
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2001

World Wide Graphics World Wide Graphics

Alysha Marie Timmons

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Digital Communications and Networking Commons, and the Instructional Media Design

Commons

Recommended Citation Recommended Citation
Timmons, Alysha Marie, "World Wide Graphics" (2001). Theses Digitization Project. 2089.
https://scholarworks.lib.csusb.edu/etd-project/2089

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2089?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

WORLD WIDE GRAPHICS

A Project

Presented to the

Faculty of

California State University

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Alysha Marie Timmons

June 2001

WORLD WIDE GRAPHICS

A Project

Presented to the

Faculty of

California State University

San Bernardino

by

Alysha Marie Timmons

June 2001

Approved by:

George Georgiou, Computer Science Date

Richard Botting

Kerstin Voigt

© 2001 Alysha Marie Timmons

ABSTRACT

The integration of computers and the Internet in the

educational process of today has led to a need for distance

presentation tools. There are software products that

address this subject; however, they are costly or

complicated. The development and implementation of this

software product provides an easy to follow tool for

instructors to capitalize on the popularity and

availability of the Internet.

World Wide Graphics (WWG) is a software package that

provides instructors with the tools needed to present a

web-based presentation to a group of students while having

the ability of enhancing the prepared HTML slide with user-

drawn graphics and highlighting. The students have

convenient access to the presentation with the use of an

Internet browser, such as Internet Explorer. The

instructor has complete control over the presentation and

what is displayed to the students.

iii

ACKNOWLEDGMENTS

I would like to thank my friend and cooperator, Sandy

Hengstebeck, for the many long hours, phone calls,

e-mails, and brainstorms. To my advisor, Dr. Georgiou, I

express special thanks for his time, patience, and

expertise, for always being just a phone call or e-mail

away, for being ready to listen and "advise", and most of

all, for being Dr. Georgiou. In addition, I would like to

thank my mother, Marie, and my sister, Anitra, for hours of

searching through any book available for a helpful answer

and for their unending love and support.

iv

To Mom and Sis

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES...................... vii

LIST OF FIGURES.. viii

CHAPTER ONE: SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction......... 1

1.1.1 Background Research 4

1.1.2 Purpose.......... 7

1.1.3 Scope................................. . 7

1.1.4 Definitions., Acronyms,
and Abbreviations 7

1.1.5 Overview.......................... 9

1.2 Overall Description

1.2.1 Product Perspective 10

1.2.2 Product Functions...... 10

1.2.3 User Characteristics.................. 10

1.2.4 Constraints........ 11

1.2.5 Assumptions and Dependencies 11

CHAPTER. TWO: SOFTWARE DESIGN

2.1 Preliminary Design Pseudocode 12

2.2 Detailed Design............................... 14

v

162.2.1 Choice Panel Design .

2.2.2 Drawing Panel Design 19

CHAPTER THREE: SOFTWARE QUALITY ASSURANCE

3.1 Unit Test Plan............................. 24

3.2 Integration Test Plan...................... 26

3.3 System Test Plan........................... 28

CHAPTER FOUR: MAINTENANCE 30

CHAPTER FIVE: USERS MANUAL 31

CHAPTER SIX: CONCLUSION 33

APPENDIX A: SOURCE CODE OF THE WORLD WIDE
GRAPHICS SYSTEM 35

APPENDIX B: EXAMPLES OF THE WORLD WIDE GRAPHICS
GRAPHICAL INTERFACE 63

REFERENCES.. 67

vi

LIST OF TABLES

Table 1. Choice Panel.................................. 16

Table 2. Function Action.............................. 17

Table 3. Function SetSave............................. 17

Table 4. Function SetClear............................ 18

Table 5. Drawing Panel................................ 19

Table 6. Function DrawLine............................ 20

Table 7. Function DrawRectangle 21

Table 8 . Function DrawEllipse......................... 22

Table 9. Function Savelmg 23

vii

LIST OF FIGURES

Figure 1. Class Diagram 14

Figure 2. Overview of the Integration
of the Two Systems.......................... 15

viii

CHAPTER ONE

SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction

Years ago, it was rare for a classroom to have one

computer. Today, schools have computer labs that provide a

computer for each student enrolled in the course. In

addition, computers have become a product that is readily

found in American households. Due to this evolution, the

concept of telecommuting and televised classes is now more

than a notion.

Many times, students may find it difficult to attend

classes, due to circumstances such as time constraints,

commuting costs, or health-related problems. With the

availability of computers and the Internet, it is not a

far-fetched idea that students could "attend" class from

their own home or workplace.

Viewing a lecture through the web not only benefits

those students who cannot attend, but also those who are in

the classroom. Most teachers still lecture with the aid of

chalkboards, whiteboards, and projector screens. In this

situation, students at the back of the room may find it

difficult to see what is being presented. During a

1

lecture, few teachers or students are able to utilize the

computers made available. The student may actually find

the computer a hindrance while trying to follow the

lecture. The computer takes up desk space and obstructs

the view of the front of the room. Additionally, teachers

find computers to be a distraction for many students during

lectures. If the teachers were able to present their

lecture on the computer, this would alleviate some of the

problems and utilize the computers. In addition, it would

be a great benefit if the teacher could draw attention to

key points in their presentation and know that students

could easily distinguish important elements.

With so many presentation services on the web, this

would seem to be a moot situation. However, there are some

disadvantages to these services. The presenter is required

to upload their files to a third party's site for the

presentation. Once uploaded, no changes can be made to the

files. Another major disadvantage is the fact that these

services are expensive and dependent upon the number of

viewers. Often, educational institutions and individual

teachers are not financially capable of meeting these

expenditures. Therefore, these services are no longer a

viable solution.

2

World Wide Graphics (WWG) is a system that was built

upon the application Presentations World Wide (PWW). [4]

PWW is an application that provides educators an interface

in which to run a web-based presentation. An instructor

sets up the presentation using PWW. Then, when desired,

the presentation begins using PWW. The instructor controls

what slide to shown at what time. Anyone connected to the

given URL will view exactly the same slide that the

instructor has chosen.

World Wide Graphics adds to the PWW interface the

tools to draw graphical shapes on the web page. During the

lecture, the presenter can. draw lines, rectangles, or

ellipses of various colors. There is also the option to

draw filled rectangles or ellipses, as well as lines of

various thicknesses. All graphics utilize semi-transparent

colors so as to allow any text or images beneath to show

through. Then, with a click of a button, the presenter can

post the drawn graphics to the web, so the students at. the

other end can see them.

World Wide Graphics is created using Java 2, an

object-oriented programming language with extended

graphical abilities, and the features of the Internet. WWG

provides instructors and students an easy to use method

3

that makes lectures more effective. The instructor simply

installs an executable program, which is started before

launching a presentation. Students, on the other hand, are

merely required to point their Internet browser to the

given URL.

This project documentation explains the development of

World Wide Graphics, a interactive tool that allows a

presenter to draw the attention of a student to a

particular element during a web-based presentation via

graphical tools.

1.1.1 Background Research

Research was done on the currently available web

presentation services. It was found that all had

advantages and disadvantages. Examples of presentation

services on the web are WebEx [8], Astound Conference

Center [1], and PlaceWare Web Conferencing [7].

PC Magazine chose WebEx as Editor's Choice in the

December 17, 1999 issue.[6] The WebEx is a proprietary

service that includes whiteboards, annotation tools,

polling functions, chatting, and one-way presentations. If

you only have up to four participants in your meeting and

keep it within 30 minutes, then you can almost use it for

free. The disadvantages of WebEx appear to be the

4

requirement of scheduling a conference for a one-time

presentation. If the user has more than four attendees or

the presentation is longer than 30 minutes, then there is a

substantial associated cost. The lowest plan is $25 per

month for the first four users and $10 for each additional

user, with a $.15 per user per minute cost. [8]

Astound Conference Center has services similar to

WebEx; however, it does not offer free-form drawing tools.

One advantage of Astound is the ability to meet immediately

or schedule a meeting for later. A disadvantage of Astound

is the fact that the links provided to the viewer 'are not

live. The links appear in the viewer's browser; however,

if the viewer clicks on the links, nothing will happen.

Only the presenter can use them. The pricing requires a

contract for a monthly rate. The shortest contract is a 3-

month contract at $25 per user. There is a one-time

meeting available for $.30 per minute per person if the

meeting is less than 30 minutes. [1]

PlaceWare Web Conferencing offers most of the services

that WebEx and Astound offer. It provides exceptional 3-D

graphics. The presenter is also given the ability to add

slides on the fly; however, it requires three separate

downloads by the presenter and was indicated in PC Magazine

5

to be difficult to set up. [7] While trying to determine a

price, on the low end, PlaceWare indicated that they have a

separate service called MyPlaceWare that allows

presentations with up to five attendees for free. The

PlaceWare Web Conferencing Service is different from the

other two web services, because it doesn't charge by the

minute. It has a one-time set up expense of $3,000 and a

$600 per person per year fee.

Other projects involving the Internet as a teaching
{

resource have been developed in the past. Examples of past

projects include WebCT [9], and Dohyon Donte Kim's Internet

Instructional Aid [5]. However these products do not meet

our specifications. This could be for several reasons.

WebCT is an aid to the instructor who wishes to set up

an "on-line classroom information center". It provides a

template for syllabi, homework assignments, discussion

groups, quizzes, etc. However, it does not provide a

method to deliver live presentations.

Donte Kim’s Internet Instructional Aid (IIA) is a

software package that provides "an environment in which

students can have additional group and individual contact

with the instructor and convenient access to prior lectures

and instructional materials" [5]. It provides two applets.

6

One applet, cyboard, allows the instructor and students to

draw in the applet and save the images created. It also

allows the instructor and students to post questions using

a chat program. However, it only displays images drawn on

the whiteboard and does not open existing images or text

files. The program is best used as an accompaniment to a

lecture, as opposed to delivering a full-blown lecture.

1.1.2 Purpose

The purpose of this section, is to present the

specifications of World Wide Graphics. WWG was created as

the author's M.S. project.

1.1.3 Scope

The software project that was produced is the World

Wide Graphics system. WWG works in conjunction with the

Presentation World Wide system to provide the presenter the

ability to conduct a classroom lecture as a web

presentation. While the presenter gives the presentation,

he/she will be able to draw on and highlight the current

slide of the presentation. Once the viewer has connected

to the web site, via a browser, the viewer will not need to

interact with the computer to view the presentation.

1.1.4 Definitions, Acronyms, and Abbreviations

WWG: World Wide Graphics

7

PWW: Presentations World Wide

HTML: Hypertext Markup Language, a set of codes that can be

inserted into text files to indicate special

typefaces, inserted images, links to other documents,

etc.

Java: A programming language developed to enable networked

computers to transmit computations to each other, not

just data. Java programs are compiled not into

machine code, which would not be portable, but into

concise code, -known as Java byte code

Browser: A computer program that enables the user to read

Hypertext in files or in the World Wide Web

Internet: A cooperative message forwarding system linking

computer networks all over the world

Web Server: A computer that is attached to the Internet and

contains web pages (HTML files) that can be viewed

using a web browser

URL: Universal Resource Locator, a way of specifying the

location of publicly available information on the

Internet, in the form http://www.csci.csusb.edu

GUI: Graphical User Interface, a way of communicating with

the computer by manipulating icons and windows with a

mouse

8

http://www.csci.csusb.edu

Mouse: A computer input device that is used by moving it

around and pressing one or mord buttons

GIF: A file format for storing bitmap images

User/Presenter: The user of the system, generally an

educator, who will create and run the presentation.

This person will be in charge of advancing to the next

slide during the presentation, as well as drawing any

free-form graphics on the slides.

Viewer: The person, most likely a student, who will be

viewing the presentation after it is created and

posted to the web server.

1.1.5 Overview

The remainder of the SRS pertains to the overall

description of the product. It explains in detail the

functions, characteristics, constraints, and dependencies

related to the use of WWG. In addition, the requirements

of the presenter and viewer using WWG are presented.

9

1.2 Overall Description

1.2.1 Product Perspective

The WWG system is a software program that works in

conjunction with the PWW system. The product consists of a

Java executable. It is required that Java is installed in

order to run the executable. The presenter does not

install the program files, since the program files do not

need to be compiled in order to run. Only the executable

is installed and ran. The viewers of the presentation are

required to have Internet access, with a Java-enabled

browser, such as Internet Explorer 5.0, Netscape 4.0, or

better.

1.2.2 Product Functions

A professor creates and begins a presentation using

the PWW interface. Each student will open a browser window

points to the appropriate URL. Each will see the same page

that the presenter is currently viewing. The presenter

will be able to draw figures and highlight areas On the

page as the presentation proceeds.

1.2.3 User Characteristics

In order to use World Wide Graphics, a presenter needs

to have previously created and loaded the HTML pages to the

web server. While running the presentation, the mouse will

10

be used (click and drag) to draw the desired graphics.

When the mouse button is pressed, the beginning point of

the graphic is set. The user then drags the mouse to

indicate the desired size of the graphic. When the mouse

button is released, the graphic is drawn.

1.2.4 Constraints

In order to run WWG, the instructor must have access

to a computer with Java capabilities. WWG is designed to

communicate with input from a mouse connected to the

computer running the program.

1.2.5 Assumptions and Dependencies

In order for WWG to properly function, it is assumed

that the server on which it is run has Java 1.3 installed

The presenter needs to have a Unix operating system

installed in order to properly run PWW. It is also

required that the persons viewing the presentation have

access to an Internet browser, Internet Explorer 5.0,

Netscape Navigator 4.0, or better.

11

CHAPTER TWO

SOFTWARE DESIGN

2.1 Preliminary Design Pseudocode

Create a visual panel in which to draw

Create buttons and menu to choose graphic shapes

Create two images in which to draw

One for visual purposes

One for future saving purposes

Create the interface to handle inputs from a mouse

If a shape is chosen

Update the type of shape to draw

If chosen to highlight

Set the flag to highlight

Set the shape to "Line"

Set the color to yellow

If mouse button is pressed

Record the initial coordinates of the point chosen

If mouse is dragged

Continually update the coordinates of the next

point

Draw the desired figure beginning at start point

and ending at this point

12

If mouse button is released

Record the final coordinates of the destination

point

Draw the final figure beginning at start point

and ending at this point

If the option to fill is chosen, then draw a

filled shape.

If clear button is pressed

Clear (fill the entire image with the background

color) both the shown graphics image and the

image for saving

If save button is pressed

Call a classvto translate the graphics to GIF

format

Pass the image created for saving to the encoding

class

13

2.2 Detailed Design

DrawingPanel
Browser
fin PWW)

ShapeEllipse

Figure 1. Class Diagram

14

World Wide Graphics

Presentations World Wide

Figure 2. Overview of the Integration of the Two Systems

15

2.2.1 Choice Panel Design

Table 1. Choice Panel

1. Class Name ChoicePanel

Where Used WWG

Purpose Button interface

Sub Items Transmits user's decisions

to the Drawing Panel

Note Main button panel of WWG

Procedure ChoicePanel
j

Begin

Create panel for buttons

Add choices for the shape

Add choices for the color

Add option to fill the shape (checkbox)

Add option to highlight (checkbox)

Add choices for the size of the highlight

Add button for clearing

Add button for saving

End

16

Table 2. Function Action

2. Function Name Adtion

Member Of ChoicePanel

Purpose To set the appropriate

variables and flags based

upon the user's input

Sub Items Transmits user's decisions

to the DrawingPanel

Procedure action

Begin

If any choice is made (the shape, color, fill,

highlighting),

Update the decision variables in the DrawingPanel

End

Table 3. Function SetSave

3. Function Name setSave

Member Of ChoicePanel

Purpose To call the save function

Sub Items Transmits user's decision to

the DrawingPanel

17

Procedure setSave

Begin

Call the save function in the DrawingPanel

End

Table 4. Function SetClear

4. Function Name SetClear

Member Of ChoicePanel

Purpose To call the clear .function

Sub Items Transmits user's decision to

the.DrawingPanel

Procedure setClear

Begin

Call the clear function in the DrawingPanel

End

18

2.2.2 Drawing Panel Design

Table 5. Drawing Panel

1. Class Name Drawing Panel

Where Used WWG

Purpose To provide the panel for

drawing and call the

appropriate functions for

drawing

Sub Items Calls the appropriate class

to draw the graphic

Procedure DrawingPanel

Begin

Create the panel for drawing

Create two blank images for the graphics - One for

display and one for saving

Initialize variables to draw black lines

Create method for executing mouse input

End

19

Table 6. Function DrawLine

2 . Function Name drawLine

Member Of DrawingPanel

Purpose To draw the final line to

the image displayed

Sub Items Draws image to saving image

Procedure drawLine

Begin

Get the coordinates of the beginning and end points

If the option to highlight is chosen

Change the Graphics to Graphics2D

Set the Stroke size of the line

Draw the line

Else

Draw the line

End if

End

20

Table 7. Function DrawRectangle

3. Function Name DrawRectangle

Member Of DrawingPanel

Purpose To draw the final rectangle

to the image displayed

Sub Items Draws image to saving image

Procedure drawRectangle

Begin

Get the coordinates of the beginning and end points

If the option to fill is chosen

Draw the filled rectangle

Else

Draw the outline of the rectangle

End if

End

21

Table 8. Function DrawEllipse

4. Function Name drawEllipse

Member Of DrawingPanel

Purpose To draw the final ellipse to

the image displayed

Sub Items Draws image to saving image

Procedure drawEllipse

Begin

Get. the coordinates of the beginning and end points

If the option to fill is chosen

Draw the filled ellipse

Else

Draw the outline of the ellipse

End if

End

22

Table 9. Function Savelmg

5. Function Name savelmg

Member Of DrawingPanel

Purpose To save the image to a file

Sub Items Converts the graphics image

to GIF format

Note Code for the GifEncoder was

downloaded from

acme.com/java and is

Copyright (C)1996,1998 by

Jef Poskanzer

<j ef@acme.com>.

Procedure savelmg

Begin

Initialize the file to write to

Convert the image to GIF format

Save to file

End

23

acme.com/java
mailto:j_ef%40acme.com

CHAPTER THREE

SOFTWARE QUALITY ASSURANCE

3.1 Unit Test Plan

In order to test the various units of the

DrawingPanel, each type of shape will be individually

tested. In addition, various color choices will be made to

ensure that the colors are correctly drawn.. The drawing of

highlighting in various widths will, also, be tested.

Test Name/Number

Test Objective

Test Description

Test Conditions

Expected Results

Actual Results

Test Name/Number

Test Objective

1 - Draw a line

Observe whether line is correctly drawn

Click in area, drag mouse, release

button

Change color choice to another color

Draws a line of chosen color from

initial point to end point

Correctly drew line from beginning

point to end point, using color choice

red

2 - Draw a Rectangle

Observe whether rectangle is correctly

24

drawn

Test Description Click in area, drag mouse, release

button

Test Conditions Change color choice to another color

Expected Results Draws a rectangle of chosen color from

Actual Results

initial point to end point

Correctly drew rectangle from beginning

point to end point, using color choice

blue

Test Name/Number 3 - Draw an ellipse

Test Objective Observe whether ellipse is correctly

drawn

Test Description Click in area, drag mouse, release

button

Test Conditions Change color choice to another color

Expected Results Draws an ellipse of chosen color from

Actual Results

initial point to end point

Correctly drew ellipse from beginning

point to end point, using color choice

green

Test Name/Number 4,5,6,7 - Highlighting

25

Test Objective

Test Description

Test Conditions

Expected Results

Actual Results

Observe whether highlighting lines are

correctly drawn

Click in area, drag mouse, release

button

Test using each choice of line size

Correctly draws each size highlighting

line from initial point to end point

Correctly drew lines from beginning

point to end point, testing each of the

four sizes

3.2 Integration Test Plan

The integration of the various shapes available

combined with the option to fill the shape creates

possibility of even more test cases. in addition, the

drawing of multiple images, overlapping will be tested.

Test Name/Number

Test Objective

Test Description

8 - Test the changing of the choice

values

Observe whether choice of shape is

automatically changed when option to

highlight is chosen

Choose to draw an ellipse, then click

26

the highlight checkbox

Test Conditions Ellipse is chosen first, then

Expected Results

highlighting

Automatically changes the shape choice

to "Lines"

Actual Results Correctly changes the shape choice from

"Ellipse" to "Lines"

Test Name/Number 9 and 10 - Draw filled shapes

Test Objective Observe whether filled shapes are

Test Description

correctly drawn

Click in area, drag mouse, release

button

Test Conditions Test using each choice of shape and two

different colors

Expected Results Draws a filled rectangle and ellipse

Actual Results Correctly drew a filled rectangle and a

filled ellipse from beginning point to

end point, using color choices red and

green

Test Name/Number 11 - Draw overlapping graphics

Test Objective Observe whether various shapes are

27

correctly drawn when overlapped

Test Description

Test Conditions

Expected Results

Actual Results

Click in area, drag mouse, release

button. Change shape and color, repeat

process while overlapping the previous

image.

Test with all choices of shape as well

as highlighting

Draws the various images overlapped

Correctly drew all the shapes from

beginning point to end point

overlapping, using various colors

3.3 System Test Plan

In order to test the entire system, the first thin,g to

test is the ability of the system to correctly draw all of

the various shapes in use, and then clear the screen.

Then, an important element to test is the efficiency of

saving the graphics to a file in the GIF format. Since the

system will prospectively be used with both the Internet

Explorer and the Netscape Navigator, the system will be

tested with both browsers.

28

Test Name/Number. 12 - Test the clear button

Test Objective Observe whether screen is correctly

Test Description

cleared after various graphics are

drawn

Click the clear button.

Test Conditions Draw various shapes before clearing.

Expected Results Draws the shapes. Then, when clear

button is pressed, clears the screen of

Actual Results

all of the previously drawn graphics.

Correctly drew all of the shapes and

erased the entire image when chosen to

clear.

Test Name/Number 13 - Save image in GIF format

Test Objective Observe whether image is correctly

Test Description

saved

Click the save button

Test Conditions Draw various shapes before saving.

After saving, open file in browser to

test if it is viewable.

Expected Results Image is correctly saved and displayed.

Actual Results Correctly saved and displayed the

image.

29

CHAPTER FOUR

MAINTENANCE.

Location: /pool/www/public/csci/atimmons/proj ect/WWG.tar

Code and documentation on PWWS CD-ROM: On file in the

Computer Science Department of California State University,

San Bernardino, JB-307.

Compiler: JDK1.3 or higher

Library: JDK1.3 Packages

Operating System: Linux Kernel v2.0.27

Decompress file:

1. Place the file in the desired.directory.

2. Create a directory called "WWG".

3. Change to the new directory.

4. Type "tar -xvf WWG.tar".

Running the executable:

1. Change to the WWG directory created in decompression.

2. Type "java WWG".

30

CHAPTER FIVE

USERS MANUAL

Create and begin a presentation using PWW with the WWG

features.

To draw a shape:

1. Choose the desired shape ("Rectangles" or

"Ellipses") from the "Shape:" drop-down menu.

2. Choose the desired color from the "Color:" drop-

down menu.

3. If desired, choose the fill option by clicking the

checkbox next to "Fill".

4. Click the mouse where you would like the beginning

point of the shape.

5. Drag the mouse until you reach the desired size of

shape.

6. Release the mouse button.

To draw a line:

1. Choose "Lines" from the "Shape:" drop-down menu.

2. Choose the desired color from the "Color:" menu.

3. Click the mouse where you would like the beginning

point of the line.

31

4. Drag the mouse until you reach the desired length

of the line.

5. Release the mouse button.

To highlight:

1. Choose to highlight by clicking the checkbox next

to "Highlight". The shape is automatically changed

to "Lines" and the color is changed to "Yellow".

2. If desired, change to a different color from the

"Color:" drop-down menu.

3. Click the mouse where you would like the beginning

point of the line.

4. Drag the mouse until you reach the desired length

of the line. (When highlighting, lines are only

drawn horizontally.)

5. Release the' mouse button.

To clear the screen:

Click on the "Clear" button.

To save the image:

Click on the "Save" button.

32

CHAPTER SIX

CONCLUSION

With the World Wide Graphics and the Presentations

World Wide systems, the instructor will no longer be

limited by the standard methods of presenting material to a

group of students. Instead of using chalkboards that can

be messy, whiteboards that require special markers, or

projector screens that are not always visible to the entire

class, WWG allows the instructor to highlight text, point

to certain areas via lines, or draw shapes for emphasis.

Although there are other presentation software

products available, they are not commonly used by

educational institutions. Reasons for the lack of use vary

among the different software. Often times, the product

uses technology that is not easily available or installed

without difficulty. Other times, the software does not

provide an intuitive interface and requires extensive

training before' use.

In comparison, World Wide Graphics is comprised of an

intuitive and easy to understand graphics interface. The

majority of input to this system is made via a mouse. A

major advantage of using WWG, is the expected cost of such

33

a system. It is feasible that WWG is provided for a one

time fee, rather than per person or per minute fee. For

this reason, it is highly feasible that an educational

institution could employ WWG.

It should be stated that the image saved and posted to

the browser using WWG is opaque.. That is, any image

included in the HTML page may obscure the drawn graphics.

In the future, it would be ideal if the image was saved as

semi-transparent. Then, the drawing could be placed on a

layer above the HTML page allowing both the drawing saved

by the presenter and any graphics .included in the HTML page

to be viewable by the student. It would also be beneficial

to the presenter if the system provided a method for

including text on the graphics. Nonetheless, this product

is useful for instructors of all levels of computer

knowledge, as well as various fields of study..

34

APPENDIX A:

SOURCE CODE OF THE WORLD

WIDE GRAPHICS SYSTEM

35

/
/*
/*
/* This class defines the shapes used and the images
/* used for display and saving. It also handles the
/* drawing of the images when the mouse is released
/

File: DrawingPanel.java */
*/
*/
*/
*/

'k'k'k'k'k'k-k'k'k'k-k'k'k'k'k-k-k-k'k-k'k'k-k'k'k-k'k'k'k-k'k'k'k-k'k'k'k'k'k'k'k'k-k'k'k'k'k-k'k-k'k-k'k-k'k

import
import
import
import
import
import
import
import
import
import
import
import

j ava.awt.*;
j ava.awt.geom.* ;
j ava.awt.image.★;
j ava.awt.Canvas ;
j ava.io.*;
j avax.swing.*;
com.sun.image.codec.jpeg.*;
j ava.awt.event.MouseEvent;
Shape;
ShapeRectangle;
ShapeEllipse;
ShapeLine;

public class DrawingPanel extends JPanel{
private Shape shape;
private Shape rbLine, rbRect, rbEllipse;
private Color color;
private Color transColor;
int trans = 80;
private boolean fill;
private boolean highlight;
private boolean saving;
private boolean firstentered = true;
private boolean exited = false;
private int lineSize = 1;
private String filePath, filePath2, dirPath;
JTabbedPane jtab;
Image Im;
Bufferedlmage BI;
Graphics g;
Graphics ImG;
boolean drawing;

String drawCmds;
String tempCmd;

public DrawingPanel() {

36

g = getGraphics ();

setBackground(Color.white) ;
this.setBackground(Color.white);

rbLine = new ShapeLine (this);
rbRect = new ShapeRectangle(this);
rbEllipse = new ShapeEllipse (this);

setColor(Color.black);
setBackground(new Color(255,255, 255,255));

setShape(rbLine);
setLine(1);

drawCmds = new String (’”’);
tempCmd = new String ("’’);

addMouseListener(new j ava.awt.event.MouseListener()
{

public void mouseMoved(java.awt.event.MouseEvent
e) {}

public void
mouseEntered(java.awt.event.MouseEvent e){
if (firstentered & drawing)

createbuff ();

firstentered = false;

}.
public void mouseExited

(j ava.awt.event.MouseEvent
public void mousePressed

(j ava.awt.event.MouseEvent
{

g = getGraphics();
g.setColor(color);

e) {}

e)

setColor(color);

ImG.setColor(color) ;

shape.anchor(new Point(e.getX(),e.getY()));
}

37

public void mouseReleased
(java.awt.event.MouseEvent e)

{
ImG = Im.getGraphics();
ImG.setColor(color) ;

shape.end(new Point
(e.getX(),e.getY()), transColor);

Shape rb = getShape() r

if(rb == rbLine)
else if(rb == rbRect)

drawLine (rb,
drawRectangle(

g, ImG);
rb, g, ImG

else if(rb == rbEllipse) drawEllipse (rb, g,
ImG) ;

}
public void mouseClicked

(java.awt.event.MouseEvent e)
{}

}); // MouseListener

addMouseMotionListener(new
java.awt.event.MouseMotionListener()

{
public void mouseMoved

(java.awt.event.MouseEvent e){}
public void mouseDragged

(java.awt.event.MouseEvent e)
{
shape.stretch(new Point(e.getX(),e.getY()),

transColor);
}

}); // MouseMotionListener

setOpaque(false);
} //cons

/**
Function: createbuff is responsible for creating the image

needed in order to save the graphics drawn
Note: a separate off-screen Image, Im, and Graphics,
ImG, associated with that image was required in order
to save the drawings to a gif.

38

public void createbuff()
{

drawing = true;
Im = createlmage(800,600);
ImG - Im.getGraphics();

} // createbuff (image)

Function: setlmagePath is called by the parent component
in order to set the path in which to save the image.

■**********•/

public void setlmagePath(String fName)
{
dirPath = fName;
filePath = fName + "mylmg.jpg";
filePath2 = fName + "mylmg.gif";

} //setlmagePath

public void redraw()
{

if (drawing)
{

Image oldlmage, newlmage;
ImageProducer filtered;

oldlmage = java.awt.Toolkit.
getDefaultToolkit().getImage(filePath2)

filtered = new FilteredlmageSource
(oldlmage.getSource(),
new TransFilter());

newlmage = createlmage(filtered);

g.drawlmage(newlmage, 0,0,this);
String newPath = dirPath +"newlmg.gif";

try{

File filen = new File(newPath);
FileOutputStream outn = new

FileOutputStream(filen);
GifEncoder encode2 = new

39

GifEncoder(newlmage, outn);
encode2.encode();
}
catch(Exception e3)
{
System.out.println
("ERROR********saving newlmage");

}
clear();

>
}//redraw

Function: setShape sets the shape that is chosen, either a
line, rectangle or ellipse.

Jr***/

public void setShape(Shape shape) {
this.shape = shape,\

}

public Shape getShape() {
return shape;

}

public
public
public

void drawLines
void drawRectangles
void drawEllipses

{ setShape(rbLine); }
{ setShape(rbRect) ; }
{ setShape(rbEllipse) ; }

/**
Function: setColor sets the color chosen to a semi

transparent color by changing the alpha value.
**/

public void setColor(Color color) {
System.out.println("setting transcolor");
transColor = new Color(color.getRed(),

color.getGreen(),color.getBlue(), trans);
this.color = transColor;

public Color getColor() { return color;

public void setFill(boolean b) { fill = b;

40

System.out.println("Setting fill to: ” + b) ; }

public boolean getFill() { return fill; }

public void setHighlight(boolean h) {
highlight = h;
rbLine.setHighlight(h);

public boolean getHighlight() {return highlight;}

public void setLine(int s)
{

lineSize = s;
rbLine.setLineSize(s);

public void setSave(boolean s) {
savelmg();

/************************** * * * * * * * * •*• ********* **************
Note: In order for the graphics to be drawn
(including the correct color with the changed
it was necessary to pass the Graphics for the
Graphics for the saved image to the functions
final drawing of a shape.

correctly
alpha value),
screen and the
performing the

************************* •*• * *******************************/

y**
Function: drawLine draws the line using the beginning and

end points selected by the mouse input. If the
highlighting flag is set to true, then using the
stroke function draws the line.

**/

protected void drawLine(Shape rb, Graphics g,
Graphics ImageG) {

Point anchor = rb.getAnchor(), end = rb.getEnd();
System.out.println("in drawLine");
System, out. println ("get color: ’’ + g.getColor());

Graphics2D G2 = (Graphics2D)g;
Graphics2D ImageG2 = (Graphics2D)ImageG;

41

ImageG2.setStroke(new
Basicstroke(1ineSize,BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER));
G2.setStroke(new
BasicStroke(1ineSize,BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER));

if(highlight) {
ImageG2.drawLine(anchor.x, anchor.y, end.x,
anchor.y);

}
else
{
ImageG.drawLine(anchor.x, anchor.y, end.x, end.y)

}

/**
Function: drawRectangle draws the rectangle using the

mouse input points set as the beginning and end
points. It checks if the fill flag is set to
determine if the shape drawn is a filled rectangle or
an outline.

**/

protected void drawRectangle(Shape rb, Graphics g,
Graphics ImageG) {
Rectangle r = rb.bounds();
System.out.println("In rect, fill= " + getFill());
if(fill) {
g.fillRect(r.x, r.y, r.width, r.height);

ImageG.fillRect(r.x, r.y,

System.out.println("Filled
}
else {

System.out.println("In
g.drawRect(r.x, r.y, r

ImageG.drawRect(r.x, r
}

.width, r.height);

rect ??? ");

not filled");
width, r.height);

y, r.width, r.height);

42

Function: drawEllipse draws an ellipse using similar
methods of the drawRectangle function.

*************9?**/

protected void drawEllipse(Shape rb, Graphics g,
Graphics ImageG) {

System, out. println (’’Entered Drawing Ellipses’’);
Rectangle r = rb.bounds();
Graphics2D g2d = (Graphics2D)g;
g2d.setColor(g.getColor());
System, out.println ("set color-g2D: ’’ +
g2d.getColor());

System, out. println ("color alpha: ’’ +
g2d.getColor().getAlpha()) ;

Ellipse2D.Double E2 = new Ellipse2D.Double(r.x, r.y,
r.width, r.height);

if(fill)
{
g2d.fill(E2);
ImageG.fillArc(r.x,

360) ;
}
else
{
g.drawArc(r.x, r.y,
ImageG.drawArc(r.x,

360) ;

r.y, r.width, r.height, 0,

r.width, r.height, 0, 360);
r.y, r.width, r.height, 0,

}

protected void clear()
{

if(drawing)
{

Image blank = createlmage(1,1);
g = getGraphics();
g.drawimage(blank, 0, 0, this);

makeBlanklmg();
System, out .println ("already ' cleared ’ ’’) ;

43

protected void makeBlanklmg()
{

System.out.println("in make blank image”);
try
{

if (drawing)
{
ImG.clearRect(0,0,this.getSize().width,
this.getSize().height);

}
Image blank = createlmage(1,1);
File fileBlank = new File(dirPath+”myImg.gif”);
FileOutputStream outBlank = new
FileOutputStream(fileBlank);

GifEncoder encode = new GifEncoder(blank, outBlank,
true);

encode.encode();
}
catch(Exception ee)
{
System.out.println("Exception in makeBlanklmg: ” +
ee) ;

}

Function: savelmg saves the images drawn to a file named
"mylmg.gif" in the path provided. It uses the
GifEncoder provided by acme.com to save the image in
the gif format.

**/

protected void savelmg() {
System.out.println("Entered saving");

try{

if (Im == null){
throw new Exception("Im = null");
}
try{

File file2 = new File(filePath2);
FileOutputStream out2 = new FileOutputStream(file2);

44

acme.com

resized.drawlmage(Im, 0,0,810,560, this);
GifEncoder encode = new GifEncoder(Im, out2);
encode.encode();

}
catch(Exception e3){
System.err.println("Error saving to file")
e3.printStackTrace();
}
}
catch(Exception what)
{

System.err.println("trying to save
what.printStackTrace();

}
System.out.println("finished saving to "+

filePath2);

error"

}
static class TransFilter extends RGBImageFilter
{

public TransFilter()
{

canFilterlndexColorModel = true;
}

public int filterRGB(int x, int y, int rgb)
{

int alpha, r, g, b;

alpha = (rgb » 24);
r = (rgb » 16);
g = (rgb >> 8) ;
b = (rgb » 0);

return alpha | r | g | b;
}

} // class TransFilter

45

/-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k'k-k-k-k-k-k-k-k-k/

/★ File: ChoicePanel.java */
/* */
/* This class defines the buttons, checkboxes, and */
/* pull-down menus that provide the choices to the */
/* user such as the shape to draw, the color of the */
/* shape, and the options to fill the shape or */
/* highlight an area. */
/***/

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;
import DrawingPanel;

import ShapeRectangle;
import ShapeLine;
import ShapeEllipse;

color;
fillCheckbox = new

highlightCheckbox = new

class ChoicePanel extends.JPanel
{

private DrawingPanel drawingPanel;
private Color
private Checkbox
Checkbox("Fill”);

private Checkbox
Checkbox("Highlight");

public JButton saveButton = new JButton("Post
Image");

public JButton clearButton = new JButton("Clear
Image");

Choice geometricChoice = new Choice ();
Choice colorChoice = new Choice ();
Choice lineChoice = new Choice();

private JPanel Example;
private int lineSIZE, trans;
private boolean HIGHLIGHT, FILL;
String SHAPE = "";
Graphics EXG;
Graphics EX;
Rectangle Rect;

46

Line2D.Double Line2;

public ChoicePanel(DrawingPanel drawingPanel) {
JPanel choicePanel = new JPanel();
Example = new JPanel();

lineSIZE = 1;
trans = 80;
makeTrans(Color.black) ;
HIGHLIGHT = FILL = false;
SHAPE = "Line";

Example.setBorder (BorderFactory.
createLoweredBevelBorder());

this.drawingPanel = drawingPanel;
EXG = Example.getGraphics() ;
EX = P.getGraphics();

Example.setBackground(Color.white);
geometricChoice.addltem("Lines");
geometricChoice.addltem("Rectangles");
geometricChoice.addltem("Ellipses");

colorChoice.addltem("Black");
colorChoice.addltem("Red");
colorChoice.addltem("Blue");
colorChoice.addltem("Green");
colorChoice.addltem("Yellow");

lineChoice.addltem("X-Thin");
lineChoice.addltem("Thin");
lineChoice.addltem("Medium");
lineChoice.addltem("Thick");
lineChoice.addltem("X-Thick");

saveButton.addActionListener(new j ava.awt.event
ActionListener() {
public void actionPerformed (ActionEvent e)
{

callSave(true);
}

}) ;

47

clearButton.addActionListener(new java.awt.event
ActionListener()

{
public void actionPerformed (ActionEvent e)
{

callClear(true);
}

}) ;

ChoicePanel.setLayout(new GridLayout(5,0));

ChoicePanel. add (new Label (’’Shape : ”)) ;
ChoicePanel.add(geometricChoice);
ChoicePanel. add (new Label (’’Color :’’));
ChoicePanel.add(colorChoice) ;
ChoicePanel.add(fillCheckbox);

ChoicePanel.add(highlightCheckbox) ;
ChoicePanel. add (new Label (’’Line Size:”));
choicePanel.add(lineChoice) ;
ChoicePanel.add(clearButton);
ChoicePanel.add(saveButton);

setLayout(new GridLayout(2,1));
add(choicePanel);
add(Example);

Example.setVisible(true);

System, out.println ("String of checkbox: ’’ +
highlightCheckbox.toString());

public void drawExample()
{

EX = Example.getGraphics();

EX.setColor(color);
System, out. println ("SHAPE : ’’ + SHAPE);

if (SHAPE.equals("Line"))
{

Graphics2D g2d = (Graphics2D)EX;
Line2D.Double L2;

48

if (HIGHLIGHT)
{

L2 = new Line2D.Double(10, 75, 175, 75);
}
else
{

L2 = new Line2D.Double(12, 123, 173, 13);
■ }

g2d.setStroke(new
BasicStroke(lineSIZE,Basicstroke.CAP_BUTT,
BasicStroke.JOIN_MITER));

g2d.draw(L2);

}
else if (SHAPE.equals("Rect"))
{
if (FILL)

EX.fillRect(10,10,165,115);
else

EX.drawRect(10,10,165,115) ;
}
else if (SHAPE . equals (’’Ellipse"))
{
if (FILL)

EX.fillArc(10, 10, 165, 115, 0, 360);
else

EX.drawArc(10, 10, 165, 115, 0, 360);

public void clearExample()
{

EX = Example.getGraphics();
EX.setColor(Color.white);
EX.fillRect(2,2,180,180);

public void makeTrans(Color CLR)
{

Color T = new Color(CLR.getRed(), CLR.getGreen(),
CLR.getBlue (),

trans);

49

color = T;
System.out.println("In make Trans, color alpha: " +
color.getAlpha());

}

Functions: callSave and callClear call the appropriate
function in its drawingPanel.

***/

public void callSave(boolean b)
{

drawingPanel.setSave(true);
}

public void callClear(boolean b)
{

drawingPanel.redraw();
}

y**
Function: action overrides the action function so as

to call the appropriate functions in the drawing
panel, such as setting the color, shape, or flags.

■k-k^-k-k^-k-k-)'-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k*-)c-k-k-k-k--k-k-k-k'k-k-k-k-k:k-k-k-k-k-k-k*--k-k-k:)c-k-k-k-k/

public boolean action(Event event, Object what) {

if(event.target instanceof Checkbox) {
// if highlight box is checked, then set
// geometric choice to lines

drawingPanel.setHighlight
(highlightCheckbox.getState());
drawingPanel.setFill(fillCheckbox.getState());

HIGHLIGHT = highlightCheckbox.getState();
FILL = fillCheckbox.getState();

if (highlightCheckbox.getState()) {
geometricChoice.select(0);
colorChoice.select(4);
1ineChoice.select(2);
drawingPanel.setColor(Color.yellow);

50

drawingPanel.setHighlight
(highlightCheckbox.getState ());

drawingPanel.setLine(15);
drawingPanel.drawLines ();
System, out .println (’’Finished drawing

high");
makeTrans(Color.yellow);
lineSIZE = 15;
SHAPE = "Line";

}
else if(highlightCheckbox.getState () == false)
{

System.out.println("Unselected
highlighting");

highlightCheckbox.setState(false);
drawingPanel.setHighlight(false);
drawingPanel.setCursor(new

Cursor(Cursor.DEFAULT_CURSOR));
}

}
else if(event.target instanceof Button) {

saveButton.addActionListener(new
j ava.awt.event.ActionListener() {
public void actionPerformed (ActionEvent e)

{
drawingPanel.SetSave(true);

}
}) ;

clearButton.addActionListener(new
java . awt. event, .ActionListener () {
public void actionPerformed (ActionEvent e)

{
callClear(true);

}
}) ;

}
else if(event.target instanceof Choice) {

drawingPanel.setCursor(new
Cursor(Cursor.DEFAULT_CURSOR));

if (highlightCheckbox.getState())
drawingPanel.setCursor(new
Cursor(Cursor.TEXT_CURSOR));

51

if(((String)what) .equals("Lines”)) {
fillCheckbox.setState(false);
drawingPanel.drawLines();
SHAPE = "Line";

}
else if (((String)what) .equals("Rectangles")) {

highlightCheckbox.setState(false) ;
System.out.println("Rectangles");
drawingPanel.setHighlight(false);
drawingPanel.drawRectangles() ;
SHAPE = "Rect";

}
else if(((String)what).equals("Ellipses")) {

highlightCheckbox.setState(false);
drawingPanel.setHighlight(false) ;
drawingPanel.drawEllipses ();
SHAPE = "Ellipse";

}
else if(((String)what).equals("Black"))

color = Color.black;
else if (((String)what) .equals("Red"))

color = Color.red;
else if(((String)what).equals("Blue"))

color = (Color.blue);
else if (((String)what) .equals("Green"))

color = (Color.green);
else if(((String)what).equals("Yellow"))

color = (Color.yellow);
else if (((String)what) .equals("X-Thin"))

lineSIZE = (1);
else if (((String)what) .equals("Thin"))

lineSIZE = (10);
else if (((String)what) .equals("Medium"))

lineSIZE = 15;
else if(((String)what) .equals("Thick"))

lineSIZE = (20);
else if(((String)what).equals("X-Thick"))

lineSIZE = (25);

drawingPanel.setColor(color);
drawingPanel.setLine(lineSIZE);
makeTrans(color);

}

52

clearExample() ;
drawExample() ;

return true;
}
public Insets insets() { return new Insets(5,0,5,0); }

53

/***/
/* File: Shape.java defines abstract functions to */
/* draw subclasses of this class. Subclasses include */
/* ShapeLine, ShapeRubberband, and ShapeEllipse */
/* Some of the code has been revised and altered */
/* from code out of David Geary's Mastering the */
/* AWT [3] */
/***/

import java.awt.*;
import java.awt.event.*;
import java.awt.Graphics.*;
import javax.swing.*;

abstract public class Shape {
protected Point anchor = new Pointi(0, 0)
protected Point stretched = new Pointi(0, 0)
protected Point last = new Point (0, 0) r

protected Point end = new Pointi(0, 0) r

private Component component;
private boolean firstStretch = true;
boolean highlight = false;
int lineSize = 10;

abstract public void drawLast(Graphics g);
abstract public void drawNext(Graphics g);
abstract public void setHighlight(boolean b);
abstract public void setLineSize(int s);

public Shape(Component component) {
this.component = component;

}
public Point getAnchor () { return anchor; }
public Point getStretched() { return stretched; }
public Point getLast () { return last; }
public Point getEnd () { return end; }

public void anchor(Point p) {
firstStretch = true;
anchor.x = p.x;
anchor.y = p.y;

stretched.x = last.x = anchor.x;
stretched.y = last.y = anchor.y;

54

}

public void stretch(Point p, Color t) {
last.x = stretched.x;
last.y = stretched.y;
stretched.x = p.x;
stretched.y = p.y;
Graphics g = component.getGraphics();
g.setColor(t);
System.out.println("in stretch, get color:
g.getColor ());

+

if(g != null) {
g.setXORMode(component.getBackground())
if(firstStretch == true) firstStretch =
else drawLast(g);

drawNext(g);
}

false

public void end(Point p, Color t)
{

last.x = end.x = p.x;
last.y = end.y = p.y;

Graphics g = component.getGraphics();
g.setColor(t);
System.out.println("in end, g.getColor: " +
g.getColor());

if(g != null) {
g.setXORMode(component.getBackground());
drawLast(g);

}
}
public Rectangle bounds()
{
return new Rectangle(stretched.x < anchor.x ?

stretched.x : anchor.x,
stretched.y < anchor.y ?
stretched.y : anchor.y,
Math.abs(stretched.x -

anchor.x),
Math.abs(stretched.y -

55

anchor. y)) ;
}

public Rectangle lastBounds()

return new Rectangle (
last.x < anchor.x ? last.x : anchor.x,
last.y < anchor.y ? last.y : anchor.y,
Math.abs (last.x - anchor.x) r

Math.abs (last.y - anchor.y)
}

} // Shape

56

/***/
/* File: ShapeEllipse.java defines functions to draw */
/* an ellipse by defining functions declared in its */
/* parent class - Shape.java */
/* Some of the code has been revised and altered */
/* from code out of David Geary's Mastering the */
/* AWT [3] */
/***************************** **************************/

import
import
import
import

j ava.awt. *;
j ava.awt.Component ;
j ava.awt.Graphics ;
j ava.awt.Rectangle;

public class ShapeEllipse extends Shape {
private final int startAngle = 0;
private final int endAngle = 360;

public ShapeEllipse(Component component) {
super(component);

}
public void setHighlight(boolean b){}
public void setLineSize(int s){}
public void drawLast(Graphics graphics) {

Rectangle r = lastBounds();
graphics.drawArc(r.x, r.y,

r.width, r.height, startAngle, endAngle);
}
public void drawNext(Graphics graphics) {

Rectangle r = bounds();
graphics.drawArc(r.x, r.y,

r.width, r.height, startAngle, endAngle);
}

} // Shape Ellipse

57

/***/
/* File: ShapeLine.java defines functions to draw */
/* a line by defining functions declared in its */
/* parent class - Shape.java */
/* Some of the code has been revised and altered */
/* from code out of David Geary's Mastering the */
/* AWT [3] */
/***/

import
import
import
import
import
import

j ava.awt.*;
j ava.awt.geom.* ;
j ava.awt.Component ;
j ava.awt.Graphics;
j ava.awt.Graphics.* ;
j ava.lang.Math;

1.0, 12/27/95
David Geary
Shape
gj t.test.ShapeTest

I * *
* A Shape that does lines.
*
* Sversion
* Sauthor
* @see
* @see
*/

public class ShapeLine extends Shape {

//boolean highlight = false;
//int lineSize = 10;

public ShapeLine(Component component) {
super(component);

}

public void setHighlight(boolean b) {highlight = b;}

public void setLineSize(int s) {lineSize = s;}

public void drawLast(Graphics graphics) {
System.out.println("In Line drawLast, highlight= " +

highlight);
System.out.println("set color: " +
graphics.getColor());
System.out.println("color alpha: " +
graphics.getColor().getAlpha());

58

Graphics2D g2d = (Graphics2D)graphics;
g2d.setColor(graphics.getColor());
System, out.println (’’set color-g2D: ’’ +
g2d.getColor()) ;
System, out. println (’’color alpha: ” +
g2d.getColor().getAlpha());■

if(highlight) {
Line2D.Double L2 = new
Line2D.Double(anchor. x, anchor.y,

stretched.x, anchor.y);

g2d.setStroke(new
Basicstroke(lineSize,Basicstroke.CAP_BUTT,

BasicStroke.JOIN_MITER));

g2d.draw(L2);
}
else
{
Line2D.Double L2 = new Line2D.Double(anchor.x,
anchor.y, stretched.x, stretched.y);

g2d.setStroke(new
BasicStroke(lineSize,BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER));

g2d.draw(L2);
}

}
public void drawNext(Graphics graphics) {

System, out. println (”In DrawNext’’) ;
Graphics2D g2d = (Graphics2D)graphics;

if (highlight)
{

Line2D.Double L2 = new
Line2D.Double(anchor.x,

anchor.y, stretched.x, anchor.y);

59

g2d.setStroke(new
BasicStroke(lineSize,BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER));
g2d.draw(L2);

else
{

Line2D.Double L2 = new
Line2D.Double(anchor.x,

anchor.y, stretched.x, stretched.y);

g2d.setStroke(new
BasicStroke(lineSize,BasicStroke.CAP_BUTT,

BasicStroke.JOIN_MITER));
g2d.draw(L2);

60

/***/
/* File: ShapeRectangle.java defines functions to draw */
/* a rectangle by defining functions declared in its */
/* parent class - Shape.java */
/* Some of the code has been revised- and altered */
/* from code out of David Geary's Mastering the */
/* AWT [3] */
/***/

import
import
import
import
import

j ava.awt.*;
j ava.awt.Component;
j ava.awt.Graphics;
j ava.awt.Graphics.*;
j ava.awt.Rectangle;

public class ShapeRectangle extends Shape
{

public ShapeRectangle(Component component) {
super(component);

}

public void setHighlight(boolean b){}

public void setLineSize(int s){}

public void drawLast(Graphics graphics) {
Rectangle rect = lastBounds();
graphics.drawRect(rect.x, rect.y,

rect.width, rect.height);
} // drawLast

public void drawNext(Graphics graphics) {
Rectangle rect = bounds();
graphics.drawRect(rect.x, rect.y,

rect.width, rect.height);
} // drawNext

} // ShapeRectangle

61

APPENDIX B:

EXAMPLES OF THE WORLD WIDE GRAPHICS

GRAPHICAL INTERFACE

62

APPENDIX B:

EXAMPLES OF THE WORLD WIDE GRAPHICS

GRAPHICAL INTERFACE

63

World Wide Graphics Interface

Graphics Window "0100

Shape: ^SBIiOLLl
Color: Black hj

□ Fill P Highlight

Highlight Size: Thin ijj

Clear Save 1

64

World Wide Graphics Integrated

into Presentations World Wide

65

Example of Drawing Several Graphics

6 6

REFERENCES

[1] Astound Conference Center.

http://astound.com/wc/prod/prod_002.html

[2] Downing, Douglas A., Covington, Michael A., Covington,

Melody Mauldin, Dictionary of Computer and Internet

Terms, 6thEdition. Barron's Educational Series, Inc.

Hauppaige, New York. 1998.

[3] Geary, David. Graphics Java 1.1 Mastering the AWT. Sun

Microsystems Press A prentice Hall. Mountain View,

California. 1997.

[4] Hengstebeck, Sandra Marie. Presentations World Wide

1 System. California State University, San Bernardino.

San Bernardino, California. June 2001.

[5] Kim, Dohyon Donte. The Internet Instructional Aid.

California State University, San Bernardino. San

Bernardino, California. March 1999.

[6] Simone, Luisa. "Editor's Choice". PC Magazine. December

17, 1999.

http://www.zdnet.com/pcmag/stories/reviews/0,6755,2408

782,00.html.

[7] Simone, Luisa. "MyPlaceWare/PlaceWare 3.5 Conference

Center". December 17, 1999.

67

http://astound.com/wc/prod/prod_002.html
http://www.zdnet.com/pcmag/stories/reviews/0%2C6755%2C2408

http://www.zdbet.com/pcmag/stories/reviews/0,6755,2408

779,00.html.

[8] Simone, Luisa. "WebEx.com/WebEx Meeting Center".

December 17, 1999.

http://www.zdbet.com/pcmag/stories/reviews/0,6755,2408

781,00.html.

[9] WebCT Helping Educators Transform Education.

http://www.webct.com.

68

http://www.zdbet.com/pcmag/stories/reviews/0%2C6755%2C2408
WebEx.com/WebEx
http://www.zdbet.com/pcmag/stories/reviews/0%2C6755%2C2408
http://www.webct.com

	World Wide Graphics
	Recommended Citation

