R(k), k) +

{
2dim(Θ̂L(k) +

(
2k

n
− 1

)2}
log(n), (2.6)

where 1 ≤ k < n. As mentioned previously, MIC(k) (2.6) differs from SIC(k) (2.4) as

MIC(k) considers the contribution of the change point location k to the model parameter.

It is important to note that if MIC(n) > min1≤k<nMIC(k), then the model with a change

point is selected. The change point is estimated by,

k̂ = arg min
1≤k<n

{MIC(k)}. (2.7)

The associated MIC-based test statistic is defined as,

Sn = MIC(n)−min1≤k<nMIC(k) + dim(Θ)log(n), (2.8)

which assesses the statistical significance of the identified change point. This test statistic

is constructed based on the MIC of the null and the alternative hypotheses. Chen et

al. [CGP06] pointed out, under Wald conditions and the regularity conditions, that as

n → ∞,

Sn → χ2
d, (2.9)

in distribution under Ho, where d is the dimension of Θ.
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2.5 MIC-based Detection Procedure for Inverse Gaussian

distribution

Let X1, X2, · · · , Xn be a sequence of independent random variables belonging

to a two-parameter Inverse Gaussian (IG) distribution. The change point problem for a

two-parameter IG distribution is defined as follows.

Xi ∼

IG ( µL, λL ), i = 1, · · · , k

IG ( µR, λR ), i = (k + 1), · · · , n.
(2.10)

where the probability density function of the IG distribution is given in 1.1. We will test

the null hypothesis,

H0 : µ1 = µ2 = · · · = µn = µ

λ1 = λ2 = · · · = λn = λ,

versus the alternative hypothesis,

H1 : µ1 = · · · = µk︸ ︷︷ ︸
µL

̸= µk+1 = · · · = µn︸ ︷︷ ︸
µR

λ1 = · · · = λk︸ ︷︷ ︸
λL

̸= λk+1 = · · · = λn︸ ︷︷ ︸
λR

,

where (µ, λ), (µL, λL), and (µR, λR) are unknown parameters and need to be estimated

along with the parameter k which represents the unknown change point location. Under

the null hypothesis, the log-likelihood function is given as,

ℓn(µ, λ) =
n

2
logλ+

nλ

2µ2
− nλx̄

µ2
− n

2
log(2π)− 1

2

n∑
i=1

(xi − µ)2

λxi
. (2.11)

The maximum likelihood estimators (MLEs) of µ and λ can be obtained by setting the

following partial derivatives equal to zero.

∂ℓn(µ, λ)

∂µ
=

nλ

µ3
− nλx̄

µ2
+

n∑
i=1

xi − µ

λxi

∂ℓn(µ, λ)

∂λ
=

n

2λ
+

nµ2

2λ2
− 1

2

n∑
i=1

(xi − µ)2

λxi
2
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The MIC(n) is defined as,

MIC(n) = −2ℓn(µ̂, λ̂) +
[
dim(µ̂+ (dim(λ̂)

]
log(n)

= −2ℓn(µ̂, λ̂) + 2log(n),
(2.12)

where µ̂ and λ̂ are the MLEs of µ and λ, respectively. Similarly, under the alternative

hypothesis, the log-likelihood function is,

ℓH1 = l(k, µL, λL, µR, λR)

=
k∑

i=1

log(f(xi, µL, λL) +
k+1∑
i=1

log(f(xi, µR, λR)

=

{
k

2
logλL +

kλL(1− x̄)

µ2
L

− k

2
log(2π)− 1

2

k∑
i=1

(xi − µL)
2

λLxi

}
+

{
n− k

2
logλR +

(n− k)λR

2µ2
R

− (n− k)λRx̄

µ2
R

− (n− k)

2
log(2π)− 1

2

n∑
i=k+1

(xi − µR)
2

λRxi

}

(2.13)

The MLEs of the pre-change parameters, µL and λL, can be obtained by setting the

following partial derivatives equal to zero.

∂ℓH1

∂µL
=

kλL

µL
3
− kλLx̄

µL
3

+

k∑
i=1

xi − µL

λLxi

∂ℓH1

∂λL
=

k

2λL
− kµL

2

2λL
2 − 1

2

k∑
i=1

(xi − µL)
2

λLxi

The MLEs of the post-change parameters, µR and λR, can be obtained by setting the

following partial derivatives equal to zero.

∂ℓH1

∂µR
=

−(n− k)λR

µR
3

+
(n− k)λRx̄

µR
3

+
n∑

i=k+1

xi − µR

λRxi

∂ℓH1

∂λR
=

(n− k)

2λR
+

(n− k)µR
2

2λR
2 +

n∑
i=k+1

(xi − µR)
2

(λRxi)
2

Now, MIC(k) is given by,

MIC(k) = −2ℓ(k, µ̂L, λ̂L, µ̂R, λ̂R) +

{
4 +

(
2k

n
− 1

)}
logn, (2.14)
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where (µ̂L, λ̂L) are MLEs of the parameters before the change and (µ̂R, λ̂R) are MLEs of

the parameters after the change. If there is a change, the change point k is estimated by

the equation of k̂, 2.7.

2.6 Confidence Set Calculations: Profile log-likelihood and

Deviance Function

Based on MIC, we can construct a confidence curve for the change point in a

two-parameter Inverse Gaussian (IG) distribution. Pointed out by Cunen et al. [CHH18]

through the use of confidence distributions (CD), confidence curves along with confidence

sets for change points can be estimated. A CD uses a sample-dependent distribution

function on a given parameter space to estimate a parameter of interest [CHH18]. The

confidence curve for the IG model can be obtained by calculating the profile log-likelihood

function and the deviance function.

Maximizing the log-likelihood function (2.13) over the parameters for each pos-

sible value of k where 1 ≤ k < n − 1 will result in the profile log-likelihood function.

Given by,

ℓprof (k) = max

(
l (k, µL, λL, µR, λR)

)
= l (k, µ̂L, λ̂L, µ̂R, λ̂R),

where µ̂L, λ̂L, µ̂R are the estimates to the left and right sides for a given k, respectively.

Then the estimated change point location k̂ is given by lprof (k̂) = max
k

(lprof (k)). After k̂ is

obtained, the deviance function is given by,

D(k, x) = 2{ℓprof (k̂)− ℓprof (k)}. (2.15)

In the deviance function, x = (x1, · · · , xn) and x1, · · · , xk is a sample coming from the

distribution IG(µL, λL) and xk+1, · · · , xn coming from IG(µR, λR). Now, ℓprof (k̂) =

max1≤k<n(ℓprof (k)). k̂ is obtained through 2.7.

Using k, a confidence curve can be constructed based on the deviance function.

Consider the estimated distribution of D(k,X) at position k,

Ψk(X) = pk,Θ̂L,Θ̂R
{D(k,X) < x}, (2.16)
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with x ∈ R. Wilk’s theorem states that for the case of continuous parameters, Ψk(X) is

approximately the distribution function of a χ2
1. The confidence curve can be constructed

as the following,

cc(k, xobs) = Ψk(D(k, xobs)) = pk,Θ̂L,Θ̂R
{D(k,X) < D(k, xobs)} (2.17)

For a discrete parameter, k, Wilks theorem does not hold, and thus Ψ(k) can be computed

through the simulations. The likelihood of cc(k, xobs) < α, given the true change-point,

is often approximated as α. Subsequently, confidence sets for k can be visualized using

the plot cc(k, x), referred to as a confidence curve. The function cc(k, x) represents the

acceptance probability for k, or one minus the p-value for testing that particular k, where

the deviance-based test rejects for high values of D(k, xobs). The computation of Ψk and,

consequently, cc(k, x) involves simulation, expressed as

cc(k, xobs) =
1

B

B∑
j=1

ID(k, xj) < D(k, xobs) (2.18)

for a large number B of simulated data sets X . This process is carried out for each

candidate value of k, with simulated data X∗
i from f(x,ΘL) and f(x,ΘR) to the left and

right sides of k respectively. Further details can be found in Cunen et. al [CHH18].

In our proposed method for constructing confidence curves, we depart from the

approach in [CGH18] for estimating k. Instead of determining the change location k by

maximizing the profile-likelihood function over all possible values of k, we utilize the MIC

in (2.7). The MIC-based statistics Sn in (2.8) are employed to verify a statistically sig-

nificant change and mitigate fluctuations caused by noise. According to Wilks’ theorem,

the approximate confidence curve is obtained by transforming the deviance function to

the χ2
1 probability scaling:

cc(k) = Γ1(D(k, x)) (2.19)

where D(k, x) is defined in (2.15).
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Chapter 3

Simulation Study

3.1 Simulation Study Settings

In this section, we conduct Monte Carlo simulations to evaluate the perfor-

mance of the change-point detection procedure for the Inverse Gaussian model. To assess

the effectiveness of the proposed method, we consider three commonly used criteria for

evaluating change-point detection procedures.

1. Type I error rate: Close to the nominal level.

2. Power of the test: Preferably close to 1.

3. Coverage Probability: Close to the confidence level.

We considered the following three settings. These settings are used for power

and coverage probability analysis.

• Setting 1: Mean change

– Pre-change distribution: IG(1, 1)

– Post-change distribution: IG(1.25, 1), IG(1.5, 1), IG(1.75, 1), IG(2, 1)

• Setting 2: Variance change

– Pre-change distribution: IG(1, 1)

– Post-change distribution: IG(1, 1.25), IG(1, 1.5), IG(1, 1.75), IG(1, 2)
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• Setting 3: Mean and Variance change

– Pre-change distribution: IG(1, 1)

– Post-change distribution: IG(1.25, 1.25), IG(1.5, 1.5), IG(1.75, 1.75), IG(2, 2)

For all three settings, we considered various sample sizes (n) and various change point

locations (k).

• Case 1: n = 50; k = 15, 20, 25

• Case 2: n = 100; k = 25, 40, 50

• Case 3: n = 200; k = 50, 75, 100

3.2 Type I Error Simulation for MIC and SIC

As explained by Shreffler [Shr23], a Type I error in research occurs when the

null hypothesis is erroneously rejected, leading to the incorrect assertion of significant

differences that, in reality, do not exist. This situation is commonly referred to as false

positives, where researchers mistakenly claim differences between groups or variables.

The results presented in Table 3.1 below, provide a detailed comparison of Type I error

rates across different sample sizes for both Modified Information Criterion (MIC) and

Schwartz Information Criterion (SIC).

As displayed, across all sample sizes, MIC consistently demonstrates lower Type

I error rates compared to SIC. For instance, at n = 50, MIC exhibits a Type I error rate

of 0.132, while SIC has a higher rate of 0.146. This trend persists across the range of

sample sizes, with MIC consistently showing a more conservative approach to avoiding

false positives. This pattern suggests that MIC may be a preferable choice in scenarios

where controlling Type I errors is crucial. Moreover, as the sample size increases, both

MIC and SIC exhibit a general trend of decreasing Type I error rates. Notably, at the

largest sample size of n = 500, MIC achieves a remarkable Type I error rate of 0.039,

whereas SIC shows a slightly higher rate of 0.055.

These results are shown graphically in Figure 3.1. It can be seen that MIC

consistently performs closer to the nominal level. Overall, the results indicate that MIC

is more often sensitive to the risk of Type I errors than SIC across the range of sample sizes
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tested. When aiming for a balance between sensitivity and controlling Type I errors, MIC

emerges as a more suitable choice. These findings underscore the critical role of method

selection in minimizing the risk of false positive conclusions in change point detection

analyses.

Table 3.1: Type I Error for MIC and SIC Across Dif-

ferent Sample Sizes with Nominal Level α = 0.05

n MIC SIC

50 0.132 0.146

100 0.088 0.120

150 0.069 0.094

200 0.063 0.068

300 0.052 0.067

400 0.056 0.050

500 0.039 0.055

MIC SIC
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Figure 3.1: Type I Comparison for MIC and SIC
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3.3 Power Simulation for MIC and SIC

Shreffler [Shr23] mentions how statistical power plays a large role in the research,

particularly during the formulation and preparation stages of studies. However, it neces-

sitates careful evaluation when interpreting outcomes. Power refers to the capacity to

accurately reject a null hypothesis that is, in fact, false. Power denotes the likelihood of a

study making accurate decisions or identifying an effect if it truly exists. Tables 3.2, 3.3,

and 3.4 present the power comparisons between Modified Information Criterion (MIC)

and Schwartz Information Criterion (SIC) with different sample sizes, parameter values,

and change point locations for change in the mean, change in variance, and change in

mean and variance, respectively.

In Table 3.2, the power comparisons between MIC and SIC for changes in mean

are presented across different sample sizes, true change point locations (k), and parameter

values. The impact of sample size on the power of detecting a change in the mean is

apparent, with a noticeable increase in power as the sample size grows. For instance,

in the (1.5,1) scenario, the power of both MIC and SIC improves from a sample size

of 50 to 100 and continues to increase with 200 samples. The influence of the change

point location is apparent as well, particularly in the (2,1) case, where both methods

have higher power as the change point moves further into the later half of the dataset.

The conclusions can be seen in Figure 3.2. MIC demonstrates higher power across all

sample sizes and change point locations. The robustness of MIC across diverse conditions

suggests its reliability for detecting changes in mean. These findings show the importance

of considering the choice of the method, favoring MIC when prioritizing higher power in

change point detection tasks related to shifts in the mean.

In Table 3.3, the power analysis for changes in variance across various sample

sizes (n), true change point locations (k), and parameter values are presented. Again,

here MIC consistently exhibits higher power compared to SIC across different sample

sizes, change point locations, and parameter values. This data is presented in Figure

3.3. The results suggest that, in the context of detecting changes in variance, MIC

may be a more powerful method compared to SIC. In Table 3.4, the power comparison

for changes in both mean and variance is shown across varying sample sizes (n), true

change point locations (k), and parameter values. The analysis provides insights into their

respective abilities to detect simultaneous changes in both mean and variance. Again,
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MIC consistently outperforms SIC across different scenarios. This data can be seen in

Figure 3.4. The results emphasize the efficacy of MIC in detecting changes in both mean

and variance compared to SIC offering valuable guidance for researchers in selecting

appropriate methodologies for comprehensive change point detection.

Table 3.2: Power Comparison for MIC and SIC with Change in Mean with Pre-change

Model XL ∼ IG(1, 1)

(1.25,1) (1.5,1) (1.75,1) (2,1)

n k MIC SIC MIC SIC MIC SIC MIC SIC

50 15 0.794 0.198 0.884 0.303 0.935 0.442 0.961 0.554

20 0.809 0.237 0.879 0.366 0.928 0.496 0.956 0.616

25 0.810 0.230 0.890 0.357 0.936 0.519 0.962 0.652

100 25 0.901 0.216 0.961 0.392 0.993 0.566 0.996 0.716

40 0.895 0.207 0.960 0.440 0.987 0.664 0.995 0.801

50 0.897 0.230 0.962 0.460 0.991 0.676 0.997 0.803

200 50 0.948 0.223 0.993 0.533 1.000 0.794 1.000 0.910

75 0.968 0.242 0.995 0.613 1.000 0.883 1.000 0.967

100 0.963 0.288 0.995 0.661 0.999 0.898 1.000 0.974
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Figure 3.2: Power Comparison for MIC and SIC with Change in Mean with Pre-change

Model XL ∼ IG(1, 1)
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Table 3.3: Power Comparison for MIC and SIC with Change in Variance with Pre-

change Model XL ∼ IG(1, 1)

(1,1.25) (1,1.5) (1,1.75) (1,2)

n k MIC SIC MIC SIC MIC SIC MIC SIC

50 15 0.760 0.182 0.823 0.283 0.881 0.384 0.903 0.479

20 0.793 0.214 0.846 0.296 0.884 0.407 0.926 0.519

25 0.797 0.195 0.860 0.302 0.896 0.435 0.934 0.549

100 25 0.881 0.177 0.93 0.306 0.968 0.463 0.981 0.625

40 0.881 0.182 0.934 0.354 0.961 0.557 0.984 0.708

50 0.880 0.183 0.948 0.341 0.976 0.553 0.988 0.716

200 50 0.935 0.172 0.974 0.430 0.991 0.669 0.999 0.824

75 0.943 0.193 0.983 0.471 1.000 0.744 1.000 0.903

100 0.942 0.186 0.988 0.495 1.000 0.758 1.000 0.906
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Figure 3.3: Power Comparison for MIC and SIC with Change in Variance with Pre-change

Model XL ∼ IG(1, 1)
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Table 3.4: Power Comparison for MIC and SIC with Change in both Mean and Variance

with Pre-change Model XL ∼ IG(1, 1)

(1.25,1.25) (1.5,1.5) (1.75,1.75) (2,2)

n k MIC SIC MIC SIC MIC SIC MIC SIC

50 15 0.844 0.266 0.934 0.491 0.974 0.719 0.990 0.860

20 0.833 0.299 0.937 0.547 0.981 0.746 0.997 0.887

25 0.848 0.283 0.946 0.550 0.992 0.772 0.996 0.902

100 25 0.921 0.287 0.984 0.624 0.998 0.862 1 0.953

40 0.937 0.297 0.990 0.705 1 0.923 1 0.982

50 0.942 0.321 0.991 0.734 1 0.933 1 0.990

200 50 0.973 0.381 0.999 0.817 1 0.974 1 0.999

75 0.978 0.402 0.999 0.895 1 0.996 1 1

100 0.977 0.430 1 0.905 1 0.998 1 1
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Figure 3.4: Power Comparison for MIC and SIC with Change in both Mean and Variance

with Pre-change Model XL ∼ IG(1, 1)

3.4 Coverage Probability Simulation for MIC and SIC

In this section, we conduct simulations at various values of the change point

location k with different sample sizes n = 50, 100, 200. The pre-change distribution is
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always set to be IG(1, 1) and the post-change distribution after the change point k are

generated from IG(µ, λ) where µ = {1.25, 1.5, 1.75, 2} and λ = {1.25, 1.5, 1.75, 2}. For

the sample size n = 50, changes were set up to occur at k = {15, 20, 25}. For the second

sample size n = 100, the changes were set up to occur at k = {25, 40, 50}. And for

the third sample size n = 200, the changes were set at k = {50, 75, 100}. The changes

were selected at the points to test scenarios at the beginning, middle, and end of data.

Our goal is to estimate the change location k̂ to calculate the deviance function D(k, x)

(2.15). We will do this using two different approaches in the following simulations. The

first approach is based on the Modified Information Criterion (MIC) given in (2.4). The

second approach is based on the Schwartz Information Criterion (SIC) given in (2.6).

Tables 1, 2, and 3 test for change in mean, change in variance, and change in both,

respectively. Testing these three changes in the parameters is important as it allows us

to capture various aspects of distributional changes. It will also provide us with a better

understanding of the underlying characteristics of how the data evolves over time, leading

to a more comprehensive and accurate identification of the change point(s).

Table 3.5 lists out the simulation results of coverage probabilities for n = 50, n =

100, and n = 200 at two confidence levels, 0.95 and 0.99. Here we are testing change

in means to identify shifts in the main tendency of the distribution. In general, MIC

tends to provide higher coverage probabilities compared to SIC for the given scenarios.

Both criteria show an increase in coverage probabilities as the sample size (n) increases,

indicating improved performance with larger sample sizes. The impact of changing the

parameters (µ, λ) is evident in the variations in coverage probabilities.

Now, table 3.6 lists out the simulation results of coverage probabilities for n =

50, n = 100, and n = 200 at two confidence levels, 0.95 and 0.99. However, here we

are testing changes in variance in an attempt to identify changes in the spread of the

distribution. Similar to the change in mean analysis, MIC tends to provide higher coverage

probabilities compared to SIC for the given scenarios related to the change in variance. As

the sample size (n) increases, both MIC and SIC show an improved coverage probability

across all scenarios, meaning better performance with larger sample sizes. The impact of

changing the parameters (µ, λ) is evident in the variations in coverage probabilities.

Lastly, table 3.7 lists out the simulation results of coverage probabilities for

n = 50, n = 100, and n = 200 at two confidence levels, 0.95 and 0.99. However, here we
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are testing change in mean and variance to capture more complex shifts in the distribution

as some change point events may involve simultaneous changes in both central tendency

and variability. Again, MIC tends to provide higher coverage probabilities compared to

SIC for both change in mean and change in variance in the given scenarios. The impact

of changing the parameters (µ, λ) is evident in the variations in coverage probabilities.

As with the previous simulations, as the sample size (n) increases, both MIC and SIC

show an improvement in coverage probabilities, indicating better performance with larger

sample sizes.

Table 3.5: Coverage Probabilities for MIC and SIC with Change in Mean for Various

Sample Sizes and Different Change Point Locations

(1.25, 1) (1.5, 1) (1.75, 1) (2, 1)

n k α MIC SIC MIC SIC MIC SIC MIC SIC

50 15 0.95 0.912 0.871 0.921 0.896 0.934 0.902 0.935 0.908

0.99 0.949 0.908 0.950 0.925 0.960 0.928 0.962 0.935

20 0.95 0.918 0.876 0.924 0.886 0.935 0.904 0.937 0.909

0.99 0.948 0.907 0.955 0.921 0.961 0.931 0.965 0.938

25 0.95 0.917 0.879 0.928 0.896 0.934 0.909 0.948 0.926

0.99 0.952 0.912 0.96 0.928 0.964 0.940 0.971 0.950

100 25 0.95 0.906 0.867 0.927 0.89 0.945 0.913 0.947 0.929

0.99 0.951 0.911 0.967 0.928 0.976 0.945 0.980 0.962

40 0.95 0.912 0.866 0.926 0.896 0.939 0.917 0.945 0.926

0.99 0.966 0.921 0.971 0.941 0.975 0.953 0.98 0.963

50 0.95 0.915 0.869 0.940 0.913 0.946 0.926 0.943 0.933

0.99 0.964 0.919 0.969 0.944 0.974 0.954 0.972 0.962

200 50 0.95 0.906 0.866 0.937 0.907 0.949 0.930 0.950 0.939

0.99 0.964 0.928 0.971 0.944 0.978 0.961 0.98 0.968

75 0.95 0.906 0.873 0.944 0.919 0.961 0.943 0.957 0.950

0.99 0.961 0.932 0.981 0.958 0.989 0.972 0.988 0.980

100 0.95 0.905 0.875 0.95 0.919 0.953 0.935 0.955 0.954

0.99 0.963 0.934 0.983 0.955 0.986 0.970 0.983 0.981
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Table 3.6: Coverage Probabilities for MIC and SIC with Change in Variance for Various

Sample Sizes and Different Change Point Locations

(1, 1.25) (1, 1.5) (1, 1.75) (1, 2)

n k α MIC SIC MIC SIC MIC SIC MIC SIC

50 15 0.95 0.904 0.852 0.911 0.863 0.917 0.876 0.927 0.893

0.99 0.947 0.893 0.952 0.901 0.956 0.916 0.962 0.926

20 0.95 0.914 0.857 0.924 0.879 0.931 0.892 0.940 0.906

0.99 0.945 0.887 0.951 0.905 0.961 0.918 0.964 0.927

25 0.95 0.918 0.865 0.928 0.883 0.934 0.888 0.944 0.900

0.99 0.947 0.894 0.954 0.909 0.961 0.918 0.970 0.928

100 25 0.95 0.895 0.853 0.911 0.875 0.922 0.893 0.936 0.912

0.99 0.950 0.906 0.956 0.921 0.961 0.931 0.970 0.943

40 0.95 0.895 0.857 0.918 0.880 0.938 0.906 0.946 0.923

0.99 0.957 0.914 0.967 0.928 0.973 0.944 0.980 0.959

50 0.95 0.901 0.861 0.914 0.875 0.939 0.914 0.948 0.927

0.99 0.955 0.912 0.968 0.930 0.972 0.947 0.978 0.958

200 50 0.95 0.885 0.851 0.913 0.886 0.930 0.912 0.945 0.936

0.99 0.964 0.929 0.976 0.946 0.977 0.959 0.982 0.972

75 0.95 0.894 0.865 0.918 0.883 0.941 0.924 0.946 0.947

0.99 0.961 0.929 0.976 0.942 0.981 0.962 0.986 0.973

100 0.95 0.904 0.818 0.930 0.866 0.943 0.909 0.952 0.932

0.99 0.964 0.912 0.970 0.932 0.980 0.954 0.978 0.974
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Table 3.7: Coverage Probabilities for MIC and SIC with Change in Mean and Variance

for Various Sample Sizes and Different Change Point Locations

(1.25, 1.25) (1.5, 1.5) (1.75, 1.75) (2, 2)

n k α MIC SIC MIC SIC MIC SIC MIC SIC

50 15 0.95 0.911 0.864 0.919 0.885 0.933 0.919 0.938 0.935

0.99 0.954 0.902 0.956 0.917 0.959 0.942 0.963 0.958

20 0.95 0.919 0.879 0.927 0.910 0.933 0.932 0.932 0.946

0.99 0.952 0.920 0.961 0.944 0.963 0.957 0.964 0.973

25 0.95 0.924 0.866 0.933 0.894 0.937 0.922 0.946 0.933

0.99 0.955 0.903 0.962 0.932 0.965 0.952 0.973 0.966

100 25 0.95 0.904 0.868 0.926 0.905 0.939 0.934 0.931 0.954

0.99 0.957 0.917 0.968 0.948 0.962 0.973 0.960 0.982

40 0.95 0.913 0.863 0.930 0.920 0.943 0.940 0.924 0.953

0.99 0.966 0.917 0.973 0.954 0.972 0.973 0.969 0.984

50 0.95 0.912 0.865 0.935 0.911 0.945 0.938 0.935 0.954

0.99 0.963 0.913 0.966 0.946 0.974 0.963 0.971 0.974

200 50 0.95 0.903 0.868 0.943 0.938 0.945 0.971 0.935 0.969

0.99 0.965 0.937 0.978 0.976 0.979 0.992 0.966 0.995

75 0.95 0.915 0.874 0.952 0.948 0.953 0.968 0.946 0.969

0.99 0.971 0.930 0.984 0.973 0.984 0.991 0.980 0.995

100 0.95 0.934 0.882 0.964 0.950 0.963 0.968 0.949 0.976

0.99 0.974 0.939 0.982 0.981 0.984 0.993 0.973 0.994
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Chapter 4

Real Data Application

4.1 Compressive Strength and Strain of Maize Seeds

Mechanical damage during seed harvesting affects quality, so understanding

strain and strength helps minimize damage during processing. This data comes from

the strength data set within the goodness of fit package [SC15]. The following data was

pulled from a study that found that strain and strength vary across maize genotypes

and moisture levels. The strain column is a numeric vector giving the relative change in

length under compression stress in millimeters. The cstrength column is a numeric vector

giving the compressive strength in Newtons.

strain cstrength strain cstrength strain cstrength

1 0.293 245.247 31 0.226 179.807 61 0.145 131.963

2 0.274 218.23332 32 0.331 609.164 62 0.225 285.061

3 0.280 352.784 33 0.267 492.030 63 0.210 115.964

4 0.262 284.437 34 0.231 360.186 64 0.130 145.347

5 0.270 403.050 35 0.329 681.887 65 0.103 67.713

6 0.284 119.906 36 0.246 469.593 66 0.232 130.637

7 0.177 130.879 37 0.465 169.768 67 0.257 154.195

8 0.463 240.787 38 0.168 238.542 68 0.099 59.958

9 0.257 139.557 39 0.164 77.385 69 0.249 121.221

10 0.212 86.950 40 0.170 70.000 70 0.116 70.256

11 0.192 123.968 41 0.193 88.121 71 0.183 190.851

12 0.331 151.725 42 0.130 116.792 72 0.322 242.994

13 0.400 220.658 43 0.165 102.045 73 0.186 207.973

14 0.213 173.919 44 0.215 242.737 74 0.322 399.324

15 0.196 133.445 45 0.192 53.362 75 0.201 323.350

16 0.336 163.574 46 0.270 135.443 76 0.355 732.428
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17 0.220 505.008 47 0.242 201.819 77 0.147 74.932

18 0.371 163.154 48 0.369 96.656 78 0.128 133.038

19 0.208 373.503 49 0.242 101.833 79 0.193 139.973

20 0.287 136.247 50 0.206 116.738 80 0.237 180.017

21 0.343 284.86 51 0.227 617.487 81 0.128 94.293

22 0.261 160.633 52 0.226 210.598 82 0.186 167.844

23 0.246 500.193 53 0.307 266.626 83 0.448 422.769

24 0.276 267.68 54 0.325 267.502 84 0.160 228.962

25 0.262 98.89 55 0.166 220.042 85 0.282 198.267

26 0.269 357.222 56 0.118 110.715 86 0.197 101.210

27 0.234 144.604 57 0.318 281.564 87 0.185 116.140

28 0.272 453.428 58 0.147 207.570 88 0.415 733.765

29 0.386 157.872 59 0.126 209.626 89 0.223 257.975

30 0.213 244.917 60 0.357 300.310 90 0.287 71.767

We will use the goodness of fit test for the Inverse Gaussian (IG) distribution which

transforms the observations into approximately normally distributed observations and

then use the Shapiro-Wilk test for assessing univariate normality. This dataset produces

a p-value of 0.6909 meaning there is not enough evidence to reject the null hypothesis.

Thus, our dataset does not significantly deviate from an IG distribution when transformed

to normality.

This dataset follows the IG model, Figure 4.1 displays the change point detection

results using the Modified Information Criterion (MIC) for the compressive strength of

maize. To find all the change points in the dataset, we employ the binary segmentation

procedure. Once we identify the location of the first change point, we split the data into

two segments and apply the proposed method to each segment. This process continues

until no more change points are found.

It is seen that the change points occur at positions 15, 25, 39, 50, 62, 72, and 77.

This means there were significant changes in the compressive strength at those locations.

Thus, we are able to more specifically pinpoint specific locations where the compressive

strength of maize seeds undergo notable shifts, allowing us to dive further into the factors

that may contribute to these changes.

Figure 4.2 shows the change point detection results using the Schwartz Infor-

mation Criterion (SIC) for the compressive strength of maize. Change points occur at

positions 16, 39, 62, 70, and 77. There is some overlap in the change points identified by

MIC and SIC (both include 39 and 62). At these locations, there may be more significant

changes in compressive strength.
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Figure 4.1: Change point detection for the Compressive Strength of Maize Seeds Using

MIC
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Figure 4.2: Change point detection for the Compressive Strength of Maize Seeds Using

SIC

4.2 Measurement of Dispersion of Particulate Matter 2.5

in Thailand

Thailand has a high amount of fine particles less than 2.5 micrometers in diam-

eter, also known as particulate matter ≤ 2.5µm (PM 2.5). PM 2.5 contains microscopic

solids or liquid droplets that are very small that they can be inhaled and cause serious

health problems which is a growing concern for the public in Thailand. Large sources

of PM 2.5 emissions in Thailand are transportation, coal-fired power plants, and agricul-

tural and garbage burning. The following data comes from [C+22] which measures the

daily PM 2.5 of Din Daeng district of Bangkok, Thailand in January 2021. Note that the

Environmental Protection Agency states that the 24-hour fine particle standard of PM

2.5 should be 35 µm.

Date PM 2.5 Date PM 2.5 Date PM 2.5

1 27.54 11 35.75 21 82.08

2 32.58 12 30 22 91.88
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3 47.29 13 52.92 23 89.71

4 54.88 14 77 24 47.96

5 42.25 15 93.46 25 44.83

6 47.46 16 105.79 26 41.33

7 37.83 17 60.46 27 49.46

8 29.88 18 34.63 28 51

9 23.58 19 53.96 29 49.04

10 32.63 20 77.79 30 51.58

31 50.26

Chankham, Wasana et al. [C+22] uses the inverse Gaussian distribution on this data

set as the inverse Gaussian distribution is good for examining the frequency of high-

concentration events. Thus, the inverse Gaussian distribution is often applied to datasets

like this which study air pollution. Chankham, Wasana et al. [C+22] calculated the

quantitative difference in PM 2.5 concentrations using the coefficient of variation of the

Inverse Gaussian (IG) distribution. However, we will apply our MIC-based change point

detection method here to see where changes occur. To check, the data was run through

the goodness of fit test for the IG distribution. This data set produces a p-value of 0.2371

meaning there is not enough evidence to reject the null hypothesis. This data does not

significantly deviate from an IG distribution when transformed to normality which is

what we would expect as the IG distribution is often used to analyze pollution data like

this.

Figure 4.3 displays the change point detection results using the Modified Infor-

mation Criterion (MIC) for the measurement of dispersion of PM 2.5 in Thailand. To

find all the change points in the dataset, we employ the binary segmentation procedure.

Once we identify the location of the first change point, we split the data into two segments

and apply the proposed method to each segment. We continue this process until no more

change points are found.

After completing the binary segmentation procedure, we find that there are

change points at positions 8, 11, 18, and 24. This means that at these locations there

were significant changes in the dispersion of PM 2.5. Knowing this information can allow

us to better specify locations where the levels of PM 2.5 are notably different, allowing

statisticians to look deeper into factors that could contribute to these changes.
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Figure 4.3: Change point detection for the measurement of Dispersion PM 2.5 Using MIC
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Chapter 5

Conclusion

In this thesis, we propose a change point detection method for a two-parameter

Inverse Gaussian (IG) distribution based on the Modified Information Criterion (MIC).

Change point analysis aims to find the number of and corresponding location of changes

in data if any exist. A simulation study is conducted to evaluate the effectiveness of

the proposed detection procedure in the IG model using three criteria: type I error rate,

power, and coverage probabilities.

For small n, the MIC-based procedure provides a type I error closer to the

nominal level and better power compared to the SIC-based procedure. However, as the

sample size increases, the type I error based on both SIC and MIC approaches closer to

the nominal level, α = 0.05. Furthermore, the power also increases; however, the MIC-

based procedure outperforms the SIC-based procedure. It is clear that the power based

on the SIC method is small when the true change point location k is near the beginning

of the data, while the MIC-based procedure provides better power as it considers the

impact of the change location in terms of model complexity. Regardless of the procedure,

it is evident that power tends to increase as the difference between the pre-change and

post-change parameters increases. So, for small sample sizes (n ≤ 50), we recommend a

MIC-based procedure for detecting changes in the IG model. The proposed method, along

with the Binary segmentation method, is then applied to detect multiple changes in two

real datasets: the compressive strength and strain of maize seeds and the measurement

of dispersion of particulate matter 2.5 in Thailand.

In future research, we will explore change point analysis of the IG model ap-
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plied to censored data sets, focusing on survival analysis. Further, we aim to investigate

the impact of length-biased sampling on survival analysis within this framework. This

research has the potential to develop new methodological approaches in survival analysis

with interdisciplinary applications.
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