
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2002

An on-line acid-base titration applet in the generic tutorial system An on-line acid-base titration applet in the generic tutorial system

for the sciences project for the sciences project

Thomas Lee Gummo

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Engineering Commons, and the Inorganic Chemistry Commons

Recommended Citation Recommended Citation
Gummo, Thomas Lee, "An on-line acid-base titration applet in the generic tutorial system for the sciences
project" (2002). Theses Digitization Project. 2045.
https://scholarworks.lib.csusb.edu/etd-project/2045

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2045?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

AN ON-LINE ACID-BASE. TITRATION APPLET IN THE.

GENERIC TUTORIAL, SYSTEM FOR THE SCIENCES PROJECT

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Thomas Lee Gummo

March 2 0 02'

AN ON-LINE ACID-BASE TITRATION APPLET IN THE

GENERIC TUTORIAL SYSTEM FOR THE SCIENCES PROJECT

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Thomas Lee Gummo

March 2002

Department of Computer Science
Date

Kimberley Cousins, Co-Chair,
DepartmenvtL/of Chemistry

Kerstin Voigt, Computer Science

ABSTRACT

The purpose of this Master's Project was to develop

an Acid-Base Titration Simulator. It was also to be part

of the California State University - San Bernardino's

GTSS, Generic Tutorial System for the Sciences, project.

The titration applet developed is interactive: as a

button is depressed, an amount of titrant is dispensed,

and a plot of the generated pH curve is displayed. The

user will be able to compare their results with the

computer-generated curves. The algorithm uses non

standard pH equations to accurately simulate these curves

for 16 different acid-base systems, including several

biochemistry applications. The first and second

derivatives of the ideal pH curves can be displayed.

The main benefit is that■students will be able to

conduct titration experiments over the Internet without

being in the .laboratory, and without costly equipment or

dangerous chemicals. Instructors at the high school and

college level can demonstrate the key chemical principles

of titration. Learning will be enhanced, as the simulation

can be repeated multiple times and much, more rapidly than

the laboratory experiment.

iii

ACKNOWLEDGMENTS

The Office of Graduate Studies provided a grant for

this project. The Grant was used to purchase The

JBuilder3.0 software package by. Borland. This application

builder tool was a great help in developing the software.

The grant also enabled the purchase of more RAM memory for

the computer used during development. The JBuilder3.0

program required more memory than the computer possessed

at the start of the project. The remaining grant money

was used to produce the required printed copies of this

project.

Thanks need to be given to the professors, who helped

with this project. Dr. Arturo Concepcion, whose GTSS

project was the genesis of this project. Dr. Kimberley

Cousins' help with the chemical theories was invaluable.

Dr. George Georgiou and Dr. Kerstin Voigt were two more

instructors, who acted as advisors and helped a lot during

the whole masters process.

Of course, without the help and support of my family,

I would have never completed this project. To my wife,

Pat, arid my two daughters, Tina and Carin, I love you.

Remember 9-11-2001.

iv

TABLE OF CONTENTS

ABSTRACT.. ' . iii

ACKNOWLEDGMENTS iv

LIST OF TABLES vii

LIST OF FIGURES..................................... ix

CHAPTER ONE: SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction......................... . 1

1.2 Overall Description 8

1.3 Specific Requirements 18

CHAPTER TWO: NUMERICAL ANALYSIS OF TITRATION EQUATIONS

2.1 Titration Equations 35

2.2 Graph Scales.............................. 4 5

CHAPTER THREE: DESIGN

3.1 Architecture (Class Diagram) 48

3.2 Detailed Design (Pseudo-Code) . 60

CHAPTER FOUR: OPERATING INSTRUCTIONS

4.1 Operating Instructions 69

4.2 Hints for the Instructor.................. 72

4.3 Hints for the Student.................... 74

4.4 Testing................................... 76

4.5 How to Input Your Own Acid System 76

v

CHAPTER FIVE: MAINTENANCE

5.1 Files

5.2 Directories.............

5.3 How to Compile

CHAPTER SIX: FUTURE DEVELOPMENTS AND CONCLUSIONS

6.1 Ideas for Future Developments

6.2 Derivative Engine

6.3 Conclusions

APPENDIX A: QUESTIONNAIRE

APPENDIX B: TABLES OF DISSOCIATION CONSTANTS

APPENDIX C: DERIVATIVEENGINE JAVA CODE

APPENDIX D: SAMPLE OF AN EXCEL SPREADSHEET

BIBLIOGRAPHY

82

84

85

86

88

90

92

95

98

104

111

vi

LIST OF TABLES

Table 1. Minimum System Requirements 9

Table 2. Error in Hydronium Ion Concentration 37

Table 3. Error in pH to Two Decimal Places........ 3 8

Table 4. GTSSChemApplet Class Diagram 49

Table 5. SGFrame Class Diagram....................... 50

Table 6. pHMeterPanel Class Diagram 51

Table 7. UserSupplied Class Diagram 52

Table 8. Derivative Class Diagram.......... 53

Table 9. StudentMultiGraph Class Diagram 53

Table 10. PlotMultiGraph Class Diagram 54

Table 11. FirstMultiGraph Class Diagram 54

Table 12. SecondMultiGraph Class Diagram 54

Table 13. GraphPanel Class Diagram 55

Table 14. GraphPanel Class Diagram - Continued 56

Table 15. TitrationData Class Diagram 58

Table 16. TitrationEngine Class Diagram 59

Table 17. GTSSChemApplet Pseudo-Code 60

Table 18. SGFrame Pseudo-Code......................... 61

Table 19. TitrationEngine Pseudo-Code 62

Table 20. TitrationData Pseudo-Code 63

Table 21. GraphPanel Pseudo-Code 63

vii

Table 22

Table 23

Table 24

Table 25

Table 26

Table 27

Table 2 8

Table 29

Table 30

pHMeterPanel Pseudo-Code

StudentMultiGraph Pseudo-Code

PlotpHMultiGraph Pseudo-Code

FirstMultiGraph Pseudo-Code

SecondMultiGraph Pseudo-Code

Derivative Pseudo-Code • • •

Java Source Files

HTML Files...................................

Compiler Created Class Files

64

65

65

66

67

68

83

83

84

viii

LIST OF FIGURES

Figure 1. Generic Tutorial System for the Science's
Structure with Chemistry Objects Added ... 3

Figure 2. Deployment Diagram 12

Figure 3. Use Case Diagram.............. 15

Figure 4. Generic Tutorial System for the Science's
Home Page.....................................19

Figure 5. Applet Selection Page 20

Figure 6. The Applet Frame............................. 21

Figure 7. The Select Menu..............................22

Figure 8. Monoprotic Acid with Strong Base Menu ... 22

Figure 9. Diprotic Acid with Strong Base Menu 23

Figure 10. Triprotic Acid with Strong Base Menu 24

Figure 11. Strong Base with Strong Acid Menu.......... 24

Figure 12. User Supplied Menu........................... 25

Figure 13. The Dispense Buttons 25

Figure 14. Graph Menu.................................. 2 7

Figure 15. User and Computer pH Curves................ 28

Figure 16. User and Computer First Derivative
Curves... 29

Figure 17. User and Computer Second Derivative
Curves....................................... 3 0

Figure 18. The Repeat Titration Menu...................31

Figure 19. Class Diagram Overview.........-............48

ix

CHAPTER ONE

SOFTWARE REQUIREMENTS

SPECIFICATION

1.1 Introduction

1.1.1 Purpose

The goal of this Master's Project is to promote and

facilitate the use of Java-based technologies in the

development of teaching materials for chemistry. This

project built on the GTSS (Generic Tutorial System for the

Sciences) Project and promotes active learning by providing

educators with the tools to develop their own interactive

teaching materials. The objective was to develop a

chemical application, which is interactive, easily

distributed, flexible, intuitive and easy to use, and easy

for instructors to implement.

Initially, college.and high school level instructors

will be able to use this application to demonstrate

chemical principles to their students. Instructors with a

basic working knowledge of Java will be able to create

their own applications by building on and using of engines

and applets written for this project.

1

1.1.2 Scope

The GTSS project originally focused on developing Java

materials for computer science, mathematics, and physics,

the area of expertise of Dr. Arturo Concepcion, Professor

of Computer Science, Dr. Javier Torner, Professor of

Physics, and Dr. Charles Stanton, Professor of Mathematics

(9) . They received a grant to develop GTSS products for

these three discipline areas. The materials developed are

designed to be usable by other science instructors in order

to build demonstrations and tutorials. The object-oriented

approach was used to build the three-layered structure of

GTSS: Core Objects, Subject Engine Objects, and Application

Objects. The Internet address or URL for the current

version of the GTSS Project is:

http://gtss.ais.csusb.edu/GTSSProj ect/indexl.html

The GTSS structure is shown in Figure 1. The core

objects are in the center and are used by all disciplines.

The next layer has the engines written for specific

disciplines but may be-used by the others. For example, a

statistics engine written for mathematics might be used by

2

http://gtss.ais.csusb.edu/GTSSProj

Applied
Statistics Application

Figure 1. Generic Tutorial System for the Science's
Structure with Chemistry Objects Added

any discipline using any of the objects, engines, or

applications written for GTSS. In fact, it is hoped there

will be crossover within the disciplines to eliminate

duplication of effort.

This project, An On-Line Acid-Base Titration Applet in

the GTSS Project, includes a chemical applet for GTSS.

This is an interactive tutorial and demonstration system

3

that enhances the students learning of several chemical

principles involving acid-base titrations. This chemical

applet provides instructors of chemistry with tools by

which they can create, edit, or modify tutorials to suit

their instructional needs. With the help of Dr. Kimberley

Cousins, an Associate Professor of Chemistry at CSUSB, this

Master's Project added a chemical application to the GTSS

system.

Java based programs can provide animated

demonstrations and allow students to interact with the

material. Compared to other programming languages, Java

and the Internet is clearly the medium of choice for easy

distribution. Programs written on one campus can be put on

a server and be available for immediate use at other

campuses. Since Java is object-oriented, programs will be

very modular and readily adapted to new uses. As a

teaching tool, a well-written application will allow the

instructor to focus attention on the material while

minimizing the need to know the Java computer language.

While this application will contain animated and graphic

objects, it will be impossible to produce movie like

special effects or photographic quality images. The

4

objective was to produce an application, which clearly and

accurately demonstrate the principles of the chemical

processes involved. One chemical application and the

needed support programs have been developed for this

project. This chemical applet demonstrates acid-base

titrations by allowing the students to practice with

sixteen different acids and bases.

The main benefit is that the students are able to

conduct experiments without being in the laboratory and

without costly equipment and chemicals. In a real

laboratory setting, it is likely the number of trials would

be limited. Learning will be enhanced as the simulation can

be repeated multiple times and much more rapidly than the

experiment itself. Also, a major advantage is safety, that

is, the student is not handling any dangerous chemicals,

such as acids and bases. Students are able to work on

their own without the supervision required in the

laboratory setting. Finally, the student will be able to

compare their curves to the actual curves computed by the

applet or obtained from experiments to ensure they

understand the equations involved.

5

1.1.3 Definitions, Acronyms,
And Abbreviations

JAVA APPLETS. These are programs written in Java that

are downloaded from the World Wide Web by a Web browser and

run inside an HTML Web page. A Java-enabled browser such

as Netscape Navigator or Microsoft's Internet Explorer is

required to run these applets.

JDK. Java Developer's Kit is a Java development

environment. There are several available at this time and

more are being developed: Java Workshop, Semantec's Visual

Cafe for Java, and Microsoft's Visual J++. Sun supplies a

JDK with Java 1.3 and includes tools for compiling and

testing Java applets and applications.

TITRATION. Neutralization curves are the key to this

chemical demonstration. Neutralization is a process in

which hydronium ions unite with hydroxyl ions to form

water:

H3O+ + 0H~ —>2H2O

There are several cases which will be investigated: a

strong acid with a strong base, a strong base with a strong

acid, a weak acid with a strong base, and the biochemical

problem of amino acid end point equivalents (an area that

is under serviced by tutorial software).

6

A typical wet chemical titration involves adding in a small

amounts the titrant to the solution being tested, the

analyte, while recording the pH changes until the endpoint

is passed.

CORE OBJECTS. This is a set of primitive reusable

objects that are used to build graphics user interface

(GUI), such as frames, test canvasses, graphics canvasses,

buttons, menus, etc. These are the basic building blocks

of all tutorial systems. Although there are already

objects defined and implemented in Java, they still need to

be customized and refined for use in displaying specific

windows and graphics in GTSS.

SUBJECT ENGINE OBJECTS. The engine is built on top of

the core objects and through inheritance and polymorphism.

These engines will support the generation of windows and

graphics for the specified subject.

APPLICATION OBJECTS. These objects are implemented on

top of their corresponding subject engine objects and

through inheritance and polymorphism. They will support

the generation of windows and graphics for the particular

topic in the subject.

7

UTILITY ENGINES OBJECTS. These object are used to aid

in data entry,■keyboard functions, VCR controls, and

include several engines whose.functions don't align with

the other groups of objects.

VCR CONTROLS. This panel includes several buttons

that are used to control the functions of the applet. This

panel is called "VCR CONTROL" because the buttons have the

look and function of the buttons found on most VCR

machines.

1.2 Overall Description

1.2.1 Project Perspective

1.2.1.1 System Interfaces. GTSS is installed on a

server computer in the Department of Computer Science at

CSUSB. Users are able to access the Web pages and

Titration Applet with Netscape Navigator, Internet

Explorer, or any other Java compatible Web browser.

1.2.1.2 User Interfaces. The applets require a

display area in which to operate. The top-level window is

called a frame. Inside the frame are panels in which to

display graphics and the graphical user interfaces used by

the applet. The frames have the look and feel of any of

Microsoft's windows; so will be easily used by most

8

students and teachers. The panels are used to display the

graphical'demonstrations, plot the data, control the

functions and rate of the experiments, and input and export

data. The User Interface of this program consists of one

window in which the program displays one frame. The

execution of the program is completely mouse or pointing

devise based. All selections from the menus and activation

of the buttons are accomplished with the mouse left button.

1.2.1.3 Hardware Interfaces. This project was written

and tested on an IBM Aptiva Computer with a Pentium II

processor. This program may run on slower machines but no

testing was conducted. The system specifications are:

Table 1. Minimum System Requirements

Processor Type Intel MMX, Pentium II
Processor Speed 166 MHz
System memory 32 MB
Video Memory 2 MB
External Cache Memory 256 KB
Sound Card Crystal PnP Audio System

CODEC
Modem LT Win Modem
BIOS Version BVAUS4E
BIOS Date 02/20/97

1.2.1.4 Software Interface. This- project was designed

to run over the Internet. By writing it in Java, the code

will run on any computer independent of type and operating

9

system. As long as the user's computer has an Internet

connection, appropriate browser, and correct JAVA plug-in,

there will be no other limits on the users system.

Java is one of the newest programming languages (4).

It has been developed by Sun Microsystem Inc. Sun's object

was to provide a common system development kit (SKD) that

would run across many different platforms. The Internet is

growing geometrically and unfortunately has become one of

the major battlefields in the computer world. Over the

Internet, there are various systems providing services.

Each platform has its own system development environment.

Even in the Unix environment, different vendors have their

specially designed Unix systems. They are not compatible

with each other. A common language was not a major issue

in the past because the operating environment was not

complex. However, with the growth of the Internet, a common

SDK becomes more important. For this reason, Java was

developed.

The developers of Internet browsers seem to be lagging

behind the developers of Java. Therefore, a problem

exists. If you use the latest version of Java, the current

Internet browsers are unable to run the Java applets. If

10

you use the version of Java that the browsers can handle,

you are forced to use obsolete and out of date versions of

Java. The decision was made to the use the JDK 1.3

version of the Java language. It is compatible with the

current versions of the popular browsers.

1.2.1.5 Communications Interfaces. Figure 2, the

Deployment Diagram, shows the relationship between the GTSS

server, the network user and the Internet user (2). To

access this applet, the user needs an Internet connection

to the GTSS server here at CSUSB. The web address is:

http:/1gtss.ais.csusb.edu/GTSSProj ect/indexl.html.

The user will also need a JAVA enabled browser, such as,

Netscape or Internet Explorer versions 5.0 or higher.

11

http:/1gtss.ais.csusb.edu/GTSSProj

GTSS Server

Network User
| a Network PC

I . I and a Java
| | enabled brower

TCP/IP Connection

http Connection

.----- 1----- . GTS S We b S ite,
----- 1----- GTSS objects and
I I tools, and

Chemistry Applet

Internet user

I a Internet PC
I—P—'and a Java
| (enabled brower

Figure 2. Deployment Diagram

1.2.1.6 Memory Constraints. The minimum RAM, Random

Access Memory, tested, for this program, was 64 Megabytes.

However, any computer with enough memory to effectively use

the Internet should be able to use this program.

1.2.1.7 Operations. The applet will be accessed on a

server on the World Wide Web. It will remain active as

long as the browser.containing the applet is running. The

program is interactive and needs the user to interface with

it. Nothing happens unless the user activates a function.

Currently, the program does not use a database. Therefore,

12

there are no backup or recovery operations required. Once

running, no one has been able to crash the applet.

However, if a problem should occur, simply using the

browser refresh button will reset the applet.

1.2.1.8 Site Adaptation Requirements. This project is

being written and tested with Microsoft Windows 98 and

Internet Explorer 5.0. Earlier Versions of Windows and

Internet Explorer will not be tested.

However, the browser needs to have the Java 1.3 plug

in installed. By downloading and installing this plug-in,

the required version of Java Virtual Machine is added to

the browser. A user without this plug-in, who attempts to

uses this applet, will be advised of this requirement and

given the links to download it.

1.2.2 Project Functions

This applet has one main function. It is used to

demonstrate the chemical principles of acid-base

titrations. This concept can be expanded for students and

instructors. This applet allows a student to have open-

ended study sessions, that is, no time limits. Students

are allowed to proceed at their own pace. Unlike in the

laboratory, there are unlimited repetitions of the

13

titrations available and where the student can choose the

same or random endpoints. They can repeat using the same

endpoint until they are happy with the results or

understand the concept. They can practice titrations with

random endpoints. The applet is being conducted in a non

laboratory environment, which is safer, more cost

effective, and faster. Figure 3, Use Case Diagram, shows

the relationship of the student/user and instructor to the

applet.

14

Student/ User

Figure 3. Use Case Diagram

It can be assigned as a pre-laboratory exercise or

used as guided tutorials by instructors. For example, it

can be used as a classroom exercise to calculate acid

concentrations or solution pHs. Another classroom exercise

could be to "discover" data irregularities, such as, non

resolution of multiple endpoints.

15

Students will be able to practice the mathematic

methods,, including the first and second derivatives of the

pH curves, used to solve acid-base problems. Instructors

can demonstrate titration methods, numerical analysis on

data, characteristics of the pH curve, and the uses of the

first and second derivative curves. The applet illustrates

acid-base titration chemistry to include strong acids

versus strong bases, weak acids versus strong bases,

monoprotic systems, and polyprotic systems.

1.2.3 User Characteristics

As stated before, the audience for this project is

college chemistry professors, high school chemistry

instructors, and their students. The typical high school

student, who takes chemistry, is college bound and also

takes biology and physics. They will have taken algebra,

geometry, and possibly trigonometry. The college level

chemistry students can be broken down into two groups:

non-science majors and science and engineering majors. The

grade level of the material in the project is geared for

the higher levels of high school students and the level of

non-science students in college. However, this is not to

say the science majors will not be able to benefit too.

16

While, the chemical concepts being considered may be too

simple for the science and engineering students, it will

still be a nice review of titration principles.

The instructors who will use this project will fall

into two camps: Java literate and those without Java

skills. Even without Java skills, instructors will be able

to use the applet as written to supplement their

instruction. The applet is written in such a manner that

no knowledge of Java is required. If the instructor and

student can open and run basic Internet browsers, they will

be able to run the applets. The Java literate instructors

will be able to modify applets to meet their own needs and

build on them to write their own applets.

1.2.4 Constraints

Currently, there are no hardware or software

constraints. Anybody, who would like to modify or create

new GTSS applications, will need to know how to program in

Java.

1.2.5 Assumptions and Dependencies

None.

17

1.2.6 Apportioning of Requirements

In the context of this project, there are no elements

that are being delayed until future versions are developed.

The program code has been finalized at this time. However,

there are several items that could be improved by another

computer science or chemistry student in the future.

1.3 Specific Requirements

1.3.1 External Interfaces

The applet can be found by going to the GTSS server

and loading GTSS home page. There, the user will find a

link to the applets available for physics, math, computer

science and chemistry.

18

HomeMicrosoft Internet l-xplorer provided by Verizon Online
Eils’:.£dit .^iew Favorites -Tools'/.‘Help''.;. ' ' .7. - . /;./ : , '■ •

sPBack ’=>>'•'!§) 0 ©Search- SjFavbrites ^History §0 @ ’’.j Links <)VerizonOi:

IjAddreSS j@J http://gtssmath.csusb.edu/ “Ell ^Go

cBimrir Tniinr'iti] SyBem fur ibe Sdcwcs §

- ?],, " ‘i ; < i > * 'l f ' * *' i > > /1 ’ i ’ • 1' ’>« ' o

AOF Proposal
'/OB wM»aai

■ Symposium

The Generic Tutorial System for the Sciences is a project
funded by Academic Oportunity Funds from the California State University.

The goal of the project is to develop the framework necessary to develop Java
applets for the sciences.
Using this framework, users should be able to quickly develop their own
interactive applications.

Josvp luiiil s* * * H t

Applets

pponipppitdppAi

A screen shot of a prototype applet:

Figure 4. Generic Tutorial System for the Science's Home
Page

On the applet page, the user.selects the chemistry link

where the acid-base titration demonstration applet and the

accompanying html pages will be found.

19

http://gtssmath.csusb.edu/

Applets for GTSS Symposium
0e £dit View - Favorites Tools; Help

- ^Search '33 Favorites!

Address @ C:\Documents and Settings\4drninistratoi\My[3» : r^Go

Physics:
• Oscillator Demo
• Projectile Demo
• Bifurcation Demo
• Logistics Demo
• Coupled Oscillator Demo

Chemistry:
• Acid Base Titration Demo

Q My Computer

Figure 5. Applet Selection Page

The Web pages will provide instruction on how to use the-

applet for both the student and instructor. The text

contents of the web pages are included in the appendix.

This application will use a frame, Figure 6, and is

divided into two panels and a menu bar. The main part of

the frame is divided into two unequal panels, split

vertically. The left panel is the "Gummo Cousins Titration

Machine" and includes a set of buttons, which regulate the

titration plus a set of windows to monitor the progress.

It also displays the current pH and the "volume of titrant"

20

added during the titration. The right panel displays the

generated pH curves, the first derivative curves, or the

second derivative curves.

Figure 6. The Applet Frame

The first step is for the user to select an acid-base

system. Clicking the mouse button on the "Select

Titration" menu will cause a drop down menu to appear.

21

Select Ut ration Graph Repeat Titration .1
Mono Protic Acid with Strong Base >

DiPrptic Acid with Strong Base ►

TriProtic Acid with Strong Base ►

Strong Base with Strong Acid ►

User Supplied >

Figure 7. The Select Menu

This menu allows the user to select from five more menus:

1) Monoprotic Acid with Strong Base, 2) Diprotic Acid with

Strong Base, 3) Triprotic Acid with Strong Base, 4) Strong

Base with Strong Base, and 5) User Supplied.

Select Thi ation 1 Graph Repeat Titration

Mono Protic Acid with Strong Base ►
p BiPrctic Acid with Strong Base ►

TriProtic Acid with Strong Base ►

Strong Base with Strong Acid ►

User Supplied ►

1. Demo .
2. HC«
3. Nitrous
4. Hypochlorous
5. Acetic
6. Ethylamine

Figure 8. Monoprotic Acid with Strong Base Menu

The first menu is the "Monoprotic Acid with Strong

Base." Moving the mouse cursor onto this menu drops down

another menu with the six selections available. The first

is the Demo mode. The endpoint is fixed and can't be

changed. This is true about all the Demos In.the other

22

menus. This allows the instructor to demonstrate titration

techniques, while knowing the characteristics of the pH

curve that will be produced. Selection of any of the other

systems will create a system with a randomly generated

endpoint. This selection can be made by either clicking

the mouse button or by using the enter key. The other

five selections can be seen in figure 8.

Seiect Titration ? Graph Repeat Titration I

s Mono Protic Acid with Strong Base ► I 14
T

< DiProiic Acid with Strong Base J. ► 1. Demo
TriProtic Acid with Strong Base ► j 2. Tartaric

i Strong Base with Strong Acid ► 3. Carbonic j

1 User Supplied ► 4. Alanine
5

5. Adenine(-i-l))
i 6. L-Leucine j

Figure 9. Diprotic Acid with Strong Base Menu

Moving the mouse cursor farther down will highlight

the "Diprotic Acid with Strong Base" menu and cause it's

drop down menu to appear. Figure 9 displays the six

possible selections.

23

\

j Select Titration Graph > Repeat Titration

Mono Protic Acid with Strong Base ► 14

\ DiProtic Acid with Strong Base. ►

TriProtic Acid with Strong Base ► 1. Demo
2. Glutamic .
3. Phosphoric
4. Arginine
5. Tetracycline(+1)

’ Strong Base with Strong Acid. * ►
” ---- ", * ----- ------ -

User Supplied ►
! '

Figure 10. Triprotic Acid with Strong Base Menu

Moving the mouse cursor down to the next option will

highlight the "TriProtic Acid with Strong Base" menu. It

has five selections to choose from.

Select Titration j Graph Repeat Titration
I Mono Protic Acid with Strong Base ► 14

DiProtic Acid with Strong Base >

.j TriProtic Acid with Strong Base »

Strong Base with Strong Acid ► 1. Demo 5
2. NaOH \| User Supplied *

Figure 11. Strong Base with Strong Acid Menu

Figure 11 highlights the strong base with strong acid

selection and its two possible systems. This time a base,

NaOH, will be titrated with an acid, HC1.

24

Select Titration i Graph Repeat Titration

Mono Protic Acid with Strong Base ► 14
DiProtic Acid with Strong Base

TriProtic Acid with Strong Base

Strong Base with Strong Acid 11.2

User Supplied 1. Acid with Base System

Figure 12. User Supplied Menu

Once the selection of the acid-base system has been

accomplished, the menus will disappear and the applet

enters the titration phase. The titrant is added to the

starting sample solution of 10.0 mLs by clicking on one of

the "Dispense Buttons."

Dispense Buttons

i + 5.0 mis j + 1.0 mis

If
+ 0.25 mis

£
1

I
+ 0,05 mis

Figure 13. The Dispense Buttons

The amount of titrant that can be added each time a button

is clicked with the mouse button is limited to the

quantities listed on the buttons: 5.0 mLs, 1.0 mLs, 0.25

mLs, and 0.05 mLs (the size of one drop from the buret or

25

approximately the size of the smallest amount a student

would be able to dispense manually from a buret). Each

time a dispense button is clicked; the amount in the volume

added window is updated; the current pH window is updated;

and the graph of the pH curve has a new point displayed.

The titration phase continues until a maximum of 50.0 mis

has been added. At that point, clicking on any of dispense

buttons will have no effect.

The titration phase was designed to prevent the

student or user from "looking ahead" and seeing the answer.

Therefore, once the titration phase is ended by any means,

it can't be restarted. For example, the user can't select

the display of the computer generated pH curve and then go

back to continue the titration. The titration phase is

ended by any of the following actions: reaching 50.0 mLs of

titrant added, selecting from the "Graph" Menu any of the

computer generated graphs, or selecting a new endpoint from

the "Repeat Titration" menu.

Once the titration phase is complete, the user may

want to check on the quality of their titration. Selecting

one of the items from the "Graph" menu starts the analysis

phase: pH Plot, first Derivative, or second Derivative.

26

Add Base Titration -Demon

Select Titration Graph Repeat Titration

Gumn pHPIot j.
1st Derivative • ! ‘

, fitrati
2nd Derivative I

i.. 1

Figure 14. Graph Menu

Selecting "pH Plot" will display the student's curve

and the curve produced by the computer. The student's

curve is plotted in black and the computer's curve is in

red. If any of the points of the computer's curve are

located at the same coordinates of the student's, only the

black line will be seen (the student's line is drawn last).

Figure 15 shows a typical student titration along with the

computer-generated pH curve.

27

Figure 15. User and Computer pH Curves

When the "First Derivative" is selected, the computer

mathematically computes the first derivative curves from

the data stored in the pH curves. The scale on the

vertical axis is changed to 0 to 3 units. The dimensions

of the units are not important and will be covered more in

Chapter Two. The maximum was fixed in a manner to show the

user's results best. In fact, the peak of the computer's

curve was found to exceed 1,000,000 units at times. If the

vertical scale were adjusted to show the top of the

computer's curve, the user's curve would appear as a

straight line at the bottom of the graph. The location of

28

the peak on the volume axis is the endpoint. (Note: if any

of the pH curves fits on the graph, they will be displayed

too.)

The last option on the "Graph" menu is "2nd

Derivative." Again, the computer takes the data from the

pH curves and mathematically calculates the derivative

twice. The results are then displayed. The vertical scale

is changed again to maximize the results. This time it is

where the curve crosses the volume axis from the positive

side that shows the endpoint.

29

Figure 17. User and Computer.Second Derivative Curves

During this analysis phase, the user can go back and

forth between any of the "Graph" menu's options. However,

as stated before, it is impossible to continue a titration

at this point that was not finished.

Once the analysis phase is complete, the user has

several options. The first is to use the same acid-base

system again. The "Repeat Titration" menu, as shown in

Figure 18, is used to select the "Same Equivalence Point"

or "New Equivalence Point." The "Same" menu starts the

30

titration phase with the same endpoint as before. The

"New" menu creates a random endpoint for the titration

phase.

^sAcid Base Titration Demonstration - Sa

Select Titration Graph Repeat litiation

. Gummo- Co■■■...■■■■■I.
Same Equivalence Point

New Equivalence Point

Figure 18. The Repeat Titration Menu

1.3.2 Functions

One of the functions that needed to be defined is how

the program accepts and processes its inputs and outputs.

The only input, once the applet is downloaded and running

on the user's browser, is the mouse and the left mouse

button. Therefore, there is no requirement to check the

validity of the inputs. Abnormal situations like data

overflows, communication failures, error handling, and

recovery are not encountered. Unlike some programs, the

exact sequence of operations is not important. There are

no outputs generated by this program.

1.3.3 Performance Requirements

This applet is designed to run on one computer at a

time. Once downloaded to the user's computer, it is a

31

stand-alone program. The number of simultaneous users

supported is limited by the bandwidth of the GTSS server

and is beyond the scope of this project.

1.3.4 Logical Database Requirements

This applet has no database requirement.

1.3.5 Design Constraints

In the design phase, two standards were used. The

first is the Unified Modeling Language (UML). This

modeling language is the graphical notation used to express

designs. It was used to develop the Deployment Diagram, the

Use Case Diagram, and the Class Diagrams.

The second is Object-Oriented software engineering

methods. It uses five main methods: establish core

requirements, develop a model of behavior, create the

architecture, evolve the implementation, and maintenance.

It also has four micro processes: identify the classes and

objects needed, identify the semantics of these classes,

identify the'relationships among these classes, and specify

the interfaces required.

32

1.3.6 Software System Attributes

1.3.6.1 Reliability. The reliability of this applet

was verified through extensive testing of all features.

The applet performed consistently throughout the testing

phase.

In Phase one, the results from the equations used to

calculate pH for the different acid-base systems were

compared to known solutions in chemistry textbooks (1, 3,

8). The conclusion was the accuracy was greater than 0.01

units of pH. This is well within the accuracy required.

In Phase two, all the menus and buttons, the applet's

Graphic User Interface (GUI), were tested. Each selection

from the menus performed its' function as designed. There

was no way found to crash or lock up this applet.

In the final phase of testing, the calculation of pH

was added to the GUI to complete the applet. Again, all

functions and calculations performed without any failures.

1.3.6.2 Availability. This applet is available

anytime the GTSS server is running. Presently, the server

runs 24 hours a day and seven days a week.

1.3.6.3 Security. There is no security, such as

passwords, required by this applet. The idea is for open

33

access to the titration applet. It is the server*s

responsibility to provide the security needed by the GTSS

programs. The applet does not have access to the files on

the server other than the ones needed for the application

to run.

1.3.6.4 Maintainability. The applet runs in the Java

1.3 environment. If the Java Runtime Environment used by

the GTSS server is updated, then the Java code for this

project will need to be recompiled and reinstalled. There

are no other maintenance requirements for this applet.

1.3.6.5 Portability. Java as a programming language

was designed to run on most platform types. For the

Internet user, the applet will port to any computer with

the proper Java enabled browser. For the user, who

downloads the code, they will need a copy of the Java

Developer's Kit (JDK).

34

CHAPTER TWO

NUMERICAL ANALYSIS OF

TITRATION EQUATIONS

2.1 Titration Equations

Several interesting problems developed during this

project. First, it was assumed the acid-base pH equations

commonly found in chemistry texts would work with no

problem. However, this was not the case. A brief

discussion of some chemical principles is required to be

able to illustrate what had to be overcome. The main goal

of this1 project was to develop a teaching tool, which deals

with acid-base titrations. One of the sub-goals was to

make it as accurate as possible with no artificial

limitations imposed. Therefore, the simulator and the data

produced needed to provide several things. First, it must

react in a manner like the real world problem, such as,

strong base versus weak acid, or polyprotic systems.

Second, the algorithm needed to provide smooth, continuous,

and chemically accurate curves which would allow the

mathematical analysis to work properly.

35

A monoprotic strong acid being titrated with a

monoprotic strong base was the first case to be

investigated. The generic equation is:

HA + BOH —> BA + I~I7O (Equation 1)

HA is the acid; BOH is the base; and BA is a salt.

The equation can be reduced to just the ions which react

with each other. The two normal forms are:

H+ + OH~ —» H2O (Equation 2)

H2O+ +OH~ —>2H2O (Equation 3)

H+ is a Hydrogen ion; H30+ is the Hydronium ion; OH' is the

Hydroxide ion; and H20 is water.

The two equations above are the same from a chemical point

of view. H+ and H30+ designate the same acidic unit and

will be used interchangeably throughout this project. In

the strong acid-strong base system, there are no buffer

systems or dissociation factors to deal with and pH is

easily determined from the concentration of the H30+ ion, or

[H3O+] . The pH range in a water solution is limited to 0.00

to 14.00, with the neutral point of 7.00. At the start of

a typical titration of this type, the acid concentration

determines the pH. At the endpoint or neutralization

point, the pH of water is the overriding factor. Finally,

36

after the endpoint, the concentration of the basic solution

determines the pH. Chemistry texts (1, 3, 8) give the

following equations:

Before endpoint, pH = -log[7/3(9+] (Equation 4)

At endpoint, pH = 7.00

After endpoint, pH = 14 + log[QH~] (Equation 5)

However, buried in the fine print is the statement that the

H3O+ ions provided by water can be ignored. In fact, this

is not true, as Table 1 and Table 2 demonstrate. As can be

clearly seen, the error in calculated pH increases as you

near the endpoint of 7.00. For pHs between 6.00 and 7.00,

Equation 1 produces erroneous results. The problem mirrors

itself on the other side of the endpoint as well between

pHs of 7.00 to 8.00.

Table 2. Error in Hydronium Ion Concentration

Calculated

PH

[H3O+] from
Acid

[H3O+] from
Water

[H3O+] total Percent
error in
[h30+]'

1.00 0.1000000 0.0000001 0.1000001 0.0001

2.00 0.0100000 0.0000001 0.0100001 0.001

3.00 0.0010000 0.0000001 0.0010001 0.01

4.00 0.0001000 0.0000001 0.0001001 0.10

5.00 0.0000100 0.0000001 0.0000101 1.00

6.00 0.0000010 0.0000001 0.0000011 10.00

7.00 0.0000001 0.0000001 0.0000002 100.00

37

Table 3. Error in pH to Two Decimal Places

Calculated pH Actual pH Percent pH error
1.00 1.00 0.00
2.00 2.00 0.00
3.00 3 . 00 0.00
4.00 4.00 0.00
5.00 ■5.00 0.00
6.00 5.96 0.67
7.00 6.70 4.29

While the errors in pH look acceptable, clearly the

errors in concentration are large enough to cause problems.

An examination of several texts showed that they carefully

selected the conditions of their examples so the error was

minimized. In fact, it is possible to.limit the

concentrations and minimum drop size so that this problem

can be avoided but this defeats our goal of having "no

limitations." In addition, the errors cause the graphing

program to produce very unsatisfactory results. The

limitations of these equations caused some artificial

factors to be introduced, which were unwanted but

necessary. By careful selection of starting concentrations

and limiting drop size, the areas of pH = 6.00 to pH = 6.99

and pH = 7.01 to pH = 8.00 could be avoided. Once the

38

limitations were implemented, the model appeared to work

correctly and produced satisfactory results.

The next case examined was a weak monoprotic acid with

a strong monoprotic base; the generic equation is:

HA —«—— H1" + A (Equation 6)

Ka is the dissociation constant.

Unlike the strong acid, the weak acid only partially

dissociates in the water solution. The dissociation

constant, Ka, is determined by the equation:

Ka = (Equation 7)
[HA]

[H+] is the Hydrogen ion concentration.
[A’] is the anion concentration.
[HA] is the concentration of the un-dissociated
acid.

Now the pH curve has to be broken down into four

regions: 1) Before Base • is Added, 2) Before the Equivalence

Point, 3) At the Equivalence Point, and 4) After the

Equivalence Point. Again, the equations were readily

available in the chemistry texts examined (1, 3, 8).

Before the starting of the titration (the first region),

39

the equation to determine pH is determined by the initial

concentration of the acid, [HA], and it's dissociation

constant, Ka:

—1— = Ka => [H+] => pH (Equation 8)

The left side of the Equation 8 allows the calculation of

the [H+] and then the pH. Once the titration has started

(the second region), a buffer solution is formed and the

following equation is used:

p/^ptfa + log-^
[HA]

(Equation 9)

the third region is no longer at a pH of

calculated with the following equations:

= Kb - => [QH~] (Equation 10)
Ka

The endpoint or

7.00 but can be

M~]2
([/£4]-M-])

pH = - log
Kw

[OH-}
(Equation 11)

Once the endpoint is passed or in the last region, the

concentration of basic solution was again calculated with

Equation 5. The same problem reappeared. Four different

and independent equations would not generate points that

constitute a smooth curve. For each weak acid-base system,

40

a different "fudge" factor was required to make the

equations work.

The Internet was checked to see if someone else had

solved this problem. Several pH titration programs were

found but conditions were very limited, such as, pKa was

limited to a range of 4.0 to 6.0. Again, the goal is to

have a simulator, which would be able to perform the same

range of experiments the normal student would find in their

classroom setting. The normal equations were just not

working.

A search in the chemistry publications was started to

try to find the limits of the available equations and for

possible new equations. An article was found in which Dr.

Robert de Levie talked about a "different" way to tackle

this problem (5). A search was conducted for earlier Dr.

Robert de Levie articles. In one of his earlier articles,

a new set of equations was found (6). His approach was not

to try to find the pH as the titration is being performed,

but to use the pH and find the conditions that would have

to be present to produce it. Specifically using the

starting conditions and the pH to determine how much

titrant had been added. The best part is that one set of

41

equations are used to produce the points for the pH curve

(Equation 12)

(Equation 13)

or as Dr. Robert de Levie calls it a progress curve, and it

doesn't matter whether it is strong, weak, monoprotic or

polyprotic:

r r gtc,+m-[o.g-])
' ' (2k,c, +in]-[ow;j)

p _ ___

j=0 i=0

Vt is the titrant volume added
Vs is the sample volume
Ct is the titrant concentration
Cs is the initial sample concentration
H is used as shorthand for [H+]
K0=l
"p" denotes the maximum number of dissociable
protons an acid or base can accommodate
"q" defines the actual number'of protons associated
with a particular species

For monoprotic acids, the F factor is:

F = (Equation 14)

For diprotic acids, the F factor is

(-HK, -2K,K2)
(H2 +HK, +K,K2)

(Equation 15)

42

For triprotic acids, the F factor is:

(~H2K} + 2HK}K2 -3K,K2K3)
(H2 +H2K, + HK,K2 + K,K2K3')

(Equation 16)

The above equations, derived from Equation 13, are just

shown for illustration and will not be explained. How they

were developed and how they work are discussed in Dr.

Robert de Levie's two referenced articles (5, 6) . It is

understood that these equations form the basis for the

program.

The next step is to determine the methodology required

to use these equations to simulate the function of a pH

meter. The accuracy needed by the pH meter in this

simulator was determined to be able to show 0.01 pH units.

This is the accuracy of the pH meter that most students

will find in the laboratory.

During the simulation, the user dispenses a volume of

titrant each time a button is selected. This changes the

overall volume of the solution and causes a virtual

reaction between the acid and base ions. Both of these

affect the resulting pH. However, Equation 12 is used to

calculate the volume of titrant from the pH and initial

concentration of reactants, not the other way around.

43

In order to use Equation 12 to simulate a titration,

the approach is to calculate all the available points on

the curve once the system has been selected but before the

first volume of titrant is added. The program calculates

the required titrant volume added for all the possible

displayed pH values and stores them in an array. The

during the titration, the program searches the array for

the closest.calculated volume added to the actual volume

added by the simulation user and displays that pH.

Equation 12 has a unique feature. For non-valid pH

values, the equation produces negative value results. The

algorithm in the simulator starts in the middle of the pH

ranges, 7.00, and works out in both directions until.a non-

valid result is found to determine valid values for

storage. The accuracy of the simulator's pH meter is 0.01

pH units. The TitrationEngine class calculates values for

every 0.001 units of pH. The results of this algorithm are

stored into two objects. One is a Java Vector object of

Java Point2dDouble objects, which the GraphPanel class is

able to display as the computer-generated pH curve. The

other is a two dimensional array of Java Double objects of

all the possible pH and volume added values. As the size

44

of a drop of titrant is fixed, it is possible and very

likely that an exact match of volume added and pH is

impossible. The algorithm searches the array for the

closest match and returns that value to be displayed in the

simulator's pH meter. The look of the curves generated

shows the success of this algorithm.

2.2 Graph Scales

Once the equations were working properly and without

limitations, the scale for the various plots had to be

determined. The size of the pH plots is very straight

forward. The pH scale goes from 0.00 to 14.00 and the

buret chosen is 50.00 mLs in capacity. However, the size

of the graphs when displaying the first and second

derivatives was not clear-cut. It turns out that the

height of these curves can be very large. Using the Demo

cases for each, the height of the Y-axis for the first

derivatives was determined to be about 3 00 0 A(pH)/A (mLs)

units for the monoprotic acids, 18 A(pH)/A (mLs) units for

the diprotic acids, and 0.7 A (pH) /A (mLs) units for the

triprotic acids. Of course, if the limit was set at 3000

A (pH)/A (mLs) units, all the other lines disappeared at the

bottom of the graph. Even when the limit was set at 18

45

A (pH) / A (mLs) units, the smaller peaks were very hard-to

see. Therefore, it was determined to set values which

would cut off the top of the larger peaks but would allow

the smaller peaks to be displayed. The Y-axis scale was

set to three A(pH)/A (mLs) units for the monoprotic

systems, two A (pH)/A (mLs) units for the diprotic, and one

A (pH)/A (mLs) unit for the triprotic. Even with the top of

the larger peaks cut off, it is clear where the peaks would

be.

As for the second derivative peaks, the monoprotic

system was above 8,000,000 A (A (pH) / A (mLs))/A (mLs) units,

the diprotic was over 3 00 A (A (pH)/A (mLs))/A (mLs) units,

and the triprotic was around 0.5 A (A (pH) / A (mLs))/A (mLs)

units. The endpoint is now found when the curve crosses

the X-axis. So it was determined in order to have the best

view of these crossings to limit the Y-axis scale to plus

and minus 0.5 A (A (pH)/A (mLs))/A (mLs) units. The X-axis

scale remained from 0.0 to 50.0 mLs for all graphs.

One last comment on the size or readability of the

graphs, it is not possible to read the endpoints of the

titration with any real accuracy from the graphs. The

graphs are just to show the trends and give the user an

46

idea of what their results should look like. If the user

wants accuracy, they will need to record the pH and volume

during titration, just as if they were in the laboratory.

The program does no recording of data but displays only the

current conditions. See Appendix D for an example of a

method to store the data in an Excel spreadsheet. It also

shows how to use Excel's chart function to find the

endpoints.

47

CHAPTER THREE -

DESIGN

' 3.1 Architecture (Class Diagram)

In Figure 19,, the overview of the class structure can

48

be seen. Note that the details of each class were not

included, as this would make the figure too large.

Therefore, each class will be listed separately. In Table

4, GTSSChemApplet's class diagram is shown.

Table 4. GTSSChemApplet Class Diagram

GTSSChemApplet
GtssChemFrame : SGFrame
StoredData : TitrationData
GraphPanel : GraphPanel
PHMeter : pHMeterPanel
Titration : TitrationEngine
UserValues : UserSupplied
Init() J void
Validate() : void
GtssChemFrame.pack() : void
GtssChemFrame.show() : void
paint() : void
destroy() : void
getSGFrame() : SGFrame
setSGFrame() : void

Once the user selects the link to the applet, the

GTSSChemApplet class is started. It has the Init()

function, which takes the place of the main() function and

is executed first. This class has associations with the

major classes of this project: SGFrame (Table 5), and

UserSupplied.

49

Table 5. SGFrame Class Diagram

SGFrame
split : JSplitPane
componentl : JComponent
component2 : JComponent
menuBar : JmenuBar
frame : JFrame
contentPane : Container
SGFrame(String title, JComponent aComponentl,
Jpanel aComponent2, TitrationEngine _titration,
TitrationData _storedData) :
SetLeftComponent(JComponent component) : void
SetRightComponent(JComponent component) : void
Windowclosing(WindowEvent e) : void
WindowOpened(WindowEvent e) : void
WindowClosed(WindowEvent e) : void
Windowlconified(WindowEvent e) : void
WindowDelconified(WindowEvent e) : void
WindowActivated(WindowEvent e) : void
WindowDeactivated(WindowEvent e) : void
AddMenu() : void

This class creates the frame in which the applet runs.

It sets up the frame with two panels. It associates with

TitrationData, TitrationEngine, GraphPanel, pHMeterPanel

(Table 6), and UserSupplied (Table 7).

50

Table 6. pHMeterPanel Class Diagram

PHMeterPanel
Nf : NumberFormat = Number Format.getNumber()
GridLayoutl : GridLayout = new GridLayout(8, 0)
MachineTitleOnePanel : JPanel = new JPanel
MachineTitleOneLabel : JLabel = new JLabel
MachineTitleTwoPanel : JPanel - new JPanel
MachineTitleTwoLabel : JLabel = new JLabel
TitrationTitlePanel : JPanel = new JPanel()
TitrationTitleTextField : JTextField = new
JTextField(20)
PHPanel : JPanel = new JPanel() .
PHLabel : JLabel = new JLabel()
PHTextField : JTextField = new JTextField()
AddedVolumePanel : JPanel = new JPanel()
AddedVolumeLabel : JLabel = new JLabel()
AddedVolumeTextField : JTextField = new JTextField()
AddLabelPanel : JPanel = new JPanel()
AddLabel : JLabel = new JLabel()
AddButtonOnePanel : JPanel = new JPanel()
add5mlsButton : JButton - new JButton("+ 5
addlmlsButton : JButton = new JButton("+ 1
addButtonTwoPanel : JPanel = new JPanel()
add_25mlsButton : JButton = new JButton("+
add 05mlsButton : Jbutton = new JButton("+

00 mis")
00 mis")

0.25 mis")
0.05 mis")

PHMeterPanel (TitrationEngine _titration,
TitrationData _storedData) :
SetNewPanel(SGFrame gtssChemFrame, GraphPanel
graphPanel) : void

The pHMeterPanel is the class with the controls and

displays of the pH Meter and is displayed in the left half

of the frame. It associates with TitrationData and

TitrationEngine.

51

Table 7. UserSupplied Class Diagram

UserSupplied
title : String
demo : boolean
numProtic : int
Kai : double
Ka2 : double
Ka3 : double
EndPoint : double
UserSupplied() :
GetTitleO : String
SetTitle(String NewTitle) : void
GetDemo() : boolean
SetDemo(boolean new Demo) : void
GetNumProtic() : int
SetNumProtic(int newNumProtic) : void
getKal() : double
setKal(double newKal) : void
getKa2() : double
setKa2(double newKa2) : void
getKa3() : double
setKa3(double newKa3) : void
getEndPoint() : double
setEndPoint(double newEndPoint) : void

The UserSupplied class is used to set the default

acid-base system used in the applet. This class has also

been designed to be used by users to input acid-base

systems not included in this applet.

The Derivative class, Table 8, is used to

mathematically take the derivative of the pH curves. It

has been added as an engine to the GTSS sytem.

52

Table 8. Derivative Class Diagram

Derivative
lowY : double = 0
lowX : double = 0
highY : doouble = 0
highX : double =: 0
first : boolean = true
Derivative() :
GetDerivative(Vector testVector) : Vector
GetLowY() : double
GetLowX() : double
GetHighY() : double
GetHighX() : double

StudentMultiGraph, PlotMultiGraph,

SecondMultiGraph, and FirstMultiGraph are all classes,

which are used to pass the vector with the plot points to .

GraphPanel. They all have a constructor and a function,

which returns the Vector. StudentMultiGraph, Table 9, gets

the stored data and returns a vector which is used to plot

the users pH curve.

Table 9. StudentMultiGraph Class Diagram

S tudentMult iGraph

StudentMultiGraph(TitrationData _storedData) :
GetPlotPoints() : Vector

PlotMultigraph, Table 10, is used to display both the

user and the computer's pH curves.

53

Table 10. PlotMultiGraph Class Diagram

PlotMultiGraph

PlotMultiGraph(TitrationData _storedData) :
GetPlotPoints() : Vector

FirstMultiGraph, Table 11, is used to display the

first derivatives of the pH curves.

Table 11. FirstMultiGraph Class Diagram

FirstMultiGraph

FirstMultiGraph(TitrationData _storedData) :
GetPlotPoints() : Vector

SecondMultiGraph, Table 12, is used to display the

second derivatives of the pH curves.

Table 12. SecondMultiGraph Class Diagram

SecondMultiGraph

SecondMultiGraph(TitrationData _storedData) :
GetPlotPoints() : Vector

The GraphPanel, Table 13, class is used to display all the

data produced by this applet in the right side of the

54

Table 13. GraphPanel Class Diagram

GraphPanel
PlotPoint[] : Vector
XRangeLow :
XRangeHigh
YRangeLow :
YRangeHigh

maxDataScaled
minScaleValue
maxScaleValue

double = 0.0
double = 50.0

double = 0.0
double = 14.0

mutli : boolean = false
graphColor[A] : Color = {Color.red, Color.black,
scaleColor : Color = Color.blue
fontcolor : Color = Color.black
panelWidth : int
panelHeight : int
leftOffset : int = 28
right bffset : int = 18
topOffset : int = 18
bottomOffset : int = 28
tickDivisions : int = 5
graphWidth : int
graphHeight : int
drawAxes : boolean = true
drawAtEdges : boolean = false
minDataScaled : double

: double
: double
: double

nf : NumberFormat = NumberFormat.getNumber()
xMaxFractionDigits : int = 2
yMaxFractionDigits : int = 2
f : Font = new Font ("Serif" , ...
loglO : double = Math.log(10.0)

55

Table 14. GraphPanel Class Diagram - Continued

GraphPane(MultiGraphlF multiGraphlF):
GraphPanel(GraphlF graphlF) :
SetMaxFractionDigits(double max, double min) : int
paint (Graphics g) : void
scaleX(double x) : int
scaleY(double y) : int
paintHorizontalScale(Graphic g, double hScalePosition)
: void
paintVerticalScale(Graphic g, double vScalePosition) :
void
setViewport(double _xRangeLow, double _xRangeHigh,
double _yRangeLow, double _yRangeHigh) : void
setGraphColor(Color color) : void
setGraphColors (Color color[]) : void
setScaleColor(Color color) : void
setFontColor(Color color) : void
setTickDivisions(int value) : void
setDrawAxes(boolean value) : void
isDrawAxesO : boolean
setDrawAtEdges(boolean value) : void
isDrawAtEdges() : void
setMultiO : boolean
setXRangeLow(double _xRangeLow) : void
setXRangeHigh(double _xRangeHigh) : void
setYRangeLow(double _yRangeLow) : void
setYRangeHigh(double _yRangeHigh) : void
update(Observable o, Object x) : void
AttachObservable(TitrationData storedData) : void

frame. It has two constructors. GraphPanel(GraphlF

graphlF) is used when there is only one line to display

(not used by this applet). GraphPanel(MultiGraphlF

multiGraphlF) is used when multiple lines are displayed.

The function SetMaxFractionDigits(double max, double min)

is used to set the number of digits in the scales. The

56

scales for the axes are set with scaleX(double x) and

scaleY(double y). Paint(Graphics g) function calls the

Java super class Paint() and draws the graphs. The

functions

paintHorizontalScale(Graphic g, double hScalePosition)

and

paintVerticalScale(Graphic g, double vScalePosition)

are used if the vertical and horizontal scales are to be

included. The function setViewport(double _xRangeLow,

double _xRangeHigh, double _yRangeLow, double _yRangeHigh)

is used to set the size of the area to be displayed.

TitrationData, Table 15, is the'class, which stores

the ideal vector and adds the user's inputs to the student

vector.

57

Table 15. TitrationData Class Diagram

TitrationData
pH : double
volumeAdded : double = 0.0
maxVolume : double = 50.0
idealVector : Vector
lowY : double = 0
lowX : double = 0
highY : double = 0
highX : double =0
TitrationData(TitrationEngine _titration) :
AddToStudentpHPlotVector(Point2D.Double newData) :
void
Changed() : void
GetLowY() : double
GetLowX() : double
GetHighY() : double
GetHighX() : double
SetLowY(double _lowY) : void
SetLowX (double __lowX) : void
SetHighY(double _highY) : void
SetHighX(double highX) : void

TitrationEngine, Table 16, is the class, which does

the work for the applet. It takes the acid-base parameters

and calculates the ideal vector. It also takes the volume

added and calculates the pH of the solution.

58

Table 16. TitrationEngine Class Diagram

TitrationEngine
HSOmolar : double
OHMolar : double
AcidMolar : double
InitialAcidVolume : double = 10.0
BaseMolar : double =0.10
EndPoint : double = -1
Kw : double = Math.pow(10, -14)
Kai : double = 1
Ka2 : double = 0
Ka3 : double = 0
demo : boolean = false
numProtic : int = 1
maxVolume : double = 50.0
minpH : int = -1
maxpH : int = -1
volumeTitrateAdded[A] : double = new double [1400]
title : String
TitrationEngine() :
TitrationEngine(String title, boolean demo, int
numProtic, double Kai, double Ka2, double Ka3, double
endPoint) :
pHCal (double volumeAdded) : double
initialpH idealVector() : Vector

GraphlF and MultiGraphlF are the interfaces used

by GraphPanel to get the vectors with the plot points.

They only have one function, which returns the vectors to

be plotted. Their class diagrams are not listed as they

are GTSS engines and are used un-modified by this^applet.

59

3.2 Detailed Design (Pseudo-Code)

This section deals with the pseudo-code of this

applet. The tables are divided into two parts. The first

part shows the overall scope of the class: class name,

where used, purpose and note. The second part shows the

pseudo-code.

For this project to run as an applet over the

Internet, the browser firsts loads a HTML file from the

GTSS web site. The file, GTSSChemApplet.html, contains the

link to GTSSChemApplet.java (Table 17).

Table 17. GTSSChemApplet Pseudo-Code

Class Name GTSSChemApplet
Where Used GTSSChemApplet.html
Purpose Starts the Applet
Note GTSS Web Site, Chemistry Page
Begin

Declare and Create Global Classes
TitrationEngine
TitrationData
pHMe t e rPane1
GraphPanel
UserSupplied

Setup Display
Call SGFrame ■

End

60

This declares and creates the classes used by the

applet as well as the Window frame in which the program

runs on the user's computer.

The frame is created by SGFrame (Table 18). It uses

two sides and a menu bar. The left panel is filled with

the buttons, labels, and current values used by the pH

meter. The right panel displays the results of the

graphing functions of the program: pH titration, first

derivative, and second derivative curves. The menu bar is

created and all the options of the program are displayed.

Table 18. SGFrame Pseudo-Code

Class Name SGFrame
Where Used GTSSChemApplet
Purpose Sets up the Display area
Note Main frame of the program
Begin

Create left panel from pHMeterPanel
Create right panel from GraphPanel
Create Menu Bar

Select Titration System
Select Graph to be displayed
Repeat Titration

Once selected create new left and right
panels and update display

Display frame
End

61

Once a titration system has been selected, the

TitrationEngine class, Table 19, calculates the "ideal" or

computer generated pH curve and stores the results into a

vector to be used by GraphPanel. The results are also

stored in an Array, which is used during the user's

titration to determine current pH.

Table 19. TitrationEngine Pseudo-Code

Class Name TitrationEngine
Where Used SGFrame
Purpose Calculates the pH curve
Note Calculates pH during titration as well
Begin

Get the required parameters
Calculate Volume Titrant Required Array
Calculate the "ideal" pH curve vector
Using the Array, find pH which corresponds

titrant volume when passed by pHMeterPanel
End

The TitrationData class, Table 20, is used to store

the results of the user's titration. After each addition

of titrate, the current pH is obtained from the

TitrationEngine and is added to the user's vector.

GraphPanel is then updated to display current vectors.

62

Table 20. TitrationData Pseudo-Code

Class Name TitrationData
Where Used SGFrame
Purpose Stores all the data during a titration
Note Notifies GraphPanel when to update

display
Begin

Initialize the parameters
Store values during titration
Create vector of student points during titration
Notify GraphPanel when a hew point has been

created
End

The GraphPanel class, Table 21, is used to graph the

data created by this program. It set ups the colors for

the different curves, the size of the pH and Volume Added

axis, and displays the current values.

Table 21. GraphPanel Pseudo-code

Class Name GraphPanel
Where Used SGFrame
Purpose Converts vector data into graphs
Note Notified by TitrationData of new points
Begin

Initialize the right panel
Setup the colors
Size of the X axis and Y axis
Setup labels

Get vectors and create graphs
Update display

End

63

The pHMeterPanel class, Table 22, allows the user to

manage the titration and display the results. It displays

the current titration system, volume added, and pH value.

Table 22. pHMeterPanel Pseudo-Code

Class Name pHMeterPanel
Where Used SGFrame
Purpose Dispensing the titrant during the

titration
Note Displays the data during the titration
Begin

Initialize the left panel
Setup the colors
Create the display windows
Create the dispense buttons
Label the panel

If button is depressed
Pass volume of titrant selected to

TitrationData
Display returned values

End

The StudentMultiGraph class, Table 23, uses the GTSS

interface, MultiPlotIF, to pass two vectors to GraphPanel.

The first is a dummy vector and is hidden under the axis

lines. It is needed as MultiPlotIF requires more than one

vector. ’ The second is the user's pH vector.

64

Table 23. StudentMultiGraph Pseudo-Code

Class Name StudentMultiGraph
Where Used GraphPanel
Purpose Passes vectors to GraphPanel for display
Note Doesn't display the "ideal" pH curve
Begin

Get student vector from TitrationData
Create a dummy vector (hide under axis lines)
Pass vectors to GraphPanel

End

The PlotpHMultiGraph class, Table 24, is used to pass

two vectors to GraphPanel to be displayed. The first is

the user pH curve and the second is the "ideal" curve,

which is computer generated.

Table 24. PlotpHMultiGraph Pseudo-Code

Class Name PlotpHMultiGraph
Where Used GraphPanel
Purpose Passes vectors to GraphPanel for display
Note Both Student and "ideal"
Begin

Get student and "ideal" vectors from
TitrationData

Pass vectors to GraphPanel
End

The FirstMultiGraph class, Table 25, is use to display

the mathematical analysis of the pH curves. It gets the

two vectors like before but now it sends them to the

65

derivative class to have the first derivative of each curve

calculated.

Table 25. FirstMultiGraph Pseudo-Code

Class Name FirstMultiGraph
Where Used GraphPanel
Purpose Passes vectors to GraphPanel for

display
Note First derivative of pH curves
Begin

Get student and "ideal" vectors from
TitrationData

Create Derivative class
Create derivative vectors from student and

"ideal"
Pass vectors to GraphPanel
Pass the scale of the graphs to GraphPanel.

End

The SecondMultiGaph class, Table 26, is used to

display the second derivative of the curves. It gets the

two vectors and passes them to the derivative class. The

resulting vectors are then passed to'the derivative class

again to produce the second derivative.

66

Table 26. SecondMultiGraph Pseudo-Code

Class Name SecondMultiGraph
Where Used GraphPanel
Purpose Passes vectors to GraphPanel for display
Note Second derivative of pH curves
Begin

Get student and "ideal" vectors from
TitrationData

Create Derivative class
Create derivative vectors from student and

"ideal"
Repeat to obtain second derivatives of the

vectors
Pass vectors to GraphPanel
Pass the scale of the graphs to GraphPanel

End

The last class is the Derivative class, Table 27. It

accepts the input vectors and returns the calculated

derivative vector.

67

Table 27. Derivative Pseudo-Code

Class Name Derivative
Where Used FirstMultiGraph & SecondMultiGraph
Purpose .Take the .derivative of the curve
Note ,
Begin ,

Get passed vector
If Vector is too small

Return a;vector .'-wjLth'one. point (0,0)
Else . v ‘ '

' Loop through'vector* ,
... Get Objects stored at i, i+1

Convert Objects into X, Y
' ' . Calculate derivative.

Create a new Object
Store value and location in Object
Store Object in Returned Vector

End Loop
End If ’
Return the Created Vector

End

68

i

CHAPTER FOUR

OPERATING INSTRUCTIONS

4.1 Operating Instructions

The titration applet has two primary functions.

First, it is an acid-base titration demonstrator. The user

can titrate monoprotic, diprotic, and triprotic acids and

one base, NaOH. Using the selection menu, the user selects

the type of acid-base system to be demonstrated.

There are two type'of systems, one with fixed

endpoints and one where the endpoints are unknown. In the

Demo mode, the endpoints are fixed: 20.83 mLs for the

monoprotic acids and the base; 15.83 and 31.66' mLs for the

diprotic acids; and 10.83, 21.66, and 32.49 mLs for the

triprotic acids. Note that the smallest unit, which can be

dispensed is 0.05 mLs. 0.05 mLs was picked as the smallest

volume as it was felt that was the minimum size drop that

an average student could deliver with a buret. The size of

the drop the other buttons deliver was selected to allow

the ability to rapidly perform a titration while, at the

same time, have fine enough control to accurately duplicate

the conditions found in the laboratory. It is impossible

to stop exactly on these endpoints. It is felt this

69

simulates the experience the student would find in the

laboratory setting.

For non-demo acid-base systems, an unknown endpoint is

randomly generated. This simulates the type of problem the

user would face in the laboratory.

Once a titration is complete, the type of graph is

selected from the "Graph" menu, which is displayed on the

right side of the window. Selection of any of the items

from this menu ends the titration, that is, no more titrant

can be added. During the titration, the default screen is

the typical pH versus volume added graph created by the

user. The options are: pH Plot, 1st Derivative, and 2nd

Derivative. The "pH Plot" shows both the student titration

as well as the pH curve generated by the program. It

allows the comparison of the student's effort against the

"ideal." The second option shows the first derivative of

both these pH curves. The endpoints are mathematically

shown as the peaks of these new curves. The third option

displays the second derivative of the pH curves. The

endpoints are now when the curves cross the X-axis. The

student curve is always printed last so the computer's red

lines are covered by the student's black line.

70

The Repeat Titration Menu allows the same type of

titration to be repeated. If the same endpoint is

selected, the program is just reset and the titration is

started again. The idea is to allow the student to correct

any mistakes made during earlier titrations. In addition,

it allows the technique of quickly performing a titration

to coarsely find the endpoint and then refining the

endpoint on succeeding titrations. If the new endpoint

option is selected, a new endpoint is randomly generated by

the program: monoprotic from 20 to 45 mLs; diprotic from 15

to 24 and 30 to 48 mLs; and triprotic from 10 to 15, 20 to

30, and 30 to 45 mLs. (This option is over-ridden if the

Demo mode is selected.)

The other main function is to demonstrate the

principles of pH and the properties of weak acids. The

users can by-pass the titration phase. After selecting the

acid-base system, the user can select from the Graph Menu

and display just the computer-generated curves. The shape

of these curves clearly demonstrates many of these pH

principles.

71

4.2 Hints for the Instructor

This Acid-Base Titration Simulator has been designed

to allow the demonstration of several chemical principles.

Ethylamine(+1), one of the monoprotic acids, has a Ka such

that no endpoint can be seen during the titration. Several

of the diprotic and triprotic acids have endpoints, which

don't resolve. For example, D-Tartaric acid's Ka constants

are too close together to titrate properly. Phosphoric and

L-(+)-Arginine(+2) acids have their Ka3 values so small that

the third endpoint doesn't resolve properly.

The main goal was to allow you, the instructor, to

demonstrate the proper method to titrate acid-base

solutions without being in the laboratory setting. For

example, if the entire titration is performed with the

"+5.00 mLs" button, the endpoint can't be accurately

determined. However, it is one way to show how easy it is

to overshoot the endpoint.

The selection of the Demo option fixes the endpoint.

This way, the instructor can rapidly titrate to near the

known endpoint with the "+5.00 mLs" and "+1.00 mLs" buttons

and then slowly approach the endpoint with the "+0.25 mLs"

and "+0.05 mLs" buttons. For example, the monoprotic acid

72

endpoint of 20.83 mLs can be reached by four pushes of the

"+5.00 mLs" button (20.00 mLs), three pushes of the "+0.25

mLs" button (20.75 mLs), and one push of the "+0.05 mLs"

button (20.80 mLs). Then one more push of the "+0.05 mLs"

button will take you just past the endpoint to 20.85 mLs.

Of course, there are many other ways to reach this

endpoint.

One of the limitations of this program is the

inability to show exactly the magnitude of the student

error. There are times when looking at the graphs

displayed, the student error doesn't look that large. As

the largest amount that can be added-is 5.00 mLs, the

largest error is 2.50 mLs. This distance on the displayed

graph is quite small. Of course, this visual problem

increases with the use of the 1.00 mLs, the 0.25 mLs, and

the 0.05 mLs buttons. The mathematical analysis of these

errors is left to the instructor.

In addition, the height of the peaks for the first

derivative curves can be so large as to make the graph

unusable. The tops of the larger peaks are cut off but

there is no doubt, where the peak would be. The same is

true for the second derivative curves but now the endpoint

73

is where the curve crosses the X-axis. The scale of the

Y-axis was picked to allow the best viewing of these

crossings.

4.3 Hints for the Student

This program was designed for you. It will allow you

to titrate several different acid-base systems as many

times as you would like. The first hint deals with the

"Graph menu." The purpose of this menu is to show the

results of your titration efforts. Therefore, IT STOPS THE

TITRATION. There is no value in "looking ahead" as you

can't do that in the real world. So, complete any

titration before selecting a different graph to be

displayed. If you want to run the exact situation again,

select the "Repeat Titration" menu and click on "Same

Equivalence Point." The titration will be set back up

exactly as before.

Secondly, the graphs are not accurate enough for you

really see the value of taking the first and second

derivatives of the pH curves. The program also DOES NOT

RECORD the "pH" versus "volume added" values but only

displays the current values. Therefore, you should make a

74

table of pH versus volume added so you can do your own

graphs of the curves. Appendix E has an example of a

titration and the mathematical analysis required. This

example uses an Excel spreadsheet and the charts it is able

to create.

In the real world, the endpoint will be completely

unknown. Therefore, it is hard to determine how much

titrant to add. One way is to always add the smallest

amount possible but this takes a long time. Another method

is to run a titration using just the 5.00 mLs button.

While this won't find the endpoint accurately, it will get

you in the proper range. Run the titration again using the

5.00 mLs button but stop before reaching the endpoint point

area. Now use the 1.00 mLs button until past the endpoint.

Now you know the endpoint to plus or minus 1.00 mLs. Rerun

the same titration using the 5.00 and 1.00 buttons to

quickly arrive at a point just short of the endpoint and

now the 0.25 and 0.05 mLs buttons can be used to fine-tune

the endpoint.

75

4.4 Testing

The majority of the testing of this applet was

performed at Victor Valley (WCC) and Barstow (BCC)

Community Colleges. Chemistry students at WCC and

computer science students at BCC tested the prototype of

this program. There were no cases of a user being able to

crash or lock-up the applet. The only input from the user

is the mouse. This makes it almost impossible for the user

to do anything that will crash the applet.

This project was also presented to the Computational

Chemistry Council during one of its' conferences at

California State University-San Bernardino from 9-10 July

2001. During the poster presentation session, several of

the professors used the program. It received favorable

comments from all of them.

A copy of the questionnaire used is in Appendix A.

The questionnaire provided no trends or any statistically

valid data.

4.5 How to Input Your Own Acid System

For the users with some computer or Java experience,

it is possible to add your own acid to the applet.

76

However, this will require all the files to be downloaded

to the.user's computer and ran there.

Step 1. From the GTSS web site, download the files:

j2sdk-l_3_0_02-win.exe and ChemApplet.zip to the desktop or

other location on the user's computer.

Step 2. The first file is self-extracting and will

set up Java 1.3 on the user's computer (This procedure has

not been tested with other versions of Java). Double click

on the j2sdk-l_3_0_02-win.exe file and follow the

instructions to install Java 1.3.

Step 3. Create a new folder on the C drive called

GTSSChemJava and move or copy the ChemApplet.zip file into

it. Double click on it and extract all the files into the

folder.

Step 4. Using a text editor open the

GTSSChemApplet.html file. Using the search function,

locate the three places where the word GTSSChemJava is.

At the first location, insure that the line segment reads:

CODEBASE VALUE = "C:\GTSSChemJava\"

At the other two locations, insure that the line reads:

77

CODEBASE = "C:\GTSSChemJava\"

Of course if you put the files in another location, it will

be your responsibility to change the three CODEBASE values

to the proper path so the applet can find the required

files. Once the proper paths have been changed, save the

file.

Step 5. Load the UserSupplied.java file into the

text editor. There are several pieces of information

required: the title of the acid/base system, the demo mode,

the number of Hydrogen ions dissociated, the appropriate

dissociation constants, and the endpoint value. As you

read the instructions inside the file, you will see the

default values and examples of how to replace them with the

new values.

Step 5a. On the line of code:

title = "Sulfurous Acid with 0.1M NaOH";

delete Sulfurous and replace with the name of the new acid

(At this point, the only base is 0.1M NaOH).

Step 5b. The demo mode is used to fix the endpoint,

so that, it can not be changed by the program or the user.

demo = true; is used to fix the endpoint.

or

78

demo = false; is used to have random endpoints.

(Do not use quotes but only the words true or false with

all lower case letters.) If demo is set to true, a

nonzero or nonnegative value has be assigned to the

endpoint value in Step 5e.

Step 5c. Next, set the number of protons available

(ONLY VALUES of 1, 2, or 3 ARE VAILD).

numProtic = 1;

numProtic = 2;

is for monprotic acids

is for diprotic acids.

or

numProtic =3; is for triprotic acids. •

Step 5d. Now, the dissociated constants, the "Ka"s,

are entered. Use 1.0 for Kai for strong acids. Use zeros

for "Ka"s not used. The following is an example for a

monoprotic acid with a Ka = 7.1xl0’4:

Kai = 7.1 * Math.pow(10, -4);

Ka2 = 0.0;

Ka3 = 0,0;

(Java uses a function to calculate the value of 10’4. The

function is Math.pow(a,b). Where "a" will.always be 10 and

"b" the exponent.) Is an example of a diprotic acid:

Kai = 4.70 * Math.pow(10, -3);

79

Ka2 1.80 * Math.pow(10, -10);

Ka3 = 0.0;

The last is an example of a triprotic acid:

Kai = 1.0 * Math.pow(10, -4) ;

Ka2 =1.0 * Math.pow(10, -8) ;

Ka3 =1.0 * Math.pow(10, -12) ;

Step 5e. Lastly, the value of the endpoint is set.

Set endpoint to -1, if you want the computer to compute a

random endpoint or set endpoint to a value you want (ONLY

USE VALUES FROM 5.00 to 40.00 mL for monoprotic acids, 5.00

to 20.00 mL for diprotic acids, and 5.00 to 15.00 mL for

triprotic acids). For example, the following endpoint,

6.30 mL, allows the use of each of the 5.00, 1.00, 0.25,

and 0.05 mL buttons to find the endpoint:

endPoint = 6.30;

(Double check to see if the endpoint is set to -1 that the

demo mode is set to false.) REMEMBER, there is no error

checking preformed. It is up to the user to ensure the

values entered are correct. DO NOT CHANGE THE SPELLING OR

THE CASE (LOWER OR UPPER) OF ANY OF THE VARIABLES. Java

thinks endpoint and endPoint are two different things. Save

the changes and close the text editor.

80

Step 6. Once the changes have been made, the file

needs to be re-complied. Click on the "Start" button at

the bottom of the Window screen. Select "Programs" and

then "MS-DOS Prompt." You should see "C:/WINDOWS>" which

means you are in the Windows directory. Change the

directory to GTSSChemJava by the following commands.

Type:

cd . .

Type:

cd GTSSChemJava

Now, compile the new UserSupplied.java.

Type:

c:\jdkl.3.0_02\bin\javac UserSupplied;java

Test the results with appletviewer.

Type:

c:\jdkl.3.0_02\bin\appletviewer GTSSChemApplet.html

Once back in the Windows mode, the applet will also

run by double clicking on the GTSSChemApplet.html file and

then run in your browser. Have fun!

81

CHAPTER FIVE

MAINTENANCE

5.1 Files

The files for this applet are stored in the GTSS

Server Computer in Computer Science department. In

addition, all the files are copied on a CD ROM disk. A

copy of this disk is stored in the back of the hardbound

copy of this project stored in the Computer Science Office.

There are four main types of files used by this

applet: Java source code (*.java), compiled Java Unicode

(*.class), zip compressed files (*.zip), and HTML web pages

(*.html). Inside the HTML files, several graphic styles

are used, for example, jpeg, gif, and bmp.

The files found in Table 28 are the source files

created for this project. They are stored in ASCI format

and can be viewed and modified by a text editor type

program.

82

Table 28. Java Source Files

Derivative DoublePoint FirstMultiGraph
GraphlF GraphPanel GTSSChemApplet
MultiGraphlF PHMeterPanel PlotMultiGraph
SGFrame TitrationData SecondMu1itGraph
UserSupplied TitrationEngine S tudentMult iGraph

Table 29, shows the two HTML files. These are the

files used by the browser and are stored in ASCII format.

They can be viewed and modified by a text editor.

Table 29. HTML Files

GTSSChemApplet GTSSTitration

There is one zip file: GTSSChem.zip. This file was

created by the deployment wizard of the JBuilder3.0

program. It contains all the files needed to run the

applet once downloaded to the users computer.

When the source code is compiled with javaC.exe, forty

three files are created. These files shown in Table 5 are

the ones that the Java Virtual Machine executes to run the

applet.

83

Table 30. Compiler Created Class Files

SGFrame SGFrame?11 SGFrame?22 FirstMultiGraph
SGFrame$1 SGFrame?12 SGFrame?23 GTSSChemApplet
SGFrame$2 SGFrame?13 SGFrame?24 TitrationData
SGFrame$3 SGFrame?14 DoublePoint pHMeterPanel?1
SGFrame$4 SGFrame?15 MultiGraphlF pHMeterPanel$2
SGFrame$5 SGFrame?16 GraphPanel pHMeterPanel?3
SGFrame$6 SGFrame?17 Derivative pHMeterPanel?4
SGFrame$7 SGFrame?18 GraphlF PlotMultiGraph
SGFrame$8 SGFrame?19 UserSupplied SecondMulitGraph
SGFrame$9 SGFrame?20 PHMeterPanel TitrationEngine
SGFrame$10 SGFrame?21

5.2 Directories

In the GTSS Server Computer, there are several

directories or folders used by the GTSS project. The path

to find the main GTSS directory is \gtss\edu\csusb\gtss.

Upon opening the gtss directory, several folders are

displayed: csci for Computer Science, math for Mathematics,

phys for Physics, util for GTSS engines, stat for

Statistics and chem for Chemistry. Opening the chem folder

will display a titration folder in which all the applet

files are stored. Therefore, the total path to this applet

files is \gtss\edu\csusb\gtss\chem\titration. As. Java

skilled users can download and modify this applet, it was

felt that all files would need to be in one location. This

way a user would not have to download the entire GTSS

system to be able to use the titration demo at home.

84

5.3 How to Compile

The administrator of the GTSS Server Computer mapped

the Java compiler, javac.exe, so that it will run from any

directory on the computer. If there is a need to re

compile the applet, the first step is to delete all the

*.class files. Second is to run the Java compiler,

javac.exe, on the source code. Change the directory to

\gtss\edu\csusb\gtss\chem\titration\

Then, at the Linux prompt, \gtss\...\chem\titration\%,

type rm *.class

then

type javac GTSSChemApplet.java

Compiling the GTSSChemApplet.java file will cause the

compiler to compile the all source *.java files and

generate the *.class files for each Java source file.

If the files are moved to another directory or folder,

there are three places in the GTSSChemApplet.html file

where the "BASECODE = \GTSS\edu\csusb\gtss\chem\titration\"

variable needs to be changed. The BASECODE need to reflect

the path to the directory where the files were moved.

85

CHAPTER SIX

FUTURE DEVELOPMENTS AND

CONCLUSIONS

6.1 Ideas for Future Developments

There are several limitations to the program as

written. The first is there is no way to insert the data

required to titrate an acid-base system not already in the

"Select Titration" menu. The UserSupplied class is a

partial fix for this problem. If a Java skilled user

downloads the files, they would be able to change the

variables to that of their acid-base system and re-compile

Then run the applet on their computer.

This could be fixed by adding another menu, which

would allow the frame to display a form or window in which

to fill in all the required information. Once filled in

and checked for errors, it would pass the parameters to

various classes just like the "Select Titration" menu does

A better solution would be to design the applet to

access a spreadsheet or database to get the variables

needed to define an acid-base system. The user would be

able to download just the spreadsheet or database template

86

to their computer and add the new data. That way, the user

would not have to re-compile the java source code.

There are several limitations on the ability to add

just any acid-base system. The equations used in this

applet are based on a couple of factors: p and q. The

equation was written for systems where the p factor equals

the q factor. If you want to add an acid-base system where

the p factor equals three and the q factor equals two, for

example, then the equations in the titration engine would

have to be modified. In addition, the present program

stops at triprotic acids. Therefore, for acid-base systems

where the p factors are larger than three, the equations

would have to be changed.

The X-axis scale of the graph is fixed to 0.00 to

50.00 mLs, which displays the different curves. Another

possible enhancement is to be able to select different

areas of the graph and expand them. This would more

clearly show the magnitude of the student errors and

determine'?the endpoints more accurately.

As there is no recording,of results during the

titration, the student cannot go back and reconstruct the

data. Another enhancement would have the "pH" and "volume

87

added" values be displayed when the user places the cursor

on the displayed curve and the mouse button clicked. The

closest student data point values would be displayed. That

is, a student can reconstruct the data from the plots after

the titration is completed.

6.2 Derivative Engine

In the process writing the code for this applet, it

was determined that there was a need to perform a

mathematical analysis on a graphical curve, the pH curve.

The normal analysis includes the first and second

derivatives. At first, the Derivative Class was developed

to take a vector of DoublePoint Class objects and return

another vector with DoublePoint objects, which represented

the derivative curve. The DoublePoint Class was used by the

GraphPanel Class and was written for the GTSS project.

However, later versions of Java included a point object of

the type double, Point2dDouble.

Therefore, the development of the Derivative Class

switched to use the updated Java objects. The method to

find Ay/Ax, the derivative, of a curve involved taking

each pair of adjacent points (i, i+1) and performing some

simple mathematics. First, the value of Ay/Ax or Y value

88

was found by the equation: (Yi+i - Y±) / (Xi+i - Xi) . The X

value is found by the equation: (Xi+i + X±)/2 . This new

point with its' X and Y values is added to a new vector.

Once all the pairs had been analyzed, the vector with the

derivative curve is returned to' the GraphPanel class.

Once the class was working properly, it, was felt this

Derivative Class would work as a GTSS engine and could used

by other GTSS programs. Some of. the early GTSS programs

used the DoublePoint object and others used the newer Java

Point2dDouble objects. There is also another method to

store the X and Y values for a curve and that is to use a

two-dimensional array. To make this class as flexible as

possible, the Derivative Class was rewritten to use all the

objects listed above and was renamed DerivativeEngine

Class. Presently, the GTSS project doesn't use JavaBeans

but the style used in the development of this engine is

that of a JavaBean (10). This is for future development.

There are three interfaces needed to use this new

class. There is one for each type of object. The job of

these interfaces is to allow the DerivativeEngine Class to

use different types of objects. The first is ArrayDoublelF

and it uses the two-dimensional array of double type

89

objects. The second is VectorDoublePointIF and it uses a

vector of the DoublePoint type objects. The last is

VectorPoint2dDoubleIF and it uses a vector of Java

Point2dDouble type objects.

Copies of files are included in the GTSS utility

directory. The path is /gtss/edu/csusb/gtss/util. The

Java code for these files is in Appendix C.

6.3 Conclusions

All the design features proposed for this project have

been implemented in accordance with the Software

Engineering Standards Committee of the IEEE Computer

Society's IEEE Recommended Practice for Software

Requirements Specifications (7). The applet runs on the

GTSS Web site; it accurately demonstrates several acid-base

principles; and it allows users to practice titrations

outside the laboratory. The program does all that was hoped

for in the initial design phase.

The benefits of this applet are easily demonstrated.

For instructors, it has the ability to quickly and

graphically show the methods for acid-base titrations. The

pH curves generated clearly demonstrate several chemical

principles. When demonstrating techniques using laboratory

90

equipment, it is hard to have the entire class be able to

observe properly. In most modern classrooms, the applet

can be shown on the classroom TV or monitor, which allows

the whole class to watch at the same time. For students,

it allows them to practice acid-base titrations at the

their computer instead of in the laboratory with dangerous

and poisonous chemicals. They can progress at their own

pace. In the laboratory, the student is limited to the

number of acid-base titrations permitted. There are

unlimited titrations available while using the applet.

91

APPENDIX A:

QUESTIONNAIRE

92

QUESTIONNAIRE

This questionnaire is for Thomas Gummo's Masters Project,

acid-base titration demonstration applet.

Your help is requested in evaluating this program.

Check ______ student or ______ instructor.

Fill in educational institution

Were you able to crash the program? If so, HOW?

Did all the menus and buttons work properly?

How would, you change the menus or buttons?

Evaluate the setup of the menus and buttons?

Evaluate the choices for titration?

What additional features would you like?

Were you able to run the program on your system?

93

What computer system did you use?

What browser? Version?

Type of connection? Speed?

Was the speed adequate?

Evaluate the appearance of the program?

How would you change the appearance of the program?

Was the Web Page helpful?

How would you change the Web Page?

94

APPENDIX B:

TABLES OF DISSOCIATION

CONTANTS

95

TABLES OF DISSOCIATION CONSTANTS

The data for the following tables was obtained from the
following references.

Reference 1: "Quantitative Chemical Analysis," 4th ed.
Daniel C. Harris, W.H. Freeman: New York, 1995; Appendix G.

Reference 2: "Lange's Handbook of Chemistry", 14th ed. John
A. Dean, Ed. McGraw Hill: New York, 1992; 8.19-8.71.

Tablel. Ka Factors for Monoprotic Acids

Monoprotic Acid Name Reference Ka

Demo N/A 1.00
HC1 N/A 1.00

Sulfurous 1 1.4x10”
Nitrous 1 7.1x10”
Acetic 1 1.75x10”
Hypochlorous 1 3.0x10'“
Ethylamine(+1) 1 2.31x10"”

Table 2. Ka Factors for Diprotic Acids

Diprotic Acid Name Reference Kai Ka2

Demo N/A 1.00x10” 1.00x10”

D-Tartaric 2 9.20x10” 4.30x10”

Carbonic 1 4.45x10"' 4.69x10"”

Alanine(+1) 1 4.49x10” 1.36x10”°

Adenine(+1) 2 6.76x10” 1.78x10'”

L-Leucine(+1) 1 4.69x10” 1.79x10”°

96

Table 3. Ka Factors for Triprotic Acids.

Triprotic Acid Name Ref' Kai Ka2 Ka3

Demo N/A 1.00x10’“ ' 1. 00xl0"b 1.0 0x10’“

L-Glutamic(+1) 1 5.9x10’“ 3.8x10"“ 1.12xl0'lu

Phosphoric 1 7 . 11x10’“ 6.34x10’“ 7.1x10'““

L- (+) -Arginine (+2)' 1 1.50x10’“ 1.02X10"“ 3. 3x10’““

Tetracycline(+1) 2 5.01X10'* : 2.09x10'“ 2.04xl0’lu

Note 1: The Ka for a strong acid or base is 1.00 and is
common knowledge among chemistry students and instructors.

Note 2: The only base used by the program is NaOH and is a
strong base.

Note 3: N/A, not applicable, is used as the reference for
strong acids and the demo acids. Demo acid-base systems
had their Ka factors made up.

97

APPENDIX C:

DERRIVATIVEENGINE JAVA CODE

98

DERIVATIVEENGINE SOURCE CODE

DerivativeEngine.j ava
/* File DerivativeEngine.java*/

import java.util.Vector;
import j ava.awt.geom.*;

public class DerivativeEngine {

/I values to store the largest and smallest X and Y
// used by GTSS GraphPanel
private double lowY = 0;
private double lowX = 0;
private double highY = 0;
private double highx = 0;

// used to select case
private int typecase = 0;
// used to set up lows and highs
private boolean first = true;

// a Vector to store derivative plot points
public Vector returnedVector;
// a Vector to store testing plot points,
private Vector testVector;
// an Array to store "derivate plot points
public double []■ [] returnedArray;
// an Array to store testing
private double [] [] testArray;',

// constructor for a Vector of DoublePoints
public Derivative(VectorDoublePointlF inputVector) {

testVector = inputVector.getvector();
typecase = 0;

}

// constructor for a Vector of Point2D.Doubles
public Derivative(VectorPoint2dDoubleIF inputVector) {

testVector = inputVector.getvector();
typecase = 1;

}

// constructor for an Array of Doubles
public Derivative(ArrayDoublelF inputArray) {

int len;
len = inputArray.getArray().length;
testArray = new double[len] [2] ;
testArray = inputArray.getArray();
typecase = 2;

}

public void getDerivative () {
// each point has an X and Y
double xl, x2, yl, y2 ;
// temp values
double tempi, temp2;

99

if (typecase == 0){
// Vector has objects of type DoublePoint
DoublePoint pi, p2;
if (testVector.size() < 2) {

// vector too small - return vector with one point of 0,0
returnedVector.addElement((new DoublePoint (0.0, 0.0)));

}
else

I/ loop throught vector
for (int i = 1; i < testVector.size(); i++) {

// get the Point2D.Doubles from the vector
pi = (DoublePoint)testVector.elementAt(i-l);
p2 = (DoublePoint)testVector.elementAt(i);
// get the X's and Y's from the DoublePoint
xl = pi. getX () ;
yl = pl.getY();
x2 = p2.getX();
y2 = p2.getY();
// delta Y divided by delta X
tempi = (y2 - yl) / (x2 - xl) ;
// located at the average of the two X values
temp2 = (x2 + xl) / 2;
// add to returned vector
returnedVector.addElement(new DoublePoint(temp2, tempi))
// find the high and low values of new vector
// useful if vector is to be ploted by GraphPanel
if (first == true){

highY = tempi;
lowY = tempi;
highX = temp2;
lowX = temp2;
first = false;

}
if (tempi > highY){

highY = tempi
}
if (tempi < lowY){

lowY = tempi;
}
if (temp2 > highx){

highX - temp2;
}
if (temp2 < lowX){

lowX = temp2;
}

}
}

else if (typecase == 1){
// Vector has objects of type Point2D.Double
Point2D.Double pi, p2;
if (testVector.size() < 2) {

// vector too small - return vector with one point of 0,0
returnedVector.addElement((new Point2D.Double (0.0, 0.0)))

}
else
{

// loop throught vector

100

for (int i = 1; i < testVector.size(); i++){
// get the Point2D.Doubles from the vector
pi = (Point2D.Double)testVector.elementAt(i-1);
p2 = (Point2D.Double)testVector.elementAt(i);
// get the X's and Y's from the Point2D.Doubles
xl = pi.getx();
yl = pi.getY();
x2 = p2.getX();
y2 = p2.getY();
// delta Y divided by delta X
tempi = (y2 - yl) / (x2 - xl) ;
// located at the average of the two X values
temp2 = (x2 + xl) / 2;
// add to returned vector
returnedvector.addElement(new Point2D.Double(temp2, tempi))
// find the high and low values of new vector
// useful if vector is to be ploted by GraphPanel
if (first == true){

highY = tempi;
lowY = tempi;
highX = temp2;
lowX = temp2;
first = false;

} ■
if (tempi > highY){

highY = tempi;
}
if (tempi < lowY){

lowY = tempi;
}
if (temp2 > highX){

highX = temp2;
}
if (temp2 < lowX){

lowX = temp2;
}

}
}

}
else if (typecase == 2){

if (testArray.length < 2) {
// array too small - return array with one point of 0,0
returnedArray[0] [0] = 0;
returnedArray[0] [1] = 0;

}
else
{

11 loop throught array
for (int i = 1; i < testArray.length; i++){

// get the X's and Y's
xl = testArray[i-1] [0];
yl = testArray[i-1] [1];
x2 = testArray[i] [0];
y2 = testArray[i][1];
// delta Y divided by delta X
tempi = (y2 - yl) / (x2 - xl) ;
// located at the average of the two X values
temp2 = (x2 + xl) / 2;
// add to returned vector

101

returnedArray[i-1][0] = temp2;
returnedArray [i-1] [1] = tempi;
// find the high and low values of new vector
// useful if vector is to be ploted by GraphPanel
if (first == true){

highY = tempi;
lowY = tempi;
highX = temp2;
lowX = temp2;
first = false;

}
if (tempi > highY){

highY = tempi;
}
if (tempi < lowY){

lowY = tempi;
}
if (temp2 > highX){

highX = temp2;
}
if (temp2 < lowX){

lowX = temp2;
}

' }
}

}
else
{

// error
}

}

public double getLowY(){
return lowY;

}

public double getLowXO{
return lowX;

}
public double getHighY(){

return highY;
}

public double getHighX(){
return highX;

}

public Vector getVector(){
getDerivative();
return returnedVector;

}

public doublet] [] getArray(){
getDerivative();
return returnedArray;

}

}

102

ArrayDoublelF.j ava

/* 'File ArrayDoublelF.java */

I * *
* interface ArrayDoublelF defines the method necessary for
* DerivativeEngine
* ©version 1.0 TLG
*/

public interface ArrayDoublelF {

public doublet] [] getArrayO;

VectorDoublePointIF.j ava

/* File VectorDoublePointIF.java */

/**
* interface VectorDoublePointIF defines the method necessary for
* DerivativeEngine
* @version 1.0 TLG
*/

import java.util,Vector;

public interface VectorDoublePointIF {

public Vector getVector();
}

VectorPoint2dDoubleIF.j ava
/* File VectorPoint2dDouble.java */

/**
* interface VectorPoint2dDoubleIF defines the method necessary for
* DerivativeEngine
* (Aversion 1.0 TLG
*/

import java.util.Vector;
import j ava.awt.geom.*;

public interface VectorPoint2dDoubleIF {

public Vector getVector();
}

103

APPENDIX D:

SAMPLE OF AN EXCEL SPREADSHEET

104

SAMPLE OF AN EXCEL SPREADSHEET

A quick titration of the default acid-base system,

10.00 mLs solution with an unknown molarity of Sulfurous

Acid with 0.10M NaOH, was performed and the data stored in

an Excel spread., sheet

PH Vol dph/dvol ave! vol ddph/dvol ave vol
1.63 0.00 0.140 0. 500 0.020 1,000
1.77 1.00 0.160 1. 500 0.010 2.000
1.93 2.00 0.170 2 . 500 0.040 3.000
2.10 3.00 0.210 3 . 500 0.090 4.000
2.31 4.00 0.300 4 . 500 0.390 5.000
2.61 5.00 0.690 5 . 500 3.952 5.813
3.30 6.00 3.160 6 . 125 404.267 6.200
4.09 6.25 63.800 6 . 275 0.000 6.300
7.28 6.30 63.800 6 . 325 -404.800 6.400
10.47 6.35 3.080 6 . 475 -6.708 6.638
11.24 6.60 0.900 6. 800 -0.771 7.150
11.60 7.00 0.360 7 . 500 -0.190 8.000
11.96 8.00 0.170 8 . 500 -0.050 9.000
12.13 9.00 0.120 9 . 500 -0.015 12.250
12.25 10.00 0.038 15 . 000 -0.003 20.000
12.63 20.00 ■ 0.011 25 . 000 0,000 30.000
12.74 30.00 0.006 35 . 000 0.000 40.000
12.80 40.00 0.003 45 . 000
12.83 50.00

Sample Excel Spreadsheet.

The values recorded during the titration are! in the

first two columns of the’ above Excel. spreadsheet (pH from

the pH meter window and total volume from the volume added

window). The next two columns are the first derivative

105

values and the average of the volume added values. The

last two columns are the second derivative values.

PH vol dpH/dvol ave vol ddpH/dvol ave vol

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

After recording the experimental values in the

spreadsheet's A and B columns, dpH/dvol, C2, is set equal

to (A3-A2)/(B3-B2) and D2 is set equal to (B3+B2)/2. The

columns are then filled in using the "Fill Down" command.

E2 is set equal to (C3-C2)/(D3-D2) and F2 is set equal to

(D3+D2)/2. Again, the columns are filled in using the

"Fill Down" command. A complete set of instructions on how

to make spreadsheets and their charts will not be included

in this project. This example is just to show that it is

possible.

106

pH Curve

0.00 20.00 40.00 60.00
Volume Added

Excel Chart One.

Excel Chart One is an Excel chart of the pH curve

created from the first two columns of the spreadsheet.

Note that it is impossible to read the endpoint accurately.

The area around the endpoint needs to be expanded.

Even if the normal pH curve is expanded, Excel Chart

Two, it is hard to see exactly where the endpoint is

located on the curve. A better method is to plot the first

derivative of the pH curve.

107

pH Curve

14.00

__ Seriesl

Excel Chart Two.

Excel Chart Three.

108

Excel Chart Three plots the first derivative of the pH

curve, labeled delta, and expands the scale around the

endpoint. The endpoint is much easer to locate- and measure

accurately. The endpoint is the peak of the curve. The

peak is between 6.29 to 6.31 mLs but it is still hard to

determine exactly. However, the second derivative curve is

a better graph and allows a more expanded view.

Second Derivative

Excel Chart Four.

Excel Chart Four plots the second derivative of the pH

curve, labeled delta delta. When plotted against the

volume, the chart shows the endpoint where the line crosses

the X-axis. The volume added scale was once again expanded

109

to show the just the endpoint plus or minus 0.01 mLs. It

clearly shows that the endpoint is 6.300 mLs. Remember,

that there are only three significant figures in the volume

added numbers so the final answer is 6.30 mLs.

Now, with a 10.00 mLs sample and 6.30 mLs of 0.10M

titrant, the concentration of the sample can be calculated.

6.30mLs*0A0M
lO.OOmLs

= 0.063M

110

BIBLIOGRAPHY

1. John A. Dean, Lange's Handbook of Chemistry 14th ed. ,
McGraw Hill, New York, NY, 1992; 8.19-8.71.

2. Martin Fowler, UML Distilled, Addison-Wesley, Reading,
MA, 1997.

3. Daniel C. Harris, Quantitative Chemical Analysis 4th
ed., W.H. Freeman and Company, New York, NY, 1995;
Appendix G.

4. Steven Holzner, Java 1.2, SYBEX Inc., Alameda, CA,
1998 .

5. Robert de Levie, A general Simulator for Acid-Base
Titrations, Journal of Chemical Education Vol. 76,
No.7, July 1999; pp 987-991.

6. Robert de Levie, Explicit Expressions of the General
Form of the Titration Curve in Term of Concentration,
Journal of Chemical Education, Vol. 70, No. 3, March
1993; pp 209-217.

7. Software Engineering Standards Committee of the IEEE
Computer Society, IEEE Recommended Practice for
Software Requirements Specifications, IEEE, 1994.

8. Gershon J. Shugar and Jack T. Ballinger, Chemical
Technicians' Ready Reference Handbook Third Edition,
McGraw-Hill, Inc., 1990.

9. Charles Stanton, Javier Torner, and Arturo Concepcion,
GTSS: Generic Tutorial System for the Sciences,
Symposium at California State University, San
Bernardino, 23 October 1998.

10. Emily Vander Veer, JavaBeans for Dummies, IDG Books
Worldwide, Inc., 1997.

Ill

	An on-line acid-base titration applet in the generic tutorial system for the sciences project
	Recommended Citation

