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ABSTRACT 

Chest X-ray images are crucial for medical decisions and patient care. However, 

their manual interpretation is time-consuming and prone to human error. This 

project aims to create an automated system that uses deep learning techniques 

to classify thorax disease from chest X-ray images. We are using the NIH Chest 

X-Ray Dataset, which contains many annotated images, as input data for this 

project. This approach uses UNet architecture as its classification layer. UNet 

architecture is well-known for its efficiency in image segmentation. Adding 

residual blocks enhances this approach's ability to classify images. The goal of 

this project is to create a robust and accurate classification model that uses 

UNet’s unique capabilities for feature representation and extraction. This would 

allow accurate discrimination between different forms of thorax diseases with 

high precision. 

This project shows the effectiveness of UNet architecture with residual 

block for accurately classifying thorax disease types. These techniques 

combined produced superior results to many other architectures for medical 

image analysis, underscoring their importance. 
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CHAPTER ONE  

INTRODUCTION 

Background 

Medical image classification is a key area of research in image 

processing, machine learning and computer vision. Accurate and efficient 

classification has become more important as technology advances and large 

datasets of medical images are available. The classification of chest X-rays is 

crucial in the diagnosis and treatment of various thoracic disorders. The NIH 

chest X ray dataset is a prominent dataset in the field. It contains over 100,000 

anonymized images of chest X rays from more than 30,000 different patients. 

Deep learning models are used to extract relevant features. 

 

Literature Review 

 
Chest X-rays are one of the most frequently performed diagnostic imaging 

studies. Large datasets and deep learning techniques, automated analysis of 

chest X-rays has become an expanding area of research. Wang et al [1] provides 

valuable insight into the challenges and possible solutions of chest X-ray 

classification. They act as benchmarks to measure performance of various 

classification models on ChestX-ray8 dataset. Wang et. al. [1] introduces 

ChestXray8, a chest X-ray image database that is open to the public and 

contains over 100,000 images with disease labels. Their paper also provides 

benchmarks for weakly supervised classification and localization using 
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convolutional networks (CNNs). This shows that their network could identify 

disease markers on images of X-rays without detailed annotations.  

Yao et al. [2] tackles the problem of medical diagnosis using X-rays by 

identifying dependencies between various disease labels. This knowledge is then 

uses to train a model using deep learning from scratch, using correlation among 

diseases for training data. They take into account the fact that multiple conditions 

can coexist and interact, resulting in a more accurate and nuanced diagnosis 

system. Their methodology demonstrates how learning intricate correlations 

among diseases can enhance diagnostic accuracy. 

The study by Rajpurkar et al. [3] shows that a deep-learning algorithm are 

capable of detecting pneumonia in chest X-ray images with accuracy levels 

higher than those achieves by radiologists. They focuses only on pneumonia 

detection by using 121 layer CNN training models. Their authors shows the 

potential AI has in medical diagnosis applications, such as ChestX ray14 dataset 

which is an extension of ChestX ray8 dataset. 

Ronneberger et al.[4] introduces U-Net, a CNN architecture developed 

specifically for biomedical image segmentation. U-Net stands out in medical 

imaging because its architecture works efficiently even with limited training 

samples while producing precise segmentations results. Furthermore, the model 

structure facilitates precise localization of structures within biomedical images. 

Siddique, N. et al's [5] paper on U-Net and its iterations provides a thorough 

investigation of how U-Net architecture has been utilized for medical image 
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segmentation applications. They discuss its theory behind construction as well as 

modifications for enhanced performance as well as applications of U-Net in 

medical imaging. 

Khanna et al’s [6] research employs a variant of U-Net architecture which 

utilizes residual learning (Residual U-Net) for lung segmentation on CT images. 

By building deeper networks with residual connections that utilizes U-Net's 

enhanced learning capacities and performance for segmenting medical images. 

Deep learning's success in medical imaging goes beyond architectures 

alone, however. He et al.’s [7] residual learning concept enables deeper 

networks without encountering typical vanishing gradient issue. Furthermore, 

Kingma & Ba [8] presents training strategies such as Adam optimizer that proves 

instrumental in ensuring convergence of their networks. 

Data augmentation techniques should not be underestimated either; they 

expand and diversify training data in order to prevent overfitting. Shorten & 

Khoshgoftaar [9] provides an exhaustive survey of various augmentation 

techniques utilizes in deep learning environments. 

Prechelt [10] discusses early stopping as an invaluable way of increasing 

performance and understanding when to end training, offering invaluable 

guidance. 
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Significance 

 
Accurate classification of chest X-ray images has far-reaching 

ramifications for healthcare providers and patient care. Being able to quickly 

detect and classify thoracic diseases automatically can aid radiologists in early 

diagnosis of pneumonia, tuberculosis, and lung cancer - leading to timely 

interventions, improved treatment planning, improved patient outcomes, and 

faster interventions overall. Furthermore, automating image classification tasks 

helps relieve medical professionals of manual analysis tasks; freeing them up for 

more critical cases or complex diagnoses. 

In this project, we seek to address the challenges associate with chest X-

ray classification using a combination of UNet architecture and residual layers. 

Originally has proposed for biomedical image segmentation, this model has 

shown its promise in capturing fine-grain details and spatial information. By 

adding residual layers - which enable gradient information propagation as well as 

deep network training - to our model's design we hope to enhance its 

performance and robustness while improving classification accuracy for thoracic 

diseases seen on chest X-ray images. We hypothesize that using both models 

together can produce improved classification accuracy when classifying diseases 

seen on chest X-ray images. 

Purpose 

The purpose of this project is twofold. Firstly, we aim to optimize the 

classification model for the NIH Chest X-ray dataset by systematically exploring 
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various factors such as hyperparameters, image sizes, and input configurations. 

Through a comprehensive experimentation process, we can identify the optimal 

settings that yield the highest classification accuracy. Secondly, we seek to 

compare the performance of the UNet model with residual layers against other 

popular convolutional neural network (CNN) architectures, such as VGG and 

ResNet, on the ChestX-ray dataset. This comparative analysis provides insights 

into the strengths and weaknesses of different models for chest X-ray 

classification. 

By achieving these objectives, we hope to contribute to the advancement 

of medical image classification in the context of chest X-ray analysis. The 

findings of this project can potentially benefit radiologists, healthcare providers, 

and researchers working in the field of thoracic disease diagnosis. The 

developed model has the potential to assist in the accurate and timely 

classification of chest X-ray images, leading to improved diagnostic accuracy, 

reduced workload for medical professionals, and enhanced patient care. 

  



 
 
 
 

 
 

6 

CHAPTER TWO  

OVERALL DESCRIPTION 

Hardware Requirement 

• Memory: 32 GB (minimum) 

• Graphics Card: NVIDIA Tesla P100 

• CPU: Intel Core i5 or above, Apple M series 

• OS: Windows, Mac OS, Linux 

 
The implementation of the classification model and the experimentation 

process in this research project requires specific software and programming 

languages. The following software and language requirements has utilized to 

develop and evaluate the proposed approach. 

 

Software Requirements 

Python, an open-source programming language, serves as the primary 

language for this research project. Python provides a wide range of libraries and 

frameworks that are essential for deep learning, image processing, and scientific 

computing tasks.  

The following software components were used: 

Python  

Version 3.7 or higher is used as the programming language for model 

implementation, data manipulation, and experimentation. 

Deep Learning Frameworks  
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The project utilizes TensorFlow (version 2.4.0) and Keras (version 2.4.3), 

popular deep learning frameworks, to build, train, and evaluate the classification 

model. These frameworks offer a high-level API for efficient implementation of 

neural networks. 

Jupyter Notebook  

Jupyter Notebook (version 6.1.4) provides an interactive development 

environment for coding, documentation, and experimentation. It allows for 

seamless integration of code, visualizations, and textual explanations. 

Data Manipulation Libraries 

The NumPy library (version 1.19.2) is used for efficient handling and 

manipulation of numerical data, while the Pandas library (version 1.2.0) facilitate 

data pre-processing and analysis tasks. 

Image Processing Libraries 

OpenCV (version 4.5.1) and PIL (Python Imaging Library, version 8.1.0) 

are employed for image loading, resizing, and augmentation operations. These 

libraries provide essential functionalities for pre-processing the chest X-ray 

images. 

Visualization Libraries 

Matplotlib (version 3.3.2) and seaborn (version 0.11.0) are utilized for 

generating visualizations, plotting results, and analyzing the performance of the 

classification model. 
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Programming Language Requirements 

The research project requires proficiency in the following languages and 

concepts: 

Python 

A solid understanding of Python programming language is essential for 

implementing the classification model, pre-processing the dataset, and 

conducting experiments. Proficiency in Python's syntax, data structures, and 

libraries is necessary for efficient coding and data manipulation. 

Deep Learning Concepts 

A comprehensive knowledge of deep learning concepts, including 

convolutional neural networks (CNNs), optimization algorithms, loss functions, 

and regularization techniques, is crucial for designing and training the 

classification model. Understanding these concepts enable the utilization of 

appropriate architectural choices and optimization strategies. 

Image Processing Knowledge 

Familiarity with image processing techniques, such as image resizing, 

normalization, and data augmentation, is necessary for pre-processing the chest 

X-ray images. This knowledge facilitates the preparation of the dataset for 

effective model training and evaluation. 

Experimental Design and Analysis 

A solid grasp of experimental design principles and statistical analysis is 

essential for conducting rigorous experiments, comparing model performance, 
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and drawing meaningful conclusions from the results. Applying appropriate 

statistical tests and visualization techniques allow for insightful interpretation of 

the experimental findings. 

 
Dataset Information 

This research project uses the NIH Chest X-Ray dataset, collected and 

maintained by the National Institutes of Health (NIH). This vast repository 

includes anonymized chest X-ray images has taken from over 30,000 patients 

gather through natural language processing analysis of radiology reports 

associated with each image for additional diagnostic information. 

Dataset Characteristics 

• The NIH Chest X-Ray Dataset comprises over 100,000 chest X-ray 

images taken of patients' thoracic regions by physicians across the US 

and labelled with various lung conditions such as pneumonia, tuberculosis 

and lung cancer - with each image labelled to reflect its relevance within 

this dataset.  

• Multi-label classification is necessary as images may display multiple 

pathologies at once. 

• Our dataset features numerous pathology classes to provide an inclusive 

representation of thoracic diseases encountered during medical practice. 

• Data frames represent datasets. Here we explore each column to better 

understand its contents: 



 
 
 
 

 
 

10 

 Image Index - Representing a unique identifier or filename associated 

with medical images 

 Finding Labels: This column describes any findings or abnormalities 

detected within medical images. In the first row, multiple findings are 

separated using "|", such as Infiltration, Mass Nodule and Pleural 

Thickening presence; for rows two and three the label reads "No 

Finding," meaning there were no abnormalities uncovered from that 

particular medical image. 

 Follow-Up #: It displays the date or duration since initial examination; 

for instance, in row one there was 11 follow-up examinations since 

initial exam.  

 Pertaining Patient I.D: Each unique patient identification number. 

Pertaining Patient Age During Examinations. 

 Patient Gender (M for male, F for female) and View Position are 

essential information about medical images taken, which indicate 

gender as well as view position (AP for anterior-posterior and PA for 

posterior-anterior images respectively). 

 OriginalImage[Width and Height]: These columns indicate the 

dimensions (width and height) of an original medical image 

  OriginalImagePixelSpacing[x,y]: These columns demonstrate how 

pixels space out across both dimensions in its original image. 

• Finding labels 
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 "No Finding" With over 60,361 instances has recorded so far, this label 

indicates no abnormalities or findings are discovered within any image 

X-ray taken for that patient. 

 "Infiltration'" has an infiltrate count of 9,547 and indicates the presence 

of abnormal infiltrates within lung tissue. 

 "Atelectasis" has atelectasis count of 4,215 which suggests collapsed 

lung tissue as the culprit for infiltrations and atelectasis respectively. 

 "Effusion" occurs 3,955 times and indicates an accumulation of fluid in 

the pleural cavity. 

 "Nodule" occurs 2,705 times; this indicates small abnormal growths or 

nodules present within a lung tissue sample. 

 "Pneumothorax" appears 2,194 times in our datasets and represents 

air or gas build-up within the pleural cavity leading to lung collapse, 

while "Mass" shows 2,139 appearances to indicate abnormal masses 

or tumors present within lungs. 

 "Effusion|Infiltration" appears 1,603 times, suggesting both effusion 

and infiltration findings were present in equal numbers.  

 "Atelectasis|Infiltration" has 1,350 counts indicating similar findings of 

both types. 

 "Consolidation" occurs 1,310 times, signaling consolidation of lung 

tissue often caused by pneumonia.  
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 "Atelectasis|Effusion" occurs 1,165 times - suggesting an overlap in 

symptoms between atelelectasis and effusion findings. 

 "Pleural_Thickening" appears 1,126 times, signifying thickening of the 

pleural membranes surrounding the lung, while "Cardiomegaly" shows 

up 1 093 times; an enlarged heart would qualify. 

 "Emphysema": This term appears 892 times, signifying lung tissue 

damage and increase airspace volume. 

 "Infiltration|Nodule" has 829 instances recorded indicating both 

nodules and infiltrations as findings. 
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Figure 1: Data Set 

 

This Figure 1 offers insights into the distribution and prevalence of abnormal 

findings or conditions found within an X-ray dataset. It helps in comprehending 

relative frequency across conditions found within images taken of anatomical 

parts. 

Dataset Split 

• Data is split into subsets for training, validation, and testing to assess the 

performance. The training set, comprising 70%, has used to train the models. 

10% has used for hyperparameter tuning, model selection, or validation, while 
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20% is a sample independent to measure the overall performance of the 

classification model. Below Figure 2 Shows percentage of various conditions 

available in training data frame. 

 

 

Figure 2: Percentage of Different Conditions in Dataset 

] 

Data Analysis 

• An exploratory analysis has performed to gain insights into the distribution 

and co-occurrence patterns among various classes in terms of pathologies. 

This process provides insight into multi-label classification challenges as well 

as guidance in selecting suitable evaluation metrics. 
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Dataset Limitations 

• It is essential to recognize that this dataset has certain constraints. Since 

labels have been collected from radiology reports, there may be inherent 

uncertainties with diagnoses; furthermore, without an "diagnosis confidence" 

attribute to define label accuracy is difficult; and conflicts among physicians 

regarding certain diagnoses could potentially cause mislabelled images. 

• Despite these constraints, this dataset offers an unparalleled opportunity for 

training and testing deep learning models for chest X-ray classification. 

Technology Stack and its Application 

This chapter provides the general background behind the technology has 

been utilized for image classification in this project, using machine learning and 

deep learning techniques like UNet for faster training times and optimal results. 

Python Programming Language 

Python serves as our primary programming language to implement and 

analyze our classification model and conduct data analysis. Notorious for its 

flexibility and ease-of-use, this widely popular programming language offers a 

comprehensive library and framework specifically developed to address scientific 

computing tasks as well as deep learning tasks for machine learning tasks and 

image processing tasks. 

Deep Learning Framework 

Deep learning frameworks such as TensorFlow and Keras are integral 

parts of the technology stack, offering high-level APIs and prebuilt functions for 
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designing, training, and evaluating neural network models efficiently. By 

capitalizing on the power of these framework researchers were able to quickly 

design complex deep learning architectures while optimizing model performance 

effectively as they handle large image datasets efficiently. 

Jupyter Notebook 

Jupyter Notebook is an integral tool in aiding the interactive development, 

experimentation, and documentation of our classification model. Thanks to its 

web interface with code support for code, visualizations, and text explanations as 

well as its seamless environment for implementation and testing various 

components it allows researchers to iteratively refine code, visualize intermediate 

results visually as well as effectively communicate findings to one another. 

Image Processing Libraries 

Popular image processing libraries such as OpenCV and PIL (Python 

Imaging Library) are being utilized for preprocessing and manipulating chest X-

ray images, providing functions including image loading, resizing, augmenting 

data sets to boost model generalization as well as assuring compatibility of 

images with classification models. Researchers utilizes these libraries as they 

enable data preparation while performing data augmentation to increase 

generalization capacity as well as to ensure images could work within 

classification models. 
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Data Manipulation Libraries 

NumPy and Pandas libraries are essential in handling numerical data 

efficiently and manipulating it effectively, offering efficient numerical operations 

as well as array manipulation capabilities, while Pandas provides data 

preprocessing, cleaning, and analysis functionality. Researchers can effectively 

preprocess their dataset and draw meaningful insights out of it for 

training/evaluation, using these libraries. 

Visualization Libraries 

Visualization libraries such as Matplotlib and Seaborn provides 

researchers with tools for producing informative plots, charts, and graphs to 

display data visually, evaluate model performance, present their research 

findings, or communicate interpretation and communication of results more 

easily. They provide various forms of visualization such as bar plots, scatter 

plots, and heatmaps which make results easy to comprehend and communicate 

through visualization techniques such as bar plots. 

Flow of the Project 

Data Loading and Preprocessing 

• To start out the code is loaded using pd.read_csv and glob function. The 

CSV containing metadata about chest X-ray images is read into pandas 

DataFrame (all_xray_df), and then extracted image paths are stored in a 

dictionary (all_image_paths). 
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• Image paths are then added to the DataFrame using the map function, 

creating a column titled 'path' in it. 

Data Processing 

• One-Hot Encoding: Since the classification is a multiclass problem, the 

code performs one-hot encoding for the target labels. A list of all possible 

labels (all_labels) is defined, and for each label, a new column is added 

to the DataFrame with a value of 1 if the label is present in the 'Finding 

Labels' column and 0 otherwise. This step ensures the representation of 

the labels in a suitable format for training the classification model. 

• Balancing the Dataset: To address class imbalance, the code balances 

the dataset by sampling all examples from the DataFrame. The sampling 

is performed based on the sample weights, which are calculated using the 

number of findings associated with each image. The resulting balanced 

dataset is stored back into all_xray_df. 
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Figure 3: Images of the Chest X-ray and Corresponding Output Labels 

 

This figure 3 Shows some of the images of the Chest X-ray from dataset 

and depicts corresponding output labels to respective image. 

 
Train-Test Split 

• This code utilizes the train_test_split function from the 

sklearn.model_selection to divide data sets into training and validation 

sets using 0.3 as test size. As a result, training dataFrames (train_df) are 

created and stored into train_df and valid_df folders respectively. 
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• For convenience, training and validation sets sizes are listed to give an 

overall view of their data split. 

Data Generator 

• The code sets up data generators using the ImageDataGenerator class 

from Keras. These generators used to load and preprocess the images on 

the fly during model training. 

• The Core_IDG object is then instantiated which defines data augmenter 

transformations and normalization options. 

• To generate train and validation generators for training a neural network, 

two DataFrames named train_df and valid_df are passed as input to 

flow_from_dataframe method in their respective DataFrames - these 

provide batches of preprocessed images paired with labels in a format 

compatible with neural network training. 

• These generators have been configured to resize images to their specified 

IMAGE_SIZE, convert them to grayscale format, randomly shuffling data 

and using an adjustable batch size. 

 
Model Training and Testing 

• This code implements a machine-learning model training and testing 

phase. It includes defining a model structure (e.g., UNet with residual 

layer), compiling it by using an appropriate optimizer/loss functions 

combination, fitting it to the training data using the fit method, and 
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validating/assessing it on test or validation sets using the evaluate 

method. 

 

 

Figure 4: Unet Architecture 

 

At first glance, Figure 4 appears to have a "U-shaped" form. The 

architecture is symmetrical and consists primarily of two parts: the left part, called 

the contracting path is made up of the general convolutional processes; the right, 

expansive path is made up of transposed 2d layers. 

Above U-net Architecture (example 32x32 pixels at the lowest 

resolution). Each blue box represents a feature map with multiple channels. On 

the top of each box, you will find several channels. The lower left corner of the 

box is the x-y size. The white boxes are copied feature maps. The arrows 

indicate the different operations. 
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• Along with the Unet, the classification layer is enhanced by residual 

blocks or skip connections that feature as follows. 

 

 

Figure 5: Residual Network 

 

Figure 5 shows a single residual block with skip connection. Skip 

connections refer to any mechanism whereby the output from one layer is fed 

directly to a later layer, in U-Net architecture for image segmentation the use of 

long skip connections to avoid passage through deeper levels and preserve 

spatial information that might otherwise become lost within its layers. 
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CHAPTER THREE 

 METHOD 

Image Transformation 

Samplewise Centering and Standardization 

ImageDataGenerator can be utilized by setting its samplewise_center 

=True and samplewise_std_normalization = True parameters to optimize the 

convergence and performance of models. This transformation centers each 

image around zero while scaling its pixels with unit variance, improving 

convergence and performance of models. 

Rotation 

ImageDataGenerator is configured with rotation_range=3, randomly 

rotating each image by 3 degrees during training to add variability and make its 

model more robust to changes in test data. 

Reflective Fill Mode 

ImageDataGenerator sets its fill_mode parameter to ‘reflect’. This setting 

fills any holes created during rotations or shifts with values taken from adjacent 

pixels - helping preserve image content without creating artificial patterns at its 

boundaries. 

Horizontal and Vertical Flipping 

ImageDataGenerator allows random horizontal flipping during training 

using its horizontal_flip=True parameter, providing additional variations to 
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image orientation that help broaden a model's ability to generalize across 

different orientations. Vertical flipping may also be applied as needed. 

Width and Height Shifts 

The width_shift_range and height_shift_range parameters of 

ImageDataGenerator have been set to 0.1 and 0.05 respectively to enable 

random translations of images horizontally and vertically within certain ranges, 

aiding learning models with features insensitive to small translations. 

Zooming 

ImageDataGenerator sets its zoom_range parameter to 0.15; this 

augmentation technique randomly applies zooming transformations to images 

within this range, magnifying or diminishing their content within it. Zooming helps 

the model learn to focus on various parts of an image while improving its ability to 

detect and classify objects at different scales. 

 

Models 

This research project employs a model that combines U-Net architecture 

with a classification layer to optimize image segmentation tasks. U-Net 

architecture is an established approach for image segmentation that involves two 

networks, an encoder network, and a decoder network, with the encoder network 

collecting high-level features from an input image while its decoder reconstructs 

segmented output images. 
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U-Net architecture can be especially effective at image segmentation due 

to its ability to capture fine-grained structures and accurately localize objects. 

This is achieved via skip connections that enable decoder access and the use of 

low-level feature maps from the encoder. By including such connections, the U-

Net model can make use of both high-level features as well as lower ones, 

providing precise localization while simultaneously capturing fine details in 

segmented regions. 

In this research project, U-Net architecture has enhanced by adding a 

classification layer. With this addition, the model not only performs segmentation 

but can also classify segmented regions into specific categories for classification. 

By combining segmentation and classification capabilities into one 

comprehensive solution, this model gains the capacity to offer detailed analysis 

and understanding of image content. 

U-Net architecture, as a convolutional neural network, excels at extracting 

powerful feature representations from images. The convolutional layers in this 

model capture complex patterns, textures, and structures present in an input 

image to form powerful discriminative features that improve accuracy when 

discriminating between classes accurately. 

U-Net architecture's encoder-decoder structure also facilitates the capture 

of multiscale context information. While an encoder network collects high-level 

features from high-level connections, its counterpart (decoder network) combines 

them with low-level features from skip connections for a more comprehensive 
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analysis of both local and global contexts, leading to improved segmentation and 

classification performance. 

Training of a combined U-Net and classification model should be carried 

out comprehensively. Loss functions such as cross-entropy loss or dice loss 

provides optimal training conditions, considering both segmentation and 

classification objectives simultaneously. Through joint training, optimization can 

occur across the whole model for improved overall performance. 

By employing the U-Net architecture with a classification layer, this 

research project achieves improved segmentation and classification results. The 

encoder-decoder structure of the model allows precise localization and 

segmentation of objects while its classification layer adds the capability of 

classifying segments into specific categories - making this model suitable for 

performing image analysis tasks of all sorts - providing valuable insights into both 

content and characteristics of input images. 

In this project, we use Binary accuracy as an approach to one vs rest 

classification. With 15 binary classifiers total, each class of interest being labeled 

positive, and all others labeled negative; we then calculate Macro-accuracy 

which provides a useful measure for evaluating multi-class classification models 

when classes are unequally distributed. Macro-accuracy is calculated by 

averaging the precision or recall for each class. Macro-accuracy is particularly 

useful when evaluating multi-class classification models with many classes, as 

it's often difficult to visually inspect performance for individual classes 
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individually. Macro-accuracy provides one metric to summarize all performance 

across all classes; binary accuracy can also be calculated this way. 

 

Optimizer 

Optimizers are essential in updating the weights and biases of neural 

networks during training; they adjust their parameters based on gradients 

computed from backpropagation algorithms that calculate loss function gradients 

with respect to model parameters. Optimizer selection has a significant influence 

over convergence speed as well as final model performance. 

Adam (Adaptive Moment Estimation) is one of the more frequently used 

optimizers in this project, serving as an adaptive learning rate optimization 

algorithm that combines the benefits of two other popular optimizers such as 

AdaGrad and RMSProp. Adam maintains adaptive learning rates for each 

parameter by calculating exponential moving averages of both first-order 

moments (i.e. mean) and second-order moments (uncentered variance) of 

gradient gradients. 

 

Learning Rate Schedule 

To ensure the training does not overfit, we use the Python function 

build_lrfn to generate a custom learning rate schedule using TensorFlow for 

training deep learning models. This schedule includes three stages. 
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• Ramp-up Period (rampup_epochs): Gradually increases learning rate 

from lr_start to lr_max over an arbitrary number of rampup_epochs. 

• Sustain Period (sustain_epochs) maintains it at maximum for specified 

time-period(s). 

• Exponential Decay: After the sustain period, exponential decay reduces 

the learning rate from its maximum towards the minimum, with its rate 

being determined by lr_exp_decay. 

TensorFlow's LearningRateScheduler callback utilizes this function, which 

takes an epoch number as input and returns its learning rate for that epoch. lrfn 

acts as the actual learning rate function that returns the rate at each start of the 

training epoch. 

Here is an outline of the parameters and their function in creating a 

schedule: 

• Lr_start: The initial learning rate at the start of training (start of ramp-up).  

• Lr_max: The maximum learning rate reached after the ramp-up period has 

ended. 

•  Lr_min: Lower bound learning rate after decay has occurred. 

• Lr_rampup_epochs: The number of epochs over which the learning rate 

linearly ramps up to its maximum value of Lr_max.  

• Lr_sustain_epochs: The number of epochs during which Lr_max remains 

steady throughout. 
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• lr_exp_decay: This factor determines how often learning rate multipliers 

are applied during ramp-up and sustain periods (exponential decay rate). 

As soon as we fed the LearningRateScheduler's output lr_schedule into 

TensorFlow's model training's callbacks parameter of the fit method, TensorFlow 

automatically adjusted learning rates according to lrfn function for every epoch. 

 

Activation Function 

The ReLU (Rectified Linear Unit) activation function is one of the more 

frequently employed activation functions. ReLU is defined as f(x) = max(0,x), 

where x represents the input to neurons. ReLU's piecewise linear function returns 

positive input values (x >= 0) while negative ones return nothing (x = 0). 

ReLU activation function offers many advantages for neural network 

training. First, its computational efficiency makes it ideal when training deep 

neural networks with many layers, especially with many layers. Second, ReLU 

helps alleviate the vanishing gradient problem by allowing gradient flow during 

backpropagation, leading to effective learning at deeper layers. Thirdly, ReLU 

introduces sparsity into networks by setting negative values to zero; this sparsity 

can assist regularization efforts as it reduces overfitting for improved 

generalization performance. 

ReLU may have been used, among other activation functions, in this 

project; examples include sigmoid, tanh, and Leaky ReLU. The former two 

functions are frequently seen in earlier neural network architectures for mapping 
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input values between 0-1; for tanh, this range extends between -1 and 1. Leaky 

ReLU is a variation on ReLU that introduces a small negative slope when 

negative inputs arrive which helps avoid "dying ReLU" syndrome where neurons 

stop responding to input. 

The choice of activation function depends on the specific characteristics of 

a problem, network architecture, and desired properties of a model. 

Experimentation with various activation functions is frequently conducted to 

ascertain which yields the best performance and convergence results for model 

performance and convergence. 

This research project seeks to select an activation function that introduces 

nonlinearity into its model, facilitates effective learning of complex patterns, 

eliminates the vanishing gradient problem, and facilitates regularization to 

facilitate improved generalization. Through such activation functions, models can 

capture intricate relationships within data for improved classification 

performance.  
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CHAPTER FOUR  

RESULTS 

Below table 1 shows the training progress of the deep learning model over 

100 epochs are summarized in the following table: 

 

Table 1: Training Outputs 

Epoch Learning 
Rate 

Loss Binary 
Accuracy 

AUC Val 
Loss 

Val 
Binary 
Accuracy 

Val 
AUC 

1 2.00e-06 0.4457 0.9074 0.6811 0.2258 0.9216 0.8008 

2 1.425e-05 0.2382 0.9186 0.7870 0.2143 0.9263 0.8360 

3 2.65e-05 0.2291 0.9220 0.8068 0.2077 0.9271 0.8528 

4 3.875e-05 0.2243 0.9233 0.8179 0.2098 0.9267 0.8498 

5 5.10e-05 0.2212 0.9239 0.8245 0.2083 0.9268 0.8526 

6 6.325e-05 0.2181 0.9247 0.8314 0.2043 0.9287 0.8565 

7 7.55e-05 0.2156 0.9253 0.8364 0.2067 0.9276 0.8558 

8 8.775e-05 0.2135 0.9258 0.8415 0.2044 0.9281 0.8625 

9 0.0001 0.2118 0.9264 0.8447 0.2060 0.9273 0.8581 

10 8.00e-05 0.2099 0.9269 0.8496 0.1994 0.9301 0.8662 

11 6.40e-05 0.2079 0.9275 0.8534 0.2028 0.9287 0.8659 

12 5.12e-05 0.2077 0.9274 0.8546 0.2011 0.9295 0.8673 

13 4.096e-05 0.2069 0.9278 0.8557 0.1993 0.9297 0.8685 

14 3.2768e-05 0.2059 0.9281 0.8578 0.2006 0.9294 0.8690 

15 2.62144e-
05 

0.2058 0.9278 0.8590 0.1986 0.9302 0.8707 

16 2.097152e-
05 

0.2052 0.9281 0.8594 0.1994 0.9291 0.8704 

17 1.677721e-
05 

0.2052 0. 9279 0.8603 0.2015 0.9289 0.8675 

 

 

This Table 1 shows that how throughout the training process, Training 

Losses have been steadily decreasing over time, signaling that the model is 

learning. Binary accuracy remains stable around 92% while AUC is steadily 

rising. Validation loss start out at 0.2258 and decreases gradually to 0.1994 by 



 
 
 
 

 
 

32 

the 17th epoch. Validation binary accuracy remains relatively constant between 

92.1% to 93% while Validation AUC increases from 0.8008 to 0.8704. 

Binary Accuracy 

 

 

Figure 6: Training and Validation Binary Accuracy 

 

 
This metric indicates the proportion of correct predictions the model 

makes on the training dataset. The values are between 0 and 1, with 1 indicating 

perfect accuracy. In the table, the binary accuracy starts at 0.9074 in epoch 1 

and generally increases over time, reaching 0.9281 by epoch 16. This suggests 

that as the model trains, it is getting better at correctly classifying the training 

data. The validation binary accuracy also starts lower at 0.9216 in epoch 1 and 

increases over time, peaking at 0.9302 in epoch 15. It's a measure of the model's 
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generalization; an increasing trend here is a good sign that the model is not just 

memorizing the training data, but rather learning general patterns that apply to 

new data as well. 

The close alignment of binary accuracy and validation binary accuracy is a 

positive sign, indicating that the model is likely generalizing well and not 

overfitting significantly to the training data (where overfitting is when a model 

performs well on training data but poorly on new, unseen data). Overfitting would 

be suggested if the training accuracy continued to improve while the validation 

accuracy started to decrease or stagnate. 

AUC 

This is a performance measurement for classification problems at various 

threshold settings. The AUC represents the likelihood that the model will rank a 

randomly chosen positive instance higher than a randomly chosen negative one. 

For binary classification, an AUC of 0.5 suggests no discriminative power 

(equivalent to random guessing), while an AUC of 1.0 indicates perfect 

discrimination. In this table, the AUC starts at 0.6811 and consistently rises to 

0.8603 by epoch 17 on the training data. This increase means the model's ability 

to discriminate between the classes is improving as training progresses. While 

The Val AUC starts at 0.8008 and, like the training AUC, increases throughout 

the epochs, reaching 0.8675 by epoch 17. The AUC and Val AUC are particularly 

important metrics when dealing with imbalanced datasets or when the costs of 

false positives and false negatives are different. A model that produces a higher 
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AUC value is generally considered better at predicting true positives while 

minimizing false positives. 

 

 

Figure 7: Training and Validation AUC 

 

Both the AUC and Val AUC in the table show an upward trend, indicating 

that the model's predictive performance is improving over time. It is also good to 

observe that the AUC and Val AUC are quite close to each other across epochs, 

which suggests that the model is generalizing well and not just fitting to the noise 

in the training data. A consistent gap between AUC and Val AUC could indicate 

overfitting, but that does not appear to be the case with the provided data.  
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Loss 

This is a measure of how well the model is performing on the training 

dataset. It is typically calculated using a loss function, which quantifies the 

difference between the predicted values and the actual values. The goal of the 

training is to minimize this loss. In the table provided, the loss starts at 0.4457 in 

the first epoch and consistently decreases to 0.2052 by epoch 17. This decrease 

in loss indicates that the model is getting better at making predictions on the 

training data, as it's learning the patterns and reducing errors over time. In the 

table, the validation loss starts at 0.2258 and, with some fluctuations, generally 

decreases to 0.1986 by epoch 15 before slightly increasing to 0.2015 in epoch 

17. The trend in the validation loss provides insights into whether the model is 

generalizing well. Ideally, both the training loss and validation loss decreases 

together, and by the final epoch, they are relatively low and close to each other, 

which would indicate good model performance without overfitting. 
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Figure 8: Training and Validation loss. 

 

Overall, the results indicate that the deep learning model performs well in 

the binary classification task, demonstrating consistent improvement in both loss 

and accuracy metrics over the course of training. The increasing AUC values 

further support the model's effectiveness in distinguishing between positive and 

negative instances. 

ROC Curve 

Receivers Operating Characteristic (ROC) curves are produced for 

multiple classes when undertaking binary classification tasks. Below, FPR (false 

positive rate), TPR (true positive rate), and threshold values are presented for 

each class: each ROC curve represents the performance of the model for a 

specific class; FPR represents the ratio of false positives to actual negatives 
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while TPR shows the ratio of true positives to actual positives; threshold values 

indicate probability threshold above which an instance can be classified as 

positive. 

ROC curves offer valuable insights into a model's performance at different 

threshold values for each class. By altering these threshold values, its 

performance can be optimized based on specific requirements such as 

prioritizing high recall or minimizing false positives. 

Figure 9 shows the ROC Curve depicted below; Edema (0.90) and 

Pneumonia (0.81) both boast high AUC scores, suggesting that this model excels 

at accurately recognizing these conditions; conversely, lower AUC scores such 

as Infiltration (0.66) or Fibrosis (0.65) may not be identified by this approach as 

reliably. The model's AUC for "No Finding" indicates its ability to accurately 

detect an absence of findings. 
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Figure 9: ROC curve for each metric 

 

Table 2 describes that, In most of the cases our model has improved 

accuracy as compared to average AUC value given by author of this dataset 

Wang et al.[1] while in other paper Yao et al.[2] have consistently demonstrated 

high AUC values across various pathologies, demonstrating their model Our 

Model's robust performance across various conditions such as Edema and 

https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1710.10501
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Hernia. Specifically, its AUC values fluctuate among pathologies, surpassing 

other models about Edema and Hernia diagnosis. 

 

Table 2: AUC-Roc Curve Value Comparison 

Pathology 
Wang et 

al.[1] 

Yao et 

al.[2] 
Our Model 

Atelectasis 0.716 0.772 0.72 

Cardiomegaly 0.807 0.904 0.74 

Effusion 0.784 0.859 0.77 

Infiltration 0.609 0.695 0.66 

Mass 0.706 0.792 0.66 

Nodule 0.671 0.717 0.60 

Pneumonia 0.633 0.713 0.81 

Pneumothorax 0.806 0.841 0.70 

Consolidation 0.708 0.788 0.75 

Edema 0.835 0.882 0.90 

Emphysema 0.815 0.829 0.78 

Fibrosis 0.769 0.767 0.65 

Pleural 
Thickening 

0.708 0.765 0.62 

Hernia 0.767 0.914 0.83 

No Finding -- 0.76 0.72 

  

https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1710.10501
https://arxiv.org/abs/1710.10501
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CHAPTER FIVE  

CONCLUSION 

In this study, we have created a classification model using UNet 

architecture with an embedded classification layer. Our experiments have 

revealed that this approach proved superior when classifying different thoracic 

pathologies as well as health findings. 

UNet architecture has enabled this model to efficiently extract both local 

and global features from input images. Encoder networks efficiently extract high-

level features by downsampling while decoder networks upsampled spatial 

information; this allows for greater feature representation as well as improved 

differentiation among various thoracic pathologies. 

Adam optimizes our model during training. Adam combines the benefits of 

both AdaGrad and RMSProp optimizers by adapting learning rates for 

parameters based on past gradients; this optimization algorithm helps to 

accelerate convergence while simultaneously improving model performance 

during development. 

To increase the generalization ability of our model, we use data 

augmentation techniques such as rotation, horizontal flip, and zoom during 

training to enlarge diversity in training data sets and teach robust features to the 

model. 

The model has trained using a cross-entropy loss function, which 

penalizes any differences between its predicted probabilities and actual ground 



 
 
 
 

 
 

41 

truth labels. This loss function has enabled rapid learning processes while 

encouraging precise classification. 

Overall, our experiments demonstrate the efficiency of UNet architecture 

combined with a classification layer in classifying thoracic pathologies on chest 

X-ray images. This model achieves promising results, which shows its promise 

as an aid for medical professionals in diagnosing and identifying various thoracic 

pathologies accurately. 

Future projects may focus on further optimizing the model by exploring 

different architectures, fine-tuning hyperparameters, and including additional 

clinical information to increase accuracy and interpretability. Furthermore, 

evaluating its performance on larger datasets can give more insights into its 

practical use and generalizability.
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