
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2023

CLASSIFICATION OF THORAX DISEASES FROM CHEST X-RAY CLASSIFICATION OF THORAX DISEASES FROM CHEST X-RAY

IMAGES IMAGES

Sharad Jayusukhbhai Dobariya

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Dobariya, Sharad Jayusukhbhai, "CLASSIFICATION OF THORAX DISEASES FROM CHEST X-RAY IMAGES"
(2023). Electronic Theses, Projects, and Dissertations. 1829.
https://scholarworks.lib.csusb.edu/etd/1829

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1829?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

CLASSIFICATION OF THORAX DISEASES FROM CHEST X-RAY IMAGES

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Sharad Jaysukhbhai Dobariya

December 2023

CLASSIFICATION OF THORAX DISEASE FROM CHEST X-RAY IMAGES

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Sharad Jaysukhbhai Dobariya

December 2023

Approved by:

Dr. Jennifer Jin, Advisor, Computer Science and Engineering

Dr. Bilal Khan, Committee Member

Dr. Yan Zhang, Committee Member

© 2023 Sharad Jaysukhbhai Dobariya

 iii

ABSTRACT

Chest X-ray images are crucial for medical decisions and patient care. However,

their manual interpretation is time-consuming and prone to human error. This

project aims to create an automated system that uses deep learning techniques

to classify thorax disease from chest X-ray images. We are using the NIH Chest

X-Ray Dataset, which contains many annotated images, as input data for this

project. This approach uses UNet architecture as its classification layer. UNet

architecture is well-known for its efficiency in image segmentation. Adding

residual blocks enhances this approach's ability to classify images. The goal of

this project is to create a robust and accurate classification model that uses

UNet’s unique capabilities for feature representation and extraction. This would

allow accurate discrimination between different forms of thorax diseases with

high precision.

This project shows the effectiveness of UNet architecture with residual

block for accurately classifying thorax disease types. These techniques

combined produced superior results to many other architectures for medical

image analysis, underscoring their importance.

 iv

ACKNOWLEDGEMENTS

We present with great enthusiasm and pride our comprehensive project

report entitled “Thorax Disease Classification from Chest X-Ray Images.” This

project is a testament to the fact that we have been exploring deep learning and

machine learning fields with exciting potential for academic and professional

growth throughout its entirety. This journey would not have been possible without

the constant support, expert guidance, and collective wisdom from peers as well

as various mentors.

My heart is filled with gratitude as a scholar at California State University-

San Bernardino when I think about Dr. Jennifer Jin, who is instrumental in

spearheading the research project that I am currently working on. Her leadership

and guidance are crucial to our success. Our committee members Dr. Bilal Khan

and Dr. Yan Zhang also deserve special recognition as outstanding mentors.

Their knowledge helps us to achieve academic goals and venture boldly into

emerging technology with passion.

California State University is a leader in educational innovation and

deserves our gratitude. We can take advantage of cutting-edge technologies by

leveraging their innovative offerings and utilizing the university's commitment to

provide avant-garde courses. We are fortunate to be able to expand our technical

and academic prowess every day in such a progressive academic environment.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ...iv

LIST OF TABLES ... viii

LIST OF FIGURES ... viii

CHAPTER ONE INTRODUCTION ... 1

Background .. 1

Literature Review ... 1

Significance ... 4

Purpose ... 4

CHAPTER TWO OVERALL DESCRIPTION .. 6

Hardware Requirement .. 6

Software Requirements ... 6

Python ... 6

Deep Learning Frameworks .. 6

Jupyter Notebook .. 7

Data Manipulation Libraries .. 7

Image Processing Libraries ... 7

Visualization Libraries ... 7

Programming Language Requirements ... 8

Python ... 8

Deep Learning Concepts .. 8

Image Processing Knowledge ... 8

Experimental Design and Analysis .. 8

vi

Dataset Information ... 9

Dataset Characteristics ... 9

Dataset Split .. 13

Data Analysis .. 14

Dataset Limitations .. 15

Technology Stack and its Application .. 15

Python Programming Language.. 15

Deep Learning Framework .. 15

Jupyter Notebook .. 16

Image Processing Libraries ... 16

Data Manipulation Libraries .. 17

Visualization Libraries ... 17

Flow of the Project ... 17

Data Loading and Preprocessing .. 17

Data Processing .. 18

Train-Test Split .. 19

Data Generator ... 20

Model Training and Testing ... 20

CHAPTER THREE METHOD ... 23

Image Transformation .. 23

Samplewise Centering and Standardization 23

Rotation ... 23

Reflective Fill Mode ... 23

Horizontal and Vertical Flipping... 23

Width and Height Shifts ... 24

Zooming .. 24

Models ... 24

vii

Optimizer ... 27

Learning Rate Schedule .. 27

Activation Function .. 29

CHAPTER FOUR RESULTS .. 31

Binary Accuracy ... 32

AUC ... 33

Loss ... 35

ROC Curve .. 36

CHAPTER FIVE CONCLUSION ... 40

REFERENCES ... 42

viii

LIST OF TABLES

Table 1: Training Outputs ... 31

Table 2: AUC-Roc Curve Value Comparison.. 39

LIST OF FIGURES

Figure 1: Data Set .. 13

Figure 2: Percentage of Different Conditions in Dataset 14

Figure 3: Images of the Chest X-ray and Corresponding Output Labels 19

Figure 4: Unet Architecture ... 21

Figure 5: Residual Network .. 22

Figure 6: Training and Validation Binary Accuracy ... 32

Figure 7: Training and Validation AUC ... 34

Figure 8: Training and Validation loss. ... 36

Figure 9: ROC curve for each metric .. 38

1

CHAPTER ONE

INTRODUCTION

Background

Medical image classification is a key area of research in image

processing, machine learning and computer vision. Accurate and efficient

classification has become more important as technology advances and large

datasets of medical images are available. The classification of chest X-rays is

crucial in the diagnosis and treatment of various thoracic disorders. The NIH

chest X ray dataset is a prominent dataset in the field. It contains over 100,000

anonymized images of chest X rays from more than 30,000 different patients.

Deep learning models are used to extract relevant features.

Literature Review

Chest X-rays are one of the most frequently performed diagnostic imaging

studies. Large datasets and deep learning techniques, automated analysis of

chest X-rays has become an expanding area of research. Wang et al [1] provides

valuable insight into the challenges and possible solutions of chest X-ray

classification. They act as benchmarks to measure performance of various

classification models on ChestX-ray8 dataset. Wang et. al. [1] introduces

ChestXray8, a chest X-ray image database that is open to the public and

contains over 100,000 images with disease labels. Their paper also provides

benchmarks for weakly supervised classification and localization using

2

convolutional networks (CNNs). This shows that their network could identify

disease markers on images of X-rays without detailed annotations.

Yao et al. [2] tackles the problem of medical diagnosis using X-rays by

identifying dependencies between various disease labels. This knowledge is then

uses to train a model using deep learning from scratch, using correlation among

diseases for training data. They take into account the fact that multiple conditions

can coexist and interact, resulting in a more accurate and nuanced diagnosis

system. Their methodology demonstrates how learning intricate correlations

among diseases can enhance diagnostic accuracy.

The study by Rajpurkar et al. [3] shows that a deep-learning algorithm are

capable of detecting pneumonia in chest X-ray images with accuracy levels

higher than those achieves by radiologists. They focuses only on pneumonia

detection by using 121 layer CNN training models. Their authors shows the

potential AI has in medical diagnosis applications, such as ChestX ray14 dataset

which is an extension of ChestX ray8 dataset.

Ronneberger et al.[4] introduces U-Net, a CNN architecture developed

specifically for biomedical image segmentation. U-Net stands out in medical

imaging because its architecture works efficiently even with limited training

samples while producing precise segmentations results. Furthermore, the model

structure facilitates precise localization of structures within biomedical images.

Siddique, N. et al's [5] paper on U-Net and its iterations provides a thorough

investigation of how U-Net architecture has been utilized for medical image

3

segmentation applications. They discuss its theory behind construction as well as

modifications for enhanced performance as well as applications of U-Net in

medical imaging.

Khanna et al’s [6] research employs a variant of U-Net architecture which

utilizes residual learning (Residual U-Net) for lung segmentation on CT images.

By building deeper networks with residual connections that utilizes U-Net's

enhanced learning capacities and performance for segmenting medical images.

Deep learning's success in medical imaging goes beyond architectures

alone, however. He et al.’s [7] residual learning concept enables deeper

networks without encountering typical vanishing gradient issue. Furthermore,

Kingma & Ba [8] presents training strategies such as Adam optimizer that proves

instrumental in ensuring convergence of their networks.

Data augmentation techniques should not be underestimated either; they

expand and diversify training data in order to prevent overfitting. Shorten &

Khoshgoftaar [9] provides an exhaustive survey of various augmentation

techniques utilizes in deep learning environments.

Prechelt [10] discusses early stopping as an invaluable way of increasing

performance and understanding when to end training, offering invaluable

guidance.

4

Significance

Accurate classification of chest X-ray images has far-reaching

ramifications for healthcare providers and patient care. Being able to quickly

detect and classify thoracic diseases automatically can aid radiologists in early

diagnosis of pneumonia, tuberculosis, and lung cancer - leading to timely

interventions, improved treatment planning, improved patient outcomes, and

faster interventions overall. Furthermore, automating image classification tasks

helps relieve medical professionals of manual analysis tasks; freeing them up for

more critical cases or complex diagnoses.

In this project, we seek to address the challenges associate with chest X-

ray classification using a combination of UNet architecture and residual layers.

Originally has proposed for biomedical image segmentation, this model has

shown its promise in capturing fine-grain details and spatial information. By

adding residual layers - which enable gradient information propagation as well as

deep network training - to our model's design we hope to enhance its

performance and robustness while improving classification accuracy for thoracic

diseases seen on chest X-ray images. We hypothesize that using both models

together can produce improved classification accuracy when classifying diseases

seen on chest X-ray images.

Purpose

The purpose of this project is twofold. Firstly, we aim to optimize the

classification model for the NIH Chest X-ray dataset by systematically exploring

5

various factors such as hyperparameters, image sizes, and input configurations.

Through a comprehensive experimentation process, we can identify the optimal

settings that yield the highest classification accuracy. Secondly, we seek to

compare the performance of the UNet model with residual layers against other

popular convolutional neural network (CNN) architectures, such as VGG and

ResNet, on the ChestX-ray dataset. This comparative analysis provides insights

into the strengths and weaknesses of different models for chest X-ray

classification.

By achieving these objectives, we hope to contribute to the advancement

of medical image classification in the context of chest X-ray analysis. The

findings of this project can potentially benefit radiologists, healthcare providers,

and researchers working in the field of thoracic disease diagnosis. The

developed model has the potential to assist in the accurate and timely

classification of chest X-ray images, leading to improved diagnostic accuracy,

reduced workload for medical professionals, and enhanced patient care.

6

CHAPTER TWO

OVERALL DESCRIPTION

Hardware Requirement

• Memory: 32 GB (minimum)

• Graphics Card: NVIDIA Tesla P100

• CPU: Intel Core i5 or above, Apple M series

• OS: Windows, Mac OS, Linux

The implementation of the classification model and the experimentation

process in this research project requires specific software and programming

languages. The following software and language requirements has utilized to

develop and evaluate the proposed approach.

Software Requirements

Python, an open-source programming language, serves as the primary

language for this research project. Python provides a wide range of libraries and

frameworks that are essential for deep learning, image processing, and scientific

computing tasks.

The following software components were used:

Python

Version 3.7 or higher is used as the programming language for model

implementation, data manipulation, and experimentation.

Deep Learning Frameworks

7

The project utilizes TensorFlow (version 2.4.0) and Keras (version 2.4.3),

popular deep learning frameworks, to build, train, and evaluate the classification

model. These frameworks offer a high-level API for efficient implementation of

neural networks.

Jupyter Notebook

Jupyter Notebook (version 6.1.4) provides an interactive development

environment for coding, documentation, and experimentation. It allows for

seamless integration of code, visualizations, and textual explanations.

Data Manipulation Libraries

The NumPy library (version 1.19.2) is used for efficient handling and

manipulation of numerical data, while the Pandas library (version 1.2.0) facilitate

data pre-processing and analysis tasks.

Image Processing Libraries

OpenCV (version 4.5.1) and PIL (Python Imaging Library, version 8.1.0)

are employed for image loading, resizing, and augmentation operations. These

libraries provide essential functionalities for pre-processing the chest X-ray

images.

Visualization Libraries

Matplotlib (version 3.3.2) and seaborn (version 0.11.0) are utilized for

generating visualizations, plotting results, and analyzing the performance of the

classification model.

8

Programming Language Requirements

The research project requires proficiency in the following languages and

concepts:

Python

A solid understanding of Python programming language is essential for

implementing the classification model, pre-processing the dataset, and

conducting experiments. Proficiency in Python's syntax, data structures, and

libraries is necessary for efficient coding and data manipulation.

Deep Learning Concepts

A comprehensive knowledge of deep learning concepts, including

convolutional neural networks (CNNs), optimization algorithms, loss functions,

and regularization techniques, is crucial for designing and training the

classification model. Understanding these concepts enable the utilization of

appropriate architectural choices and optimization strategies.

Image Processing Knowledge

Familiarity with image processing techniques, such as image resizing,

normalization, and data augmentation, is necessary for pre-processing the chest

X-ray images. This knowledge facilitates the preparation of the dataset for

effective model training and evaluation.

Experimental Design and Analysis

A solid grasp of experimental design principles and statistical analysis is

essential for conducting rigorous experiments, comparing model performance,

9

and drawing meaningful conclusions from the results. Applying appropriate

statistical tests and visualization techniques allow for insightful interpretation of

the experimental findings.

Dataset Information

This research project uses the NIH Chest X-Ray dataset, collected and

maintained by the National Institutes of Health (NIH). This vast repository

includes anonymized chest X-ray images has taken from over 30,000 patients

gather through natural language processing analysis of radiology reports

associated with each image for additional diagnostic information.

Dataset Characteristics

• The NIH Chest X-Ray Dataset comprises over 100,000 chest X-ray

images taken of patients' thoracic regions by physicians across the US

and labelled with various lung conditions such as pneumonia, tuberculosis

and lung cancer - with each image labelled to reflect its relevance within

this dataset.

• Multi-label classification is necessary as images may display multiple

pathologies at once.

• Our dataset features numerous pathology classes to provide an inclusive

representation of thoracic diseases encountered during medical practice.

• Data frames represent datasets. Here we explore each column to better

understand its contents:

10

 Image Index - Representing a unique identifier or filename associated

with medical images

 Finding Labels: This column describes any findings or abnormalities

detected within medical images. In the first row, multiple findings are

separated using "|", such as Infiltration, Mass Nodule and Pleural

Thickening presence; for rows two and three the label reads "No

Finding," meaning there were no abnormalities uncovered from that

particular medical image.

 Follow-Up #: It displays the date or duration since initial examination;

for instance, in row one there was 11 follow-up examinations since

initial exam.

 Pertaining Patient I.D: Each unique patient identification number.

Pertaining Patient Age During Examinations.

 Patient Gender (M for male, F for female) and View Position are

essential information about medical images taken, which indicate

gender as well as view position (AP for anterior-posterior and PA for

posterior-anterior images respectively).

 OriginalImage[Width and Height]: These columns indicate the

dimensions (width and height) of an original medical image

 OriginalImagePixelSpacing[x,y]: These columns demonstrate how

pixels space out across both dimensions in its original image.

• Finding labels

11

 "No Finding" With over 60,361 instances has recorded so far, this label

indicates no abnormalities or findings are discovered within any image

X-ray taken for that patient.

 "Infiltration'" has an infiltrate count of 9,547 and indicates the presence

of abnormal infiltrates within lung tissue.

 "Atelectasis" has atelectasis count of 4,215 which suggests collapsed

lung tissue as the culprit for infiltrations and atelectasis respectively.

 "Effusion" occurs 3,955 times and indicates an accumulation of fluid in

the pleural cavity.

 "Nodule" occurs 2,705 times; this indicates small abnormal growths or

nodules present within a lung tissue sample.

 "Pneumothorax" appears 2,194 times in our datasets and represents

air or gas build-up within the pleural cavity leading to lung collapse,

while "Mass" shows 2,139 appearances to indicate abnormal masses

or tumors present within lungs.

 "Effusion|Infiltration" appears 1,603 times, suggesting both effusion

and infiltration findings were present in equal numbers.

 "Atelectasis|Infiltration" has 1,350 counts indicating similar findings of

both types.

 "Consolidation" occurs 1,310 times, signaling consolidation of lung

tissue often caused by pneumonia.

12

 "Atelectasis|Effusion" occurs 1,165 times - suggesting an overlap in

symptoms between atelelectasis and effusion findings.

 "Pleural_Thickening" appears 1,126 times, signifying thickening of the

pleural membranes surrounding the lung, while "Cardiomegaly" shows

up 1 093 times; an enlarged heart would qualify.

 "Emphysema": This term appears 892 times, signifying lung tissue

damage and increase airspace volume.

 "Infiltration|Nodule" has 829 instances recorded indicating both

nodules and infiltrations as findings.

13

Figure 1: Data Set

This Figure 1 offers insights into the distribution and prevalence of abnormal

findings or conditions found within an X-ray dataset. It helps in comprehending

relative frequency across conditions found within images taken of anatomical

parts.

Dataset Split

• Data is split into subsets for training, validation, and testing to assess the

performance. The training set, comprising 70%, has used to train the models.

10% has used for hyperparameter tuning, model selection, or validation, while

14

20% is a sample independent to measure the overall performance of the

classification model. Below Figure 2 Shows percentage of various conditions

available in training data frame.

Figure 2: Percentage of Different Conditions in Dataset

]

Data Analysis

• An exploratory analysis has performed to gain insights into the distribution

and co-occurrence patterns among various classes in terms of pathologies.

This process provides insight into multi-label classification challenges as well

as guidance in selecting suitable evaluation metrics.

15

Dataset Limitations

• It is essential to recognize that this dataset has certain constraints. Since

labels have been collected from radiology reports, there may be inherent

uncertainties with diagnoses; furthermore, without an "diagnosis confidence"

attribute to define label accuracy is difficult; and conflicts among physicians

regarding certain diagnoses could potentially cause mislabelled images.

• Despite these constraints, this dataset offers an unparalleled opportunity for

training and testing deep learning models for chest X-ray classification.

Technology Stack and its Application

This chapter provides the general background behind the technology has

been utilized for image classification in this project, using machine learning and

deep learning techniques like UNet for faster training times and optimal results.

Python Programming Language

Python serves as our primary programming language to implement and

analyze our classification model and conduct data analysis. Notorious for its

flexibility and ease-of-use, this widely popular programming language offers a

comprehensive library and framework specifically developed to address scientific

computing tasks as well as deep learning tasks for machine learning tasks and

image processing tasks.

Deep Learning Framework

Deep learning frameworks such as TensorFlow and Keras are integral

parts of the technology stack, offering high-level APIs and prebuilt functions for

16

designing, training, and evaluating neural network models efficiently. By

capitalizing on the power of these framework researchers were able to quickly

design complex deep learning architectures while optimizing model performance

effectively as they handle large image datasets efficiently.

Jupyter Notebook

Jupyter Notebook is an integral tool in aiding the interactive development,

experimentation, and documentation of our classification model. Thanks to its

web interface with code support for code, visualizations, and text explanations as

well as its seamless environment for implementation and testing various

components it allows researchers to iteratively refine code, visualize intermediate

results visually as well as effectively communicate findings to one another.

Image Processing Libraries

Popular image processing libraries such as OpenCV and PIL (Python

Imaging Library) are being utilized for preprocessing and manipulating chest X-

ray images, providing functions including image loading, resizing, augmenting

data sets to boost model generalization as well as assuring compatibility of

images with classification models. Researchers utilizes these libraries as they

enable data preparation while performing data augmentation to increase

generalization capacity as well as to ensure images could work within

classification models.

17

Data Manipulation Libraries

NumPy and Pandas libraries are essential in handling numerical data

efficiently and manipulating it effectively, offering efficient numerical operations

as well as array manipulation capabilities, while Pandas provides data

preprocessing, cleaning, and analysis functionality. Researchers can effectively

preprocess their dataset and draw meaningful insights out of it for

training/evaluation, using these libraries.

Visualization Libraries

Visualization libraries such as Matplotlib and Seaborn provides

researchers with tools for producing informative plots, charts, and graphs to

display data visually, evaluate model performance, present their research

findings, or communicate interpretation and communication of results more

easily. They provide various forms of visualization such as bar plots, scatter

plots, and heatmaps which make results easy to comprehend and communicate

through visualization techniques such as bar plots.

Flow of the Project

Data Loading and Preprocessing

• To start out the code is loaded using pd.read_csv and glob function. The

CSV containing metadata about chest X-ray images is read into pandas

DataFrame (all_xray_df), and then extracted image paths are stored in a

dictionary (all_image_paths).

18

• Image paths are then added to the DataFrame using the map function,

creating a column titled 'path' in it.

Data Processing

• One-Hot Encoding: Since the classification is a multiclass problem, the

code performs one-hot encoding for the target labels. A list of all possible

labels (all_labels) is defined, and for each label, a new column is added

to the DataFrame with a value of 1 if the label is present in the 'Finding

Labels' column and 0 otherwise. This step ensures the representation of

the labels in a suitable format for training the classification model.

• Balancing the Dataset: To address class imbalance, the code balances

the dataset by sampling all examples from the DataFrame. The sampling

is performed based on the sample weights, which are calculated using the

number of findings associated with each image. The resulting balanced

dataset is stored back into all_xray_df.

19

Figure 3: Images of the Chest X-ray and Corresponding Output Labels

This figure 3 Shows some of the images of the Chest X-ray from dataset

and depicts corresponding output labels to respective image.

Train-Test Split

• This code utilizes the train_test_split function from the

sklearn.model_selection to divide data sets into training and validation

sets using 0.3 as test size. As a result, training dataFrames (train_df) are

created and stored into train_df and valid_df folders respectively.

20

• For convenience, training and validation sets sizes are listed to give an

overall view of their data split.

Data Generator

• The code sets up data generators using the ImageDataGenerator class

from Keras. These generators used to load and preprocess the images on

the fly during model training.

• The Core_IDG object is then instantiated which defines data augmenter

transformations and normalization options.

• To generate train and validation generators for training a neural network,

two DataFrames named train_df and valid_df are passed as input to

flow_from_dataframe method in their respective DataFrames - these

provide batches of preprocessed images paired with labels in a format

compatible with neural network training.

• These generators have been configured to resize images to their specified

IMAGE_SIZE, convert them to grayscale format, randomly shuffling data

and using an adjustable batch size.

Model Training and Testing

• This code implements a machine-learning model training and testing

phase. It includes defining a model structure (e.g., UNet with residual

layer), compiling it by using an appropriate optimizer/loss functions

combination, fitting it to the training data using the fit method, and

21

validating/assessing it on test or validation sets using the evaluate

method.

Figure 4: Unet Architecture

At first glance, Figure 4 appears to have a "U-shaped" form. The

architecture is symmetrical and consists primarily of two parts: the left part, called

the contracting path is made up of the general convolutional processes; the right,

expansive path is made up of transposed 2d layers.

Above U-net Architecture (example 32x32 pixels at the lowest

resolution). Each blue box represents a feature map with multiple channels. On

the top of each box, you will find several channels. The lower left corner of the

box is the x-y size. The white boxes are copied feature maps. The arrows

indicate the different operations.

22

• Along with the Unet, the classification layer is enhanced by residual

blocks or skip connections that feature as follows.

Figure 5: Residual Network

Figure 5 shows a single residual block with skip connection. Skip

connections refer to any mechanism whereby the output from one layer is fed

directly to a later layer, in U-Net architecture for image segmentation the use of

long skip connections to avoid passage through deeper levels and preserve

spatial information that might otherwise become lost within its layers.

23

CHAPTER THREE

 METHOD

Image Transformation

Samplewise Centering and Standardization

ImageDataGenerator can be utilized by setting its samplewise_center

=True and samplewise_std_normalization = True parameters to optimize the

convergence and performance of models. This transformation centers each

image around zero while scaling its pixels with unit variance, improving

convergence and performance of models.

Rotation

ImageDataGenerator is configured with rotation_range=3, randomly

rotating each image by 3 degrees during training to add variability and make its

model more robust to changes in test data.

Reflective Fill Mode

ImageDataGenerator sets its fill_mode parameter to ‘reflect’. This setting

fills any holes created during rotations or shifts with values taken from adjacent

pixels - helping preserve image content without creating artificial patterns at its

boundaries.

Horizontal and Vertical Flipping

ImageDataGenerator allows random horizontal flipping during training

using its horizontal_flip=True parameter, providing additional variations to

24

image orientation that help broaden a model's ability to generalize across

different orientations. Vertical flipping may also be applied as needed.

Width and Height Shifts

The width_shift_range and height_shift_range parameters of

ImageDataGenerator have been set to 0.1 and 0.05 respectively to enable

random translations of images horizontally and vertically within certain ranges,

aiding learning models with features insensitive to small translations.

Zooming

ImageDataGenerator sets its zoom_range parameter to 0.15; this

augmentation technique randomly applies zooming transformations to images

within this range, magnifying or diminishing their content within it. Zooming helps

the model learn to focus on various parts of an image while improving its ability to

detect and classify objects at different scales.

Models

This research project employs a model that combines U-Net architecture

with a classification layer to optimize image segmentation tasks. U-Net

architecture is an established approach for image segmentation that involves two

networks, an encoder network, and a decoder network, with the encoder network

collecting high-level features from an input image while its decoder reconstructs

segmented output images.

25

U-Net architecture can be especially effective at image segmentation due

to its ability to capture fine-grained structures and accurately localize objects.

This is achieved via skip connections that enable decoder access and the use of

low-level feature maps from the encoder. By including such connections, the U-

Net model can make use of both high-level features as well as lower ones,

providing precise localization while simultaneously capturing fine details in

segmented regions.

In this research project, U-Net architecture has enhanced by adding a

classification layer. With this addition, the model not only performs segmentation

but can also classify segmented regions into specific categories for classification.

By combining segmentation and classification capabilities into one

comprehensive solution, this model gains the capacity to offer detailed analysis

and understanding of image content.

U-Net architecture, as a convolutional neural network, excels at extracting

powerful feature representations from images. The convolutional layers in this

model capture complex patterns, textures, and structures present in an input

image to form powerful discriminative features that improve accuracy when

discriminating between classes accurately.

U-Net architecture's encoder-decoder structure also facilitates the capture

of multiscale context information. While an encoder network collects high-level

features from high-level connections, its counterpart (decoder network) combines

them with low-level features from skip connections for a more comprehensive

26

analysis of both local and global contexts, leading to improved segmentation and

classification performance.

Training of a combined U-Net and classification model should be carried

out comprehensively. Loss functions such as cross-entropy loss or dice loss

provides optimal training conditions, considering both segmentation and

classification objectives simultaneously. Through joint training, optimization can

occur across the whole model for improved overall performance.

By employing the U-Net architecture with a classification layer, this

research project achieves improved segmentation and classification results. The

encoder-decoder structure of the model allows precise localization and

segmentation of objects while its classification layer adds the capability of

classifying segments into specific categories - making this model suitable for

performing image analysis tasks of all sorts - providing valuable insights into both

content and characteristics of input images.

In this project, we use Binary accuracy as an approach to one vs rest

classification. With 15 binary classifiers total, each class of interest being labeled

positive, and all others labeled negative; we then calculate Macro-accuracy

which provides a useful measure for evaluating multi-class classification models

when classes are unequally distributed. Macro-accuracy is calculated by

averaging the precision or recall for each class. Macro-accuracy is particularly

useful when evaluating multi-class classification models with many classes, as

it's often difficult to visually inspect performance for individual classes

27

individually. Macro-accuracy provides one metric to summarize all performance

across all classes; binary accuracy can also be calculated this way.

Optimizer

Optimizers are essential in updating the weights and biases of neural

networks during training; they adjust their parameters based on gradients

computed from backpropagation algorithms that calculate loss function gradients

with respect to model parameters. Optimizer selection has a significant influence

over convergence speed as well as final model performance.

Adam (Adaptive Moment Estimation) is one of the more frequently used

optimizers in this project, serving as an adaptive learning rate optimization

algorithm that combines the benefits of two other popular optimizers such as

AdaGrad and RMSProp. Adam maintains adaptive learning rates for each

parameter by calculating exponential moving averages of both first-order

moments (i.e. mean) and second-order moments (uncentered variance) of

gradient gradients.

Learning Rate Schedule

To ensure the training does not overfit, we use the Python function

build_lrfn to generate a custom learning rate schedule using TensorFlow for

training deep learning models. This schedule includes three stages.

28

• Ramp-up Period (rampup_epochs): Gradually increases learning rate

from lr_start to lr_max over an arbitrary number of rampup_epochs.

• Sustain Period (sustain_epochs) maintains it at maximum for specified

time-period(s).

• Exponential Decay: After the sustain period, exponential decay reduces

the learning rate from its maximum towards the minimum, with its rate

being determined by lr_exp_decay.

TensorFlow's LearningRateScheduler callback utilizes this function, which

takes an epoch number as input and returns its learning rate for that epoch. lrfn

acts as the actual learning rate function that returns the rate at each start of the

training epoch.

Here is an outline of the parameters and their function in creating a

schedule:

• Lr_start: The initial learning rate at the start of training (start of ramp-up).

• Lr_max: The maximum learning rate reached after the ramp-up period has

ended.

• Lr_min: Lower bound learning rate after decay has occurred.

• Lr_rampup_epochs: The number of epochs over which the learning rate

linearly ramps up to its maximum value of Lr_max.

• Lr_sustain_epochs: The number of epochs during which Lr_max remains

steady throughout.

29

• lr_exp_decay: This factor determines how often learning rate multipliers

are applied during ramp-up and sustain periods (exponential decay rate).

As soon as we fed the LearningRateScheduler's output lr_schedule into

TensorFlow's model training's callbacks parameter of the fit method, TensorFlow

automatically adjusted learning rates according to lrfn function for every epoch.

Activation Function

The ReLU (Rectified Linear Unit) activation function is one of the more

frequently employed activation functions. ReLU is defined as f(x) = max(0,x),

where x represents the input to neurons. ReLU's piecewise linear function returns

positive input values (x >= 0) while negative ones return nothing (x = 0).

ReLU activation function offers many advantages for neural network

training. First, its computational efficiency makes it ideal when training deep

neural networks with many layers, especially with many layers. Second, ReLU

helps alleviate the vanishing gradient problem by allowing gradient flow during

backpropagation, leading to effective learning at deeper layers. Thirdly, ReLU

introduces sparsity into networks by setting negative values to zero; this sparsity

can assist regularization efforts as it reduces overfitting for improved

generalization performance.

ReLU may have been used, among other activation functions, in this

project; examples include sigmoid, tanh, and Leaky ReLU. The former two

functions are frequently seen in earlier neural network architectures for mapping

30

input values between 0-1; for tanh, this range extends between -1 and 1. Leaky

ReLU is a variation on ReLU that introduces a small negative slope when

negative inputs arrive which helps avoid "dying ReLU" syndrome where neurons

stop responding to input.

The choice of activation function depends on the specific characteristics of

a problem, network architecture, and desired properties of a model.

Experimentation with various activation functions is frequently conducted to

ascertain which yields the best performance and convergence results for model

performance and convergence.

This research project seeks to select an activation function that introduces

nonlinearity into its model, facilitates effective learning of complex patterns,

eliminates the vanishing gradient problem, and facilitates regularization to

facilitate improved generalization. Through such activation functions, models can

capture intricate relationships within data for improved classification

performance.

31

CHAPTER FOUR

RESULTS

Below table 1 shows the training progress of the deep learning model over

100 epochs are summarized in the following table:

Table 1: Training Outputs

Epoch Learning
Rate

Loss Binary
Accuracy

AUC Val
Loss

Val
Binary
Accuracy

Val
AUC

1 2.00e-06 0.4457 0.9074 0.6811 0.2258 0.9216 0.8008

2 1.425e-05 0.2382 0.9186 0.7870 0.2143 0.9263 0.8360

3 2.65e-05 0.2291 0.9220 0.8068 0.2077 0.9271 0.8528

4 3.875e-05 0.2243 0.9233 0.8179 0.2098 0.9267 0.8498

5 5.10e-05 0.2212 0.9239 0.8245 0.2083 0.9268 0.8526

6 6.325e-05 0.2181 0.9247 0.8314 0.2043 0.9287 0.8565

7 7.55e-05 0.2156 0.9253 0.8364 0.2067 0.9276 0.8558

8 8.775e-05 0.2135 0.9258 0.8415 0.2044 0.9281 0.8625

9 0.0001 0.2118 0.9264 0.8447 0.2060 0.9273 0.8581

10 8.00e-05 0.2099 0.9269 0.8496 0.1994 0.9301 0.8662

11 6.40e-05 0.2079 0.9275 0.8534 0.2028 0.9287 0.8659

12 5.12e-05 0.2077 0.9274 0.8546 0.2011 0.9295 0.8673

13 4.096e-05 0.2069 0.9278 0.8557 0.1993 0.9297 0.8685

14 3.2768e-05 0.2059 0.9281 0.8578 0.2006 0.9294 0.8690

15 2.62144e-
05

0.2058 0.9278 0.8590 0.1986 0.9302 0.8707

16 2.097152e-
05

0.2052 0.9281 0.8594 0.1994 0.9291 0.8704

17 1.677721e-
05

0.2052 0. 9279 0.8603 0.2015 0.9289 0.8675

This Table 1 shows that how throughout the training process, Training

Losses have been steadily decreasing over time, signaling that the model is

learning. Binary accuracy remains stable around 92% while AUC is steadily

rising. Validation loss start out at 0.2258 and decreases gradually to 0.1994 by

32

the 17th epoch. Validation binary accuracy remains relatively constant between

92.1% to 93% while Validation AUC increases from 0.8008 to 0.8704.

Binary Accuracy

Figure 6: Training and Validation Binary Accuracy

This metric indicates the proportion of correct predictions the model

makes on the training dataset. The values are between 0 and 1, with 1 indicating

perfect accuracy. In the table, the binary accuracy starts at 0.9074 in epoch 1

and generally increases over time, reaching 0.9281 by epoch 16. This suggests

that as the model trains, it is getting better at correctly classifying the training

data. The validation binary accuracy also starts lower at 0.9216 in epoch 1 and

increases over time, peaking at 0.9302 in epoch 15. It's a measure of the model's

33

generalization; an increasing trend here is a good sign that the model is not just

memorizing the training data, but rather learning general patterns that apply to

new data as well.

The close alignment of binary accuracy and validation binary accuracy is a

positive sign, indicating that the model is likely generalizing well and not

overfitting significantly to the training data (where overfitting is when a model

performs well on training data but poorly on new, unseen data). Overfitting would

be suggested if the training accuracy continued to improve while the validation

accuracy started to decrease or stagnate.

AUC

This is a performance measurement for classification problems at various

threshold settings. The AUC represents the likelihood that the model will rank a

randomly chosen positive instance higher than a randomly chosen negative one.

For binary classification, an AUC of 0.5 suggests no discriminative power

(equivalent to random guessing), while an AUC of 1.0 indicates perfect

discrimination. In this table, the AUC starts at 0.6811 and consistently rises to

0.8603 by epoch 17 on the training data. This increase means the model's ability

to discriminate between the classes is improving as training progresses. While

The Val AUC starts at 0.8008 and, like the training AUC, increases throughout

the epochs, reaching 0.8675 by epoch 17. The AUC and Val AUC are particularly

important metrics when dealing with imbalanced datasets or when the costs of

false positives and false negatives are different. A model that produces a higher

34

AUC value is generally considered better at predicting true positives while

minimizing false positives.

Figure 7: Training and Validation AUC

Both the AUC and Val AUC in the table show an upward trend, indicating

that the model's predictive performance is improving over time. It is also good to

observe that the AUC and Val AUC are quite close to each other across epochs,

which suggests that the model is generalizing well and not just fitting to the noise

in the training data. A consistent gap between AUC and Val AUC could indicate

overfitting, but that does not appear to be the case with the provided data.

35

Loss

This is a measure of how well the model is performing on the training

dataset. It is typically calculated using a loss function, which quantifies the

difference between the predicted values and the actual values. The goal of the

training is to minimize this loss. In the table provided, the loss starts at 0.4457 in

the first epoch and consistently decreases to 0.2052 by epoch 17. This decrease

in loss indicates that the model is getting better at making predictions on the

training data, as it's learning the patterns and reducing errors over time. In the

table, the validation loss starts at 0.2258 and, with some fluctuations, generally

decreases to 0.1986 by epoch 15 before slightly increasing to 0.2015 in epoch

17. The trend in the validation loss provides insights into whether the model is

generalizing well. Ideally, both the training loss and validation loss decreases

together, and by the final epoch, they are relatively low and close to each other,

which would indicate good model performance without overfitting.

36

Figure 8: Training and Validation loss.

Overall, the results indicate that the deep learning model performs well in

the binary classification task, demonstrating consistent improvement in both loss

and accuracy metrics over the course of training. The increasing AUC values

further support the model's effectiveness in distinguishing between positive and

negative instances.

ROC Curve

Receivers Operating Characteristic (ROC) curves are produced for

multiple classes when undertaking binary classification tasks. Below, FPR (false

positive rate), TPR (true positive rate), and threshold values are presented for

each class: each ROC curve represents the performance of the model for a

specific class; FPR represents the ratio of false positives to actual negatives

37

while TPR shows the ratio of true positives to actual positives; threshold values

indicate probability threshold above which an instance can be classified as

positive.

ROC curves offer valuable insights into a model's performance at different

threshold values for each class. By altering these threshold values, its

performance can be optimized based on specific requirements such as

prioritizing high recall or minimizing false positives.

Figure 9 shows the ROC Curve depicted below; Edema (0.90) and

Pneumonia (0.81) both boast high AUC scores, suggesting that this model excels

at accurately recognizing these conditions; conversely, lower AUC scores such

as Infiltration (0.66) or Fibrosis (0.65) may not be identified by this approach as

reliably. The model's AUC for "No Finding" indicates its ability to accurately

detect an absence of findings.

38

Figure 9: ROC curve for each metric

Table 2 describes that, In most of the cases our model has improved

accuracy as compared to average AUC value given by author of this dataset

Wang et al.[1] while in other paper Yao et al.[2] have consistently demonstrated

high AUC values across various pathologies, demonstrating their model Our

Model's robust performance across various conditions such as Edema and

https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1710.10501

39

Hernia. Specifically, its AUC values fluctuate among pathologies, surpassing

other models about Edema and Hernia diagnosis.

Table 2: AUC-Roc Curve Value Comparison

Pathology
Wang et

al.[1]

Yao et

al.[2]
Our Model

Atelectasis 0.716 0.772 0.72

Cardiomegaly 0.807 0.904 0.74

Effusion 0.784 0.859 0.77

Infiltration 0.609 0.695 0.66

Mass 0.706 0.792 0.66

Nodule 0.671 0.717 0.60

Pneumonia 0.633 0.713 0.81

Pneumothorax 0.806 0.841 0.70

Consolidation 0.708 0.788 0.75

Edema 0.835 0.882 0.90

Emphysema 0.815 0.829 0.78

Fibrosis 0.769 0.767 0.65

Pleural
Thickening

0.708 0.765 0.62

Hernia 0.767 0.914 0.83

No Finding -- 0.76 0.72

https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1710.10501
https://arxiv.org/abs/1710.10501

40

CHAPTER FIVE

CONCLUSION

In this study, we have created a classification model using UNet

architecture with an embedded classification layer. Our experiments have

revealed that this approach proved superior when classifying different thoracic

pathologies as well as health findings.

UNet architecture has enabled this model to efficiently extract both local

and global features from input images. Encoder networks efficiently extract high-

level features by downsampling while decoder networks upsampled spatial

information; this allows for greater feature representation as well as improved

differentiation among various thoracic pathologies.

Adam optimizes our model during training. Adam combines the benefits of

both AdaGrad and RMSProp optimizers by adapting learning rates for

parameters based on past gradients; this optimization algorithm helps to

accelerate convergence while simultaneously improving model performance

during development.

To increase the generalization ability of our model, we use data

augmentation techniques such as rotation, horizontal flip, and zoom during

training to enlarge diversity in training data sets and teach robust features to the

model.

The model has trained using a cross-entropy loss function, which

penalizes any differences between its predicted probabilities and actual ground

41

truth labels. This loss function has enabled rapid learning processes while

encouraging precise classification.

Overall, our experiments demonstrate the efficiency of UNet architecture

combined with a classification layer in classifying thoracic pathologies on chest

X-ray images. This model achieves promising results, which shows its promise

as an aid for medical professionals in diagnosing and identifying various thoracic

pathologies accurately.

Future projects may focus on further optimizing the model by exploring

different architectures, fine-tuning hyperparameters, and including additional

clinical information to increase accuracy and interpretability. Furthermore,

evaluating its performance on larger datasets can give more insights into its

practical use and generalizability.

42

REFERENCES

[1] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017).

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-

Supervised Classification and Localization of Common Thorax Diseases. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 2097-2106) arXiv:1705.02315.

[2] Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, Devon Bernard, Kevin

Lyman.Learning to diagnose from scratch by exploiting dependencies among

labels arXiv:1710.10501

[3] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ball, R. L.

(2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with

deep learning. arXiv:1711.05225

[4] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net:

Convolutional networks for biomedical image segmentation. In International

Conference on Medical image computing and computer-assisted intervention

(pp. 234-241). Springer,Cham. arXiv:1505.04597

[5] Siddique, Nahian, et al. “U-Net and its variants for medical image

segmentation: theory and applications.” arXiv:2011.01118

https://arxiv.org/abs/1710.10501
https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2011.01118

43

[6] Khanna, A.; Londhe, N.D.; Gupta, S.; Semwal, A. A deep Residual U-Net

convolutional neural network for automated lung segmentation in computed

tomography images. Biocybern. Biomed. Eng. 2020, 40, 1314–1327,

https://doi.org/10.1016/j.bbe.2020.07.007.

[7] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image

Recognition," 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi:

10.1109/CVPR.2016.90

[8] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv:1412.6980.

[9] Shorten and Khoshgoftaar J Big Data (2019) 6:60

https://doi.org/10.1186/s40537-019-0197-0.

[10] Prechelt, L. (1998). Early stopping—but when? In Neural Networks: Tricks of

the trade (pp. 55-69). Springer, Berlin, Heidelberg.

https://doi.org/10.1016/j.bbe.2020.07.007
https://arxiv.org/abs/1412.6980
https://doi.org/10.1186/s40537-019-0197-0

	CLASSIFICATION OF THORAX DISEASES FROM CHEST X-RAY IMAGES
	Recommended Citation

	tmp.1700159426.pdf.LZcw_

