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ABSTRACT

This project deals with techniques to solve Markov

Chains numerically. It acquaints the reader with Markov

Chains and their applications in the first chapter. Then it

discusses the classical Gaussian Elimination for solving

Markov Chains in the second chapter. Chapter three

introduces the reader to iterative methods including the

common Jacobi and Gauss Seidel methods. Convergence of a

general iterative scheme is also discussed. The problem of

slow convergence is illustrated by an example. Methods of

speeding up convergence however are not discussed. The

fourth chapter is probably the most important chapter of

the project as it describes relatively recent techniques 

developed to solve linear systems with sparse matrices like

those found in Markov Chains. These techniques are called

projection methods. To this end, a prototype projection 

step is given and two common algorithms, explained.

Finally, the concluding chapter summarizes and sheds light 

on the advantages and disadvantages of the different

methods used in this project.
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CHAPTER ONE

INTRODUCTION

Overview

Linear equations arise in a lot of engineering and

scientific applications. One of these applications is

computing the probability distribution of a Markov chain at

the steady state. A Markov chain is a system whose states

change such that the probability of the system to be in a

certain'state depends only on the state prior to it. This

project aims at identifying the problem and describing how

the specific structure of the coefficient matrix directed

mathematicians to look for efficient methods for solving

Markov chains numerically. A standard notation for a

general system of linear equations is Ax = b. When it comes

to Markov chains, we usually seek a system of the form

nP = n, where P is a stochastic matrix and nis the

probability distribution at the steady state. In other 

words Pij = 1 for i = If • • • r n , and ||n||2=l. So, the goal is
all j

to find the eigenvector that corresponds to the unit

eigenvalue.
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An overall view of Markov chains is given in the first

part of this study. Discrete and continuous Markov chains

are introduced. Then, the steady state equations are

derived in both cases. The embedded Markov chain is also

discussed and is illustrated by an example. A queuing model

as an example of a continuous Markov chain concludes the

introduction.

Direct methods are then introduced by explaining a

common one, Gaussian elimination. Then, some iterative

methods are introduced such as the power method and Gauss

Seidel's method. The study also presents the problem of

slow convergence rates that arises when the ratio between

the dominant eigenvalue and the subdominant is

approximately equal to one. The Courtois matrix is an

example of a matrix that exhibits this property of slow

convergence.

Finally projection methods are discussed. Projection 

methods are relatively recent and have proved efficient in 

solving Markov chains. A general projection scheme is 

presented in this paper along with two methods: Arnoldi's

method and the generalized minimal residual's method,

GMRES. Both methods require finding an orthonormal basis
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for the Krylov subspace. To this end Arnoldi's process is

presented and demonstrated by an example. The strength of

the GMRES method lies in the fact that it can be used in

solving nonsymmetric linear systems. If the given linear

system is positive definite, then it is recommended to use

the well-known conjugate gradient method.

Markov Chains

Stochastic Processes describe phenomena such as the

weather of a city on a given day, which can fall into one

of several states .For example, if we assumed that the

weather could only be cloudy, partly cloudy, or sunny, then

it would be a point of interest to know the probability of

having three consecutive sunny days. In another instance,

we would be interested in knowing the probability of having

one cloudy day followed by a sunny day. The preceding

scenario is an example of a stochastic process. In general, 

stochastic processes can be described by{X(t) , t €3 T}, where

X(t) is a family of random variables indexed by a parameter

t. The set of values that X(t) can take on is called the 

state space. If those values were continuous, as in the

case of the level of water in a dam, then the stochastic

3



process would be called a continuous state stochastic

process. Otherwise, the state would be considered

a discrete state stochastic process. If the parameter t was

continuous then the process would be called a continuous

time stochastic process. Otherwise, the process would be

called discrete time stochastic process. In the context of

stochastic processes, the three different weather

conditions form what is called the state space. As such,

the weather condition on a given day may be described by a

discrete random variable that takes on three values. This

set of random variables form a stochastic process. As in

many cases the random variables are indexed by the time T.

In the above example, T would take only discrete values 

representing the days of the week. As such, the stochastic 

process' in hand can be described by{X(t), t Gdays of the 

week}, where X(t) represents the weather condition on a 

given day. Then, for example, T would have the form

T={t : 0 < t < +00}.

A stochastic process that does not change when an

arbitrary shift of time is introduced is called a

stationary stochastic process. An example of discrete space 

stochastic process could be the number of planes that crash

4



in the US during a given year. Examples of continuous state

space stochastic processes are the level of water in a dam

and the temperature inside a nuclear reactor. A Markov

process is a stochastic process with a conditional

probability function satisfying the so-called Markov

property described below. A continuous time Markov process

is a stochastic process indexed by a continuous parameter t

with a discrete state space. Moreover its conditional

probability distribution function has the " Markov

Property," i.e.,

Prob {X(t) <, x|x(t0) = x0,X(tx) = xlf...... ,X(tn) = xn}

= Prob {X(t) s x|x(tn) = xn} for any sequence t0, t2, . . . , tn, t 

such that t0 < <....< tn < t. More simply put, the

current state depends only on the state at time tn.

Therefore, the system states prior to tn have no effect on

the current state at time t.. The time spent in a state is

called the sojourn time. In order for the Markov property

to be satisfied, the time spent in a state should not

affect the remaining time that will be spent in that state.

For this to happen the time spent in a given state has to

follow an exponential distribution if the Markov process at

hand is continuous. If the Markov process were discrete,
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then the distribution of the time spent in a given state

would have to be geometric. If the transition from one 

state to another depends on the time the transition occurs,

then the Markov process is said to be non-homogenous•

Discrete Markov Chains

A Markov chain is said to be a discrete time Markov

chain if the time parameter can take on only discrete

values. Therefore, the stochastic process at hand would

consist of the random variables X (0), X (1), X (2X (n) . The

values are the states of the process at time t, where 

t £ {0, 1, 2,.... } . Assume p£j = prob{xn+1 = j | xn = i } . The

matrix P = {p.. } is called the transition probability

matrix.

The Chapman-Kolmogorov Equations:

p±j = prob{xn+1 = j | xn = i } is a single-step transition

probability. Now it would be appropriate to find an

expression for a multiple-step transition probability.

Proposition 1: p (A fj B/C) = P (A/B fj C) .P(B/C)

Proof: p (A fj B/C) = P (A fj B fj C)/P(C)

p (A/B fj c) .P(B/C) = P-(A r*-B -0- C). x PJ_B Q_C). = p(A fj B/C)
p(b n c) P(C)

6



Claim: p^’ = PikPkj_1> ' where p'^’is the probability of going
all k

from state i to state j in n steps.

Proof: p£.’ = p r ob{Xn = j | x0 = i }

= prob{Xn = j,X1=k|x0=i}, 0<l<n 
afl k

= prob{Xn = j | Xx = k, x0 = i } . Prob { Xx = k | Xo = i } .
ani k

(By Proposition 1)

By the Markov Property we get

p["’ = prob{Xn = j | Xx = k} . Prob { XT = k | Xo = i }
all k

now p^1?) = y p(n.-1V-'V > f°r o <i< n-
alVk lk

In matrix notation, we have P(n) = p(1)p(n_1) .

In particular, P(n) = P(1)P(n " 1) = Pn .

Definition: A state is said to be recurrent if the

probability that it will occur again is l.If the

probability that a state will not happen again is positive,

then the state is said to be transient. Now let f!"’ denote

the probability that the first return to state j occurs n

steps after leaving it. Hence,

fb’= Prob { Xn = j, Xn_2 # j, ...,X1 # j | Xo = j}, for n =1,2...

7



Recursively, Ej"’ = P{" 11, n s= b Also let be the ■
JTl

probability that the system returns to state j at some

00

time, so thatf^^ f^1 . When fjjis equal to 1 then state j is

recurrent. In other words, eventually the system will

definitely return to state j. Otherwise, the state is said

to be transient.

00

Definition: The mean recurrence time, = nfJ"’ . If Mj:jis
n«l

finite then state j is said to be a positive recurrent 

state. If, however, M^is infinite, then state j is said to

be a null-recurrent state. If the Markov chain in hand is

finite then none of its states can be null-recurrent. Then,

the states are either positive recurrent or transient.

Moreover, there exists at least one positive recurrent

state.

Definition: A state j is said to be periodic with period k

if when leaving j a return would require a multiple of p 

steps. As such p is the greatest common divisor of the 

integers n such that p!> 0. If p is equal to 1 then the

state is said to be aperiodic.

8



4 0 0 0

Thus, cpDQ 1 = 0-001 1 1 1
6 ' 3 3 ' 6 6 Ju

24 ' 18 ' 12
1
6

0 0-04
0 0 0 1

n =
-(PDq1

( . 12, . 16, . 24, . 48) . Note that nQ = 0.

A Queuing model is a common example of a CTMC. For

instance, we could test the effect of adding an additional

CPU to a computer network. When the size of the state space

is small, the calculation of the steady state probabilities

is simple. However, in many models the state space is large

and hence efficient numerical techniques would be needed to

solve .such Markov chains. The following is a queueing model

as another example of a continuous time Markov chain.

Example:

Suppose we have two stations in tandem. In other words the 

customer is served by the first station before being served

by the second station. We need to make the following

assumptions:

The arrival of customers is a Poisson process with

parameter A . There is only one server at each station.

Customers are served with an exponentially distributed
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service time whose parameter is p. Scheduling is done on a

first-come-first-served basis. Customers are treated the

same. Thus, we have one class of customers. Both queues

have infinite capacities. The states are the ordered pairs

(i, j), where i and j are the number of customers waiting in

the two queues. Queuing models are not the only field where

Markov chains are useful. Computer networks, computer

design, and biology are also major fields in which Markov

chains could be used to measure the efficiency of their

models. These models have developed in a manner that gave

rise to a large increase in their state space. Solving

linear equations is a very important branch of numerical

analysis. The characteristics of Markov chains narrow down

the scope of the methods used to solve them numerically.

One characteristic, for example, is the fact that the

dominant eigenvalue of a stochastic matrix is the unity. 

This makes the problem of finding the steady state 

distribution of an ergodic Markov chain equivalent to 

finding the eigenvector that corresponds to the unit

eigenvalue, as we will see later. In this paper, the focus

will be on demonstrating some characteristics of Markov

chains like the one mentioned above and how they lead us to

16



efficient numerical methods to solve them. Three numerical

methods are discussed: direct methods, iterative methods

and projection methods. It is worth mentioning that there

are other numerical techniques tailored to solving periodic

Markov chains and finding transient states. Those

techniques could be a good material for further study and

could be found in a textbook like [1].
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CHAPTER THREE

ITERATIVE METHODS

Iterative methods are commonly used when the linear

system in hand is sparse. These systems usually arise when

solving differential equations. They also arise in

structural analysis where the forces exerted on a truss,

for example, are unknowns. Usually, the problem set up is

such that only few forces are involved at each joint.

Hence, only few unknowns are involved in each equation,

which translates into a sparse coefficient matrix. The samee
situation occurs when trying to solve discrete or

continuous Markov chains where a lot of the transition

probabilities or transition rates are zeros.

The General Problem

The goal again is to solve Ax = b, where A is an

n x n matrix, xG Rn. We are going to use the general fixed 

point scheme to solve this system. A typical iteration has 

the form x(k+1) = cp(xlk>) , k G N,(p is a mapping from Rn to Rn .

Ax = b can be written as x = (I-A) x + b. Let C= I-A.
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tp(x) = Cx + b is called the iteration function. If is a

fixed point of x = (p(x), i.e., if £ = cp(^), then we have 

x11"1’ - 5 - V (x'B) - (5) - (x“ - 5) - c‘ (x1 - 5).

If x1 # £, then the sequence x(k+1> = <p(xk) converges to £ when 

limk_„C(k) =0. This occurs if and only if the spectral radius

of C is strictly less than 1. I will prove only one

direction of the above result.

Proof: Assume the contrary, i.e., let p(C) 1. Therefore 

there exists an eigenvalue A with |a| s 1 and a vector x # 0

such that Cx = Ax. Thus, Ckx = Akx .

But limk^„Ak # 0. Hence, {Ck} can not be a null sequence.

The Power Method

The power method is an example of an iterative method.

In many situations we are interested in finding the

eigenvalue with largest or smallest absolute value and

their corresponding eigenvectors. The power method is 

useful in achieving this goal. Actually, the power method

can be used to find all eigenvalues and eigenvectors of a

diagonalizable matrix as can be seen in [2]. Again when it

comes to applying the power method to nP = P, where P is a

transition matrix, we know that the dominant eigenvalue is

25



one. But the power method is sometimes applied to matrices

other than P, where the dominant eigenvalue'is not one as

is the case with the Jacobi and Gauss Seidel methods.

Let A be a diagonalizable n x nmatrix. Let z<0) E Rn

Now let's investigate the iteration z(k) = Az'k_1), k = 1,2,.. 

z(k) = Az(k_1) => z(k) = Akz(0) . Let |xj s |X2| s ... 2 |Xn| be the

eigenvalues of A. Moreover, let { x1, x2, . . ., xn } be the set o 

corresponding eigenvectors. Now we can write

z<0) = cq.x1 + a2x2 +.... o(nxn . Therefore,

z(k) = ^[cqx1 + a2x2 +.... c£nxn}

= aA^x1 + a2Akx2 +.... anAkxn

Hence, z(k> = a1A1kx1 + a2X2kx2 +.... anXnkxn , since Akx± = XikAk

= X1k[a1x1 + a2 j x2 + B x”]

Now if z0 is

following:

selected so that 0£x # 0 , then we have the

If lx.|>|X2|, then lim B_ z(k) = a.x1.
I 4 I 2I' k-~ Xxk 1

(Note that when Xx = 1, the above equation becomes

lim zlk) = a.x1 )k-»0O

26



zik,/Af
z'k)/Ak

r«ixf

Therefore, limk_»oo
• •
4kl/7 aiXn

,(k)

lim k-» X:
Jk-1)

k-l

Dividing (*)

Jk)
lim k-»°° X z'(k-l)

,(k)

lim
k—»«> Jk-1)

o^x* , v = 1,2,.....,n

aX / v = 1 < 2...... , n

by (**) yields

= 1 , xi # 0, z^-11 * 0

\ , X* * 0 , z(vk_1) # 0 •

(*)

(**)

Jk)

Let q> (k-l)

Again the focus is

transition matrix.

the unity, we can

* 0 . Then, lim qj = Ax .
k-»oo

on solving nP = P, wHere P is the

As the spectral radius of P is equal to

claim that A, =1. Hence, lim zk = o^n, which k-»°°

So, lim -^r- k— A^

can be normalized to find n .

Example:

We will apply the power method to a stochastic matrix A

with three different initial states. The eigenvalues of A

are A^ = 1,A23 = -0.25 ± 0.5979i with corresponding 2-norm of

27



0.65. The approximate1, 0.65, respectively. So, — »
A2

eigenvector is accurate to 4 decimal places after 25

iterations because 0.6525 « 2 x 10“5. The MATLAB code for the

power method, which is given below, is followed by the

output. zO is the initial vector, and z is the approximate

eigenvector that corresponds to the dominant eigenvalue of

the given transition matrix A.

function z= PM (A,zO)

global A

global zO '

global z

z= zO;

for i = 1:20

z=z*A;

end

A
0 .8
0 .1
. 6 0

2'
9
4

Input:

z0 = [1, 0, 0] '

28



Output:

z = [ .2813, .2499,.4688] '

The same vector z is obtained if the power method is

applied to z0 = [0,1,0]'or z0 = [0,0,1]'

Now let us look at some of the facts related to the

establishment of three other common methods, the Jacobi,

Gauss Seidel, and SOR methods.

Theoretical Background

Let Ax = b. Assume that A= M-N where M is non-singular.

M-N is' called a splitting of A. Thus, (M-N) x = b

Mx = Nx + b =>x = M_1Nx + M_1b which gives thus the iterative 

procedure: x(k+1) = M-1Nxlk) + M_1b .

Let H = M’1N => x(k+1) = H x(k) + c, where c = M_1b .

H is called the iteration matrix .The iteration matrix is

the one that characterizes different iterative techniques

such as the method of Jacobi and Gauss Seidel.

The Jacobi Method

The Method of Jacobi can be applied to a non-homogenous 

system but this would result in a slow rate of convergence. 

Usually, faster convergence can be obtained when applying

the method to homogenous systems. Therefore the goal is to

29



solve nQ=0 or equivalently QTnT = 0, where Q is the

infinitesimal generator matrix. For simplicity, let x = nT 

and QT= D - (L+U), where D is a diagonal matrix whose

entries are the entries are those of the diagonal of QT . L 

and U are strictly lower and upper triangular matrices

respectively. To match the method with the general

splitting technique explained,earlier, we let M = D,

N = L+U. Thus, the iteration matrix Hj is equal to M_1N or 

equivalently Hj is equal to D~1(L + U) . We note that D is non­

singular since d±i Ofor all i.

This leads to the iterative scheme x(k+1) = HjX<k) or

x(k+1) = D-1(L + U)x(k).Let si;j = l±j + u±j . Clearly, sljL =0,

for all i. Let p±j = V dik_1skj Therefore, p±j = s£j , since

cik = 0 if i # k,where [c±j] = D"1. Thus,

-Z“I2(++U+X: (k)

The Gauss Seidel's method is similar to the Jacobi's

method. The difference is that the iteration matrix of the

method of Gauss Seidel is (D - L)_1U. This is equivalent to 

using x^k+1) , where i < j, to compute Xjk+1) .

30



Example:

We seek to find the steady state■solution of the

reliability model whose infinitesimal generator is a 9x9

matrix adapted from [1]. To this end, the Gauss Seidel

method is used. The input of the algorithm consists of an

approximate solution, the maximum number of iterations, and

the infinitesimal generator Q. The output is the

approximate solution obtained by the last iteration and the

associated norm of the residual vector. The output also

includes the iteration matrix B and its eigenvalues. Note

that the subdominant eigenvalue is 0.9827, very close in

modulus to the dominant eigenvalue. This translates into

slow rate of convergence. Setting itmax, the maximum number

of iterations, to 800 we obtains an accuracy of six decimal

places. If we set itmax = 10, the accuracy gets- extremely

poor as shown below.

A=

(-60.4 60 0 . 5 0 0 0 0 0
60 -90.4 120 0 .5 ' 0 0 0 0
0 30 -120.4 0 0 .5 0 0 0
. 4 0 0 -60.7 60 0 1 0 0
0 . 4 0 60 -90.7 120 0 1 0
0 0 . 4 0 30 -120.7 0 0 1
0 0 0 ’ .2 0 0 -61 60 0
0 0 0 0 .2 0 60 -91 120
0 0 0 0 0 .2 0 30 -121
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x0 = [. 1,. 1,. 1,. 1,. i,. 1,. 1,. 1,. i]',

b= [0,0,0,0,0,0,0,0,0] ’, and' itmax=1.0

Output:

x=[.2049,.2052,.0514, .22 55,
. 22 63 > .0568, .167 5, .1665, .0414] '•

res=[14.5884,0.3779,0.3302,.3189, 
.3082, .2979, .2880, .2784,.2693,.2605] '

Block Iterative' Methods

We will illustrate how block iterative techniques can

be used to find the steady state probability of an

infinitesimal generator matrix. We will also show, by an

example that block iterative techniques are generally

faster than their iterative counterparts.

First we partition the vector n into N subvectors and the

matrix Q into N2to obtain block representation of nQ = 0 as

follows.

zQii Q12 • r • Qin^

Q2i Q 22 Q2N

(^19 ^2 9 nN) 0

<.Qni qn QNN /

32



I

Then, we split the matrix QTby the block splitting:

QT = DN - (Ln + UN) . Here DN is a block diagonal matrix while

Ln and UNare strictly lower and upper block triangular

matrices respectively.

(Du 0 
0 D22 0

/ 0 0
l21 0

0\
0

Thus, Dn = Ln = , and'

D.NN / JN1 N2\ 0 0 L 0 /

(0 u12 . . . U1N\
0 0 . . . U2N

Similar to the Gauss Seidel method the block Gauss Seidel

method is given by the iteration: (D„ - LN) x(k+1) = UNx(k> . The 

following example shows the advantage of the block Gauss

Seidel method over the Gauss Seidel method with respect to

the speed of convergence. The transition matrix was

obtained from Courtois [1]. The Block Gauss-Seidel MATLAB

function is given a stochastic matrix, and a vector ni

which describes the length of each block. I have chosen ni

= [3,2,3]. Another two input parameters are the number of
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outer iterations labeled itmaxl and the number of inner

operations itmax2. itmaxl is simply the number of times the

program acts on the entire set of blocks, while itmax2 is

the number of times the Gauss-Seidel algorithm is called to

solve an individual block. The program can be modified in

such a way that would enable it to solve the individual

blocks using a direct method rather than the Gauss-Seidel

procedure. The output of the program, which consists of the

solution vector x and the residual vector obtained after 10

iterations, along with the Courtois matrix are given below.

. 85 .1 .1 0 .0005 0 .00003 0
0 . 65 .8 .0004 0 .00005 0 . 00005

.149 .249 . 0996 0 .0004 0 . 00003 0
. 0009 0 .0003 .7 .399 0 .00004 0

0 .0009 0 .2995 . 6 .00005 0 .00005
00005 .00005 0 0 .0001 .6 .1 .1999

0 0 .0001 . 0001 0 • .2499 . 8 . 25
00005 .00005 0 0 0 .15 .09990 .55
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x=

08928265275448\
09275763750511
04048831201636
15853319081979
11893820690415
12038548110608
27779525244933
10181926644470,

Residue 00000000000303xl0-5
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CHAPTER FOUR ■ ,

PROJECTION METHODS

Projection methods are relatively recent techniques

aimed'at solving systems of linear equations. Again we will

be dealing with large and sparse systems. A typical

projection method would attempt to find an approximate

solution in a subspace of a much lower dimension than that

of Rn. The dimension of that subspace will be denoted by m. 

We will need another subspace to introduce constraints that 

are necessary to find an approximate solution. Once an

approximate solution is found, the process is repeated

again until a sufficiently small residual is obtained. The

following is a general outline of the method.

Let Ax* = f. (i)

Let Kmand Lmbe two subspaces of Rn.

Two common choices for Lmare Lm = Kmand Lm = AKm .

Let U = {v1, v2,.... , vm} be a basis of

Km and W = {wT, w2,.... ,wm}be a basis of Lm.

Let x0 be an initial approximation to the solution of (i).

Also, let x be the new approximation obtained by a single

projection step such that x = x0 + z, z G Km .
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Now let us impose the so-called orthogonality condition

<f-Ax, v > = 0 V v E Lra.Also, assume that z = Vmy, where

Vmis the matrix whose columns are the vectors of U, and the

initial residue be r0 = f - Ax0.If x were to be the solution

of (i) , then the following would be true:

A ( x0 + z) = f .

Ax0 + Az = f .

Thus, Az = f - Ax0 .

Because <f-Ax, v > =0,

it follows that <f-A(x0 + z), v > =0.

Hence, <r0 - Az, v > =0, and

WmT(r0 - AVmy) = 0 .

Assuming that w/AVm is nonsingular,we have:

WmTr0 = y, and x = x0 + Vmy = x0 + [W>V F WraTr0

The above is called Petrov-Galerkin approximation.

How do we choose Lra? A good choice is the subspace defined

by Lm■= AKm. This can be justified by the following theorem

Theorem 1: Lm = AKm , x is the approximate solution provided

by the Petrov-Galerkin approximation <=> it minimizes the .

Euclidean norm of the residual vector f- Ax, for all
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x E x0 + Km . Note that it can be shown that x0 + Km is a

subspace. It is called an affine subspace.

Proof: We will prove only one direction.

Let x* be any vector in x0 + Km. Therefore,

||f - Ax *||2 =||f - A[ (x * —x) + x][|2

= (f - A[ (x * -x) + x, f - A[ (x * -x) + x] )

= (f - Ax, f - Ax) - 2(f - Ax, A(x * -x) ) + (A(x * -x) , A(x * -x) )

By the orthogonality condition, the middle term in the

above expression is zero.

Thus, ||f - Ax *||2 = (f - Ax*, f - Ax*) + (A(x - x*) , A(x - x*) ) 2 ||f - Ax*||

A lot of the projection methods make use of the so-called

Krylov subspace defined by:

Km(A, v) = span{v, A2v, A3v,..... . Am_1v}for some v E Rn .

These methods require obtaining an orthonormal basis for

the Krylov subspace. One classical method is the known

Gram-Schmidt Process.

Gram-Schmidt Orthogonalization Procedure

The input is X={x1, x2,.... . xm}, xj E Rn

X1. Let rlx = ||x1||2 ' and qx = —--
rn

2. For j = 2,3,.. , m do
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* rn — QiXj, i — . 1, 2, . . . r j 1

j-i

’ qi = xj - 2 rijqi
i = l

* rn = H and = Tj / r3j

The input of the algorithm is an (n x m) matrix X of rank m

less than or equal to m. The columns of X represent the

vectors that span a given subspace. Basically, the

algorithm factors the matrix X into QR. Q is an

n x morthogonal matrix whose columns form the basis of the

given subspace. R is an n x nupper triangular matrix. The

columns of X can be written as linear combinations of the

columns of Q.

Examples:

x2 = q2 + r12q1
x3 = q3 + ri3<2i + r23T3

The last line of step 2 ensures that the q.j ' s are

normalized. Now let us prove that Q is orthogonal.

<33 = - E Hxi)
i“l

For all k =s j - 1, we have

3-1
rp rp m rp

qkq2 = qk^ - 2 qJqiXjtai
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j-1
T T ’ T= 9kxj - 2

= 9kxj “ 9kxj = 0

Gram-Schmidt Orthogonalization Procedure was modified to

yield .a more numerically stable version than the one

mentioned above. The new version was referred to as

Modified Gram-Schmidt Orthogonalization Procedure. When the

Modified Gram-Schmidt Orthogonalization Procedure is

applied to a Krylov subspace the method is referred to as

Arnoldi's process. The following is the MATLAB program used

to find an orthonormal basis for the Krylov subspace using

Arnoldi's process. The input is a non-zero•vector

vi 9 ||vi||2 = and a matrix A. Clearly, A is - n x n and: v1is 

n x 1 . The output is an orthonormal basis for the Krylov

Subspace Km = span{vK Avlf . . ., Am_1v1} . The matrix whose 

columns form this basis will be called Vm .

function [Hbar,v] =modg.s (A, v,m) .

[n,n] = size(A);

for j= l:m,

vj=v(l:n,j);

w=A*vj;

for i=l:j,
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vi=v(1:n, i);

Hbar(i, j)=vi'*w;

w=w-Hbar(i,j)*vi

end

Hbar(j +1,j)=norm(w,2);

v=[v,w/Hbar(j+1,j)];

end

For example, if the input parameters were:

A = '

12 3

-14 5

2 7 4

m = 3

v = [.6,.8,0]',

/0.6000 0.0235 -.7997 -0.5653\
The output would be:v = 0.8000 -0.0176 0.5997 0.5653

0.0000 0.9996 0.0294 0.6007,

Remark: The first three columns of v form the desired

orthonormal basis for the Krylov subspace. The eigenvalues 

of A can be approximated by those of Hm , where Hm = V’AVra Hra 

represents the restriction of the linear transformation of

A to the subspace Kmwith respect to the orthonormal basis
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Vm obtained by Arnoldi's process. Let Aibe the eigenvalues

of Hm , i = 1, 2, . . . , m , and lebyj^be the corresponding

eigenvectors. In other words, Hmyi = Aiyi, i = 1, 2, . . . , m . As m

gets larger, A±becomes closer to an eigenvalue of A and Vmyi

gets closer to the corresponding eigenvector of A.

Claim: vT (A(Vmy.) - A.^yJ )= 0, V v G Km, i = 1, 2, . . .., m.

Proof: vT (A(Vmyi) - Ai(Vmyi) )

' = vT (A(Vmyi) - (VmAiyi)>

= vWjJHVXYi)> since V^y, = AlYi.

Now note that ViV = I. This is true because Vis a set ofmm m

orthonormal vectors.

Thus,1 vT(A(Vmy1) - (VmV^AVmyij ) = vT (A(Vmyi) - AVrayi)= 0 . The result we 

just proved is called Galerkin condition.

The Full Orthogonalization Method

The full orthogonalization method approximates the

solution of the linear system Ax = b. The algorithm starts

with an initial residual vector p0, where r0=b-Ax0 . Let vT =

° , and Km = span{viz A2vir A3v1,..... , AI”_1v1} .
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An approximate solution can be obtained by xm = x0 + zmwith

zm E Kra. In the FOM the approximated solution is forced to

satisfy the Galerkin condition: vTrm = 0, for all vE Km .

Let Vra = {Vj, v2, . . . vjbe the orthonormal basis for the

above-mentioned Krylov subspace. Thus, zm E Kmcan be written

as a linear combination of vx, v2, . . ., vm , say zm = Vmym .

Therefore, xm = x0 + Vmym . Since Ax0 = b - p,, Axm = b - rm, and

1? then we have Axm = Ax0 + AVmym .Folk

A(Xn>" Xfl) = AVmYm

" r0 = AVmym

rm = + AVmyni

= Hro||2 V1 + AVmym

Hence, V’rm = V? (||p,||2 v, +AVmym)

= IH v>i + VmTAVraym 

= |W2 ei + Hn.ym<

where exis the first column of Im .

Thus, ym = H;1 ||p,||2 ex.

Note that in the above statement Vjv1was replaced by eT .

This can be easily seen by the following argument:
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V>1 =m 1

T TV1
T

V2

TV3 • vx =

• O
OH

 
__
__
__
__
__

i

(since Vmis a set of orthonormal vectors

T
Lv- 0

The Generalized Minimal 
Residual Method

The generalized minimal residual method is similar' to

the FOM method. The only difference between the two methods 

is that when the GMRES method i's used, zmis chosen in such a 

way to minimize ||b - Axm||2 . It can also be shown that the

GMRES method is a projection method with the subspace L as 

explained earlier equal to AK, ‘where K is the Krylov 

subspace. The GMRES is used when the coefficient matrix A

is nonsymmetric positive definite. If A is symmetric and

positive definite, then the Conjugate Gradient method, a

projection method, yields the exact solution.

We note that at the end of each iteration of Arnoldi's 

process we get: hj+1(jvj+1 = Av.j - hp^ - h2jv2 -....- h^Vj which 

is equivalent toAVj = vxhxj + v2h2j + . . . + v.h^ + v.+1h.+1;j .Let

Km+1= [vx, v2, . . . ., vm+1] and let Vm+1 be the matrix whose
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columns consist of the vectors of Km+1 . Then, AVm = Vm+1 Hm ,

where Hm is an (m+1) xm matrix whose last row is

[0,0,.. . 0, hm+1;in ] and whose other rows- are identical to

those of Hm.Again we let xm = x0 + zm, where zmis an element

of the Krylov subspace chosen in a way to minimize

||b - Axm||2 • Let Zm = Vn,y •

Thus, ||b - Axm||2= ||b - A(x0 + Vmy)||2 = ||r0 - AV^^Upv^AV^^ .

Since AVm = Vm+1 Hm , then||pv1_AVmy||2 = Hra y) .Therefore,

minimizing ||b - Axm|| is equivalent to minimizing

.However ||vm+1|| is a constant. Hence theHm y)
2

minimization problem is reduced to minimizing only

(Pvx_ Hra y) This least squares problem can be solved using
2

QR factorization. See, for example, [1].

Theorem: If m s the degree of the minimal polynomial of A,

then the exact solution of (I) belongs to Km(A,b).

The degree of the minimal polynomial of a matrix A is the 

smallest m that makes |i, A, A2, . . ., Am} linearly dependent.
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For example, if A =
{ 5 -6 -6'

A = -1 ■ 4 2
3 -6 -4\ /

smallest set wh

it can be shown that

dependent. Hence, the degree of the minimal polynomial of A

is 2. In order to find it we would have to solve

A2 + aA + bi = 0 . It is not hard to show that

a = -3 and b = -2.

Example

( 5 -6 -6\ (i\
Let A = -1 4 2 t b= 2 .The eigenvalues of A are

<3 -6 <3,

2,2,and l.The minimal polynomial of A is

as illustrated above. The exact solution

g(t) = (t - 2) (t - 1)

of Ax = b is

/ 14 > f-25j
-3.5 , and K2(A,b) = . 2 r 13 >

, 15 } ,3, <-21>

/ 14 'l f 14 1 f-25\
Now -3.5

< 15 7
GK2(A,b), since -3.5

< 15 >
= 1.5 2 -0.5 13

-21 k /
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CHAPTER FIVE

CONCLUSION

To conclude this study I will compare and analyze the

different numerical techniques discussed in the earlier

chapters. The Courtois matrix will be used to compare some

of the numerical methods discussed in this study. First,

the direct methods such as Gaussian elimination and LDU

decomposition can be used to solve relatively small linear

systems of equations. However when it comes to solving

large sparse matrices like those that arise in solving

Markov chains, direct methods display a major disadvantage.

Remember that direct methods are based on creating zeros at

certain locations of the coefficient matrix. In doing so,

unfortunately, non-zero entries are created in other 

locations that originally contained zeros. This process is

called fill-in and it destroys the sparse structure of the 

original matrix. Consequently, large computer storage would

be needed to store such a matrix with lots of non-zero

entries. Nevertheless, direct methods have the advantage of

enabling us to determine the number of steps required to

solve a linear system.
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Second, iterative methods do not suffer from having to

have large computer storage as direct methods do. The

reason for that follows from the fact that iterative

methods do not alter the coefficient matrix and hence no

fill-ins are created. Unfortunately, when iterative methods

are used, we cannot predict the number of iterations

required to find a solution with a .preset error. There are

two factors that govern the convergence rate. The first one

is the ratio of the dominant eigenvalue to the subdominant

eigenvalue. If this ratio is close to one, the rate of

convergence becomes very slow. An example of a matrix that

possesses such a behavior is the Courtois matrix. Actually,

the Courtois matrix belongs to the class of nearly

decomposable matrices usually abbreviated by NCD. If

iterative methods were to be applied to a an NCD matrix, 

then preconditioning techniques would be required to speed 

up the rate of convergence. The second factor is the

initial approximation. In fact, this factor is an advantage

when using iterative methods. When an experiment is

performed several times, usually the parameters are

slightly changed and hence we expect the solutions to be

approximately the same. So the calculated solution of a
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given experiment, for' example, can be used as an initial

solution to solve the system obtained by a subsequent

experiment. Projection methods such as Arnoldi's method and

GMRES are efficient to tackle NCD Markov chains. However a

storage problem arises when the dimension, m, of the

subspace used is large. In this case we use a value of m-

that would be suitable for the available computer memory.

If the resulting approximate solution is not satisfactory,

then we use it as an initial approximation. These methods

are referred to as iterative Arnoldi's method and iterative

GMRES. Now I will present results of some MATLAB's

programs to demonstrate some of the facts discussed above.

Table 1 shows the eigenvalues of the transpose of the

Courtois matrix in the first column. In the second column,

we have the eigenvalues of the iteration matrix found when

applying the method of Jacobi to the .Courtois matrix.
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Table 1: Comparison of Eigenvalues 
of Iteration Matrices
PT
1.0 1.0
0.99980000000000 0.99938353640096
0.99849479689134 0.99790895882791
0.75002623150850 0.99579335294684
0.55006663986827 0.58325797025592
0.40003338516447 0.50277001092246
0.30071431880876 0.50277001092246
0.14953537224133 0.41640735625114

Note that in both columns the ratio of the dominant

eigenvalue to the subdominant eigenvalue is close to one.

Actually, this ratio in the first column is larger than its

counterpart in the second column. Thus we expect the Jacobi

method to converge faster than the power method.

Techniques such as preconditioning can be used to tackle

the problem that arises when this ratio is close to one.

These techniques can be found in [1].
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