
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2002

Animated vehicle turning path simulation system on an Internet/Animated vehicle turning path simulation system on an Internet/

Intranet browser Intranet browser

Yuwen Deng

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Deng, Yuwen, "Animated vehicle turning path simulation system on an Internet/Intranet browser" (2002).
Theses Digitization Project. 2091.
https://scholarworks.lib.csusb.edu/etd-project/2091

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2091?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

ANIMATED VEHICLE TURNING PATH SIMULATION SYSTEM

ON AN INTERNET/INTRANET BROWSER

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Yuwen Deng

December 2002

ANIMATED VEHICLE TURNING PATH SIMULATION SYSTEM

ON AN INTERNET/INTRANET BROWSER

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Yuwen Deng

December 2002

Approved by:

Dr . * Richard J. Botting,Ciise^r, Computer Science Date

Dr-'. Kers'tin Voigt, Computer Science

Dr. George M. Georgiou, Computer Science

ABSTRACT

Animated simulation is a fast and easy way to test

many engineering designs' accuracy. By combining the

accessibility of internet/intranet browser and Java

graphic programming, the project achieved the goal of

providing civil engineers a tool to help with the road

design without any paperwork going around the company. It

helps engineers predict vehicles movement without having

to test :it on the road.

First, the system loads a map as a background. Then,

the user will be able to draw a road on the map for a

vehicle'to follow- After the road has been selected the

user will then select a vehicle to be simulated driving

the road. The user will, see if the road is wide enough

for the vehicle or where the road needs to be expanded.

I

I

iii

ACKNOWLEDGMENTS

The accomplishment of this project was due to the

helpful ^advice of Dr. Richard J. Botting and Dr. Owen

Murphy on the design of drawing of the road. The

insightful comments and suggestions were really the

inspiration of the design.

Also thanks to Mr. YauHuei Deng at China Engineering

Consultants, Inc. providing mathematical formula of

calculation on the behavior of vehicle turning movement.

Without the formula the simulation will not be as close to

reality as one wished to achieve.

Also thanks to my family and friends' support and

encouragements. The project would not have been so smooth

without that.

Last but not least, I thank GE Transportation Systems
I

for their tolerance of my divided efforts on both working

and studying at the same time.

I

iv

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER ONE: INTRODUCTION

Purpose of the Project 1

Scope of the Project......................... 2

Significance of the Project 3

Limitation of the Project 5

CHAPTER TWO: REVIEW OF RELATED WORK

Curve Design 6
1

Vehicle Movement Simulation.............. 11

CHAPTER THREE: METHODOLOGY

System Architecture and Design 14

System Deployment 14

User Case and Scenarios 15

Sequence Diagram 17

Class Diagram 17

Curve Design 20
1Vehicle Simulation Algorithm 23

CHAPTER FOUR: SUMMARY AND CONCLUDING REMARKS 26

v

APPENDIX A: GLOSSARY................................... 28

APPENDIX B: SOURCE CODE................................ 31

REFERENCES.. 53

vi

i

■ I

LIST OF TABLES

Table 1. System Requirements 4

I

vii

LIST OF FIGURES

Figure 1'. Bezier Curve 7

Figure 2. Smoothness of Bezier Curve Segment 9

Figure 3. Trailer Truck Turning Path 10

Figure 4‘. Example of Vehicle Movement 12

Figure 5. Deployment Diagram 14

Figure 6. User Case Diagram 15

Figure 7'. Sequence Diagram ■.................. 18

Figure 8;. Class Diagram 19

Figure 9. Composite Bezier Curve 20

Figure 10. Java Code for Second Degree Bezier Curve . 22

I

viii

CHAPTER ONE

, INTRODUCTION

Purpose of the Project

When a vehicle takes a sharp turn at a narrow

intersection or ramp it can leave the road and cause an

accident. Roads must be designed to allow vehicles that

make wide turns safety. This is not easy to do by hand and

paper design. A simulation system can help engineers

reduce accidents. Many conditions will affect the width

that a vehicle needs; such as the size of the vehicle, the

turning radius, the number of trailers of the vehicle, and

distance' between hitch and axis, etc. this proposed

simulation system would be a good tool for engineers by

simulate the turning path of vehicle. Hopefully, by using

this simulation system, the road will be more precisely

planned, and will be easier for drivers to use.
i

In general, the current vehicle types could be

divided into the following categories [3]:

Passenger Car (P): Such as a sedan, sports utility

vehicle,! or minivan.

1

Single Unit Truck or Bus (SU): Trucks with no trailer or

hitch that moves as a single unit. Example would be a

school bus, rental truck, etc.

Trailer Trucks (WB-XX): cars with trailers or cars that

have hitches to connect two or more parts in the vehicle.

Each part will have ability to move in different

direction, example will be semi-truck, RV with a trailer

of car, pick-up truck with a boat, etc.

In the simulation, a map will be loaded to the system

first as a background. Then, the user will be able to draw

his/her road on the map. After that, he/she will be able

to select a vehicle to run the simulation test. During the

simulation, the user could pause the animation at any time

to check if there is any point that the vehicle hit the

edge of the road. This could tell the user that if the

road is wide enough for the vehicle or not.

Scope of the Project

The Project "Animated Vehicle Turning Path Simulation

System on a Internet/Intranet Browser" deals with both the

design,; and implementation of this Simulation System. It
I

was inspired by an older simulation system, which has been

used for decades in China Engineering Consultants, Inc. as

2

a helpful tool when dealing with road intersection design.

The original way to design the road is semi-computerized.

The map had been scanned and digitized by AutoCAD. Then

the engineer will draw the desired route on the AutoCAD

file. A program call DCAD, gives the coordinate value when

given the proper variables, then computes and gives the

outermost tracking line of the vehicle's corners, this

line will then be added into the AutoCAD file (.DWG).

Finally >the engineer can open the file in AutoCAD and see

the result.

The original procedures are not user friendly and

needs to run on different software: AutoCAD and DCAD.

Besides,' DCAD' is a MSDOS application. This causes users

many troubles when switching between AutoCAD and DCAD.
I

Also the program is not interactive, the user can only see

the result after finished the design. This deprived the

user of1 the power of doing incremental design.

Base on this purpose, the project software system has

the requirements list at table 1.
I

Significance of the Project

The significant achievements of the project are:
I

first achieve animated vehicle movement in Java 2D

3

graphical programming; second explore and find an easy way

of computing the path of vehicle using Composite Bezier

Curves.

Table 1. System Requirements

Client side: Server and

Development side:

Operating Red Hat Linux 7X, Red Hat Linux 7X,

System: MS Windows 9X or MS Windows 9X or

■ later later

Memory: 64MB recommend or 64 MB recommend

higher or higher

Free disk 200 MB 2 00 MB

space: recommended recommended

Browser: Netscape 4.5, Java Development

Internet Explorer Kit 1.4 Beta (SDK

5.0 or higher 1.4 Beta) or

support java 1.4■ newer

1 script

Map files: 1:200 scale Kept
1 in applet rectory

as in (.GIF) form

4

Limitation of the Project

The Project has several limitations as below:

First, because the networked design of the system,

the software requires IE or Netscape browser to run. Also,

since the language used is Java, the loading time for each
i

executiqn takes a little more time than we expected.

Second, the mathematical formula base on traditional

vehicle 'design, some newly designed vehicle may not be

able to simulate in this system. An example will be the

newly designed GMC truck, which gives the rear wheel the

ability to change direction'during turning. This kind of

new design does not fit the traditional car design. It

will require different kind of formula to simulate the

behavior of the movement.

Third, the direction path that users draw was

implemented with second-degree composite Bezier curves.

Thus it is only first degree continuous. If the user

accidentally clicks two points at the same position, it

will still show a kink in the curve.

1

5

CHAPTER TWO

i REVIEW OF RELATED WORK

Curve Design

Since most driving paths cannot have shapes that can
i

be described by simple analytic functions, much research

has found it is better to define curves in a piecewise

manner. The continuity and smoothness across the joins

between the pieces can be built into the parametrisation
i

of the sections on either side.

Because the tangents, normals, curvatures are needed

to be determined, polynomial functions of the parameters

are an obvious choice. High degree polynomial can describe

complex1curves, but reqnire a large number of coefficients

whose physical significance is difficult to grasp. Thus

they are inappropriate for a road designer. Moreover, the

use of high degree polynomials may introduce unwanted

oscillations in the curve (kinks in the curve). Thus this

project; uses three Point Bezier polynomial curves as the

base and uses a composite way to join two lines or curve

to form a smooth continuous curve.

6

a. The'Bernstein-Bezier polynomial curve:
.1 ■'

r, Bezier (1970) [5] describes a general polynomial
i

curve given by
! , I

,r = r(u) = s[(n!/(n-i)! i!) u1 (1-u) n_1ri]
II
! ■
i

Where ro> ri, r2, ... rn are the position vectors of the n+1
iI

vertices' p0, Pi, P2, - pn of a generalized characteristic

'pdlygori'. The Bezier cubic curve is an example of this
I

general jcurve where n=3 .

Figure 1. Bezier Curve

7

The point with parameter u on the curve can be

constructed as follows. The point A which divides Po Px in

the ratio u: 1-u is jointed to the point B which divides

Pi P2 in the same ratio (see Figure 1). The segment AB is

now divided in the same ratio at the point C.

Thus C is the point with parameter u on the

parametric quadratic curve. Bezier shows that this method

of construction can be extended to higher order curves.

b. Composite Bezier Curves approximation:

The cubic Bezier segment, introduced in section a is

given by

r(u)= (1-u) 3r0+3u (1-u) 2ri+3u2 (1-u) r2+u3r3, 0<=u<=l

Here r0, riz r2 and r3 are the vertices of the

characteristic polygon to which the curve is an

approximation. Bezier is less restrictive than Ferguson

[5] in inter-segment continuity conditions. Whereas

Ferguson's method is used primarily for curve fitting,

Bezier's approach offers the extra freedom needed for

curve design.
1

For' example, to construct a curve that is determined

by 7 vertices. Instead of a 6-degree Bezier curve, a

8

I

better idea is to join two 3-degree Bezier Segments

together.

As showed in Figure 2, r3(1) is also r0(2) . Besides

that, to maintain the continuity of tangent direction we

require

3/ai (r3(1)-r2(1)) =3/a2 (ri(2)-r0(2)) =t

Where ai, a2 are the magnitudes of r'll)(l) and r'|2)(0)

respectively, which we now permit to be different. Thus

the two segments are collinear.

Using this result it is possible to build a composite

Bezier curve with.positional, gradient and curvature

continuity. 1 ’

9

— F— 1----------1 1 ■_ =»-

«■
-*= -» ■" ■ :n

i 10' 1 5. 11- U'

Figure 3. Trailer Truck Turning Path

10

Vehicle Movement Simulation

In 1990, American Association of State Highway and

Transportation Officials (AASHTO) [1] published "A Policy

on Geometric Design of Highways and Streets" presented the

minimum turning paths for 15 different kinds of vehicles.

Example .shows in figure 3 .

The principal dimensions affecting design are the minimum

turning radius, the tread width, the wheelbase, and the

path of inner rear tire. These principal dimensions have

then been set as a standard of highway and street designs.

In 1991, Mr. YauHuei Deng [2] purposed the following

formula. Since the front tire goes almost as directed, it

could be seen as a control point in the vehicle movement.

Consider single unit vehicle, the rear tire's position

determined the angel of the vehicle, and by related

coordinate, the rest of the car body's position could also

be determined.

So> to calculate the rear tire position becomes the

key of the simulation. Suppose Pi=(XPiz YPi) is the control
I

point before movement. Pj=(XPj, YPj) is the control point

after a' small time period of movement. Qi=(XQi, YQi) is the

11

rear tire before movement, and Qj=(XQj, YQj) is the rear

tire after movement.

, Figure 4. Example of Vehicle MovementII
I

The X and Y coordinate of Q can than be determined as

follows.

12

DX = (XPi+XPj)/2 -XQi

DY = (YPi+YPj)/2 -YQi

S = ((XPj-XPi) *DX + (YPj-YPi) *DY) / (DX*DX + DY*DY)

XQj = XQi + S*DX

YQj = YQi + S*DY

Once we have the first unit of the vehicle's simulation,

the hitch point could be seen as the control point for

second unit (Point P), then use the same formula could get

the Q of second unit. Thus multiple unit vehicles could

also be simulated.

13

CHAPTER THREE

METHODOLOGY

System Architecture and Design

System Deployment

' HTTP
/

Figure 5. Deployment Diagram

This system has a client side and a server side.

Connection between client and server is http and will go

14

through a web browser. The Deployment diagram [4] showed

in Figure 5.

User Case and Scenarios

User Case Diagram [4] is as Figure 6.

C o ntro I S im u latio n

Figure 6. User Case Diagram
I

A typical scenario will be the following:
i

1. The user starts the system

2. The user requests to load a map into the system
i

15

3 . The system loads the map on the browser

4. The! user draws a desired control points on the map

5 . The system plots the possible path according to the

control points

6. The user moves the' control points to adjust the path

7. The system re-plots the path to fit the new control

points

8. The user selects a vehicle to run the simulation

9. The system draws the selected car in the show car

panel

10. The user may wants to switch different kinds of

vehicles

11. The system shows different kinds of vehicles

according to user selection

12. The user starts the simulation by hitting the run

button

13. The system starts the simulation

14. The user hits the pause button to freeze the

simulation

15. The system Stops the animation and shows the last

frame of the simulation.

16

I
I

16. The user uses print button from the browser to print

the frame

17. The system prints the frame through the web

browser's default printer

18. The user hits run button again to resume the

simulation

19. The system continues the animation simulation

20. The system ends simulationI
21. The user closes the browser of click to different

web page

Sequence Diagram

The Sequence Diagram showed at Figure 7. [4]

Class Diagram

This project is object oriented [7]. The three major

classes are the VTPSS class, the ShowcarPanel class, and

the Anirhatedpanel class. VTPSS class inherits from JApplet

class [6]. ShowcarPanel and AnimatedPanel classes inherit

from Jpanel [6]. AnimatedPanel class also implements the

I

17

runable interface [6] to accomplish animation. Points use

: ARoad Engineer
Map loader D ireotive P ath

P lote r

Vehicle

S elector

Vehicle Movement
Sim ulater

Request a map to load
J-------------------------- '---------->r

R eturn the M ap

Add control point

Return a curve base on control points

Tojit?
M ove control points

|co rd ii
M od ify the path according to new points

Send p at

li points array I

S elect a Vehicle T

ShoJj a vehicle on ShowCar

I
3 anel

1 C li k Run

Start.: im ulation
-------------1------------------------ S'

Clicl P aus e

P aus e simulation

Clicl R e ru n

d

k Rerun ; im ulation

--r

Figure 7. Sequence Diagram

to draw vehicles are kept in objects of arrays of doubles

for the' simplicity to access X and Y axis values also for

18

the fast computability when doing the computation of

relative axis values versus absolute axis values. The

class diagram showed at Figure 8. [4]

Figure 8. Class Diagram

19

Curve Design

The curve used in this project is second-degree

composite Bezier curve. The reasons to choose this

algorithm are: First, it is the Bezier curve that goes

closest to the control point. Second it is easier to

compute and modify.
The! actual way to do the second-degree composite

Bezier curve is:

1. Suppose we have 5 control points Po, Pi, P2, P3, and

P4: Shows as Figure9.

A
t \

f 'i
t \> \

Figure 9. Composite Bezier Curve

20

2. Get the med-point of PO and Pl as AO. Do the same for

each two points to get Al, A2 and A3

3. Get the mid-point of AO and Al as Pl'. Do the same

for each two points to get P2' and P3'

4. Make a new array as {PO, AO, Pl', Al, P2', A2, P3',

A3, and P4}

5 . Take each three point in the array with one point

overlap to make a Bezier curve segment. {PO, AO,

Pl:'}, {Pl', Al, P2 ' } , ... {P3', A3, P4}

6. The Java to calculate the second-degree Bezier curve

listed as Figure 10.

N is the number of points between PO and Pl. Once
i

decided the number of point needed in between PO and Pl.

Base on the distance between PO and P.1, This formula

will .give the proper X and Y coordinate. By connect

very close points the smooth line could be plot use

this Bezier curve function.

: Since the each joint point Pl', P2', and P3' are

on the same line with it's previous and following point.

(Example: AO, Pl' and Al are on the same line) So, the

segments are first-degree continuous.

21

I

DD= ' (pxO-pxl)*(pxO-pxl) + (pyO-pyl)*(pyO-pyl);

DO1 = Math.pow(DD, 0.5);

DD= ' (pxl-px2)*(pxl-px2) + (pyl-py2)*(pyl-py2);

D12 = Math.pow(DD, 0.5);

N = (int)((D01 + D12) / 5.0 +1.0);

for (int i = 1; i <= N; i ++){

t - (doub>le)i/(double) N;

xQ = pxO * (1.0 -t) + pxl * t ;

yO = pyO * (1.0 -t) + pyl * t ;

xl = pxl * (1.0 -t) + px2 * t;

yi = pyl * (1.0 -t) + py2 * t;

X = xO * (1 .0 -t) + xl■ * t;

y = yO * (1 . 0 — t) + yi. * t;

bzcount +=2 z

a'f terbzarray [bzcount] = x;

afterbzarray[bzcount+1] = y;

Figure 10. Java Code for Second Degree Bezier Curve

22

; Vehicle Simulation Algorithm

The algorithm is based on the previous work that has

been proved working by Mr. YauHuei Deng at China

Engineering Consultants, Inc. the steps are as follow:

1. Suppose the present control point Pi will move to
inext point at Pj.

2. Calculate Qj by the following formula:

DX = (XPi+XPj) /2 -XQi

DY = (YPi+YPj)/2 -YQi

S = ((XPj-XPi) *DX + (YPj-YPi) *DY) / (DX*DX + DY*DY)

XQj = XQi + S*DX

YQj = YQi + S*DY

3. Use Pj, Qj, CarLength (distance between P and Q), and

the relative coordinate (use P as 0,0 point) of each

point to calculate the new position of each point

(example as point A)

XA(new) = XPj - carcoordinate (YA)/CarLength * (XQj -

XPjj) - carcoordinate (XA)/CarLength * (YQj - YPj) ;

YAJ(new) - YPj - carcoordinate (YA)/CarLength * (YQj -

YPj) + carcoordinate(XA)/CarLength * (XQj - XPj);

I
23

4. For a single unit vehicle, this is enough for all the

points that was in the vehicle. Just run every point

in' the vehicle, through the same formula as point A.

the Aj could be found. Than plot all the new points

of'the vehicle at the window.

5. For a multiple unit vehicle, the hitch point's new

position (Hj) could be calculated from previous

formula. This hitch point is also the control point

. of second unit. Base on the same formula the Qj

could be given.

DX = (XHi+XHj)/2 -XQi

DY = (YHi+YHj)/2 -YQi

S = ((XHj-XHi) *DX + (YHj’-YHi) *DY) / (DX*DX + DY*DY)

xQj,= XQi + S*DX

YQj1- YQi + S*DY

Once got Hj and Qj. Use the same formula could got

the rest of the point in second unit of vehicle.

Here the CarLength is distance 'between H and Q, and

the relative coordinate is base on H (use H as 0,0

point) (example as point A)i
XA(new) = XHj - carcoordinate(YA)/CarLength * (XQj -

XHj) - carcoordinate(XA)/CarLength * (YQj - YHj);

24

I

YA(new) = YHj - carcoordinate(YA)/CarLength * (YQj :

Yhj) + carcoordinate(XA)/CarLength * (XQj - XHj);

7. Thus for multiple unit vehicles could also be

computed in the same formula
I8. The way to give user the animation feeling is just a

matter of keep re-flashing each position of the
I

vehicle in a constant period of time so give the

user a feeling of moving

I

25

CHAPTER FOUR

; SUMMARY AND CONCLUDING REMARKS

The Animated Vehicle Turning Path Simulation System

on Internet / Intranet Web Browser presented in this

project;is intended to provide civil engineers a easy-to-
i

use all : functional simulation system that could help them
I

with the Highway and Street Design. The two major

achievements in this project are: First, it successfully

implements vehicle movement trace algorithm using Java

graphic ;animation. Second, it implements an easy to

calculate and useful way to plot a moving direction path

base on ;several control points.
i

However, due to the limited time of the project,

there are still many improvement could be done in this

pro j ect

1. Based on the variety of vehicles on the road, user

should be allowed to create his/her own desired

vehicle to run this simulation.

2. Maps could be in different scale, giving the system

an ability to adjust the vehicle's size to fit the

map's scale could do a further improvement.

26

3 . A more advance thought about this system is that by

given an existing road, a perfect system should be

able to try to give a most likely fit driving path.

Also, when running the simulation, system should be

able to catch the point where the vehicle hit the

edge of the road. So user could know this problem

spot and fix it without run and pause the program toI

ca'tch the problem spot by hand.
I4. The users should be able to import and export files

describing roads from other applications used by
i

civil engineers such as AutoCAD.

Though, this project is not perfect, and needs many

improvements, many technique has been learned and applied

in this ,project. Especially the animation and 2D graphic

programming ability has been a good learning experience

for the;student.

I wish to inspire more researches in this field and

hope, by presenting this project to civil engineers will

really help them in road design and make the design

process easier and the future road more safe for drivers.

27

APPENDIX A

GLOSSARY

28

AVTPSS

Bezier Curve
i

AASHTO '
iii

CECI

JDK

UML

GUI

AnimationI
i

i

i

i

i

Animated Vehicle Turing Path Simulation

System

Bernstein-Bezier proposed a polynomial

curve at 1970 to plot a smooth curve base

on vertices

American Association of Street Highway and

Transportation Officials

China Engineering Consultants, Inc.

Abbreviation for Java Development Kit

provide java programmer built-in methods

and classes

Unified Modeling Language is a object

oriented modeling language for specifying,

visualizing, and documenting the artifacts

of an object oriented system under

deve1opment

Graphic User Interface, and interface that

has image as well as words on the screen

Use paint and repaint in a very short

period of time to give user a visual

feeling of object movement on the screen

i

29'

Vehicle

Applet

Control

Server

an automatic powered machine that transport

person of cargos on Highway or Street

Program that was written in Java-

programming language and runs only on top

of web browser like Netscape or Internet

Explorer

Point Point on each unit of a vehicle, which

determines the moving direction and

distance of that unit

Networked computer which supports java

applet and also where map files are

located.

30
i

APPENDIX B

SOURCE CODE

31

1. The HTML file "VTPSS.html":
<html> ;

<head>
<title>Vehicle Turning Path Simulation System

(0.3)</title>
</head>
<body>

<h2>Vehicle Turning Path Simulation System (0.3)<a
href=" J./../../WINDOWS/Desktop/my%20project%20documentatio
n.doc">^* See Project Documentation **</h2>

capplet code=VTPSS.class width=960 height=550>
alt="Your browser understands the <APPLET> tag

but isn’t running the applet, for some reason."
Your browser is completely ignoring the

<APPLET> tag!
</applet>

</body>
</html>'
2. VTPSS.java:/**********************************
This is.apart of master project for student: Yuwen Deng
Name of[the project is:
ANIMATED VECHICLE TURNING PATH SIMULATION SYSTEM
ON AN INTERNET/INTRANET BROWSER
This Project is instructed by Dr. Richard J. Botting
with committee Members: Dr. Kerstin Voigt
Dr. George M. Georgiou
Dr. Owen Murphy
at California State University, San Bernardino**********************************/
/***************************
Description:
This isithe main class for this program
It will,load three major panels
1. mainpanel: an object of AnimatedPanel
2. carpanel: an object of ShowcarPanel
3. leftpanel: has all the function buttons and text area
Main program will call setdrawmode method to switch from
different mode of the mainpanel; call update method to
update selected car coordinate array in carpanel
Action Listener is implemented in this class to have this
object response to mouse and keyboard events.
***************************i

import
import
import
import

I,3 ava.awt.event.*;
j ava.awt.*;
j ava.awt.geom.*;
j ava.applet.*;

32

import java.util.Vector;
import j avax.swing.*;

//---- - VTPSS class start-------------------------------
public class VTPSS extends JApplet implements
ActionListener{
double:rotateangel= 0; // constant to rotate the
coordinate
double xdistent= 0; // X distance from origin
double ydistent= 0; // Y distance from origin
public'double thecar[] ={}; // the array to keep selected
vehicle coordinate array
// the following are standard vehicle coordinates array

that fit in 1:200 scale map
public double testv[]={

0,0, ;
0,-25,
0,0, '
0,-30,
15,-30

};// testv[] is a test draw for test vehicle movement
public double vc[]={

0,0, '
0,-25,
0,0,
8,-5,:

-8,-5/ • .
-8,-2,:
8,-2,
8,-32,

-8,-32,
-8,-5/
0,0 '

};// vc[] is array for Passenger Car coordinate
public double st [] = {

0,0,
0,-40,
0,0, ,
8,-5/

-8,-5,
-8,-2,,
8,-2/
8,-52,

-8,-52,
-8,-5,
0,0 I

};// stj[] is array for Single Unit Truck coordinate

33

public double tt[]={
0,0, ,
0,-25,
0,0, '
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-30,

-8,-30,
-8,-5,
0,0,
0,-22,
0,-82,
0,-22,
8,-40,

-8,-40,
-8,-32,
8,-32,
8,-87,

-8,-87,
-8,-40,
0,-22

};// tt[] is array for trailer truck coordinate
public double rv[]={

0,0,
0,-50,
0,0,
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-55,

-8,-55,
-8,-5,
0,0,
0,-50,
0,-82,
0,-50,
8,-62,

-8,-62,
-8,-60,
8,-60,
8,-87,

-8,-87,
-8,-62,

34

0,-50
};// rv [] is array for RV with a trailer coordinate

public double dt[]={
0,0,
0,-25,
0,0, ;
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-30,

-8,-30,
-8,-5,
0,0,

0,-22, ■
0,-82,
0,-22,
8,-40,

-8,-40,
-8,-32,
8,-32,
8,-87,

-8,-87,
-8,-40,
0,-22,

0,-82,
0,-142,
0,-82,
8,-100,

-8,-100,
-8,-92,
8,-92,
8,-147,

-8,-147,
-8,-100,
0,-82

};// dt [] is array for Double Trailer Truck coordinate1
// define and create a mainpanel which is an object of

animatedpanel but has it's own method to load map files
Animatedpanel mainpanel = new Animatedpanel(0){

public void paintComponent(Graphics showcargraphic)!
super.paintComponent(showcargraphi c);
Graphics2D showcargraphic2 =

(Graphics2D)showcargraphic;

35

Image maplmage - getlmage(getDocumentBase(),
mapfile);// use getDocumentBBase() method that provide by
JApplet, to load map file

showcargraphic2.drawlmage(maplmage, 0, 0, this);
// use flag that was defined in AnimatedPanel to set
different drowing mode.

in run mode
in load map mode

set the panel in add or edit control point mode
set the panel in pause mode

in rerun mode

//
//
//
//
//

flag=l
flag=2
f lagj=3
flag=4
flag=5

if (

set the panel
set the panel

set the panel
(mainpanel.flag == 1) |
(mainpanel.flag == 4)
(mainpanel.flag ==5)){

showcargraphic2.setPaint(Color.red);
for (int i =0; i <= bzcount-2; i+=2){

showcargraphic2.drawLine((int)pz[i],(int)pz[i+1],(int)pz[i
+2], (int)pz[i+3]);

' }
; showcargraphic2.setPaint(Color.blue);

if (thecar.length != 0){
for (int i=0; i < thecar.length-3 ; i+=2){

showcargraphic2.drawLine(
(int)thecar[i], (int)thecar[i+1] ,

(int)thecar[i+2],(int)thecar[i+3]);
1 }
}

},
if (mainpanel.flag == 3){
showcargraphic2.setPaint(Color.green);

' for (int i=0; i < mylines.length - 3; i+=2) {
showcargraphic2.fillRect(mylines[i]-2,

mylines[i + 1]-2,4,4) ;
showcargraphic2.fillRect(mylines[i+2]-2,

mylines[i+3]-2,4,4);
i

showcargraphic2.drawLine(mylines[i],mylines[i+1],mylines[i
+2],mylines[i+3]);

} - ' ! ""
if ((oldx > 0) && (oldy >0)){

showcargraphic2.setPaint(Color.yellow);
showcargraphic2.fillRect((int)oldx,

(int)oldy,8,8);

| showcargraphic2.setPaint(Color.red);
for (int. i =0; i <- bzcount-2; i+=2){

36

showcargraphic2.drawLine((int)pz[i],(intjpz[i+1],(int)pz[i
+2], (int)pz[i + 3]);

: }
'}

}
} ;

JPanel leftpanel = new JPanel();
ShowcarPanel carpanel - new ShowcarPanel(thecar);
JPanel optionpanel = new JPanel();

// load map options
JLabel Loadmaplabel = new JLabel("Type the map to

load:", ■ JLabel.LEFT) ;
JTextField Mapname = new JTextField("put file name

here") ;
JButton Load = new JButton("Load");

// Draw path options
JLabel Drawpathlabel = new JLabel("Draw the Path:",

JLabel.LEFT);
JComboBox Drawpath = new JComboBox();

// Car selection options
JLabel Carselectionlabel = new JLabel("Select

Vehicle:", JLabel.LEFT);
JComboBox Carselection = new JComboBox();

// Run options
JLabel Runlabel - new JLabel("Animation control

buttons:", JLabel.LEFT);
JButton Run = new JButton("Run");
JButton Pause = new JButton("Pause");

JButton Rerun = new JButton("Rerun");
// Methods

public void actionPerformed(ActionEvent event){
String command = event.getActionCommand();
if (command == "Load"){

String filename = Mapname.getText() ;
mainpanel.updatemap(filename);
mainpanel.setflag(2) ;

if (command == "Run"){
mainpanel.setflag(1) ;

}'
if (command == "Pause"){

mainpanel.setflag(4);
}
if (command == "Rerun"){

mainpanel.setflag(5);
}

37

JComboBox source = (JComboBox)event.getSource();
String item = (String)source.getSelectedltem();
if (item == "Passenger Car"){

thecar = vc;
mainpanel.selectcar(thecar, 1);
carpanel.update(thecar);

if (item == "Single Unit Truck") {
thecar = st;
mainpanel.selectcar(thecar, 2);
carpanel.update(thecar) ;

}
if (item == "Trailer Truck") {

thecar = tt;
mainpanel.selectcar(thecar, 3);
carpanel.update(thecar);

}
if (item == "RV with trailer") {

thecar = rv;
mainpanel.selectcar(thecar, 4);
carpanel.update(thecar) ;

}
if (item == "Double Trailer Truck") {

thecar = dt;
mainpanel.selectcar(thecar, 5);
carpanel.update(thecar);

}
if (item == "EditPoint"){

. mainpanel.setflag(3) ;
mainpanel.setDrawMode(0) ;

}
if (item == "AddPoint"){

, mainpanel.setflag(3);
mainpanel.setDrawMode(1);

}
}

// Initiated the applet
public void init() {

Container contentPane = getContentPane();
contentPane.setSize(960, 550);

contentPane.setLayout(new BorderLayout());
optionpanel.setLayout(new GridLayout(11,1));
optionpanel.add(Loadmaplabel);
optionpanel.add(Mapname);

Load.addActionListener(this);
optionpanel.add(Load);
optionpanel.add(Drawpathlabel);
Drawpath.addltem("AddPoint") ;
Drawpath.addltem("EditPoint");

38

'Single Unit Truck");
'Trailer Truck");
'RV with trailer");
'Double Trailer Truck

d.o:
}
II-

Drawpath.addActionListener(this);
optionpanel.add(Drawpath);
optionpanel.add(Carselectionlabel);
Carselection.addltem("Passenger Car")
Carselection. addltem (,!
Carselection.addltem(
Carselection.addltem(
Carselection.addltem("Double Trailer Truck ");
Carselection.setBackground(Color.lightGray);

Carselection.addActionListener(this);
optionpanel.add(Carselection) ;
optionpanel.add(Runlabel);
Run.setBackground(Color.cyan);

Run.addActionListener(this);
Pause.setBackground(Color.cyan);

Pause.addActionListener(this);
Rerun.setBackground(Color.cyan);

Rerun.addActionListener(this);
optionpanel.add(Run);

optionpanel.add(Pause);
optionpanel.add(Rerun);
leftpanel.setLayout(new GridLayout(2,l,0,0));
leftpanel.add(carpanel);

■ leftpanel.add(optionpanel);
mainpanel.setBackground(Color.white);
contentPane.add("Center", mainpanel);
contentPane.add("West", leftpanel);

}
// in case the applet is not running
public String getAppletlnfo() {

return "The Vehicle Turing Path Simulation System
}

VTPSS class end-
3 .. Animatedpanel. j ava :/**********************************
This is apart of master project for student: Yuwen Deng
Name of :the project is: • '
ANIMATED VECHICLE TURNING PATH SIMULATION SYSTEM
ON AN INTERNET/INTRANET BROWSER
This Project is instructed by Dr. Richard J. Botting
with committee Members: Dr. Kerstin Voigt
Dr. George M. Georgiou
Dr. Owen Murphy
at California State University, San Bernardino ******* * * *************************/
/ * * * * * * *,* ******* * * **********

39

Description:
This class is used to create a panel for:
4. Load the selected map
5. Add / edit control points
6. Run / pause I rerun the animation simulation
Main program will call setdrawmode method to switch from
different mode of the panel
The composite bezier curve calculation will be performed
in bezcurve method
****** ** ******************* j

import
import
import
import
import
import
import

j ava.awt.*;
j ava.awt.event.* ;
javax.swing.*;
'j ava . applet. * ;
j ava.awt.geom.*;
java.util.Vector;
java.lang.reflect.* ;

//----- Animatedpanel .class start------------------------

class Animatedpanel extends JPanel
implements Runnable, MouseListener, MouseMotionListener
{ :
// ■■

public static final int.LINES =0; // means edit point
public static final int POINTS = 1; //means add point
int mode = POINTS;
int movedpoint - 0;
public int L0;
public double oldx=0;
public double oldy=0;

Vector lines = new Vector();
public int mylines[] = {};
public double px[] - {};
public double py[] = {};

double px2;
i double py2;
1 double pxO ;

double pyO ;
double pz[] = new double[10000];
irit bzcount;

int counter =0;
int selectpointmode =0;
Vector colors = new Vector();
int xl,yl;

40

//
int x2,y2;
int xl, yl;

//
//
//
//
//

int flag=0;
flag=l set the panel
flag=2 set the panel
flag=3 set the panel
flag=4 set the panel'
flag=5 set the panel

in run mode
in load map mode
in add or edit control point mode
in pause mode
in rerun mode

int flagcar = 0;
// flagcar=l set thecarf] to load vc [] Passenger Car
// flagcar=2 set thecar[] to load st [] Single Unit Truck
// flagcar=3 set thecar[] to load tt [] Trailer Truck
// flagcar=4 set thecar[] to load rv[] RV with Trailer
// flagcar=5 set thecar[] to load dt[] Double Trailer
Truck

String mapfile = "Demomap0.gif";
public double thecar[] ={};
// the carcoordinates:

// the following are standard vehicle coordinates array
that fit in 1:200 scale map
public double testv[]={

0,0„
0,-25,
0,0,
0,-30,
15,-30

};// testv[] is a test draw for test vehicle movement
public double vc[]={

0,0,
0,-25,
0,0,
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-32,

-8,-32,
-8,-5,
0,0

};// vc[] is array for Passenger Car coordinate
public double st[]={

o, o;
0,-40,
o,o;
8,-5,

-8,-5,

41

-8,-2,
8,-2,
8,-52,

-8,-52,
-8,-5,
0,0

};// st[] is array for Single Unit Truck coordinate
public double tt[]={

0,0,
0,-25,
0,0,
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-30,

-8,-30,
-8,-5,
0,0,
0,-22,
0,-82,
0,-22,
8,-40,

-8,-40,
-8,-32,
8,-32,
8,-87,

-8,-87,
-8,-40,
0,-22

};// tt[] is array for trailer truck coordinate
public double rv[]={

0,0,
0,-50,
0,0,
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-55,

-8,-55,
-8,-5,
0,0',
0,-50,
0,-82,
0,-50,

42

8,-62,
-8,-62,
-8,-60,
8,-60,
8,-87,

-8,-87,
-8,-62,
0,-5 0

};// rv[] is array for RV with a trailer coordinate
public double dt[] = {

0,0,
0,-25,
0,0,
8,-5,

-8,-5,
-8,-2,
8,-2,
8,-30,

-8,-30,
-8,-5,
0,0,
0,-22,
0,-82,
0,-22,
8,-40,

-8,-40,
-8,-32,
8,-32,
8,-87,

-8,-87,
-8,-40,
0,-22,
0,-82,
0,-142,

■ 0,-82,
8,-100,

-8,-100,
-8,-92,
8,-92,
8,-147,

-8,-147,
-8,-100,
0,^82

};// dt[] is array for Double Trailer Truck coordinate
public Animatedpanel(int flagin){

43

flag = flagin;
Thread a = new Thread(this);

//
addMouseMotionListener(this);
addMouseListener(this);

//
a.start();

//
public void setDrawMode(int mode) {
switch (mode)
.case LINES:
case POINTS:

this.mode
break;

1 default:
throw new

}

- mode;

IllegalArgumentException()

{

}

public void mouseDragged(MouseEvent e) {
}
public void mouseMoved(MouseEvent e) {
} ■
public void mousePressed(MouseEvent e) {

e.consume();
colors . addElement (g'etForeground ()) ;
lines.addElement(new Rectangle(e.getX(), e.getYO,

-1, -1));
bzcount=0;
if (mode == 0) {

■ xl = e.getX();
yl = e.getY();
if (selectpointmode == 0){
double dd = 999999999; // set the number that

is practically.infinity
for (int i = 0; i < mylines.length; i+=2){

double dx = Math.abs(xl - mylines[i]);
; double dy = Math.abs(yl - mylines[i+1]);
' double d = dx* dx + dy*dy;
i if (d < dd) {
1 dd=d;

movedpoint= i;
selectpointmode =1;

44

oldx = px[movedpoint];
oldy = py[movedpoint];

}
else if (selectpointmode ==1) {

mylines[movedpoint]= xl;
px[movedpoint]=xl;
mylines[movedpoint+1]=yl;
py[movedpoint]=yl;
selectpointmode =0;

}
repaint();

}
else if (mode ==1){
mylines = (int[])goodArrayGrow(mylines);

mylines[mylines.length -1] = e.getX();
px = (double[])goodArrayGrow(px);
px[px.length -1] - e.getX();
px = (double[])goodArrayGrow(px);
mylines = (int[])goodArrayGrow(mylines);
mylines[mylines.length -1] = e.getY();
py = (double[])goodArrayGrow(py);
py[py.length -1] = e.getY();
py - (double[])goodArrayGrow(py);

xl = e.getX();
yl = e.getY();
repaint();

}
}
public void mouseReleased(MouseEvent e) {
}// this mouse event is not used
public void mouseEntered(MouseEvent e) {
}// this mouse event is not used
public void mouseExited(MouseEvent e) {
}// this mouse event is not used
public void mouseClicked(MouseEvent e) {
}// this mouse event is not used

//
public void run(){
while (true){

if (flag == 4){ // pause code do nothing
}
if (flag == 5){ // rerun code here
counter = 0;
if (counter < bzcount){
try {Thread.sleep(40);}

45

catch (InterruptedException e){}
thecar = newarray(thecar);
this.repaint();

if (flag =- 1){ // animation code here
if (counter <= bzcount){
try {Thread.sleep(40); }
catch (InterruptedException e){}

thecar = newarray(thecar);
this.repaint();

}
}
else if (flag ==2){ // change map code here
try {Thread.sleep(100);}
catch (InterruptedException e){}
this.repaint();

}
else if (flag -- 3){ // draw bezier curve here
try {Thread.sleep(1);}
catch (InterruptedException e){}
// mode 0
if((mode == 0) && (bzcount < L0)){

for (int i - 2; i <= px.length -2; i+=2){
px[i-l]= (px[i-2]+px[i])/2;
py[i-l]= (py[i-2]+py[i])/2;

}
if (px.length >= 2){

pz[0]=px[0];
pz[l]=py[0];
px2 = px[0];
py2 = py[0];

}
for (int i = 2; i <= px.length -2; i+=2){

pxO = px2;
pyO = py2;
if (i == px.length -2){
px2 - px[i];
py2 = py[i];

}
else{
px2 = (px[i-l] + px[i+l])/2;
Py2 = (py[i-l] + py[i+l])/2;

} '
bzcount -

BZCURVE(pxO,pyO,px[i-1],py[i-l],
px2,py2, bzcount, pz);

}

46

. //end mode 0
if ((LO < px.length)){

for (int i = 2; i <= px.length -2; i+=2){
px[i-l]= (px[i-2]+px[i])/2;
py[i-l]= (py[i-2]+py[i])/2;

}
if (px.length >- 2){

pz[0]=px[0];
1 pz[1]=py[0];

px2 = px[0];
py2 = py[0];

}
for (int i = 2; i <= px.length -2; i+=2){

pxO = px2;
pyO = py2;
if (i == px.length -2){
px2 = px[i];
Py2 = py[i];

}
else{
px2 = (px[i-l] + px[i+l])/2;
Py2 = (py[i-l] + py[i+l])/2;

}
1 bzcount =

BZCURVE(pxO,pyO,px[i-1],
py[i—1],px2,py2, bzcount, pz)

}
LO = px.length;

} // end LO if condition
}// end flag 3

}//end while
}//end run
public void setflag(int set)!

flag = set;
}
public void updatemap(String Filename)!

mapfile = Filename;
}
public doublet] newarray(double[] oldarray)!

,// the function to get next point of the car
'// select a car coordinate:
' if (flagcar == 1)carcoordinate = vc;
■ if (flagcar == 2)carcoordinate = st;
, if (flagcar =- 3)carcoordinate = tt;
if (flagcar == 4)carcoordinate = rv;

1 if (flagcar == 5)carcoordinate = dt;
doublet] newarray = new doublet oldarray.length]
double XPi = oldarray[0];
double YPi = oldarray[1];

47

double XQi = oldarray[2];
double YQi = oldarray[3];
//new position array:
double XPj = pz[counter];
double YPj = pz[counter+1]
counter = counter +2;
//test

DX = (XPi + XPj)/2
DY = (YPi + YPj)/2
S = (
(XPj - XPi) * DX +
/ (DX * DX + DY
XQj = XQi + S *
YQj = YQi + S *

newarray[0] = XPj;
newarray[1] = YPj;
newarray[2] = XQj;
newarray[3] - YQj;

double CarLength=O;

double
double
double

double
double

if (flagcar==l)
if (flagcar==2)
if (flagcar==3)
if (flagcar==4)
if (flagcar==5)'

- XQi;
- YQi;
(YPj -

DY) ;
YPi) DY)

DX;
DY;

CarLength =
CarLength =
CarLength =
CarLength =
CarLength =

25.
40,
25,
50,
25,

if (flagcar == 3 || flagcar == 4){
// save the oldarray value before change it
double XPi2 = oldarray[22];
double YPi2 = oldarray[23];
double XQi2 = oldarray[24];
double YQi2 = oldarray[25];

// caculate the other points:
for (int i = 4; i < .24; i+=2) {
newarray[i] = XPj - carcoordinate[i+1]

/CarLength * (XQj -XPj) -
carcoordinate[i]
/CarLength * (YQj - YPj);

newarray[i+1] = YPj - carcoordinate[i+1]
/CarLength * (YQj - YPj) +
carcoordinate[i]
/CarLength * (XQj -XPj);

//new position array:
double XPj2 = newarray[22];
double YPj2 = newarray[23];
double DX2 = (XPi2 + XPj2)/2 - XQi2;
double DY2 = (YPi2 + YPj2)/2 - YQi2;
double S2 = (

48

* DY2)
(XPj2 - XPi2) * DX2 + (YPj2 - YPi2)
/ (DX2 * DX2 + DY2 * DY2);

double XQj2 = XQi2 + S2 * DX2;
double YQj2 = YQi2 + S2 * DY2;

newarray[24] - XQj2;
newarray[25] = YQj2;
double CarLength2=0;
if (flagcar ==3){
CarLength2 = 120; //second car length
for (int i = 26; i < carcoordinate.length -1;

i+=2){
newarray[i] = ((XPj2) -

(carcoordinate[i+1]+45)
/CarLength2 * (XQj2 -XPj2)
- (carcoordinate[i]-

0)/CarLength2
* (YQj2 - YPj2));

newarray[i+1] = ((YPj2) -
(carcoordinate[i+1]+45)

/CarLength2 * (YQj2 - YPj2)
+ (carcoordinate[i]-

0)/CarLength2
* (XQj2 -XPj2));

}
}
if (flagcar ==4){
CarLength2 = 65; //second car length
for (int i = 26; i < carcoordinate.length -1;

i+=2){
newarray[i] = ((XPj2) -

(carcoordinate[i+1]+100)
/CarLength2 * (XQj2 -XPj2)
- (carcoordinate[i]-

0)/CarLength2
* (YQj2 - YPj2)) ;

newarray[i+1] = ((YPj2) -
(carcoordinate[i+1]+100)

/CarLength2 * (YQj2 - YPj2)
+■ (carcoordinate[i]-

0)/CarLength2
* (XQj2 -XPj2));

}
}

}
if (flagcar != 3 && flagcar != 4) {

for (int i = 4; i < carcoordinate.length -1;
i+=2){

49

newarray[i] = XPj - carcoordinate[i+1]/CarLength
* (XQj -XPj) - carcoordinate[i]/CarLength

* (YQj - YPj);
newarray[i+1] = YPj -

carcoordinate[i+1]/CarLength
* (YQj - YPj) + carcoordinate[i]/CarLength

* (XQj -XPj);
}

}
return newarray;

}
public void selectcar(double[] newcar, int flagcarin){

thecar = newcar;
flagcar = flagcarin;

}
// the path function
public double getYfromX(double x){

return (0.0005 * x * x - 0.0001 * x);
}

// utility method
static Object goodArrayGrow(Object a)
{ Class cl = a.getClass();

if (!cl.isArray()) return null;
Class componentType =

a.getClass().getComponentType();
int length = Array.getLength(a);
int newLength - length + 1;
Object newArray = Array.newlnstance(componentType,

newLength);
System.arraycopy(a, 0, newArray, 0, length);

, return newArray;
}

// bzcurve method
// The composite bezier curve calculation will be
performed here

public int BZCURVE(double pxO,double pyO,double pxl,
double pyl,double px2,double py2,
int bzcount, double

afterbzarray[]){
double DD;
double D01;
double D12;
int N;
double t;
double xO, yO, xl, yl, x, y;
DD= (pxO-pxl)*(pxO-pxl) + (pyO-pyl)*(pyO-pyl);

50

D01 = Math.pow(DD, 0.5);
DD= (pxl-px2)*(pxl-px2) + (pyl-py2)*(pyl-py2);
D12 = Math.pow(DD, 0.5);
N = (int)((D01 + D12) / 5.0 +1.0);
for (int i = 1; i <= N; i ++){

t - (double)i/(double)N;
xO = pxO * (1.0 -t) + pxl * t;
yO = pyo * (1.0 -t) + pyi * t;
xl = pxl * (1.0 -t) + px2 * t ;
yi = pyi * (1.0 -t) + py2 * t;
X = xO * (1.0 -t) + xl. * t;
y = yO * (1.0 -t) + yi■ * t;
bzcount +=2;
afterbzarray[bzcount] = x;
afterbzarray[bzcount+1] = y;

}
return bzcount;

}
// bzcurve method end
}
//----- Animatedpanel class end

4. ShowcarPanel.j ava:/**********************************
This is apart of master project for student: Yuwen Deng
Name of the project is:
ANIMATED VECHICLE TURNING PATH SIMULATION SYSTEM
ON AN INTERNET/INTRANET BROWSER
This Project is instructed by Dr. Richard J. Botting
with committee Members: Dr. Kerstin Voigt
Dr. George M. Georgiou
Dr. Owen Murphy
at California State University, San Bernardino**********************************/
/***************************
Description:
This class is used to create a panel to show the selected
car in the panel.
Main program will call update method to update the
selected car array and redraw it in the panel *************************** /
import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import j ava.. applet. *;
import j ava.awt.geom.*;

51

//----- ShowcarPanel class Start

class ShowcarPanel extends JPanel
{

private double selectedcar[];
public ShowcarPanel(double array[])
{

selectedcar = array;
}
public void paintComponent(Graphics showcargraphic)
{ super.paintComponent(showcargraphic);

Dimension d - getSize();
double centerpointX= d.width/2;
double centerpointY= d.height/2;
Graphics2D showcargraphic2 =

(Graphics2D)showcargraphic;
AffineTransform at =

AffineTransform.getTranslatelnstance(
centerpointX, centerpointY-7 0)■;

at.rotate(-Math.PI);
showcargraphic2.transform(at);
showcargraphic2.setPaint(Color.blue);
if (selectedcar.length != 0){

for (int i=0; i < selectedcar.length-3 ; i+=2){
showcargraphic2.drawLine(

(int)selectedcar[i],(int)selectedcar[i+1],
(int)selectedcar[i+2],(int)selectedcar[i+3]

) ;
}

}
}
public void update(double newarray[]){

selectedcar = newarray;
1 this.repaint();

}
}
//----- ShowcarPanel class end--------------------------

52

REFERENCES

[1] James P. Pitz, Michigan et al. A Policy on Geometric

Design of Highways and Streets. AASTO, 1990

[2] YauHuei Deng. Vehicle Turning Path's Calculation and

Application. China Technology Vol. 29 pp. 3-14,

199 6

[3] Highway and Street Design Standard. Department of

Motor Vehicles, pp. 4-10 1987

[4] Martin Flower. UML Distilled Second Edition. Addison

Wesley Longman, Inc. 2000

[5] D. Faux. And M. J. Pratt. Computational Geometry for

Design and Manufacture. Ellis Horwood, 1979

[6] Jonathan Knudsen. Java 2D Graphics. O'Reilly, May 1999

[7] David M. Geary. Graphic Java2 Mastering the JFC 3Rd

Edition. Sun Microsystems Press A Prentic Hall Title

1999

53

	Animated vehicle turning path simulation system on an Internet/Intranet browser
	Recommended Citation

	o, o;

	o,o;

