
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2023

REVIEW CLASSIFICATION USING NATURAL LANGUAGE REVIEW CLASSIFICATION USING NATURAL LANGUAGE

PROCESSING AND DEEP LEARNING PROCESSING AND DEEP LEARNING

Brian Nazareth
California State University – San Bernardino

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Data Science Commons, Numerical Analysis and Scientific Computing Commons, and the

Other Computer Sciences Commons

Recommended Citation Recommended Citation
Nazareth, Brian, "REVIEW CLASSIFICATION USING NATURAL LANGUAGE PROCESSING AND DEEP
LEARNING" (2023). Electronic Theses, Projects, and Dissertations. 1821.
https://scholarworks.lib.csusb.edu/etd/1821

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1821?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

REVIEW CLASSIFICATION

USING NATURAL LANGUAGE PROCESSING AND DEEP LEARNING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Brian Nazareth

December 2023

REVIEW CLASSIFICATION

USING NATURAL LANGUAGE PROCESSING AND DEEP LEARNING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Brian Nazareth

December 2023

Approved by:

Dr. Yan Zhang, Advisor, Computer Science and Engineering

Dr. Jennifer Jin, Committee Member

Dr. Khalil Dajani, Committee Member

© 2023 Brian Nazareth

iii

ABSTRACT

Sentiment Analysis is an ongoing research in the field of Natural

Language Processing (NLP). In this project, I will evaluate my testing against an

Amazon Reviews Dataset, which contains more than 100 thousand reviews from

customers. This project classifies the reviews using three methods – using a

sentiment score by comparing the words of the reviews based on every positive

and negative word that appears in the text with the Opinion Lexicon dataset, by

considering the text’s variating sentiment polarity scores with a Python library

called TextBlob, and with the help of neural network training. I have created a

neural network model that learns from the review stars and then compare the

neural network’s performance against both the Opinion Lexicon and TextBlob’s

classification methods. We see that the accuracy of the Opinion Lexicon

classification method is 64.38% while the accuracy with TextBlob’s classification

method is 65.71% and the neural network model achieves an accuracy of

96.46%. The model would help brands for future reviews left by customers by

classifying them as positive, negative, or neutral.

iv

ACKNOWLEDGEMENTS

I sincerely extend my thanks to my project committee, Dr. Yan Zhang –

Advisor, Dr. Jennifer Jin – Committee Member, and Dr. Khalil Dajani –

Committee Member.

I would like to thank my friends and family for their continuous support.

v

TABLE OF CONTENTS

ABSTRACT...…………..…iii

ACKNOWLEDGEMENTS………………………………………………..........………iv

LIST OF TABLES…………………………………………………….…...........……..vii

LIST OF FIGURES……………………………………………………….........……..viii

CHAPTER ONE: INTRODUCTION………………………………….….........………1

CHAPTER TWO: LITERATURE REVIEW……………………………….......………3

Existing Methods……………………….………………….….………...………3

Previous Work……………………….………………….….………...…………4

CHAPTER THREE: PROPOSED SYSTEM……………………………….......…….9

Proposed System…………………….………………….….………...………..9

System Specifications………………..……….…………...………….………12

System Design………………………………………………………....………13

CHAPTER FOUR: DATA AND DATA PREPROCESSING……….………………17

Data Collection………………….………..………………..………...………...17

Text Cleanup…………………….………..………………..………...………..17

CHAPTER FIVE: METHODOLGIES………………………...………….......………21

Classification with Opinion Lexicon..………...………….............................21

Classification with TextBlob..………...…………..22

vi

Classification with Neural Network ……..23

CHAPTER SIX: EXPERIMENTAL RESULTS…………….…………..……………31

Threshold Determination……………………………………….………...…..31

Classification Model Evaluation.………...……………………..…………….34

Classification Model Comparison.………...……………………..…………..47

CHAPTER SEVEN: USER INTERFACES………………………….......………….56

CHAPTER EIGHT: CONCLUSION……………………………………….………....58

APPENDIX A: CODE……………………………………….……….........................60

REFERENCES………………………………………………………….……..……...74

vii

LIST OF TABLES

Table 1. Opinion Lexicon Threshold Test Cases...32

Table 2. TextBlob Threshold Test Cases...33

Table 3. Positive Sentiment Test Case..47

Table 4. Positive Sentiment Test Case..48

Table 5. Positive Sentiment Test Case..49

Table 6. Negative Sentiment Test Case..49

Table 7. Negative Sentiment Test Case..50

Table 8. Negative Sentiment Test Case..51

Table 9. Neutral Sentiment Test Case...51

Table 10. Neutral Sentiment Test Case...52

Table 11. Neutral Sentiment Test Case...53

viii

LIST OF FIGURES

Figure 1. Block Diagram of Model.....…..……………………………………………10

Figure 2. Confusion Matrix for Opinion Lexicon Classification…….....................36

Figure 3. Confusion Matrix for TextBlob Classification…….................................40

Figure 4. Confusion Matrix for Neural Network Classification..............................43

Figure 5. Homepage of the Application.……….………………...………………….54

Figure 6. Sentiment Prediction Output from User Input……………...……………55

Figure 7. Translated Sentiment Prediction Output from User Input...……………56

1

CHAPTER ONE

INTRODUCTION

Amazon reviews play a crucial role in the online shopping experience,

offering potential buyers valuable insights and feedback from other customers on

products they are considering. Reviews can range from simple star ratings to

profound and detailed comments about a product's quality, usability, efficiency

features, and performance. Amazon’s review ecosystem is a colossal compilation

of diverse opinions and evaluations, which makes it an indispensable resource

for shoppers seeking to make informed purchase decisions. To help ensure

authenticity, Amazon's review system includes a "verified purchase" feature that

provides additional confidence for buyers. Reviews on Amazon are a powerful

tool for consumers, manufacturers, and retailers alike, as they help build

customer satisfaction and trust. Reviews manifest as an influential tool for both

consumers and manufacturers. They facilitate the cultivation of customer

satisfaction, loyalty, and trust, which are paramount in the competitive realm of

online retail. These reviews can help provide valuable insights for businesses

and this can help them refine their products and services, thereby adopting a

customer-centric ecosystem infused with quality and excellence.

Natural Language Processing (NLP) is a field of artificial intelligence that

focuses on enables computers to understand, interpret, and generate human

language[1]. NLP combines linguistics, computer science, and artificial

intelligence techniques to create algorithms and models to process and analyze

2

natural language data. These algorithms and models are typically trained on

large text datasets such as books, news articles, research papers, and social

media posts. Machine learning techniques are used to improve the accuracy and

performance of NLP models. The field of NLP is growing rapidly with numerous

exciting developments and applications. As digital text keeps on growing, NLP

will become increasingly important for making sense of and leveraging this data.

By processing and analyzing large volumes of textual data, NLP can provide

valuable insights and will be capable of automating tasks that would otherwise

require human intervention.

In this project, I will be using Natural Language Processing’s key feature –

sentiment analysis. With sentiment analysis, the existing reviews can be

classified as Positive, Negative, or Neutral for companies to learn what worked

with their product and what did not. Sentiment analysis can provide insights for

common themes and sentiments in reviews, what products make the customer

happy, and what issues could they be facing with a product. Sentiment analysis

will help brands and manufacturers to analyze these reviews and look beyond

the star ratings.

3

CHAPTER TWO

LITERATURE REVIEW

Existing Methods

Sentiment analysis has been an active area of research, with various

approaches and techniques proposed to analyze and classify sentiments in

textual data. Traditional approaches often relied on lexicon-based methods that

used sentiment lexicons or dictionaries containing predefined sentiment polarity

for words. These lexicons were manually curated or generated using linguistic

heuristics and contained positive and negative words with their associated

sentiment scores. Commonly used techniques to create lexicons include

counting the occurrences of positive and negative words in a text or computing

sentiment scores based on the aggregation of word-level sentiments.

Machine learning is a widely used approach in sentiment analysis.

Algorithms are trained on labeled datasets to classify sentiments. Techniques

such as Naive Bayes, Support Vector Machines (SVM), and Decision Trees have

been used, with features derived from the text, such as syntactic patterns, or

linguistic features. Feature engineering plays a crucial role in extracting relevant

information from the text, while model training and optimization focuses on

achieving high accuracy and generalization.

More recently, deep learning models have gained popularity in sentiment

analysis. Recurrent Neural Networks (RNNs) like Simple RNN, Gated Recurrent

United Neural Network (GRUNN), and Long Short-Term Memory (LSTM)

4

networks have been successfully used to capture sequential dependencies and

contextual information in texts.

Previous Work

In the past few years, a vast number of projects have been done in the

field of sentiment analysis.

• Pak and Paroubek proposed techniques to classify twitter reviews

as positive, negative, or neutral. They used twitter API to collect

tweets and analyze sentiments using Naive Based algorithms.[2]

• Kiritchenko et al. wanted to improve the then existing Arabic

sentiment lexicons since they had very low coverage. They then

generated Arabic Translations of English Sentiment Lexicons by

collecting Arabic tweets from Twitter and from the Arabic translation

of NRC Emotion Lexicon.[3]

• Park and Kim used a dictionary-based approach which consists of

a list of predefined opinion words that were collected manually.

They discovered that traditional dictionary-based approach is not

enough and found the need to expand on the lexicon and build a

new expansive thesaurus lexicon would increase the accuracy of

the sentiment classification.[4]

• Bautin et al. explored the concept of international sentiment

analysis by using the Lydia text analysis system. The Lydia system

5

recognizes named entities in text and extract their temporal and

spatial distribution and were able to analyze nine different

languages. They felt the need to develop a system that would not

lose the meaning of the word by simply translating the words to

English and then performing sentiment analysis on them. They

discovered that the calculated sentiment scores ended up being

consistent across various languages without the need of a

translator. They also proposed a cross-language analysis sentiment

polarity score calculation that works across other cross-cultural

comparisons.[5]

• S.H. Muhammad et al. proposed the first large-scale human-

annotated Twitter sentiment dataset for four of the most widely

spoken languages in Nigeria which consisted of 30,000 annotated

tweets per language. They introduced methods for human

annotators to manually decide the sentiment with the subjectivity

voting of a text – if it has three positive vote the sentiment is

positive, if it has three negative votes, the sentiment is negative, if it

has two positive or two negative and the third vote is the opposite

then they consider the majority vote to be of that sentiment. They

also created sentiment lexicons for three Nigerian languages based

on the NaijaSenti dataset. For sentiment analysis, they opted to use

multiple local variants of BERT (Bidirectional Encoder

6

Representations from Transformers) – a multilingual variant of

BERT trained of 104 languages called mBERT, a scaled-up

mBERT called RemBERT which decouples embeddings and

enable larger embedding output sizes during pre-training, a

RoBERTa-style model called AfriBERTA which is trained on 11

African languages, mDEBERTaV3 and XLM-R.[6]

• Yan et al. presented a unified generative framework for Aspect-

based Sentiment Analysis (ABSA) which aimed to address multiple

ABSA tasks within a single model. ABSA identifies aspect terms,

sentiment polarities, and opinion terms in text. They proposed an

approach where each tasks is a generative task. They use a pre-

trained sequence-to-sequence model BART to solve all ABSA

tasks.[7]

• Singh et al. performed sentiment analysis with the help of the BERT

model on Twitter data sets to understand the public sentiments and

opinions regarding the impact of COVID-19. One data set is

collected by tweets from all around the world, and the other data

set contains tweets made from accounts in India. The sentiment

analysis is done by considering the polarity scores of the TextBlob

library.[8]

• Lyu et al. studied the sentiments in the COVID-19 vaccine-related

discussion on Twitter tweets from the day WHO declared COVID-

7

19 a pandemic on March 11, 2020, to January 31, 2021. The

dataset consisted of 1,499,421 unique tweets from 583,500

different users. The data consisted of discussions about

vaccinations as the countries of the world progressed towards

manufacturing its first vaccine. The resulting data showed the trust

emotion reaching its peak on November 9, 2020 after Pfizer

announced that its vaccine is 90% effective. They used syuzhet,

which is a popular R package for sentiment and emotion analysis,

and the National Research Council of Canada Emotion Lexicon for

the dictionary. The increasingly positive sentiment around COVID-

19 vaccines and distant amount of trust implies a higher

acceptance of COVID-19 vaccines compared to the previous

ones.[9]

• Rustam et al. performed sentiment analysis on tweets relating to

COVID-19 using multiple machine learning methods. They used RF

which is used for classification and regression problems that

generates several trees and performs voting between them to make

a majority decision. They used XGBoost which is a Gradient

Boosting classifier that assigns weight to each sample, and has

regularization techniques to control over-fitting of data. They used

SVC which is a linear model used for sentiment analysis. They

used Extra Trees Classifier (ETC) which trains and fits the number

8

of weak learners randomized on decision trees and boosts the

prediction accuracy. They used the TextBlob library to find the

sentiment polarity scores. They also used feature-extraction

techniques such as TF-IDF, BoW and a combination of TF-IDF and

BoW. They conclude that ETC is the best performer of them all with

an accuracy of 93%, outperforming RF and XGBoost who both

showed an accuracy of 92%.[10]

• Nandwani and Verma discuss the various approaches of sentiment

analysis and found while the lexicon-based approach performs well

in both sentiment and emotion analysis, the dictionary-based

approach is more adaptable and easier to apply.[11]

9

CHAPTER THREE:

PROPOSED SYSTEM

Proposed System

This project aims to develop a model that accurately categorizes Amazon

reviews as positive, negative, or neutral. It will employ several machine learning

techniques that can help classify sentiment in Amazon reviews with high

accuracy. Such sentiment analysis is useful for both consumers looking to

explore a product or service and marketers seeking to gauge public sentiment

about their business.

To achieve accurate sentiment classification, my proposed sentiment

analysis system consists of preprocessing techniques, lexical resources, and

deep learning models. The initial step is text preprocessing, which involves

lowercasing, removing punctuation, tokenizing, eliminating irrelevant words by

removing stopwords, and handling word contractions. We utilize existing

sentiment lexicons like Opinion Lexicon to identify positive and negative words

and assign sentiment scores to the text. These lexicons provide valuable

resources for sentiment classification. In addition to using opinion sentiment

lexicons, we will also use TextBlob which uses its own internal sentiment

analysis capabilities to find the text’s emotional tone. TextBlob’s internal analysis

can offer an enhanced accuracy and classification compared to Opinion Lexicon.

We will then calculate sentiment scores for each text by aggregating the

sentiment polarities of individual words using Opinion Lexicon and TextBlob. In

10

addition, we employ advanced sentiment analysis models like LSTM (Long

Short-Term Memory)[12] networks to capture contextual information and

sequential dependencies within the text for more accurate sentiment

classification. The sentiment analysis system is trained on a labeled dataset,

where sentiments are categorized as positive, negative, and neutral.

Figure 1. Block Diagram of Model

Collect review data

Load Review Dataset

Categorize reviews
based on review stars

Clean review data

Split data into
Test and Training sets

Train the
neural network

Test the Dataset

View Accuracy

Calculate Opinion Lexicon score

Categorize reviews

Test the Dataset

View Accuracy

Calculate TextBlob polarity score

Categorize reviews

Test the Dataset

View Accuracy

11

The block diagram in Figure 1 illustrates the different phases involved in

working with the training model. I gathered review data from Amazon for select

products using a Google Chrome browser extension. The raw reviews are

carefully collected and compiled into a structured dataset for further analysis. The

loaded data is processed to ensure data consistency by removing any

whitespaces and punctuations and converting all text to lowercase. Next, the

review text is categorized with three methods - by classifying the reviews based

on the review stars on Amazon, by classifying the reviews using the sentiment

score based on Opinion Lexicon, and by classifying the reviews using the

sentiment polarity score of the text based on TextBlob.

Once the text is categorized, we will train the neural network with

TensorFlow Keras' Sequential model. The neural network will be trained on the

classification labels of the review star method and will learn what texts are

positive, negative, or neutral. After the training and testing we will evaluate each

classification’s performance with Confusion Matrix metrics.

12

System Specifications

Hardware Specifications

 Minimum Recommended

Processor Intel i5 7500

or AMD Ryzen 3 3300X

Intel i7 10700K

or AMD Ryzen 9 3900X

Graphics Card NVIDIA GTX 1050 NVIDIA GTX 2080 Ti or newer

RAM 8 GB 16 GB

Disk Space 5 GB*

*Includes Libraries.

Dataset size may also

vary

5 GB*

*Includes Libraries.

Dataset size may also vary

Software Specifications

Operating System Windows 10 or higher

Languages Python 3.10

IDE PyCharm, Jupyter Notebook

Framework Flask

Libraries TensorFlow, Keras, Pandas, TextBlob, NLTK, Scikit-

Learn, Matplotlib

13

System Design

Module 1. User

• Users can view the dataset

• Users can input text

• Users can select Predict Sentiment

• Users can select Translate Sentiment

Module 2. System

Data Collection:

• The system collects customer reviews from a certain source, such

as an online marketplace or review platform.

• The data is typically in text, accompanied by star ratings or other

sentiment indicators.

Data Preprocessing:

• The collected data undergoes preprocessing to clean and prepare it

for analysis.

• Text cleaning techniques are applied to remove noise, such as

punctuation, stopwords, and convert the text to lowercase.

• Word contractions are expanded to their full forms for better

analysis.

• The cleaned text is stored in a separate column in the dataset.

Sentiment Analysis:

14

• The system performs sentiment analysis on the preprocessed text

to determine the sentiment expressed in each review.

• The sentiment is categorized as positive, negative, or neutral based

on the star ratings associated with the reviews.

• A sentiment score is calculated for each review using Opinion

Lexicon.

• The sentiment score helps in quantifying the sentiment of the

reviews.

• A sentiment polarity score is calculated for each review using

TextBlob.

• The sentiment polarity score helps in quantifying the sentiment tone

of the reviews.

Training Data Preparation:

• The system prepares the data for training a sentiment classification

model.

• The reviews and their corresponding sentiments are split into

training and testing sets.

• The target sentiments are encoded using one-hot encoding for

further processing.

Tokenization and Embedding:

• The system tokenizes the text data using a tokenizer.

15

• Word embedding is performed to convert the text tokens into

numerical vectors.

• A pre-trained word embedding model, GloVe, creates an

embedding matrix.

• The embedding matrix maps words to their corresponding vector

representations.

Model Architecture:

• The system designs a deep-learning model for sentiment

classification.

• The model architecture includes an embedding layer, recurrent

layers (such as LSTM), and dense layers.

• The embedding layer utilizes the pre-trained embedding matrix to

capture semantic information.

• The recurrent layers help capture sequential dependencies and

understand the text's context.

• The dense layers perform the final classification and generate

predictions.

Model Training and Evaluation:

• The prepared training data and model architecture train the

sentiment classification model.

• The model is trained using the training set, with a specified number

of epochs and batch size.

16

• The model's performance is evaluated during training using a

validation set to monitor the loss and accuracy.

• Early stopping and model checkpointing techniques are applied to

prevent overfitting and save the best model.

Model Deployment and Usage:

• Once the model is trained and evaluated, it can be saved for future

use.

• The saved model can be loaded and deployed to classify the

sentiment of new customer reviews.

• The deployed model inputs the preprocessed text, performs

tokenization and padding, and generates sentiment predictions.

System Output and Reporting:

• The system outputs the predicted sentiment labels for the customer

reviews.

• The predictions can be used to analyze and understand the

sentiment trends in the collected reviews.

• Reports and visualizations can be generated to present insights,

such as sentiment distribution, sentiment changes over time, or

sentiment comparison across different products or categories.

17

CHAPTER FOUR

DATA AND DATA PREPROCESSING

Data Collection

I used a Google Chrome Extension that downloads review data of a single

product on Amazon.com to a single CSV file. The extension had a limit of 1,000

reviews per product, so I had to manually select more than 80-90 products and

download the reviews of each of them. I had to manually merge the reviews into

one single CSV file since the extension did not allow me to select and download

reviews from multiple products at a time.

The review data consists of redundant columns that will not make of any

use to our project like Review Summary, Product ID, Reviewer ID, Reviewer

Name, Verified Purchase, Style, UNIX Time, and Votes. We will only consider the

“Overall” column, which is the stars left by the customer, and the “Review Text”

column. We will make a copy of these two columns into a new Pandas

Dataframe.

Text Cleanup

Text cleaning aims to prepare text data for analysis and machine learning

tasks, where clean and consistent data is essential. This implements various text

cleaning techniques such as removing punctuation and stopwords and

converting text to lowercase. I used the following text cleaning techniques to

preprocess the data before moving to classifying them:

18

• Converting to lowercase: It is important to ensure that all text is in

the same case to maintain consistency and avoid duplicate entries.

• Word contractions: The contractions library is used to expand

common word contractions such as “can’t” to “cannot”, “won’t” to

“will not” “didn’t” to “did not” “you’re” to “you are”, “I’m” to “I am”, etc.

This ensures that similar phrases are treated as identical.

• Removing punctuation: The remove_punctuation() function takes a

text input and removes all punctuation. The string.punctuation list of

punctuations include: “!, ", #, $, %, &, ', (,), *, +, ,, -, ., /, :, ;, <, =, >,

?, @, [, \,], ^, _, `, {, |, }, ~”

• Removing stopwords: We use the NLTK Stopwords library to define

a set of English stopwords. The remove_stopwords() function

removes all stop words from the text. Stop words are words that do

not add much meaning to the words are removed with this function.

The input text is split into words and any words that appear in the

Stopwords set are filtered out. The NLTK Stopwords library

includes: “other, which, you, hasn, above, and, nor, yours, here,

out, so, during, in, d, we, off, that'll, there, are, on, should've, for,

them, do, it, having, he, wouldn't, from, while, all, the, aren't, if,

ours, was, ll, our, or, each, just, not, is, won, how, be, don, their,

yourself, between, ain, mightn't, what, very, isn, both, further,

whom, too, its, my, mustn, will, you're, no, didn't, shouldn, more, ve,

19

y, through, by, you've, him, it's, below, doesn't, as, can, until, ma,

been, his, mustn't, you'd, an, again, once, those, re, into, hadn't,

herself, a, only, under, why, down, needn, of, doing, few, because,

m, itself, am, who, should, at, to, hasn't, don't, isn't, needn't, o,

shouldn't, hers, doesn, haven't, against, yourselves, being, same,

wasn't, themselves, this, hadn, won't, himself, most, theirs, shan't,

they, weren, up, had, that, wasn, ourselves, she's, were, couldn,

her, some, aren, did, before, such, your, myself, shan, wouldn, me,

has, didn, i, does, but, with, after, any, couldn't, about, these, she,

over, where, s, weren't, you'll, when, own, haven, t, than, then, now,

have, mightn.” Additionally, we also remove any words consisting

only of digits.

• Removing whitespaces: We remove any leading or trailing

whitespaces from the text to ensure consistency.

Before cleaning the text, an example review looks like this:

“I had two 27in monitors that pump out heat big time. I needed another for

work, so I bought one of these. Nice, light, bright, and no heat. After a week I

bought another for my gaming PC. They're beautiful. I didn't get the ones with

the adjustable stand. I didn't need that and they're perfect.Pro tip: They're

shipped in the box that shows what's inside, so the 2nd time I checked the box in

checkout for Amazon to pack it in one of their boxes.“

After preprocessing the text, the review will look like this:

20

“two 27 in monitors pump heat big time needed another work bought one

nice light bright heat week bought another gaming pc beautiful get ones

adjustable stand need perfectpro tip shipped box shows inside 2nd time checked

box checkout amazon pack one boxes“

21

CHAPTER FIVE

METHODOLOGIES

Classification with Opinion Lexicon

Lexicon refers to a person's vocabulary, language, or branch of

knowledge. A predefined dictionary of words labeled positive, negative, or neutral

is used in lexicon-based sentiment analysis. To determine the sentiment of a

sentence, it is tokenized, and each token is matched with the available words in

the model. Opinion Lexicon is a list of around 6800 words with positive and

negative connotations created by Minqing Hu and Bing Liu[13]. It can be used to

analyze sentiment in text data. We will create two lists, pos_words and

neg_words, by extracting the positive and negative words from the Opinion

Lexicon. We will be comparing the words in each review text with the words that

appear in these lists to find if they have a positive or negative sentiment.

pos_words contains a list of 2006 positive words, such as "love," "happy,"

"excellent," "amazing," "beautiful," etc. These words have a positive sentiment

and can be used to identify positive sentiment in text data. On the other hand, the

neg_words list contains approximately 4783 negative words, including words like

"hate," "sad," "terrible," "disgusting," "ugly," etc. These words have a negative

sentiment and can be used to identify negative sentiment in text data.

We will create a method that will classify the review according to the three

sentiment scores. The function get_sentiment_score() will calculate the

sentiment score for each text. We will do this by first tokenizing each sentence of

22

the text using the TreebankWord tokenizer. Then we will be counting the number

of positive and negative words in each sentence. For each sentence in the text, it

will increment the score by 1 for each positive word that appears in the text and

decrement the score by 1 for each negative word and then takes the average

score of all the sentences in the text.

The function then returns the total score. The result is a float value

between -1 and 1, where negative values indicate a negative sentiment and

positive values indicate a positive sentiment. Neutral sentiments have a score of

0.

Classification with TextBlob

TextBlob[14] is a versatile Python library for Natural Language Processing

that facilitates a wide range of text analysis tasks, including sentiment analysis,

part-of-speech tagging, tokenization, and more. It is built on the shoulders of

NLTK and offers an intuitive way for NLP tasks.

We will be using the sentiment analysis feature of TextBlob to determine

the sentiment and tone of the review. Unlike lexicon-based sentiment analysis

which relies on predefined dictionaries, TextBlob employs machine learning

techniques to analyze text sentiment. TextBlob sentiment analysis generates two

key metrics: polarity and subjectivity. Polarity determines the sentiment’s

orientation, ranging from -1 (negative) to 1 (positive), while subjectivity

determines the opinion of the text. We will only consider Polarity in our project as

23

we are more inclined towards classifying the reviews as Positive, Negative, or

Neutral.

We will create a function similar to that of the Opinion Lexicon sentiment

scores that will classify the review according to the sentiment polarity scores. The

function calculate_sentiment_polarity() will calculate the sentiment polarity for

each text using its own internal sentiment analysis methods. TextBlob will

determine the sentiment of the text by first tokenzing the text into sentences and

words. It then calculates the sentiment polarity for each sentence, and then these

sentence-level scores are aggregated to produce an overall polarity score for the

entire text. The result is a float value between -1 and 1, where negative values

indicate negative sentiment and positive values indicate positive sentiment.

Neutral sentiments have a score of 0.

Classification with Neural Network

Using the pre-trained classification labels (in our case – positive, negative,

and neutral), neural networks can be trained to enhance the classification’s

accuracy and consistency. The neural network architecture consists of multiple

layers, including input layers, hidden layers, and an activation function. Each

layer consists of neurons or nodes that are interconnected, enabling information

flow and transformation.

The first layer of the neural network model is the embedding layer, which

converts tokenized words into numerical vectors and is capable of capturing the

words’ semantics. This allows the model to recognize patterns and relationships

24

in the text. Then we have a recurrent neural network (RNN) layer, in our case we

have the Long Short-Term Memory (LSTM) layer. This layer processes

sentences into numerical sequences of a fixed length, which allows that model to

capture temporal dependencies and patterns within the text. The model also has

a Dense layer with a sigmoid activation function, which is added for further

refinement and learning and can adapt to complex representations of the text.

The sigmoid activation maps the output values between 0 and 1, which is used in

binary classification tasks.

The training phase is where the model learns to make classification by

adjusting its weights based on the classification data from the review stars. In this

phase, we will use the loss function and the optimizers we have set when we

compile the model. For the loss function we use Categorical-crossentropy, a loss

function that is commonly used for multi-class classification tasks where the

targets are one-hot encoded. This function calculates the cross-entropy loss

between the ground truth labels and the prediction distribution.

Then we will use the Adam optimizer to minimize the loss function. Adam

is an adaptive learning rate optimization algorithm that adapt the learning rates

during training and is faster than most optimization algorithms.

We begin by setting up a tokenizer object using the Tokenizer() class from

Keras' preprocessing.text module.[15][16] This object fits the preprocessed review

text and builds a vocabulary of words that will be used to represent each review

as a sequence of integers.

25

The word_index object will return a dictionary containing the word-to-index

mappings learned by the tokenizer during the fitting step. This dictionary can

convert new text data into sequences of integers that can be fed into a machine-

learning model. Saving tokenizers is a good practice when working with text data

in machine learning workflows, as it allows the same vocabulary and word-to-

index mappings to be used consistently across different model runs.

We then save the tokenizer object created using the Pickle library. This

object contains the vocabulary and word-to-index mappings learned from the

preprocessed reviews. It will convert new text data into sequences of integers

that can be fed into a machine-learning model.

We will perform a train-test split on the preprocessed review data and the

encoded sentiment labels in the final DataFrame, using the train_test_split()

function from the scikit-learn’s model_selection module.[17] This will split the data

into a training set and testing set. The split is performed with a test size of 0.3 –

meaning 30% of data will be used for testing. The resulting split data is stored in

four variables: X_train, Y_train, x_test, and y_test.

To ensure good performance and overall accuracy of the model, we need

to perform a preprocessing step called Sequence Padding on our data.

Sequence padding is a preprocessing technique that converts all texts into

numerical sequences, and it ensures all sequences in a batch have the same

length. This is important because most deep learning architectures require a

fixed-length input. Padding is a technique used to make all sequences the same

26

length for processing by an LSTM. Padding affects the way the networks function

and can make a big difference in the way the models perform and have variating

accuracies.

To perform Sequence Padding, we define a function sequence_padding()

that uses the provided tokenizer to convert the input sentences into numerical

sequences using Keras' texts_to_sequences function from the Tokenizer class. It

then pads and truncates these numerical sequences to ensure they all have the

same length. These padded and truncated numerical vector sequences are

stored in the train_set and test_set variables.

We will then label data by converting them to One-Hot Encoding vectors

for the softmax function in the neural network. One-hot encoding is a technique

that converts categorical variables into binary vectors. The categorical values are

first mapped to integer values, and then each integer value is represented as a

binary vector.

Then the read_glove_vector() function reads a pre-trained GloVe vector

file[18] and returns a dictionary where each word is a key that maps to its

corresponding vector representation. GloVe (Global Vectors for Word

Representation) is an unsupervised learning algorithm that generates word

embeddings.[19] The algorithm maps words into a space where the distance

between words is related to semantic similarity. GloVe is trained on word co-

occurrences from a corpus like Wikipedia. For example, "cat" and "dog" tend to

occur with similar other words.

27

In this function, we begin by initializing two data structures - an empty set

called words and a dictionary called word_to_vec_map. Word2vec[20] is a natural

language processing (NLP) technique that employs a neural network model to

grasp word relationships within extensive text data. This trained model can

identify synonymous words and offer word suggestions for incomplete

sentences.[21] It creates a representation of each word in the vocabulary into a

binary vector.

The read_glove_vector function opens the GloVe file in read mode and

iterates over each line. It splits each line into words and retrieves the current

word and its vector representation, converting it from a list of strings to a numpy

array of float64 data type. The current word and its vector representation are

added to the word_to_vec_map dictionary.

We will initialize the embedding matrix with the size of the vocabulary and

the length of the embedding vector. We will iterate through each word in the

vocabulary that we learned in the previous steps and get its corresponding

embedding vector from word_to_vec_map. If the pretrained vector exists for the

word, we assign the corresponding row of the embedding matrix to that vector.

This embedding matrix will be used later as an input to the embedding layer of

the neural network for training.

After classifying each text, we create a training model using TensorFlow's

Keras library for natural language processing. The model architecture includes

three layers: an embedding layer, a long short-term memory (LSTM) layer, and

28

three dense layers with different activation functions. Let us look at what these

layers do:

• Embedding layer: The embedding layer is an essential component

of a neural network model, as it is the first layer that receives the

input data. Its primary function is to map the integer-encoded

reviews to a fixed-size vector space. They take one-hot word

vectors as inputs and output a dense vector of a specified

dimensionality. Each dimension represents a latent feature of the

category. This way, the embedding layer can help the neural

network learn the semantic relationships between words in the text

data. In this specific model, we use pre-trained GloVe word

embeddings.

• LSTM layer: The Long Short-Term Memory (LSTM) layer is a

Recurrent Neural Network (RNN) layer well suited to sequential

data[22]. The LSTM layer is used to learn the temporal

dependencies in the sequence of words in the reviews. We use a

single LSTM layer in this model with 128 units. The number of units

in the LSTM layer is a hyperparameter that we use to improve the

performance of the model.

• Dense layers: After the LSTM layer, we add a dense layer with 64

units and a sigmoid activation function. The Dense connects every

neuron from the previous layer to every neuron in the current layer.

29

This layer will take the output of the LSTM layer and will apply a

non-linear transformation to the data.

• Output layer: The output layer is the final layer in a neural network

that produces predictions. It takes inputs from the previous layers

and performs calculations using its neurons to produce the output.

The output layer has its own set of weights that are applied before

the final output is derived. This model has an output layer 3 units

with a sigmoid activation function. The output layer takes in the

output of the second dense layer and produces a probability

distribution over the 3 sentiment classes: positive, negative, and

neutral. The softmax activation function is used in the output layer

to ensure that the predicted probabilities sum up to 1.

Then we will create a function that creates a neural network model using

the Keras Sequential API. The model is then compiled using three metrics: the

‘categorical_crossentropy’ loss function, the Adam optimizer, and the ‘accuracy’

metrics.

• The categorical_crossentropy loss function is frequently used in

multi-class classification tasks. It calculates the difference between

the predicted probabilities for each class and the true one-hot

encoded class labels, resulting in a single scalar value representing

the model's total loss on the training data.

30

• The Adam optimizer[23] is a popular stochastic gradient descent

(SGD) optimization algorithm used in deep learning models. It is an

adaptive learning rate optimizer that adjusts the learning rate of

each weight in the model based on the history of its gradient

updates.[24] This allows the optimizer to converge to the optimal set

of weights more quickly and with less tuning than traditional SGD.

• The accuracy metric assesses the performance of classification

model. It measures the percentage of correctly classified examples

out of the total number of examples. The accuracy metric is used to

evaluate how well the model can correctly classify text into one of

three output classes.

We will train the neural network model using the Keras’ fit() method. The

model is trained on the training set and its corresponding one-hot encoded

labels.

31

CHAPTER SIX

EXPERIMENTAL RESULTS

Threshold Determination

When we assign the Opinion Lexicon Sentiment scores or the TextBlob

Polarity scores to a review text, we must make sure that the threshold that we set

is close enough to what the original review’s sentiment or the ground truth label

is. Since both the Sentiment and Polarity scores of Opinion Lexicon and

TextBlob, respectively, have a range of -1 and 1, we must decide on how big of a

threshold should the Neutral sentiment be. Therefore, I decided to further test

what threshold should we set.

Opinion Lexicon Test Cases

Let us first look at the different threshold test cases for the Opinion

Lexicon classification method. The First is the original threshold that we set

where if the score is 0 then that is a Neutral review. The Second is where the

score is in between 0 and 0.01 for neutral reviews. The Third is where the score

is in between 0 and 0.02 for neutral reviews. The Fourth is where the score is in

between 0 and 0.05 for neutral reviews. The Fifth is where the score is in

between 0 and 0.1 for neutral reviews. The Fifth is where the score is in between

0.1 and -0.1 for neutral reviews.

32

Table 1. Opinion Lexicon Threshold Test Cases

Threshold Accuracy Positive Negative Neutral

0 < Neutral > 0 64.38% 69055 18899 12008

0 < Neutral > 0.01 64.23% 68577 18899 12486

0 < Neutral > 0.02 63.21% 65539 18899 15524

0 < Neutral > 0.05 58.51% 52736 18899 28327

0 < Neutral > 0.1 46.82% 48270 18899 32793

-0.1 < Neutral > 0.1 39.14% 32793 3523 63646

In Table 1, we can see the number of Positive, Negative, and Neutral

reviews of each of the thresholds and compare their performance with the

Accuracy metrics to find which threshold suits better for this classification. We

find that setting the threshold with the Neutral reviews having a score of 0 has a

much higher accuracy than the other thresholds, and the accuracy keeps

decreasing drastically each time we increase the threshold by an increment of

0.01.

TextBlob Test Cases

Now we will look at the different threshold test cases for the TextBlob

classification method.

33

Table 2. TextBlob Threshold Test Cases

Threshold Accuracy Positive Negative Neutral

0 < Neutral > 0 65.71% 79146 16123 4693

0 < Neutral > 0.01 65.62% 78068 16123 5771

0 < Neutral > 0.02 65.52% 76776 16123 7063

0 < Neutral > 0.05 64.46% 71806 16123 12033

0 < Neutral > 0.1 61.51% 61811 16123 22028

-0.1 < Neutral > 0.1 57.10% 61811 6936 31215

In Table 2, we can see the number of Positive, Negative, and Neutral

reviews of each of the thresholds and compare their performance with the

Accuracy metrics to find which threshold suits better for this classification. We

find that setting the threshold with the Neutral reviews having a score of 0 has a

much higher accuracy than the other thresholds.

34

Classification Model Evaluation

Confusion matrix is a table that visualizes the performance of the

algorithm. It is a contingency table of two dimensions – “actual” and “predicted”

values. We will use Confusion Matrix to evaluate the results of Opinion Lexicon

Classification, TextBlob Classification, and the Neural Network Predictions. To

calculate the confusion matrix, we use the confusion_matrix function from scikit-

learn. This function takes the true sentiment labels and predicted sentiment

labels obtained using the Opinion Lexicon sentiment scores as inputs. We will

also use the function by taking the true sentiment labels and predicted sentiment

labels obtained using the TextBlob sentiment scores as inputs. And then we will

also use the function by taking the true sentiment labels and predicted sentiment

labels obtained after training the neural network. The resulting confusion matrix

provides us with information on how well the model has predicted the sentiment

labels. It is a table with four cells representing the number of samples that belong

to a particular combination of true and predicted sentiment labels. The four cells

correspond to true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) predictions.

• True Positive (TP): TP are the cases that accurately predict that the

text is positive.

• True Negative (TN): TN are the cases that accurately predict that

the text is negative.

35

• False Positive (FP): FP is when a sentiment was predicted as

positive but is negative.

• False Negative (FN): FN is when a sentiment was predicted as

negative but is positive.

The confusion matrix shows the performance of the classification models

of Opinion Lexicon, TextBlob and the Neural Network. The matrix has three

classes, 'positive,' 'negative,' and 'neutral,' on both the true and predicted axes.

The matrix shows the number of instances that were classified into each

category. The diagonal values show the number of correctly classified instances,

while the off-diagonal values show the misclassifications.

We will calculate the performance metrics that will help assess the quality

of each classification model. The key performance metrics include:

• Accuracy: The ratio of the correctly labeled subjects to the whole

pool of subjects.

Accuracy = (TP + TN) / (TP + TN + FP + FN)

• Precision: Precision is also known as Positive Prediction Value

(PPV). It is the ratio of the correctly positively labeled subjects to all

the positively labeled subjects.

Precision = TP / (TP + FP)

• Recall: Recall is the ratio of correctly true labeled subjects to all

true labeled subjects. It is also known as Hit Rate or True Positive

36

Rate (TPR).

Recall = TP / (TP + FN)

• F1-score: It is the mean of precision and recall.

F-1 score = (2 * TP) / ((2* TP) + (FP + FN))

Figure 2. Confusion Matrix for Opinion Lexicon Classification

The confusion matrix, as we see in Figure 2, shows that the model better

classified the positive and negative reviews than the neutral ones. The model

37

correctly classified 50,554 positive reviews and misclassified 9,825 positive

reviews. Similarly, the model correctly classified 12,412 negative reviews and

misclassified 17,268 negative reviews. On the other hand, the model only

correctly classified 1,393 neutral reviews and misclassified 8,510 neutral reviews.

We will calculate the accuracy of this model by considering the True

Positives, True Negatives, False Positives, and False Negatives for each

category:

• True Positives (TP):

o Negative: 12412

o Neutral: 1393

o Positive: 50554

• True Negatives (TN):

o Negative: 1393 + 6067 + 5781 + 50554 = 63795

o Neutral: 12412 + 12434 + 4044 + 5781 = 34671

o Positive: 12412 + 4834 + 2443 + 1393 = 21082

• False Positives (FP):

o Negative: 2443 + 4044 = 6487

o Neutral: 4834 + 5781 = 10615

o Positive: 12434 + 6067 = 18501

• False Negatives (FN):

o Negative: 4834 + 12434 = 17268

o Neutral: 2443 + 6067 = 8510

38

o Positive: 4044 + 5781 = 9825

We then calculate the Accuracy, Precision, Recall and F-1 score

performance metrics:

• Accuracy:

o Accuracy (Negative) = (12412 + 63795) / (12412 + 63795 +

6487 + 17268) = 0.7623 = 76.23%

o Accuracy (Neutral) = (1393 + 34671) / (1393 + 34671 +

10615 + 8510) = 0.6534 = 65.34%

o Accuracy (Positive) = (50554 + 21082) / (50554 + 21082 +

18501 + 9825) = 0.7166 = 71.66%

• Precision:

o Precision (Negative) = 12412 / (12412 + 6487) = 0.6567 =

65.67%

o Precision (Neutral) = 1393 / (1393 + 10615) = 0.1160 =

11.60%

o Precision (Positive) = 50554 / (50554 + 18501) = 0.7320 =

73.20%

• Recall:

o Recall (Negative) = 12412 / (12412 + 17268) = 0.4181 =

41.81%

o Recall (Neutral) = 1393 / (1393 + 8510) = 0.1406 = 14.06%

39

o Recall (Positive) = 50554 / (50554 + 9825) = 0.8372 =

83.72%

• F-1 Score:

o F1-Score (Negative) = (2 * 12412) / ((2* 12412) + (6487 +

17268)) = 0.5110 = 51.10%

o F1-Score (Neutral) = (2 * 1393) / ((2* 1393) + (10615 +

8510)) = 0.1271 = 12.71%

o F1-Score (Positive) = (2 * 50554) / ((2* 50554) + (18501 +

9825)) = 0.7811 = 78.11%

Then, the overall accuracy for Opinion Lexicon Classification

= Σ(True Positive) / Total Number of Reviews

= (12412 + 1393 + 50554) / 99962

= 0.6438 = 64.38%

40

Figure 3. Confusion Matrix for TextBlob Classification

The confusion matrix, as we in see in Figure 3, shows that the model

better classified the positive and negative reviews than the neutral ones. The

model correctly classified 54,326 positive reviews and misclassified 6,053

positive reviews. Similarly, the model correctly classified 11,035 negative reviews

and misclassified 18,645 negative reviews. On the other hand, the model only

correctly classified 333 neutral reviews and misclassified 9,570 neutral reviews.

41

We will calculate the accuracy of this model by considering the True

Positives, True Negatives, False Positives, and False Negatives for each

category:

• True Positives (TP):

o Negative: 11035

o Neutral: 333

o Positive: 54326

• True Negatives (TN):

o Negative: 333 + 7561 + 2974 + 54326 = 65194

o Neutral: 11035 + 17259 + 3079 + 54326 = 85699

o Positive: 11035 + 1386 + 2009 + 333 = 14763

• False Positives (FP):

o Negative: 2009 + 3079 = 5088

o Neutral: 1386 + 2974 = 4360

o Positive: 17259 + 7561 = 24820

• False Negatives (FN):

o Negative: 1386 + 17259 = 18645

o Neutral: 2009 + 7561 = 9570

o Positive: 3079 + 2974 = 6053

We then calculate the Accuracy, Precision, Recall and F-1 score

performance metrics for each category:

• Accuracy:

42

o Accuracy (Negative) = (11035 + 65194) / (11035 + 65194 +

5088 + 18645) = 0.7625 = 76.25%

Accuracy (Neutral) = (333 + 85699) / (333 + 85699 + 4360 +

9570) = 0.8606 = 86.06%

Accuracy (Positive) = (54326 + 14763) / (54326 + 14763 +

24820 + 6053) = 0.6911 = 69.11%

• Precision:

o Precision (Negative) = 11035 / (11035 + 5088) = 0.6844 =

68.44%

o Precision (Neutral) = 333 / (333 + 4360) = 0.0709 = 0.70%

o Precision (Positive) = 54326 / (54326 + 24820) = 0.6864 =

68.64%

• Recall:

o Recall (Negative) = 11035 / (11035 + 18645) = 0.3717 =

37.17%

o Recall (Neutral) = 333 / (333 + 9570) = 0.0336 = 0.33%

o Recall (Positive) = 54326 / (54326 + 6053) = 0.8997 =

89.97%

• F-1 Score:

o F1-Score (Negative) = (2 * 11035) / ((2* 11035) + (5088 +

18645)) = 0.4818 = 48.18%

43

o F1-Score (Neutral) = (2 * 333) / ((2* 333) + (4360 + 9570)) =

0.0456 = 0.45%

o F1-Score (Positive) = (2 * 54326) / ((2* 54326) + (24820 +

6053)) = 0.7787 = 77.87%

Then, the overall accuracy for TextBlob Classification

= Σ(True Positive) / Total Number of Reviews

= (11035 + 333 + 54326) / 99962

= 0.6571 = 65.71%

Figure 4. Confusion Matrix for Neural Network Classification

44

The confusion matrix, as we see in Figure 4, shows the model classifying

the reviews by learning the review star labels. We use the training labels that we

used on the train_test_split function and evaluate the true labels with the neural

network’s predicted labels. The model correctly classified 41,736 positive reviews

and misclassified 469 positive reviews. Similarly, the model correctly classified

20,347 negative reviews and misclassified 491 negative reviews. On the other

hand, the model only correctly classified 5,927 neutral reviews and misclassified

1,003 neutral reviews.

We will calculate the accuracy of this model by considering the True

Positives, True Negatives, False Positives, and False Negatives for each

category:

• True Positives (TP):

o Negative: 20068

o Neutral: 5756

o Positive: 41677

• True Negatives (TN):

o Negative: 5756 + 636 + 196 + 41677 = 48265

o Neutral: 20068 + 215 + 332 + 41677 = 62292

o Positive: 20068 + 555 + 538 + 5756 = 26917

• False Positives (FP):

o Negative: 538 + 332 = 870

o Neutral: 555 + 196 = 751

45

o Positive: 215 + 636 = 851

• False Negatives (FN):

o Negative: 535 + 215 = 750

o Neutral: 538 + 636 = 1174

o Positive: 332 + 196 = 528

We then calculate the Accuracy, Precision, Recall and F-1 score

performance metrics:

• Accuracy:

o Accuracy (Negative) = (20068 + 48265) / (20068 + 48265 +

870 + 750) = 0.9768 = 97.68%

o Accuracy (Neutral) = (5756 + 62292) / (5756 + 62292 + 751

+ 1174) = 0.9724 = 97.24%

o Accuracy (Positive) = (41677 + 26917) / (41677 + 26917 +

851 + 528) = 0.9802 = 98.02%

• Precision:

o Precision (Negative) = 20068 / (20068 + 870) = 0.9584 =

95.84%

o Precision (Neutral) = 5756 / (5756 + 751) = 0.8845 = 88.45%

o Precision (Positive) = 41677 / (41677 + 851) = 0.9799 =

97.99%

• Recall:

46

o Recall (Negative) = 20068 / (20068 + 750) = 0.9639 =

96.39%

o Recall (Neutral) = 5756 / (5756 + 1174) = 0.8305 = 83.05%

o Recall (Positive) = 41677 / (41677 + 528) = 0.9874 = 98.74%

• F-1 Score:

o F1-Score (Negative) = (2 * 20068) / ((2* 20068) + (870 +

750)) = 0.9612 = 96.12%

o F1-Score (Neutral) = (2 * 5756) / ((2* 5756) + (751 + 1174))

= 0.8567 = 85.67%

o F1-Score (Positive) = (2 * 41677) / ((2* 41677) + (851 +

528)) = 0.9837 = 98.37%

Then, the overall accuracy for Neural Network

= Σ(True Positive) / Total Number of Reviews

= (20068 + 5756 + 41677) / 69973

= 0.9646 = 96.46%

47

Classification Model Comparison

The following tables illustrate the test cases for the different classification

methods. The accuracy varies with Opinion Lexicon, TextBlob and Neural

Network. We will look at the three different test cases of each classification with

example reviews from the dataset.

Positive Test Cases

Table 3. Positive Sentiment Test Case

Method Accuracy Input Expected Output Actual Output

Opinion

Lexicon

64.38% We've only had this for

one day. I bought it for

my grandson. He

absolutely LOVES it!! I

even like it. The mouse

is very nice and fits his

hand well, but it would

probably fit most hands

just fine. The lights are

really pretty, but not too

bright so it wouldn't

disturb anyone else in

the room. It's perfect so

far!! I can't believe we

got this for such a

reasonable price. I hope

it holds up well and my

Grandson gets a few

years of use out of it. I

would buy it again in a

heartbeat!

Positive Positive

TextBlob 65.71% Positive Positive

Neural Network 96.46% Positive Positive

48

As you can see from Table 3, the sentence produces the same result for

the Opinion Lexicon, TextBlob, and Neural Network classification methods.

Table 4. Positive Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% I have purchased 3 drive

so far, one 1 gig, and two

2 gig drives. I use these

as backup for my three

computers to store

documents, pictures, and

various other media. I

use one to travel with

with my laptop, I have

found these to be fast

and reliable, and very

compact to travel with. I

am considering buying

some for my daughters

for their home computers

as they are always

running out of space and

trying to burn disks which

takes a while.

Positive Positive

TextBlob 65.71% Positive Neutral

Neural Network 96.46% Positive Positive

In Table 4 for the Positive Test Case, the sentence produces a Neutral

result for the TextBlob method instead of “Positive.” This is because the

sentiment polarity score calculation for each of these texts was not high enough

that they could meet the threshold of a “Positive” result.

49

Table 5. Positive Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% So.......... yes so..... it

works, ok it works, but

yes it is slow; if you don't

mind and just need some

extra space for all your

crap then buy it, but if

you are too busy to

wait..... then don't buy it,

simple as that.

Positive Neutral

TextBlob 65.71% Positive Negative

Neural Network 96.46% Positive Positive

In Table 5, we see mixed results as the review that was left on Amazon

had a 5-star rating, so it is a “Positive” review. With the Opinion Lexicon

classification, we get a “Neutral” result as the sentiment score calculation does

not go higher than 0 as it also has a lot of negative words that decrement the

score. With TextBlob, we get a “Negative” result with its internal sentiment

analysis methods consider the words “don’t” in the review.

Negative Test Cases

Table 6. Negative Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% We were unable to get

this to work. Enclosed

"manual" was almost

unintelligible and made

no sense. Unfortunately,

I kept trying too long and

was unable to return it. I

Negative Negative

TextBlob 65.71% Negative Negative

Neural Network 96.46% Negative Negative

50

will never use this seller

again.

As you can see from Table 6, the sentence produces the same result for

the Opinion Lexicon, TextBlob, and Neural Network classification methods.

Table 7. Negative Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% The keyboard and

mouse are fully

functional and the mouse

has a good feel for

gaming. However, the

ESC, and F1 through F7

keys have a bad paint /

screen job. See

attached photos.

Probably still worth the

price, but I would have

preferred a little QC on

the finish.

Negative Positive

TextBlob 65.71% Negative Neutral

Neural Network 96.46% Negative Negative

In Table 7, however, the example produces a “Positive” result for Opinion

Lexicon and a “Neutral” result for the TextBlob method instead of “Negative.”

51

Table 8. Negative Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% At first it worked great

and I was so excited to

have a touch screen. But

today it stopped working

Negative Positive

TextBlob 65.71% Negative Positive

Neural Network 96.46% Negative Negative

In Table 8, the example produces a “Positive” result for TextBlob method

instead of “Negative” for both the Opinion Lexicon and TextBlob methods. This is

because the review has two positive words.

Neutral Test Cases

Table 9. Neutral Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% Bought it 5 years ago. It

has always squeaked

when you lean back in it,

but after a year or so the

squeak gets really loud.

After about three years

the arm cushions will fall

off. After about 4 years

the faux leather starts to

peal off. The cushion

never flattened out for

me like I've seen other

reviewers have said, I

think that has to do with

the weight of the person,

I'm 6'1" and weigh 190

lbs, and the cushion is

Neutral Neutral

TextBlob 65.71% Neutral Neutral

Neural Network 96.46% Neutral Neutral

52

still decent after 5 years.

In Table 9, the example produces a “Neutral” result for all three

classification methods.

Table 10. Neutral Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% USED Seagate

(STGY8000400) Desktop

8TB External Hard Drive

HDDOn initial use, I

clocked 25MB/s write

speed. That is 1/4 or 1/6

the speed of all my other

USB 3.0 drives. I saw the

top review and thought I

got lemoned. I went

through all the

troubleshooting steps I

could find online and the

solution was Seagate's

software update. I

suspect the product's

firmware was rolled back

prior to resell.UPDATEFor

unknown reasons, speed

will drop back down to

25MB/s, and other times it

will run at normal speeds.

When I have large data to

transfer, I just restart my

computer and hope for

normals speeds. Minus 2

stars for the random

inconvenience.

Neutral Negative

TextBlob 65.71% Neutral Negative

Neural Network 96.46% Neutral Neutral

53

In Table 10, we get a “Negative” result instead of the intended “Neutral”

result for Opinion Lexicon and TextBlob classification as the sentiment score and

the sentiment polarity score is below -0.1 for the text.

Table 11. Neutral Sentiment Test Case

Method Accuracy Review Text Expected Output Actual Output

Opinion

Lexicon

64.38% I got it in Rose Gold, it's

very dark Rose Gold and

I wish I would've just got

pink. The mouse works

perfectly, the lights are

cool and I love that it's

chargeable but it is NOT

comfortable to use with

it's very flat design.

There is zero wrist or

palm support lol my hand

cramps after a lot of use.

I think I'll give it a couple

weeks to see if I can get

used to it. If not I'll give it

away and order one with

a slight bump for my

palm.

Neutral Positive

TextBlob 65.71% Neutral Positive

Neural Network 96.46% Neutral Neutral

In Table 11, the text produces a “Positive” result for the Opinion Lexicon

and TextBlob methods instead of “Neutral” as the review has more positive

words for the sentiment score and sentiment polarity score calculation to sum up

higher than 0.

54

CHAPTER SEVEN:

USER INTERFACES

Figure 5. Homepage of the Application

Figure 4, as seen above, shows the project's user interface. The user

interface is created using Flask’s Frontend Framework.[25] Here the user has 4

input options: a textbox to enter some text, a Predict Sentiment button, a

Translate Review button, and a Clear Screen button to clear the screen of any

55

outputs. On the backend of the application, the trained neural network is loaded

for the Predict Sentiment function to work. The Translate Review button uses the

translate() method from the iTranslate Python library to translate and predict

sentiments.

Figure 6. Sentiment Prediction Output from User Input

In Figure 5 we see that once the user has entered some text and clicked

the Predict Sentiment button, it will display the appropriate sentiment. The

56

Predict Sentiment button call the predict_sentiment() function and take the input

text from the user and predict the sentiment. In this example, the sentiment is

displayed as Positive.

Figure 7. Translated Sentiment Prediction Output from User Input

In Figure 6 we see that once the user has entered some text and then

clicked on the Translate Review button, it will display the original text that the

57

user entered, the text translated back to English, and then display the sentiment.

This is done by calling the translate() method of the iTranslate Python library, and

then move the translated text to the predict_sentiment() function to predict the

sentiment.

58

CHAPTER EIGHT

CONCLUSION

We have classified the reviews using three approaches – Opinion Lexicon,

TextBlob, and Neural Network Training. We see an accuracy of 64.38% when we

classify the reviews with Opinion Lexicon, and we see an accuracy of 65.71%

when we use TextBlob polarity scores to classify the reviews. We have also

created a neural network model that learns from the review star classification

method and achieves an accuracy of 96.46%. We have created an application

that will successfully analyze reviews left by customers in the future and be able

to classify those reviews as positive, negative, or neutral based on the neural

network model.

Here are a few enhancements that could be made to the project:

• Implement methods for users to provide feedback on sentiment

predictions, allowing the model to be trained continuously over

time.

• Explore more advanced deep learning models, or transformer-

based models like BERT, to capture more intricate relationships

and context within the text.

As for the frontend of the project, certain enhancements come to mind that

could be made:

• A simplified process for training the model inside the application

instead of using Jupyter Notebook. This is not currently possible in

59

my project as the training sometimes fails or stops before reaching

its’ intended accuracy level.

• Alongside training inside the application, the user should also be

able to select a custom dataset, either in CSV or JSON formats.

This is also not possible in the project's current state for the same

reason above, but it is possible if you manually specify in the ipynb

notebook which CSV file the application should use in the

“read_csv” line.

• The user should also be able to select custom models if they are

training the model with newer datasets. This is also not possible in

the project's current state for the same reason above, but it is

possible if you manually specify in the code which model file the

application should use in the “load_model()” method.

60

APPENDIX A:

CODE

61

Importing Libraries

Loading the Dataset into a Pandas Dataframe

62

Preprocessing the Data

Categorize Reviews According to Review Stars

63

Categorize Reviews According to Opinion Lexicon

64

Plotting the Confusion Matrix of Opinion Lexicon classified reviews and Star

classification reviews

Evaluating Performance metrics of Opinion Lexicon predictions

65

Categorize Reviews According to TextBlob

Plotting the Confusion Matrix of TextBlob classified reviews and Star

classification reviews

66

Evaluating the Performance metrics of TextBlob Classification

Concatenating the reviews into a new “Final” Pandas Dataframe

Encoding the Review star Sentiment label columns

Saving the reviews into a new CSV file

67

Reading the saved dataset and verifying the value counts

Setting up tokenizers and dictionaries

Saving the tokenizers for future use

68

Split the reviews into training sets and test sets

Tokenizing, padding and converting reviews into numerical vectors

69

Converting the training and test labels to One-hot Encoded Vectors

Read the Glove Vector file

Creating the Embedding Matrix

70

Creating the Model

71

Fitting the Model

Evaluating the model with the Test Set, and saving the Model

72

Plotting the Confusion Matrix of the Neural Network Predictions and True

Training Labels

73

Evaluating the Performance metrics of Neural Network Predictions

74

REFERENCES

[1] McMahan, B., & Rao, D. (2019). “Natural Language Processing with PyTorch:

Build Intelligent Language Applications Using Deep Learning.”

[2] Pak, A., & Paroubek, P. (2010). “Twitter as a Corpus for Sentiment Analysis

and Opinion Mining.” Proceedings of LREC, 10.

[3] Mohammad, S.M., Salameh, M., & Kiritchenko, S. (2016). “Sentiment

Lexicons for Arabic Social Media.” LREC.

[4] S. Park and Y. Kim. (2016). “Building Thesaurus Lexicon using Dictionary

Based Approach for Sentiment Classification.” IEEE 14th International

Conference on Software Engineering Research, Management and

Applications (SERA), 39-44

[5] Bautin, M., Vijayarenu, L., & Skiena, S. (2021). “International Sentiment

Analysis for News and Blogs.” Proceedings of the International AAAI

Conference on Web and Social Media, 2(1), 19-26.

https://doi.org/10.1609/icwsm.v2i1.18606

[6] Muhammad, S. H., Adelani, D. I., Ruder, S., Ahmad, I. S., Abdulmumin, I.,

Bello, B. S., Choudhury, M., Emezue, C. C., Abdullahi, S. S., Aremu, A.,

Jeorge, A., & Brazdil, P. (2022). “NaijaSenti: A Nigerian Twitter Sentiment

Corpus for Multilingual Sentiment Analysis.”

https://doi.org/10.48550/arXiv.2201.08277

[7] Yan H., Dai, J., Ji, T., Qiu, X., & Zheng, Z. (2021). “A Unified Generative

Framework for Aspect-based Sentiment Analysis.” In Proceedings of the

75

59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), Association for Computational Linguistics,

2416–2429, Online. https://doi.org/10.18653/v1/2021.acl-long.188

[8] Singh, M., Jakhar, A.K. & Pandey, S. (2021). “Sentiment analysis on the

impact of coronavirus in social life using the BERT model.” Soc. Netw.

Anal. Min, 11, 33. https://doi.org/10.1007/s13278-021-00737-z.

[9] Lyu, J. C., Han, E. L., & Luli, G. K. (2021). “COVID-19 Vaccine-Related

Discussion on Twitter: Topic Modeling and Sentiment Analysis.” Journal of

medical Internet research, 23(6), e24435, https://doi.org/10.2196/24435

[10] Rustam, F., Khalid, M., Aslam, W., Rupapara, V., Mehmood, A., & Choi,

G.S. (2021). “A performance comparison of supervised machine learning

models for Covid-19 tweets sentiment analysis.” PLoS ONE 16(2):

e0245909, https://doi.org/10.1371/journal.pone.0245909

[11] Nandwani, P., & Verma, R. (2021). “A review on sentiment analysis and

emotion detection from text.” Soc. Netw. Anal. Min, 11, 81.

https://doi.org/10.1007/s13278-021-00776-6

[12] Sherstinsky, A. (2020). “Fundamentals of Recurrent Neural Network (RNN)

and Long Short-Term Memory (LSTM) Network.”

https://doi.org/10.48550/arXiv.1808.03314

[13] Hu, M., & Liu, M. (2004). “Mining and Summarizing Customer Reviews.” In

Proceedings of the tenth ACM SIGKDD international conference on

76

Knowledge discovery and data mining (KDD '04). Association for

Computing Machinery, New York, NY, USA, 168–177.

https://doi.org/10.1145/1014052.1014073

[14] TextBlob: Simplified Text Processing: https://textblob.readthedocs.io/en/dev/

[15] TensorFlow API Guide: https://www.tensorflow.org/api_docs

[16] Keras API Guide: https://keras.io/about/

[17] Getting Started – scikit-learn : https://scikit-

learn.org/stable/getting_started.html

[18] Glove – Getting Started: https://nlp.stanford.edu/projects/glove

[19] Pennington, J., Socher, R., & Manning, C.D. (2014). "Glove: Global vectors

for word representation." Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), Association for

Computational Linguistics, Doha, Qatar, 1532–1543.

https://doi.org/10.3115/v1/D14-1162

[20] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013).

“Distributed Representations of Words and Phrases and their

Compositionality.” https://doi.org/10.48550/arXiv.1310.4546

[21] Word2Vec – Wikipedia: https://en.wikipedia.org/wiki/Word2vec

[22] Mathworks: Long Short-term Memory (LSTM) – What is LSTM?

https://www.mathworks.com/discovery/lstm.html

77

[23] Ajagekar A. (2014). Adam - Cornell University Computational Optimization

Open Textbook - Optimization Wiki,

https://optimization.cbe.cornell.edu/index.php?title=Adam

[24] Kingma, D.P., & Ba, J. (2014). “Adam: A method for stochastic optimization.”

https://doi.org/10.48550/arXiv.1412.6980

[25] Flask Frontend Guide: https://flask.palletsprojects.com/en/

	REVIEW CLASSIFICATION USING NATURAL LANGUAGE PROCESSING AND DEEP LEARNING
	Recommended Citation

	tmp.1700591745.pdf.RFczr

