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ABSTRACT 

This project is an exploration and implementation of an application using 

Machine Learning (ML) and Artificial Intelligence (AI) techniques which would be 

capable of automatically tuning Kalman-Filter parameters used in post-flight 

trajectory estimation software at Edwards Air Force Base (EAFB), CA. The scope 

of the work in this paper is to design and develop a skeleton application with 

modular design, where various AI/ML modules could be developed to plug-in to 

the application for tuning-switch prediction. 
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CHAPTER ONE 

INTRODUCTION 

 

From the project proposal: "While a finished product is not expected to be 

produced [during the academic project timeframe] due to time [and scope] 

constraints, if successful,  the academic work will likely be the foundation for the 

production of an actual software product being produced and commissioned for 

use in EAFB DT&E platform testing."  

The project was to analyze the systems in place at EAFB utilized to 

produce validated post-flight trajectory data, design a system which could 

integrate into that process and provide an AI-Assistant to the data analysts, and 

produce a skeletal prototype of the system that was a sufficiently functional 

'proof-of-concept' to further develop it into production-quality software product.  

Depending on the capability of the system designed, anything from an automated 

tuning suggestion assistant to a fully-automatic auto-tuning system was a 

potential solution.  We tried to aim high and design a system which could be 

used in any of those capacities, including having the potential to do the job of the 

analyst essentially independently, if a high enough performance level in the 

algorithms were to be achieved. 

Design Considerations 

We investigated and researched the state of the art in neural network 

technologies, and other applicable artificial intelligence concepts, and designed 
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an ensemble system [1] which is based around three main AI/ML components, 

LSTM neural networks, Genetic Algorithms, and Ensemble Modeling.  After the 

system was designed (and accepted by the EAFB TSPI technical expert), the 

development was split into two main areas of effort. 

The first was the design of the architecture engine/harness that the AI/ML 

modules for tuning-predictions and tuning-effects-prediction will plug into.  This 

harness also has the Genetic Algorithm component of the design built into it [2].  

This portion was built with C# in a windows environment. 

The second area of effort was the development of a python codebase that 

would contain the AI/ML code that will be called by the harness to perform tuning 

predictions.  Also included in this was the development of a console application 

that assisted us in the data cleaning, preprocessing, building of test/train sets, 

and performing initial training and testing of the NN components for tuning 

prediction. 

We will describe the theory behind our design, and show the current state 

of development of these two main system components, and their sub-

components, in this paper. 
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CHAPTER TWO 

BACKGROUND 

The Problem 

Edwards Air Force Base (EAFB) is the United States premier Air Force 

(AF) range for Developmental Test and Evaluation (DT&E) of major 

developmental weapons platforms.  The Time Space Position Information (TSPI) 

Engineering Flight (ENRTE) at EAFB uses a state of the art 151-state Carlson-

Biermann unitary diagonal Kalman filter for post-flight tuning of trajectory data to 

achieve 6 Degrees-of-Freedom (6DOF) truth values for platform validation. The 

software platform which contains the filter as well as a Reich-Tung-Streibel (RTS) 

back-propagated optimal smoother is called Multi-Optimal Smoother Estimation 

Software (MOSES). The input data to MOSES is obtained from several families 

of military grade integrated GPS-INS sensors maintained by ENRTE at EAFB 

which record GPS and INS in-flight data.  

The US Department of Defense (DOD) is increasingly interested in using 

innovative technologies, including Artificial Intelligence (AI) and Machine 

Learning (ML) to accelerate efficiency, maximize the power of the workforce, and 

push capability envelopes forward. Accordingly, accelerated efforts have recently 

been devoted to automating the tuning of MOSES which currently requires full-

time efforts from a team of professionals to operate in optimal conditions. 

Kalman filters have many error states being estimated which may require 

tuning in accordance with the quality of the data collected.  The mathematics 



4 
 

contain parameters for process and measurement noise which may be tuned, 

and some data may be weighted or cut out entirely.  Many of these tunings are 

associated with the physics of GPS and INS measurement data and currently 

require expert knowledge to tune appropriately. 

The Desired Solution 

While a human-in-the-loop is desirable for quality assurance, a data driven  

auto-tuner approach can be proven significantly beneficial over current system 

with one or both of the following objectives accomplished.  The first would be 

optimization of the tuning process via data driven adaptive auto-tuner module 

while reducing the amount of manual effort.  The second would be provision of a 

decision support system for an analyst to produce higher quality trajectory 

solutions. 

However, accomplishing the above with a fully functional adaptive auto-

tuner could cut significant annual costs currently spent for manual effort (data 

analysis, validation and system tuning) from trained professionals on a full-time 

basis. The cost of previous efforts on tuning MOSES has been significant, 

surpassing $1M spent attempting to produce the above described product, which 

is indicative of its value to the DOD. The purpose of successful auto-tuning of 

Kalman filters is to create better real-time or post-processed trajectory data.  

Such technology would be of interest in many arenas of commercial, military, and 

civilian autonomous navigation. 
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Kalman filters are notoriously difficult to tune without expert knowledge 

about the characteristics of the sensor taking the measurements and the 

dynamics of the vehicle being tracked. If the filter is tuned too 'tightly', the 

mathematics can cause the predicted trajectory to 'diverge' forever from the truth, 

however if the filter is tuned to 'loosely', high accuracy cannot be achieved. For 

high accuracy applications, the filter must be tuned sufficiently (the 

measurements must be 'trusted enough') to maintain a tight fix on the position of 

the vehicle, and data anomalies which might therefore confuse the filter must be 

hand-tuned away. 

Given the rapid advancement in AI and machine learning with the 

production of voluminous data in multiple areas of interest, specially tuned KF 

using AI/ML may be possible now, and will be useful to estimate 6DOF 

positioning of vehicles in many spaces. A data driven approach with the 

capability to learn and adapt to the real-time dynamics with varying trajectories 

for a particular vehicle by training on that vehicle's data would be of widespread 

value. 
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CHAPTER THREE 

SCOPE  

 

The purpose of this project was to develop an architecture, and a skeletal 

implementation of it, which can support AL/ML-driven modules that work together 

as an in-house auto-tuner for MOSES. The fundamental technology behind the 

product is designed to be able to propose tunings for the filter which might 

ameliorate undesirable conditions, recognize undesirable conditions/features 

within the data and alert the analyst, and iteratively apply tunings until certain 

heuristic threshold constraints are satisfied 

We investigated the use of many ML technologies for applicability to this 

task, and the ones we settled on for an initial implementation were Long-Short-

Term-Memory (LTSM) – an extension of Recurrent Neural Networks (RNNs) [3], 

Gated Recurrent Units [4], Genetic Algorithms (GA) [2], and Ensemble Modeling 

(A hybrid/collaboration between various NN and ML models and a GA).  All 

recurrent neural networks we designed in were implemented with attention 

mechanisms [5]. 

We see a lot of potential in implementing Decision Trees – Random 

Forests, and Convolutional Neural Networks (CNN) in the future. 

The desired scope of the project was to develop an application skeleton 

with a modular design which would be able to tune the data properly provided 

that the ML/AI modules at particular points in the architecture are capable of 
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accomplishing the aforementioned tasks to select tunings and/or recognize and 

ameliorate undesirable data conditions. 

The architecture was to be built extensible so that it could support 

additional future AI/ML modules in a compartmentalized manner, where once 

those modules were added, they would automatically train on the available 

archived flight trajectory data possessed by EAFB, and seamlessly integrate with 

the rest of the system in making automated tuning suggestions. 
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CHAPTER FOUR 

RELATED WORK 

 
EAFB has previously contracted various third party organizations in an 

attempt to produce a product for this purpose. Despite various commercial 

contracts, 5 failed attempts have been made in the past by small business 

organization. Additionally, NASA's Jet Propulsion Laboratory's (JPL) Assistant for 

Understanding Data through Reasoning, Extraction, and Synthesis (AUDREY) 

team has been contracted.  A phase I attempt which did not employ AI/ML 

techniques did not yield a desirable solution.  A phase II attempt proposing the 

use of Artificial Neural Networks (NN) in 2020 was aborted due to data 

availability/requirements, differences in vision, and funding issues which arose a 

few years into the phase II contract. 
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CHAPTER FIVE 

PROPOSED FRAMEWORK 

 

I designed a C# application, and a python application, which work together 

to perform the necessary tasks to preprocess data into a form usable by neural 

networks, create the neural networks, train them, and then use them to make 

tuning predictions.  Those tuning predictions are then combined into a genetic 

algorithm which combines them and tests them using the MOSES application, 

and judges their quality.  The C# application skeleton was completed, including 

all modules for feature detection, tuning prediction, genetic algorithm, thread 

management, and a development GUI.  The potions stubbed in but not yet 

completed are the heuristic algorithms for tuning-set evaluation, and the 'graph-

prediction neural networks' module which was designed in to one-day be a more 

efficient evaluator for the GA than running the actual application (it will try to 

predict estimates of certain output parameters).  The few portions that are merely 

stubbed in are because they are not critical for the application to work initially as 

a proof-of-concept, and the project scope in its entirety is several years’ worth of 

professional work, so the portion we are able to complete for the academic 

culminating work must choose to not implement or only partially-implement 

certain features in order to meet the desired timeframes and scope-of-work for 

the academic project. 
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The application as a whole is called Heuristic Extrapolation Architecture 

for TSPI Handling of Estimation, 412th Range Squadron (HEATHER).  In the rest 

of this section, I will describe some major considerations taken into account 

developing HEATHER, and give an overview of how the architecture works. 

 

Major Considerations 

HEATHER is designed to run in a secure environment within the DOD, so 

no external network connectivity is allowed, and to be able to run it on an isolated 

machine with minimal external network communication is preferred.  For this 

reason, we secured a Lambda high performance workstation to run the 

application.  Securing this machine, we are able to store and process large 

amounts of flight data on the machine and have the ability to train networks on it 

in a more reasonable timeframe. 

The amount of data and formatting was an issue as well.  EAFB has over 

20 years of archived flight data, and as programs change over the years that are 

used to process this data, a lot of massaging had to be done to get sufficient 

amounts of it into a usable and consistent state.  This is an ongoing process but 

currently we have converted 4100 missions into usable format though the use of 

some helper programs written in C# to pull data from the archival system, and 

get it all into a consistent state whereby those missions can be pre-processed, 

and used for training by the python code. 
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Usability and maintainability were important considerations, as few people 

in the professional workforce currently have any expertise with AI / ML 

technologies, and this is perhaps more true than average within the DOD.  For 

this reason the main engine was written in C#, as the intended location of use for 

the program has significant expertise in this language, and the C# WinForms 

library is extensive and powerful for creating stable GUIs with high usability. 

Modularity and extensibility were also very important, as the application of 

ML to this particular task is still an area of ongoing research, and there is not 

much work done.  As we develop ML modules and train them on the data, we 

may find other solutions/modules would be better, and/or want to change course. 

So the architecture was designed to easily accommodate whatever ML modules 

you would want to plug in for tuning predictions. 

Speed and performance were also a consideration for two reasons.  The 

smaller reason was the time it will take to preprocess data and train neural 

networks initially, for the application to use, but as a one-time cost, that is the 

lesser concern, which was handled sufficiently with the acquisition of the high-

performance workstation.  The larger performance concern was that the 

application will be used to process data which is sometimes needed in a quick-

turn fashion.  There are missions which are critical that the results of the data 

collecting during flight is needed ASAP to inform the test team for the weapons-

platform of what to do next.  For this reason, significant work was done in the 

main application to allow jobs to be broken down into pieces (Gigs) which may be 
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started or stopped/pre-empted by higher priority jobs, and later resumed without 

loss of progress.   

Training Application 

I wrote a console application in python that allows the user create new NN 

models, specifying hyper-parameters through a menu system.  It also provides 

options for cleaning/wiping of data, resetting the NNs to initial conditions, 

preprocessing the raw mission data, training the NNs, and testing the NNs.  It 

allows specification through the menu system of system settings, and it 

organizes all its data and metadata in an organized file structure. 

Figure 1. Menu System: Main Menu 
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Figure 2. Menu System: Model Setup 
 

Figure 3. Menu System: Provide Name 
 

Figure 4. Menu System: Select Model Type 
 

Figure 5. Menu System: Select Input/Output Parameters 
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Figure 6. Menu System: Provide Meta-parameters 
 

Once you've set up a model (you can have any number created at a time), 

you can then see some info about the missions and models in the system.  

Figure 7 is a screenshot of a small sample where sensitive information about the 

two sample missions has been omitted 

 

Figure 7. Example Output: Model Meta-Information 
 

Below you'll see the test and training menu, where you may select options 

to preprocess data, and the system will examine all created models, all missions 

and what data is present in them, and it will notice whether anything is missing in 
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the preprocessed data folder.  Any missing data is gathered from the raw 

missions and preprocessed, while data which is already present is ignored. 

If already pre-processed data needs to be removed for some reason, the 

'Clean Data' menu available from the main menu can do that. 

 

Figure 8. Menu System: Test & Training Menu 
 

In Figure 8, you can see the menu that allows you to select to preprocess 

all input data.  Selecting the preprocess option will show outputs similar to Figure 

9 and Figure 10, depending on what data is missing (some data omitted for 

security reasons): 
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Figure 9. Example Output: Writing Dataset Signals for Each Mission 
 
 

Figure 10. Example Output: Preprocessing MOSES Input Files 
 

Using this console application, which is powered by python code 

implementing all of the functionality under the hood, a worker should be able to 

even create new models and train on new data just by dropping new raw 

missions into the mission folder, or creating a model through the menu system.  

Once they select 'preprocess all data', or if they clean the data and re-train, using 

the console, the older models will retrain incorporating all available data at that 

time. 
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Real-Time Application 

The second part of the program is written in C# and will eventually have a 

nice GUI, but the GUI implemented currently is just for development purposes, so 

it's omitted from this report. But over 10k lines of code were created in the main 

project which implement the following architecture which was planned and 

diagrammed in MS Visio during the design phases of the project. 

Figure 11. System Design: Logical Component Diagram 
 

A more detailed system diagram and a description of the training loops it 

uses has been created, but they're too large to show well in this paper.  Figure 12 

and Figure 13 are the system design documents, of which higher resolution 

copies may be provided upon request to the author 
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Figure 12. System Design: Complete System Diagram 
 
 
 

Figure 13. System Design: Available Training-Loops State-Diagram 
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A Job / Gig system was created so that jobs could be processed bit-by-bit, 

and if a higher priority job came into the pipeline, the auto-tuning for that higher 

priority job would pre-empt further execution of the lower priority Jobs in the 

system.  This way, once the Gig objects for the high priority jobs were cleared 

from the work queue, the lower priority ones would then execute without loss of 

progress. 

The system needs to be able to maintain state through shutdowns, and 

the Gig system facilitates this also, as these objects can be serialized to disk 

before and after completion, however the serialization code has not been written 

yet, but the system is designed to allow it easily in future work. 

The modularity of the system should be apparent through the diagrams, 

whereby if the user creates a new model as shown in the python console 

application, the HEATHER engine will see that model and incorporate it into the 

architecture at the right level.  Right now, the only models implemented are 

turning switch predictors, but other ML modules would be seen and used by the 

engine in a similar manner through future work. 

The system also was designed to be tuning-value and estimation-software 

agnostic, so if a new analysis engine is implemented for trajectory estimation 

(one is being worked on by an outside contractor at the moment, and may be in 

use within a few years), all that would need to be rewritten in the HEATHER 

engine are a few modules that define how the HEATHER system interfaces with 
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the analysis software, and which describes what tuning switches were available 

for that analysis engine. 

Analyst/Client Integration 

There is a third portion to the whole application suite which was not 

worked on at all during this academic proof-of-concept portion of the 

development, which is a Client application which will be used by the analyst to 

interface with the master application.  Analysts use desktop PCs which can 

communicate over the secure network to the master machine.  A modification to 

their Analysis client will need to be made that does this communication, and 

requests automated tuning suggestions from the HEATHER master application.  

Work on this client modification was deferred to a later state where the academic 

work will be turned into a usable/deliverable product for the analysts. 
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CHAPTER SIX 

PRELIMINARY RESULTS 

 

Currently, the system has only been run on a few missions, using the 

CPU. CUDA enhancements to the code are now complete, and the full dataset is 

being processed on the high performance workstation, but it will take weeks to 

months (depending on the size of the networks trained) to train each model on 

the massive set of data.  The current CPU run was performed on just 100 

datasets (100 satellite/frequency/code combinations) available from just 2 

missions, so the results shown are not indicative of final results, but even from 

training on 2 missions, I can show the results of the engine starting to show in 

small ways: 

Promising Results 

In Figure 14 and Figure 15, you still find a few examples of what we view 

as promising results of the engine.  The neural networks that predicted these 

tunings were trained on just 100 datasets for 50 epochs. 
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Figure 14.  Promising Result 1.  
 

Figure 15.  Promising Result 2. 
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From these results, it’s clear that the input parameters we’re feeding into 

the networks have sufficient information for the network to predict when a 

satellite should be de-weighted.  The networks didn’t estimate the same de-

weighting factors as the analyst did, but changes to meta-parameters, increased 

training data sizes, and longer training times may yield better results.  One 

important question we had was whether it was even possible for a neural network 

to be able to determine when a pseudo-range should be de-weighted with the 

input parameters we’re able to obtain for input parameters.  These results were 

just a few of the positive results, and are shown for example. 

Less than Promising Results 

Figure 16 and Figure 17 are examples of when the network did not 

recognize that a tuning should be made, or estimated the wrong level of 

weighting for a satellite measurement.   
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Figure 16.  Bad Result 1. 
 

Figure 17.  Bad Result 2. 
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However even when full results are achieved, ‘failure’ cases like these 

might be expected.  Analysts do not always de-weight satellites when their data 

is poor quality.  The characteristics being learned by the neural networks might 

therefore identify desirable tunings the analyst did not make, based on examples 

where the analyst did tune. 

Another finding of note is that the system is able to predict reasonable 

numbers only training on 2 missions with 100 satellite/frequency/code datasets.  

When it's trained on the 100k datasets from 4.1k missions, hopefully the 

predictions which are off by a steady state will have less loss, and a higher 

percentage of the tunings which the analyst made were able to be detected and 

tuned by the networks. 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORK 

 

Thus far in the system design, a complete proof-of-concept of the core 

functionality has been accomplished.  University policies permitting, this paper 

may be updated in the future when final results and accuracies from the 4.1k 

missions available are finished processing on the high-performance workstation. 

Future work involves tuning of meta-parameters, implementing more NN 

models and other ML models like decision trees and perhaps Convolutional 

Neural Networks (CNN) for faster network training speeds than LSTM networks.  

Also development of the solution-quality heuristic algorithms, a high quality GUI 

for the HEATHER engine, a client application and GUI, implementing feature 

detection, GPNNs, and hooking the HEATHER engine up to the python back-end 

for iterative-tuning, and automatic continuous training may be performed.   Such 

work represents another 1-2 man years of effort with potential for that to be a 

high-return investment. 
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