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ABSTRACT 

Police departments are frequently utilizing social media platforms to 

actively interact with the public. Social media offers an opportunity to share 

information, facilitate communication, and foster stronger connections between 

police departments and the communities they serve. In this context sentiment 

analysis of social media data has become a tool, for identifying sentiments and 

tracking emerging trends. 

This project utilizes sentiment analysis to examine the social media 

interactions with particular data obtained from the Twitter (X). Initially, the project 

gathers social media data, from twitter mentioned accounts on Twitter utilizing 

web scraping techniques. Afterwards, we perform a thorough sentiment analysis 

using techniques, in Natural Language Processing (NLP). We utilize two reliable 

sentiment analysis tools, TextBlob and Natural Language Toolkit (NTLK) to 

classify media posts into three distinct sentiment categories positive, negative, 

and neutral. Additionally, it monitors the opinions of public sentiments on a 

monthly basis. The project utilizes data visualization techniques like pie charts, 

line charts, and clustered column charts to represent sentiment analysis data in 

appealing ways that highlight the distribution and the trends of public opinion.  
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CHAPTER ONE 

INTRODUCTION 

        In the digital age, social media has become a major platform for 

communication and engagement between the Police Department and the public. 

This project mainly focuses on sentiment analysis, specifically Twitter (which is 

referred to as “X”). Web scraping is used to collect data of a specified mention 

account from Twitter offering valuable insights into public sentiments, concerns, 

and trends. Advanced Natural Language Processing (NLP) techniques, with the 

two tools, TextBlob and Natural Language Toolkit (NLTK), classify social media 

posts into positive, negative, and neutral sentiments. This classification provides 

important insights into public sentiment regarding the respective departments. 

Beyond sentiment analysis, the project keeps track of the evolution of public 

opinion over time using data visualization techniques like pie charts, line charts, 

and custom clustered column charts. These visuals effectively convey sentiment 

distributions and emerging trends on a monthly basis. When transparency and 

community involvement are crucial, this project uses social media and sentiment 

analysis to improve communication and cooperation between police departments 

and the communities they serve. 

Purpose 

         The main purpose of the project is to analyze public sentiments towards the 

police department on Twitter. This analysis will be done by collecting tweets 
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containing relevant hashtags, keywords, and mentioned accounts related to the 

police department. But this project works on tweets that are related to the 

mentioned accounts to the respective police department. The sentiment of each 

tweet will be analyzed using techniques called TextBlob and NLTK to determine 

if it is positive, negative, or neutral in sentiment. The findings of this analysis will 

be used to identify areas where the police department may need to improve 

public relations and attract public opinion over time. This project will provide 

valuable insights into how the police department is perceived by the public and 

help the department improve its image and reputation by addressing the areas of 

public concern. Sentiment analysis combined with social media monitoring allows 

you to determine how interested your target audience is in any emerging trends. 

And their opinions toward the trends in the question [2]. 

Project Milestones 

 The project is about sentiment analysis on Twitter data using Python. 

Sentiment analysis is an important tool to understand public opinions on any 

current trends. This project shows comparison results of two sentiment analysis 

methods – TextBlob and NLTK. The process starts with collecting the real data 

from Twitter and pre-processing the data and ensuring the processed data is 

suitable to perform analysis. After analysis, the data has been processed to 

generate a few charts that show how sentiments are changing monthly. The 

below steps explain each stage. 
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1. Data Collection and Preprocessing:  

a. At this stage the project includes gathering a set of tweets from the 

Twitter platform. 

b. Applying data preprocessing methods to tidy up and organize the 

Twitter data for examination. 

c. Making sure that the data is prepared for sentiment analysis. 

2. Sentiment Analysis Implementation:  

a. Currently we are in the stage of developing and implementing 

sentiment analysis by utilizing the TextBlob and NLTK libraries. 

b. We calculate the sentiment polarity and subjectivity for each tweet 

using the TextBlob. 

c. Utilizing the NLTK sentiment intensity analyzer to evaluate 

sentiment based on compound scores. 

3. Key Findings and Insights:  

a. Analyzing the sentiment results to identify key findings and insights. 

b. Identifying trends in public opinions and emotional responses over 

time.  

c. Documenting differences in sentiment classification. 

4. Data Visualization:  

a. The main goal of this stage is to create charts that improve our 

understanding of sentiment data.  
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b. Pie charts, line charts, and clustered column charts are used to 

show the sentiment distribution and how it changes over time. 

These pictures make it easy for us to see what people are feeling. 

c. By making these visualizations we can quickly see the patterns and 

trends in people’s emotions. These pictures help those who want to 

understand how people feel on social media. 

5. Documentation And Knowledge Transfer: In this last stage, preparing the 

document to serve as a valuable resource for researchers, data analysts, 

and organizations sharing their techniques and knowledge gained from 

this project for studying and tracking sentiments in various contexts. 
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CHAPTER TWO 

TOOLS FOR DATA COLLECTION, PREPROCESSING, AND ANALYSIS 

Libraries, Modules and Software 

 To complete the project libraries, modules and software have been used. 

Starting from Visual Studio code, by using Python programming language in VS 

code with the libraries scweet and selenium the data has been extracted and 

processed. With the use of libraries - TextBlob and NLTK, sentiments have been 

classified accordingly. 

Visual Studio:  

Visual Studio code is also known as VS code which is one of the widely 

used software as it is an open-source code editor which is known for extensibility, 

versatility, and developer friendly. In this project version 1.83.1 is used. VS code 

is a cross-platform which can run on Mac OS, Linux, and Windows. It supports a 

huge library of extensions that are contributed by the community. It supports 

various programming languages and file types by giving choices to the 

developers. It even allows developers to run command line tools and scripts 

directly within VS code, eliminating the need to switch between a terminal and 

editor. 
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Python:  

Python is a high-level language, functional, and popular programming 

language with a readable syntax. Python 3.10.9 is the version used in this 

project. In Python, the braces-free, intended index which makes code easier to 

read and reduces errors. It can be used for a variety of tasks such as data 

analysis, machine learning, web development, and automation. It has a wide 

range of libraries and frameworks. Python doesn't need to be compiled to be 

executed because it is an interpreted language. This functionality allows for 

development and troubleshooting. Python is open source making it accessible to 

everyone for usage and contribution towards its progress. The comprehensive 

Python standard library includes functions and modules that cater to an array of 

tasks eliminating the need, for external dependencies. 

Scweet:  

Scweet is a robust method, for extracting and examining Twitter data 

based on specific search parameters. It is a Python library that offers users the 

capability to scrape types of information from Twitter including tweets, user 

details, and related data. With scweet users have the flexibility to define their 

search terms hashtags, user mentions and date ranges to gather tweets. In this 

project, users can conveniently scrape tweets using the mentioned accounts of 

users. By providing an interface for configuring search criteria, scweet 

streamlines the setup process. Additionally, it allows users to specify their 

timeframes, for data collection enabling analysis during specific periods. 
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Moreover, scweet supports Twitter data collection making it well suited for 

research and analysis purposes. 

Selenium Webdriver:   

Selenium webdriver is a widely used open-source tool that allows 

automation of web browsers. It provides an interface that enables users to 

interact with web applications similar to humans. Selenium webdriver is 

compatible with browsers such as Firefox, Edge, Safari, and Chrome making it 

possible to run automation tests across platforms. It supports programming 

languages like Java, JavaScript, Python, Ruby, and C# which makes it versatile 

for developers and QA engineers. With Selenium webdriver web applications can 

be tested by emulating user actions like clicking buttons filling forms and 

navigating through pages. Additionally, its functionality can be enhanced by 

utilizing third-party libraries and browser-specific drivers. Overall Selenium 

webdriver plays a role in web-related projects, for developers and individuals 

involved in quality assurance testing. 

TextBlob:  

TextBlob, a Python library, is widely used for processing data. It greatly 

aids in performing natural language processing (NLP) tasks, including sentiment 

analysis noun phrase extraction, part-of-speech tagging, translation, and more. 

Through sentiment analysis, TextBlob can determine whether text data holds a 

neutral sentiment by leveraging its pre-trained sentiment analysis model. One of 
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the benefits of using TextBlob is its ability to identify the part of speech, for each 

word in a sentence – whether it’s a noun, verb, adjective, or other. When it 

comes to sentiment analysis with TextBlob it focuses primarily on two aspects: 

subjectivity and polarity. Polarity measures the tone of the text on a scale from 1 

(negative) to +1 (positive) while subjectivity indicates how subjective or objective 

the text is on a scale from 0 to 1. 

Natural Language Toolkit (NLTK):  

NLTK is a Python library widely used for language processing and text 

analysis. When it comes to sentiment analysis with NLTK we rely on the 

Sentiment Intensity Analyzer module. This module uses a lexicon of words and 

their associated sentiment scores to calculate the sentiment of a given text. By 

analyzing the words and their scores, in the lexicon, the Sentiment Intensity 

Analyzer assigns a polarity score to determine whether the text is positive, 

negative, or neutral. The classification of sentiment in texts is based on these 

polarity scores, which help us identify whether a text expresses positivity, 

negativity, or neutrality. 

Pandas:  

Pandas is an open source powerful and widely used library module for 

data manipulation and analysis. Panda provides two main data structures which 

are Series and Data frames. While a data frame is a two-dimensional table with 

labeled rows and columns, a Series is effectively a labeled array. These 
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structures make it simple to represent and work with data. Data frames were 

used in this project. Pandas supports both import and export of data, to and from 

various file formats like CSV, Excel, SQL database, and JSON. It effortlessly 

interfaces with frameworks for data visualization like Matplotlib and Seaborn, 

enabling users to produce helpful visualizations. Matplotlib library has been used 

in this project. Pandas is incredibly effective and capable of handling huge 

datasets. 

Dataset Information 

        To perform sentiment analysis on the Dataset which had been collected in 

real-time. In the code, scrape is a function from the Python library. Scweet which 

was customized according to the project. By using this function, it scrapes the 

tweets from the mentioned Twitter account. Below are the following columns in 

the dataset, 

1. UserScreenName: The Twitter user’s screen name who posted the tweet. 

2.  Username: The user’s full name on Twitter. 

3. Timestamp: The timestamp when the tweet was posted. 

4. Text: The content of the tweet after cleaning (removing mentions, 

hashtags, RT indicators, and URLs). 

5. Emojis: Emojis present in the tweet (if any). 

6. Tweets URL: The URL of the tweet. 

7. Image link: The link to any images or media associated with the tweet. 
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8. Month: The full name of the month in which the tweet was posted 

extracted from the timestamp, 

9. Subjectivity: Subjectivity is a measure of a tweet’s text, indicating how 

opinionated or subjective it is. 

10. Polarity: The polarity is a measure of a tweet’s text indicating its sentiment 

(positive, negative, or neutral). 

11. TextBlob Sentiment: The sentiment analysis results from TextBlob, 

classifying the tweet as positive, negative, or neutral based on polarity 

scores. 

12. NLTK_Sentiment scores: A dictionary containing sentiment scores from 

the NLTK library, including compound, neg, neu, and pos scores. 

13. Compound_Value: The compound score is derived from the sentiment 

score, which is used to classify the tweet as positive, negative, or neutral 

based on certain thresholds. 

14. NLTK_Analysis: The sentiment analysis results from NLTK classifying the 

tweets as positive, negative, or neutral based on the Compound_Value. 

Data Preprocessing 

 Data Preprocessing is an important part of the code which is required for 

further analysis and classification of sentiments. All the unwanted content in the 

text which is not useful for the analysis will get cleaned. Along with the cleaning 
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of text, there is one more important part separating the tweets according to 

monthly. This process can help when month-based analysis is initiated. 

1. Cleaning Text Tweets: In this step, the code cleans unwanted details from 

the tweet’s textual content, making the text more suitable for sentiment 

analysis. In the code ‘cleanText(text)’ is a custom function used for 

cleaning the text tweets. It checks whether the input text is a string or not. 

Cleaning includes the following operations: 

a. Removing Mentions: Twitter usernames starts with ‘@’such as 

‘@username’ are removed from the text. This helps in removing 

user references from the tweet. 

b. Removing Hashtags: Hashtags starting with ‘#’ are removed, as 

they do not contribute to sentiment analysis. 

c. Removing RT indicators: If the tweet is a retweet, it often starts with 

“RT @username”. The code removes this indicator as well. 

d. Removing URLs: Any web links (such as https://example.com) are 

also removed from the text.  

e. Handling consecutive single quotes: It replaces a single quote for 

each set of successive single quotes. This is done to standardize 

text and prevent problems brought on by repetitive quotation marks.  

By removing the text data components that are unimportant for 

sentiment analysis, this clearing method ensures that the text data is 

clearer, more focused, and more concisely on tweet’s content. 

https://example.com/
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Figure 1: Method to Clean the Text. 

 

2. Parsing Timestamps: The “Timestamp” column in the data set is 

processed by the code in this stage, which creates datetime objects from 

timestamp strings for further analysis. This step is essential because it 

allows you to segregate all of the tweets by month column which in turn 

makes it easier and used for time-based analysis and visualization.        

The parsing process involves the following steps: 

a. Check for valid timestamps: In the code ‘dateutil. parser’ library is 

used to parse these timestamps into strings. The code verifies that 

timestamp strings in the timestamp match the expected ISO 8601 

format. This helps filter out invalid or improperly formatted 

timestamps.  
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b. Conversions to datetime objects: Timestamp strings that pass the 

validation are converted into datetime objects, which can be used 

for various time-related analysis. 

c. The code creates a new column ‘Month’ based on the parsed 

timestamps. It extracts the full name of the month from the date 

time objects allowing for further analysis. 

 

Figure 2: Create a New Column – Month. 
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Figure 3: State Diagram. 
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Figure 4: Class Diagram. 

 



16 

 

 

 

 

 

 

 

Figure 5: Use Case Diagram. 
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Figure 6: Sequence Diagram.
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CHAPTER THREE 

METHODOLOGIES 

Dataset Collection Using Scrape Method 

The scrape method is called from scweet in the main code, and a few methods 

from utils.py are called in scweet to collect the data. In accordance with the 

project requirement, these two files have been modified. 

 

Figure 7: Scrape Method 

1. Initialization and Configuration:  

A. The code supports the Chrome browser and uses Selenium for web 

scrapping. 

B. The required libraries such as Selenium, Pandas, and other 

modules are imported into the code. 
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2. Data Extraction:  

A. The ‘scrape’ function is defined in scweet.py for scraping Twitter 

data. 

B. It takes various parameters like start date, end date, keywords, 

mention account, hashtags, languages, and more. 

C. A webdriver, in this case Chrome is initiated to access Twitter. 

D. The code, logs into a Twitter account using credentials (username 

and password) with the help of selenium webdriver. 

3. Web Scraping: 

A. The code opens a Twitter search page for a specific query (defined 

by parameters) and starts scraping. 

B. It continues scrolling through the page until a specific condition is 

met (for example reaching the tweet limit). 

4. Data Extraction:  

A. The ‘get_data’ function is defined in utils.py to extract data from a 

tweet card. 

B. It collects information such as username, handle, post date, tweet 

text, emojis, and image links from the tweet card. 

C. Promoted tweets are also handled to exclude them from the data. 

5. Data Processing: 

A. Extracted tweet data is checked for uniqueness and added to a list 

of data. 
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B. Images associated with the tweets are optionally saved if specified 

in the parameters. 

6. Data Storage: 

A. Scrapped data is stored in pandas DataFrame for further analysis. 

B. A CSV file is created to save the scrapped data. 

7. Scrolling and Pagination: The code keeps scrolling through the Twitter 

search results to retrieve more tweets. 

8. User Interaction: The code includes functions to interact with web 

elements such as links and XPath to get the required information from the 

posts. 

Text Blob Method Analysis 

      In accordance with the earlier mention of TextBlob in this document, this 

section offers an actual illustration of TextBlob’s use in this project. This method 

demonstrates how TextBlob is used for particular tasks in this project and is 

responsible for conducting sentiment analysis and categorizing tweets into 

sentiment categories (Positive, Negative or Neutral). 

1. getSubjectivity Function: The ‘getSubjectivity(text)’ function calculates the 

subjectivity of a given text. The degree of objectivity or subjectivity in the 

text is referred to as subjectivity. 

A.  isinstance (text, str) is used to determine whether this input string, 

“text” is a string or not. 
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B.  if ‘text’ is a string, the TextBlob library is used to analyze the text 

and extract the subjectivity score with the help of the function 

‘Textblob’s(text).sentiment.subjectivity’ 

C. If text is not a string (for example missing or non-string data) it 

returns a default value of 0.0. 

2. getPolarity Function: 

A. The polarity of a text is determined using ‘getPolarity(text) function. 

B. The polarity describes the tone of the text, which can be either 

positive, negative, or neutral. 

C. Similar to ‘getSubjectivity’, it checks whether input ‘text’ is a string. 

D. If ‘text’ is a string, it uses the TextBlob library is used to analyze the 

text and retrieve the polarity score using ‘TextBlob(text). sentiment. 

polarity’. 

E. if text is not a string it returns a default value of 0.0  

3. Calculating Subjectivity and Polarity:  

A. Using the ‘.apply’ method, the code applies this function to ‘Text’ 

column of the ‘Complete_Data’ DataFrame. 

B. The polarity scores are kept in the ‘Polarity’ column, but the 

subjectivity scores are kept in a new column called “Subjectivity”. 

4. Sentiment Analysis: 

A. Tweets are categorized into sentiment groups based on their 

polarity scores using the ‘getAnalysis(value)’ function. 



22 

 

I.  if the polarity score < 0 the tweet is categorized ‘Negative’. 

II. if the polarity score = zero the tweet is categorized ‘Neutral’. 

III. if the polarity score > 0 the tweet is categorized ‘Positive’.  

 

 

5. Storing Sentiment Analysis Results:  

A. To save the sentiment labels the code adds a new column called 

“TextBlob_Sentiment” to “Complete_Data” DataFrame. 

b. It is populated by using ‘getAnalysis’ function on Polarity column. 

 

 

Figure 8: TextBlob - Subjectivity, Polarity and Sentiment Classification. 
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NLTK Method Analysis 

This method is used to perform sentiment analysis on text data using the 

NLTK library and its SentimentIntensityAnalyzer.  

1. sentiment_scores Functions:  

A. The ‘sentiment_scores(text)’ function calculates sentiment scores 

(compound, negative, neutral, positive) for the input text. 

B. If ‘text’ is not a string (example: missing or non-string data), it 

returns a default value of 0.0. 

C.  ‘isinstance (text, str) is used to determine whether the input string, 

“text”, is a string or not. 

D. If the input is a string, it proceeds to perform sentiment analysis 

using the SentimentIntensityAnalyzer. 

2.  Applying Sentiment Analysis:  

A. This line applies the sentiment_scores functions to evaluate each 

text in the Complete_Data Dataframe ‘Text’ column. 

B. Each text’s sentiment score is determined, and it is stored in a new 

column called “NLTK_Sentiment_Scores.” 

3. Extracting Compound Values: 

A. ‘get_compound(text)’ This function takes NLTK_Sentiment_Scores 

as a text as input and it returns the ‘compound’ score from the input 

dictionary. 
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B. ‘get_compound function’ applies to each row in NLTK_Sentiment 

_Scores extract the ‘compound’ score and stores it in a new column 

called ‘Compound_Value’. 

4. Performing Sentiment Analysis: Tweets are categorized into sentiment 

groups based on their compound scores using the 

‘get_NLTK_Analysis(value)’ function. 

I. If the compound value < -0.05 it is categorized as ‘Negative. 

II. If the compound value > 0.05 it is categorized as ‘Positive’. 

III. Otherwise, it is categorized as ‘Neutral’.  

5. Storing Sentiment Analysis Results: ‘get_NLTK_Analysis’ function to each 

‘Compound_value’ in the DataFrame and save the sentiment labels, the 

code adds a new column called ‘NLTK_Analysis” to the Complete_Data” 

DataFrame. 

 

Figure 9: NLTK Sentiment Scores and the Sentiment Classification 
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CHAPTER FOUR 

RESULTS 

In contrast, NLTK uses compound values and TextBlob uses polarity 

values for the determination of sentiment. A notable distinction is the 0.05 

threshold, which separates the sentiment categories. This minor change has a 

big effect on outcomes with NLTK categorizing more negative comments than 

TextBlob. When comparing the two, NLTK shows a greater tendency than 

TextBlob to classify feelings as negative. It's crucial to remember that this does 

not necessarily mean that NLTK is always preferable to TextBlob. The choice 

between the two, depends on the specific requirement of the user. While NLTK 

excels in negative sentiment classification. The distribution of positive and neutral 

attitudes is very constant on TextBlob. In conclusion, the choice of tool depends 

on the desired results and particular use cases. In this project, sentiment analysis 

was conducted on the Twitter account of SeattlePD. The results are presented 

below in tabular form, indicating the counts of positive, negative and neutral 

sentiments. 
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Table 1: Data on Sentiment Analysis SeattlePD 

Result Analysis and Visualization 

 With the help of visualization, the data can be simplified, and it help one to 

understand current trends and patterns. In this the analysis shown in three 

categories with Sentiment Analysis Comparison using Pie Chart which gives 

numbers and percentages of positive, negative neutral of complete data, 

secondly, Track of monthly changes using Line Chart which shows individual 

trends, and Monthly Sentiment Analysis using Clustered column chart which 

shows all the sentiments and their trends in one place. 

Sentiment Analysis Comparison:  

         The below chart visually compares sentiment analysis results for the 

Police Department’s tweets using text blob and NLTK. It facilitates a quick 

understanding of the sentiment distribution and allows for insights into public 

Sentiment Analysis SeattlePD 

Sentiment TextBlob NLTK 

Positive 6073 5183 

Negative 4403 7198 

Neutral 7507 5602 
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sentiment regarding the Police Department on Twitter. The pie chart shows 

percentages and number of each sentiment for both the TextBlob and NLTK 

analysis. 

 

 

 

Figure 10: Sentiment Analysis Comparison between TextBlob and NLTK. 

 

Keep Track of Monthly Sentiment Changes:  

         The following code generates separate line charts to visualize sentiment 

analysis results for three categories: Positive, Negative and Neutral using 

TextBlob. It customizes the color palette for each sentiment category and groups 

the data by month and sentiment which are present on X-axis and Y-axis. The 
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charts provided a clear view of statement trends over time, enabling insights into 

how public sentiment towards the Police Department on Twitter varies by month 

and sentiment category. Additionally, the NLTK sentiment analysis uses the 

same chats with the same function with different variables. 

 

 

 

 

Figure 11: Positive - Monthly Sentiment Analysis using TextBlob. 
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Figure 12: Neutral - Monthly Sentiment Analysis using TextBlob. 
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Figure 13: Negative - Monthly Sentiment Analysis using TextBlob. 
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Figure 14: Neutral - Monthly Sentiment Analysis using NLTK . 
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Figure 15: Negative - Monthly Sentiment Analysis using NLTK. 
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Figure 16: Positive - Monthly Sentiment Analysis using NLTK. 

 

Monthly Sentiment Analysis: The clustered column graph helps to visualize 

sentiment analysis results using TextBlob across three categories: Positive, 

Neutral, and Negative. The graph represents sentiment analysis results per 

month, allowing for easy comparison of sentiment distribution over time. The 

code ensures that the graph is visually appealing and informative. This 

visualization helps in understanding how public sentiment towards the Police 

Department on Twitter varies by sentiment category and month.  
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Figure 17: Clustered Column for Monthly Sentiment Analysis using TextBlob. 
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Figure 18: Clustered Column for Monthly Sentiment Analysis using NLTK. 
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CHAPTER FIVE 

CONCLUSION 

 In conclusion, this study revealed valuable insights of how police and 

public interact on Twitter showed us important things using sentiment analysis. 

This project aimed to bring police and communities closer by using the power of 

natural language processing to understand public sentiments by utilizing two 

tools TextBlob and Natural Language Toolkit (NTLK), to understand feelings. 

They showed some differences in how they work. NTLK and TextBlob are tools 

we used to understand people's feelings on social media, with a certain threshold 

0.05, NLTK tends to find more negative comments, while TextBlob shows a more 

even distribution of positive and neutral sentiments. Neither tool is better overall; 

it depends on the user specific needs. We looked at the how people feel about 

this Seattle Police on Twitter. We use charts to show how these feelings change 

each month this helps us understand what the community thinks. In summary 

NTL K is good at finding negative feelings while TextBlob is better at keeping a 

balance between positive and neutral sentiments 

Major Contribution 

With a Twitter API basic account, for $100 USD per month, users can 

retrieve up to 10,000 tweets per month. The Twitter API Pro account, on the 

other hand, allows for a maximum of 1,000,000 tweets and cost $5000 USD per 

month. In the context of our code, it keeps retrieving data until a server 
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connection is lost. Even though it might take some time to compile a sizable 

number of tweets, this period of time can handle them by taking the associated 

cost into account. By executing the code and allowing it to operate for an 

extended period, a significant volume of data can be collected, and that data can 

be used for subsequent analysis.  

Future Work 

In the future, if the budget permits, we can consider using Twitter’s API 

with a developer account for this project. This involves engaging in discussions 

through Twitter. We can also make the project more user-friendly by creating 

front-end interfaces and dashboards. This will help us better connect with our 

requirements and make the project more accessible and interactive. 
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APPENDIX A: 

KEY PART CODE 
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        The code in the below snippet is used in the main program to collect dataset 

in real-time. After data collection, the code is used to clean unwanted information 

from tweets which is not useful for analysis. Subjectivity, Polarity values using 

TextBlob method and performing sentiment analysis which in return classifying 

sentiment as well. NLTK, it able to produce sentiment scores, among the scores 

with help of compound values NLTK sentiment classification will be done. 

SOURCE CODE: 

####################### Libraries ####################### 

import os 

import pandas as pd 

from textblob import TextBlob 

import matplotlib.pyplot as plt 

from datetime import datetime, timedelta #188 

import time #55 

from dateutil.parser import parse #55 

import nltk 

from nltk.sentiment import SentimentIntensityAnalyzer 

from Scweet.scweet import scrape 
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####################### Clearing the Screen ####################### 

tweets = scrape(mention_account='SeattlePD', since="2023-07-01", 

                until="2023-08-01", interval= 5,  

                headless=False,   

                lang="en") 

Complete_Data  = pd.DataFrame(tweets, columns =  ['UserScreenName', 

'UserName', 'Timestamp', 'Text', 'Emojis', 'Tweet URL', 'Image link']) 

 

####################### Cleaning the Text Tweets################### 

import re 

def cleanText(text): 

    if isinstance(text, str):  # Check if text is a string 

        text = re.sub(r'@[A-Za-z0-9]+', '', text) 

        text = re.sub(r'#', '', text) 

        text = re.sub(r'RT[\s]+', '', text) 

        text = re.sub(r'https?:\/\/\S+', '', text) 

        text = re.sub(r'\.+', '', text)  # Escape the dot to match a literal dot 

        # Remove consecutive single quotes 

        text = re.sub(r'\'+', '\'', text) 

    return text 

Complete_Data['Text'] = Complete_Data['Text'].apply(cleanText) 
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####################### SUBJECTIVITY AND POLARITY ############## 

def getSubjectivity(text): 

    if isinstance(text, str): 

        return TextBlob(text).sentiment.subjectivity 

    else: 

        return 0.0  # Return a default value for non-string Complete_Data 

 

def getPolarity(text): 

    if isinstance(text, str): 

        return TextBlob(text).sentiment.polarity 

    else: 

        return 0.0  # Return a default value for non-string Complete_Data 

 

Complete_Data['Subjectivity'] = Complete_Data['Text'].apply(getSubjectivity) 

Complete_Data['Polarity'] = Complete_Data['Text'].apply(getPolarity) 

 

def getAnalysis(value): 

    if(value < 0): 

        return 'Negative' 

    elif(value == 0): 

        return 'Neutral' 

    else: 
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        return 'Positive' 

 

Complete_Data['TextBlob_Sentiment'] = 

Complete_Data['Polarity'].apply(getAnalysis) 

 

####################### SENTIMENT SCORES USING NLTK ########## 

sia = SentimentIntensityAnalyzer() 

def sentiment_scores(text): 

    if isinstance(text, str): 

        return sia.polarity_scores(text) 

    else: 

        return {'compound': 0.0, 'neg': 0.0, 'neu': 0.0, 'pos': 0.0}   

    # Return default values for non-string Complete_Data 

Complete_Data['NLTK_Sentiment_Scores'] = 

Complete_Data['Text'].apply(sentiment_scores) 

 

def  get_compound(text): 

    return text['compound'] 

 

# Perform sentiment analysis 

Complete_Data['Compound_Value'] = 

Complete_Data['NLTK_Sentiment_Scores'].apply(get_compound) 
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def get_NLTK_Analysis(value): 

    if(value < -0.05): 

        return 'Negative' 

    elif(value > 0.05): 

        return 'Positive' 

    else: 

        return 'Neutral' 

 

Complete_Data['NLTK_Analysis'] = 

Complete_Data['Compound_Value'].apply(get_NLTK_Analysis) 

 

####################### PIE CHARTS ####################### 

# Define a color map for sentiment categories 

colors = {'Positive': 'lightgreen', 'Negative': 'lightcoral', 'Neutral': 'lightskyblue'} 

TextBlob_sentiment_counts = 

Complete_Data['TextBlob_Sentiment'].value_counts() 

NLTK_sentiment_counts = Complete_Data['NLTK_Analysis'].value_counts() 

# Sort the data by sentiment categories 

TextBlob_sentiment_counts = 

TextBlob_sentiment_counts.reindex(index=['Positive', 'Negative', 'Neutral']) 

NLTK_sentiment_counts = NLTK_sentiment_counts.reindex(index=['Positive', 

'Negative', 'Neutral']) 



44 

 

 

# Create a figure with a single pie chart 

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) 

 

# Labels for the sections of the pie chart 

ax1.labels = TextBlob_sentiment_counts.index 

ax2.labels = NLTK_sentiment_counts.index 

 

# Values for each section 

ax1.sizes = TextBlob_sentiment_counts.values 

ax2.sizes = NLTK_sentiment_counts.values 

 

# Define colors for each sentiment category in both charts 

ax1_colors = [colors[sentiment] for sentiment in ax1.labels] 

ax2_colors = [colors[sentiment] for sentiment in ax2.labels] 

 

# Explode the "Positive" section (you can adjust this for emphasis) 

explode = (0.1, 0, 0) 

 

# Calculate the percentages 

ax1.percentages = [f'{count} ({count / sum(ax1.sizes) * 100:.1f}%)' for count in 

ax1.sizes] 



45 

 

ax2.percentages = [f'{count} ({count / sum(ax2.sizes) * 100:.1f}%)' for count in 

ax2.sizes] 

 

# Create the pie chart with labels, values, colors, and explosion 

ax1.pie(ax1.sizes, labels=ax1.labels +" " + ax1.percentages, colors=ax1_colors,  

autopct='%1.1f%%', startangle=140, explode=explode, shadow=True) 

ax2.pie(ax2.sizes, labels=ax2.labels +" " + ax2.percentages, colors=ax2_colors,  

autopct='%1.1f%%', startangle=140, explode=explode, shadow=True) 

 

# Add a title 

ax1.set_title('TextBlob Sentiment Analysis') 

ax2.set_title('NLTK Sentiment Analysis') 

 

# Set a main title for both subplots 

plt.suptitle('Seattle PD Sentiment Analysis Comparison', 

fontsize=16,fontweight='bold') 

 

# Display the percentages in a fancy way 

plt.gca().set_aspect('equal')  # Equal aspect ratio ensures that pie is drawn as a 

circle. 

plt.tight_layout() 
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# Show the pie chart 

plt.show() 

 

####################### TEXT BLOB LINE CHARTS ################# 

# Now, let's create separate line charts for each sentiment category (Positive, 

Negative, Neutral). 

# Customize the color palette for the bars 

colors = {'Positive': 'blue', 'Neutral': 'orange', 'Negative': 'green'} 

 

# Group the data by month and sentiment 

grouped_data = Complete_Data.groupby(['Month', 

'TextBlob_Sentiment']).size().unstack(fill_value=0) 

 

# Get the unique months in the data 

available_months = Complete_Data['Month'].unique() 

 

# Create a custom order for the available months 

custom_order = sorted(available_months, key=lambda x: datetime.strptime(x, 

"%B")) 

 

# Create separate line charts for each Text Blob sentiment category 

for sentiment in ['Positive', 'Negative', 'Neutral']: 
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    plt.figure(figsize=(10, 6)) 

     

# Filter data for the current sentiment 

    sentiment_data = grouped_data.loc[custom_order][sentiment] 

     

# Set custom x-axis ticks and labels 

    x_ticks = range(len(custom_order)) 

    x_labels = custom_order 

     

    ax = sentiment_data.plot(kind='line', color='blue', marker='o', linestyle='-', 

linewidth=2, markersize=8) 

     

    # Set custom x-axis ticks and labels 

    ax.set_xticks(x_ticks) 

    ax.set_xticklabels(x_labels, rotation=45, fontsize=10) 

     

    plt.xlabel('Month') 

    plt.ylabel('Count') 

    plt.title(f' TextBlob | {sentiment} | Sentiment Analysis per Month') 

    ax.set_facecolor('#f0f0f0') 

    ax.grid(axis='y', linestyle='--', alpha=0.6) 

    ax.set_axisbelow(True) 
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    plt.title(f'TextBlob | {sentiment} | Sentiment Analysis per Month', fontsize=16, 

fontweight='bold', pad=20) 

    plt.show() 

####################### TEXT BLOB CLUSTERED COLUMN GRAPH #### 

# Create a clustered column graph with custom styling 

# plt.figure(figsize=(10, 6)) 

ax = grouped_data.loc[custom_order].plot(kind='bar') 

 

# Set labels and title 

plt.xlabel('Month') 

plt.ylabel('Count') 

plt.title('TextBlob | Sentiment Analysis per Month') 

 

# Customize the legend 

plt.legend(title='Sentiment', labels=['Positive', 'Neutral', 'Negative'], 

fancybox=True) 

 

# Add count labels to each bar 

for p in ax.patches: 

    ax.annotate(str(int(p.get_height())), (p.get_x() + p.get_width() / 2., 

p.get_height()), ha='center', va='bottom') 
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# Add a shadow effect 

ax.set_facecolor('#f0f0f0') 

 

# Add grid lines 

ax.grid(axis='y', linestyle='--', alpha=0.6) 

 

# Add a background color to the plot 

ax.set_axisbelow(True) 

ax.set_facecolor('#f0f0f0') 

 

# Add a title to the graph 

plt.title('TextBlob | Sentiment Analysis per Month', fontsize=16, fontweight='bold', 

pad=20) 

 

# Customize the tick labels 

ax.set_xticklabels(custom_order, rotation=45, fontsize=10) 

 

# Show the plot 

plt.show() 
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####################### NLTK LINE CHARTS ####################### 

# Now, let's create separate line charts for each sentiment category (Positive, 

Negative, Neutral). 

# Customize the color palette for the bars 

colors = {'Positive': 'blue', 'Neutral': 'orange', 'Negative': 'green'} 

# Group the data by month and sentiment 

grouped_data = Complete_Data.groupby(['Month', 

'NLTK_Analysis']).size().unstack(fill_value=0) 

# Get the unique months in the data 

available_months = Complete_Data['Month'].unique() 

# Create a custom order for the available months 

custom_order = sorted(available_months, key=lambda x: datetime.strptime(x, 

"%B")) 

# Create separate line charts for each Text Blob sentiment category 

for sentiment in ['Positive', 'Negative', 'Neutral']: 

    plt.figure(figsize=(10, 6)) 

     

    # Filter data for the current sentiment 

    sentiment_data = grouped_data.loc[custom_order][sentiment] 

     

    # Set custom x-axis ticks and labels 

    x_ticks = range(len(custom_order)) 
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    x_labels = custom_order 

     

    ax = sentiment_data.plot(kind='line', color='blue', marker='o', linestyle='-', 

linewidth=2, markersize=8) 

     

    # Set custom x-axis ticks and labels 

    ax.set_xticks(x_ticks) 

    ax.set_xticklabels(x_labels, rotation=45, fontsize=10) 

     

    plt.xlabel('Month') 

    plt.ylabel('Count') 

    plt.title(f' NLTK | {sentiment} | Sentiment Analysis per Month') 

    ax.set_facecolor('#f0f0f0') 

    ax.grid(axis='y', linestyle='--', alpha=0.6) 

    ax.set_axisbelow(True) 

    plt.title(f'NLTK | {sentiment} | Sentiment Analysis per Month', fontsize=16, 

fontweight='bold', pad=20) 

    plt.show() 

############   NLTK CLUSTERED COLUMN GRAPH  

# Create a clustered column graph with custom styling 

# plt.figure(figsize=(10, 6)) 

ax = grouped_data.loc[custom_order].plot(kind='bar') 
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# Set labels and title 

plt.xlabel('Month') 

plt.ylabel('Count') 

plt.title('NLTK | Sentiment Analysis per Month') 

 

# Customize the legend 

plt.legend(title='Sentiment', labels=['Positive', 'Neutral', 'Negative'], 

fancybox=True) 

 

# Add count labels to each bar 

for p in ax.patches: 

    ax.annotate(str(int(p.get_height())), (p.get_x() + p.get_width() / 2., 

p.get_height()), ha='center', va='bottom') 

 

# Add a shadow effect 

ax.set_facecolor('#f0f0f0') 

 

# Add grid lines 

ax.grid(axis='y', linestyle='--', alpha=0.6) 

 

# Add a background color to the plot 

ax.set_axisbelow(True) 
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ax.set_facecolor('#f0f0f0') 

 

# Add a title to the graph 

plt.title('NLTK | Sentiment Analysis per Month', fontsize=16, fontweight='bold', 

pad=20) 

 

# Customize the tick labels 

ax.set_xticklabels(custom_order, rotation=45, fontsize=10) 

 

# Show the plot 

plt.show() 
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