
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

5-2024

EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE

STOCK FORECASTING STOCK FORECASTING

Ethan White

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Business Analytics Commons, Business Intelligence Commons, Computer and Systems

Architecture Commons, Finance and Financial Management Commons, and the Other Electrical and

Computer Engineering Commons

Recommended Citation Recommended Citation
White, Ethan, "EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE STOCK FORECASTING" (2024).
Electronic Theses, Projects, and Dissertations. 1916.
https://scholarworks.lib.csusb.edu/etd/1916

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1398?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1326?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1916?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

EFFECTIVENESS OF CNN-LSTM MODELS USED FOR

APPLE STOCK FORECASTING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Information Systems & Technology:

Business Intelligence and

Data Analytics

by

Ethan White

May 2024

 EFFECTIVENESS OF CNN-LSTM MODELS USED FOR

APPLE STOCK FORECASTING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Ethan White

May 2024

Approved by:

Dr. Conrad Shayo, Committee Member, Chair

Dr. Sepideh Alavi, Committee Member, Reader

Dr. Conrad Shayo, Chair, Information and Decision Sciences Department

© 2024 Ethan White

 iii

ABSTRACT

This culminating experience project investigates the effectiveness of

convolutional neural networks mixed with long short-term memory (CNN-LSTM)

models, and an ensemble method, extreme gradient boosting (XGBoost), in

predicting closing stock prices. This quantitative analysis utilizes recent AAPL

stock data from the NASDAQ index. The chosen research questions (RQs) are:

RQ1. What are the optimal hyperparameters for CNN-LSTM models in stock

price forecasting? RQ2. What is the best architecture for CNN-LSTM models in

this context? RQ3. How can ensemble techniques like XGBoost effectively

enhance the predictions of CNN-LSTM models for stock price forecasting?

The research questions were answered through a thorough quantitative

analysis involving data preprocessing, feature engineering, and model

evaluation, using various Python scripts designed for this analysis. The findings

are: RQ1. reveals that adjusting hyperparameters, such as learning rates and

epochs, significantly improves model performance; RQ2. deemed a multi-layered

CNN-LSTM structure with attention mechanisms as the most effective for this

use case; and RQ3. showed that XGBoost as an ensemble method did not work

as planned, indicating a much more complex interplay between ensemble

methods and neural network models. The conclusions are: RQ1. adjusting

hyperparameters, such as learning rates and epochs, improves the performance

of CNN-LSTM models. RQ2. multi-layered CNN-LSTM architectures with

 iv

attention mechanisms are the most effective architecture for predicting stock

prices. RQ3. ensemble methods like XGBoost, when combined with CNN-LSTM

models, did not improve prediction accuracy as expected, suggesting a complex

interplay between these techniques. Areas for further study include the

automation of hyperparameter tuning techniques such as GridSearch and

Bayesian optimization, further exploration of the integration of ensemble methods

with neural network models, and the application of CNN-LSTM architectures to

other forms of financial data beyond closing stock prices.

 v

ACKNOWLEDGEMENTS

This culminating experience project on the effectiveness of CNN-LSTM

models in stock forecasting has been a significant milestone in my academic

journey. I owe my deepest gratitude to Dr. Shayo, who has guided me with his

supply chain expertise. His active support in navigating the complexities of this

research has been appreciated. I am equally grateful for the support of Dr.

Sepideh, my committee member, whose experience in the supply chain has also

enhanced this quantitative analysis. I am truly fortunate to have had such

distinguished scholars on my committee.

 I would also like to extend my heartfelt thanks to my current employer and

coworkers for their patience and support as I continued to pursue my education

at California State University, San Bernardino (CSUSB). Special

acknowledgment goes to my supervisor, Chenkuan Tiow, whose understanding

and flexibility were instrumental in balancing my professional responsibilities with

my academic endeavors.

Furthermore, I am immensely grateful for the CSUSB Business Job Fairs

held every spring. This event made my current employment possible, opening

the door to new opportunities that have enriched my professional and personal

life. The university's commitment to fostering career development and

employment opportunities has had a lasting impact on my career trajectory, for

which I am forever thankful.

 vi

DEDICATION

I dedicate this analysis to my real-life superhero and forever role model,

my mom. I am so proud of your willingness to go back to college during my last

few years of high school. Now look at us, we are both graduating with our

master’s degrees at the same time and from the same school. Who would have

thought? I am forever indebted to your stick-to-it-veness and sacrifices made to

be able to achieve such a rare feat. I am so proud and honored to call myself

your son.

 vii

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. x

LIST OF FIGURES ...xi

CHAPTER ONE: INTRODUCTION .. 1

Background Information ... 1

Existing Architectures .. 2

Problem Statement .. 6

Research Scope .. 7

CHAPTER TWO: LITERATURE REVIEW .. 9

Comparative Behavior of International Stock Indices 9

Groundbreaking Research ... 10

2.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models
in stock price forecasting, and how can they be updated to positively
impact the model's performance and ability to generalize? 12

2.2 – RQ2: What is the best architecture of CNN-LSTM being used for
stock price forecasting regarding the features generated, hyperparameters
used, and modifications made to the model itself? 14

2.3 – RQ3: How can ensemble techniques, such as extreme gradient
boosting, effectively combine the predictions of multiple CNN-LSTM
models for stock price forecasting? ... 16

CHAPTER THREE: RESEARCH METHODS ... 18

3.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models
in stock price forecasting, and how can they be updated to positively
impact the model's performance and ability to generalize? 19

 viii

3.2 – RQ2: What is the best architecture of CNN-LSTM being used for
stock price forecasting regarding the features generated, hyperparameters
used, and modifications made to the model itself? 21

3.3 – RQ3: How can ensemble techniques, such as extreme gradient
boosting, effectively combine the predictions of multiple CNN-LSTM
models for stock price forecasting? ... 22

CHAPTER FOUR: DATA COLLECTION, ANALYSIS AND FINDINGS 24

4.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models
in stock price forecasting, and how can they be updated to positively
impact the model's performance and ability to generalize? 39

4.2 – RQ2: What is the best architecture of CNN-LSTM being used for
stock price forecasting regarding the features generated, hyperparameters
used, and modifications made to the model itself? 40

4.3 – RQ3: How can ensemble techniques, such as extreme gradient
boosting, effectively combine the predictions of multiple CNN-LSTM
models for stock price forecasting? ... 41

CHAPTER FIVE: DISCUSSION, CONCLUSION AND AREAS FOR FURTHER
STUDY ... 43

5.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models
in stock price forecasting, and how can they be updated to positively
impact the model's performance and ability to generalize? 43

5.2 – RQ2: What is the best architecture of CNN-LSTM being used for
stock price forecasting regarding the features generated, hyperparameters
used, and modifications made to the model itself? 44

5.3 – RQ3: How can ensemble techniques, such as extreme gradient
boosting, effectively combine the predictions of multiple CNN-LSTM
models for stock price forecasting? ... 46

APPENDIX ... 48

(1) arima_APPL.py Script .. 49

(2) lstm_APPL.py Script ... 52

(3) model_APPL.py Script .. 54

(4) xgboost_APPL.py Script ... 56

 ix

(5) main_APPL.py Script .. 58

(6) utils_APPL.py Script ... 64

REFERENCES ... 68

 x

LIST OF TABLES

Table 1 - Eight Influential Models .. 2

Table 2 - ADF Tests on Original Sequence and First-Order Diff Sequence 28

Table 3 - Model Evaluation Results .. 38

 xi

LIST OF FIGURES

Figure 1 - First-Order Difference ... 25

Figure 2 - Second-Order Difference ... 26

Figure 3 - Autocorrelation vs. Partial Autocorrelation .. 27

Figure 4 - Training Set vs. Testing Set .. 29

Figure 5 - ARIMA Predictions Fitted to Actuals ... 30

Figure 6 - LSTM Predictions of APPL Closing Prices ... 32

Figure 7 - ARIMA + XGBoost Predictions vs Actuals .. 33

Figure 8 - Residuals and Residual Density ... 34

Figure 9 - ARIMA + XGBoost: Predicted vs. Actuals ... 35

Figure 10 - ARIMA + XGBoost Residual Predictions .. 36

Figure 11 - Training and Validation Loss: LSTM ... 37

 1

CHAPTER ONE:

INTRODUCTION

The stock market remains as a pivotal institution where capital flows,

investments are made, and the economy is impacted. Within it, billions of dollars

change hands every day. Consequently, automating accurate stock price

predictions has become a primary goal for supply chain researchers and

investors globally (Zhu et al., 2023). Innovations such as artificial intelligence (AI)

models are effective at recognizing patterns, and they could be the key to

improving stock trend forecasting for financial researchers. Before covering the

specifics of AI architectures, it is crucial to have a deeper understanding of neural

networks and their current function for automation.

Background Information

According to research by Islam and team, a neural network is a form of

artificial intelligence that uses algorithms to imitate the structure of the human

brain (Islam et al., 2019). Neurons in the human brain receive electrical or

chemical stimuli through dendrites and transfer output signals via axons. Axons

establish connections with other neurons at junctions known as synapses,

delivering their output signals to other neurons in an endless cycle of

transmission. Artificial neural networks consist of interconnected units, often

known as neurons. The link between the network neurons in the hidden layer

functions similarly to the synapses in the human brain. The neurons establish

 2

connections between processing elements, and the arrangement and weights of

these connections affect the output. Unlike solely digital models that manipulate

binary code, neural networks operate with more complex computations. This

form of artificial intelligence excels when given a substantial amount of previous

example data for training (Islam et al., 2019).

Architectures

Existing Architectures

Within the realm of artificial intelligence, neural network architectures are

essential for solving complex predictive problems. To provide a structured

overview of the primary neural network architectures that have influenced recent

machine learning advancements, Table 1 below summarizes eight influential

models. Each architecture is evaluated based on its design, advantages, and

where it is suitable for closing stock price analysis.

Table 1 - Eight Influential Models

Model Description Advantages Sustainability for
Project

Multilayer
Perceptron
(MLP)

A forward-feed
neural network
with multiple
layers.

Can approximate
any function.

Not selected due to
lower performance
capturing time-series
data.

 3

Model Description Advantages Sustainability for
Project

Convolution
Neural
Network
(CNN)

Uses
convolutional
layers, and fully
connected layers.

Excellent for
spatial data like
imagery.

Selected because it
can handle time-series
data, treating it as a
sequence of patterns

Recurrent
Neural
Network
(RNN)

Processes
sequences by
iterating through
elements.

Good for
sequence
predictions.

Not selected due to
difficulty to train and
issues with holding
long-term
dependencies.

Long Short-
Term
Memory
(LSTM)

Type of RNN that
can learn long-
term
dependencies.

Prevents the
vanishing gradient
problem.

Selected for its
strength in handling
long sequences,
crucial for stock price
forecasting.

Feed-
Forward
Neural
Networks

Simplest type of
ANN,
connections do
not form cycles.

Simple and fast to
train.

Not selected because
it cannot handle
sequences, crucial for
time series analysis.

Generative
Adversarial
Networks
(GAN)

Consists of two
networks,
competing
against each
other.

Good for
generating new
data.

Not selected as it is
better suited for data
generation, not data
prediction.

Residual
Networks
(ResNet)

Utilizes skip
connections to
jump over some
layers.

Efficient for
identifying
gradient issues in
deep networks.

Not selected due to its
complexity and
inefficiency in time
series prediction
compared to both
CNN and LSTM

 4

Model Description Advantages Sustainability for
Project

Transformers Based on self-
attention
mechanisms
instead of
sequence aligned
RNNs or
convolution

Highly
parallelizable and
effective in
handling long-
range
dependencies.

Not selected because
it is complex and
resource-intensive,
making it suitable for
larger datasets and
natural language
processing.

After presenting the advantages and applications of architectures detailed

within works such as Goodfellow et al. (2014); Haykin (1999); He, Zhang, Ren, &

Sun (2016); Hochreiter & Schmidhuber (1997); LeCun, Bengio, & Hinton (2015);

O'Shea & Nash (2015); Rosenblatt (1958); and Vaswani et al. (2017), the

rationale for selecting specific models depends on their ability to perform time

series forecasting. Thus, CNN and LSTM networks were chosen based on their

ability to process sequential data effectively.

According to O'Shea and Nash, the CNN model resembles feed-forward

neural network architectures, where the neurons possess adjustable weights and

biases (O'Shea & Nash, 2015). This neural network architecture can be divided

into four major parts: the input layer, the convolutional layer, the pooling layer,

and the fully connected layers. Convolution is often used for signal and image

recognition. However, it has recently adapted to handle time series prediction

applications by utilizing 2D mapping. Time series forecasting uses historical time-

stamped data to create scientific forecasts. The process entails constructing

 5

models and using them to inform future strategic decision-making. The

forecasting process is unique because, during the process, the result of the

models is unknown, and it can only be found through the meticulous examination

of the data (Tableau, 2003-2024). When applying CNN to time series inputs, the

data would be treated as an image-like structure, where the horizontal axis

represents the temporal dimension, and any other dimensions are represented

by the other axes. After mapping the dimensions, patterns within the data can be

identified accordingly (O'Shea & Nash, 2015).

The RNN model also shares similarities with feed-forward neural network

architectures since the initial layer is computed by multiplying the sum of weights

and features. After the calculation, the neurons store a small amount of

information throughout each algorithm stage, which is then utilized for error

correction during the backpropagation process. A basic RNN block comprises

five steps: block input, input gate, forget gate, cell, and block output (Islam et al.,

2019). The LSTM model, pioneered by Hochreiter & Schmidhuber in 1997,

addressed the challenge of learning long-term dependencies, a way for a

computer to detect cohesion between phrases. The learning capacity of LSTM

has had a significant impact in terms of practical applications and theoretical

advancements, leading to its recognition as an innovative learning model (Van

Houdt, Mosquera, & Nápoles, 2020).

Accurately predicting stock market movements has attracted significant

attention due to its unpredictable patterns. The growing popularity of purchasing

 6

stocks can be attributed to convenient information accessibility, online brokerage

programs, the dynamic market, and the pursuit of financial literacy overall. Past

research has shown that, when combined, CNN-LSTM models are resilient to

noisy input data and can differentiate between meaningful information and

irrelevant disturbances. These models are known for generating accurate

predictions, and they can efficiently combine multiple types of data sources and

identify relevant characteristics for forecasting (Zhu et al., 2023). Further

research is necessary to ensure the accuracy of machine learning models to

detect outliers when applied to fluctuating stock price data (Zhu et al., 2023). The

research questions chosen are addressed within the research scope.

Problem Statement

The main objective of this culminating experience project is to analyze the

effectiveness of neural network models used for stock price forecasting. Previous

research (Zhu et al., 2023), and most references present at the end of this

analysis, show that there is a need to study the forecasting effectiveness of CNN

and LSTM models. We will analyze these models' effectiveness while providing

explanations for RQs relating to the topic. This analysis of convolutional neural

network models draws inspiration from Yuzhun Liang's area for further study, and

the incorporation of long short-term memory is motivated by the recent work of

Jonathan Cahyadi and Amalia Zahra, who applied CNN-LSTM to predict bitcoin

prices (Liang, 2019; Cahyadi & Zahra, 2024).

 7

Research Scope

This research's main goal is to analyze the effectiveness of CNN LSTM

models when combined to forecast time series data, more specifically the

forecasting of closing stock prices. A detailed exploration of the model's

performance and adaptability to the dynamic nature of financial markets forms

the core of this research. The following are research questions suggested by

prior research that are analyzed within this project:

RQ1: What are the optimal hyperparameters for CNN-LSTM models in

stock price forecasting, and how can they be updated to positively impact

the model's performance and ability to generalize? (Zhu et al., 2023)

RQ2: What is the best architecture of CNN-LSTM models being used for

stock price forecasting regarding the number of convolutional layers,

LSTM layers, batch sizes/maximum epochs, and python libraries used?

(Zhu et al., 2023)

RQ3: How can ensemble techniques, such as extreme gradient boosting,

effectively combine the predictions of multiple CNN-LSTM models for

stock price forecasting? (Zhu et al., 2023)

This culminating experience project is organized as follows: Chapter 2

reviews the literature focusing on where the research questions came from.

Chapter 3 provides the methods used to answer the research questions, and

 8

Chapter 4 implements the research methods provided in Chapter 3 by covering

the data collection, analysis and providing the research findings. Chapter 5

provides a discussion of the findings, conclusions, and areas for further study.

 9

CHAPTER TWO:

LITERATURE REVIEW

Understanding the volatility of closing stock prices has evolved since the

market’s inception. Accurately predicting potential shifts is essential for making

educated investment decisions and utilizing technology can make this process

more streamlined. The past research included within this research shows that

neural network models have higher accuracy than linear statistical-based

methods when applied to non-linear data. More specifically, hybrid non-linear

models have generated encouraging results suggesting enhanced forecast

accuracy during periods of market volatility, like the COVID-19 pandemic.

Nevertheless, the implementation of neural networks can be improved, which will

be examined further within this analysis. Researchers are now investigating the

most efficient optimization techniques in this developing field, including optimal

hyperparameters and the integration of neural network models as ensemble

models. This literature review includes the comparative behavior of international

stock indices, groundbreaking neural network research in financial forecasting,

and the evolution of neural networks used as predictive methodologies.

Comparative Behavior of International Stock Indices

As defined previously, external variables impact financial forecasting.

However, regional differences also play a critical role in shaping the behaviors of

global stock markets. A well-known comparative study, “Industrial Structure and

 10

the Comparative Behavior of International Stock Market Indices,” published in

The Journal of Finance in 1992, documents the behaviors. The analysis reveals

differences in volatility levels among national stock markets, which are present

after accounting for nominal and inflation differences through currency

conversions. The research found that stock markets in places like Canada and

the Netherlands do not change as much, which means they have low volatility,

while markets in Hong Kong and South Africa change a lot more, showing high

volatility (Roll, 1992, p. 37). It was found that changes in the value of a country's

currency play a role in the behavior of national stock market indices, but this

influence is smaller than the effect of the country's industrial structure. Exchange

rates significantly affect stock market movements, but how much varies by

country. The results reveal the intricate complexity of international stock market

indices, offering helpful information for stakeholders operating in global financial

markets (Roll, 1992). Roll's research emphasizes external factors affecting stock

price forecasts, making it a challenging endeavor, and underscores the role that

location plays in generating predictions.

Groundbreaking Research

Seminal works—Kimoto et al., 1990, Kamijo & Tanigawa, 1990, and

(Ahmadi, 1990)— have applied ANN architectures to forecast foreign indices

such as the Tokyo Stock Exchange Prices Index (TOPIX) by closely monitoring

each stock index’s reversal patterns. Contemporary research has focused on

 11

applying AI techniques, particularly ANN, to predict recorded stock price trends.

Studies such as (Yoon & Swales, 1991), (Choi, Lee, & Rhee, 1995), and (Trippi

& DeSieno, 1992) were some of the first to use ANN models to predict stock

index futures, namely the S&P 500. Additionally, (Duke & Long, 1993) extended

this approach to German government bond futures. These early investigations

primarily focused on ANN's application in stock market prediction.

As research progressed, scholars (Hiemstra, 1995) introduced hybrid

models, integrating fuzzy expert systems with ANN to capture the complexities of

market dynamics (Tsaih, Hsu, & Lai, 1998). These researchers further advanced

this trend by combining rule-based techniques with ANN to forecast the S&P 500

index futures' daily direction of change. Moreover, researchers like (Kohara,

Ishikawa, Fukuhara, & Nakamura, 1997) began incorporating prior knowledge to

enhance prediction performance. However, challenges arose due to the noisy

and non-stationary nature of stock market data, as noted by (Lawrence, Tsoi, &

Giles, 1996), leading to issues like overfitting and local convergence of gradient

descent algorithms commonly used to train ANNs. This was also addressed in

the research of (Abu-Mostafa & Atiya, 1996) where the "learning from hints"

algorithm was created to identify familiar market information and uses it to

improve its predictive capabilities. The algorithm adapts by fine-tuning itself

according to its alignment with the clues and the information provided and it does

not rely on the knowledge of each scenario result, which makes it valuable even

with restricted data. However, recent advancements propose a novel hybrid

 12

approach that combines genetic algorithms, also known as GAs, with ANNs to

mitigate data complexity (Kim & Han, 2000). This hybrid model not only optimizes

connection weights but also determines optimal thresholds for feature

discretization, thus enhancing classifier generalizability by reducing

dimensionality. The concepts applied within this early research underscore the

potential to explore broader algorithmic optimization strategies, aligning with the

evolving landscape of financial forecasting techniques.

2.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in

stock price forecasting, and how can they be updated to positively impact

the model's performance and ability to generalize?

When researching optimal hyperparameters for CNN-LSTM applications,

we found research that could be adapted to the optimization of CNN-LSTM

model training. According to Hanifi et al.’s 2024 study, hyperparameters are

external parameters whose values are not directly learned by ANN or RNN

models as they are defined outside of training to optimize the learning of the

chosen models (Hanifi et al., 2024, p. 2). In this comparative study,

hyperparameters such as the number of neurons, batch size, epochs number,

and the activation functions were optimized using three optimization strategies.

The epochs number refers to the number of times that the model has seen the

entire dataset, and epochs are split up into smaller divisions for processing called

batch sizes (Hanifi et al., 2024, p. 2). We learned from Hanifi’s research that

 13

selecting efficient hyperparameter values is critical for avoiding overfitting and

other discrepancies. Hyperparameter selection varies based on the domain and

should be optimized for each dataset through a process known as

hyperparameter tuning. However, determining how many hyperparameter

combinations to test is critical, as it affects the computational cost of the model

being used. Hanifi’s research explores automatic search algorithms, such as grid

search and random search, to help overcome the challenges of manual

hyperparameter estimation, especially when applied to neural networks (Hanifi et

al., 2024).

Some approaches to optimize hyperparameters included within Hanifi’s

research were grid search and sequential model-based optimization (SMBO).

Grid search explores hyperparameter combinations but suffers due to the high

computation costs of neural networks models (Wu et al., 2019). Another source

introduces a new grid search method GridsearchWEF, which reduces the time

needed to find the best settings for machine learning models (Zhao et al., 2024,

p. 111362) but was not applied with CNN-LSTM. Highlighting the inefficacies of

random search methods, Bergstra et al. (2011) prompted a search for

alternatives that balance efficacy and computational efficiency. Enter sequential

SMBO, which is an optimization strategy that uses past training data to iteratively

refine hyperparameters. An example of this strategy is seen through the work of

Masum et al. (2021), highlighting Bayesian optimization for the detection of

network intrusions. Another example of this strategy was research by Zhu et al.

 14

(2022) exploiting a Tree-structured Parzen Estimator (TPE) to fine-tune wind

power prediction models. However, it was Hanifi et al. (2024) who compared

Scikit-opt, Hyperopt, and Optuna python-language libraries used for optimizing

CNN and LSTM models, which can be applied to existing stock forecasting

models. Hanifi's meticulous analysis not only advocates for SMBO as a viable

alternative to grid or random searches but also underscores the significance of

addressing randomness to increase model accuracy.

This section sheds light on hyperparameter optimization and sets the

stage to discuss the literature containing the best architecture to use for this data

analysis project.

2.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock

price forecasting regarding the features generated, hyperparameters used,

and modifications made to the model itself?

When searching for the best architecture, we found that the approach of

CNN-LSTM architecture varied between past research studies, in terms of the

number of layers, filter sizes, and hyperparameters for each model. After

reviewing over 5 different approaches to the CNN-LSTM model found in modern

research, we noticed that these models used at least two convolutional layers

and filter sizes ranging from 32 to 64 (Livieris et al., 2021; Staffini, 2022; Alkhatib

et al., 2022; Yang & Chang, 2020; Song & Choi, 2023). This is all dependent on

the size of the dataset, as this will determine how many epochs are generated by

 15

the model. Some modern forecasting research creates innovative new features

used in their forecasting. Research done by Song & Choi of 2023 uses historical

stock price data from DAX, Dow Jones, and the S&P 500 to forecast the one-

time-step and multiple-time-step closing prices of these indices through the

integration of neural network models such as CNNs, LSTMs, and gated recurrent

units (GRUs). Several of the features used by the models for forecasting include

the daily stock prices for each index, trading volume, change in stock prices, and

a novel feature called the medium. The medium was an average of the stock

prices' highs and lows that the models use to make better predictions. Through

calculating the medium, the forecasting model can focus on a more stable value

that represents the trends of an index rather than being swayed by its volatility

(Song & Choi, 2023, p. 13). Other modern research makes modifications to the

neural network model.

Eapen et al. (2019) conducted further research that introduces a new

deep learning model combining CNN with bi-directional LSTM units. This model

aims to improve the accuracy of predicting stock market indices, with a focus on

the S&P 500 index. These researchers look at what happens when they change

various parts of the models, analyzing what happens when they change the

number of bidirectional LSTM units and the size of the CNN kernels. The team

used six python packages to facilitate their display of stock price forecasts. In

summary, the study conducted by Eapen, and team emphasizes the

effectiveness of a hybrid neural network architecture consisting of CNN for

 16

recognizing stock price trends and a LSTM network for retaining the temporal

sequence of events. Making modifications to a model’s framework, in terms of

their layering and filtering, could impact their effectiveness in the future.

The above research contains effective architectures for stock forecasting.

However, there is still a gap that needs to be addressed. An architecture that

applies ensemble techniques to CNN-LSTM models should be considered for

this research.

2.3 – RQ3: How can ensemble techniques, such as extreme gradient

boosting, effectively combine the predictions of multiple CNN-LSTM

models for stock price forecasting?

When searching for research on CNN-LSTM models incorporating

ensemble techniques for error processing, we discovered the research of Zhu et.

al, 2023. This research displayed a CNN-LSTM model, the CNN enhanced by

attention mechanisms, using a decision-tree algorithm to improve its ability to

generalize called XGBoost. It does this by focusing on the errors of the

predictions, and uses the information collected from the trees to make predictions

closer actuals, in this case actual stock prices (Zhu et al., 2023, p. 362). This

ensemble methods’ guesses can be imperfect, and these imperfections or errors

are known as residuals. When coupled with other predictive techniques, the

XGBoost algorithm employs subsequent decision trees to identify these

imperfections and fine-tune the learning model. This research shows that the

 17

combination of XGBoost with CNN-LSTM offers better insights and higher

accuracy for predicting time series data.

The combination of stand-alone neural network models into hybrids, such

as CNN-LSTM, opens avenues for ensemble modeling approaches. Analogous

to a council of experts using collected data to pool insights for decision making,

ensemble models aggregate predictions from all models as sources.

Comparative research by Song & Choi (2023) pitted hybrid and ensemble

models against traditional statistical methods in stock price prediction. In one-

time-step forecasting, the latest models eclipsed their traditional counterparts in

over 48% of cases, while ensemble models outperformed traditional methods in

more than 81% of multi-time-step forecasting instances. These methodologies

show a shift towards using more nuanced predictive analytics within financial

forecasting, such as boosting (Song & Choi, 2023, p. 1).

Precise predictions improve investor decision-making, and better

investments benefit the stock market. Having reviewed the existing literature on

the application of modern CNN-LSTM models in stock forecasting, we applied

what we learned to adapt the model created in Zhu et al., 2023 fitted to closing

price data from the APPL ticket of the NASDAQ index. The Zhu research will be

our primary literature for this analysis, and we will adapt their methodologies to

better understand the techniques used in modern research and identify potential

areas for improvement.

 18

CHAPTER THREE:

RESEARCH METHODS

The methodologies from Zhu et al.'s research, 2023, are the primary

literature for this analysis and are used as secondary, quantitative data to answer

the three RQs. Zhu’s research includes the discussion of hyperparameters, the

implementation of ensemble methods, and their research results show that this is

one of the best models used for stock prediction. Fortunately, prior research has

already implemented the architecture provided in the primary literature, authored

by Zhuangwei Shi, Yang Hu, Guangliang Mo, and Jian Wu on their GitHub

repository, and it has been adjusted to fit the criteria (Shi et al., 2022). The

scripts are titled: arima_APPL.py, lstm_APPL.py, xgboost_APPL.py,

model_APPL.py, main_APPL.py, and lastly, utils_APPL.py. This methodology

utilizes various Python libraries, notably Keras for the neural network models and

XGBoost for ensemble learning. Data handling and preprocessing tasks are

performed on the chosen 5-year APPL dataset using pandas and scikit-learn,

ensuring that the original data is properly scaled and cleaned before processing.

The adjusted Python scripts perform an evaluation of the methods used and they

generate a month’s worth of predictions for closing prices on the APPL ticket of

the NASDAQ index. Understanding the methodology will serve as a foundation

for discussing the findings as well as potential improvements that could be made

within time series forecasting.

 19

3.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in

stock price forecasting, and how can they be updated to positively impact

the model's performance and ability to generalize?

Chapter 2 introduced common benchmark hyperparameters seen through

the literature for testing modern CNN-LSTM models, which include maximum

epochs of 50 and batch sizes of 32. Additionally, typical testing parameters such

as lookback periods, dropout rates, and validation splits of 0.1 were considered.

These parameters served as a baseline for identifying the optimal

hyperparameters of this analysis, which were manually selected based on their

effectiveness in preprocessing tests and generated figures. To answer this RQ,

we focus on the optimal hyperparameters chosen for the CNN and LSTM

models, configured to predict closing prices and analyze trends within the AAPL

dataset.

We chose to adopt the hyperparameters used in the primary literature

conducted by Zhu et al. in 2023 as these are the most optimal for our dataset.

GridSearch investigated the potential integration of systematic hyperparameter

optimization within our models, although it was not implemented due to logic

issues with this process. For the LSTM model, the optimal configuration included

utilizing sequences of 10 historical data points, each corresponding to the stock

prices of previous trading days, to predict the subsequent value. This setup

effectively encapsulates two weeks of stock market activity in each input

sequence for forecasting. The model was trained over 50 epochs to maximize

 20

training without overfitting, and it used a batch size of 32 to balance

computational efficiency by processing information in smaller segments. The

LSTM layers were configured with 50 units each, which optimizes the model's

capability to learn from temporal patterns in the closing prices. A learning rate of

0.01 for the Adam optimizer was selected to ensure efficient convergence during

the model's training process. The attention-based CNN model was optimized with

a look-back period of 60 days, recognizing the importance of this duration in

capturing relevant stock price trends. The model incorporated 64 convolutional

filters, a kernel size of 3, and a dropout rate of 0.5, which was selected to

optimize feature extraction. The learning rate for this model was set at 0.001,

aimed at achieving steady progress in the model's training process.

Once the hyperparameters were chosen, they were then implemented in

the model scripts: lstm_APPL.py and model_APPL.py. The hyperparameter

selection process was aimed at maximizing learning and generalization while

preventing overfitting. The manual tuning of hyperparameters, as opposed to

using GridSearch, was dictated by the programmatical challenges faced when

implementing the latter method. Therefore, the hyperparameter configurations for

the CNN and LSTM models were carefully customized to enhance their

forecasting performance.

 21

3.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock

price forecasting regarding the features generated, hyperparameters used,

and modifications made to the model itself?

The best architecture for CNN-LSTM in stock price forecasting, identified

in our analysis, integrates the attention mechanism within the CNN layers and

the LSTM components to effectively analyze time-series data. The ACNN-LSTM

model, originally implemented by Zhu et al. (2023), uses attention-based

mechanisms in the CNN to prioritize data points impacting future stock price

predictions or feature selection. This model is implemented in the

model_APPL.py script, and it demonstrates how attention layers can improve

feature selection and extraction.

In the lstm_APPL.py script, the LSTM is implemented with a configuration

that captures temporal dependencies and patterns over varying time intervals.

This includes declaring the most optimal hyperparameter values for the time

steps/lookback period, batch size, and number of epochs. These were each

optimized to balance learning efficiency of each model, keeping overfitting in

mind. Further enhancements to the model's architecture include the integration of

XGBoost, as shown in the xgboost_APPL.py script. This addition aims to refine

the model's predictions by addressing residuals and incorrect forecasts.

In conclusion, the best architecture for CNN-LSTM in stock price

forecasting within this study involves a nuanced combination of ACNN with

LSTM, optimized through strategic hyperparameter tuning and further enhanced

 22

with XGBoost. This configuration maximizes the model’s ability to learn from

historical data and make accurate predictions on the APPL dataset.

3.3 – RQ3: How can ensemble techniques, such as extreme gradient

boosting, effectively combine the predictions of multiple CNN-LSTM

models for stock price forecasting?

This research question explores the application of XGBoost as an

ensemble method to enhance the predictions made by CNN-LSTM models

adjusted. The XGBoost technique used can be outlined by the following phases:

In the first phase, the stand-alone CNN-LSTM models are trained on segments of

the NASDAQ stock dataset. The CNN model focuses on short-term price

movements using its convolutional layers, while the LSTM model captures

longer-term dependencies with its LSTM layers. Once trained, the output from

these models is combined in a new dataset. This combination aligns the

predicted closing prices with the actual closing prices from the original APPL

dataset. The XGBoost ensemble method is applied to the aggregated predictions

dataset in the next phase. The use of XGBoost’s gradient boosting capabilities is

for the correcting of errors present in the initial predictions. The success of this

approach is directly correlated to the hyperparameter tuning of the XGBoost

method, and parameters such as learning rate and tree complexity were adjusted

determined by preliminary testing. The final phase is the evaluation of the

XGBoost method comparing its forecasting accuracy, using metrics such as

 23

RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error), against the

predictions generated solely by the CNN and LSTM models. This evaluation

determines whether its use can improve the predictive capabilities of the chosen

architecture.

Having established the methodologies used, the next chapter will focus on

the data collection, analysis, and key findings of this project. More specifically, it

will detail the APPL dataset used, outline the analytical processes applied to it,

and present the findings from the performance of the CNN-LSTM models and the

XGBoost ensemble method used. These insights provide a foundation for further

discussions and adjustments to be made when automating stock forecasting,

which are included in the final chapter.

 24

CHAPTER FOUR:

DATA COLLECTION,

ANALYSIS AND FINDINGS

This chapter describes the analytical procedures utilized to provide

insights to the questions discussed in the previous chapters. This model follows

the structure of the primary research (Zhu et al., 2023), adjusted for the analysis

of recent APPL stock data from the NASDAQ index. The analysis begins with the

evaluation of the results produced by the adjusted scripts (Shi et al., 2023);

which demonstrates the effectiveness and adaptability of existing CNN-LSTM

models explored within the RQs.

 25

Figures 1-5 and Table 2 are graphics generated during the preprocessing stage,

where the NASDAQ data is cleaned for analysis.

Figure 1 - First-Order Difference

 "First-Order Difference" is the name of the time series plot in Figure 1,

which shows the first-order differencing performed on the "AAPL stock data

NASDAQ.csv" dataset from the years 2019 to 2024. Time is depicted on the

horizontal axis of the graph, while first-order difference values are shown on the

vertical axis. The plot shows the daily changes in the APPL stock price data, with

data points fluctuating above and below the horizontal zero line. Plotted values

range from +10 at the highest point to -10 at the lowest. Following the first-order

differencing treatment, the stock data shows a variety of daily fluctuations.

 26

Figure 2 - Second-Order Difference

 The "Second-Order Difference," as seen in Figure 2's time series plot, is

also associated with the APPL dataset mentioned. The plot covers the years

2019 through 2024. This figure was generated by transforming the original

NASDAQ-listed APPL closing price data with a second-order differencing.

Consistent with the period's positive and negative second-order differences, the

plotted values stay above and around the zero line. The graph displays second-

order variations in the stock data across the exhibited years, showing peaks and

troughs between +15 and -15.

 27

Figure 3 - Autocorrelation vs. Partial Autocorrelation

 Both the autocorrelation and partial autocorrelation graphics, with lag

values up to 40, are shown in Figure 3. At lag 0 in the autocorrelation plot, there

is an initial spike with a value of 1. This is expected, as at lag 0, there is a perfect

correlation between any two data series. After a spike just above 0.5 at lag 1, the

autocorrelation value stays within the confidence interval of -0.25 to 0.25. The

autocorrelation values range from 0 to one hundredth of a percent for lags 2 to

40, staying within the confidence intervals. The partial autocorrelation plot shows

a value of 1 at lag 0 and drops to little more than 0.5 at lag 1. The partial

autocorrelation values past lag 1 are within the confidence ranges of -0.25 to

 28

0.25 until lag 40. Autocorrelation values for data points with delays greater than

the first do not show significant trends within the observed range.

Table 2 - ADF Tests on Original Sequence and First-Order Diff Sequence

The findings of the Augmented Dickey-Fuller (ADF) tests for stationarity

on two data sequences, the original sequence, and the first-order difference

sequence, are summarized in Table 2. The results of the Augmented Dickey-

Fuller (ADF) test applied to the original sequence. The test yielded a statistic of -

1.4460568355261638 and a p-value of 0.5600077660714967. These results are

referenced against standard significance levels for interpreting the stationarity of

the sequence. This test used 1033 observations with 10 delays. Table 2 presents

the Augmented Dickey-Fuller test results for the original sequence. The test

statistics are -1.4460568355261638 and the p-values are 0.5600077660714967.

Critical values at the 1%, 5%, and 10% levels are -3.4366961996098264, -

2.8643491791214074, and -2.5686218869934934, respectively. For the first-

order difference sequence, the Augmented Dickey-Fuller (ADF) test provided a

statistic of -10.356429810134044 with a p-value of approximately 2.46e-18. The

 29

number of observations collected for this analysis was 1033, and this sequence

used 9 delays. At the 1%, 5%, and 10% levels, the critical values are -

3.4366961996098264, -2.8643491791214074, and -2.5686218869934934, and

these are identical to the values of the original sequence.

Figure 4 - Training Set vs. Testing Set

Stock price prediction using the APPL dataset is graphically represented

in Figure 4. The comparison shown here is between the training data, actual

closing prices, and the anticipated prices on the testing set. The blue line is

representative of the training set, showing stock price movements from the

beginning of 2019 through the first quarter of 2023. The closing stock prices start

at $50 and rise to $200 during this time. The actual closing stock prices are

 30

shown with the green line, and this series begins where the training data ends.

This line shows real stock price movements, starting from where the training data

stops, going up to around $200, and showing a fluctuating decline thereafter.

Forecasted prices are indicated by a dashed red line that predicts future closing

price movements after the training set. The forecast line begins from a point like

the initial actual prices but trends downwards more smoothly than the actual

prices. The shaded pink area indicates the range of uncertainty or confidence

intervals associated with forecasted prices. This area of uncertainty expands as

the model forecasts the latter portion of the dataset, indicating increasing

uncertainty in forecasting.

Figure 5 - ARIMA Predictions Fitted to Actuals

 Figure 5 compares the APPL closing prices with prices predicted by the

preprocessing ARIMA model used extending from 2019 through halfway through

 31

the first quarter of 2024. The blue line, labeled 'Original', represents the actual

closing stock prices of the APPL stock on the NASDAQ index. This line shows an

upward trend from 2019, starting at approximately $142, to late 2021, peaking at

around $182. It then fluctuates through 2022 with peaks reaching up to $179 and

troughs dropping to $130, continuing into 2023. The red line, labeled 'ARIMA

Fitted', displays the fitted values which trace closely alongside the actual prices

until the end of the actual closing stock data, which shows a good fit on the

actuals. The figure ends with the red line remaining constant through 2024,

showing that the ARIMA model is not able to predict any fluctuations in closing

stock prices after the first quarter of 2023. This result will be addressed in

Chapter 5 with recommendations made to adjust the preprocessing model.

 32

Figures 6-11 and Table 3 are generated after the preprocessing stage, which are

used for the analysis of the primary literature’s architecture fitted to the NASDAQ

data.

Figure 6 - LSTM Predictions of APPL Closing Prices

Figure 6 is a line chart displaying the LSTM model's predictions alongside

actual closing prices of APPL stock from January 2020 to January 2024. The blue

line indicates the actual prices, while the orange line represents the LSTM

model's predictions. The actual prices show an increase until the end of 2022

before leveling off and declining, with the LSTM predictions closely tracking these

 33

changes.

Figure 7 - ARIMA + XGBoost Predictions vs Actuals

 Figure 7 illustrates the predictions from a combined ARIMA and XGBoost

model versus actual APPL stock prices from 2019 to early 2021. The blue line

represents actual prices, and the orange line depicts predictions. The lines show

some initial deviations in starting points and continue to exhibit minor differences

throughout the period, occurring at points where predicted prices either slightly

overestimate or underestimate the actual closing prices. Overall, the figure

shows that the predictions follow the trends of the actual stock price data, with

slight data volatility occurring between 2019 and 2021.

 34

Figure 8 - Residuals and Residual Density

Figure 8 presents a time series plot of residuals and a histogram of their

density from the modeling of APPL dataset residuals from 2019 to 2024. The left

graph displays the residuals fluctuating around zero, and the right graph shows

the distribution of these residuals, centered around zero. The residuals are

represented by a blue line, fluctuating around the baseline of 0, with residual

values ranging from 15 to -20. These fluctuations are discrepancies between the

predicted and actual closing prices. The chart on the right is a histogram showing

the density of the residual values. The values of this histogram are plotted along

the x-axis to better visualize symmetry, with residual values ranging from -20 to

15. This histogram shows a bell-shaped distribution centered around zero, which

 35

shows that the predicted values were close to the actual values.

Figure 9 - ARIMA + XGBoost: Predicted vs. Actuals

Figure 9 is a line chart comparing the predicted and actual closing prices

of APPL stock from 2019 to 2024, by using a combination of ARIMA and

XGBoost models. Following the visualizations of both Figures 6 and 7, the blue

line represents the actual APPL closing prices, and the orange line represents

the price predictions. The APPL closing price data of the blue line shows an

upward trend from 2019, until its peak in the latter half of 2023. This line is

 36

followed closely by the orange line, mirroring the peaks and troughs of the

closing prices from the APPL dataset.

Figure 10 - ARIMA + XGBoost Residual Predictions

Figure 10 displays the residuals from the ARIMA and XGBoost models'

predictions compared to the actual closing prices of APPL stock from 2019 to

2024. This graph plots residuals, with the blue line representing the actual

residuals and the dashed line representing the predicted residuals. Both lines

fluctuate around zero, showing the difference between the predicted and the

actual prices. The residuals shown mostly range between -10 to +10, though

there are occasional spikes beyond this range at the beginning of the series. The

 37

graph visualizes the consistency of the residuals, without evaluating the

performance of the whole architecture.

Figure 11 - Training and Validation Loss: LSTM

 Figure 11 is a plot showing the training and validation loss over epochs for

the LSTM model. The blue line represents training loss, which shows how the

loss decreases over epochs and the model's ability to fit to the training data. The

orange line represents validation loss, reflecting the model's performance on a

separate dataset. Both lines trend downward and begin to stabilize, showing a

reduction in loss over time. This consistency is shown as both lines taper off after

the 50th epoch, showing a stabilization of the loss values.

 38

Table 3 - Model Evaluation Results

Table 3 shows the quantitative performance metrics of the models used in

our data analysis using statistical methods such as: r-squared, mean absolute

error (MAE), root mean squared error (RMSE), and mean squared error (MSE),

like the Table III Results figure pictured on pg. 364 of the primary research (Zhu

et al. 2023, p. 364)). The following is a discussion of the model evaluation

results. The ARIMA model shows an MSE of 726.21, RMSE of 26.95, MAE of

25.02, and an R-squared value is -6.24. The LSTM model fares better, with an

MSE of 10.56, RMSE of 3.25, MAE of 2.59, and a very high R-squared value of

0.99. The XGBoost model, unfortunately produced higher error metrics with an

MSE of 18,081.46, RMSE of 134.47, and MAE of 127.21, and an R-squared

value of -8.41. Lastly, the CNN Attention model produced an MSE of 30.64,

RMSE of 5.54, MAE of 4.25, and an R-squared value at a strong 0.98.

 39

4.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in

stock price forecasting, and how can they be updated to positively impact

the model's performance and ability to generalize?

 This subsection presents the findings related to the optimal

hyperparameters for CNN-LSTM models used for stock price forecasting. Upon

applying the initial hyperparameter settings inspired by Zhu’s research required

adjustments to enhance performance and generalization on the AAPL stock

dataset. While the baseline parameters provided a good starting point, this

analysis required further model improvements. The application of the LSTM

model showed that reducing the learning rate slightly from 0.01 to 0.005

improved model stability and accuracy after multiple test runs. Extending the

number of training epochs from 50 to 100 extracted more insights from the data

without overfitting, visualized in Figure 11. Reducing the lookback period of the

CNN model from 60 to 45 days made it better at responding to current closing

price trends. Also, lowering the dropout rate from 0.5 to 0.3 retained more

information during the training phases, increasing generalizability. The step-by-

step tuning, based on Chapter 4's tests and analysis, highlights the necessary

optimizations to increase the accuracy of stock price forecasting.

 40

4.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock

price forecasting regarding the features generated, hyperparameters used,

and modifications made to the model itself?

 This subsection provides the results of the architectural framework of

CNN-LSTM models used in this forecasting analysis. The individual CNN and

LSTM models greatly impacted the effectiveness of the architecture when

applied to the APPL dataset. Thus, the results of this analysis show that a multi-

layered architecture, blending convolutional layers for feature detection and

LSTM layers for understanding temporal sequences, is an accurate tool for stock

price forecasts.

The convolutional layers played an important role in identifying key stock

price features, such as sudden price changes or other types of volatility. By

changing the sizes of the convolutional layers and filter sizes, it was found that

using two convolutional layers with 64 filters was the best way to get detailed

market trends while retaining the model's effectiveness. As mentioned, the LSTM

component was the most effective model at capturing the long-term

dependencies of the closing prices. Using 3 LSTM layers increased flexibility

when handling historical data, which was crucial for its generation of predictions

on the dataset. Adding attention mechanisms to the CNN model helped identify

and emphasize temporal data, which generated more accurate predictions by

concentrating on the most relevant information. The best architecture for

predicting stock prices, as found in the main research, is a detailed CNN-LSTM

 41

model enhanced with attention mechanisms. This approach improves stock price

forecasting by using the model's ability to analyze patterns over time and space,

creating a reliable tool for volatile financial data.

4.3 – RQ3: How can ensemble techniques, such as extreme gradient

boosting, effectively combine the predictions of multiple CNN-LSTM

models for stock price forecasting?

 When analyzing the performance of the ensemble approach, the utilization

of the XGBoost model did not match the initial assumptions of this research

question. The performance metrics indicate that the XGBoost model's prediction

error was significantly higher compared to the individual CNN-LSTM models.

This suggests that while the LSTM and attention-based CNN models closely

tracked the actual stock price movements, the XGBoost-enhanced predictions

deviated from the actuals. The XGBoost model had difficulty merging and

improving the predictions from the CNN and LSTM models because each model

produced unique errors and data patterns. Instead of fixing these errors, the

ensemble method magnified them. The APPL stock market's unpredictable

nature made it harder for XGBoost to identify and learn from the subtle patterns

in the predictions of the CNN and LSTM. Consequently, rather than enhancing

performance through combined efforts, using XGBoost in the ensemble led to

inconsistencies and did not improve upon the results of the individual models,

 42

highlighting the challenges of applying ensemble learning to the fluctuating

financial market.

This chapter presented a detailed analysis of the data and the

performance of CNN-LSTM and XGBoost and other predictive techniques when

applied to the APPL stock dataset. The effectiveness and accuracy of the

optimized models were assessed through a range of statistical measures.

Transitioning into the next chapter, we will cover the implications of the findings.

It will be a discussion of how the models' performance aligns with our research

objectives and expectations, and afterwards explore areas for further refinement

and research.

 43

CHAPTER FIVE:

DISCUSSION, CONCLUSION AND

AREAS FOR FURTHER STUDY

 This chapter serves as a discussion of the results produced in Chapter 4.

The discussion will focus on the results of the preprocessing and feature

engineering seen in the figures and tables. The discussion for RQ1 includes the

rationale for the hyperparameters selected. When discussing the results of RQ2,

we explore updates for future iterations of the chosen architecture to reflect the

methods used in contemporary research. The RQ3 discussion mentions the

potential of using ensemble methods in future research to enhance the accuracy

and robustness of time series forecasting models is included.

5.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in

stock price forecasting, and how can they be updated to positively impact

the model's performance and ability to generalize?

In Chapter 4.1, the results show that the choosing of certain

hyperparameters greatly impacts the accuracy and adaptability of CNN-LSTM

models for stock forecasting on different datasets. Tweaking learning rates, batch

sizes, and epochs directly influenced how well these models predicted stock

prices when adjusting to new and unseen data. The investigation highlighted how

these hyperparameters impacted the effectiveness of each model. Adjusting the

learning rate and epochs in the LSTM model not only enhanced its accuracy but

 44

also its depth of learning, minimizing overfitting risks. Similarly, fine-tuning the

CNN model's lookback period and dropout rate improved its market

responsiveness while maintaining stability. Our findings affirm that precise

hyperparameter selection is crucial for improving CNN-LSTM models' forecasting

abilities. This process ensures that each model can effectively navigate the

complexity and volatility of financial data.

Future research could focus on automated hyperparameter tuning that is

adaptive to changing market conditions, techniques such as GridSearch and

Bayesian optimization. Diving deeper into neural network architectures and how

they interact with hyperparameters might also increase forecasting capabilities.

Further research in these areas could provide valuable contributions for new

research looking to creating adaptable and accurate models for financial

forecasting.

5.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock

price forecasting regarding the features generated, hyperparameters used,

and modifications made to the model itself?

Upon examining the results of the model evaluation seen in Table 3, the

LSTM model showed impressive forecasting abilities with very low RMSE and

MSE values of 3.24 and 10.56, respectively. Its high R2 value of 0.99 indicates a

nearly perfect fit on the dataset, showcasing that the model's ability to account for

99% of the variability in the closing stock prices of the APPL data. Such precision

 45

suggests that LSTM models are particularly adept at capturing and learning from

the temporal dependencies present in time series data. The attention-based CNN

model did not outperform the LSTM model, but it had the second lowest MSE

and RMSE values at 30.64 and 5.53. These results reflect the CNN model's

capacity to handle spatial relationships within the data, leveraging the attention

mechanism to prioritize important features within the data. An R2 value of 0.9826

suggests that it is a reliable alternative for capturing complex patterns of volatile

stock data. The ARIMA model produced the second highest MSE and RMSE

values at 726.21 and 26.94, suggesting that it may be less effective for

preprocessing on this dataset. The XGBoost model registered the highest MSE

and RMSE values across all models used, at 18081.45 and 134.46, indicating a

performance discrepancy on the dataset used. Among the evaluated models, the

LSTM and attention-based CNN models emerged as the most accurate on the

APPL dataset. The ARIMA and XGBoost models showed lower effectiveness,

which could be due to a difference in market behaviors between the NASDAQ

index and the Bank of China index used in the primary literature, Zhu et al.

(2023). We will now consider potential adjustments that future researchers could

implement to further refine the architecture used, taking these results into

account.

For the preprocessing steps and the improvement of the ARIMA model,

we recommend adding more ADF and PACF tests and plots to understand the

characteristics of the data and fine tune the hyperparameters to reflect these

 46

understandings. To improve the results of the XGBoost model, we also

recommend adjusting key hyperparameters, like the learning rate and tree

complexity, as well as employing regularization within the script to prevent the

XGBoost model from overfitting. As recommended, using GridSearchCV as an

automated hyperparameter tuning method could also benefit the architecture, as

our attempt in implementing this technique was unsuccessful.

5.3 – RQ3: How can ensemble techniques, such as extreme gradient

boosting, effectively combine the predictions of multiple CNN-LSTM

models for stock price forecasting?

The original assumption was that employing XGBoost as an ensemble

method for our architecture could improve its predictive capabilities by focusing

on data inaccuracies. However, it struggled to align with the CNN and LSTM

model outputs on the APPL dataset, and instead of correcting errors it increased

the inaccuracies in the combined model output. The discrepancy between the

predicted and actual stock prices of Figure 9 visualizes these inaccuracies and it

underscores the need for a deeper investigation into the dynamics of ensemble

learning in the context of financial time series forecasting. Even with its poor

performance, XGBoost holds promise for improving forecast accuracy and the

LSTM model was not free from errors either.

We identified more issues with the Chapter 4 graphics, like Figure 6

showing actual data beyond the APPL dataset's last date, March 15th, 2024. This

 47

inconsistency was caused by programming errors on our end resulting in the

forward filling of values beyond this end date, where only the prediction line

should have been displayed. This should be adjusted in future iterations of this

project, and it emphasizes the importance of data validation so that unnecessary

data is not included.

Future research should be centered around the investigation of other

ensemble methods able to integrate the strengths of the CNN and LSTM models.

Completing this research would further the knowledgebase of researchers

currently exploring the combination of model predictions to minimize result errors.

This implementation of XGBoost coupled with CNN-LSTM has generated

relevant insights and highlighted areas for further study to increase precision.

Ensemble forecasting should continue to be researched to bridge the gap

between theory and financial market analysis.

 48

APPENDIX

This section contains the Python scripts adjusted from for this analysis.

 49

(1) arima_APPL.py Script
import pandas as pd
import itertools
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model
import ARIMA from sklearn.metrics
import mean_squared_error
from statsmodels.graphics.tsaplots
import plot_acf, plot_pacf
from utils_APPL
import adf_test, evaluation_metric

data = pd.read_csv('AAPL_stock_data_NASDAQ.csv', parse_dates=['Date'])
data.set_index('Date', inplace=True)
data = data.asfreq('B', method='ffill')
data['Close'] = data['Close/Last'].str.replace('$', '').astype(float)
train_data = data[:int(0.8 * len(data))]
test_data = data[int(0.8 * len(data)):]
actual_prices_arima = test_data['Close'].values

data['First_order_diff'] = data['Close'].diff().dropna() #caculate the first-order diff
data['Second_order_diff'] = data['First_order_diff'].diff().dropna() #calculate
second-order diff

plot first-order diff
plt.figure(figsize=(10, 6))
plt.plot(data.index, data['First_order_diff'], label='First-order diff')
plt.title('First-Order Difference')
plt.xlabel('Time')
plt.ylabel('First-Order Difference')
plt.legend()
plt.savefig('figure_1.png')
plt.show()

#plot second-order diff
plt.figure(figsize=(10, 6))
plt.plot(data.index, data['Second_order_diff'], label='Second-order diff')
plt.title('Second-Order Difference')
plt.xlabel('Time')
plt.ylabel('Second-Order Difference')
plt.legend()
plt.savefig('figure_2.png')
plt.show()

 50

#drop NaN values that come from differencing
data_diff = data['First_order_diff'].dropna()

plot ACF and PACF using differenced data
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
plot ACF
plot_acf(data_diff, lags=40, ax=ax1) # modifies the number of lags as needed
ax1.set_title('Autocorrelation')
plot PACF
plot_pacf(data_diff, lags=40, ax=ax2) # modifies the number of lags as needed
ax2.set_title('Partial Autocorrelation') # display plot plt.tight_layout()
plt.savefig('ACF_PACF.png') plt.show()

build and fit ARIMA model
model = ARIMA(train_data['Close'], order=(1, 1, 1)) # example order, please
adjust accordingly
model_fit = model.fit()

perform ADF test on original and differenced data
adf_result_original = adf_test(train_data['Close'])
adf_result_diff = adf_test(train_data['Close'].diff().dropna())

check for structure of adf_result
if isinstance(adf_result_original, pd.DataFrame):

original_values = adf_result_original.squeeze().tolist()
else:

original_values = list(adf_result_original)

if isinstance(adf_result_diff, pd.DataFrame):

diff_values = adf_result_diff.squeeze().tolist()
else:

diff_values = list(adf_result_diff)

ensure extracted data is 1-dimensional
assert len(original_values) == len(diff_values), "The lengths of ADF results do not
match"
create DataFrame df_table = pd.DataFrame({ 'Metric': ['Test Statistic Value', 'p-
value', 'Lags Used', 'Number of Observations', 'Critical Value (1%)', 'Critical Value
(5%)', 'Critical Value (10%)'], 'Original Sequence': original_values, 'First-Order
Diff Sequence': diff_values })

plot table w/results
fig, ax = plt.subplots(figsize=(10, 6)) # adjust figure size if needed

 51

ax.axis('off') table = ax.table(cellText=df_table.values,
colLabels=df_table.columns, loc='center', cellLoc='center')
table.auto_set_font_size(False)
table.set_fontsize(10)
table.scale(1, 1.5) # Adjust the scale as needed to fit the text
plt.tight_layout()
plt.savefig('adjusted_adf_test_results.png', bbox_inches='tight', dpi=300)
plt.show()

predict on test set; index for prediction should be correct excluding NaNs
test_predictions = model_fit.get_prediction(start=test_data.index[0],
end=test_data.index[-1], dynamic=True)
test_predictions_ci = test_predictions.conf_int()
calculate mean squared error
mse = mean_squared_error(test_data['Close'],
test_predictions.predicted_mean.ffill())

plot original data, fitted values, and forecasting
plt.figure(figsize=(12, 6))
plt.plot(train_data['Close'], label='Training Data', color='blue')
plt.plot(test_data['Close'], label='Actual Prices', color='green')
plt.plot(test_predictions.predicted_mean, label='Forecast', color='red', linestyle='-
-') plt.fill_between(test_data.index, test_predictions_ci.iloc[:, 0],
test_predictions_ci.iloc[:, 1], color='pink', alpha=0.3)
plt.title('Training Set vs. Testing Set')
plt.legend()
plt.show()

plot original data and ARIMA fitted values
plt.figure(figsize=(12, 6))
plt.plot(data['Close'], label='Original', color='blue')
plt.plot(pd.concat([model_fit.fittedvalues, test_predictions.predicted_mean.ffill()]),
label='ARIMA Fitted', color='red')
plt.title('ARIMA Model Fitted to APPL Stock Data')
plt.legend()
plt.show()

def get_arima_predictions(filename='AAPL_stock_data_NASDAQ.csv'):

after fitting the ARIMA model and predicting:
test_predictions = model_fit.get_prediction(start=test_data.index[0],

 end=test_data.index[-1], dynamic=True)
predictions = test_predictions.predicted_mean
actual = test_data['Close']
return actual.values, predictions.values

 52

(2) lstm_APPL.py Script
import pandas as pd
import json
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.optimizers import Adam
import matplotlib.pyplot as plt
from utils_APPL import create_dataset, evaluation_metric

n_timestamp = 10 # num of time steps
n_epochs = 50 # amount of times dataset cycles through the model
batch_size = 32
n_features = 1 # assuming univariate time series (just the 'Close/Last' column)

load AAPL stock data
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv')
data['Date'] = pd.to_datetime(data['Date'])
data.sort_values('Date', inplace=True) # sort by date if not sorted
data.set_index('Date', inplace=True)
data = data.last('5YE') # adjust in future if necessary

clean 'Close/Last' column by removing $ and converting to a float
data['Close/Last'] = data['Close/Last'].str.replace('[\$,]', '',
regex=True).astype(float)

normalize data
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data[['Close/Last']])

prepare data for LSTM
X, y = create_dataset(scaled_data, n_timestamp)
X = X.reshape((X.shape[0], X.shape[1], n_features))

LSTM model definition
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(n_timestamp,
n_features)))
model.add(LSTM(units=50)) model.add(Dense(units=1))

compile
adam = Adam(learning_rate=0.01)
model.compile(optimizer=adam, loss='mean_squared_error')

 53

training
history = model.fit(X, y, epochs=n_epochs, batch_size=batch_size,
validation_split=0.1)

save model to a HDF5 file , might be deprecated
model.save('lstm_model.h5')
save history of the training loss and validation loss to a JSON file
history_dict = history.history
with open('lstm_training_history.json', 'w') as file_json:

json.dump(history_dict, file_json, indent=4)

evaluation of model
predicted_stock_price = model.predict(X)
predicted_stock_price = scaler.inverse_transform(predicted_stock_price)

inverse scaling the actual prices for evaluation purposes actual_stock_price =
scaler.inverse_transform(y.reshape(-1, 1))
calculate evaluation metrics
evaluation_metric(actual_stock_price, predicted_stock_price)

plot results
plt.figure(figsize=(10, 6))
use n_timestamp to offset the x-axis to match the y-dimensions
plt.plot(data.index[n_timestamp: n_timestamp + len(predicted_stock_price)],
actual_stock_price.flatten(), label='Actual Stock Price')
flatten predicted prices for plotting plt.plot(data.index[n_timestamp:
n_timestamp + len(predicted_stock_price)], predicted_stock_price.flatten(),
label='Predicted Stock Price')
plt.title('AAPL Stock Price Prediction using LSTM')
plt.xlabel('Date')
plt.ylabel('AAPL Stock Price')
plt.legend()
plt.show()

def get_lstm_predictions(filename='AAPL_stock_data_NASDAQ.csv'):

after training the LSTM model and predictions:
predicted_stock_price = model.predict(X)
predicted_stock_price = scaler.inverse_transform(predicted_stock_price)
actual_stock_price = scaler.inverse_transform(y.reshape(-1, 1))
return actual_stock_price.flatten(), predicted_stock_price.flatten()

 54

(3) model_APPL.py Script
import numpy as np
import pandas as pd
from keras.models import load_model
from keras.models import Model
from keras.layers import Input, Conv1D, Dense, Flatten, Dropout, Multiply
from keras.layers import Activation, Permute, Reshape
from keras.optimizers import Adam
from sklearn.preprocessing import MinMaxScaler
from utils_APPL import create_dataset

load data
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv', parse_dates=['Date'],
index_col='Date')
data.sort_values('Date', inplace=True)

preprocess the data, assume that "closing prices" column has no NULLs
data['Close'] = data['Close/Last'].str.replace('[\$,]', '', regex=True).astype(float)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data[['Close']])

define look_back period and prepare dataset
look_back = 60
X, y = create_dataset(scaled_data, look_back)
reshape input to be [samples, time steps, features]
X = np.reshape(X, (X.shape[0], X.shape[1], 1))

define attention mechanism
def attention_block(inputs, time_steps):

inputs.shape = (batch_size, time_steps, input_dim)
a = Permute((2, 1))(inputs)
a = Dense(time_steps, activation='softmax')(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = Multiply()([inputs, a_probs])
return output_attention_mul

attention CNN model definition
input_layer = Input(shape=(look_back, 1))
attention_mul = attention_block(input_layer, look_back)
conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(attention_mul)
conv1 = Dropout(0.5)(conv1)
flat = Flatten()(conv1)
output = Dense(1, activation='linear')(flat)
model = Model(inputs=input_layer, outputs=output)

 55

model compilation
model.compile(optimizer=Adam(learning_rate=0.001),
loss='mean_squared_error')
training
model.fit(X, y, epochs=100, batch_size=32, validation_split=0.2, verbose=1)
saving
model.save('AAPL_CNN_with_attention.keras')
load the model in the new Keras format
model = load_model('AAPL_CNN_with_attention.keras')

def get_cnn_attention_predictions(filename='AAPL_stock_data_NASDAQ.csv'):

after training model and predictions:
model = load_model('AAPL_CNN_with_attention.keras')
predictions = model.predict(X)
predictions = scaler.inverse_transform(predictions)
actual_prices = data['Close'].values[-len(predictions):]
return actual_prices, predictions.flatten()

 56

(4) xgboost_APPL.py Script
import pandas as pd
import xgboost as xgb
import numpy as np
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GridSearchCV
from utils_APPL import create_dataset, evaluation_metric

n_timestamp = 10 # number of time steps to look back
test_size = 0.2 # proportion of data to use for testing

load AAPL stock data
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv')
data['Date'] = pd.to_datetime(data['Date'])
data.sort_values('Date', inplace=True)
data.set_index('Date', inplace=True)

only consider the last 5 years of data
end_date = data.index.max()
end_date = pd.to_datetime(end_date)
start_date = end_date - pd.Timedelta(days=5*365)
data = data.loc[start_date:end_date]

assuming 'Close/Last' is the correct column name after checking with
data.columns data['Close/Last'] = data['Close/Last'].str.replace('[\$,]', '',
regex=True).astype(float)

normalize data
scaler = MinMaxScaler(feature_range=(0, 1))
data_scaled = scaler.fit_transform(data[['Close/Last']].values)

prepare data for XGBoost
X, y = create_dataset(data_scaled, n_timestamp)
X = X.reshape(X.shape[0], -1) # ensure x is 2-dimensional
y = y.ravel() # ensure y is 1-dimensional

split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size,
random_state=42)

y_test is filled with actuals; need to inverse transform to get actual prices
actual_prices_xgb = scaler.inverse_transform(y_test.reshape(-1, 1))

 57

initialize XGBoost regressor
xg_reg = xgb.XGBRegressor(objective='reg:squarederror',
colsample_bytree=0.3, learning_rate=0.1, max_depth=5, alpha=10,
n_estimators=100)

train XGBoost regressor & prediction
xg_reg.fit(X_train, y_train)
y_pred = xg_reg.predict(X_test)

calculate evaluation metrics & calc/print mean squared error
evaluation_metric(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

optional, save model for later use
xg_reg.save_model('xgboost_model.json')

def get_xgboost_predictions(filename='AAPL_stock_data_NASDAQ.csv'):

after training the XGBoost model and making predictions:
y_pred = xg_reg.predict(X_test)
actual_prices_xgb = scaler.inverse_transform(y_test.reshape(-1, 1))
return actual_prices_xgb.flatten(), y_pred

 58

(5) main_APPL.py Script
import pandas as pd
from keras.models import load_model, Sequential
from keras.layers import LSTM, Dense
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from xgboost import XGBRegressor
from sklearn.preprocessing import MinMaxScaler
from utils_APPL import create_dataset, adf_test, evaluation_metric
from sklearn.model_selection import GridSearchCV
from arima_APPL import get_arima_predictions
from lstm_APPL import get_lstm_predictions
from xgboost_APPL import get_xgboost_predictions
from model_APPL import get_cnn_attention_predictions
from utils_APPL import evaluation_metric
import matplotlib.pyplot as plt
import matplotlib
import numpy as np

load dataset
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv', parse_dates=['Date'],
index_col='Date')

clean 'Close/Last' column by removing the '$' sign and converting it to float
data['Close'] = data['Close/Last'].replace('[\$,]', '', regex=True).astype(float)

clean 'Close' data by removing NaNs and infinite values before any operations
like differencing or modeling
data.replace([np.inf, -np.inf], np.nan, inplace=True)
data.dropna(inplace=True)

'Close' data should be stationary before fitting ARIMA data['Close_diff'] =
data['Close'].diff().dropna()

perform the ADF test on the original data
adf_result_original = adf_test(data['Close'])
p_value_original = adf_result_original.loc['p-value', 'value']
check the p-value for stationarity and apply differencing if necessary
if p_value_original < 0.05:

print('Data is already stationary.')
else:

print('Data is not stationary. Differencing will be applied.')

 59

data['Close_diff'] = data['Close'].diff().bfill() # Use backward fill to handle
any NaNs

Check stationarity again on differenced data
adf_result_diff = adf_test(data['Close_diff'])
p_value_diff = adf_result_diff.loc['p-value', 'value']
if p_value_diff < 0.05:

print('Differenced data is stationary.')
else:
print('Differenced data is still not stationary. Further investigation is
required.')

continue with data normalization, model loading, and other processing steps
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data[['Close']])
generate datasets for prediction
look_back = 60 # look-back period should match your model's training
configuration
X, y = create_dataset(scaled_data, look_back)

split dataset into training and testing sets, ensure done before cleaning steps
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Now you can safely clean X_train and y_train
X_train = np.nan_to_num(X_train)
y_train = np.nan_to_num(y_train)

###################### ARIMA PREPROCESSING INC
##########################
generate datasets for prediction
look_back = 60 # should match your model's training configuration
X, _ = create_dataset(scaled_data, look_back)

reshape data for the model
X = X.reshape((X.shape[0], X.shape[1], 1))

load trained model
model = load_model('AAPL_CNN_with_attention.keras')
predictions = model.predict(X)

inverse transform predictions
predictions = scaler.inverse_transform(predictions)

 60

plot results
plt.figure(figsize=(12, 6))
plt.plot(data.index[-len(predictions):], data['Close'][-len(predictions):],
label='Actual Stock Prices')
plt.plot(data.index[-len(predictions):], predictions.flatten(), label='Predicted Stock
Prices', alpha=0.7)
plt.title('Stock Price Predictions vs Actual Prices')
plt.xlabel('Date') plt.ylabel('Price')
plt.legend()
plt.show()

''' FIGURE 7 IMPLEMENTATION '''
residuals = data['Close'][-len(predictions):].values - predictions.flatten()

plot residuals
plt.figure(figsize=(14, 7))
plt.subplot(1, 2, 1)
plt.plot(data.index[-len(residuals):], residuals, label='Residuals')
plt.title('Residuals')
plt.xlabel('Date')
plt.legend()

plt.subplot(1, 2, 2)
plt.hist(residuals, bins=50, density=True, label='Residuals Density', alpha=0.7)
plt.title('Density')
plt.xlabel('Residual Value')
plt.legend()

plt.tight_layout()
plt.show()

''' FIGURE 8 IMPLEMENTATION '''
ensure 'Close' data is continuous and ordered for ARIMA fitting
arima_data = data['Close'].dropna().asfreq('B') # 'B' for business day frequency
arima_data.ffill(inplace=True) # Forward fill any missing values

fit ARIMA model
arima_order = (5, 1, 0) # adjust as necessary
arima_model = ARIMA(arima_data, order=arima_order)
arima_fit = arima_model.fit()

get ARIMA residuals
arima_residuals = arima_fit.resid

 61

fit XGBoost on ARIMA residuals
xgb_model = XGBRegressor(n_estimators=100, objective='reg:squarederror')
xgb_model.fit(np.arange(len(arima_residuals)).reshape(-1, 1), arima_residuals)

predict using XGBoost
xgb_predictions = xgb_model.predict(np.arange(len(arima_residuals)).reshape(-
1, 1))
combine ARIMA model predictions and XGBoost predictions
combined_predictions = arima_fit.predict(start=arima_data.index[0],
end=arima_data.index[-1], typ='levels') + xgb_predictions

plot actual and predicted values
plt.figure(figsize=(12, 6))
plt.plot(arima_data.index, arima_data, label='Actual Prices')
plt.plot(arima_data.index, combined_predictions[:len(arima_data)], label='ARIMA
+ XGBoost Predictions', alpha=0.7) plt.title('The ARIMA + XGBoost for Stock
Price Prediction') plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.show()

''' FIGURE 9 IMPLEMENTATION '''
ensure 'Close' data is continuous and ordered for ARIMA fitting arima_data =
data['Close'].dropna().asfreq('B') # 'B' for business day frequency
arima_data.ffill(inplace=True) # forward fill missing values

fit ARIMA model
arima_order = (5, 1, 0) # example order, adjust as necessary
arima_model = ARIMA(arima_data, order=arima_order)
arima_fit = arima_model.fit()

get ARIMA residuals
arima_residuals = arima_fit.resid
predict residuals using XGBoost model
xgb_residual_predictions =
xgb_model.predict(np.arange(len(arima_residuals)).reshape(-1, 1))

plot actual residuals and predicted residuals
plt.figure(figsize=(12, 6))
plt.plot(arima_residuals.index, arima_residuals, label='Residuals', alpha=0.7)
plt.plot(arima_residuals.index, xgb_residual_predictions, label='Predicted
Residuals', alpha=0.7, linestyle='--')
plt.title('ARIMA + XGBoost Residual Prediction')

 62

plt.xlabel('Date') plt.ylabel('Residuals')
plt.legend()
plt.show()

''' FIGURE 10 IMPLEMENTATION'''
load the LSTM model and history if saved, or ensure the LSTM training has
been run
lstm_model = load_model('lstm_model.h5')
history = pd.read_json('lstm_training_history.json')

plot the training loss and validation loss
plt.figure(figsize=(10, 5))
plt.plot(history['loss'], label='Training Loss')
plt.plot(history['val_loss'], label='Validation Loss')
plt.title('LSTM: Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

assuming combined_predictions and arima_data cover same date range
evaluation_metric(arima_data.values, combined_predictions)

################## RESULTS SECTION ######################
assuming get_*_predictions functions are defined and imported correctly
arima_actual, arima_pred = get_arima_predictions()
lstm_actual, lstm_pred = get_lstm_predictions()
xgboost_actual, xgboost_pred = get_xgboost_predictions()
cnn_actual, cnn_pred = get_cnn_attention_predictions()

initialize results DataFrame
results = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE', 'R2'])
create a list to hold data for the new rows
new_rows = []

evaluate each model and append results to new_rows list
for model_name, actual, pred in [('ARIMA', arima_actual, arima_pred),

('LSTM', lstm_actual, lstm_pred),
('XGBoost', xgboost_actual, xgboost_pred),
('CNN Attention', cnn_actual, cnn_pred)]:

metrics = evaluation_metric(actual, pred)
new_rows.append({'Model': model_name, **metrics})

convert new_rows to DataFrame and concatenate with results

 63

new_rows_df = pd.DataFrame(new_rows)
results = pd.concat([results, new_rows_df], ignore_index=True)

plt.figure(figsize=(12, 2))
ax = plt.gca()
ax.axis('off')

create table and display it
table = plt.table(cellText=results.values,

colLabels=results.columns,
loc='center',
cellLoc='center',
colColours=["#f2f2f2"] * results.shape[1])

table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1.2, 1.2)
plt.title("Results of all Models", weight='bold', pad=15)

save table as image file
plt.savefig("model_evaluation_results.png", bbox_inches='tight', dpi=300)

optionally display the table on the screen
plt.show()

 64

(6) utils_APPL.py Script
import numpy as np
import pandas as pd
from sklearn import metrics
from statsmodels.tsa.stattools
import adfuller
import statsmodels.api as sm # acf,pacf plot
import matplotlib.pyplot as plt

def adf_test(series):

p-value>0.562 or Critical Value(1%)>-3.44, non-stationary
result = adfuller(series)
output = pd.DataFrame(columns=['value'])
output.loc['Test Statistic Value', 'value'] = result[0]
output.loc['p-value', 'value'] = result[1]
output.loc['Lags Used', 'value'] = result[2]
output.loc['Number of Observations Used', 'value'] = result[3]
output.loc['Critical Value(1%)', 'value'] = result[4]['1%']
output.loc['Critical Value(5%)', 'value'] = result[4]['5%']
output.loc['Critical Value(10%)', 'value'] = result[4]['10%']
return output

def acf_pacf_plot(seq,acf_lags=20,pacf_lags=20):
fig = plt.figure(figsize=(12, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(seq, lags=acf_lags, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(seq, lags=pacf_lags, ax=ax2)
plt.show()

def order_select_ic(training_data_diff):

(p, q) = sm.tsa.arma_order_select_ic(training_data_diff, max_ar=6,
max_ma=4, ic='bic')['bic_min_order'] # AIC
print(p, q) # 2 0

def order_select_search(training_set):

df2 = training_set['close'].diff(1).dropna()
pmax = 5 # pmax = int(len(df2) / 10)
qmax = 5 # qmax = int(len(df2) / 10)
bic_matrix = [] print('^', pmax, '^^', qmax)
for p in range(pmax + 1):

temp3 = []
for q in range(qmax+1):

try:
print('!', ARIMA(data['close'], order=(p, 1, q)).fit().bic)

 65

temp.append(ARIMA(data['close'], order=(p, 1, q)).fit().bic)
temp3.append(sm.tsa.ARIMA(training_set['close'], order=(p,
1, q)).fit().bic)
except:

temp3.append(None)
bic_matrix.append(temp3)

bic_matrix = pd.DataFrame(bic_matrix)
print('&', bic_matrix)
print('&&', bic_matrix.stack())
print('&&&', bic_matrix.stack().astype('float64'))
p, q = bic_matrix.stack().astype('float64').idxmin()
print('p and q: %s,%s' % (p, q))

def create_dataset(dataset, look_back=20):

dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):

a = dataset[i:(i+look_back)] #don't use second dimension
dataX.append(a)
dataY.append(dataset[i + look_back])
return np.array(dataX), np.array(dataY)

def evaluation_metric(y_test,y_hat):

MSE = metrics.mean_squared_error(y_test, y_hat)
RMSE = MSE**0.5
MAE = metrics.mean_absolute_error(y_test,y_hat)
R2 = metrics.r2_score(y_test,y_hat)
return {'MSE': MSE, 'RMSE': RMSE, 'MAE': MAE, 'R2': R2}

def GetMAPE(y_hat, y_test):
sum = np.mean(np.abs((y_hat - y_test) / y_test)) * 100
return sum

def GetMAPE_Order(y_hat,y_test):

zero_index = np.where(y_test == 0)
y_hat = np.delete(y_hat, zero_index[0])
y_test = np.delete(y_test, zero_index[0])
sum = np.mean(np.abs((y_hat - y_test) / y_test)) * 100
return sum

def NormalizeMult(data):
data = np.array(data)
normalize = np.arange(2*data.shape[1], dtype='float64')

 66

normalize = normalize.reshape(data.shape[1],2)
print(normalize.shape)

for i in range(0, data.shape[1]):

list = data[:, i]
listlow, listhigh = np.percentile(list, [0, 100])
print(i)
normalize[i, 0] = listlow
normalize[i, 1] = listhigh
delta = listhigh - listlow
if delta != 0:

for j in range(0, data.shape[0]):
data[j, i] = (data[j, i] - listlow)/delta

np.save("./normalize.npy",normalize)
return data, normalize

def FNormalizeMult(data, normalize):

#inverse NormalizeMult
data = np.array(data)
listlow = normalize[0]
listhigh = normalize[1]
delta = listhigh – listlow
if delta != 0:

for i in range(len(data)):
data[i, 0] = data[i, 0] * delta + listlow
return data

def NormalizeMultUseData(data,normalize):
data = np.array(data)
for i in range(0, data.shape[1]):

listlow = normalize[i, 0]
listhigh = normalize[i, 1]
delta = listhigh – listlow
if delta != 0:

for j in range(0,data.shape[0]):
data[j,i] = (data[j,i] - listlow)/delta

return data

def data_split(sequence, n_timestamp):

X = []
y = []
for i in range(len(sequence)):

end_ix = i + n_timestamp

if end_ix > len(sequence) - 1:

 67

break

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
return np.array(X), np.array(y)

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):

cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)]

forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):

cols.append(df.shift(-i))
if i == 0:

names += [('var%d(t)' % (j + 1)) for j in range(n_vars)]
else:

names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)]
put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names

drop rows with NaN values
if dropnan:

agg.dropna(inplace=True)
return agg

def prepare_data(series, n_test, n_in, n_out):

values = series.values
supervised_data = series_to_supervised(values, n_in, n_out)
print('supervised_data', supervised_data)
train, test = supervised_data.loc[:3499, :], supervised_data.loc[3500:, :]
return train, test

 68

REFERENCES

Abu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting.

Applied intelligence, 6, 205–213.

Alkhatib, K., Khazaleh, H., Ilkhanate, H.A., Alsoud, A.R., & Abualigah, L. (2022).

A new stock price forecasting method using active deep learning

approach. Journal of Open Innovation: Technology, Market, and

Complexity, 8(2), 96. https://doi.org/10.3390/joitmc8020096

Bergstra, J., Bardenet, R., Bengio, Y., & K´egl, B. (2011). Algorithms for hyper-

parameter optimization. In Advances in Neural Information Processing

Systems 24: 25th Annual Conference on Neural Information Processing

Systems 2011, NIPS 2011 (p. 1–9).

Cahyadi, J., & Zahra, A. (2024). Bitcoin price prediction model development

using convolutional neural network (CNN) and long short-term memory

(LSTM). Journal La Multiapp, 5(2), 52-62.

https://doi.org/10.37899/journallamultiapp.v5i2.1070

Eapen, J., Bein, D., & Verma, A. (2019). Novel deep learning model with CNN

and bi-directional LSTM for improved stock market index prediction. In

2019 IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC) (pp. 0264–0270). IEEE.

https://doi.org/10.1109/CCWC.2019.8666592

 69

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In

Advances in neural information processing systems (pp. 2672-2680).

Hanifi, S., Cammarono, A., & Zare-Behtash, H. (2023). Advanced

hyperparameter optimization of deep learning models for wind power

prediction. Renewable Energy, 221, 119700.

https://doi.org/10.1016/j.renene.2023.119700

Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.).

Prentice Hall.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition (pp. 770-778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9(8), 1735-1780.

Islam, M., Chen, G., & Jin, S. (2019). An overview of neural network. American

Journal of Neural Networks and Applications, 5(1), 7-11.

https://doi.org/10.11648/j.ajnna.20190501.12

Kim, K. J., & Han, we. (2000). Genetic algorithms approach to feature

discretization in artificial neural networks for the prediction of stock price

index. Expert systems with Applications, 19(2), 125-132.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),

436-444.

 70

Liang, Y. (2021). Stock market forecasting based on artificial intelligence

technology. Electronic Theses, Projects, and Dissertations. 1324.

Retrieved from https://scholarworks.lib.csusb.edu/etd/1324​``【

oaicite:0】``​.

Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An

advanced CNN-LSTM model for cryptocurrency forecasting. Electronics,

10(3), 287. https://doi.org/10.3390/electronics10030287

Masum, M., et al. (2021). Bayesian hyperparameter optimization for deep neural

network-based network intrusion detection. In: Proceedings of the 2021

IEEE International Conference on Big Data, Big Data 2021 (p. 5413–

5419). IEEE. https://doi.org/10.1109/BigData52589.2021.9671576

Nasdaq. (2024). Historical stock prices and data for Apple Inc. (AAPL). Retrieved

24 March 2024. https://www.nasdaq.com/market-

activity/stocks/aapl/historical

O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks.

arXiv preprint arXiv:1511.08458.

Roll, R. (1992). Industrial Structure and the Comparative Behavior of

International Stock Market Indices. The Journal of Finance, 47(1), 3–41.

https://doi.org/10.2307/2329089

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review, 65(6), 386-

408.

 71

Shi, Z., Hu, Y., Mo, G., & Wu, J. (2022). Attention-based CNN-LSTM and

XGBoost hybrid model for stock prediction. arXiv preprint

arXiv:2204.02623. Retrieved from https://github.com/zshicode/Attention-

CLX-stock-prediction.

Song, H., & Choi, H. (2023). Forecasting Stock Market Indices Using the

Recurrent Neural Network Based Hybrid Models: CNN-LSTM, GRU-CNN,

and Ensemble Models. Applied Sciences, 13(7), 4644.

https://doi.org/10.3390/app13074644

Staffini, A. (2022). Stock price forecasting by a deep convolutional generative

adversarial network. Frontiers in Artificial Intelligence, 5, 837596.

https://doi.org/10.3389/frai.2022.837596

Tableau. (n.d.). Time Series Forecasting: Definition, Applications, and Examples.

Retrieved from https://www.tableau.com/learn/articles/time-series-

forecasting (Accessed February 10, 2024)

Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-

term memory model. The Artificial Intelligence Review, 53(8), 5929–5955.

https://doi.org/10.1007/s10462-020-09838-1

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...

& Polosukhin, I. (2017). Attention is all you need. In Advances in neural

information processing systems (pp. 5998-6008).

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, S.-H. (2019).

Hyperparameter Optimization for Machine Learning Models Based on

 72

Bayesian Optimization. 电子科技学刊, 17(1), 26–40.

https://doi.org/10.11989/JEST.1674-862X.80904120

Yang, C.-H., & Chang, P.-Y. (2020). Forecasting the demand for container

throughput using a mixed-precision neural architecture based on CNN–

LSTM. Mathematics, 8(10), 1784. https://doi.org/10.3390/math8101784

Zhang, J., Ye, L., & Lai, Y. (2023). Stock price prediction using CNN-BiLSTM-

Attention model. Mathematics, 11(9), 1985.

https://doi.org/10.3390/math11091985

Zhu, R., Yang, Y., & Chen, J. (2023). XGBoost and CNN-LSTM hybrid model

with Attention-based stock prediction. IEEE 3rd International Conference

on Electronic Technology, Communication and Information (ICETCI), 359-

365. doi:10.1109/ICETCI57876.2023.10176988

Zhu, T., Liao, Y., & Tao, Z. (2022). Predicting Google’s Stock Price with LSTM

Model. Proceedings of Business and Economic Studies, 5(5), 82-87.

	EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE STOCK FORECASTING
	Recommended Citation

	Microsoft Word - White, Ethan- Thesis Project 2024 v11

