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ABSTRACT 

The amount of data generated in the medical imaging field, especially in a 

modern context, is growing significantly. As the amount of data grows, it's 

prudent to make use of automated techniques that can leverage datasets to 

solve problems that are error-prone or have inconsistent solutions. 

Deep learning approaches have gained traction in medical imaging tasks 

due to their superior performance with larger datasets and ability to discern the 

intricate features of 3D volumes, a task inefficient if done manually. Specifically 

for the task of lung nodule segmentation, several different methods have been 

tried before such as region growing etc. but this project focuses on using an 

Attention U-Net model to automatically segment the nodule boundaries. 

Specifically, this is done on the LUNA16 dataset as a benchmark which is a 

popular reference point for comparison. To achieve this, specifically, the 

Attention U-Net was trained with 5-fold cross-validation on the training dataset. 

In addition to the segmentation outputs, averaged training and validation 

curves over all folds were also shown as the model is trained for 70 epochs. To 

conclude, these results present a useful automated method to segment the lung 

nodules. In practical situations, this would be of significant help to radiologists as 

it is less error-prone and not as susceptible to inter-observer variability. These 

automated tools along with other radiologist interactions could potentially 

significantly improve patient outcomes. 
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CHAPTER ONE 

INTRODUCTION 

 

Lung lesions, primarily nodules and masses, have long since been seen 

as potential indicators of diseases, including various malignancies and cancer 

[1]. Segmenting these data from a patient's CT or MRI data is important in the 

clinical pipeline aiding in early diagnosis, planning treatment and further 

monitoring for lung cancer. 

Lung cancer is still one of the most prevalent and dangerous cancer types 

worldwide. Recent statistics show it is a significant part of all cancer-related 

deaths [2]. Because of this, detecting cancer early is vital is having better patient 

outcomes [3]. In the past, radiologists have relied on manual or semi-automated 

and assisted methods for lung lesion detection and delineation. These are time-

consuming and subject to inter-observer variability and are thus error-prone [4]. 

The usage and rapid evolution of deep learning in this field of imaging in the last 

few years have revolutionized medical imaging analysis. Particularly CNNs have 

shown state-of-the-art in a wide range of tasks, more specifically computer vision 

and have outperformed traditional image processing tasks in terms of accuracy 

and quality of outputs [5]. The potential to use deep learning models in clinical 

workflows is significant in reducing the amount of time radiologists need to spend 

on manually delineating the tumors and the exponential growth of datasets 

available also allows the models to learn features that are generally not 
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immediately visible to the human eye. Furthermore, these models also provide 

valuable numeric metrics that help in clinical decision-making. 

This report shows the application of an advanced deep-learning model for 

segmenting lung lesions in CT datasets. The subsequent sections go into more 

detail about the data used and the specific methods. 

 

Challenges 

Lung lesion segmentation in CT scans presents a multifaceted challenge. 

The diverse nature of lesions, coupled with the inherent complexities of lung 

anatomy and the limitations of imaging technologies, necessitates the 

development of robust and adaptable methodologies. The following list 

enumerates some of the prominent challenges faced in the domain: 

• Heterogeneity of Lesions: Lung lesions appear in different shapes, sizes 

and densities. The wide spectrum of lesion appearances, ranging from 

solid nodules to ground-glass opacities, poses a significant challenge in 

developing a universally effective segmentation algorithm [6]. 

• Adjacent Structures: Lesions located near vascular structures, the pleura 

or other organs are particularly challenging to segment. These can lead to 

false positives or inaccurate estimation of the lesion's boundary. 

• Image Artifacts: CT scans generally contain a lot of artifacts due to motion 

during acquisition, beam hardening and partial volume effects. These can 

distort the lesion appearance which complicates the segmentation task [7]. 
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• Low Contrast Lesions: Some lesions, especially early-stage ones might 

have lower contrast than the surrounding lung. Identifying and segmenting 

these lesions requires algorithms that can tackle those problems. 

• Variability in Imaging Protocols: Different scanning methodologies and 

protocols such as slice thickness, reconstruction algorithms and radiation 

doses can result in different image appearances. This causes another 

problem in the generalization of segmentation models [8].  

• Inter-patient Variability: The anatomy and pathology of the lungs can be 

significantly different between patients. Many factors like patient age, 

smoking history and other underlying conditions can influence the lesion 

appearance and require the model to be adaptable to different patient 

cohorts.  

Several published results tackled some of these challenges and will be 

discussed further in subsequent sections. 
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CHAPTER TWO  

RELATED WORK 

 

Considering the importance of lung lesion segmentation in accurate 

diagnosis and treatment planning, over the years several different methods have 

been proposed to tackle this problem starting from simple image processing to 

sophisticated deep learning methods. This section will cover all the related work 

that has been published to address this task and further insights into its 

advantages and limitations.  

 

Image Processing Methods 

Historically to improve manual delineation, simple image processing 

techniques were used. These methods primarily relied on thresholding, 

morphological operations, region growing and other methods to do lesion 

segmentation from the surrounding lung.  

• Thresholding: This method simply sets the intensity range to segment the 

lesion from the background. The assumption is that lesions have a 

different intensity compared to the surroundings. This method was 

generally effective for high-contrast images with lesions that neatly 

segment this way but in general, for more complex tasks its performance 

was subpar [9].  
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• Morphological Operations: This method used structural elements in the 

image to identify regions allowing removal of small noise and 

enhancement of the structures. Like basic thresholding, as the boundary 

of the lesion gets more complex, it's harder to have a clean segmentation 

due to more detailed boundaries [10]  

• Region Growing: This is a method that starts with a random seed point 

and tries to grow by detecting similar surrounding pixels. While it has 

advantages compared to other techniques, this method largely depends 

on getting the right seed starting point, non-disjointed lesions and having 

homogenous structures that are easily grown [11].  

 

Machine Learning Methods 

With the advent of Machine Learning, feature extraction methods 

combined with classifiers have become more popular. These methods focus on 

hand-crafted features that are extracted from the input such as texture, shape 

and intensity followed by simple classifiers such as SVM, Random Forests and k-

NN for segmentation.  

• Texture-based features could be extracted with methods such as Gabor 

filters and co-occurrence matrices [12]  

• Classifiers such as SVMs became more used due to their capability to 

handle high-dimensional datasets [13].  
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Deep Learning Models 

The introduction of deep learning methods has improved the lesion 

segmentation accuracy significantly. CNNs have become the standard with 

architectures like U- Net [14] which is a symmetric encoder-decoder architecture 

as can be seen in Figure 1 emerging as benchmarks for biomedical 

segmentation in general. The best part of these models is their ability to learn 

hierarchical features directly from the image data without the need for previously 

mentioned hand-crafted features. The U-Net model shown will be used as a 

baseline for comparison of the final method as it is a common comparison. It 

uses skip connections along with the encoder-decoder architecture. There have 

been several improvements to this model that improve the performance of 

segmentation which will be discussed further. 
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Figure 1: U-Net Network Architecture [14] 

 

Advanced Models 

Recent advances have seen improvements by fusing deep learning with 

other techniques, incorporating attention mechanisms and usage of transformer 

architectures. 

• Attention U-Net: This model is a modification of the U-Net architecture 

which incorporates the attention gate mechanism to make the model focus 

on specific regions of the image thus improving the quality of the lesion 

segmentation [15]. The visualization of this network can be seen in Figure 

2. 



 8 

• Medical Transformer: Drawing inspiration from the success of 

transformers in NLP, transformers have been adapted to medical image 

analysis with superior lesion boundaries in the segmentations [16]. 

Several of these works will be compared to the final model which will be 

proposed for lung lesion segmentation. The attention mechanism is an important 

part of the networks which will be used, and the gates marked by AG can be 

seen in Figure 2 are used to allow the network to focus selectively on specific 

regions of the input data. 

 

Figure 2. Attention U-Net Network Architecture [15] 
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CHAPTER THREE  

DATA PREPARATION 

 

Dataset 

The LUNA16 dataset [17] used in this project was created in response to 

the challenges of early detection of lung lesions. While the Low-Dose Computed 

Tomography (LCDT) screen has been shown to reduce mortality from lung 

cancer, detecting the lung nodules themselves is challenging. Automatic nodule 

detection algorithms can be useful in improving the efficiency and accuracy of 

this process. The data in LUNA16 is sourced from the Lung Image Database 

Consortium (LIDC) - Image Database Resource Initiative (IDRI) dataset [6]. The 

LIDC-IDRI dataset consists of 1018 CT scan volumes, with annotations. 

Nodules are categorized based on their size: 

• Small nodules: Less than 3mm (about 0.12 in) 

• Medium nodules: Between 3mm (about 0.12 in) and 30mm (about 1.18 in) 

• Large nodules: Greater than 30mm (about 1.18 in) 

The focus of LUNA16 is primarily on the medium-sized nodules, as these 

are clinically significant and can be challenging to detect. The LIDC - IDRI 

annotation process involved four experienced thoracic radiologists. Each scan 

was independently reviewed by at least two radiologists. Disagreements between 

radiologists were resolved through an iterative consensus read. For LUNA16, 

nodules that were annotated by at least three out of four radiologists were 
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considered positive examples, ensuring high confidence in the nodule labels. A 

few samples are visualized in Figure 3. 

The LUNA16 dataset is a subset of the original LIDC - IDRI dataset, which 

contains 1,018 scans following pre-requisites resulting in 888 scans. There are a 

total of 1186 nodules in this dataset. Resolution varies between scans, but 

typically the in-plane resolution (x-y plane) is close to 0.7mm x 0.7mm. 

Regarding the slice thickness, it ranges from 0.6mm to 2.5mm, with most scans 

having a slice thickness between 1mm and 2mm. Finally, the scans themselves 

are typically 512 x 512 in the x-y plane, but the number of slices (z-dimension) 

varies based on the extent of the lungs and the slice thickness. For LUNA16, 

only nodules with a diameter between 3mm and 30mm are included, as these 

are the most clinically relevant. 
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Figure 3. LUNA16 Lung Dataset Sample with Annotations [17] 

 

Data Format 

The dataset is available for download both on Kaggle [21] and the official 

LUNA16 website [22], and is provided in the Meta Image format, denoted by the 
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.mhd file extension. This format is commonly used for medical imaging datasets, 

as it supports a wide range of pixel data types and multi-dimensional images. 

The .mhd files serve as header files, describing the size, dimension, and data 

type of the image data, among other metadata. Accompanying each. mhd header 

file is a .raw file, which contains the actual image data in binary format. To 

process and read these files, the SimpleITK library is recommended. 

SimpleITK provides a straightforward interface for image I/O, and it abstracts 

away many of the complexities associated with medical image processing. 

Researchers and practitioners can easily load the LUNA16 scans into Python 

using SimpleITK, facilitating further analysis, visualization, and experimentation 

with the dataset. 

 

Data Preprocessing 

The data set was processed to extract relevant details for deep learning 

segmentation using the public library. Here are the following steps taken: 

Nodule Malignancy Calculation 

For each nodule, malignancy was calculated based on annotations made 

by radiologists. The median high value of the malignancy annotations was taken 

as the representative score. If this score was above 3, the nodule was labelled as 

cancerous; if below 3, it was labelled as non- cancerous. A score of exactly 3 

was tagged as ambiguous. 
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Patients with Annotated Nodules 

For patients with annotated nodules, the following steps were taken: 

• The consensus function from pylidc was employed to generate a 

consensus mask, considering the given confidence level and padding. 

• The mask was then used to extract the region of interest from the original 

DICOM volume. 

• Each slice of the segmented nodule was processed individually. Slices 

with a mask size below the defined threshold were disregarded. 

• For the remaining slices, the lung region was isolated using the 

segment_lung function. 

• Both the segmented lung slice and its corresponding mask were saved as 

numpy arrays, with systematic naming conventions to ensure traceability. 

Patients without Annotated Nodules 

For patients without any annotated nodules: 

• The dataset was considered "clean", and each slice was processed 

without the need for a consensus mask. 

• The first 50 slices of the DICOM volume were segmented to retain only 

the lung region. 

• A placeholder mask with no nodules (all zeros) was created for each slice. 

• Both the segmented lung slice and its placeholder mask were saved with 

a naming convention denoting their "clean" status. 

The lung data is visualized after said preprocessing in Figure 4. 
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Figure 4. Input data visualized after preprocessing with pylidc 
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CHAPTER FOUR 

METHODS 

 

This chapter will outline the network architectures implemented for the 

task and their optimized hyperparameters. Further research improvements to the 

transformer-based architecture are also discussed. 

 

Baseline U-Net Model 

The U-Net architecture [14] as mentioned in Chapter 2 was originally 

proposed for biomedical image segmentation. This forms the baseline for the 

lung lesion segmentation task. The architecture can be briefly described as 

follows as can be seen in Figure 1. 

U-Net consists of an encoding or downsampling path and a corresponding 

symmetric decoding or upsampling path connected by a bottom layer. Each layer 

in the encoding path consists of two consecutive 3x3 convolutions followed by a 

Rectified Linear Unit (ReLU) activation and a 2x2 max pooling operation with 

stride 2 for downsampling. The number of channels is doubled after each 

downsampling step. 

The decoding path is like the encoding path. It comprises an upsampling of the 

feature map followed by a 2x2 convolution ("up-convolution"), a concatenation 

with the corresponding feature map from the encoding path, and two 3x3 
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convolutions each followed by a ReLU activation. The number of channels is 

halved after each upsampling step following the inverse of the encoder pipeline. 

The entire architecture follows the visualization shown in Figure 1. This 

network will be used as a baseline to compare the improved performance and 

other considerations. 

Hyperparameters 

After several repeated experiments the optimal hyperparameters are 

chosen for good generalization. They are as follows: 

Architecture Parameters 

• Convolutional Layers: Two consecutive 3x3 convolutions per layer. 

• Activation Function: ReLU 

• Pooling Operation: 2x2 max pooling with a stride of 2 in the 

encoding path. 

• Upsampling Operation: 2x2 up-convolution in the decoding path. 

• Number of Channels: Doubled after each downsampling step and 

halved after each upsampling step. 

• Loss Function: Pixel-wise softmax over the final feature map 

combined with the cross-entropy loss. 

• Optimizer: Adam. 

• Learning Rate: 1 × 10−4 

• Batch Size: 32. 

• Stopping Criterion: Convergence based on validation loss. 
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Attention U-Net for Lung Lesion Segmentation 

The method used in this project uses the attention mechanism. The core 

principle behind this mechanism is to weigh the importance of different features 

in given data thereby allowing the model to focus on different regions of interest. 

In the context of medical image segmentation, this means emphasizing areas 

that are more likely to contain the target structures while suppressing the less 

relevant areas. The AG in the Attention U-Net computes attention coefficients, 

which are used to weigh the feature maps. The AG considers both the encoder's 

feature map and the corresponding feature map from the decoder path. 

Mathematically, given a feature map 𝑔 from the decoder and a feature map 𝑥 

from the encoder, the attention coefficients 𝛼 can be calculated as: 

𝛼 = softmax(𝑊𝑔𝑔 + 𝑊𝑥𝑥) 

Where 𝑊𝑔 and 𝑊𝑥 are trainable weight matrices. 

The attended feature map is then computed by element-wise multiplication 

of 𝛼 with 𝑥: 

𝑥′ = 𝛼 ⊙ 𝑥 

In this network, the AG is introduced at every skip connection. As the U-

Net decoder upsamples its feature maps, each upsampled map is merged with 

the corresponding encoder feature map after passing through an attention gate.  
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This let the network weigh the importance of features from the encoder path 

before merging, refining the feature fusion process and making it more adaptive 

to the specific input. 

Hyperparameters 

The Attention U-Net model's performance was optimized over several runs 

and the following hyperparameters were the best: 

 

Table 1. Selected Hyperparameters for Attention U-Net Training. 

Hyperparameter Value 

Depth of U-Net 4 

Number of Initial Filters 64 

Kernel Size   3 × 3 

Activation Function ReLU 

Batch Size 32 

Learning Rate    1 × 10−4 

Loss Function Cross Entropy Loss 

Optimizer Adam 

Attention Gate Activation Function Sigmoid 

Dropout Rate 0.2 

Weight Decay (L2 Regularization) 0.0005 

Attention Type Additive Attention 

Up sampling Method Transposed Convolution 
 

 

Cross-Validation 

In comparing the results of the various experiments, a 5 5-fold cross 

validation strategy was used to improve the reliability and accuracy of these 

metrics for the task of lung lesion segmentation. This is illustrated in Figure 5. 

Cross-validation is a widely used technique in machine learning for assessing 
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how a model generalizes to independent datasets. More specifically, 5-fold 

cross-validation involves splitting the dataset into 5 equal-sized 'folds'. The 

training and evaluation process on train and validation sets is conducted 5 times 

with each fold acting as the validation set exactly once, and the remaining four 

folds collectively used as the training set. 

The illustration in Figure 5 delineates the iterative process of this approach: 

• In the first iteration, Fold 1 acts as the validation set while Fold 2, Fold 3, 

Fold 4, and Fold 5 together form the training set. 

• In the subsequent iteration, Fold 2 is utilized as the validation set and the 

other folds constitute the training data. 

• This pattern continues iteratively until each fold has been used as the 

validation data exactly once. 

Finally, after the relevant model parameters are chosen the performance 

is evaluated on the test set as the result of that model. 
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Figure 5. 5-fold Cross Validation Illustration 
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CHAPTER FIVE 

RESULTS AND ANALYSIS 

 

Metrics 

This section will outline the metrics used to compare the methods 

implemented for the lung lesion segmentation task. 

Dice Score  

The Dice Score is a vital metric for evaluating segmentation models in 

medical imaging. It's representative of how well the model is segmenting the 

required anatomy compared to the ground truth. 

Mathematically, the Dice Score 𝐷 can be defined as follows: 

                                                                 𝐷 = 2 × |𝐴 ∩ 𝐵| 

|𝐴| + |𝐵| 

Where 𝐴 is the set of pixels in the predicted segmentation and 𝐵 is the set 

of pixels in the ground truth. The Dice Score ranges between 0 and 1 where a 

score of 1 represents a perfect segmentation and a score of 0 indicates no 

overlap. 

Jaccard Index / Intersection Over Union (IoU) 

Jaccard Index, often synonymous with IoU is another useful metric for 

evaluating the quality of segmentations by the different models in medical 

imaging. This metric is like the Dice Score and quantifies the overlap between 

the predicted segmentation and ground truth. 



 22 

Mathematically, the Jaccard Index is defined as: 

                         𝐽    =     |𝐴 ∩ 𝐵| 

        |𝐴 𝖴 𝐵| 

Where 𝐴 and 𝐵 represent the sets of pixels in the predicted and ground-

truth segmentations, respectively. The Jaccard Index also ranges from 0 to 1, 

with a score of 1 indicating perfect overlap and a score of 0 suggesting no 

overlap. 

 

Results 

The methods outlined in Chapter 4 were employed on the LUNA16 

dataset described earlier for lung lesion segmentation. This chapter will give a 

brief overview of the different results obtained by the implemented models 

concerning the two different metrics. A comprehensive review of the performance 

of the deep learning models will be presented. The primary goal is to check how 

the final model is compared to the baseline U-Net model. 

Before discussing in-depth results, it is essential to note the number of 

trainable parameters in the different models:  

 

Table 2. Comparison of Trainable Parameters for Baseline UNet and Attention U-
Net.     
 

Model Number of trainable parameters 

Baseline U-Net 19,017,556 

Attention U-Net 22,133,455 
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Table 2 shows that the number of trainable parameters for the Attention U-

Net is close to the baseline model with the added attention gates at the skip 

connections as shown in Figure 2. The performance results with the described 

metrics are shown in Table 3. The optimized models with corresponding 

hyperparameters for both the baseline and the attention U-Net show that the dice 

score and IoU are both improved with the introduction of attention gates. Both the 

dice score and IoU being positively linked show improved performance in 

comparison. 

 

Table 3: Experimental Results of Segmentation Models 

Model Dice Score IoU 

Baseline U-Net 0.885 ± 0.036 0.873 ± 0.041 

Attention U-Net 0.909 ± 0.029 0.899 ± 0.033 
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Figure 6. Two Exemplary Cases of Segmentation Output 
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Figure 7. Training and Validation Curves of the Attention U-Net Model over 70 
Epochs 
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Table 4. Training vs Validation Loss           

Epoch Training Loss Validation Loss 

1 5.08693 4.99226 

2 5.6226 5.59911 

3 5.61803 5.34333 

4 5.23742 5.08184 

5 5.41091 4.72258 

6 5.0313 4.29719 

7 4.2583 4.77496 

8 4.00795 4.73594 

9 3.55563 4.25451 

10 3.67653 3.95932 

11 3.85388 4.04657 

12 4.45717 4.6387 

13 4.45636 4.30324 

14 4.27372 3.7095 

15 4.44216 3.73691 

16 3.62965 3.68958 

17 3.77666 2.88572 

18 4.02188 3.22363 

19 3.50043 3.28665 

20 3.90386 3.54337 

21 3.92643 3.9646 

22 3.69783 3.90557 

23 3.83397 3.40447 

24 4.40237 2.84969 

25 4.15535 3.62332 

26 3.98408 3.20296 

27 3.63366 2.92625 

28 3.25296 2.72353 

29 3.47226 2.6359 

30 3.10158 2.43641 

31 3.10214 2.15493 

32 2.91951 1.96929 

33 3.06039 1.97776 

34 3.09716 1.77585 

35 3.31579 1.57113 

36 2.98631 1.67725 

37 2.80946 1.67588 
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38 2.45473 2.28223 

39 2.3485 1.30761 

40 2.50236 1.87955 

41 2.7057 2.31814 

42 2.32604 1.38801 

43 2.57954 1.57943 

44 2.88455 1.56939 

45 2.79713 1.31012 

46 3.15668 1.39038 

47 2.59493 1.26781 

48 2.04218 2.11187 

49 1.47678 2.34657 

50 2.04517 2.45075 

51 2.17228 2.44808 

52 2.03001 1.75795 

53 2.01282 1.72635 

54 1.56089 2.01882 

55 2.29765 1.43315 

56 2.10017 1.90242 

57 1.93772 1.87789 

58 1.99065 1.75192 

59 1.93602 2.06288 

60 1.80238 2.07524 

61 1.38626 1.89876 

62 1.4553 2.23723 

63 1.90854 1.80658 

64 2.04656 2.0216 

65 2.19924 2.14925 

66 1.65654 1.90273 

67 1.11487 1.98512 

68 0.97659 1.55779 

69 0.91598 2.03664 

70 1.16683 1.88194 
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Figure 6 shows two exemplary cases of lung lesion segmentations next to 

the ground truth. As can be seen, while the general position of the lesion is well 

segmented, there is an overall difference in the boundary of the segmentation 

which contributes to the dice score shown in Table 3. Following this, the training 

and validation curves for the attention U-Net model can be seen visualized in 

Figure 7 and shown explicitly in the following table. 

 

Insights And Project Contributions 

        This section will cover the insights provided by the models trained in this 

project along with what the novelties are in the network architecture compared to 

the original models that are used. Firstly, the depth of the UNet was modified to 

four levels, which is different from the original architecture that often varied in 

depth. This project specific tuning is related to the complexity of lung images, 

suggesting that a four-level depth is sufficient for capturing the necessary 

hierarchical features of lung lesions without overfitting, given the size and 

variation within the LUNA16 dataset. The number of initial filters was set at 64, 

which is a significant difference from the UNet's original configuration that might 

start with a smaller number of filters. This increase addresses the need for a 

broader initial feature extraction capability, which is likely useful for identifying the 

complex features of the lung lesions against different densities that are found in 

CT scans.  
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Along with this, using a dropout rate of 0.2 and L2 regularization with a 

weight decay of 0.0005 in the Attention UNet model are additions to the original 

paper. These regularization techniques are particularly relevant for medical 

imaging tasks where the training datasets are often limited in size, increasing the 

risk of overfitting. The resulting architecture makes the model more able to 

generalize from the training data to data that is not seen which is important for 

clinical applications. Moreover, a transposed convolution is used for upsampling 

in the Attention UNet with a preference for more complex and learnable 

upsampling operations over simpler bilinear upsampling methods that were 

originally used. This choice is made mainly to improve the precision of 

upsampled feature maps which can result in more accurate lesion boundaries 

which is the main objective of this segmentation task. These hyperparameter 

choices reflect an adaptation of the UNet and Attention UNet models for lung 

lesion segmentation, considering the dataset's specific challenges. 

 

Comparison With Other Published Results 

While several results have been published with lung segmentation dice 

scores being above 98%, lesion segmentation accuracy is the most challenging 

task. The following are some published results on the same dataset. 
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Table 5. Comparison with Results Published on the same Dataset 

Model Dice Score 

Keetha, Annavarapu, et al., 2020 0.8282 

Banu et al., 2021 0.8979 

Sathish et al., 2020 0.9102 

Proposed Model 0.9091 

 

 

As can be seen in Table 5, the segmentation results of the given attention 

U- Net come close to if not better than published results on the same dataset. 

There can be further experiments conducted on different datasets to validate 

these results further in future work. 
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CHAPTER SIX 

CONCLUSION 

 

This report presented a deep learning-based approach for lung nodule 

segmentation. Performance metrics, including Dice Score, and IoU validate the 

model's effectiveness when compared to the baseline U-Net model. Several runs 

of the model were trained before selecting the final hyperparameters of the 

Attention U-Net model. It was also observed that for relatively smaller nodules, 

the performance is improved significantly compared to the baseline which is an 

improvement in overall performance. 

While the model demonstrated strong performance in most of the cases, 

the challenging delineations to automate are lesions which are not spherical, lie 

at the border of other classes of the scan and are smaller in size. These tend to 

contribute to false positives or negatives bringing down the overall dice. 

Regardless, the optimized Attention U-Net model was able to achieve an overall 

dice score of 90.9% which is valuable for automating this task to be used in 

conjunction with the radiologist's opinions. 

Another potential enhancement is the utilization of advanced attention 

mechanisms. Given the complex nature of medical scans, models that effectively 

capture relationships between different parts of the volume with multi-head 

attention could be beneficial. 
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In summary, this research emphasized the utility of a finetuned Attention 

U-Net model for lung nodule segmentation. By building on these methodologies 

and refining the approach, the segmentation process can be optimized, leading 

to reduced manual intervention and increased accuracy in delineation. 
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APPENDIX A 

DATASET DESCRIPTION 
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This Appendix provides details on the dataset used in this project. The 

LUNA16 dataset contains 888 scans of patient data which contain 1186 nodules 

for the entire dataset. They are available in MetaImage format in .mhd files and 

with the corresponding annotated segmentation. Resolution in-plane is close to 

mm x 0.7mm and slice thickness ranges from 0.6mm to 2.5mm 
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APPENDIX B 

MODEL ARCHITECTURE DETAILS 
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The final model used in this study is a finetuned attention U-Net 

architecture using attention gates at skip connections in a U-Net. The following 

are the final hyperparameters of the optimized attention U-Net model: 

• Convolutional Layers: Two consecutive 3x3 convolutions per layer. 

• Activation Function: ReLU 

• Pooling Operation: 2x2 max pooling with a stride of 2 in the encoding path. 

• Upsampling Operation: 2x2 up-convolution in the decoding path. 

• Number of Channels: Doubled after each downsampling step and halved 

after each upsampling step. 
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APPENDIX C 

TRAINING PARAMETERS 
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The following training hyperparameters were used for the final model that 

was optimized: 

• Optimizer: Adam 

• Learning Rate 

• Batch Size: 32 

• Stopping Criterion: Convergence based on validation loss 
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APPENDIX D 

MODEL TRAINING AND EVALUATION CODE 
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The checkpoints for the various trained models can be provided upon 

request. This includes network code, checkpoints, training, and evaluation files. 

The final proposed model code can be seen below: 

import numpy as np  

import SimpleITK as sitk  

import pylidc as pl  

import torch 

import torch.nn as nn 

from sklearn.model_selection import KFold 

from torch.utils.data import DataLoader, TensorDataset 

 

# Load LUNA16 .mhd files 

def load_itk_image(filename): 

itkimage = sitk.ReadImage(filename)  

numpy_image = sitk.GetArrayFromImage(itkimage)  

numpy_origin = 

np.array(list(reversed(itkimage.GetOrigin())))  

numpy_spacing = 

np.array(list(reversed(itkimage.GetSpacing())))  

return numpy_image, numpy_origin, numpy_spacing 

 

def get_segmented_lungs(scan, plot=False): 
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# This preprocessing is done according to the 

specifications mentioned before 

 

# Load dataset 

data_path = 'path_to_LUNA16_data'  

filenames = [...] 

images = []  

masks = [] 

 

for file in filenames: 

img, origin, spacing = load_itk_image(file)  

segmented_lungs = get_segmented_lungs(img) 

images.append(img)  

masks.append(segmented_lungs) 

 

class ConvBlock(nn.Module): 

def init (self, in_channels, out_channels):  

super(ConvBlock, self). init ()  

self.block = nn.Sequential( 

nn.Conv2d(in_channels, out_channels, 

kernel_size=3, padding=1), 

nn.ReLU(), 
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nn.Conv2d(out_channels, out_channels, 

kernel_size=3, padding=1), 

nn.ReLU() 

) 

def forward(self, x):  

return self.block(x) 

 

class AttentionUNet(nn.Module): 

def init (self, in_channels, out_channels):           

 

super(AttentionUNet, self). init () 

 

# Encoder 

Self.enc1 = ConvBlock(in_channels, 64) 

self.enc2 = ConvBlock(64, 128)  

self.enc3 = ConvBlock(128, 256)  

self.enc4 = ConvBlock(256, 512) 

 

self.pool = nn.MaxPool2d(kernel_size=2, stride=2) 

 

# Decoder 

self.up3 = nn.ConvTranspose2d(512, 256, 

kernel_size=2, stride=2) 

self.dec3 = ConvBlock(512, 256)  
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self.attn3 = AttentionBlock(256, 256, 128) 

self.up2 = nn.ConvTranspose2d(256, 128, 

kernel_size=2, stride=2) 

self.dec2 = ConvBlock(256, 128)  

self.attn2 = AttentionBlock(128, 128, 64) 

 

self.up1 = nn.ConvTranspose2d(128, 64, 

kernel_size=2, stride=2) 

self.dec1 = ConvBlock(128, 64) 

 

self.out = nn.Conv2d(64, out_channels, 

kernel_size=1) 

 

def forward(self, x):  

# Encoder 

x1 = self.enc1(x) 

x2 = self.enc2(self.pool(x1))  

x3 = self.enc3(self.pool(x2))  

x4 = self.enc4(self.pool(x3)) 

 

# Decoder with attention  

x_up = self.up3(x4) 

x3 = self.attn3(x_up, x3) 
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x3 = self.dec3(torch.cat([x_up, x3], dim=1)) 

 

x_up = self.up2(x3) 

x2 = self.attn2(x_up, x2) 

x2 = self.dec2(torch.cat([x_up, x2], dim=1)) 

 

x_up = self.up1(x2) 

x1 = self.dec1(torch.cat([x_up, x1], dim=1)) 

return self.out(x1) 

 

images = np.array(images)[:, np.newaxis, :, :]  

masks = np.array(masks)[:, np.newaxis, :, :] 

 

images_tensor = torch.tensor(images, dtype=torch.float32) 

masks_tensor = torch.tensor(masks, dtype=torch.float32) 

 

dataset = TensorDataset(images_tensor, masks_tensor) 

 

num_epochs = 70 

 

kf = KFold(n_splits=5, shuffle=True, random_state=42) 

 

for fold, (train_idx, val_idx) in  
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enumerate(kf.split(images)): 

train_dataset = 

TensorDataset(images_tensor[train_idx], 

masks_tensor[train_idx]) 

val_dataset = TensorDataset(images_tensor[val_idx],  

masks_tensor[val_idx]) 

 

train_dataloader = DataLoader(train_dataset, 

batch_size=32, shuffle=True) 

val_dataloader = DataLoader(val_dataset, 

batch_size=32, shuffle=False) 

for epoch in range(num_epochs):  

model.train() 

train_loss = 0 

for img, mask in train_dataloader: 

img, mask = img.to(device), mask.to(device) 

optimizer.zero_grad() 

outputs = model(img) 

loss = criterion(outputs, mask) 

loss.backward()  

optimizer.step() 

train_loss += loss.item() 
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# Validation loop  

model.eval()  

val_loss = 0 

with torch.no_grad(): 

for img, mask in val_dataloader: 

img, mask = img.to(device), 

mask.to(device)  

outputs = model(img) 

loss = criterion(outputs, mask) 

val_loss += loss.item() 

 

print(f"Fold {fold+1}, Epoch {epoch+1}, 

Train Loss: {train_loss/len(train_dataloader)}, 

Val Loss: {val_loss/len(val_dataloader)}") 

 

# Save model checkpoint 

torch.save(model.state_dict(), 

f"attention_unet_fold{fold+1}_epoch{epoch+1}.pth") 
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