A doctor-patient communication tool (DPCT)
Ryodoroku application on the web

Hongwei Bi
A DOCTOR-PATIENT COMMUNICATION TOOL (DPCT)

RYODOROKU APPLICATION ON THE WEB

A Project
Presented to the

Faculty of
California State University,
San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in
Computer Science

by
Hongwei Bi

December 2002
A DOCTOR-PATIENT COMMUNICATION TOOL (DPCT)
RYODOROKU APPLICATION ON THE WEB

A Project
Presented to the
Faculty of
California State University,
San Bernardino

by
Hongwei Bi
December 2002

Approved by:

Dr. David Turner, Chair, Computer Science

Dr. Richard J. Bowling, Computer Science

Dr. Arturo I Concepcion, Computer Science

Nov 27, 2002
Date
ABSTRACT

Doctor-Patient Communication Tool (DPCT) is a Web-based application that allows a Doctor to diagnosis patients remotely. The system is based on Ryodoraku, which is modern theory of diagnosis that has been refined from traditional Chinese medicine. There are many contemporary practitioners of Ryodoraku in the field of traditional medicine and its effectiveness has been supported by numerous case studies. Ryodoraku diagnosis relies on the collection of 24 electrical resistance measurements taken on various points around the hands, wrist, and feet. With DPCT, Patients input their symptoms and submit diagnostic data to their doctors remotely. Doctors give the instant diagnosis online. This system thus enables the regular collection of diagnostic data that can be used for a more comprehensive evaluation of patients’ health condition. Additionally, the system provides useful functionality to both doctors and patients: doctors can maintain DPCT database easily; patients can view their case histories and update their personal information without time and location restriction.
ACKNOWLEDGMENTS

I give sincere thanks to my advisor, Dr. David Turner, who provided me invaluable guidance through the entire project. Under his patient, knowledgeable, and clear guidance, my project and my knowledge grew quickly. I also express sincere appreciation to my committee members, Dr. Richard J. Botting and Dr. Arturo I Concepcion, for their valuable advice. At the same time, I give the thanks to Dr. Shaolin Yeh, president of Yeh Center of Natural Medicine, Inc. and Dr. Dianmin Shen who gave me the primary design idea and valuable diagnosis data and guidance.

The support of the National Science Foundation under award 9810708 is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER TWO: REVIEW OF RELATED WORKS</td>
<td></td>
</tr>
<tr>
<td>Diagnosis Theory</td>
<td>5</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>5</td>
</tr>
<tr>
<td>Ryodoraku Theory</td>
<td>10</td>
</tr>
<tr>
<td>Related Works</td>
<td>11</td>
</tr>
<tr>
<td>Significance of the Project</td>
<td>13</td>
</tr>
<tr>
<td>Limitations of the Project</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER THREE: REQUIREMENT SPECIFICATION</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Purpose</td>
<td>15</td>
</tr>
<tr>
<td>Scope</td>
<td>15</td>
</tr>
<tr>
<td>Definitions, Acronyms, and Abbreviations</td>
<td>17</td>
</tr>
<tr>
<td>References</td>
<td>17</td>
</tr>
<tr>
<td>Overview</td>
<td>17</td>
</tr>
<tr>
<td>Overall Description</td>
<td>17</td>
</tr>
<tr>
<td>Product Perspective</td>
<td>17</td>
</tr>
<tr>
<td>System Interfaces</td>
<td>17</td>
</tr>
</tbody>
</table>
User Interfaces 19
Hardware Interfaces 19
Software Interfaces 20
Communication Interfaces 20
Memory Constraints 20
Operations 21
Site Adaptation Requirements 21
Product Functions 21
User Case Diagram 21
User Characteristics 22
Constraints 22
Assumptions and Dependencies 22
Specific Requirements 22
External Interfaces 22
ExecForm 22
Point 1 23
Point 2 25
Point 3 26
Point 4 27
Point 5 28
Point 6 28
Point 7 29
Point 8 30
Point 9 .. 31
Point 10 31
Point 11 32
Point 12 33
Point 13 34
Point 14 35
Point 15 36
Point 16 36
Point 17 37
Point 18 38
Point 19 38
Point 20 39
Point 21 40
Point 22 40
Point 23 41
Point 24 42
Login Page 42
Sub_Homepage 43
PatientLogin Page 45
Diagnosis Page 46
UpdateInfo Page 46
SearchByFName Page 47
SearchResult Page 48
SearchCaseHistory Page 49

vii
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SearchByLName Page</td>
<td>50</td>
</tr>
<tr>
<td>SearchByGender Page</td>
<td>51</td>
</tr>
<tr>
<td>Add New User page</td>
<td>52</td>
</tr>
<tr>
<td>Functions</td>
<td>53</td>
</tr>
<tr>
<td>Performance Requirements</td>
<td>55</td>
</tr>
<tr>
<td>Logical Database Requirements</td>
<td>55</td>
</tr>
<tr>
<td>Design Constraints</td>
<td>55</td>
</tr>
<tr>
<td>Standards Compliance</td>
<td>55</td>
</tr>
<tr>
<td>Software System Attributes</td>
<td>55</td>
</tr>
<tr>
<td>Reliability</td>
<td>55</td>
</tr>
<tr>
<td>Availability</td>
<td>55</td>
</tr>
<tr>
<td>Security</td>
<td>56</td>
</tr>
<tr>
<td>Maintainability</td>
<td>56</td>
</tr>
<tr>
<td>Portability</td>
<td>56</td>
</tr>
</tbody>
</table>

CHAPTER FOUR: DETAIL DESIGN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Design Architecture</td>
<td>57</td>
</tr>
<tr>
<td>Hardware Interface</td>
<td>58</td>
</tr>
<tr>
<td>Presentation Logic</td>
<td>59</td>
</tr>
<tr>
<td>Diagnosis Tier Interface</td>
<td>61</td>
</tr>
<tr>
<td>Component Architecture</td>
<td>62</td>
</tr>
<tr>
<td>Data Tier Design</td>
<td>63</td>
</tr>
<tr>
<td>Database Design</td>
<td>64</td>
</tr>
<tr>
<td>ER Diagram</td>
<td>64</td>
</tr>
<tr>
<td>Data Dictionary</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Relationship Between Organs and Points ... 8
Table 2. Records Table .. 65
Table 3. Address Table .. 65
Table 4. User Table ... 66
Table 5. Points Table ... 66
Table 6. Phone Table .. 67
Table 7. TestVCC1 ... 71
Table 8. TestVCC2 ... 72
Table 9. TestPointData .. 72
Table 10. TestCheckLogin.asp .. 72
Table 11. TestAddNewUser.asp .. 73
Table 12. TestAddAge.asp ... 73
Table 13. TestUpdateInfo.asp .. 73
Table 14. TestSearchCaseHistory.asp 74
Table 15. TestSearchByFirstName .. 74
Table 16. TestSearchByLastName ... 74
Table 17. TestSearchByAge .. 75
Table 18. TestSearchByGender .. 75
Table 19. TestSearchByUserID .. 75
Table 20. TestSearchByPhoneNo ... 76
Table 21. TestSearchByANDLogic ... 76
Table 22. TestSearchByORLogic .. 76
LIST OF FIGURES

Figure 1. Twelve Detected Points 7
Figure 2. Five Elements Relationship 9
Figure 3. Inner Organs Circulation Diagram 10
Figure 4. Deployment Diagram 18
Figure 5. Overall Chart 20
Figure 6. Use Case Diagram 21
Figure 7. ExecForm .. 23
Figure 8. RightTaiyuan (Point 1) 24
Figure 9. LeftTaiyuan (Point 2) 26
Figure 10. RightDaling (Point 3) 27
Figure 11. LeftDaling (Point 4) 27
Figure 12. RightShenmen (Point 5) 28
Figure 13. LeftShenmen (Point 6) 29
Figure 14. RightWangu (Point 7) 30
Figure 15. LeftWangu (Point 8) 30
Figure 16. RightYangchi (Point 9) 31
Figure 17. LeftYangchi (Point 10) 32
Figure 18. RightYangxi (Point 11) 33
Figure 19. LeftYangxi (Point 12) 34
Figure 20. RightTaibai (Point 13) 35
Figure 21. LeftTaibai (Point 14) 35
Figure 22. RightTaichong (Point 15) 36
Figure 23. Left Taichong (Point 16) 37
Figure 24. Right Taixi (Point 17) 37
Figure 25. Left Taixi (Point 18) 38
Figure 26. Right Jinggu (Point 19) 39
Figure 27. Left Jinggu (Point 20) 39
Figure 28. Right Qiuxu (Point 21) 40
Figure 29. Left Qiuxu (Point 22) 41
Figure 30. Right Chongyang (Point 23) 41
Figure 31. Left Chongyang (Point 24) 42
Figure 32. Login Page 43
Figure 33. Sub_Homepage 44
Figure 34. Patient Login 45
Figure 35. Diagnosis Page 46
Figure 36. Update Info Page 47
Figure 37. Search By FirstName 48
Figure 38. Search Result 49
Figure 39. Search Case History 50
Figure 40. Search By LName 51
Figure 41. Search By Gender 52
Figure 42. Add New User 52
Figure 43. Schema Diagram 54
Figure 44. Detection Device Interface 59
Figure 45. Executable Icon 60
Figure 46. Diagnosis Tier Interface 62
Figure 47. Component Architecture 63
Figure 48. ER Diagram 64
Figure 49. DoctorSequential Diagram 70
Figure 50. PatientSequential Diagram 71
CHAPTER ONE

INTRODUCTION.

This project was suggested by Dr. Shaolin Yeh, an experienced Chinese Medicine Doctor, president of Yeh Center of Natural Medicine, Inc. and Dr. Dianmin Shen. They recommended me to design a Ryodoraku application on Windows platform. Considering that the Internet has been deployed broadly, and its application has huge potential, Ryodoraku application was designed as the Web-based application. The system has the prototype of becoming a useful tool in the field of acupuncture.

Traditionally, doctor and patient communication is based on making an appointment, and meeting in the doctor's office at an agreed time. This has a strict time limitation. More recently, some medical practitioners have been using a checklist of symptoms that the patient can use to get diagnosis and consultation in a more flexible time, such as "New Communication Tool, 2-COM", which was presented in MONTREUX, SWITZERLAND, in June 19, 2001 [11]. But all of these belong to static consultation. Nowadays, Web applications have been developed to allow doctor/patient consultations without requiring that the patient go to the doctor's office. The premier Web-based
doctor-patient communication tool was presented by Healinx Corporation in Alameda, CA, on April 3, 2000 [12]. It is a physician reference service, providing a group of doctors with a co-branded version of Healinx for their online doctor-patient messaging. People can get consultations online. Currently, all Web-based communication tools are limited to consultations without accompanying diagnosis. If the patients need to be diagnosed, they must go to the doctor’s office or hospital. But if it is possible, why not communicate to the physician without going to the hospital?

This project provides a Web-based communication system for practitioners of Chinese medicine. People can be diagnosed more easily and frequently without going to the physician’s office. However, online diagnosis is extremely difficult due to different people having various health conditions. This project is based on the widely adopted RYODORAKU theory, detecting the Deficiency (Vacuity) or Sufficiency (Block) of people’s Yuan points (Source points) to observe people’s health situation. Once a person gets some disease, their body’s balance is destroyed. Traditional Chinese medicine examines the yin and yang characteristics of 12 locations on the body, or “source points”, resulting in 24 measurements. The 24
points are the main source for diagnosis. Qi is a Traditional Chinese Medicine (TCM) concept, it is hard to be translated, and it looks like energy. Neither Qi nor energy can be destroyed, only changed in their forms.

Everything is composed of Qi; our bodies, the earth, water, sound, light. The Nei Jing - The Yellow Emperor’s Classic of Internal Medicine (c.500BC) says “There is no place that Qi is not.” [9]. Qi moves in people’s body, the source points produce certain reflections (signals) according to different health situations. This project is to perform gathering of the reflecting signals from the 24 Source points, analyzing and managing these data, and diagnosing the different syndromes on the Web automatically. At the same time, the physician can also give detailed diagnosis remotely. Patients can get the diagnosis and consultation immediately and remotely. The project consists of two parts: Hardware design and Diagnosis Software System Design.

Hardware design - The Detection Device (DD) gathers the diagnosis signals and performs A/D conversion. A program runs in the client side to gather the DD output, and sends it to the Diagnosis Software System (DSS) running in the server.
Diagnosis Software System (DSS) design - The online diagnosis and communication includes user interface design, diagnosis software design, and communication system design. It will mainly be performed by ASP, Visual C++, Visual Basic, IIS, MySQL, ODBC, VBScript, and COM component. DSS analyzes the input data, performs the diagnosis and communication, and sends the results to the client.
CHAPTER TWO

REVIEW OF RELATED WORKS

Diagnosis Theory

The DPCT diagnosis system is based on Ryodoraku theory. Ryodoraku came from Traditional Chinese Medicine (TCM).

Traditional Chinese Medicine

TCM has thousands of years of history. It combines accumulated ancient knowledge with modern science. Due to its accuracy and flexibility, its diagnosis theory and methods have been accepted by acupuncturists broadly. The main theories of TCM are: Yin & Yang, The Five Elements, Qi, and Organ Functions. No matter how many theories and methods we have been used. The main diagnosis idea is to check people’s circulation of Qi and the balance of Yin and Yang. The circulation checking is based on detection channels. In TCM anatomy, the internal organs of the body are all interconnected with one another by pathways called meridians, which are compared with Western ideas of the blood vessels and capillaries, or the nervous system with its centers and peripheral branching. The meridians spread out through the entire body connecting all the tissues and organs of the body binding it together as an organic unit.
They regulate normal functioning of the body, and diagnostically reflect pathology or illness. The most important and essential ones for the circulation of Qi, and for most therapeutic applications are the twelve Primary Meridians [8] (source points) in which will be used in DPCT.

The twelve Primary Meridians are: Shenmen (H₁), Daling (H₂), Taiyuan (H₃), Hegu (H₄*), Yangchi (H₅), Wanggu (H₆), Taibai (F₁), Taichong (F₂), Taixi (F₃), Jinggu (F₄), Qiuxu (F₅), Chongyang (F₆)(Fig 1).

* According to real world’s case study, in Ryodoraku theory, by testing Yangqi as Figure 1 (H₄) instead of Hegu.

The twelve source points coordinate the body’s 12 organs (Table 1). The relationship between the twelve organs and the source points is based on the five elements theory. The five elements are Water, Wood, Metal, Fire, and Earth.
The relationship between the twelve organs and the source points is shown in Table 1.
<table>
<thead>
<tr>
<th>Organs</th>
<th>Source Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>H1 (left, right)</td>
</tr>
<tr>
<td>Large Intestine</td>
<td>H6 (left, right)</td>
</tr>
<tr>
<td>Stomach</td>
<td>F6 (left, right)</td>
</tr>
<tr>
<td>Spleen</td>
<td>F1 (left, right)</td>
</tr>
<tr>
<td>Heart</td>
<td>H3 (left, right)</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>H4 (left, right)</td>
</tr>
<tr>
<td>Bladder</td>
<td>F4 (left, right)</td>
</tr>
<tr>
<td>Kidney</td>
<td>F3 (left, right)</td>
</tr>
<tr>
<td>Pericardium</td>
<td>H2 (left, right)</td>
</tr>
<tr>
<td>Triple Heater</td>
<td>H5 (left, right)</td>
</tr>
<tr>
<td>Gall Bladder</td>
<td>F5 (left, right)</td>
</tr>
<tr>
<td>Liver</td>
<td>F2 (left, right)</td>
</tr>
</tbody>
</table>
Figure 2. Five Elements Relationship

The flow of Qi through the circuit begins in the chest with the Lung channel of Taiyin (hand), and flows to the interior-exterior related Large Intestine channel of Yangming (hand). It then travels to the paired Stomach channel of Yangming (foot), and then returns to the interior-exterior related Spleen channel of Taiyin (foot). The Qi then ascends to the chest again before beginning a new circuit.
The circulation Figure as following:

Figure 3. Inner Organs Circulation Diagram

Through both observation and theorizing, numerous correspondences were discovered. When people's organs lose their balance, different diseases will occur. So by detecting the Meridian points, we can diagnose people's health situation.

Ryodoraku Theory

In 1951 Dr. Yoshio Nakatani presented his research and theory of RYODORAKU Acupuncture. Dr. Nakatani had found that there were a series of low electrical resistance points (or high electrical conductivity) running longitudinally up and down the body. When linked together these points closely matched the acupuncture meridians. Dr. Nakatani called these lines (or meridians)
"Ryodoraku" (ryo = good, do' is (electro) conductive, raku = line). The points along the Ryodoraku he named Ryodoten.

Dr. Nakatani was the first person to measure the electrical activity of acupuncture points and the first to formulate diagnostic and treatment criteria from these measurements. Numerous case histories had verified Ryodoraku theory's utilization and reliability.

Based on the TCM and Ryodoraku theory, DPCT detects the signals that come from body's source points as DPCT input. These data will be analyzed and manipulated during the diagnosis procedure.

Related Works

There are many online diagnosis systems, such as mentioned in Chapter 1. Recently, a more complete and advanced online diagnosis system emerged. It is the Health Balance LLC, located in Tusson, Arizona USA. This online diagnosis system based on a serial of questionnaires, including medical background such as: having been treated by Western Medicine and when? When did the condition begin? What was the related circumstance? What kinds of disease have or had been gotten? Patients also need to illustrate their perspiration, temperature, sleeping...
situations. The questionnaires are so completed that the patent needs to tell the system what color of his/her urine and how often. What about his and her sense organs situation and even his/her living hobbies? After inputting a bunch of required information, he/she can get the instant consultation. At the same time, a fee of $25 is charged. For more information, see [9].

The drawback of the system is that its accuracy depends on the patient’s input. Even spending so much time to finish the questionnaires, sometimes it is hard to express our body’s situation exactly.

Currently, all the online diagnosis systems isolate the patient body from the diagnosis system. Consequently, their accuracy is being challenged. This project absorbs the advantages of the other systems and adds physical diagnosis that based on RYODOROKU diagnosis theory. So this diagnosis system not only based on the patient’s input, but also according to the real reflection from the patient body.

Ryodoraku hardware device has been made for many years, Such as Ryodoraku Health Monitor Series (RHMS) developed by Skylark Inc. [15]. It has the same data transmitting system as this project by using RS232. But Universal Serial Bus (USB) and Infrared (IR) transmission
are used for data transferring interface in RHMS. This is much more advanced than serial port interface like this product.

Significance of the Project

Ryodoraku theory has been used for over fifty year. Its application has been improved a lot during this time. The most advanced diagnosis system is designed on Windows. However, patients need to be diagnosed directly by the professional person.

The DPCT system has the advantages of the systems described in 2.2, and overcomes their main weaknesses. It is more convenient and deficient, because patients can remain at home and submit source point data without going to the clinic. These are benefits for both physicians and patients. Additionally, online communication and automatic diagnosis provides precious data for people to study and research. The system can also be used for education by providing access to a large number of case histories. Particularly, doctors in different parts of the world can use this communication system for consultation at the same time.
Limitations of the Project

Considering that ASP has great convenience and integration with Microsoft IIS, this project was developed on Windows 2000 professional, in which IIS is embedded. This restricts the DPCT server to the Windows platform. To port the application to a different platform, please consult Chili!ASP or Halcyon Software’s InstantASP. Refer to Chapter 6 for details.

This project is constrained in that each patient can only store one case history per day. Suppose the patient sends data sent twice in one day to DPCT Web server, then latest one will erase the former one.

Constrained by the hardware specification, the application has a strict temperature requirement. The client detection device should be operated in the range 0 ~ +70 C.
CHAPTER THREE

REQUIREMENT SPECIFICATION

Introduction

Purpose

The purpose of this document is to provide a concise and clear "Software Requirement Specification" for Doctor-Patient Communication Tool (DPCT) project. This document will comply with the basis agreement between the customer and the supplier. Hence to provide the prototype of online diagnosis with the diagnostic signal gathered from both physical diagnostic information and patient input symptoms and server as a basis for future enhancement.

The intended audience for DPCT will include:

Physicians: Giving the instant online diagnosis.

Patients: Attending to get instant diagnosis online.

Scope

The DPCT provides a Web-based communication system for practitioners of Chinese medicine. People can be diagnosed online without time and location constrains. Patients can diagnose themselves as many as they want and check case histories anytime. Physicians can maintain the DPCT's database without knowing any database knowledge. At the same time, user easily updates their personal
information. Therefore, this product provides clear benefit for both patients and physicians.

DPCT will be produced by following hardware and software.

Hardware:

1. Circuit board
2. Transformer 220V/5V/12V
3. Standard PC transceiver
4. A/D converter
5. Capacitors
6. Resistant
7. Switch
8. Connector
9. Wire

Software:

Server side:

1. Microsoft win32 operating system
2. Internet Information Servers (IIS 5.0)
3. MySQL server
4. Web browser which ASP supported
5. ASP 3.0 or above
6. ADO 2.5 or MDAC 2.5
7. ODBC Connectivity
8. 64MB RAM

16
Client side:

1. Microsoft windows operating system
2. Web browser which ASP and VBScript supported

Definitions, Acronyms, and Abbreviations

Refer to APPENDIX B.

References

Refer to REFERENCES of DPCT system.

Overview

The remainder of this document defines the functions and specific requirements of DPCT in a format consistent with the IEEE Std 830-1998 SRS format [14].

Overall Description

Product Perspective

• **System Interfaces.** The DPCT system is a completed independent product. All hardware and software components have been prototyped for a complete working system.

 This product consists of four tiers: hardware tier, presentation tier, diagnosis tier, and database tier.

 The interface between patient and Detection Device (DD) are connectors in which gathering the patient body's signals. The interface between DD
and computer is a serial port line sending converted signals to computer. The data transfer through FTP from presentation tier to diagnosis tier. ODBC and ADO are designed as database connectivity.

Deployment Diagram:

Figure 4. Deployment Diagram
• **User Interfaces.** The DPCT system mainly contains two kinds of users: The physician and the patient. All the interactions between users and the system are performed through ASP pages. But the physician and the patient have different interactive pages. The first page for physician is as Figure 30. The first page for patient is as Figure 31. For detailed user Interfaces refer to "External Interfaces".

All DPCT system's API screens are adjusted. People can also access DPCT Web system through general Web browser such as Internet Explorer or Netscape Navigator.

When patients diagnosis themselves, they are supposed with basic TCM knowledge in order to increasing the diagnosis precise.

• **Hardware Interfaces.** Port COM 1 was designed as communication Port. A standard compatible data interface part RS232 was used in the hardware.
Software Interfaces. This system was developed on Windows 2000 platform with IIS 5.0 and FTP server embedded automatically.

Presentation tier is standalone software with coded in Visual Basic. It was developed on VB6.0. The Web pages are developed in ASP 3.0 with VBScript and JavaScript. The database connectivity is through ADO 2.5 and ODBC. Source codes refer APPENDIX A.

Communication Interfaces. Data communication protocol is under TCP/IP. Physician and patient communication is through Web page. Patients can notify physician by email or telephone.

Memory Constraints. For server side 64 RAM is recommended. No specified memory constraint for client side.
• **Operations.** The product can distinguish physician and patient status. So the operation limitation has been performed in software. Therefore no specified limitation and requirement for user.

• **Site Adaptation Requirements.** W32 system with Internet Information Server (IIS) and FTP installed are available for server side. For client side, Web browser installed with no special requirement granted by ASP characteristics.

Product Functions

• **User Case Diagram**

![User Case Diagram of Diagnosis Software System](image)

Figure 6. Use Case Diagram

21
User Characteristics

The product users DPCT will include any people who intend to diagnose his health. These individuals need to know the location of these diagnosis points exactly in order to increase the diagnosis correctness and preciousness. The basic computer operations and vocabulary ability are required.

Constraints

The hardware environment temperature is 0-70°C. All the power supplies for the hardware are 5V and 13V under safety Voltages.

Assumptions and Dependencies

This product is embedded on Windows OS. Intend to use or develop on other platforms. Some configuration and codes need to be change or updated.

Specific Requirements

External Interfaces

- **ExecForm.** The Exec form will be displayed whenever people click the DPCT shortcut icon. This page embeds the DPCT Web default home page. Forward and back are used to navigate between application Web pages.
Welcome to Doctor-Patient Communication Tool (DPCT)

The Doctor-Patient Communication Tool (DPCT) is a Web-based application system. Patients can get diagnosed on the Web. Doctors can communicate with the patient and give the instant diagnosis through the DPCT system on the Web.

Please Click Here to login the system.

Copyright© 2002 Global Charity Inc., All rights reserved.

- **Point 1.** When the user clicks the Instant Diagnosis button, DPCT begins to Communicate to hardware for receiving and converting data.
The user puts one pole of the DPCT hardware connector (Green Pole) in the patient’s right hand. The patient also can diagnose himself personally. The user then places the Red pole on the correct point to be diagnosed. People can follow the screen’s direction as shown in Figure 9. The user places the Red pole on the Taiyuan point (H1) indicated by the Red circle.

The position of this source point is on the palm surface, at the tip of the transverse crease of the wrist, in the depression on the radial side of the radial artery.

Once the user places the connector in the
right places, he/she shall press the connector’s button for at least 7 seconds. At this time, the detected data has been sent to the PC, the screen will change to the next point direction as shown in Figure 10.

• **Point 2.** Change the “Red Pole” to left hand. As Figure.10 directions, testing Yin source point Taiyuan (H7). The procedure is as before keeping the “Green Pole” sticking in your right hand’s palm. The point location refers to point 1. The user should use the points carefully. When pressing the connection button, the user should presses the button for 7 seconds. Then the screen as Figure. 11 will be displayed.
Point 3. Following the directions shown in Figure 11, people begin to test the third point, Daling (H2). During the entire testing, the user keeps the "Green" pole on the palm of the right hand. This point's location is at midpoint of the transverse crease of wrist between the tendons of m. palmaris longus and m. flexor carpi radialis.
The postal source point (Bi) it the palm surface, at the trp of the Bansverse crease ©I the twist in the depression at the radd side of the radial natural Medicine, Inc. i.OSrt? PvnB"t*.*inh"itg]Ohusly.u*

Figure 10. RightDaling (Point 3)

- Point 4. Testing Left Daling (H₉). Location is the same as point 3.

Figure 11. LeftDaling (Point 4)
• **Point 5.** The procedure of testing point 5, Shenmen (H₃) is similar to the procedure for points 1 and 2. Its location is on the lunar side of the wrist, on the posterior border of the pisiform bone, in the depression at the radial side of the tendon of m. flexor capitularies.

![Shenmen Point (H3)](image)

Figure 12. Right Shenmen (Point 5)

• **Point 6.** Testing left Shenmen (H₉). The position refers to point 5.
Point 7. After testing right hand’s Yin source points, begin to test the Yang source points. The directions guide the user to test the Wangu point \((H_4) \). The procedure for testing the right outer hand follows the same pattern as the inner hand.

Wangu point’s location is at the lunar side of the border of the palm in the depression between the base of the 5th metacarpal bone and the trigonal bone.
• **Point 8.** Begin to test left Yang source points. Refer to Point 7’s position, place “green pole” in left Wangu (H10). The procedure is as before.
• **Point 9.** As directed, test the source point Yangchi (H5). Its location is in a depression of the transverse crease of dorsum of wrist between the m. extensor digitorum communis and m. extensor digit quinti proprius. [1]

![Figure 16. Right Yangchi (Point 9)](image)

• **Point 10.** Testing left hand Yangchi (H11) point Location is the same as point 9.
Figure 17. Left Yangchi (Point 10)

- **Point 11.** Following the directions on the screen to test the right hand Yangxi (H6) point. Its location is on the radial side of the back of the wrist. When the thumb is titled upward, it is in the hollow between the tendons of m. extensor pollicis brevis.
• Point 12. Testing left hand Yangxi (H12). This is the last point of hands' Source points. After testing this point, switch to the right foot. Its location is the same as point 11 the procedure is as before.
• Point 13. Testing Yin foot source point Taibai (F₁). Its location is at the medial aspect of foot, posterior and inferior to the head of the first metatarsal bone, at the junction of the "red and white" skin. [1]
Point 14. Testing left foot Yin source point Taibai (F7). Its location is the same as Point 13.
• **Point 15.** Testing Taichong (F_2). This position is 1 cun anterior to the medial malleolus, in the depression medial to the tendon of m. tibialis anticus. [1]

Figure 22. Right Taichong (Point 15)

• **Point 16.** Testing Taichong of left foot (F_8). Its location is the same as point 15.
• **Point 17.** This page displays the Point 15 Taixi (F₃)’s. It is in midway between the tip of medial malleolus and tendo calcaneus. [1]
• **Point 18.** The left Taixi point's position is the same as point 17. When testing feet points, still keep the "red pole" in right hand palm.

![Figure 25. LeftTaixi (Point 18)](image)

• **Point 19.** Testing Jinggu(F₄). Location is at below the tuberosity of the 5th metatarsal bone, at the junctions of the "redand white" skin. [1]
- **Point 20.** Testing left Jingu (F10). As point 19.
• **Point 21.** Testing Qiuxu (F₅). Its location is at anterior and inferior to the external malleolus, in the depression on the lateral side of the tendon of m. extensor digitorum longus. [1]

![Figure 28. Right Qiuxu (Point 21)](image)

• **Point 22.** Testing left Qiuxu (F₁₁). The position is the same as point 21.
• **Point 23.** Testing right Chongyang (F6). Location is 1.5 cun distal to Jiexi, at the highest spot of dorsum of foot, artery can be palpated. [1]
• **Point 24.** This is the last testing point Chongyang (F₁₂). As point 23. As soon as the detection finishes, the data has been stored in a file. By clicking the Send button, the data and the related image will be sent to DPCT server for further manipulation.

![Login page](image)

Figure 31. LeftChongyang (Point 24)

After sending the data, people can login to DPCT and check the diagnosis result.

• **Login Page.** After clicking the login link, the Login page will be displayed. After the user enters his/her email Address and password, he/she can navigate the DPCT Web pages. Doctors and patients access the DPCT Web site through the
same entry page, but they have different functionality.

![Login Page](image)

Figure 32. Login Page

The doctor can add and delete users, modify the diagnosis results, update user information, and view patient case histories. Patients can change passwords, update personal information, and search their own case histories.

Doctors and patients obtain different response pages according to their status.

- **Sub_Homepage.** Sub_Homepage is the second page when the doctor login the DPCT system. It provides logic search button that search patients records.
Also, through this page, doctors can update their personal information, add new user, and update users’ age functionalities.

![Sub_Homepage](image)

Figure 33. Sub_Homepage

This page allows doctors to search patient’s diagnosis history by inputting the correspondent text fields. If people try to do some logic search, make sure the Select field is in the correct relationship.

After clicking UpdateInformation button, Figure 36 will be displayed. User can update their information anytime. During surfing the DPCT system, people can exit the DPCT system anytime by
clicking “Exit” menu bar. The doctor can navigate to the previous page and the next page by pressing the outer form’s buttons: Previous and Next.

The Update Users’s Age button is used to add one-year to all users in the DPCT database at every beginning of New Year.

- PatientLogin Page. This page is the second page when patient login in the DPCT system. People can check the instant diagnosis result by clicking the Diagnosis button. The diagnosis result refers to Figure 35. This page also provides update personal information link and search case histories link.
• **Diagnosis Page.** This page shows the current diagnosis result. It is a scroll page.

![Diagnosis Page]

Figure 35. Diagnosis Page

From this page, the patient can automatically get the diagnosis result. Patients can type in their symptoms. Doctors can write a detailed diagnosis.

• **UpdateInfo Page.** When users want to update their personal information, they can change the corresponding text fields. This page is accessed through Sub_Homepage or patientLogin page.
• **SearchByFName Page.** In Sub_Homepage, doctors can view case histories. Figure 37 illustrates the search result by Checking the First Name is Hongwei. Each item has a Delete button used for deleting the related user, but only the physician has this privilege. When the physician deletes a user, all related information stored in the DPCT database will be deleted. By clicking the Record button, all records about the patient will display as Figure 38. By selecting related the check box, the detailed diagnosis will display.
<table>
<thead>
<tr>
<th>UserID</th>
<th>FirstName</th>
<th>LastName</th>
<th>Gender</th>
<th>Age</th>
<th>Phone No</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Hongwei</td>
<td>Bi</td>
<td>F</td>
<td>42</td>
<td>310-293-7522</td>
<td>hbi@gmail.com</td>
</tr>
</tbody>
</table>

Copyright© 2002 Global Charity Inc., All rights reserved.

Figure 37. SearchByFirstName

- **SearchResult Page.** When the user clicks the EmailAddress link as in Fig.37, the user's records will be displayed. All test data will be displayed, according to the user's specification in the checkboxes.
• **SearchCaseHistory Page.** This page displays the search case history results. We checked the first six check boxes in Fig. 38. Then the screen in Fig.40 is displayed. Beside each diagnosis diagram there is a date link. This link connects to the specified diagnosis item. The interface is the same as Diagnosis.asp Figure 35. This page is designed for comparing different periods.
SearchByLName Page. This page displays the search result by searching the Last Name is "Bi".
Figure 40. SearchByLName

- **SearchByGender Page.** This page displays the search by gender result.
Add New User Page. This page is used by the physician to add a new user. The page is called by Sub_Homepage (Figure 34)
Functions

Whenever a user wants to use this product, the user ID and password are required. Users can escape this system just click "Exit" menu bar or close the interface window. Only those users who have the DPCT account can access DPCT Web system. The system shall allow physician checking related patient records and giving instant diagnosis through typing the related patient’s information. Patients need input their symptoms and 24 source point data to Web server and notice their physician for getting instant diagnosis. User can click the related date to get detailed diagnosis information.

For detail sequence of operations refer Figure 49. and Figure 50.
Schema Diagram:

Figure 43. Schema Diagram
Performance Requirements

This product supports all terminal users under traffic allowing. All users are designed under session mode. ASP tracks every user so there is no mutual exclusion considered in the software system.

It takes 10 minutes to traverse the 24 source points for body's detection.

Logical Database Requirements.

For details refer to Chapter Four Data Base Tier.

Design Constraints

This system hardware interface with connection to computer is restrained in serial port.

Standards Compliance

The data structure and algorithms will comply with those accepted in publicly available documents and texts.

Software System Attributes

• Reliability. The FTP server and ASP engine where DPCT will be located should be fictional.

• Availability. For server side, any W32 with 64M RAM equipped and ASP and FTP server installed should available. For client side, any PC with World Wide Web access can access DPCT locally.
• **Security.** Only those people who have account in the DPCT system can access DPCT Web system. Everyone should provide User identifier and password to access the system.

• **Maintainability.** Refer to chapter Six for details.

• **Portability.** Data gathering software is a standalone executable file that locates on patient local machine. It can install on any PC. The Web system software is placed on a server. The software system can be embedded in all windows OS. 4% components are created and registered in presentation tier and diagnosis tier. All Web system software is host dependent.
CHAPTER FOUR
DETAIL DESIGN

Hardware Design Architecture

DPCT’s hardware design, Detection Device (DD), mainly has two parts: A/D converter and interface design. It is the hardware tier of the DPCT system. A 220V/5.5v/12V transformer is needed as power supply. The interface between DD and patient is a connector that gathers patient’s body circuit values used as DD input values. Serial port COM1 is used as the interface between DD and PC. Through IRQ, the input analog values will be converted into digital binary numbers stored in the patient’s hard disk. In order to reduce the distortion, between DD and PC serial port, a RS232 transceiver is used.

Power Requirements: $V_{DD} +2.7\ V+/5.5\ V/+12V$

I_{DD} 4 mA max

Analog Input: Voltage Range 0 $- +V_{DD}$

Input Current (+/-) 5μA max

Logic Input: Input High Voltage, $(V_{INH}) V_{DD} = +2.0\ V$

Input Low voltage, $(V_{INL}) V_{DD} = +0.8\ V_{max}$

Input Current: $I_{IN} = (+/\ -) 10\ \mu A\ max$
Digital Input: -0.3 V to +5.5 V
Conversion Rate: Conversion Time = 9 μs max
Track/Hold Acquisition Time 1.5 μs max
Temperature ranges: 0 ~ +70 C

Hardware Interface

The interface between DD and patient is a connector that has two parts, the right part (red pole) and the left part (green pole). The patient places the red pole in the middle of the palm and then touches put the green pole to the 24 source points one by one.

The DD connects to the PC through COM1 port. Detected data will be stored in file in the patient’s hard drive.

Transmission procedure:

1. When computer is ready to accept data, it sends a signal (S1) to the DD.
2. When the DD receives the signal (S1), which comes from the COM1 port, it begins to convert the analog input into digital data. After conversion, the DD notices PC (S2) that it is ready also.
3. After the PC gets the signal (S2), the PC begins to send a clock pulse to stimulate the DD to get the converted data (Data).
4. When the PC receives the converted data, it stores them in file.

The physical diagram is as following:

![Detection Device Interface](image)

Detection Device Interface

Figure 44. Detection Device Interface

Presentation Logic

The presentation logic forms the client tier. It generates the user interface between the patient and console. Also it is a standalone executable file that makes an Internet connection. It formats the data and uploads the data to the central server (IIS), through its connection to the Internet. Through the interface, the patient can only see what is presented by the presentation logic, so they will not be allowed to communicate with the data store directly. DPCT’s central server dynamically generates all ASP pages.

The following are executable .DLL files and the ASP scripts that form the presentation logic:
Dpct.exe, serial.dll, default.asp, login.asp, updatePersonInfo.asp, changePassword.asp, searchByEmail, searchByFirstName.asp, searchByLastName.asp, searchByAge.asp, searchByGender.asp, searchByPhoneN.asp, searchBySympton

The DPCT application’s icon is placed on the desktop. When user clicks the DPCT’s icon (Figure 45.), the application will begin to run.

![Figure 45. Executable Icon](image)

The first page that displays in front of the user is DPCT.exe’s main form (Figure 5) embedding DPCT’s default
Web page. For a Detailed interface design, please see section 4.2 the Graphical User Interface.

The presentation tier is also responsible for data transmission. The transmission is performed by a component Comftp. Once the Comftp is called, the data file will be sent to server side. Whenever a user wants to exit the application, just select the exit menu. The user can access the DPCT Web page through the embedded Web page, and following the instructions, the user can get the diagnosis result, and view the diagnosis history.

Diagnosis Tier Interface

Diagnosis tier consists of server side ASP scripts. These applications access a database. The interfaces of the diagnosis tier will be called by the presentation logic, and will retrieve all the information needed for presentation from the DPCT database.

Diagram of Diagnosis tier is as following:
Component Architecture

In order to increase the application's scalability and flexibility, COM-based programming was used as the core of the application. Both Presentation and Diagnosis tiers are designed as components.

In the Presentation tier, a component ComSerial was designed to gather diagnosis data.

In the Diagnosis tier, a component called ComUser was designed for communication between ASP and data store. By using ComUser, DPCT can easily add users, delete users, and connect to the server.

Diagram of the component architecture is as follows:
DPCT's database is designed according to the relational model. DPCT utilizes MySQL as its database server. There are four tables to be designed in DPCT application. They are: User table, Diagnosis table, Points table, and Symptom table. These tables can be accessed by using ODBC connection in SQL through ADO, the best of the existing Microsoft data access programming models. The data stores can only be accessed by Diagnosis tier.
Database Design

- ER Diagram. DPCT database ER Diagram:

Figure 48. ER Diagram
• Data Dictionary. Table 2-5 shows different data tables.

Table 2. Records Table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>BIGINT</td>
<td>Composite Key</td>
</tr>
<tr>
<td>DDiagnosis</td>
<td>Text</td>
<td>Doctor's diagnosis</td>
</tr>
<tr>
<td>Symptom</td>
<td>Text</td>
<td>Patient's symptom</td>
</tr>
<tr>
<td>TestTime</td>
<td>DateTime</td>
<td>Composite Key (Date and time the user login)</td>
</tr>
<tr>
<td>TestData</td>
<td>FLOAT</td>
<td>Diagnosis Data</td>
</tr>
<tr>
<td>DiagImage</td>
<td>BLOB</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Address Table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street</td>
<td>Text</td>
<td>Composite Key</td>
</tr>
<tr>
<td>City</td>
<td>Text</td>
<td>Composite Key</td>
</tr>
<tr>
<td>State</td>
<td>Text</td>
<td>Composite Key</td>
</tr>
<tr>
<td>Country</td>
<td>Text</td>
<td>Composite Key</td>
</tr>
<tr>
<td>PostalCode</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>UserID</td>
<td>BIGINT</td>
<td>Foreign Key</td>
</tr>
</tbody>
</table>
Table 4. User Table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>BIGINT</td>
<td>Unique identifier</td>
</tr>
<tr>
<td>FirstName</td>
<td>Text</td>
<td>User's first name (required)</td>
</tr>
<tr>
<td>LastName</td>
<td>Text</td>
<td>User's last name (required)</td>
</tr>
<tr>
<td>EmailAddress</td>
<td>Text</td>
<td>User's e-mail address - used for login (required)</td>
</tr>
<tr>
<td>Password</td>
<td>Text</td>
<td>User-defined password - used for login (required)</td>
</tr>
<tr>
<td>Age</td>
<td>INT</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Char</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Boolean</td>
<td>Flag indication that the user is currently an active user</td>
</tr>
<tr>
<td>Status</td>
<td>Char</td>
<td>Indicate the current user is a patient or a doctor (required)</td>
</tr>
</tbody>
</table>

Table 5. Points Table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PointID</td>
<td>Char (2)</td>
<td>Unique identifier</td>
</tr>
<tr>
<td>PointDescription</td>
<td>Text</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Phone Table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhoneNo</td>
<td>VarChar(15)</td>
<td>Primary Key</td>
</tr>
<tr>
<td>UserID</td>
<td>BIGINT</td>
<td>Foreign Key</td>
</tr>
</tbody>
</table>

- SQL Commands

USE DB
SHOW Tables
DESC table
CREATE DATABASE db
CREATE TABLE table (column datatype [, column datatype]...)
Example:
Create table Points (PointID char(2), PointDescription Test);
DROP TABLE table
SELECT select_list From table [Where condition] [Order by column] [ASC | Desc]
Example:
Select * from User where LastName=“Bi” group by TestTime;
SELECT select_list From table [AS alia_name] [, table [AS alia_name]] Where JoinCondition
INSERT [INTO] table VALUES (values_list)
DELETE FROM table [Where condition]
UPDATA table SET column = expr [, column = expr, ...]
Data Loading

1. Using `INSERT [INTO] table VALUES (values_list)`
2. Using `LOADFILE (file_name)`

```plaintext
UPDATA table_name SET column = LOADFILE(full pathname)
```

where `mcondition`

Integration Architecture

The main methodology for the DPCT system design is a hybrid design. It contains four tiers: hardware tier, presentation tier, diagnosis tier, and database tier.

Presentation tier and DD directly control the hardware tier. After getting 24 data points, the presentation tier will send the data to the server for further manipulation.

Once the presentation tier sends data to diagnosis tier, it is almost finished its tasks. The Diagnosis tier is the glue between the database and user browser. It retrieves data from the database based on the client’s requirement.

These Web pages need to be dynamic and have good integration to database. Refer to ASP 3.0’s many attractive features, such as scriptless, new flow control capabilities, server scriptless, etc. It creates pages on
flying with good performance. So the entire Web pages were designed as ASP pages.
CHAPTER FIVE
TESTING

Testing is extremely important for hardware and software designs. The DPCT system testing includes two sections: Hardware and software testing.

Doctors and patients should follow the following sequential diagrams:

Figure 49. Doctor Sequential Diagram
Figure 50. Patient Sequential Diagram

Hardware Testing

Table 7. Test VCC1

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Vcc1</td>
<td>5 V</td>
<td>4.998 V</td>
</tr>
<tr>
<td>After filter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. TestVCC2

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Vcc2 After filter.</td>
<td>13 V</td>
<td>12.99 V</td>
</tr>
</tbody>
</table>

Table 9. TestPointData

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Actual Result (mA)</th>
<th>Desired Result (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>8.66</td>
<td>8.33</td>
</tr>
<tr>
<td>3</td>
<td>7.86</td>
<td>8.173</td>
</tr>
<tr>
<td>4</td>
<td>8.246</td>
<td>8.1912</td>
</tr>
<tr>
<td>5</td>
<td>8.12</td>
<td>8.17</td>
</tr>
</tbody>
</table>

Mean = 8.165

\[\text{Deviation} = \left((8 - 8.165)^2 + (8.66 - 8.165)^2 + (7.86 - 8.165)^2 + (8.246 - 8.165)^2 + (8.12 - 8.165)^2 \right)^{1/2} / 5 = 0.122 \]

Software Testing

Table 10. TestCheckLogin.asp

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckLogin.asp</td>
<td>Login the user account if the user has an account in DPCT.</td>
<td>The same as Desired.</td>
</tr>
<tr>
<td>page</td>
<td>The wrong Email address and password will request user input again.</td>
<td></td>
</tr>
</tbody>
</table>
Table 11. TestAddNewUser.asp

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddNewUser. asp</td>
<td>After add a new user, Doctor can search the patient information.</td>
<td>The same as Desired</td>
</tr>
<tr>
<td>page</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12. TestAddAge.asp

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddAge.asp page</td>
<td>After click the Add Age button, all patients age increase by one.</td>
<td>The same as Desired</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13. TestUpdateInfo.asp

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpdateInfo. asp</td>
<td>After update user’s information, all the user’s record updated.</td>
<td>The same as Desired</td>
</tr>
<tr>
<td>page</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14. TestSearchCaseHistory.asp

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SearchCaseHistory.asp</td>
<td>display all the patient record lists.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>

Table 15. TestSearchByFirstName

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp</td>
<td>Display all patients whose first names are the same as required.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>

Table 16. TestSearchByLastName

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp</td>
<td>Display all patients whose first names are the same as required.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>
Table 17. TestSearchByAge

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp page</td>
<td>Input the age. Display all patients whose ages are the same as required.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>

Table 18. TestSearchByGender

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp page</td>
<td>Input "F" or "M". Display all female or male patient record</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>

Table 19. TestSearchByUserID

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp page</td>
<td>Input the patient UserID. Display the patient record.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>
Table 20. TestSearchByPhoneNo

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp page</td>
<td>Input the patient’s phone No. Display the patient’s record.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>

Table 21. TestSearchByANDLogic

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp page</td>
<td>Display all patients who match the logic AND relationship.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>

Table 22. TestSearchByORLogic

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Desired Result</th>
<th>Actual Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search.asp page</td>
<td>Display all patients who match the OR condition.</td>
<td>The same as Desired.</td>
</tr>
</tbody>
</table>
DPCT system has three main directories. One is at E:\Inetpub\WWWROOT\Ryodoraku, E is the drive that installs IIS server. All ASP pages are stored here. One is at E:\Inetpub\FTPROOT, all patients' diagnosis data and images are stored in their own directories. Each patient has his own directories named by their UserID. The third main directory is at E:\DPCT used to store DPCT.vbp. The detailed distribution is as below:

E:
|--Inetpub
 |--WWWROOT
 |--Ryodoraku
 |--Default.asp
 |--Login.asp
 |--Datastore.asp
 |--AddNewUser.asp
 |--AddNewUserConfirm.asp
 |--InstantDiagnosisP.asp
 |--InstantDiagnosisD.asp
 |--UpdateInfo.asp
Software Installation

The DPCT system was developed under Windows 2000 accompanied with Microsoft IIS and FTP server and SMTP. What we need to do is to download and install MySQL server. We can download it from:

The detailed installation procedure is as below:

1. Copy DPCT.exe to local machine. Create a DPCT directory under local drive is recommended.

2. Copy RYODORAKU directory to

E:\Inetpub\WWWROOT\Ryodoraku
3. Create user Directories under
E:\Inetpub\WWWROOT\.
The directories names are named by Users’ UserID. Whenever add a new user, DPCT database will create a new record in User table accompanied with an unique UserID automatically. Administrator or doctors can find the UserID through DPCT search functionality.

 Database Administration

After install MySQL server on the local machine, Administrator can create the tables and input the automatic diagnosis data into Points table. Also the administrator can utilize Mysqldump to load the tables and data.

 For example:

Mysql>mysqldump -C -h domain -u user -pPassword
Database > *.sql

Mysql>mysqldump -C -h domain -u user -pPassword
Database > D:\localpath.sql

The administrator can setup new users and grant their privilege.
DPCT system was designed more flexible for normal user. Doctors can update, delete, and insert records into database through DPCT system ASP pages.
CHAPTER SEVEN

CONCLUSION AND FUTURE DIRECTIONS

Conclusion

High-speed, high-reliability, high quality, and convenience have become the core specifications of modern products. Due to the huge pressure of our daily life, our bodies need to be cared more; we need to know our bodies' situation more. But going to clinic to get instant diagnosis frequently is inconvenient for patients. Recently, Internet has been applied to many fields, resulting in increased efficiency. DPCT utilizes the Internet in the same way to achieve increased efficiency for patients and doctors. People can get diagnosed anywhere by login in the Internet. Also, people can diagnose themselves as many times as they want. This provides the possibility of detecting disease in our bodies anytime.

From the detailed hardware design and assembling, software plan and coding, Web site design and building, database design and constructing, I accomplished the whole DPCT system. In order to meet its requirement specification, IIS, FTP server, Visual Basic, VBScript and JavaScript, and ASP were used with. Auto-diagnosis and
data gathering were created by components coded in Visual Basic. So this system supposes to achieve good integration, flexibility, scalability, and compatibility.

By adding a database into this project, DPCT is also easy to be managed by patient and doctor. The doctor can add or delete patient records and items anytime. Patients can update their personal information and view their case histories without time and place restraints.

Besides benefit both physicians and patients. This project also benefits TCM practitioners and medical professionals for case study. It shows its own outstanding convenience when patients are on their traveling. They can communicate with their physician instantly and conveniently. This system can be used as an aid tool for serious and dangerous conditions detection and delivering. It increases the accuracy and instance when people are in the urgent notification. All the instant diagnosis need to incorporate doctor notification through email or telephone call.

Future Directions

1. This project can be developed by Chili!ASP, or Halcyon Sofrtware’s Instant ASP, even JSP to enlarge its scalabilities. Chili!ASP utilizes the
same development tools and functionality as ASP, but it suits more environments, such as Netscape, Lotus Go, as well as NT 4.0-based Web servers. Halcyon Software’s Instant ASP has many development platforms; it runs on a whole range of Web servers, application servers, and operating system platforms. These are: Windows NT, Linux, Apache, Sun, Novell, AIX, AS/400, S/390, Netscape, Websphere, etc. The other approach is to change the ASP code to JSP, which runs on both Windows and Unix platforms.

2. Audio and video functionalities can be included to increase DPCT’s attractiveness and reactivity.

3. In order to access most data stores, OLE-DB, an underlying technology, is recommended for data connectivity. OLE-DB can connect any kind of database. It provides large scalability.

4. DPCT can be improved by a neural network (NN) or a neural network simulator (NNS), that learns from collected case histories. Using NN or NNS, the software becomes more flexible and compatible, and can be used in other projects that are similar to this environment, hence increasing the project’s usability. It may be
based on fuzzy logic and NN combinations written in Visual C++.

5. In order to benefit physician's notification, an auto-waked system should be added in physician side. Whenever a patient sends a request for instant diagnosis, an indicator should show up in the physician system interface.
APPENDIX A

SOURCE CODE
**
'Project: Doctor-Patient Communication Tool (DPCT)
'Program: checkLogin.asp
'Programmer: Hongwei Bi
'Date: 04/08/02
'Description: Users must enter their E-mail and password 'correctly' to login the DPCT system
**
<!--#include file="Datastore.asp"-->
<%
 Dim strName, strValue
 Dim strEmail, strPassword
 strEmail = Request("Email")
 strPassword = Request("Password")
 Dim rsUsers
 set objConn = Server.CreateObject("ADODB.Connection")
 set rsUsers = Server.CreateObject("ADODB.Recordset")
 strSQL = "SELECT * FROM User WHERE EmailAddress = '" & strEmail &
 objConn.Open strConnect
 rsUsers.Open strSQL, objConn

 If rsUsers.EOF then
 Session("EmailAddress") = Request("Email")
 if Request("SecondTry") = "True" then
 Response.Redirect "login.asp?NotFound=True"
 Else
 ' User not found
 ' User's had two goes
 Response.Redirect "login.asp?SecondTry=True"

 ' - must reLogin
 end if
Else
 ' Username wrong; password wrong
 ' - allow another go
 'One or more users found - check password
 While Not rsUsers.EOF
If UCase(rsUsers("Password")) = UCase(strPassword) Then
' password matched
 For Each strField in rsUsers.Fields
 strName = strField.Name
 ' populate session variables
 strValue = strField.value
 Session(strName) = strValue
 Next
 Session("blnValidUser") = True
 Response.Redirect "SubHomepage.asp"
' successful login
Else
 rsUsers.MoveNext
End If
Wend
Session("EmailAddress") = Request("Email")
' if we get this far then...
' ...password doesn't match any of DB entries
If Request("SecondTry") = "True" then
' Users have to relogin
 Response.Redirect "login.asp?SecondTry=True&WrongPW=True"
End If
end if
$>
Project: Doctor-Patient Communication Tool (DPCT)
Program: PatientConfirmation.asp
Programmer: Hongwei Bi
Date: 04/08/02
Description: After the patient update his information, confirmation page prompts out to confirm the entered info.

<!-- #include file = "Datastore.asp" -->
<%
Dim rsUsers, objConn, loginStatus, ID
set objConn = Server.CreateObject("ADODB.Connection")
set rsUsers = Server.CreateObject("ADODB.Recordset")
objConn.Open strConnect
ID = session("userID")
rsUsers.Open "select * from User where userID = " & ID,
objConn, adKeyset, adLockOptimistic, adCmdText
%>
<html>
<head>
<title>Confirmation Page</title>
</head>
<body>
<center>
Doctor-Patient Communication Tool (DPCT)
</center>
<hr align="center">
</body>
</html>
<table>
<thead>
<tr>
<th>FirstName:</th>
<th>rsUsers("FirstName")</th>
</tr>
</thead>
<tbody>
<tr>
<td>LastName:</td>
<td>rsUsers("LastName")</td>
</tr>
<tr>
<td>Age:</td>
<td>rsUsers("Age")</td>
</tr>
<tr>
<td>Gender:</td>
<td>rsUsers("Gender")</td>
</tr>
<tr>
<td>Address:</td>
<td>rsUsers("StreetAddress1")</td>
</tr>
<tr>
<td>City:</td>
<td>rsUsers("City")</td>
</tr>
<tr>
<td>State:</td>
<td>rsUsers("State")</td>
</tr>
<tr>
<td>PostalCode:</td>
<td>rsUsers("PostalCode")</td>
</tr>
<tr>
<td>Country:</td>
<td>% = rsUsers("Country")</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Password:</td>
<td>% = rsUsers("Password")</td>
</tr>
</tbody>
</table>

Diagnosis Search Case History
'Project: Doctor-Patient Communication Tool (DPCT)
'Program: DoctorConfirmation.asp
'Programmer: Hongwei Bi
'Date: 04/08/02
'Description: After the doctor update his information, 'confirmation page prompts out to confirm the entered 'info. The difference between "DoctorConfirmation.asp" and "PatientConfirmationP.asp" is the former one for the 'doctor which has a button connected to "addNewUser.asp" 'page and a button to update users ages.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Confirmation Page</title>
</head>
<body>
<center>
Doctor-Patient Communication Tool (DPCT)
<Tel: 909-888-6444, Fax: 909-800-2837 Email info@GlobalCharity.us

</center>
</body>
</html>
User:

```html
rsUsers("firstName") & " & rsUsers("LastName")
```

User's information has been updated.

```html
<table width="400">
  <tr>
    <td align="left" width="50%">
      FirstName:  
    </td>
    <td align="left" width="50%">
      <%= rsUsers("FirstName") %>
    </td>
  </tr>
  <tr>
    <td align="left" width="50%">
      LastName:  
    </td>
    <td align="left" width="50%">
      <%= rsUsers("LastName") %>
    </td>
  </tr>
  <tr>
    <td align="left" width="50%">
      Age:  
    </td>
    <td align="left" width="50%">
      <%= rsUsers("Age") %>
    </td>
  </tr>
  <tr>
    <td align="left" width="50%">
      Gender:  
    </td>
    <td align="left" width="50%">
      <%= rsUsers("Gender") %>
    </td>
  </tr>
  <tr>
    <td align="left" width="50%">
      Address:  
    </td>
    <td align="left" width="50%">
      <%= rsUsers("StreetAddress1") %>
    </td>
  </tr>
  <tr>
    <td align="left" width="50%">
      City:  
    </td>
    <td align="left" width="50%">
      <%= rsUsers("City") %>
    </td>
  </tr>
</table>
```
<table>
<thead>
<tr>
<th>State:</th>
<th>rsUsers("State")</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostalCode:</td>
<td>rsUsers("PostalCode")</td>
</tr>
<tr>
<td>Country:</td>
<td>rsUsers("Country")</td>
</tr>
<tr>
<td>PhoneNo:</td>
<td>rsUsers("PhoneNo")</td>
</tr>
<tr>
<td>Password:</td>
<td>rsUsers("Password")</td>
</tr>
</tbody>
</table>

Diagnosis | AddNewUser.asp | Search Case History
Project: Doctor-Patient Communication Tool (DPCT)
Program: curTime.asp
Programmer: Hongwei Bi
Date: 04/08/02
Description: Display the current time

```html
<% curTime = now %>
<html>
<head>
<title>Display Current Time</title>
</head>
<body>
<p><center>The current time is:
<table>
<tr>
<td bgcolor="lightpink" width="50">
<% datePart("m", now) & datePart("d", now) & datePart("yyyy", now) %>
</td></tr><tr>
<% year(date) & month(date)&day(date)&hour(time)&minute(time)&second(time) %>
</tr></table>
</center>
</p>
</body>
</html>
```
Project: Doctor-Patient Communication Tool (DPCT)
Program: dataStore.asp
Programmer: Hongwei Bi
Date: 04/08/02
Description: It is a SSI file that connects the ASP pages to Database

<% strConnect = "driver={MYSQL}; SERVER=charity-3s7patc; database=PROJECT; UID=sa; PWD =xxx"
%>
'**'
'Project: Doctor-Patient Communication Tool (DPCT)
'Program: default.asp
'Programmer: Hongwei Bi
'Date: 04/08/02
'Description: This is the first page of the DPCT system. From here user can retrieve Web page and access DPCT's Database.
'**'
<html>
<head>
<title>DPCT Default.asp</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<!-- #include file = "head1.asp" -->
<div align="center">

Welcome to Doctor-Patient Communication Tool (DPCT)

-- RYODORAKU Application on the Web

</div>
<p>The Doctor-Patient Communication Tool (DPCT) is a Web-based application system. Patients can get diagnosed on the Web. Doctor can communicate with the patient and give the instant diagnosis throught the DPCT system on the Web.
</p><p>

Please Click Here to login the system.</p>
<p> </p>
<p> </p>
<p> </p>
<!-- #include file = "note.asp" -->
</body>
</html>
Title: Delete Confirmation Patient Record

Once the patient’s record has been deleted, this page shows up to confirm the deletion.

HTML

```
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Delete Confirmation Patient Record</title>
<style type="text/css">
BODY {font-family:Verda,Tahoma,Arial,sans-serif; font-size:10pt}
TD {font-family:Verda,Tahoma,Arial,sans-serif; font-size:10pt}
</style>
</head>
<body bgcolor="#eefffF">

Delete Patient Record

```

```
Dim rsUsers, objConn , strT, ID
set objConn = Server.CreateObject("ADODB.Connection")
set rsUsers = Server.CreateObject("ADODB.Recordset")
ID = CStr (Request.QueryString("Id"))
objConn.Open strConnect
If Session("Status") = "d" or Session ("Status") = "D" then
    objConn.Execute "Delete from User where UserID =" & ID, , adCmdText + adExecuteNoRecords
    objConn.Execute "Delete from Symptom where UserID =" & ID, , adCmdText + adExecuteNoRecords
    objConn.Execute "Delete from Diagnosis where UserID =" & ID, , adCmdText + adExecuteNoRecords
```
Response.Write "Patient record deleted successfully."
strT = "<Form name=deleteForm2 method=post action=subHomepage.asp" & ">
strT = strT & "<input type=submit value=BackToHomePage Name=Bl>"
strT = strT & "</Form>"
Response.Write strT
else
Response.Write "Privilege Deny!"
strT = "<Form name=deleteForm2 method=post action=subHomepage.asp" & ">
strT = strT & "<input type=submit value=BackToSubHomePage Name=Bl>"
strT = strT & "</Form>"
Response.Write strT
end if
%
</BODY>
</HTML>
When the doctor wants to delete the 'patient's' record, this page shows up to ask doctor whether he/she make sure to delete the record. Once the 'patient's' record 'has been deleted, it can’t be recovered.

```
<!-- #include file = "DataStore.asp" -->
<html>
<head>
<title>Delete Diagnosis</title>
</head>
<body>
<p align="center"><font face="Times New Roman" size="5"><font color="#006600">Doctor-Patient Communication Tool (DPCT)</font></font></p><span style="background-color: #0000FF"><br></span></body>
</html>
```
<table border="1" width="89%" bgcolor = "#EEffff">
<tr>
<td width="12%">Name </td>
<td width="28%" rowspan="4">%rsUsers("FirstName") & " " & rsUsers("LastName") %</td>
<td width="10%">Age</td>
<td width="10%" width=""><% rsUsers("Age") %></td>
<td width="5%">Gender</td>
<td width="5%">%rsUsers("Gender") %</td>
<td width="5%">Tel: </td>
<td width="25%">%rsUsers("PhoneNo") %</td>
</tr>
<tr>
<td width="12%">Address</td>
<td width="88%" colspan="7">%rsUsers("StreetAddress") & " " & rsUsers("City") &", "&rsUsers("state")&" "& rsUsers("Country") %</td>
</tr>
</table>
<blockquote></blockquote><center>
<img src = "D://inetpub/ftproot/%DID%/<% DrecordID %>.bmp" width = "600" height = "300">
</center>Are you sure you want to delete this diagnosis record?

<table>
<tr>
<td>Diagnosis Date: <%= DrecordID %> </td>
</tr>
<tr><form name = "communication" method = "post" action = "deleteDiagnosisConfirm.asp?Id=<%= DID %>&recordID=<%= DrecordID%>">
<input type="Submit" value="Yes" name="SubmitDelete">
</form>
</table>
<form name="communication2" method="post" action="SubHomepage.asp">
 <input type="submit" value="No" name="ResetDiagnosis">
</form>

<% rsUsers.Close
 set rsUsers = nothing
%>

Backhomepage

Copyright©2002 Charity Globe Inc. All right reserved.
Project: Doctor-Patient Communication Tool (DPCT)
Program: diagnosis.asp
Programmer: Hongwei Bi
Date: 04/08/02
Description: This page is displayed in the doctor side. Displays the automated diagnosis results and patient's symptom. The doctor also can input the detailed diagnosis.

<!-- #include file = "DataStore.asp" -->
<html>
<head>
<title>Doctor</title>
</head>
<body>
<p align="center"xfont face="Times New Roman" size="5"xfont color="#006600">Doctor-Patient Communication Tool (DPCT)</fontxspan style="background-color: #0000FF">

</p>
<% Dim rsUsers, rsUsers2, rsUsers3, rsUsers4, objConn, objComm, ID, recordID, strSQL
set objConn = Server.CreateObject("ADODB.Connection")
set objComm = Server.CreateObject("ADODB.Command")
set rsUsers = Server.CreateObject("ADODB.Recordset")
set rsUsers2 = Server.CreateObject("ADODB.Recordset")
set rsUsers4 = Server.CreateObject("ADODB.Recordset")
ID = Request.QueryString("ID")
recordID = Request.QueryString("recordID")
objConn.Open strConnect
rsUsers.Open "select * from user where userID = " & ID,
objConn, adOpenForwardOnly, adLockOptimistic, adCmdText
rsUsers2.Open "diagnosis2", objConn, adOpenForwardOnly,
adLockOptimistic, adCmdText
rsUsers4.Open "select diagnosis from symptom2 where UserID like " & ID & " and testTime like " & recordID & ", objConn, adOpenForwardOnly, adLockOptimistic, adCmdText
103
<% curTime = now %>
<table align = "right">
<tr>
<td width="198">
<% curTime %>
</td></tr>
</table>

<center> <blockquote>
<table border="1" width="89%" bgcolor = "#EEffffff">
<tr>
<td width="12%">Name </td>
<td width="28%">%={rsUsers("FirstName")} " " & rsUsers("LastName") %></td>
<td width="10%">Age </td>
<td width="10%">%={rsUsers("Age")} %></td>
<td width="5%">Gender </td>
<td width="5%">%={rsUsers("Gender")} %></td>
<td width="5%">Tel: </td>
<td width="25%">%={rsUsers("PhoneNo")} %</td></tr>
</table></blockquote></center>
<p> </p>
<blockquote><blockquote><blockquote>
<center>
<table>
<tr>
<td align = right>
<% If session("Status") = "d" or session("Status") = "D" then
Response.Write "<FORM NAME=DeleteDiagnosis ACTION="" & "" & "deleteDiagnosis.asp?Id=" & ID &
& "&deleteID=" & recordID &
" VALUE=deleteDiagnosis" & " METHOD=POST>"
Response.Write "<INPUT TYPE=SUBMIT VALUE=DeleteDiagnosis
id=SUBMIT1 name=SUBMIT1> </FORM>

End if

104
Automatic Diagnosis Result:


```vbscript
Dim strFile, objSearch, str
set objSearch = Server.CreateObject("searchDiagData.searchDatal")
strFile = "D:\Inetpub\ftproot\ID\recordID.txt"
Response.write objSearch.getDiagnosis (CStr(strFile)) %>
<form name="communication" method="post" action="phDiagnosisUpdate.asp?Id=<%=ID%>&recordID=<%=recordID%>">
  <input type="submit" value="Submit" name="SubmitDiagnosis">
  <input type="reset" value="Reset" name="ResetDiagnosis">
</form>
```

Patient <%=rsUsers("FirstName") & " " & rsUsers("LastName") %>’s symptoms are:


```vbscript
<%= rsUsers3("symptom") %>
<%= rsUsers4("diagnosis") %>
```

Dear Physician <%= session("FirstName") & " " & Session("LastName") %>:
Please enter your detailed diagnosis results here:


```vbscript
<textarea rows="3" name="physicianDiagnosis" cols="70">
<%= rsUsers4("diagnosis") %></textarea>
```

</body>
</html>```
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft FrontPage 4.0">
<TITLE>Note.asp</TITLE>
</HEAD>
<BODY>
<p v lign="bottom">

<hr>
Copyright© 2002 Global Charity, Inc., All rights reserved.

</p>
</BODY>
</HTML>
Project: Doctor-Patient Communication Tool (DPCT)
Program: head1.asp
Programmer: Hongwei Bi
Date: 04/08/02
Description: This a header file used in SSI.

```
<html>
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<title>Head1</title>
</head>
<body>
<p align="center">
<font face="Times New Roman, Times, serif" size="5" color="#008000">Global Charity Inc.
</font></p>
<font size="2">Tel: 909-888-6444, Fax: 909-800-2837 Email info@GlobalCharity.us</font>
</body>
</html>
```
Project: Doctor-Patient Communication Tool (DPCT)
Program: login.asp
Programmer: Hongwei Bi
Date: 04/18/02
Description: This file needs patients to enter their Email address and password to logon the DPCT system.

<html>
<head>
<title>Login.asp</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFFe" text="#000000" onload = "document.forms.form1.Email.focus()">
<!-- #include file="head1.asp" -->
</head>
<body bgcolor="#FFFFFFe" text="#000000" onload = "document.forms.form1.Email.focus()">
</body>
</html>
response.write "Please enter your <i>Email address</i> and <i>password</i> to login the System."
end if %>
</p>
</p>

<FORM ACTION="checkLogin.asp"
</p>
</p>
</FORM>

<p> <<</p>
<p> '>
<!—#include file = "note.asp" -->
</body>
</html>
Dear Friend: <i><%= session("FirstName")%></i>

Welcome to DPCT system!

You can click the
 Diagnosis link to process diagnosis. Or search case histories. You also can update your personal information.
 Diagnosis Search Case History Update Personal Information

BackHomepage
'Project: Doctor-Patient Communication Tool (DPCT)
'Program: strToTable.asp
'Programmer: Hongwei Bi
'Date: 04/18/02
'Description: This is a pure ASP page and as a SSI file. 'It 'onverts the required string to table.

'**
'<%
Function strToTable (objRS)
Dim strT
Dim curFild
strT = "<table border=0 cellspacing=5 cellpadding=2
><tr align='center'>"
For each curFild in rsUsers.Fields
strT = strT & "<TD>" & curFild.Name & "</TD>"
Next
strT = strT & "</TR>"
while not rsUsers.eof
 strT = strT & "<TR align=center>"
 for each curFild in rsUsers.Fields
 strT= strT & "<TD>" & curFild.Value & "</TD>"
 Next
 strT = strT & "<TD> " & "Records" & "</TD>"
strT = strT & "</TR>"
rsUsers.MoveNext
Wend
strT = strT & "</table>"
strToTable = strT
end Function
%>'
'**/
'Project: Doctor-Patient Communication Tool(DPCT)
'Program: UpdateInfo.asp
'Programmer: Hongwei Bi
'Date: 04/28/02
'Description: This page used to update patients' personal information.
'**/
<!-- #include file = "Datastore.asp" -->
<%
Dim rsUsers, objConn, loginStatus, objComm, strSQL, intNoOfRecords, id
set objConn = Server.CreateObject("ADODB.Connection")
set objComm = Server.CreateObject("ADODB.Command")
set rsUsers = Server.CreateObject("ADODB.Recordset")
objConn.Open strConnect
strSQL2 = "Select * from User " & _
 "where EmailAddress = '" & session("EmailAddress") & ";"
rsUsers.Open strSQL2, objConn, adOpenForwardOnly, adLockReadOnly, adCmdText
rsUsers.Open "User", objConn, adKeyset, adLockOptimistic, adCmdTable
strSQL = "Update User set FirstName = " & Request.Form.
("FirstName") & ", " & " LastName = " & Request.Form("LastName") & "", "
strSQL = strSQL & " EmailAddress= " & CStr(Request.Form("Email"))
& ", " & " Age = " & Request.Form("Age") & ", "
strSQL = strSQL & " Password = " & Request.Form("Password") & ", "
& " Gender = " & Request.Form("Gender") & ", "
strSQL = strSQL & "StreetAddress1 = " & Request.Form("StreetAddress1") & ", " & "StreetAddress2 = " & Request.Form("StreetAddress2") & ", "
112
strSQL = strSQL & "City = " & Request.Form("City") & "," & "State = " & Request.Form("State") & ","
strSQL = strSQL & "PhoneNo = " & Request.Form("PhoneNo") & "," & "
where UserID = " & session("userID")
objComm.ActiveConnection = strConnect
objComm.CommandText = strSQL
objComm.CommandType = adCmdText
objComm.Execute intNoOfRecords
set rsUsers = Nothing
objConn.Close
set objConn = nothing
set objComm = nothing
if session("status") = "d" or session("status") = "D" then
 Response.Redirect "confirmation.asp"
else Response.redirect "confirmationP.asp"
End if
Response.Write "Privilege deny!"
APPENDIX B

GLOSSARY OF TERMS
Ryodoraku A theory used to diagnose people's health situation according to people's 12 meridians. "Ryodoraku" (ryo = good, do' is (electro) conductive, raku = line).

IIS Internet Information Server. The Web server software included with Microsoft Windows NT. Supports applications that use CGI, SP, IDC and ISAPI; and interfaces with Windows NT and other services running on the server machine.

ODBC Open Database Connectivity. An open standard originally developed by Microsoft to allow transparent data access to all kinds of data stores such as relational databases. Drivers are manufactured by third parties to suit their own data store.

ASP Active server pages is a technology that allows for the programmatic construction of HTML pages just before they are delivered to the browser. Producing dynamic, interactive Web application.

SSL Secure Socket Layer. A technology originally developed by Netscape to provide client and server verification, and secure communication between a Web browser and server. Uses public key and secret key encryption.
GUI Graphic User Interface
MDI Multiple Document Interface
TCM Traditional Chinese Medicine
REFERENCES

[2] Beginning ASP 3.0; Chris Uiliman, David Buser, et.al; Wrox Press Ltd. 1999

