
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Electronic Theses, Projects, and Dissertations Office of Graduate Studies 

5-2024 

EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE 

STOCK FORECASTING STOCK FORECASTING 

Ethan White 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd 

 Part of the Business Analytics Commons, Business Intelligence Commons, Computer and Systems 

Architecture Commons, Finance and Financial Management Commons, and the Other Electrical and 

Computer Engineering Commons 

Recommended Citation Recommended Citation 
White, Ethan, "EFFECTIVENESS OF CNN-LSTM MODELS USED FOR APPLE STOCK FORECASTING" (2024). 
Electronic Theses, Projects, and Dissertations. 1916. 
https://scholarworks.lib.csusb.edu/etd/1916 

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. 
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator 
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu. 

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1398?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1326?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1916?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


EFFECTIVENESS OF CNN-LSTM MODELS USED FOR 

APPLE STOCK FORECASTING 

 

 

A Project 

Presented to the 

Faculty of 

California State University, 

San Bernardino 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

in 

Information Systems & Technology: 

Business Intelligence and 

Data Analytics 

 

 

by 

Ethan White 

May 2024 

  



 

  EFFECTIVENESS OF CNN-LSTM MODELS USED FOR  

APPLE STOCK FORECASTING 

 

 

A Project 

Presented to the 

Faculty of 

California State University, 

San Bernardino 

 

 

by 

Ethan White 

May 2024 

 

 

Approved by: 

Dr. Conrad Shayo, Committee Member, Chair 

Dr. Sepideh Alavi, Committee Member, Reader 

Dr. Conrad Shayo, Chair, Information and Decision Sciences Department 

 

 

 



 

 

 

 

 

 

 

 

   

© 2024  Ethan White  

   

   

   

  



 iii 

ABSTRACT 

This culminating experience project investigates the effectiveness of 

convolutional neural networks mixed with long short-term memory (CNN-LSTM) 

models, and an ensemble method, extreme gradient boosting (XGBoost), in 

predicting closing stock prices. This quantitative analysis utilizes recent AAPL 

stock data from the NASDAQ index. The chosen research questions (RQs) are: 

RQ1. What are the optimal hyperparameters for CNN-LSTM models in stock 

price forecasting? RQ2. What is the best architecture for CNN-LSTM models in 

this context? RQ3. How can ensemble techniques like XGBoost effectively 

enhance the predictions of CNN-LSTM models for stock price forecasting? 

The research questions were answered through a thorough quantitative 

analysis involving data preprocessing, feature engineering, and model 

evaluation, using various Python scripts designed for this analysis. The findings 

are: RQ1. reveals that adjusting hyperparameters, such as learning rates and 

epochs, significantly improves model performance; RQ2. deemed a multi-layered 

CNN-LSTM structure with attention mechanisms as the most effective for this 

use case; and RQ3. showed that XGBoost as an ensemble method did not work 

as planned, indicating a much more complex interplay between ensemble 

methods and neural network models. The conclusions are: RQ1. adjusting 

hyperparameters, such as learning rates and epochs, improves the performance 

of CNN-LSTM models. RQ2. multi-layered CNN-LSTM architectures with 
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attention mechanisms are the most effective architecture for predicting stock 

prices. RQ3. ensemble methods like XGBoost, when combined with CNN-LSTM 

models, did not improve prediction accuracy as expected, suggesting a complex 

interplay between these techniques. Areas for further study include the 

automation of hyperparameter tuning techniques such as GridSearch and 

Bayesian optimization, further exploration of the integration of ensemble methods 

with neural network models, and the application of CNN-LSTM architectures to 

other forms of financial data beyond closing stock prices. 
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CHAPTER ONE: 

INTRODUCTION 

The stock market remains as a pivotal institution where capital flows, 

investments are made, and the economy is impacted. Within it, billions of dollars 

change hands every day. Consequently, automating accurate stock price 

predictions has become a primary goal for supply chain researchers and 

investors globally (Zhu et al., 2023). Innovations such as artificial intelligence (AI) 

models are effective at recognizing patterns, and they could be the key to 

improving stock trend forecasting for financial researchers. Before covering the 

specifics of AI architectures, it is crucial to have a deeper understanding of neural 

networks and their current function for automation. 

 

Background Information 

According to research by Islam and team, a neural network is a form of 

artificial intelligence that uses algorithms to imitate the structure of the human 

brain (Islam et al., 2019). Neurons in the human brain receive electrical or 

chemical stimuli through dendrites and transfer output signals via axons. Axons 

establish connections with other neurons at junctions known as synapses, 

delivering their output signals to other neurons in an endless cycle of 

transmission. Artificial neural networks consist of interconnected units, often 

known as neurons. The link between the network neurons in the hidden layer 

functions similarly to the synapses in the human brain. The neurons establish 
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connections between processing elements, and the arrangement and weights of 

these connections affect the output. Unlike solely digital models that manipulate 

binary code, neural networks operate with more complex computations. This 

form of artificial intelligence excels when given a substantial amount of previous 

example data for training (Islam et al., 2019).   

Architectures 

 

Existing Architectures 

Within the realm of artificial intelligence, neural network architectures are 

essential for solving complex predictive problems. To provide a structured 

overview of the primary neural network architectures that have influenced recent 

machine learning advancements, Table 1 below summarizes eight influential 

models. Each architecture is evaluated based on its design, advantages, and 

where it is suitable for closing stock price analysis. 

 

Table 1 - Eight Influential Models 

Model Description Advantages Sustainability for 
Project 

Multilayer 
Perceptron 
(MLP) 

A forward-feed 
neural network 
with multiple 
layers. 

Can approximate 
any function. 

Not selected due to 
lower performance 
capturing time-series 
data. 
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Model Description Advantages Sustainability for 
Project 

Convolution 
Neural 
Network 
(CNN) 

Uses 
convolutional 
layers, and fully 
connected layers. 

Excellent for 
spatial data like 
imagery. 

Selected because it 
can handle time-series 
data, treating it as a 
sequence of patterns 

Recurrent 
Neural 
Network 
(RNN) 

Processes 
sequences by 
iterating through 
elements. 

Good for 
sequence 
predictions. 

Not selected due to 
difficulty to train and 
issues with holding 
long-term 
dependencies. 

Long Short-
Term 
Memory 
(LSTM) 

Type of RNN that 
can learn long-
term 
dependencies. 

Prevents the 
vanishing gradient 
problem. 

Selected for its 
strength in handling 
long sequences, 
crucial for stock price 
forecasting. 

Feed-
Forward 
Neural 
Networks 

Simplest type of 
ANN, 
connections do 
not form cycles. 

Simple and fast to 
train. 

Not selected because 
it cannot handle 
sequences, crucial for 
time series analysis. 

Generative 
Adversarial 
Networks 
(GAN) 

Consists of two 
networks, 
competing 
against each 
other. 

Good for 
generating new 
data. 

Not selected as it is 
better suited for data 
generation, not data 
prediction. 

Residual 
Networks 
(ResNet) 

Utilizes skip 
connections to 
jump over some 
layers. 

Efficient for 
identifying 
gradient issues in 
deep networks. 

Not selected due to its 
complexity and 
inefficiency in time 
series prediction 
compared to both 
CNN and LSTM 
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Model Description Advantages Sustainability for 
Project 

Transformers Based on self-
attention 
mechanisms 
instead of 
sequence aligned 
RNNs or 
convolution 

Highly 
parallelizable and 
effective in 
handling long-
range 
dependencies. 

Not selected because 
it is complex and 
resource-intensive, 
making it suitable for 
larger datasets and 
natural language 
processing. 

 

After presenting the advantages and applications of architectures detailed 

within works such as Goodfellow et al. (2014); Haykin (1999); He, Zhang, Ren, & 

Sun (2016); Hochreiter & Schmidhuber (1997); LeCun, Bengio, & Hinton (2015); 

O'Shea & Nash (2015); Rosenblatt (1958); and Vaswani et al. (2017), the 

rationale for selecting specific models depends on their ability to perform time 

series forecasting. Thus, CNN and LSTM networks were chosen based on their 

ability to process sequential data effectively.  

According to O'Shea and Nash, the CNN model resembles feed-forward 

neural network architectures, where the neurons possess adjustable weights and 

biases (O'Shea & Nash, 2015). This neural network architecture can be divided 

into four major parts: the input layer, the convolutional layer, the pooling layer, 

and the fully connected layers. Convolution is often used for signal and image 

recognition. However, it has recently adapted to handle time series prediction 

applications by utilizing 2D mapping. Time series forecasting uses historical time-

stamped data to create scientific forecasts. The process entails constructing 
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models and using them to inform future strategic decision-making. The 

forecasting process is unique because, during the process, the result of the 

models is unknown, and it can only be found through the meticulous examination 

of the data (Tableau, 2003-2024). When applying CNN to time series inputs, the 

data would be treated as an image-like structure, where the horizontal axis 

represents the temporal dimension, and any other dimensions are represented 

by the other axes. After mapping the dimensions, patterns within the data can be 

identified accordingly (O'Shea & Nash, 2015).   

The RNN model also shares similarities with feed-forward neural network 

architectures since the initial layer is computed by multiplying the sum of weights 

and features. After the calculation, the neurons store a small amount of 

information throughout each algorithm stage, which is then utilized for error 

correction during the backpropagation process. A basic RNN block comprises 

five steps: block input, input gate, forget gate, cell, and block output (Islam et al., 

2019). The LSTM model, pioneered by Hochreiter & Schmidhuber in 1997, 

addressed the challenge of learning long-term dependencies, a way for a 

computer to detect cohesion between phrases. The learning capacity of LSTM 

has had a significant impact in terms of practical applications and theoretical 

advancements, leading to its recognition as an innovative learning model (Van 

Houdt, Mosquera, & Nápoles, 2020).   

Accurately predicting stock market movements has attracted significant 

attention due to its unpredictable patterns. The growing popularity of purchasing 
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stocks can be attributed to convenient information accessibility, online brokerage 

programs, the dynamic market, and the pursuit of financial literacy overall. Past 

research has shown that, when combined, CNN-LSTM models are resilient to 

noisy input data and can differentiate between meaningful information and 

irrelevant disturbances. These models are known for generating accurate 

predictions, and they can efficiently combine multiple types of data sources and 

identify relevant characteristics for forecasting (Zhu et al., 2023). Further 

research is necessary to ensure the accuracy of machine learning models to 

detect outliers when applied to fluctuating stock price data (Zhu et al., 2023). The 

research questions chosen are addressed within the research scope.  

 

Problem Statement 

The main objective of this culminating experience project is to analyze the 

effectiveness of neural network models used for stock price forecasting. Previous 

research (Zhu et al., 2023), and most references present at the end of this 

analysis, show that there is a need to study the forecasting effectiveness of CNN 

and LSTM models. We will analyze these models' effectiveness while providing 

explanations for RQs relating to the topic. This analysis of convolutional neural 

network models draws inspiration from Yuzhun Liang's area for further study, and 

the incorporation of long short-term memory is motivated by the recent work of 

Jonathan Cahyadi and Amalia Zahra, who applied CNN-LSTM to predict bitcoin 

prices (Liang, 2019; Cahyadi & Zahra, 2024). 
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Research Scope 

This research's main goal is to analyze the effectiveness of CNN LSTM 

models when combined to forecast time series data, more specifically the 

forecasting of closing stock prices. A detailed exploration of the model's 

performance and adaptability to the dynamic nature of financial markets forms 

the core of this research. The following are research questions suggested by 

prior research that are analyzed within this project:  

 

RQ1: What are the optimal hyperparameters for CNN-LSTM models in 

stock price forecasting, and how can they be updated to positively impact 

the model's performance and ability to generalize? (Zhu et al., 2023) 

RQ2: What is the best architecture of CNN-LSTM models being used for 

stock price forecasting regarding the number of convolutional layers, 

LSTM layers, batch sizes/maximum epochs, and python libraries used? 

(Zhu et al., 2023) 

RQ3: How can ensemble techniques, such as extreme gradient boosting, 

effectively combine the predictions of multiple CNN-LSTM models for 

stock price forecasting? (Zhu et al., 2023) 

 

This culminating experience project is organized as follows: Chapter 2 

reviews the literature focusing on where the research questions came from. 

Chapter 3 provides the methods used to answer the research questions, and 
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Chapter 4 implements the research methods provided in Chapter 3 by covering 

the data collection, analysis and providing the research findings. Chapter 5 

provides a discussion of the findings, conclusions, and areas for further study. 
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CHAPTER TWO: 

LITERATURE REVIEW 

Understanding the volatility of closing stock prices has evolved since the 

market’s inception. Accurately predicting potential shifts is essential for making 

educated investment decisions and utilizing technology can make this process 

more streamlined. The past research included within this research shows that 

neural network models have higher accuracy than linear statistical-based 

methods when applied to non-linear data. More specifically, hybrid non-linear 

models have generated encouraging results suggesting enhanced forecast 

accuracy during periods of market volatility, like the COVID-19 pandemic. 

Nevertheless, the implementation of neural networks can be improved, which will 

be examined further within this analysis. Researchers are now investigating the 

most efficient optimization techniques in this developing field, including optimal 

hyperparameters and the integration of neural network models as ensemble 

models. This literature review includes the comparative behavior of international 

stock indices, groundbreaking neural network research in financial forecasting, 

and the evolution of neural networks used as predictive methodologies.  

 

Comparative Behavior of International Stock Indices 

As defined previously, external variables impact financial forecasting. 

However, regional differences also play a critical role in shaping the behaviors of 

global stock markets. A well-known comparative study, “Industrial Structure and 
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the Comparative Behavior of International Stock Market Indices,” published in 

The Journal of Finance in 1992, documents the behaviors. The analysis reveals 

differences in volatility levels among national stock markets, which are present 

after accounting for nominal and inflation differences through currency 

conversions. The research found that stock markets in places like Canada and 

the Netherlands do not change as much, which means they have low volatility, 

while markets in Hong Kong and South Africa change a lot more, showing high 

volatility (Roll, 1992, p. 37). It was found that changes in the value of a country's 

currency play a role in the behavior of national stock market indices, but this 

influence is smaller than the effect of the country's industrial structure. Exchange 

rates significantly affect stock market movements, but how much varies by 

country. The results reveal the intricate complexity of international stock market 

indices, offering helpful information for stakeholders operating in global financial 

markets (Roll, 1992). Roll's research emphasizes external factors affecting stock 

price forecasts, making it a challenging endeavor, and underscores the role that 

location plays in generating predictions.  

   

Groundbreaking Research 

Seminal works—Kimoto et al., 1990, Kamijo & Tanigawa, 1990, and 

(Ahmadi, 1990)— have applied ANN architectures to forecast foreign indices 

such as the Tokyo Stock Exchange Prices Index (TOPIX) by closely monitoring 

each stock index’s reversal patterns. Contemporary research has focused on 
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applying AI techniques, particularly ANN, to predict recorded stock price trends. 

Studies such as (Yoon & Swales, 1991), (Choi, Lee, & Rhee, 1995), and (Trippi 

& DeSieno, 1992) were some of the first to use ANN models to predict stock 

index futures, namely the S&P 500. Additionally, (Duke & Long, 1993) extended 

this approach to German government bond futures. These early investigations 

primarily focused on ANN's application in stock market prediction.  

As research progressed, scholars (Hiemstra, 1995) introduced hybrid 

models, integrating fuzzy expert systems with ANN to capture the complexities of 

market dynamics (Tsaih, Hsu, & Lai, 1998). These researchers further advanced 

this trend by combining rule-based techniques with ANN to forecast the S&P 500 

index futures' daily direction of change. Moreover, researchers like (Kohara, 

Ishikawa, Fukuhara, & Nakamura, 1997) began incorporating prior knowledge to 

enhance prediction performance. However, challenges arose due to the noisy 

and non-stationary nature of stock market data, as noted by (Lawrence, Tsoi, & 

Giles, 1996), leading to issues like overfitting and local convergence of gradient 

descent algorithms commonly used to train ANNs. This was also addressed in 

the research of (Abu-Mostafa & Atiya, 1996) where the "learning from hints" 

algorithm was created to identify familiar market information and uses it to 

improve its predictive capabilities. The algorithm adapts by fine-tuning itself 

according to its alignment with the clues and the information provided and it does 

not rely on the knowledge of each scenario result, which makes it valuable even 

with restricted data. However, recent advancements propose a novel hybrid 
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approach that combines genetic algorithms, also known as GAs, with ANNs to 

mitigate data complexity (Kim & Han, 2000). This hybrid model not only optimizes 

connection weights but also determines optimal thresholds for feature 

discretization, thus enhancing classifier generalizability by reducing 

dimensionality. The concepts applied within this early research underscore the 

potential to explore broader algorithmic optimization strategies, aligning with the 

evolving landscape of financial forecasting techniques.  

 

2.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in 

stock price forecasting, and how can they be updated to positively impact 

the model's performance and ability to generalize?  

When researching optimal hyperparameters for CNN-LSTM applications, 

we found research that could be adapted to the optimization of CNN-LSTM 

model training. According to Hanifi et al.’s 2024 study, hyperparameters are 

external parameters whose values are not directly learned by ANN or RNN 

models as they are defined outside of training to optimize the learning of the 

chosen models (Hanifi et al., 2024, p. 2). In this comparative study, 

hyperparameters such as the number of neurons, batch size, epochs number, 

and the activation functions were optimized using three optimization strategies. 

The epochs number refers to the number of times that the model has seen the 

entire dataset, and epochs are split up into smaller divisions for processing called 

batch sizes (Hanifi et al., 2024, p. 2). We learned from Hanifi’s research that 
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selecting efficient hyperparameter values is critical for avoiding overfitting and 

other discrepancies. Hyperparameter selection varies based on the domain and 

should be optimized for each dataset through a process known as 

hyperparameter tuning. However, determining how many hyperparameter 

combinations to test is critical, as it affects the computational cost of the model 

being used. Hanifi’s research explores automatic search algorithms, such as grid 

search and random search, to help overcome the challenges of manual 

hyperparameter estimation, especially when applied to neural networks (Hanifi et 

al., 2024).  

Some approaches to optimize hyperparameters included within Hanifi’s 

research were grid search and sequential model-based optimization (SMBO). 

Grid search explores hyperparameter combinations but suffers due to the high 

computation costs of neural networks models (Wu et al., 2019). Another source 

introduces a new grid search method GridsearchWEF, which reduces the time 

needed to find the best settings for machine learning models (Zhao et al., 2024, 

p. 111362) but was not applied with CNN-LSTM. Highlighting the inefficacies of 

random search methods, Bergstra et al. (2011) prompted a search for 

alternatives that balance efficacy and computational efficiency. Enter sequential 

SMBO, which is an optimization strategy that uses past training data to iteratively 

refine hyperparameters. An example of this strategy is seen through the work of 

Masum et al. (2021), highlighting Bayesian optimization for the detection of 

network intrusions. Another example of this strategy was research by Zhu et al. 
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(2022) exploiting a Tree-structured Parzen Estimator (TPE) to fine-tune wind 

power prediction models. However, it was Hanifi et al. (2024) who compared 

Scikit-opt, Hyperopt, and Optuna python-language libraries used for optimizing 

CNN and LSTM models, which can be applied to existing stock forecasting 

models. Hanifi's meticulous analysis not only advocates for SMBO as a viable 

alternative to grid or random searches but also underscores the significance of 

addressing randomness to increase model accuracy. 

This section sheds light on hyperparameter optimization and sets the 

stage to discuss the literature containing the best architecture to use for this data 

analysis project. 

 

2.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock 

price forecasting regarding the features generated, hyperparameters used, 

and modifications made to the model itself? 

When searching for the best architecture, we found that the approach of 

CNN-LSTM architecture varied between past research studies, in terms of the 

number of layers, filter sizes, and hyperparameters for each model. After 

reviewing over 5 different approaches to the CNN-LSTM model found in modern 

research, we noticed that these models used at least two convolutional layers 

and filter sizes ranging from 32 to 64 (Livieris et al., 2021; Staffini, 2022; Alkhatib 

et al., 2022; Yang & Chang, 2020; Song & Choi, 2023). This is all dependent on 

the size of the dataset, as this will determine how many epochs are generated by 
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the model. Some modern forecasting research creates innovative new features 

used in their forecasting. Research done by Song & Choi of 2023 uses historical 

stock price data from DAX, Dow Jones, and the S&P 500 to forecast the one-

time-step and multiple-time-step closing prices of these indices through the 

integration of neural network models such as CNNs, LSTMs, and gated recurrent 

units (GRUs). Several of the features used by the models for forecasting include 

the daily stock prices for each index, trading volume, change in stock prices, and 

a novel feature called the medium. The medium was an average of the stock 

prices' highs and lows that the models use to make better predictions. Through 

calculating the medium, the forecasting model can focus on a more stable value 

that represents the trends of an index rather than being swayed by its volatility 

(Song & Choi, 2023, p. 13). Other modern research makes modifications to the 

neural network model. 

Eapen et al. (2019) conducted further research that introduces a new 

deep learning model combining CNN with bi-directional LSTM units. This model 

aims to improve the accuracy of predicting stock market indices, with a focus on 

the S&P 500 index. These researchers look at what happens when they change 

various parts of the models, analyzing what happens when they change the 

number of bidirectional LSTM units and the size of the CNN kernels. The team 

used six python packages to facilitate their display of stock price forecasts. In 

summary, the study conducted by Eapen, and team emphasizes the 

effectiveness of a hybrid neural network architecture consisting of CNN for 
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recognizing stock price trends and a LSTM network for retaining the temporal 

sequence of events. Making modifications to a model’s framework, in terms of 

their layering and filtering, could impact their effectiveness in the future.  

The above research contains effective architectures for stock forecasting. 

However, there is still a gap that needs to be addressed. An architecture that 

applies ensemble techniques to CNN-LSTM models should be considered for 

this research. 

 

2.3 – RQ3: How can ensemble techniques, such as extreme gradient 

boosting, effectively combine the predictions of multiple CNN-LSTM 

models for stock price forecasting? 

When searching for research on CNN-LSTM models incorporating 

ensemble techniques for error processing, we discovered the research of Zhu et. 

al, 2023. This research displayed a CNN-LSTM model, the CNN enhanced by 

attention mechanisms, using a decision-tree algorithm to improve its ability to 

generalize called XGBoost. It does this by focusing on the errors of the 

predictions, and uses the information collected from the trees to make predictions 

closer actuals, in this case actual stock prices (Zhu et al., 2023, p. 362). This 

ensemble methods’ guesses can be imperfect, and these imperfections or errors 

are known as residuals. When coupled with other predictive techniques, the 

XGBoost algorithm employs subsequent decision trees to identify these 

imperfections and fine-tune the learning model. This research shows that the 
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combination of XGBoost with CNN-LSTM offers better insights and higher 

accuracy for predicting time series data.  

The combination of stand-alone neural network models into hybrids, such 

as CNN-LSTM, opens avenues for ensemble modeling approaches. Analogous 

to a council of experts using collected data to pool insights for decision making, 

ensemble models aggregate predictions from all models as sources. 

Comparative research by Song & Choi (2023) pitted hybrid and ensemble 

models against traditional statistical methods in stock price prediction. In one-

time-step forecasting, the latest models eclipsed their traditional counterparts in 

over 48% of cases, while ensemble models outperformed traditional methods in 

more than 81% of multi-time-step forecasting instances. These methodologies 

show a shift towards using more nuanced predictive analytics within financial 

forecasting, such as boosting (Song & Choi, 2023, p. 1). 

Precise predictions improve investor decision-making, and better 

investments benefit the stock market. Having reviewed the existing literature on 

the application of modern CNN-LSTM models in stock forecasting, we applied 

what we learned to adapt the model created in Zhu et al., 2023 fitted to closing 

price data from the APPL ticket of the NASDAQ index. The Zhu research will be 

our primary literature for this analysis, and we will adapt their methodologies to 

better understand the techniques used in modern research and identify potential 

areas for improvement. 
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CHAPTER THREE: 

RESEARCH METHODS 

The methodologies from Zhu et al.'s research, 2023, are the primary 

literature for this analysis and are used as secondary, quantitative data to answer 

the three RQs. Zhu’s research includes the discussion of hyperparameters, the 

implementation of ensemble methods, and their research results show that this is 

one of the best models used for stock prediction. Fortunately, prior research has 

already implemented the architecture provided in the primary literature, authored 

by Zhuangwei Shi, Yang Hu, Guangliang Mo, and Jian Wu on their GitHub 

repository, and it has been adjusted to fit the criteria (Shi et al., 2022). The 

scripts are titled: arima_APPL.py, lstm_APPL.py, xgboost_APPL.py, 

model_APPL.py, main_APPL.py, and lastly, utils_APPL.py. This methodology 

utilizes various Python libraries, notably Keras for the neural network models and 

XGBoost for ensemble learning. Data handling and preprocessing tasks are 

performed on the chosen 5-year APPL dataset using pandas and scikit-learn, 

ensuring that the original data is properly scaled and cleaned before processing. 

The adjusted Python scripts perform an evaluation of the methods used and they 

generate a month’s worth of predictions for closing prices on the APPL ticket of 

the NASDAQ index. Understanding the methodology will serve as a foundation 

for discussing the findings as well as potential improvements that could be made 

within time series forecasting.  
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3.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in 

stock price forecasting, and how can they be updated to positively impact 

the model's performance and ability to generalize?  

Chapter 2 introduced common benchmark hyperparameters seen through 

the literature for testing modern CNN-LSTM models, which include maximum 

epochs of 50 and batch sizes of 32. Additionally, typical testing parameters such 

as lookback periods, dropout rates, and validation splits of 0.1 were considered. 

These parameters served as a baseline for identifying the optimal 

hyperparameters of this analysis, which were manually selected based on their 

effectiveness in preprocessing tests and generated figures. To answer this RQ, 

we focus on the optimal hyperparameters chosen for the CNN and LSTM 

models, configured to predict closing prices and analyze trends within the AAPL 

dataset. 

We chose to adopt the hyperparameters used in the primary literature 

conducted by Zhu et al. in 2023 as these are the most optimal for our dataset. 

GridSearch investigated the potential integration of systematic hyperparameter 

optimization within our models, although it was not implemented due to logic 

issues with this process. For the LSTM model, the optimal configuration included 

utilizing sequences of 10 historical data points, each corresponding to the stock 

prices of previous trading days, to predict the subsequent value. This setup 

effectively encapsulates two weeks of stock market activity in each input 

sequence for forecasting. The model was trained over 50 epochs to maximize 
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training without overfitting, and it used a batch size of 32 to balance 

computational efficiency by processing information in smaller segments. The 

LSTM layers were configured with 50 units each, which optimizes the model's 

capability to learn from temporal patterns in the closing prices. A learning rate of 

0.01 for the Adam optimizer was selected to ensure efficient convergence during 

the model's training process. The attention-based CNN model was optimized with 

a look-back period of 60 days, recognizing the importance of this duration in 

capturing relevant stock price trends. The model incorporated 64 convolutional 

filters, a kernel size of 3, and a dropout rate of 0.5, which was selected to 

optimize feature extraction. The learning rate for this model was set at 0.001, 

aimed at achieving steady progress in the model's training process. 

Once the hyperparameters were chosen, they were then implemented in 

the model scripts: lstm_APPL.py and model_APPL.py. The hyperparameter 

selection process was aimed at maximizing learning and generalization while 

preventing overfitting. The manual tuning of hyperparameters, as opposed to 

using GridSearch, was dictated by the programmatical challenges faced when 

implementing the latter method. Therefore, the hyperparameter configurations for 

the CNN and LSTM models were carefully customized to enhance their 

forecasting performance. 
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3.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock 

price forecasting regarding the features generated, hyperparameters used, 

and modifications made to the model itself? 

The best architecture for CNN-LSTM in stock price forecasting, identified 

in our analysis, integrates the attention mechanism within the CNN layers and 

the LSTM components to effectively analyze time-series data. The ACNN-LSTM 

model, originally implemented by Zhu et al. (2023), uses attention-based 

mechanisms in the CNN to prioritize data points impacting future stock price 

predictions or feature selection. This model is implemented in the 

model_APPL.py script, and it demonstrates how attention layers can improve 

feature selection and extraction. 

In the lstm_APPL.py script, the LSTM is implemented with a configuration 

that captures temporal dependencies and patterns over varying time intervals. 

This includes declaring the most optimal hyperparameter values for the time 

steps/lookback period, batch size, and number of epochs. These were each 

optimized to balance learning efficiency of each model, keeping overfitting in 

mind. Further enhancements to the model's architecture include the integration of 

XGBoost, as shown in the xgboost_APPL.py script. This addition aims to refine 

the model's predictions by addressing residuals and incorrect forecasts. 

In conclusion, the best architecture for CNN-LSTM in stock price 

forecasting within this study involves a nuanced combination of ACNN with 

LSTM, optimized through strategic hyperparameter tuning and further enhanced 
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with XGBoost. This configuration maximizes the model’s ability to learn from 

historical data and make accurate predictions on the APPL dataset. 

 

3.3 – RQ3: How can ensemble techniques, such as extreme gradient 

boosting, effectively combine the predictions of multiple CNN-LSTM 

models for stock price forecasting? 

This research question explores the application of XGBoost as an 

ensemble method to enhance the predictions made by CNN-LSTM models 

adjusted. The XGBoost technique used can be outlined by the following phases: 

In the first phase, the stand-alone CNN-LSTM models are trained on segments of 

the NASDAQ stock dataset. The CNN model focuses on short-term price 

movements using its convolutional layers, while the LSTM model captures 

longer-term dependencies with its LSTM layers. Once trained, the output from 

these models is combined in a new dataset. This combination aligns the 

predicted closing prices with the actual closing prices from the original APPL 

dataset. The XGBoost ensemble method is applied to the aggregated predictions 

dataset in the next phase. The use of XGBoost’s gradient boosting capabilities is 

for the correcting of errors present in the initial predictions. The success of this 

approach is directly correlated to the hyperparameter tuning of the XGBoost 

method, and parameters such as learning rate and tree complexity were adjusted 

determined by preliminary testing. The final phase is the evaluation of the 

XGBoost method comparing its forecasting accuracy, using metrics such as 
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RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error), against the 

predictions generated solely by the CNN and LSTM models. This evaluation 

determines whether its use can improve the predictive capabilities of the chosen 

architecture. 

Having established the methodologies used, the next chapter will focus on 

the data collection, analysis, and key findings of this project. More specifically, it 

will detail the APPL dataset used, outline the analytical processes applied to it, 

and present the findings from the performance of the CNN-LSTM models and the 

XGBoost ensemble method used. These insights provide a foundation for further 

discussions and adjustments to be made when automating stock forecasting, 

which are included in the final chapter. 

 

 

 

 

 

 



 24 

CHAPTER FOUR: 

DATA COLLECTION, 

ANALYSIS AND FINDINGS 

This chapter describes the analytical procedures utilized to provide 

insights to the questions discussed in the previous chapters. This model follows 

the structure of the primary research (Zhu et al., 2023), adjusted for the analysis 

of recent APPL stock data from the NASDAQ index. The analysis begins with the 

evaluation of the results produced by the adjusted scripts (Shi et al., 2023); 

which  demonstrates the effectiveness and adaptability of existing CNN-LSTM 

models explored within the RQs.  
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Figures 1-5 and Table 2 are graphics generated during the preprocessing stage, 

where the NASDAQ data is cleaned for analysis. 

 

Figure 1 - First-Order Difference 

 

 "First-Order Difference" is the name of the time series plot in Figure 1, 

which shows the first-order differencing performed on the "AAPL stock data 

NASDAQ.csv" dataset from the years 2019 to 2024. Time is depicted on the 

horizontal axis of the graph, while first-order difference values are shown on the 

vertical axis. The plot shows the daily changes in the APPL stock price data, with 

data points fluctuating above and below the horizontal zero line. Plotted values 

range from +10 at the highest point to -10 at the lowest. Following the first-order 

differencing treatment, the stock data shows a variety of daily fluctuations.  
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Figure 2 - Second-Order Difference 

 

 The "Second-Order Difference," as seen in Figure 2's time series plot, is 

also associated with the APPL dataset mentioned. The plot covers the years 

2019 through 2024. This figure was generated by transforming the original 

NASDAQ-listed APPL closing price data with a second-order differencing. 

Consistent with the period's positive and negative second-order differences, the 

plotted values stay above and around the zero line. The graph displays second-

order variations in the stock data across the exhibited years, showing peaks and 

troughs between +15 and -15. 
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Figure 3 - Autocorrelation vs. Partial Autocorrelation 

 

 Both the autocorrelation and partial autocorrelation graphics, with lag 

values up to 40, are shown in Figure 3. At lag 0 in the autocorrelation plot, there 

is an initial spike with a value of 1. This is expected, as at lag 0, there is a perfect 

correlation between any two data series. After a spike just above 0.5 at lag 1, the 

autocorrelation value stays within the confidence interval of -0.25 to 0.25. The 

autocorrelation values range from 0 to one hundredth of a percent for lags 2 to 

40, staying within the confidence intervals. The partial autocorrelation plot shows 

a value of 1 at lag 0 and drops to little more than 0.5 at lag 1. The partial 

autocorrelation values past lag 1 are within the confidence ranges of -0.25 to 
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0.25 until lag 40. Autocorrelation values for data points with delays greater than 

the first do not show significant trends within the observed range. 

Table 2 - ADF Tests on Original Sequence and First-Order Diff Sequence 

 

 

The findings of the Augmented Dickey-Fuller (ADF) tests for stationarity 

on two data sequences, the original sequence, and the first-order difference 

sequence, are summarized in Table 2. The results of the Augmented Dickey-

Fuller (ADF) test applied to the original sequence. The test yielded a statistic of -

1.4460568355261638 and a p-value of 0.5600077660714967. These results are 

referenced against standard significance levels for interpreting the stationarity of 

the sequence. This test used 1033 observations with 10 delays. Table 2 presents 

the Augmented Dickey-Fuller test results for the original sequence. The test 

statistics are -1.4460568355261638 and the p-values are 0.5600077660714967. 

Critical values at the 1%, 5%, and 10% levels are -3.4366961996098264, -

2.8643491791214074, and -2.5686218869934934, respectively. For the first-

order difference sequence, the Augmented Dickey-Fuller (ADF) test provided a 

statistic of -10.356429810134044 with a p-value of approximately 2.46e-18. The 
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number of observations collected for this analysis was 1033, and this sequence 

used 9 delays. At the 1%, 5%, and 10% levels, the critical values are -

3.4366961996098264, -2.8643491791214074, and -2.5686218869934934, and 

these are identical to the values of the original sequence. 

 

 

Figure 4 - Training Set vs. Testing Set 

 

Stock price prediction using the APPL dataset is graphically represented 

in Figure 4. The comparison shown here is between the training data, actual 

closing prices, and the anticipated prices on the testing set. The blue line is 

representative of the training set, showing stock price movements from the 

beginning of 2019 through the first quarter of 2023. The closing stock prices start 

at $50 and rise to $200 during this time. The actual closing stock prices are 
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shown with the green line, and this series begins where the training data ends. 

This line shows real stock price movements, starting from where the training data 

stops, going up to around $200, and showing a fluctuating decline thereafter. 

Forecasted prices are indicated by a dashed red line that predicts future closing 

price movements after the training set. The forecast line begins from a point like 

the initial actual prices but trends downwards more smoothly than the actual 

prices. The shaded pink area indicates the range of uncertainty or confidence 

intervals associated with forecasted prices. This area of uncertainty expands as 

the model forecasts the latter portion of the dataset, indicating increasing 

uncertainty in forecasting.

 

Figure 5 - ARIMA Predictions Fitted to Actuals 

 

 Figure 5 compares the APPL closing prices with prices predicted by the 

preprocessing ARIMA model used extending from 2019 through halfway through 
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the first quarter of 2024. The blue line, labeled 'Original', represents the actual 

closing stock prices of the APPL stock on the NASDAQ index. This line shows an 

upward trend from 2019, starting at approximately $142, to late 2021, peaking at 

around $182. It then fluctuates through 2022 with peaks reaching up to $179 and 

troughs dropping to $130, continuing into 2023. The red line, labeled 'ARIMA 

Fitted', displays the fitted values which trace closely alongside the actual prices 

until the end of the actual closing stock data, which shows a good fit on the 

actuals. The figure ends with the red line remaining constant through 2024, 

showing that the ARIMA model is not able to predict any fluctuations in closing 

stock prices after the first quarter of 2023. This result will be addressed in 

Chapter 5 with recommendations made to adjust the preprocessing model. 
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Figures 6-11 and Table 3 are generated after the preprocessing stage, which are 

used for the analysis of the primary literature’s architecture fitted to the NASDAQ 

data. 

 

Figure 6 - LSTM Predictions of APPL Closing Prices 

 

Figure 6 is a line chart displaying the LSTM model's predictions alongside 

actual closing prices of APPL stock from January 2020 to January 2024. The blue 

line indicates the actual prices, while the orange line represents the LSTM 

model's predictions. The actual prices show an increase until the end of 2022 

before leveling off and declining, with the LSTM predictions closely tracking these 
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changes. 

 

Figure 7 - ARIMA + XGBoost Predictions vs Actuals 

 

 Figure 7 illustrates the predictions from a combined ARIMA and XGBoost 

model versus actual APPL stock prices from 2019 to early 2021. The blue line 

represents actual prices, and the orange line depicts predictions. The lines show 

some initial deviations in starting points and continue to exhibit minor differences 

throughout the period, occurring  at points where predicted prices either slightly 

overestimate or underestimate the actual closing prices. Overall, the figure 

shows that the predictions follow the trends of the actual stock price data, with 

slight data volatility occurring between 2019 and 2021. 
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Figure 8 - Residuals and Residual Density 

 

Figure 8 presents a time series plot of residuals and a histogram of their 

density from the modeling of APPL dataset residuals from 2019 to 2024. The left 

graph displays the residuals fluctuating around zero, and the right graph shows 

the distribution of these residuals, centered around zero. The residuals are 

represented by a blue line, fluctuating around the baseline of 0, with residual 

values ranging from 15 to -20. These fluctuations are discrepancies between the 

predicted and actual closing prices. The chart on the right is a histogram showing 

the density of the residual values. The values of this histogram are plotted along 

the x-axis to better visualize symmetry, with residual values ranging from -20 to 

15. This histogram shows a bell-shaped distribution centered around zero, which 
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shows that the predicted values were close to the actual values.

 

Figure 9 - ARIMA + XGBoost: Predicted vs. Actuals 

 

Figure 9 is a line chart comparing the predicted and actual closing prices 

of APPL stock from 2019 to 2024, by using a combination of ARIMA and 

XGBoost models. Following the visualizations of both Figures 6 and 7, the blue 

line represents the actual APPL closing prices, and the orange line represents 

the price predictions. The APPL closing price data of the blue line shows an 

upward trend from 2019, until its peak in the latter half of 2023. This line is 
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followed closely by the orange line, mirroring the peaks and troughs of the 

closing prices from the APPL dataset.  

 

Figure 10 - ARIMA + XGBoost Residual Predictions 

 

Figure 10 displays the residuals from the ARIMA and XGBoost models' 

predictions compared to the actual closing prices of APPL stock from 2019 to 

2024. This graph plots residuals, with the blue line representing the actual 

residuals and the dashed line representing the predicted residuals. Both lines 

fluctuate around zero, showing the difference between the predicted and the 

actual prices. The residuals shown mostly range between -10 to +10, though 

there are occasional spikes beyond this range at the beginning of the series. The 
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graph visualizes the consistency of the residuals, without evaluating the 

performance of the whole architecture. 

 

Figure 11 - Training and Validation Loss: LSTM 

 

 Figure 11 is a plot showing the training and validation loss over epochs for 

the LSTM model. The blue line represents training loss, which shows how the 

loss decreases over epochs and the model's ability to fit to the training data. The 

orange line represents validation loss, reflecting the model's performance on a 

separate dataset. Both lines trend downward and begin to stabilize, showing a 

reduction in loss over time. This consistency is shown as both lines taper off after 

the 50th epoch, showing a stabilization of the loss values. 
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Table 3 - Model Evaluation Results 

 

Table 3 shows the quantitative performance metrics of the models used in 

our data analysis using statistical methods such as: r-squared, mean absolute 

error (MAE), root mean squared error (RMSE), and mean squared error (MSE), 

like the Table III Results figure pictured on pg. 364 of the primary research (Zhu 

et al. 2023, p. 364)). The following is a discussion of the model evaluation 

results. The ARIMA model shows an MSE of 726.21, RMSE of 26.95, MAE of 

25.02, and an R-squared value is -6.24. The LSTM model fares better, with an 

MSE of 10.56, RMSE of 3.25, MAE of 2.59, and a very high R-squared value of 

0.99. The XGBoost model, unfortunately produced higher error metrics with an 

MSE of 18,081.46, RMSE of 134.47, and MAE of 127.21, and an R-squared 

value of -8.41. Lastly, the CNN Attention model produced an MSE of 30.64, 

RMSE of 5.54, MAE of 4.25, and an R-squared value at a strong 0.98.  
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4.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in 

stock price forecasting, and how can they be updated to positively impact 

the model's performance and ability to generalize? 

 This subsection presents the findings related to the optimal 

hyperparameters for CNN-LSTM models used for stock price forecasting. Upon 

applying the initial hyperparameter settings inspired by Zhu’s research required 

adjustments to enhance performance and generalization on the AAPL stock 

dataset. While the baseline parameters provided a good starting point, this 

analysis required further model improvements. The application of the LSTM 

model showed that reducing the learning rate slightly from 0.01 to 0.005 

improved model stability and accuracy after multiple test runs. Extending the 

number of training epochs from 50 to 100 extracted more insights from the data 

without overfitting, visualized in Figure 11. Reducing the lookback period of the 

CNN model from 60 to 45 days made it better at responding to current closing 

price trends. Also, lowering the dropout rate from 0.5 to 0.3 retained more 

information during the training phases, increasing generalizability. The step-by-

step tuning, based on Chapter 4's tests and analysis, highlights the necessary 

optimizations to increase the accuracy of stock price forecasting. 
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4.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock 

price forecasting regarding the features generated, hyperparameters used, 

and modifications made to the model itself? 

 This subsection provides the results of the architectural framework of 

CNN-LSTM models used in this forecasting analysis. The individual CNN and 

LSTM models greatly impacted the effectiveness of the architecture when 

applied to the APPL dataset. Thus, the results of this analysis show that a multi-

layered architecture, blending convolutional layers for feature detection and 

LSTM layers for understanding temporal sequences, is an accurate tool for stock 

price forecasts. 

The convolutional layers played an important role in identifying key stock 

price features, such as sudden price changes or other types of volatility. By 

changing the sizes of the convolutional layers and filter sizes, it was found that 

using two convolutional layers with 64 filters was the best way to get detailed 

market trends while retaining the model's effectiveness. As mentioned, the LSTM 

component was the most effective model at capturing the long-term 

dependencies of the closing prices. Using 3 LSTM layers increased flexibility 

when handling historical data, which was crucial for its generation of predictions 

on the dataset. Adding attention mechanisms to the CNN model helped identify 

and emphasize temporal data, which generated more accurate predictions by 

concentrating on the most relevant information. The best architecture for 

predicting stock prices, as found in the main research, is a detailed CNN-LSTM 
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model enhanced with attention mechanisms. This approach improves stock price 

forecasting by using the model's ability to analyze patterns over time and space, 

creating a reliable tool for volatile financial data. 

 

4.3 – RQ3: How can ensemble techniques, such as extreme gradient 

boosting, effectively combine the predictions of multiple CNN-LSTM 

models for stock price forecasting? 

 When analyzing the performance of the ensemble approach, the utilization 

of the XGBoost model did not match the initial assumptions of this research 

question. The performance metrics indicate that the XGBoost model's prediction 

error was significantly higher compared to the individual CNN-LSTM models. 

This suggests that while the LSTM and attention-based CNN models closely 

tracked the actual stock price movements, the XGBoost-enhanced predictions 

deviated from the actuals. The XGBoost model had difficulty merging and 

improving the predictions from the CNN and LSTM models because each model 

produced unique errors and data patterns. Instead of fixing these errors, the 

ensemble method magnified them. The APPL stock market's unpredictable 

nature made it harder for XGBoost to identify and learn from the subtle patterns 

in the predictions of the CNN and LSTM. Consequently, rather than enhancing 

performance through combined efforts, using XGBoost in the ensemble led to 

inconsistencies and did not improve upon the results of the individual models, 
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highlighting the challenges of applying ensemble learning to the fluctuating 

financial market. 

This chapter presented a detailed analysis of the data and the 

performance of CNN-LSTM and XGBoost and other predictive techniques when 

applied to the APPL stock dataset. The effectiveness and accuracy of the 

optimized models were assessed through a range of statistical measures. 

Transitioning into the next chapter, we will cover the implications of the findings. 

It will be a discussion of how the models' performance aligns with our research 

objectives and expectations, and afterwards explore areas for further refinement 

and research. 
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CHAPTER FIVE: 

DISCUSSION, CONCLUSION AND 

AREAS FOR FURTHER STUDY 

 This chapter serves as a discussion of the results produced in Chapter 4. 

The discussion will focus on the results of the preprocessing and feature 

engineering seen in the figures and tables. The discussion for RQ1 includes the 

rationale for the hyperparameters selected. When discussing the results of RQ2, 

we explore updates for future iterations of the chosen architecture to reflect the 

methods used in contemporary research. The RQ3 discussion mentions the 

potential of using ensemble methods in future research to enhance the accuracy 

and robustness of time series forecasting models is included. 

 

5.1 – RQ1: What are the optimal hyperparameters for CNN-LSTM models in 

stock price forecasting, and how can they be updated to positively impact 

the model's performance and ability to generalize? 

In Chapter 4.1, the results show that the choosing of certain 

hyperparameters greatly impacts the accuracy and adaptability of CNN-LSTM 

models for stock forecasting on different datasets. Tweaking learning rates, batch 

sizes, and epochs directly influenced how well these models predicted stock 

prices when adjusting to new and unseen data. The investigation highlighted how 

these hyperparameters impacted the effectiveness of each model. Adjusting the 

learning rate and epochs in the LSTM model not only enhanced its accuracy but 
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also its depth of learning, minimizing overfitting risks. Similarly, fine-tuning the 

CNN model's lookback period and dropout rate improved its market 

responsiveness while maintaining stability. Our findings affirm that precise 

hyperparameter selection is crucial for improving CNN-LSTM models' forecasting 

abilities. This process ensures that each model can effectively navigate the 

complexity and volatility of financial data. 

Future research could focus on automated hyperparameter tuning that is 

adaptive to changing market conditions, techniques such as GridSearch and 

Bayesian optimization. Diving deeper into neural network architectures and how 

they interact with hyperparameters might also increase forecasting capabilities. 

Further research in these areas could provide valuable contributions for new 

research looking to creating adaptable and accurate models for financial 

forecasting. 

 

5.2 – RQ2: What is the best architecture of CNN-LSTM being used for stock 

price forecasting regarding the features generated, hyperparameters used, 

and modifications made to the model itself? 

Upon examining the results of the model evaluation seen in Table 3, the 

LSTM model showed impressive forecasting abilities with very low RMSE and 

MSE values of 3.24 and 10.56, respectively. Its high R2 value of 0.99 indicates a 

nearly perfect fit on the dataset, showcasing that the model's ability to account for 

99% of the variability in the closing stock prices of the APPL data. Such precision 
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suggests that LSTM models are particularly adept at capturing and learning from 

the temporal dependencies present in time series data. The attention-based CNN 

model did not outperform the LSTM model, but it had the second lowest MSE 

and RMSE values at 30.64 and 5.53. These results reflect the CNN model's 

capacity to handle spatial relationships within the data, leveraging the attention 

mechanism to prioritize important features within the data. An R2 value of 0.9826 

suggests that it is a reliable alternative for capturing complex patterns of volatile 

stock data. The ARIMA model produced the second highest MSE and RMSE 

values at 726.21 and 26.94, suggesting that it may be less effective for 

preprocessing on this dataset. The XGBoost model registered the highest MSE 

and RMSE values across all models used, at 18081.45 and 134.46, indicating a 

performance discrepancy on the dataset used. Among the evaluated models, the 

LSTM and attention-based CNN models emerged as the most accurate on the 

APPL dataset. The ARIMA and XGBoost models showed lower effectiveness, 

which could be due to a difference in market behaviors between the NASDAQ 

index and the Bank of China index used in the primary literature, Zhu et al. 

(2023). We will now consider potential adjustments that future researchers could 

implement to further refine the architecture used, taking these results into 

account. 

For the preprocessing steps and the improvement of the ARIMA model, 

we recommend adding more ADF and PACF tests and plots to understand the 

characteristics of the data and fine tune the hyperparameters to reflect these 
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understandings. To improve the results of the XGBoost model, we also 

recommend adjusting key hyperparameters, like the learning rate and tree 

complexity, as well as employing regularization within the script to prevent the 

XGBoost model from overfitting. As recommended, using GridSearchCV as an 

automated hyperparameter tuning method could also benefit the architecture, as 

our attempt in implementing this technique was unsuccessful. 

 

5.3 – RQ3: How can ensemble techniques, such as extreme gradient 

boosting, effectively combine the predictions of multiple CNN-LSTM 

models for stock price forecasting? 

The original assumption was that employing XGBoost as an ensemble 

method for our architecture could improve its predictive capabilities by focusing 

on data inaccuracies. However, it struggled to align with the CNN and LSTM 

model outputs on the APPL dataset, and instead of correcting errors it increased 

the inaccuracies in the combined model output. The discrepancy between the 

predicted and actual stock prices of Figure 9 visualizes these inaccuracies and it 

underscores the need for a deeper investigation into the dynamics of ensemble 

learning in the context of financial time series forecasting. Even with its poor 

performance, XGBoost holds promise for improving forecast accuracy and the 

LSTM model was not free from errors either. 

We identified more issues with the Chapter 4 graphics, like Figure 6 

showing actual data beyond the APPL dataset's last date, March 15th, 2024. This 
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inconsistency was caused by programming errors on our end resulting in the 

forward filling of values beyond this end date, where only the prediction line 

should have been displayed. This should be adjusted in future iterations of this 

project, and it emphasizes the importance of data validation so that unnecessary 

data is not included. 

Future research should be centered around the investigation of other 

ensemble methods able to integrate the strengths of the CNN and LSTM models. 

Completing this research would further the knowledgebase of researchers 

currently exploring the combination of model predictions to minimize result errors. 

This implementation of XGBoost coupled with CNN-LSTM has generated 

relevant insights and highlighted areas for further study to increase precision. 

Ensemble forecasting should continue to be researched to bridge the gap 

between theory and financial market analysis. 
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APPENDIX 

This section contains the Python scripts adjusted from for this analysis. 
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(1) arima_APPL.py Script 
import pandas as pd  
import itertools  
import matplotlib.pyplot as plt  
from statsmodels.tsa.arima.model  
import ARIMA from sklearn.metrics  
import mean_squared_error  
from statsmodels.graphics.tsaplots  
import plot_acf, plot_pacf  
from utils_APPL  
import adf_test, evaluation_metric  
 
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv', parse_dates=['Date']) 
data.set_index('Date', inplace=True)  
data = data.asfreq('B', method='ffill')   
data['Close'] = data['Close/Last'].str.replace('$', '').astype(float)  
train_data = data[:int(0.8 * len(data))]  
test_data = data[int(0.8 * len(data)):]  
actual_prices_arima = test_data['Close'].values  
 
data['First_order_diff'] = data['Close'].diff().dropna() #caculate the first-order diff 
data['Second_order_diff'] = data['First_order_diff'].diff().dropna() #calculate 
second-order diff 
 
# plot first-order diff 
plt.figure(figsize=(10, 6))  
plt.plot(data.index, data['First_order_diff'], label='First-order diff')  
plt.title('First-Order Difference')  
plt.xlabel('Time')  
plt.ylabel('First-Order Difference')  
plt.legend()  
plt.savefig('figure_1.png')  
plt.show()  
 
#plot second-order diff  
plt.figure(figsize=(10, 6))  
plt.plot(data.index, data['Second_order_diff'], label='Second-order diff')  
plt.title('Second-Order Difference')  
plt.xlabel('Time')  
plt.ylabel('Second-Order Difference')  
plt.legend()  
plt.savefig('figure_2.png')  
plt.show()  
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#drop NaN values that come from differencing 
data_diff = data['First_order_diff'].dropna()  
 
# plot ACF and PACF using differenced data  
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))  
# plot ACF  
plot_acf(data_diff, lags=40, ax=ax1) # modifies the number of lags as needed 
ax1.set_title('Autocorrelation')  
# plot PACF  
plot_pacf(data_diff, lags=40, ax=ax2)  # modifies the number of lags as needed 
ax2.set_title('Partial Autocorrelation') # display plot plt.tight_layout() 
plt.savefig('ACF_PACF.png') plt.show() 
 
# build and fit ARIMA model  
model = ARIMA(train_data['Close'], order=(1, 1, 1))  # example order, please 
adjust accordingly  
model_fit = model.fit() 
 
# perform ADF test on original and differenced data  
adf_result_original = adf_test(train_data['Close'])  
adf_result_diff = adf_test(train_data['Close'].diff().dropna())  
 
# check for structure of adf_result 
if isinstance(adf_result_original, pd.DataFrame):  

original_values = adf_result_original.squeeze().tolist()  
else:  

original_values = list(adf_result_original)   
 
if isinstance(adf_result_diff, pd.DataFrame):  

diff_values = adf_result_diff.squeeze().tolist()   
else: 

diff_values = list(adf_result_diff)  
 
# ensure extracted data is 1-dimensional  
assert len(original_values) == len(diff_values), "The lengths of ADF results do not 
match"  
# create DataFrame df_table = pd.DataFrame({ 'Metric': ['Test Statistic Value', 'p-
value', 'Lags Used', 'Number of Observations', 'Critical Value (1%)', 'Critical Value 
(5%)', 'Critical Value (10%)'], 'Original Sequence': original_values, 'First-Order 
Diff Sequence': diff_values })  
 
# plot table w/results  
fig, ax = plt.subplots(figsize=(10, 6))  # adjust figure size if needed  
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ax.axis('off') table = ax.table(cellText=df_table.values, 
colLabels=df_table.columns, loc='center', cellLoc='center')  
table.auto_set_font_size(False)  
table.set_fontsize(10)  
table.scale(1, 1.5)  # Adjust the scale as needed to fit the text  
plt.tight_layout()  
plt.savefig('adjusted_adf_test_results.png', bbox_inches='tight', dpi=300)  
plt.show() 
 
# predict on test set; index for prediction should be correct excluding NaNs 
test_predictions = model_fit.get_prediction(start=test_data.index[0], 
end=test_data.index[-1], dynamic=True)  
test_predictions_ci = test_predictions.conf_int()  
# calculate mean squared error  
mse = mean_squared_error(test_data['Close'], 
test_predictions.predicted_mean.ffill())  
 
# plot original data, fitted values, and forecasting 
plt.figure(figsize=(12, 6))  
plt.plot(train_data['Close'], label='Training Data', color='blue')  
plt.plot(test_data['Close'], label='Actual Prices', color='green') 
plt.plot(test_predictions.predicted_mean, label='Forecast', color='red', linestyle='-
-') plt.fill_between(test_data.index, test_predictions_ci.iloc[:, 0], 
test_predictions_ci.iloc[:, 1], color='pink', alpha=0.3)  
plt.title('Training Set vs. Testing Set')  
plt.legend()  
plt.show()  
 
# plot original data and ARIMA fitted values 
plt.figure(figsize=(12, 6))  
plt.plot(data['Close'], label='Original', color='blue')  
plt.plot(pd.concat([model_fit.fittedvalues, test_predictions.predicted_mean.ffill()]), 
label='ARIMA Fitted', color='red')  
plt.title('ARIMA Model Fitted to APPL Stock Data')  
plt.legend()  
plt.show()  
 
def get_arima_predictions(filename='AAPL_stock_data_NASDAQ.csv'):  

# after fitting the ARIMA model and predicting:  
test_predictions = model_fit.get_prediction(start=test_data.index[0],

 end=test_data.index[-1], dynamic=True)  
predictions = test_predictions.predicted_mean 
actual = test_data['Close']  
return actual.values, predictions.values 
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(2) lstm_APPL.py Script 
import pandas as pd  
import json  
from sklearn.preprocessing import MinMaxScaler  
from keras.models import Sequential  
from keras.layers import LSTM, Dense  
from keras.optimizers import Adam  
import matplotlib.pyplot as plt  
from utils_APPL import create_dataset, evaluation_metric  
 
n_timestamp = 10  # num of time steps  
n_epochs = 50 # amount of times dataset cycles through the model  
batch_size = 32  
n_features = 1  # assuming univariate time series (just the 'Close/Last' column)  
 
# load AAPL stock data  
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv')  
data['Date'] = pd.to_datetime(data['Date'])  
data.sort_values('Date', inplace=True)  # sort by date if not sorted  
data.set_index('Date', inplace=True) 
data = data.last('5YE')  # adjust in future if necessary 
 
# clean 'Close/Last' column by removing $ and converting to a float  
data['Close/Last'] = data['Close/Last'].str.replace('[\$,]', '', 
regex=True).astype(float)  
 
# normalize data  
scaler = MinMaxScaler(feature_range=(0, 1))  
scaled_data = scaler.fit_transform(data[['Close/Last']])  
 
# prepare data for LSTM  
X, y = create_dataset(scaled_data, n_timestamp)  
X = X.reshape((X.shape[0], X.shape[1], n_features))  
 
# LSTM model definition 
model = Sequential()  
model.add(LSTM(units=50, return_sequences=True, input_shape=(n_timestamp, 
n_features)))  
model.add(LSTM(units=50)) model.add(Dense(units=1))  
 
# compile  
adam = Adam(learning_rate=0.01)  
model.compile(optimizer=adam, loss='mean_squared_error')  
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# training  
history = model.fit(X, y, epochs=n_epochs, batch_size=batch_size, 
validation_split=0.1)  
 
# save model to a HDF5 file , might be deprecated 
model.save('lstm_model.h5')  
# save history of the training loss and validation loss to a JSON file  
history_dict = history.history  
with open('lstm_training_history.json', 'w') as file_json:  

json.dump(history_dict, file_json, indent=4)  
 
# evaluation of model 
predicted_stock_price = model.predict(X)  
predicted_stock_price = scaler.inverse_transform(predicted_stock_price)  
 
# inverse scaling the actual prices for evaluation purposes actual_stock_price = 
scaler.inverse_transform(y.reshape(-1, 1))  
# calculate evaluation metrics  
evaluation_metric(actual_stock_price, predicted_stock_price)  
 
# plot results  
plt.figure(figsize=(10, 6))  
# use n_timestamp to offset the x-axis to match the y-dimensions 
plt.plot(data.index[n_timestamp: n_timestamp + len(predicted_stock_price)], 
actual_stock_price.flatten(), label='Actual Stock Price')  
# flatten predicted prices for plotting plt.plot(data.index[n_timestamp: 
n_timestamp + len(predicted_stock_price)], predicted_stock_price.flatten(), 
label='Predicted Stock Price') 
plt.title('AAPL Stock Price Prediction using LSTM')  
plt.xlabel('Date')  
plt.ylabel('AAPL Stock Price')  
plt.legend()  
plt.show()  
 
def get_lstm_predictions(filename='AAPL_stock_data_NASDAQ.csv'):  

# after training the LSTM model and predictions:  
predicted_stock_price = model.predict(X)  
predicted_stock_price = scaler.inverse_transform(predicted_stock_price) 
actual_stock_price = scaler.inverse_transform(y.reshape(-1, 1))  
return actual_stock_price.flatten(), predicted_stock_price.flatten() 
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(3) model_APPL.py Script 
import numpy as np  
import pandas as pd  
from keras.models import load_model  
from keras.models import Model  
from keras.layers import Input, Conv1D, Dense, Flatten, Dropout, Multiply  
from keras.layers import Activation, Permute, Reshape  
from keras.optimizers import Adam  
from sklearn.preprocessing import MinMaxScaler  
from utils_APPL import create_dataset  
 
# load data  
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv', parse_dates=['Date'], 
index_col='Date')  
data.sort_values('Date', inplace=True)  
 
# preprocess the data, assume that "closing prices" column has no NULLs 
data['Close'] = data['Close/Last'].str.replace('[\$,]', '', regex=True).astype(float)  
scaler = MinMaxScaler(feature_range=(0, 1))  
scaled_data = scaler.fit_transform(data[['Close']])  
 
# define look_back period and prepare dataset  
look_back = 60  
X, y = create_dataset(scaled_data, look_back)  
# reshape input to be [samples, time steps, features]  
X = np.reshape(X, (X.shape[0], X.shape[1], 1))  
 
# define attention mechanism  
def attention_block(inputs, time_steps):  

# inputs.shape = (batch_size, time_steps, input_dim)  
a = Permute((2, 1))(inputs)  
a = Dense(time_steps, activation='softmax')(a)  
a_probs = Permute((2, 1), name='attention_vec')(a)  
output_attention_mul = Multiply()([inputs, a_probs])  
return output_attention_mul  

 
# attention CNN model definition  
input_layer = Input(shape=(look_back, 1))  
attention_mul = attention_block(input_layer, look_back)  
conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(attention_mul)  
conv1 = Dropout(0.5)(conv1)  
flat = Flatten()(conv1)  
output = Dense(1, activation='linear')(flat)  
model = Model(inputs=input_layer, outputs=output)  
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# model compilation 
model.compile(optimizer=Adam(learning_rate=0.001), 
loss='mean_squared_error')  
# training  
model.fit(X, y, epochs=100, batch_size=32, validation_split=0.2, verbose=1)  
# saving  
model.save('AAPL_CNN_with_attention.keras')  
# load the model in the new Keras format  
model = load_model('AAPL_CNN_with_attention.keras') 
 
def get_cnn_attention_predictions(filename='AAPL_stock_data_NASDAQ.csv'):  

# after training model and predictions:  
model = load_model('AAPL_CNN_with_attention.keras')  
predictions = model.predict(X)  
predictions = scaler.inverse_transform(predictions)  
actual_prices = data['Close'].values[-len(predictions):]  
return actual_prices, predictions.flatten() 
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(4) xgboost_APPL.py Script 
import pandas as pd  
import xgboost as xgb  
import numpy as np  
from sklearn.metrics import mean_squared_error  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import MinMaxScaler  
from sklearn.model_selection import GridSearchCV 
from utils_APPL import create_dataset, evaluation_metric  
 
n_timestamp = 10  # number of time steps to look back  
test_size = 0.2   # proportion of data to use for testing  
 
# load AAPL stock data  
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv') 
data['Date'] = pd.to_datetime(data['Date']) 
data.sort_values('Date', inplace=True) 
data.set_index('Date', inplace=True) 
 
# only consider the last 5 years of data 
end_date = data.index.max() 
end_date = pd.to_datetime(end_date) 
start_date = end_date - pd.Timedelta(days=5*365) 
data = data.loc[start_date:end_date] 
 
# assuming 'Close/Last' is the correct column name after checking with 
data.columns data['Close/Last'] = data['Close/Last'].str.replace('[\$,]', '', 
regex=True).astype(float)  
 
# normalize data  
scaler = MinMaxScaler(feature_range=(0, 1))  
data_scaled = scaler.fit_transform(data[['Close/Last']].values)  
 
# prepare data for XGBoost  
X, y = create_dataset(data_scaled, n_timestamp)  
X = X.reshape(X.shape[0], -1)  # ensure x is 2-dimensional  
y = y.ravel()  # ensure y is 1-dimensional  
 
# split data into training and test sets  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, 
random_state=42)  
 
# y_test is filled with actuals; need to inverse transform to get actual prices 
actual_prices_xgb = scaler.inverse_transform(y_test.reshape(-1, 1))  
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# initialize XGBoost regressor  
xg_reg = xgb.XGBRegressor(objective='reg:squarederror', 
colsample_bytree=0.3, learning_rate=0.1, max_depth=5, alpha=10, 
n_estimators=100)  
 
 
# train XGBoost regressor & prediction 
xg_reg.fit(X_train, y_train)  
y_pred = xg_reg.predict(X_test)  
 
# calculate evaluation metrics & calc/print mean squared error  
evaluation_metric(y_test, y_pred)  
mse = mean_squared_error(y_test, y_pred)  
print(f"Mean Squared Error: {mse}")  
 
# optional, save model for later use  
xg_reg.save_model('xgboost_model.json')  
 
def get_xgboost_predictions(filename='AAPL_stock_data_NASDAQ.csv'):  

# after training the XGBoost model and making predictions:  
y_pred = xg_reg.predict(X_test)  
actual_prices_xgb = scaler.inverse_transform(y_test.reshape(-1, 1))  
return actual_prices_xgb.flatten(), y_pred 
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(5) main_APPL.py Script 
import pandas as pd  
from keras.models import load_model, Sequential  
from keras.layers import LSTM, Dense  
from statsmodels.tsa.arima.model import ARIMA  
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf  
from xgboost import XGBRegressor  
from sklearn.preprocessing import MinMaxScaler  
from utils_APPL import create_dataset, adf_test, evaluation_metric  
from sklearn.model_selection import GridSearchCV  
from arima_APPL import get_arima_predictions  
from lstm_APPL import get_lstm_predictions  
from xgboost_APPL import get_xgboost_predictions  
from model_APPL import get_cnn_attention_predictions  
from utils_APPL import evaluation_metric  
import matplotlib.pyplot as plt  
import matplotlib  
import numpy as np  
 
# load dataset  
data = pd.read_csv('AAPL_stock_data_NASDAQ.csv', parse_dates=['Date'], 
index_col='Date')  
 
# clean 'Close/Last' column by removing the '$' sign and converting it to float  
data['Close'] = data['Close/Last'].replace('[\$,]', '', regex=True).astype(float)  
 
 
 
# clean 'Close' data by removing NaNs and infinite values before any operations 
like differencing or modeling 
data.replace([np.inf, -np.inf], np.nan, inplace=True)  
data.dropna(inplace=True)  
 
# 'Close' data should be stationary before fitting ARIMA data['Close_diff'] = 
data['Close'].diff().dropna()  
 
# perform the ADF test on the original data  
adf_result_original = adf_test(data['Close'])  
p_value_original = adf_result_original.loc['p-value', 'value']  
# check the p-value for stationarity and apply differencing if necessary  
if p_value_original < 0.05:  

print('Data is already stationary.')  
else:  

print('Data is not stationary. Differencing will be applied.')  
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data['Close_diff'] = data['Close'].diff().bfill()  # Use backward fill to handle 
any NaNs  
 

# Check stationarity again on differenced data  
adf_result_diff = adf_test(data['Close_diff'])  
p_value_diff = adf_result_diff.loc['p-value', 'value']  
if p_value_diff < 0.05:  

print('Differenced data is stationary.')  
else:  
print('Differenced data is still not stationary. Further investigation is 
required.') 
 

# continue with data normalization, model loading, and other processing steps  
scaler = MinMaxScaler(feature_range=(0, 1))  
scaled_data = scaler.fit_transform(data[['Close']]) 
# generate datasets for prediction  
look_back = 60  # look-back period should match your model's training 
configuration  
X, y = create_dataset(scaled_data, look_back)  
 
# split dataset into training and testing sets, ensure done before cleaning steps 
from sklearn.model_selection import train_test_split  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42)  
 
# Now you can safely clean X_train and y_train  
X_train = np.nan_to_num(X_train)   
y_train = np.nan_to_num(y_train)  
 
###################### ARIMA PREPROCESSING INC 
##########################  
# generate datasets for prediction  
look_back = 60  # should match your model's training configuration  
X, _ = create_dataset(scaled_data, look_back)  
 
# reshape data for the model  
X = X.reshape((X.shape[0], X.shape[1], 1))  
 
# load trained model  
model = load_model('AAPL_CNN_with_attention.keras')  
predictions = model.predict(X)  
 
# inverse transform predictions  
predictions = scaler.inverse_transform(predictions)  
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# plot results  
plt.figure(figsize=(12, 6))  
plt.plot(data.index[-len(predictions):], data['Close'][-len(predictions):], 
label='Actual Stock Prices')  
plt.plot(data.index[-len(predictions):], predictions.flatten(), label='Predicted Stock 
Prices', alpha=0.7)  
plt.title('Stock Price Predictions vs Actual Prices')  
plt.xlabel('Date') plt.ylabel('Price')  
plt.legend()  
plt.show()  
 
''' FIGURE 7 IMPLEMENTATION '''  
residuals = data['Close'][-len(predictions):].values - predictions.flatten()  
 
# plot residuals  
plt.figure(figsize=(14, 7))  
plt.subplot(1, 2, 1)  
plt.plot(data.index[-len(residuals):], residuals, label='Residuals')  
plt.title('Residuals')  
plt.xlabel('Date')  
plt.legend()  
 
plt.subplot(1, 2, 2)  
plt.hist(residuals, bins=50, density=True, label='Residuals Density', alpha=0.7)  
plt.title('Density')  
plt.xlabel('Residual Value')  
plt.legend()  
 
plt.tight_layout()  
plt.show()  
 
''' FIGURE 8 IMPLEMENTATION '''  
# ensure 'Close' data is continuous and ordered for ARIMA fitting  
arima_data = data['Close'].dropna().asfreq('B')  # 'B' for business day frequency 
arima_data.ffill(inplace=True)  # Forward fill any missing values  
 
# fit ARIMA model  
arima_order = (5, 1, 0)  # adjust as necessary  
arima_model = ARIMA(arima_data, order=arima_order)  
arima_fit = arima_model.fit()  
 
# get ARIMA residuals  
arima_residuals = arima_fit.resid  
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# fit XGBoost on ARIMA residuals  
xgb_model = XGBRegressor(n_estimators=100, objective='reg:squarederror')  
xgb_model.fit(np.arange(len(arima_residuals)).reshape(-1, 1), arima_residuals)  
 
# predict using XGBoost  
xgb_predictions = xgb_model.predict(np.arange(len(arima_residuals)).reshape(-
1, 1))  
# combine ARIMA model predictions and XGBoost predictions 
combined_predictions = arima_fit.predict(start=arima_data.index[0], 
end=arima_data.index[-1], typ='levels') + xgb_predictions  
 
# plot actual and predicted values  
plt.figure(figsize=(12, 6))  
plt.plot(arima_data.index, arima_data, label='Actual Prices')  
plt.plot(arima_data.index, combined_predictions[:len(arima_data)], label='ARIMA 
+ XGBoost Predictions', alpha=0.7) plt.title('The ARIMA + XGBoost for Stock 
Price Prediction') plt.xlabel('Date')  
plt.ylabel('Price')  
plt.legend()  
plt.show() 
 
''' FIGURE 9 IMPLEMENTATION '''  
# ensure 'Close' data is continuous and ordered for ARIMA fitting arima_data = 
data['Close'].dropna().asfreq('B')  # 'B' for business day frequency  
arima_data.ffill(inplace=True)  # forward fill missing values  
 
# fit ARIMA model  
arima_order = (5, 1, 0)  # example order, adjust as necessary  
arima_model = ARIMA(arima_data, order=arima_order)  
arima_fit = arima_model.fit()  
 
# get ARIMA residuals  
arima_residuals = arima_fit.resid  
# predict residuals using XGBoost model  
xgb_residual_predictions = 
xgb_model.predict(np.arange(len(arima_residuals)).reshape(-1, 1))  
 
# plot actual residuals and predicted residuals  
plt.figure(figsize=(12, 6))  
plt.plot(arima_residuals.index, arima_residuals, label='Residuals', alpha=0.7)  
plt.plot(arima_residuals.index, xgb_residual_predictions, label='Predicted 
Residuals', alpha=0.7, linestyle='--')  
plt.title('ARIMA + XGBoost Residual Prediction')  
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plt.xlabel('Date') plt.ylabel('Residuals')  
plt.legend()  
plt.show()  
 
''' FIGURE 10 IMPLEMENTATION'''  
# load the LSTM model and history if saved, or ensure the LSTM training has 
been run 
lstm_model = load_model('lstm_model.h5')  
history = pd.read_json('lstm_training_history.json')  
 
# plot the training loss and validation loss  
plt.figure(figsize=(10, 5))  
plt.plot(history['loss'], label='Training Loss')  
plt.plot(history['val_loss'], label='Validation Loss')  
plt.title('LSTM: Training and Validation Loss')  
plt.xlabel('Epoch')  
plt.ylabel('Loss')  
plt.legend()  
plt.show()  
 
# assuming combined_predictions and arima_data cover same date range 
evaluation_metric(arima_data.values, combined_predictions)  
 
################## RESULTS SECTION ######################  
# assuming get_*_predictions functions are defined and imported correctly 
arima_actual, arima_pred = get_arima_predictions()  
lstm_actual, lstm_pred = get_lstm_predictions()  
xgboost_actual, xgboost_pred = get_xgboost_predictions()  
cnn_actual, cnn_pred = get_cnn_attention_predictions()  
 
# initialize results DataFrame  
results = pd.DataFrame(columns=['Model', 'MSE', 'RMSE', 'MAE', 'R2'])  
# create a list to hold data for the new rows  
new_rows = []  
 
# evaluate each model and append results to new_rows list  
for model_name, actual, pred in [('ARIMA', arima_actual, arima_pred),  

('LSTM', lstm_actual, lstm_pred),  
('XGBoost', xgboost_actual, xgboost_pred),  
('CNN Attention', cnn_actual, cnn_pred)]:  

metrics = evaluation_metric(actual, pred)  
new_rows.append({'Model': model_name, **metrics})  

 
# convert new_rows to DataFrame and concatenate with results  
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new_rows_df = pd.DataFrame(new_rows)  
results = pd.concat([results, new_rows_df], ignore_index=True) 
 
plt.figure(figsize=(12, 2)) 
ax = plt.gca() 
ax.axis('off')   
 
# create table and display it  
table = plt.table(cellText=results.values,  

colLabels=results.columns,  
loc='center',  
cellLoc='center',  
colColours=["#f2f2f2"] * results.shape[1]) 

table.auto_set_font_size(False)  
table.set_fontsize(12)  
table.scale(1.2, 1.2)  
plt.title("Results of all Models", weight='bold', pad=15)  
 
# save table as image file  
plt.savefig("model_evaluation_results.png", bbox_inches='tight', dpi=300)  
 
# optionally display the table on the screen  
plt.show() 
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(6) utils_APPL.py Script 
import numpy as np  
import pandas as pd  
from sklearn import metrics  
from statsmodels.tsa.stattools  
import adfuller  
import statsmodels.api as sm # acf,pacf plot  
import matplotlib.pyplot as plt  
 
def adf_test(series):  

# p-value>0.562 or Critical Value(1%)>-3.44, non-stationary  
result = adfuller(series)  
output = pd.DataFrame(columns=['value'])  
output.loc['Test Statistic Value', 'value'] = result[0]  
output.loc['p-value', 'value'] = result[1]  
output.loc['Lags Used', 'value'] = result[2]  
output.loc['Number of Observations Used', 'value'] = result[3]  
output.loc['Critical Value(1%)', 'value'] = result[4]['1%']  
output.loc['Critical Value(5%)', 'value'] = result[4]['5%']  
output.loc['Critical Value(10%)', 'value'] = result[4]['10%']  
return output  

def acf_pacf_plot(seq,acf_lags=20,pacf_lags=20):  
fig = plt.figure(figsize=(12, 8))  
ax1 = fig.add_subplot(211)  
fig = sm.graphics.tsa.plot_acf(seq, lags=acf_lags, ax=ax1)  
ax2 = fig.add_subplot(212)  
fig = sm.graphics.tsa.plot_pacf(seq, lags=pacf_lags, ax=ax2)  
plt.show()  

 
def order_select_ic(training_data_diff):  

(p, q) = sm.tsa.arma_order_select_ic(training_data_diff, max_ar=6, 
max_ma=4, ic='bic')['bic_min_order']  # AIC  
print(p, q)  # 2 0  

 
def order_select_search(training_set): 

df2 = training_set['close'].diff(1).dropna()  
pmax = 5 # pmax = int(len(df2) / 10)  
qmax = 5 # qmax = int(len(df2) / 10)  
bic_matrix = [] print('^', pmax, '^^', qmax)  
for p in range(pmax + 1):  

temp3 = []  
for q in range(qmax+1):  

try:  
# print('!', ARIMA(data['close'], order=(p, 1, q)).fit().bic)  
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# temp.append(ARIMA(data['close'], order=(p, 1, q)).fit().bic) 
temp3.append(sm.tsa.ARIMA(training_set['close'], order=(p, 
1, q)).fit().bic) 
except: 

temp3.append(None) 
bic_matrix.append(temp3) 

bic_matrix = pd.DataFrame(bic_matrix) 
# print('&', bic_matrix) 
# print('&&', bic_matrix.stack()) 
# print('&&&', bic_matrix.stack().astype('float64')) 
p, q = bic_matrix.stack().astype('float64').idxmin() 
print('p and q: %s,%s' % (p, q)) 

 
def create_dataset(dataset, look_back=20): 

dataX, dataY = [], [] 
for i in range(len(dataset)-look_back-1): 

a = dataset[i:(i+look_back)]  #don't use second dimension 
dataX.append(a) 
dataY.append(dataset[i + look_back]) 
return np.array(dataX), np.array(dataY) 

 
 
 
def evaluation_metric(y_test,y_hat): 

MSE = metrics.mean_squared_error(y_test, y_hat) 
RMSE = MSE**0.5 
MAE = metrics.mean_absolute_error(y_test,y_hat) 
R2 = metrics.r2_score(y_test,y_hat) 
return {'MSE': MSE, 'RMSE': RMSE, 'MAE': MAE, 'R2': R2} 
 

def GetMAPE(y_hat, y_test): 
sum = np.mean(np.abs((y_hat - y_test) / y_test)) * 100 
return sum 

 
def GetMAPE_Order(y_hat,y_test): 

zero_index = np.where(y_test == 0) 
y_hat = np.delete(y_hat, zero_index[0]) 
y_test = np.delete(y_test, zero_index[0]) 
sum = np.mean(np.abs((y_hat - y_test) / y_test)) * 100 
return sum 
 

def NormalizeMult(data): 
data = np.array(data) 
normalize = np.arange(2*data.shape[1], dtype='float64') 
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normalize = normalize.reshape(data.shape[1],2) 
print(normalize.shape) 
 
for i in range(0, data.shape[1]): 

list = data[:, i] 
listlow, listhigh = np.percentile(list, [0, 100]) 
# print(i) 
normalize[i, 0] = listlow 
normalize[i, 1] = listhigh 
delta = listhigh - listlow 
if delta != 0: 

for j in range(0, data.shape[0]): 
data[j, i] = (data[j, i] - listlow)/delta  

# np.save("./normalize.npy",normalize)  
return data, normalize  

 
def FNormalizeMult(data, normalize): 

#inverse NormalizeMult  
data = np.array(data) 
listlow = normalize[0] 
listhigh = normalize[1] 
delta = listhigh – listlow 
if delta != 0: 

for i in range(len(data)): 
data[i, 0] = data[i, 0] * delta + listlow  
return data  

def NormalizeMultUseData(data,normalize):  
data = np.array(data)  
for i in range(0, data.shape[1]): 

listlow = normalize[i, 0] 
listhigh = normalize[i, 1] 
delta = listhigh – listlow 
if delta != 0: 

for j in range(0,data.shape[0]): 
data[j,i]  =  (data[j,i] - listlow)/delta 

return  data 
 
def data_split(sequence, n_timestamp): 

X = [] 
y = [] 
for i in range(len(sequence)): 

end_ix = i + n_timestamp 
 
if end_ix > len(sequence) - 1: 
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break  
 
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix] 
X.append(seq_x) 
y.append(seq_y) 
return np.array(X), np.array(y) 

 
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

n_vars = 1 if type(data) is list else data.shape[1] 
df = pd.DataFrame(data) 
cols, names = list(), list() 
# input sequence (t-n, ... t-1) 
for i in range(n_in, 0, -1): 

cols.append(df.shift(i)) 
names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] 

# forecast sequence (t, t+1, ... t+n) 
for i in range(0, n_out): 

cols.append(df.shift(-i)) 
if i == 0: 

names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] 
else: 

names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] 
# put it all together 
agg = pd.concat(cols, axis=1) 
agg.columns = names 
 
 
# drop rows with NaN values 
if dropnan: 

agg.dropna(inplace=True) 
return agg 

 
def prepare_data(series, n_test, n_in, n_out): 

values = series.values 
supervised_data = series_to_supervised(values, n_in, n_out) 
print('supervised_data', supervised_data) 
train, test = supervised_data.loc[:3499, :], supervised_data.loc[3500:, :] 
return train, test 
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