
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2023

TWITTER POLICING TWITTER POLICING

Hemanth Kumar Medisetty

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Numerical Analysis and Scientific Computing Commons

Recommended Citation Recommended Citation
Medisetty, Hemanth Kumar, "TWITTER POLICING" (2023). Electronic Theses, Projects, and Dissertations.
1815.
https://scholarworks.lib.csusb.edu/etd/1815

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1815?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

TWITTER POLICING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Hemanth Kumar Medisetty

December 2023

TWITTER POLICING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Hemanth Kumar Medisetty

December 2023

Approved by:

Dr. Yan Zhang, Advisor, Computer Science and Engineering

Dr. Qingquan Sun, Committee Member

Dr. Yunfei Hou, Committee Member

© 2023 Hemanth Kumar Medisetty

iii

ABSTRACT

Police departments are frequently utilizing social media platforms to

actively interact with the public. Social media offers an opportunity to share

information, facilitate communication, and foster stronger connections between

police departments and the communities they serve. In this context sentiment

analysis of social media data has become a tool, for identifying sentiments and

tracking emerging trends.

This project utilizes sentiment analysis to examine the social media

interactions with particular data obtained from the Twitter (X). Initially, the project

gathers social media data, from twitter mentioned accounts on Twitter utilizing

web scraping techniques. Afterwards, we perform a thorough sentiment analysis

using techniques, in Natural Language Processing (NLP). We utilize two reliable

sentiment analysis tools, TextBlob and Natural Language Toolkit (NTLK) to

classify media posts into three distinct sentiment categories positive, negative,

and neutral. Additionally, it monitors the opinions of public sentiments on a

monthly basis. The project utilizes data visualization techniques like pie charts,

line charts, and clustered column charts to represent sentiment analysis data in

appealing ways that highlight the distribution and the trends of public opinion.

iv

ACKNOWLEDGEMENTS

I am writing this message to express my appreciation and thankfulness to

Dr. Yan Zhang, who has served as the chair of my committee. Her unwavering

support and dedication to excellence throughout my journey have been truly

invaluable. I would also like to extend my gratitude to Dr. Qingquan Sun and Dr.

Yunfei Hou members of my committee for their belief, in my abilities and their

recognition of the contributions I have made to this study. Their confidence in me

has been a driving force behind my work.

Furthermore, I would like to take this opportunity to express my gratitude

to the faculty at the university who have provided me with guidance and

mentorship that has played a crucial role in shaping my academic journey and

helping me progress towards achieving my educational goals.

I am particularly grateful for the curriculum offered by the School of

Computer Science at California State University, San Bernardino. This curriculum

has supported my aspirations and also equipped me with the necessary skills for

a successful future.

Throughout my master’s program, I have held onto a saying that

education is a treasure that can never be taken away from us. My commitment

and determination are evident in this pursuit as it reflects both resilience and an

unwavering dedication, towards achieving endeavors.

DEDICATION

With gratitude and utmost admiration, I would like to dedicate my master’s

project to Dr. Yan Zhang, my professor. Their guidance, mentorship, and

invaluable perspectives have played a role in shaping my journey throughout my

this project. I am also profoundly thankful to my parents, whose unwavering

affection, backing, and motivation have served as the foundation of my strength

during this endeavor. This accomplishment stands as evidence of your belief, in

my capabilities. I offer it to you with sincerest appreciation.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER ONE: INTRODUCTION .. 1

Purpose ... 1

Project Milestones ... 2

Data Collection and Preprocessing ... 3

Sentiment Analysis Implementation .. 3

Key Findings and Insights ... 3

Data Visualization ... 3

Documentation And Knowledge Transfer .. 4

CHAPTER TWO: TOOLS FOR DATA COLLECTION, PREPROCESSING, AND
ANALYSIS .. 5

Libraries, Modules, and Software .. 5

Visual Studio ... 5

Python .. 6

Scweet .. 6

Selenium Webdriver .. 7

TextBlob .. 7

Natural Language Toolkit (NLTK) .. 8

vii

 Pandas .. 8

Dataset Information ... 9

Data Pre-processing .. 10

CHAPTER THREE: METHODOLOGIES .. 18

Dataset Collection using Scrape Method ... 18

TextBlob Method Analysis ... 20

NLTK Method Analysis .. 23

CHAPTER FOUR: RESULTS ... 25

 Result Analysis and Visualization ... 26

Sentiment Analysis Comparison ... 26

Keep Track of Monthly Sentiment Changes 27

Monthly Sentiment Analysis .. 33

CHAPTER FIVE: CONCLUSION .. 36

 Major Contribution .. 36

 Future Work .. 37

APPENDIX A: KEY PART CODE ... 38

REFERENCES ... 54

viii

LIST OF TABLES

Table 1: Data on Sentiment Analysis SeattlePD... 26

ix

LIST OF FIGURES

Figure 1: Method to Clean the Text .. 12

Figure 2: Create a New Column – Month ... 13

Figure 3: State Diagram ... 14

Figure 4: Class Diagram ... 15

Figure 5: Use Case Diagram .. 16

Figure 6: Sequence Diagram .. 17

Figure 7: Scrape Method .. 18

Figure 8: TextBlob - Subjectivity, Polarity and Sentiment Classification. 22

Figure 9: NLTK Sentiment Scores and the Sentiment Classification 24

Figure 10: Sentiment Analysis Comparison between TextBlob and NLTK 27

Figure 11: Positive - Monthly Sentiment Analysis using TextBlob 28

Figure 12: Neutral - Monthly Sentiment Analysis using TextBlob 29

Figure 13: Negative - Monthly Sentiment Analysis using TextBlob 30

Figure 14: Neutral - Monthly Sentiment Analysis using NLTK 31

Figure 15: Negative - Monthly Sentiment Analysis using NLTK.......................... 32

Figure 16: Positive - Monthly Sentiment Analysis using NLTK 33

Figure 17: Clustered Column for Monthly Sentiment Analysis using TextBlob ... 34

Figure 18: Clustered Column for Monthly Sentiment Analysis using NLTK 35

1

CHAPTER ONE

INTRODUCTION

 In the digital age, social media has become a major platform for

communication and engagement between the Police Department and the public.

This project mainly focuses on sentiment analysis, specifically Twitter (which is

referred to as “X”). Web scraping is used to collect data of a specified mention

account from Twitter offering valuable insights into public sentiments, concerns,

and trends. Advanced Natural Language Processing (NLP) techniques, with the

two tools, TextBlob and Natural Language Toolkit (NLTK), classify social media

posts into positive, negative, and neutral sentiments. This classification provides

important insights into public sentiment regarding the respective departments.

Beyond sentiment analysis, the project keeps track of the evolution of public

opinion over time using data visualization techniques like pie charts, line charts,

and custom clustered column charts. These visuals effectively convey sentiment

distributions and emerging trends on a monthly basis. When transparency and

community involvement are crucial, this project uses social media and sentiment

analysis to improve communication and cooperation between police departments

and the communities they serve.

Purpose

 The main purpose of the project is to analyze public sentiments towards the

police department on Twitter. This analysis will be done by collecting tweets

2

containing relevant hashtags, keywords, and mentioned accounts related to the

police department. But this project works on tweets that are related to the

mentioned accounts to the respective police department. The sentiment of each

tweet will be analyzed using techniques called TextBlob and NLTK to determine

if it is positive, negative, or neutral in sentiment. The findings of this analysis will

be used to identify areas where the police department may need to improve

public relations and attract public opinion over time. This project will provide

valuable insights into how the police department is perceived by the public and

help the department improve its image and reputation by addressing the areas of

public concern. Sentiment analysis combined with social media monitoring allows

you to determine how interested your target audience is in any emerging trends.

And their opinions toward the trends in the question [2].

Project Milestones

 The project is about sentiment analysis on Twitter data using Python.

Sentiment analysis is an important tool to understand public opinions on any

current trends. This project shows comparison results of two sentiment analysis

methods – TextBlob and NLTK. The process starts with collecting the real data

from Twitter and pre-processing the data and ensuring the processed data is

suitable to perform analysis. After analysis, the data has been processed to

generate a few charts that show how sentiments are changing monthly. The

below steps explain each stage.

3

1. Data Collection and Preprocessing:

a. At this stage the project includes gathering a set of tweets from the

Twitter platform.

b. Applying data preprocessing methods to tidy up and organize the

Twitter data for examination.

c. Making sure that the data is prepared for sentiment analysis.

2. Sentiment Analysis Implementation:

a. Currently we are in the stage of developing and implementing

sentiment analysis by utilizing the TextBlob and NLTK libraries.

b. We calculate the sentiment polarity and subjectivity for each tweet

using the TextBlob.

c. Utilizing the NLTK sentiment intensity analyzer to evaluate

sentiment based on compound scores.

3. Key Findings and Insights:

a. Analyzing the sentiment results to identify key findings and insights.

b. Identifying trends in public opinions and emotional responses over

time.

c. Documenting differences in sentiment classification.

4. Data Visualization:

a. The main goal of this stage is to create charts that improve our

understanding of sentiment data.

4

b. Pie charts, line charts, and clustered column charts are used to

show the sentiment distribution and how it changes over time.

These pictures make it easy for us to see what people are feeling.

c. By making these visualizations we can quickly see the patterns and

trends in people’s emotions. These pictures help those who want to

understand how people feel on social media.

5. Documentation And Knowledge Transfer: In this last stage, preparing the

document to serve as a valuable resource for researchers, data analysts,

and organizations sharing their techniques and knowledge gained from

this project for studying and tracking sentiments in various contexts.

5

CHAPTER TWO

TOOLS FOR DATA COLLECTION, PREPROCESSING, AND ANALYSIS

Libraries, Modules and Software

 To complete the project libraries, modules and software have been used.

Starting from Visual Studio code, by using Python programming language in VS

code with the libraries scweet and selenium the data has been extracted and

processed. With the use of libraries - TextBlob and NLTK, sentiments have been

classified accordingly.

Visual Studio:

Visual Studio code is also known as VS code which is one of the widely

used software as it is an open-source code editor which is known for extensibility,

versatility, and developer friendly. In this project version 1.83.1 is used. VS code

is a cross-platform which can run on Mac OS, Linux, and Windows. It supports a

huge library of extensions that are contributed by the community. It supports

various programming languages and file types by giving choices to the

developers. It even allows developers to run command line tools and scripts

directly within VS code, eliminating the need to switch between a terminal and

editor.

6

Python:

Python is a high-level language, functional, and popular programming

language with a readable syntax. Python 3.10.9 is the version used in this

project. In Python, the braces-free, intended index which makes code easier to

read and reduces errors. It can be used for a variety of tasks such as data

analysis, machine learning, web development, and automation. It has a wide

range of libraries and frameworks. Python doesn't need to be compiled to be

executed because it is an interpreted language. This functionality allows for

development and troubleshooting. Python is open source making it accessible to

everyone for usage and contribution towards its progress. The comprehensive

Python standard library includes functions and modules that cater to an array of

tasks eliminating the need, for external dependencies.

Scweet:

Scweet is a robust method, for extracting and examining Twitter data

based on specific search parameters. It is a Python library that offers users the

capability to scrape types of information from Twitter including tweets, user

details, and related data. With scweet users have the flexibility to define their

search terms hashtags, user mentions and date ranges to gather tweets. In this

project, users can conveniently scrape tweets using the mentioned accounts of

users. By providing an interface for configuring search criteria, scweet

streamlines the setup process. Additionally, it allows users to specify their

timeframes, for data collection enabling analysis during specific periods.

7

Moreover, scweet supports Twitter data collection making it well suited for

research and analysis purposes.

Selenium Webdriver:

Selenium webdriver is a widely used open-source tool that allows

automation of web browsers. It provides an interface that enables users to

interact with web applications similar to humans. Selenium webdriver is

compatible with browsers such as Firefox, Edge, Safari, and Chrome making it

possible to run automation tests across platforms. It supports programming

languages like Java, JavaScript, Python, Ruby, and C# which makes it versatile

for developers and QA engineers. With Selenium webdriver web applications can

be tested by emulating user actions like clicking buttons filling forms and

navigating through pages. Additionally, its functionality can be enhanced by

utilizing third-party libraries and browser-specific drivers. Overall Selenium

webdriver plays a role in web-related projects, for developers and individuals

involved in quality assurance testing.

TextBlob:

TextBlob, a Python library, is widely used for processing data. It greatly

aids in performing natural language processing (NLP) tasks, including sentiment

analysis noun phrase extraction, part-of-speech tagging, translation, and more.

Through sentiment analysis, TextBlob can determine whether text data holds a

neutral sentiment by leveraging its pre-trained sentiment analysis model. One of

8

the benefits of using TextBlob is its ability to identify the part of speech, for each

word in a sentence – whether it’s a noun, verb, adjective, or other. When it

comes to sentiment analysis with TextBlob it focuses primarily on two aspects:

subjectivity and polarity. Polarity measures the tone of the text on a scale from 1

(negative) to +1 (positive) while subjectivity indicates how subjective or objective

the text is on a scale from 0 to 1.

Natural Language Toolkit (NLTK):

NLTK is a Python library widely used for language processing and text

analysis. When it comes to sentiment analysis with NLTK we rely on the

Sentiment Intensity Analyzer module. This module uses a lexicon of words and

their associated sentiment scores to calculate the sentiment of a given text. By

analyzing the words and their scores, in the lexicon, the Sentiment Intensity

Analyzer assigns a polarity score to determine whether the text is positive,

negative, or neutral. The classification of sentiment in texts is based on these

polarity scores, which help us identify whether a text expresses positivity,

negativity, or neutrality.

Pandas:

Pandas is an open source powerful and widely used library module for

data manipulation and analysis. Panda provides two main data structures which

are Series and Data frames. While a data frame is a two-dimensional table with

labeled rows and columns, a Series is effectively a labeled array. These

9

structures make it simple to represent and work with data. Data frames were

used in this project. Pandas supports both import and export of data, to and from

various file formats like CSV, Excel, SQL database, and JSON. It effortlessly

interfaces with frameworks for data visualization like Matplotlib and Seaborn,

enabling users to produce helpful visualizations. Matplotlib library has been used

in this project. Pandas is incredibly effective and capable of handling huge

datasets.

Dataset Information

 To perform sentiment analysis on the Dataset which had been collected in

real-time. In the code, scrape is a function from the Python library. Scweet which

was customized according to the project. By using this function, it scrapes the

tweets from the mentioned Twitter account. Below are the following columns in

the dataset,

1. UserScreenName: The Twitter user’s screen name who posted the tweet.

2. Username: The user’s full name on Twitter.

3. Timestamp: The timestamp when the tweet was posted.

4. Text: The content of the tweet after cleaning (removing mentions,

hashtags, RT indicators, and URLs).

5. Emojis: Emojis present in the tweet (if any).

6. Tweets URL: The URL of the tweet.

7. Image link: The link to any images or media associated with the tweet.

10

8. Month: The full name of the month in which the tweet was posted

extracted from the timestamp,

9. Subjectivity: Subjectivity is a measure of a tweet’s text, indicating how

opinionated or subjective it is.

10. Polarity: The polarity is a measure of a tweet’s text indicating its sentiment

(positive, negative, or neutral).

11. TextBlob Sentiment: The sentiment analysis results from TextBlob,

classifying the tweet as positive, negative, or neutral based on polarity

scores.

12. NLTK_Sentiment scores: A dictionary containing sentiment scores from

the NLTK library, including compound, neg, neu, and pos scores.

13. Compound_Value: The compound score is derived from the sentiment

score, which is used to classify the tweet as positive, negative, or neutral

based on certain thresholds.

14. NLTK_Analysis: The sentiment analysis results from NLTK classifying the

tweets as positive, negative, or neutral based on the Compound_Value.

Data Preprocessing

 Data Preprocessing is an important part of the code which is required for

further analysis and classification of sentiments. All the unwanted content in the

text which is not useful for the analysis will get cleaned. Along with the cleaning

11

of text, there is one more important part separating the tweets according to

monthly. This process can help when month-based analysis is initiated.

1. Cleaning Text Tweets: In this step, the code cleans unwanted details from

the tweet’s textual content, making the text more suitable for sentiment

analysis. In the code ‘cleanText(text)’ is a custom function used for

cleaning the text tweets. It checks whether the input text is a string or not.

Cleaning includes the following operations:

a. Removing Mentions: Twitter usernames starts with ‘@’such as

‘@username’ are removed from the text. This helps in removing

user references from the tweet.

b. Removing Hashtags: Hashtags starting with ‘#’ are removed, as

they do not contribute to sentiment analysis.

c. Removing RT indicators: If the tweet is a retweet, it often starts with

“RT @username”. The code removes this indicator as well.

d. Removing URLs: Any web links (such as https://example.com) are

also removed from the text.

e. Handling consecutive single quotes: It replaces a single quote for

each set of successive single quotes. This is done to standardize

text and prevent problems brought on by repetitive quotation marks.

By removing the text data components that are unimportant for

sentiment analysis, this clearing method ensures that the text data is

clearer, more focused, and more concisely on tweet’s content.

https://example.com/

12

Figure 1: Method to Clean the Text.

2. Parsing Timestamps: The “Timestamp” column in the data set is

processed by the code in this stage, which creates datetime objects from

timestamp strings for further analysis. This step is essential because it

allows you to segregate all of the tweets by month column which in turn

makes it easier and used for time-based analysis and visualization.

The parsing process involves the following steps:

a. Check for valid timestamps: In the code ‘dateutil. parser’ library is

used to parse these timestamps into strings. The code verifies that

timestamp strings in the timestamp match the expected ISO 8601

format. This helps filter out invalid or improperly formatted

timestamps.

13

b. Conversions to datetime objects: Timestamp strings that pass the

validation are converted into datetime objects, which can be used

for various time-related analysis.

c. The code creates a new column ‘Month’ based on the parsed

timestamps. It extracts the full name of the month from the date

time objects allowing for further analysis.

Figure 2: Create a New Column – Month.

14

Figure 3: State Diagram.

15

Figure 4: Class Diagram.

16

Figure 5: Use Case Diagram.

17

Figure 6: Sequence Diagram.

18

CHAPTER THREE

METHODOLOGIES

Dataset Collection Using Scrape Method

The scrape method is called from scweet in the main code, and a few methods

from utils.py are called in scweet to collect the data. In accordance with the

project requirement, these two files have been modified.

Figure 7: Scrape Method

1. Initialization and Configuration:

A. The code supports the Chrome browser and uses Selenium for web

scrapping.

B. The required libraries such as Selenium, Pandas, and other

modules are imported into the code.

19

2. Data Extraction:

A. The ‘scrape’ function is defined in scweet.py for scraping Twitter

data.

B. It takes various parameters like start date, end date, keywords,

mention account, hashtags, languages, and more.

C. A webdriver, in this case Chrome is initiated to access Twitter.

D. The code, logs into a Twitter account using credentials (username

and password) with the help of selenium webdriver.

3. Web Scraping:

A. The code opens a Twitter search page for a specific query (defined

by parameters) and starts scraping.

B. It continues scrolling through the page until a specific condition is

met (for example reaching the tweet limit).

4. Data Extraction:

A. The ‘get_data’ function is defined in utils.py to extract data from a

tweet card.

B. It collects information such as username, handle, post date, tweet

text, emojis, and image links from the tweet card.

C. Promoted tweets are also handled to exclude them from the data.

5. Data Processing:

A. Extracted tweet data is checked for uniqueness and added to a list

of data.

20

B. Images associated with the tweets are optionally saved if specified

in the parameters.

6. Data Storage:

A. Scrapped data is stored in pandas DataFrame for further analysis.

B. A CSV file is created to save the scrapped data.

7. Scrolling and Pagination: The code keeps scrolling through the Twitter

search results to retrieve more tweets.

8. User Interaction: The code includes functions to interact with web

elements such as links and XPath to get the required information from the

posts.

Text Blob Method Analysis

 In accordance with the earlier mention of TextBlob in this document, this

section offers an actual illustration of TextBlob’s use in this project. This method

demonstrates how TextBlob is used for particular tasks in this project and is

responsible for conducting sentiment analysis and categorizing tweets into

sentiment categories (Positive, Negative or Neutral).

1. getSubjectivity Function: The ‘getSubjectivity(text)’ function calculates the

subjectivity of a given text. The degree of objectivity or subjectivity in the

text is referred to as subjectivity.

A. isinstance (text, str) is used to determine whether this input string,

“text” is a string or not.

21

B. if ‘text’ is a string, the TextBlob library is used to analyze the text

and extract the subjectivity score with the help of the function

‘Textblob’s(text).sentiment.subjectivity’

C. If text is not a string (for example missing or non-string data) it

returns a default value of 0.0.

2. getPolarity Function:

A. The polarity of a text is determined using ‘getPolarity(text) function.

B. The polarity describes the tone of the text, which can be either

positive, negative, or neutral.

C. Similar to ‘getSubjectivity’, it checks whether input ‘text’ is a string.

D. If ‘text’ is a string, it uses the TextBlob library is used to analyze the

text and retrieve the polarity score using ‘TextBlob(text). sentiment.

polarity’.

E. if text is not a string it returns a default value of 0.0

3. Calculating Subjectivity and Polarity:

A. Using the ‘.apply’ method, the code applies this function to ‘Text’

column of the ‘Complete_Data’ DataFrame.

B. The polarity scores are kept in the ‘Polarity’ column, but the

subjectivity scores are kept in a new column called “Subjectivity”.

4. Sentiment Analysis:

A. Tweets are categorized into sentiment groups based on their

polarity scores using the ‘getAnalysis(value)’ function.

22

I. if the polarity score < 0 the tweet is categorized ‘Negative’.

II. if the polarity score = zero the tweet is categorized ‘Neutral’.

III. if the polarity score > 0 the tweet is categorized ‘Positive’.

5. Storing Sentiment Analysis Results:

A. To save the sentiment labels the code adds a new column called

“TextBlob_Sentiment” to “Complete_Data” DataFrame.

b. It is populated by using ‘getAnalysis’ function on Polarity column.

Figure 8: TextBlob - Subjectivity, Polarity and Sentiment Classification.

23

NLTK Method Analysis

This method is used to perform sentiment analysis on text data using the

NLTK library and its SentimentIntensityAnalyzer.

1. sentiment_scores Functions:

A. The ‘sentiment_scores(text)’ function calculates sentiment scores

(compound, negative, neutral, positive) for the input text.

B. If ‘text’ is not a string (example: missing or non-string data), it

returns a default value of 0.0.

C. ‘isinstance (text, str) is used to determine whether the input string,

“text”, is a string or not.

D. If the input is a string, it proceeds to perform sentiment analysis

using the SentimentIntensityAnalyzer.

2. Applying Sentiment Analysis:

A. This line applies the sentiment_scores functions to evaluate each

text in the Complete_Data Dataframe ‘Text’ column.

B. Each text’s sentiment score is determined, and it is stored in a new

column called “NLTK_Sentiment_Scores.”

3. Extracting Compound Values:

A. ‘get_compound(text)’ This function takes NLTK_Sentiment_Scores

as a text as input and it returns the ‘compound’ score from the input

dictionary.

24

B. ‘get_compound function’ applies to each row in NLTK_Sentiment

_Scores extract the ‘compound’ score and stores it in a new column

called ‘Compound_Value’.

4. Performing Sentiment Analysis: Tweets are categorized into sentiment

groups based on their compound scores using the

‘get_NLTK_Analysis(value)’ function.

I. If the compound value < -0.05 it is categorized as ‘Negative.

II. If the compound value > 0.05 it is categorized as ‘Positive’.

III. Otherwise, it is categorized as ‘Neutral’.

5. Storing Sentiment Analysis Results: ‘get_NLTK_Analysis’ function to each

‘Compound_value’ in the DataFrame and save the sentiment labels, the

code adds a new column called ‘NLTK_Analysis” to the Complete_Data”

DataFrame.

Figure 9: NLTK Sentiment Scores and the Sentiment Classification

25

CHAPTER FOUR

RESULTS

In contrast, NLTK uses compound values and TextBlob uses polarity

values for the determination of sentiment. A notable distinction is the 0.05

threshold, which separates the sentiment categories. This minor change has a

big effect on outcomes with NLTK categorizing more negative comments than

TextBlob. When comparing the two, NLTK shows a greater tendency than

TextBlob to classify feelings as negative. It's crucial to remember that this does

not necessarily mean that NLTK is always preferable to TextBlob. The choice

between the two, depends on the specific requirement of the user. While NLTK

excels in negative sentiment classification. The distribution of positive and neutral

attitudes is very constant on TextBlob. In conclusion, the choice of tool depends

on the desired results and particular use cases. In this project, sentiment analysis

was conducted on the Twitter account of SeattlePD. The results are presented

below in tabular form, indicating the counts of positive, negative and neutral

sentiments.

26

Table 1: Data on Sentiment Analysis SeattlePD

Result Analysis and Visualization

 With the help of visualization, the data can be simplified, and it help one to

understand current trends and patterns. In this the analysis shown in three

categories with Sentiment Analysis Comparison using Pie Chart which gives

numbers and percentages of positive, negative neutral of complete data,

secondly, Track of monthly changes using Line Chart which shows individual

trends, and Monthly Sentiment Analysis using Clustered column chart which

shows all the sentiments and their trends in one place.

Sentiment Analysis Comparison:

 The below chart visually compares sentiment analysis results for the

Police Department’s tweets using text blob and NLTK. It facilitates a quick

understanding of the sentiment distribution and allows for insights into public

Sentiment Analysis SeattlePD

Sentiment TextBlob NLTK

Positive 6073 5183

Negative 4403 7198

Neutral 7507 5602

27

sentiment regarding the Police Department on Twitter. The pie chart shows

percentages and number of each sentiment for both the TextBlob and NLTK

analysis.

Figure 10: Sentiment Analysis Comparison between TextBlob and NLTK.

Keep Track of Monthly Sentiment Changes:

 The following code generates separate line charts to visualize sentiment

analysis results for three categories: Positive, Negative and Neutral using

TextBlob. It customizes the color palette for each sentiment category and groups

the data by month and sentiment which are present on X-axis and Y-axis. The

28

charts provided a clear view of statement trends over time, enabling insights into

how public sentiment towards the Police Department on Twitter varies by month

and sentiment category. Additionally, the NLTK sentiment analysis uses the

same chats with the same function with different variables.

Figure 11: Positive - Monthly Sentiment Analysis using TextBlob.

29

Figure 12: Neutral - Monthly Sentiment Analysis using TextBlob.

30

Figure 13: Negative - Monthly Sentiment Analysis using TextBlob.

31

Figure 14: Neutral - Monthly Sentiment Analysis using NLTK .

32

Figure 15: Negative - Monthly Sentiment Analysis using NLTK.

33

Figure 16: Positive - Monthly Sentiment Analysis using NLTK.

Monthly Sentiment Analysis: The clustered column graph helps to visualize

sentiment analysis results using TextBlob across three categories: Positive,

Neutral, and Negative. The graph represents sentiment analysis results per

month, allowing for easy comparison of sentiment distribution over time. The

code ensures that the graph is visually appealing and informative. This

visualization helps in understanding how public sentiment towards the Police

Department on Twitter varies by sentiment category and month.

34

Figure 17: Clustered Column for Monthly Sentiment Analysis using TextBlob.

35

Figure 18: Clustered Column for Monthly Sentiment Analysis using NLTK.

36

CHAPTER FIVE

CONCLUSION

 In conclusion, this study revealed valuable insights of how police and

public interact on Twitter showed us important things using sentiment analysis.

This project aimed to bring police and communities closer by using the power of

natural language processing to understand public sentiments by utilizing two

tools TextBlob and Natural Language Toolkit (NTLK), to understand feelings.

They showed some differences in how they work. NTLK and TextBlob are tools

we used to understand people's feelings on social media, with a certain threshold

0.05, NLTK tends to find more negative comments, while TextBlob shows a more

even distribution of positive and neutral sentiments. Neither tool is better overall;

it depends on the user specific needs. We looked at the how people feel about

this Seattle Police on Twitter. We use charts to show how these feelings change

each month this helps us understand what the community thinks. In summary

NTL K is good at finding negative feelings while TextBlob is better at keeping a

balance between positive and neutral sentiments

Major Contribution

With a Twitter API basic account, for $100 USD per month, users can

retrieve up to 10,000 tweets per month. The Twitter API Pro account, on the

other hand, allows for a maximum of 1,000,000 tweets and cost $5000 USD per

month. In the context of our code, it keeps retrieving data until a server

37

connection is lost. Even though it might take some time to compile a sizable

number of tweets, this period of time can handle them by taking the associated

cost into account. By executing the code and allowing it to operate for an

extended period, a significant volume of data can be collected, and that data can

be used for subsequent analysis.

Future Work

In the future, if the budget permits, we can consider using Twitter’s API

with a developer account for this project. This involves engaging in discussions

through Twitter. We can also make the project more user-friendly by creating

front-end interfaces and dashboards. This will help us better connect with our

requirements and make the project more accessible and interactive.

38

APPENDIX A:

KEY PART CODE

39

 The code in the below snippet is used in the main program to collect dataset

in real-time. After data collection, the code is used to clean unwanted information

from tweets which is not useful for analysis. Subjectivity, Polarity values using

TextBlob method and performing sentiment analysis which in return classifying

sentiment as well. NLTK, it able to produce sentiment scores, among the scores

with help of compound values NLTK sentiment classification will be done.

SOURCE CODE:

####################### Libraries #######################

import os

import pandas as pd

from textblob import TextBlob

import matplotlib.pyplot as plt

from datetime import datetime, timedelta #188

import time #55

from dateutil.parser import parse #55

import nltk

from nltk.sentiment import SentimentIntensityAnalyzer

from Scweet.scweet import scrape

40

####################### Clearing the Screen #######################

tweets = scrape(mention_account='SeattlePD', since="2023-07-01",

 until="2023-08-01", interval= 5,

 headless=False,

 lang="en")

Complete_Data = pd.DataFrame(tweets, columns = ['UserScreenName',

'UserName', 'Timestamp', 'Text', 'Emojis', 'Tweet URL', 'Image link'])

####################### Cleaning the Text Tweets###################

import re

def cleanText(text):

 if isinstance(text, str): # Check if text is a string

 text = re.sub(r'@[A-Za-z0-9]+', '', text)

 text = re.sub(r'#', '', text)

 text = re.sub(r'RT[\s]+', '', text)

 text = re.sub(r'https?:\/\/\S+', '', text)

 text = re.sub(r'\.+', '', text) # Escape the dot to match a literal dot

 # Remove consecutive single quotes

 text = re.sub(r'\'+', '\'', text)

 return text

Complete_Data['Text'] = Complete_Data['Text'].apply(cleanText)

41

####################### SUBJECTIVITY AND POLARITY ##############

def getSubjectivity(text):

 if isinstance(text, str):

 return TextBlob(text).sentiment.subjectivity

 else:

 return 0.0 # Return a default value for non-string Complete_Data

def getPolarity(text):

 if isinstance(text, str):

 return TextBlob(text).sentiment.polarity

 else:

 return 0.0 # Return a default value for non-string Complete_Data

Complete_Data['Subjectivity'] = Complete_Data['Text'].apply(getSubjectivity)

Complete_Data['Polarity'] = Complete_Data['Text'].apply(getPolarity)

def getAnalysis(value):

 if(value < 0):

 return 'Negative'

 elif(value == 0):

 return 'Neutral'

 else:

42

 return 'Positive'

Complete_Data['TextBlob_Sentiment'] =

Complete_Data['Polarity'].apply(getAnalysis)

####################### SENTIMENT SCORES USING NLTK ##########

sia = SentimentIntensityAnalyzer()

def sentiment_scores(text):

 if isinstance(text, str):

 return sia.polarity_scores(text)

 else:

 return {'compound': 0.0, 'neg': 0.0, 'neu': 0.0, 'pos': 0.0}

 # Return default values for non-string Complete_Data

Complete_Data['NLTK_Sentiment_Scores'] =

Complete_Data['Text'].apply(sentiment_scores)

def get_compound(text):

 return text['compound']

Perform sentiment analysis

Complete_Data['Compound_Value'] =

Complete_Data['NLTK_Sentiment_Scores'].apply(get_compound)

43

def get_NLTK_Analysis(value):

 if(value < -0.05):

 return 'Negative'

 elif(value > 0.05):

 return 'Positive'

 else:

 return 'Neutral'

Complete_Data['NLTK_Analysis'] =

Complete_Data['Compound_Value'].apply(get_NLTK_Analysis)

####################### PIE CHARTS #######################

Define a color map for sentiment categories

colors = {'Positive': 'lightgreen', 'Negative': 'lightcoral', 'Neutral': 'lightskyblue'}

TextBlob_sentiment_counts =

Complete_Data['TextBlob_Sentiment'].value_counts()

NLTK_sentiment_counts = Complete_Data['NLTK_Analysis'].value_counts()

Sort the data by sentiment categories

TextBlob_sentiment_counts =

TextBlob_sentiment_counts.reindex(index=['Positive', 'Negative', 'Neutral'])

NLTK_sentiment_counts = NLTK_sentiment_counts.reindex(index=['Positive',

'Negative', 'Neutral'])

44

Create a figure with a single pie chart

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

Labels for the sections of the pie chart

ax1.labels = TextBlob_sentiment_counts.index

ax2.labels = NLTK_sentiment_counts.index

Values for each section

ax1.sizes = TextBlob_sentiment_counts.values

ax2.sizes = NLTK_sentiment_counts.values

Define colors for each sentiment category in both charts

ax1_colors = [colors[sentiment] for sentiment in ax1.labels]

ax2_colors = [colors[sentiment] for sentiment in ax2.labels]

Explode the "Positive" section (you can adjust this for emphasis)

explode = (0.1, 0, 0)

Calculate the percentages

ax1.percentages = [f'{count} ({count / sum(ax1.sizes) * 100:.1f}%)' for count in

ax1.sizes]

45

ax2.percentages = [f'{count} ({count / sum(ax2.sizes) * 100:.1f}%)' for count in

ax2.sizes]

Create the pie chart with labels, values, colors, and explosion

ax1.pie(ax1.sizes, labels=ax1.labels +" " + ax1.percentages, colors=ax1_colors,

autopct='%1.1f%%', startangle=140, explode=explode, shadow=True)

ax2.pie(ax2.sizes, labels=ax2.labels +" " + ax2.percentages, colors=ax2_colors,

autopct='%1.1f%%', startangle=140, explode=explode, shadow=True)

Add a title

ax1.set_title('TextBlob Sentiment Analysis')

ax2.set_title('NLTK Sentiment Analysis')

Set a main title for both subplots

plt.suptitle('Seattle PD Sentiment Analysis Comparison',

fontsize=16,fontweight='bold')

Display the percentages in a fancy way

plt.gca().set_aspect('equal') # Equal aspect ratio ensures that pie is drawn as a

circle.

plt.tight_layout()

46

Show the pie chart

plt.show()

####################### TEXT BLOB LINE CHARTS #################

Now, let's create separate line charts for each sentiment category (Positive,

Negative, Neutral).

Customize the color palette for the bars

colors = {'Positive': 'blue', 'Neutral': 'orange', 'Negative': 'green'}

Group the data by month and sentiment

grouped_data = Complete_Data.groupby(['Month',

'TextBlob_Sentiment']).size().unstack(fill_value=0)

Get the unique months in the data

available_months = Complete_Data['Month'].unique()

Create a custom order for the available months

custom_order = sorted(available_months, key=lambda x: datetime.strptime(x,

"%B"))

Create separate line charts for each Text Blob sentiment category

for sentiment in ['Positive', 'Negative', 'Neutral']:

47

 plt.figure(figsize=(10, 6))

Filter data for the current sentiment

 sentiment_data = grouped_data.loc[custom_order][sentiment]

Set custom x-axis ticks and labels

 x_ticks = range(len(custom_order))

 x_labels = custom_order

 ax = sentiment_data.plot(kind='line', color='blue', marker='o', linestyle='-',

linewidth=2, markersize=8)

 # Set custom x-axis ticks and labels

 ax.set_xticks(x_ticks)

 ax.set_xticklabels(x_labels, rotation=45, fontsize=10)

 plt.xlabel('Month')

 plt.ylabel('Count')

 plt.title(f' TextBlob | {sentiment} | Sentiment Analysis per Month')

 ax.set_facecolor('#f0f0f0')

 ax.grid(axis='y', linestyle='--', alpha=0.6)

 ax.set_axisbelow(True)

48

 plt.title(f'TextBlob | {sentiment} | Sentiment Analysis per Month', fontsize=16,

fontweight='bold', pad=20)

 plt.show()

####################### TEXT BLOB CLUSTERED COLUMN GRAPH ####

Create a clustered column graph with custom styling

plt.figure(figsize=(10, 6))

ax = grouped_data.loc[custom_order].plot(kind='bar')

Set labels and title

plt.xlabel('Month')

plt.ylabel('Count')

plt.title('TextBlob | Sentiment Analysis per Month')

Customize the legend

plt.legend(title='Sentiment', labels=['Positive', 'Neutral', 'Negative'],

fancybox=True)

Add count labels to each bar

for p in ax.patches:

 ax.annotate(str(int(p.get_height())), (p.get_x() + p.get_width() / 2.,

p.get_height()), ha='center', va='bottom')

49

Add a shadow effect

ax.set_facecolor('#f0f0f0')

Add grid lines

ax.grid(axis='y', linestyle='--', alpha=0.6)

Add a background color to the plot

ax.set_axisbelow(True)

ax.set_facecolor('#f0f0f0')

Add a title to the graph

plt.title('TextBlob | Sentiment Analysis per Month', fontsize=16, fontweight='bold',

pad=20)

Customize the tick labels

ax.set_xticklabels(custom_order, rotation=45, fontsize=10)

Show the plot

plt.show()

50

####################### NLTK LINE CHARTS #######################

Now, let's create separate line charts for each sentiment category (Positive,

Negative, Neutral).

Customize the color palette for the bars

colors = {'Positive': 'blue', 'Neutral': 'orange', 'Negative': 'green'}

Group the data by month and sentiment

grouped_data = Complete_Data.groupby(['Month',

'NLTK_Analysis']).size().unstack(fill_value=0)

Get the unique months in the data

available_months = Complete_Data['Month'].unique()

Create a custom order for the available months

custom_order = sorted(available_months, key=lambda x: datetime.strptime(x,

"%B"))

Create separate line charts for each Text Blob sentiment category

for sentiment in ['Positive', 'Negative', 'Neutral']:

 plt.figure(figsize=(10, 6))

 # Filter data for the current sentiment

 sentiment_data = grouped_data.loc[custom_order][sentiment]

 # Set custom x-axis ticks and labels

 x_ticks = range(len(custom_order))

51

 x_labels = custom_order

 ax = sentiment_data.plot(kind='line', color='blue', marker='o', linestyle='-',

linewidth=2, markersize=8)

 # Set custom x-axis ticks and labels

 ax.set_xticks(x_ticks)

 ax.set_xticklabels(x_labels, rotation=45, fontsize=10)

 plt.xlabel('Month')

 plt.ylabel('Count')

 plt.title(f' NLTK | {sentiment} | Sentiment Analysis per Month')

 ax.set_facecolor('#f0f0f0')

 ax.grid(axis='y', linestyle='--', alpha=0.6)

 ax.set_axisbelow(True)

 plt.title(f'NLTK | {sentiment} | Sentiment Analysis per Month', fontsize=16,

fontweight='bold', pad=20)

 plt.show()

############ NLTK CLUSTERED COLUMN GRAPH

Create a clustered column graph with custom styling

plt.figure(figsize=(10, 6))

ax = grouped_data.loc[custom_order].plot(kind='bar')

52

Set labels and title

plt.xlabel('Month')

plt.ylabel('Count')

plt.title('NLTK | Sentiment Analysis per Month')

Customize the legend

plt.legend(title='Sentiment', labels=['Positive', 'Neutral', 'Negative'],

fancybox=True)

Add count labels to each bar

for p in ax.patches:

 ax.annotate(str(int(p.get_height())), (p.get_x() + p.get_width() / 2.,

p.get_height()), ha='center', va='bottom')

Add a shadow effect

ax.set_facecolor('#f0f0f0')

Add grid lines

ax.grid(axis='y', linestyle='--', alpha=0.6)

Add a background color to the plot

ax.set_axisbelow(True)

53

ax.set_facecolor('#f0f0f0')

Add a title to the graph

plt.title('NLTK | Sentiment Analysis per Month', fontsize=16, fontweight='bold',

pad=20)

Customize the tick labels

ax.set_xticklabels(custom_order, rotation=45, fontsize=10)

Show the plot

plt.show()

54

REFERENCES

[1] A. Hernandez-Suarez, G. Sanchez-Perez, K. Toscano-Medina, V. Martinez-

Hernandez, V. Sanchez, and H. Perez-Meana, “A web scraping methodology for

bypassing Twitter API restrictions,” arXiv.org, Mar. 27, 2018.

https://arxiv.org/abs/1803.09875

[2] B. Wagh, J. V. Shinde, and P. Kale, “A Twitter Sentiment Analysis Using

NLTK and Machine Learning Techniques,” International Journal of Emerging

Research in Management and Technology, vol. 6, no. 12, p. 37, doi:

10.23956/ijermt.v6i12.32.

[3] “Datetime - Basic date and time types," Python Documentation, Available:

https://docs.python.org/3/library/datetime.html, [Accessed: September, 2023].

[4] “Dateutil - Date Utilites - Python 3.10.1 documentation," Python Software

Foundation, Available: https://docs.python.org/3/library/dateutil.html, [Accessed:

September, 2023].

[5] E. Haddi, X. Liu, and Y. Shi, “The role of text pre-processing in sentiment

analysis,” Procedia Computer Science, vol. 17, pp. 26–32, Jan. 2013, doi:

10.1016/j.procs.2013.05.005.

55

[6] I.V. Shravan, "Sentiment Analysis in Python using NLTK," ResearchGate,

Available: https://www.researchgate.net/profile/Shravan-

Iv/publication/312176414_Sentiment_Analysis_in_Python_using_NLTK/links/587

4d26908ae8fce4927e011/Sentiment-Analysis-in-Python-using-NLTK.pdf.

[Accessed: June,2023].

[7] J. Yao, “Automated Sentiment Analysis of Text Data with NLTK,” Journal of

Physics, vol. 1187, no. 5, p. 052020, Apr. 2019, doi: 10.1088/1742-

6596/1187/5/052020.

[8] M. Mahajan, V. Bhakare, A. Bhure, S. Patil, and S. Patil, “Twitter Sentiment

Analysis,” International Research Journal of Engineering and Technology

(IRJET), vol. 09, issue. 06, Jun. 2022. Available:

https://www.irjet.net/archives/V9/i6/IRJET-V9I6234.pdf [Accessed: May,2023].

[9] “Matplotlib: Visualization with Python," Matplotlib, Available:

https://matplotlib.org/, [Accessed: September, 2023].

[10] “NLTK Sentiment Analysis,” Available:

http://www.nltk.org/howto/sentiment.html, [Accessed: August 2023].

[11] “NLTK Source Code," GitHub, Available: https://github.com/nltk/nltk,

[Accessed: August 2023].

56

[12] “Pandas - Python Data Analysis Library," Pandas, Available:

https://pandas.pydata.org/, [Accessed: February, 2023].

[13] S. Elbagir and J. Yang, “Analysis using Natural Language Toolkit and

VADER Sentiment,” in International Multiconference of Engineers and Computer

Scientists, IMECS 2019, The Royal Garden Hotel, Kowloon, Hong Kong, March

13-15, 2019.

[14] S. Loria, "TextBlob: Simple, Consistent Natural Language Processing,"

GitHub, Available: https://github.com/sloria/TextBlob, [Accessed: June, 2023].

[15] S. Tiwari, A. Verma, P. Garg and D. Bansal, "Social Media Sentiment

Analysis On Twitter Datasets," 2020 6th International Conference on Advanced

Computing and Communication Systems (ICACCS), Coimbatore, India, 2020,

pp. 925-927, doi: 10.1109/ICACCS48705.2020.9074208.

[16] S. V. Pandey and A. V. Deorankar, "A Study of Sentiment Analysis Task and

It's Challenges," 2019 IEEE International Conference on Electrical, Computer

and Communication Technologies (ICECCT), Coimbatore, India, 2019, pp. 1-5,

doi: 10.1109/ICECCT.2019.8869160.

[17] S. Zahoor and R. Rohilla, "Twitter Sentiment Analysis Using Machine

Learning Algorithms: A Case Study," 2020 International Conference on Advances

57

in Computing, Communication & Materials (ICACCM), Dehradun, India, 2020, pp.

194-199, doi: 10.1109/ICACCM50413.2020.9213011.

[18] “Time — Time access and conversions," Python 3.9.7 documentation,

Available: https://docs.python.org/3/library/time.html, [Accessed: September,

2023].

[19] V. Prakruthi, D. Sindhu and D. S. Anupama Kumar, "Real Time Sentiment

Analysis Of Twitter Posts," 2018 3rd International Conference on Computational

Systems and Information Technology for Sustainable Solutions (CSITSS),

Bengaluru, India, 2018, pp. 29-34, doi: 10.1109/CSITSS.2018.8768774.

[20] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and

applications: A survey,” Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093–

1113, Dec. 2014, doi: 10.1016/j.asej.2014.04.011.

[21] Y.A. Jeddi, "Scweet - Collect and Analyze Tweets on Twitter," GitHub,

Available: https://github.com/Altimis/Scweet, [Accessed: February, 2023].

	TWITTER POLICING
	Recommended Citation

	tmp.1700252754.pdf.Es7Vo

