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ABSTRACT 

This report introduces a thorough analysis of wildfire prediction using 

satellite imagery by applying deep learning techniques. To find wildfire-prone 

geographical data, we use U-Net, a convolutional neural network known for its 

effectiveness in biomedical image segmentation. The input to the model is the 

Sentinel-2 multispectral images to supply a complete view of the terrain features. 

We evaluated the wildfire risk prediction model’s performance using 

several metrics. The model showed high accuracy, with a weighted average F1 

score of 0.91 and an AUC-ROC score of 0.972. These results suggest that the 

model is exceptionally good at predicting the location of wildfire risks and 

distinguishing between wildfires and non-wildfires. 

The model generally demonstrated solid performance but encountered 

difficulties in certain aspects. There were instances where its risk level 

predictions diverged from the ground truth data. This discrepancy could stem 

from the multifaceted factors of wildfire risk prediction, an area impacted by 

numerous variables. Therefore, to enhance precision and accuracy, the model 

necessitates additional fine-tuning. 

The report also explores using a class imbalance strategy to address the 

disparities in data distribution among the different classes. We discuss the 

inherent challenges in predicting wildfire-prone regions, which provides insights 

into the complexities of wildfire prediction and management. 
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This study found that deep learning techniques have resulted in a highly 

accurate prediction of the risk of wildfires. Despite some shortcomings, the 

model’s predictions aligned closely with the ground truth data. Therefore, this 

study suggests that deep learning models could effectively manage and prevent 

wildfires on a large scale. 
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CHAPTER ONE 

INTRODUCTION 

Background 

The impact and prevalence of wildfires are escalating due to shifts in 

climate affecting air temperature, humidity, and vegetation. Wildfires burn an 

estimated five hundred million hectares of land yearly. Climate change and 

human land use activities have significantly influenced these fires' spatial 

distribution, frequency, and intensity [1, 3, 4]. 

In the United States alone, wildfires account for billions of dollars in 

expenses annually [5], a sizable part dedicated to prevention and mitigation 

efforts. To optimize these expenditures and ensure the safety of at-risk 

communities, we must understand and accurately pinpoint areas with heightened 

wildfire risk. 

The USDA Forest Service periodically updates its Wildfire Hazard 

Potential, the most recent in 2020. However, given the rapidly changing climate 

conditions and the increasingly unpredictable nature of wildfires, there is a 

growing need for more frequent and precise information to guide decision-

making. 

Existing methodologies for wildfire risk prediction rely heavily on historical 

fire data and only partially use the vast amounts of real-time geospatial data now 

available. Additionally, these models may not consider the intricate and nonlinear 

relationships between various environmental factors contributing to wildfire risk. 
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To address the challenges related to wildfire risk assessment, we have 

developed a framework that utilizes deep learning techniques to generate 

accurate and up-to-date fire hazard maps. Our approach involves innovative 

image processing techniques and comprehensive geospatial datasets to provide 

a timely and more precise evaluation of wildfire risk in the United States. 

Problem Statement 

Wildfires significantly threaten ecosystems and communities, causing 

extensive damage and billions of dollars each year spent on response and 

recovery efforts. To effectively plan and allocate resources for mitigation efforts, it 

is critical to have accurate and prompt wildfire risk predictions. However, existing 

wildfire risk assessment methods often rely too heavily on historical fire data and 

do not fully exploit the vast amount of geospatial data available today. 

Furthermore, more modern conventional methods should consider the 

intricate and nonlinear interplay among multiple environmental factors 

contributing to wildfires’ likelihood. This results in an inadequate and obsolete 

comprehension of wildfire risk, leading to inefficient planning and response 

strategies. Therefore, an urgent and improved approach to wildfire risk prediction 

is necessary, utilizing advanced machine learning techniques and extensive 

geospatial datasets to deliver precise, timely, and high-resolution risk 

assessments. 
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Purpose and Objectives 

Our project aims to utilize the geospatial datasets found on Google Earth 

Engine and employ a U-Net machine learning model to create a detailed, current 

map that precisely identifies wildfire risks and hazard levels throughout the 

United States. By attaining an 85% model accuracy and providing weekly 

updates, our project aims to offer essential and timely data that can aid in 

strategic planning and rapid responses, ultimately reducing the harmful effects of 

wildfires. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

Wildfire risk assessment is a crucial study area with considerable 

implications for natural ecosystems and human societies. Over time, 

methodologies for risk assessment have significantly evolved, with recent 

advances in geospatial data analysis and machine learning offering new 

possibilities. Two pivotal studies have contributed significantly to this field of 

study. 

Geospatial Data-Driven Solutions 

An essential study in this field, “Developing a geospatial data-driven 

solution for rapid natural wildfire risk assessment,” by Adhikari et al., highlighted 

the efficiency of geospatial data in expediting wildfire risk assessment processes 

[2]. 

Summary of Findings 

Their proposed geospatial data-driven solution not only proved effective in 

predicting wildfire risk, but it also outperformed traditional methods. The model 

successfully showed areas with high wildfire risk, with an overall accuracy of 

82%. 
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Critique 

Despite the promising findings, their research mainly focused on the 

central and northern sections of the study area. Therefore, the applicability of 

their model to other regions with differing geographical and climatic conditions 

may be limited. 

Relevance to Our Research 

This study underpins using geospatial data for risk assessment, a notion 

we further cultivate in our project. We focus on implementing a deep learning-

based system for generating up-to-date fire hazard maps across the United 

States. 

Machine Learning Approaches 

A significant contribution in this field is “Spatial Prediction of Wildfire 

Susceptibility Using Field Survey GPS Data and Machine Learning Approaches” 

by Ghorbanzadeh et al. Their research highlights the potential benefits of 

integrating machine learning with geospatial data [3]. 

Summary of Findings 

Their machine learning-based spatial prediction model effectively 

predicted wildfire susceptibility and surpassed conventional methods. The model 

found regions with varying susceptibility levels, achieving an overall accuracy of 

84.4%. Factors such as slope, proximity to rivers, and proximity to roads make 

an area more vulnerable to wildfires. 
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Critique 

The model, though effective, was primarily based on field survey GPS 

data. How the model would perform when dealing with larger, more diverse 

datasets still needs to be determined. 

Relevance to Our Research 

Furthermore, our project employs machine learning, specifically the U-Net 

model, in conjunction with the expansive geospatial datasets on Google Earth 

Engine. 

Conclusion 

These two pivotal works play a crucial role in the evolution of wildfire risk 

assessment methodologies, proving the powerful potential of geospatial data and 

machine learning. They also suggest further research to address potential 

limitations and apply these methods on a broader scale. Our study aims to 

contribute to this expanding field by combining deep learning and geospatial data 

to create an up-to-date map presenting wildfire risk and hazard levels across the 

United States. 
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CHAPTER THREE 

METHODS / METHODOLOGY 

 

This chapter presents the data collection, preprocessing, and modeling 

techniques used in this study. It aims to provide a comprehensive description of 

the steps followed in this project to ensure replicability. 

Data Collection 

2020 Geospatial Datasets 

The geospatial datasets used in this study were gathered from the year 

2020 and are from three sources:  

• Sentinel-2 Harmonized dataset. 

• Fire Information for Resources Management System (FIRMS) 

• GridMET meteorological dataset 

 The datasets selected for 2020 were chosen based on their extensive 

coverage, relevance to predicting wildfire risk, and availability during the 

specified year. Per the project’s requirements, we extracted specific bands from 

each dataset based on the collection timeframe 2020. 

Wildfire Hazard Potential (WHP) Data 

We retrieved the WHP raster data used as the target label in our model 

from the USDA Forest Service website. The raster data was then uploaded to 

Google Earth Engine to ease easy access and uniformity in the data processing. 
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The selected WHP data represents the wildfire risk and hazard levels across the 

United States for 2020.Dataset Description 

Sentinel-2 Harmonized. We used the Sentinel-2 dataset to gather 

multispectral imagery. The dataset, provided by the European Space Agency, 

offers comprehensive coverage with a high revisit rate, making it ideal for 

monitoring and prediction tasks. We selected critical bands such as B2 (Blue), B3 

(Green), B4 (Red), B8 (Near Infrared), B11 (Shortwave Infrared), and B12 

(Shortwave Infrared) for this study. Figure 1 displays an example of imagery from 

the Sentinel-2 dataset. 

 

 

Figure 1.  Sentinel-2   
 

FIRMS. The Fire Information for Resource Management System (FIRMS) 

dataset supplied fire occurrence data. Specifically, we used the brightness 

temperature band (T21), which represents the temperature of the fire. Figure 2 
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illustrates an example of imagery from the FIRMS dataset.

 

 

Figure 2.  FIRMS   
 

GridMET. The GridMET dataset supplied meteorological data, including 

maximum and minimum temperature (tmmx, tmmn), precipitation (pr), wind 

speed (vs), and specific humidity (sph). Figure 3 provides an example of imagery 

from the GridMET dataset. 

 

Figure 3.  GridMET   
 



10 

 

SRTM. The Shuttle Radar Topography Mission (SRTM) dataset from 

NASA supplied elevation data. Figure 4 demonstrates an example of imagery 

from the SRTM dataset. 

 

 

Figure 4.  SRTM   
 

Wildfire Hazard Potential (WHP). The Wildfire Hazard Potential dataset, 

obtained from the USDA Forest Service, was used as the label for model 
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training. Figure 5 exhibits an example of imagery from the 2020 WHP dataset.

 

 

Figure 5.  USDA 2020 Wildfire Hazard Potential   

Data Preprocessing 

Data preprocessing involved multiple steps to ensure compatibility with the 

machine learning model. 

Image Normalization 

For the Sentinel-2 and other geospatial datasets for analysis, we 

normalized the images to lie between 0 and 1. The normalization process 

involves subtracting the minimum value of each band and dividing it by the range 

of the band values. This process helps reduce skewness and improves the 

model’s ability to learn from the data. 
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Cloud Masking 

Images from the Sentinel-2 dataset were subjected to cloud masking to 

remove cloud-covered areas that could obscure underlying features relevant to 

wildfire risk prediction. 

Calculation of Indices 

From the Sentinel-2 images, we calculated three different indices: the 

Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), 

and Normalized Difference Water Index (NDWI). These indices were chosen due 

to their relevance in assessing vegetation health, burn severity, and water 

content, respectively, which are all factors that can influence wildfire risk. 

Reprojection and Resampling 

The data were reprojected and resampled to ensure all images shared the 

exact Coordinate Reference System (CRS) and had the same pixel resolution. 

Machine Learning Model  

The machine learning model employed in this study is the U-Net, a 

convolutional neural network (CNN) initially designed for biomedical image 

segmentation. U-Net’s architecture makes it suitable for predicting wildfire risk 

levels from geospatial datasets. 

Model Preparation 

The U-Net model was prepared using the ResNet152 backbone. The 

backbone was chosen due to its robust feature extraction capabilities, making it 

suitable for high-dimensional input data such as the one used in this study. The 
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ResNet152 weights were not preloaded, allowing the model to learn unique 

patterns in the wildfire datasets from scratch. We compiled the model using an 

optimizer and the Binary Cross-Entropy Dice Loss as the loss function. We chose 

this specific loss function due to its ability to manage class imbalance, a common 

issue in image segmentation tasks. The model was set up to output a softmax 

activation function, mapping the outputs to a probability distribution over the 

predicted output class. 

Data Split 

For model training and evaluation, the collected data, making up 3500 

samples, was split into three subsets: training, validation, and testing. 

The data was divided as follows: 

• Training set: 80% of the total data (2800 samples) 

• Validation set: 10% of the total data (350 samples) 

• Testing set: 10% of the total data (350 samples) 

The distribution of data across these subsets is displayed in Table 1. 

 

Table 1. Distribution of Data across Training, Validation, and Testing Subsets 

Dataset Number of Samples Percentages 

Training 2800 80% 

Validation 350 10% 

Testing 350 10% 
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Model Selection and Justification 

This study utilized the U-Net machine learning model, a convolutional 

neural network (CNN) initially developed for biomedical image segmentation. The 

U-Net’s unique architecture features a symmetric, expansive path that assists in 

accurately localizing and classifying pixels, making it an ideal choice for image 

segmentation tasks. 

The architecture consists of two main components: a contracting 

(downsampling) path and an expansive (upsampling) path. The downsampling 

path captures the scene’s context, while the upsampling path helps to localize 

and combine features from the downsampling path. This feature enables the U-

Net to handle various image analysis tasks without additional manual feature 

engineering. 

Using the U-Net model on geospatial datasets for wildfire risk prediction is 

especially advantageous due to its ability to manage variability in the data. 

Wildfire-affected areas vary significantly in size and shape and may not always 

adhere to predictable patterns. The U-Net’s architecture effectively allows it to 

learn these variations and nuances from the data. 

Moreover, because of the U-Net efficiency with data augmentation 

techniques, U-Net can operate well utilizing smaller datasets. This feature is 

handy in our study, where labeled wildfire data may be limited. 

In conclusion, the U-Net’s architecture and ability to manage high-

dimensional data make it an apt choice for predicting wildfire risk levels from 
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geospatial datasets. Figure 6 shows an example of a U-Net model diagram, 

highlighting the correspondence between the layers of the expansive and 

contracting path. 

 

 

 

Figure 6.  U-Net architecture [7]  
 

Model Training 

The model was trained with input data in 128 over 933 epochs batches. 

To assess the model’s effectiveness, we measured its intersection over union 

(IoU) score and Area Under the Receiver Operating Characteristic Curve (AUC-

ROC). The IoU score shows how well the model predicts the segmentation 
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compared to the actual image, while the AUC-ROC indicates the model’s ability 

to differentiate between different classes. 

Throughout the training process, the model state was exclusively saved 

when there was a noticeable improvement in the validation loss. This technique, 

referred to as model checkpointing, guarantees that the optimal model state is 

maintained, even if the model’s performance declines in subsequent epochs. 

Model Evaluation 

We used the test dataset not utilized during the training phase to assess 

the model’s performance. The crucial metrics to evaluate the model’s 

performance were the Intersection over Union (IoU) score and the Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC). 

Evaluation Metrics. The Intersection over Union (IoU) or Jaccard Index is 

a widely used metric to evaluate image segmentation tasks. It measures the 

overlap between the predicted and actual output by calculating the ratio of the 

size of their intersection to the size of their union. This ratio can be 

mathematically represented as IoU = (Area of Overlap) / (Area of Union). 

The IoU score is precious in this scenario since it measures the degree of 

overlap between the anticipated and real-world wildfire-prone areas. A higher IoU 

score indicates better performance, with a score of 1 indicating complete overlap. 

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) 

is a way to measure how well a model can classify different groups based on 

varying thresholds. The ROC is a curve representing probabilities, and the AUC 
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indicates how well the model can distinguish between these probabilities. The 

higher the AUC, the better the model is at identifying areas at risk for wildfires 

compared to those not. 

We chose AUC-ROC as the metric because it is resistant to imbalanced 

datasets. In our situation, the number of pixels depicting non-fire regions is 

generally much more significant than those representing fire areas, making AUC-

ROC an appropriate performance indicator. 

When we use both IoU and AUC-ROC together, we can assess the 

model’s effectiveness in binary classification (using AUC-ROC) and its ability to 

accurately predict the exact regions where wildfires may occur (using IoU). 

The metrics’ outcomes measure the model’s accuracy in predicting wildfire 

risk levels in a quantifiable way. 
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CHAPTER FOUR 

RESULTS / FINDINGS 

 
In this chapter, we will discuss the outcomes of applying the U-Net model 

to predict the risk of wildfires. We use the Intersection over Union (IoU) and the 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC) metrics to 

evaluate the model’s performance. Additionally, we visually inspect the model’s 

predictions to ensure that it accurately predicts high-risk wildfire areas. 

Performance Metrics 

Table 2 displays the model’s average precision, recall, and F1 score of 

0.91. These metrics are computed for classes 1 to 7, indicating that the model 

successfully distinguished between these classes. 

 

Table 2. Metrics Score 

Precision Recall F1 Score 

0.91 0.91 0.91 

 

After analyzing the comprehensive metrics for each wildfire risk class in 

Table 3, we can evaluate the model’s performance for each category. 

 

Table 3. Detailed Metrics of the Wildfire Prediction Model by Class 

Class Precision Recall F1-Score 

1. Very Low 0.91 0.90 0.90 

2. Low 0.90 0.88 0.89 

3. Moderate 0.86 0.90 0.88 
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4. High 0.90 0.89 0.90 

5. Very High 0.92 0.93 0.92 

6. non-burnable 0.92 0.92 0.92 

7. Water 0.98 0.98 0.98 

    

Accuracy   0.91 

Macro avg 0.91 0.91 0.91 

Weighted Avg 0.91 0.91 0.91 

 

According to the results, the model could accurately predict the risk of 

wildfires for 91% of the cases in the test dataset. Table 4 shows the accuracy 

scores for each category, indicating the percentage of correctly classified cases. 

 

Table 4. Accuracy for Each Class in the Wildfire Prediction Model 

Class Accuracy Instances Correctly Classified 

1. Very Low 90.31% 1055855 / 1169085 

2. Low 88.05% 769939 / 874450 

3. Moderate 90.46% 729663 / 806613 

4. High 88.86% 632677 / 712019 

5. Very High 92.83% 570875 / 614941 

6. non-burnable 91.54% 834903 / 912064 

7. Water 97.52% 629220 / 645228 

 

AUC-ROC Score 

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) 

score was 0.972. The model effectively differentiates between classes based on 

the high score, even when the dataset is not evenly balanced. 
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Average Intersection Over Union (IoU) 

The average IoU score was 0.867. This score calculates the degree of 

overlap between the regions with predicted wildfire risks and those historically 

impacted by wildfire. Thus, a score of 1 indicates a substantial overlap, 

suggesting that the model effectively predicted the spatial distribution of wildfire 

risk. 

Confusion Matrix 

From the confusion matrix, it is evident that our model is generally 

accurate in predicting classes. However, there are instances where the model 

may not make the most precise prediction. These instances include the Very 

Low, Low, Moderate, and High classes. For a visual representation of our 

model’s performance, please refer to Figure 7. 
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Figure 7.  Raw Confusion Matrix of the Wildfire Risk Prediction Model  

Normalized Confusion Matrix 

Let’s consider the normalized confusion matrix in Figure 7 to identify better 

how well our model performs in different classes. 
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Figure 8.  Normalized Confusion Matrix of the Wildfire Risk Prediction Model  

 

Based on the normalized confusion matrix, the model has a high level of 

accuracy in predicting most classes. For instance, it accurately predicted 88.04% 

of the Low cases and 90.46% of the Moderate ones. However, there were some 

misclassifications between classes, indicating that some classes are more likely 

to be incorrectly classified than others. 
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Classification Color Coding 

To correctly interpret the wildfire risk prediction images, it is essential to 

comprehend the classification system being employed. The predictions are 

divided into eight categories: Very Low, Low, Moderate, High, Very High, Non-

burnable, and Water. Each class is assigned a specific color code to simplify 

visual differentiation. Table 5 displays the classification system alongside its 

corresponding color codes. 

 

Table 5. Classification for Each Label in the Wildfire Prediction Model 

Class Color code 

Very Low 38A800  

Low D1FF73  

Moderate FFFF00  

High FFAA00  

Very High FF0000  

Non-burnable B2B2B2  

Water 0070FF   

 

Table 5 provides a color-coded system for comprehending wildfire risk 

forecasts. It offers both qualitative and quantitative insights into the model’s 

accuracy. 

Visual Inspection of State-level Wildfire Risk Predictions 

We utilized a unique approach to evaluate the model’s ability to predict the 

risk of wildfires at a state level. The method involved extracting 256x256 patches 

from the 2020 geospatial data for California and Nevada. We then compiled 

these data to create a complete wildfire risk prediction for each state. This 
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technique made it possible to examine the wildfire risk throughout the entire state 

closely. As a result, it provided a detailed view of how risk levels differ across 

various regions. 

We compared the model’s predictions with the 2020 Wildfire Hazard 

Potential (WHP) ground truth data, which benchmarked the model’s predictive 

accuracy. 

 

Figure 9.  2020 Assembled Wildfire Risk Prediction for California and Nevada 
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Figure 10.  2020 WHP for California and Nevada 

 
Analysis: The model’s state-level predictions for California and Nevada 

strongly align with the 2020 WHP ground truth data. The correlation 

demonstrates that the model can predict wildfire risk accurately at a detailed and 

broader level. This correlation also suggests that the patch assembly approach is 

practical. 

In Central California, the model classified a larger area as ‘Non-burnable’ 

(Class 6) compared to the ground truth data. This discrepancy could be attributed 

to specific features in the 2020 geospatial data, which led the model to identify 

these regions as non-burnable. 

Additionally, a few regions displayed a one-class deviation in the predicted 

risk level compared to the 2020 WHP ground truth. Such discrepancies might 
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arise from different interpretations of the 2020 data or contrasting model 

structures. While our model is trained with a distinct set of data compared to the 

2020 WHP ground truth, these discrepancies may occur due to variations in 

methodology and variable weighting, leading to slight divergences in predicted 

wildfire risk. These variances underline the complex nature of wildfire risk 

prediction and highlight the importance of continual model refinement for 

improved precision. 

In addition, incorporating geospatial data brings another level of intricacy. 

Geospatial data captures the dynamic nature of environmental and human 

factors, which may cause variations between our model’s forecasts and the 

actual 2020 WHP ground truth. This emphasizes the importance of having 

models that can learn from current data, adjust to changes in these factors, and 

precisely anticipate the risk of wildfires in an ever-evolving setting. 

In conclusion, although there are some differences, the predictions made 

by the model closely match the 2020 WHP ground truth data. This correlation 

indicates that the model can potentially be a valuable tool for predicting wildfire 

risk on a large scale. The slight variations also highlight the importance of 

continuously refining the model and integrating the latest geospatial data to 

ensure accurate predictions of wildfire risk. 

Looking Ahead: Incorporating 2022 Data into Future Analysis 

We utilized the model to produce wildfire risk forecasts for the 2022 and 

2020 data. However, since no WHP ground truth was available for 2022, a direct 
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comparison could not be made. Nevertheless, the 2022 predictions serve as a 

valuable data point for future model performance evaluation. 

Upon the availability of the 2022 WHP ground truth data, these predictions 

can be contrasted to assess the model’s predictive accuracy in a different 

temporal context. This will further confirm the model’s capabilities and highlight 

areas of refinement, particularly concerning evolving environmental changes that 

can impact wildfire risk. 

As such, the 2022 predictions pave the way for continuous model 

improvements. They exemplify the model’s adaptability in handling new data and 

underscore its potential for forecasting future wildfire risks based on recent 

geospatial data. By integrating the most up-to-date data into the model, we aim 

to maintain and improve its accuracy in predicting wildfire risk. 

Figure 11 below displays our model’s assembled wildfire risk prediction for 

California and Nevada in 2022. Even without the 2022 WHP ground truth data for 

a direct comparison, this prediction offers a visual insight into the model’s ability 
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to manage and interpret recent data and its adaptability to changes over time.

 

Figure 11.  2022 Assembled Wildfire Risk Prediction for California and Nevada 
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CHAPTER FIVE 

CONCLUSION 

 
This research aimed to predict wildfires using a U-Net deep learning 

model and geospatial data. The results showed high performance with an F1 

score of 0.91, proving that deep learning models are practical tools for this task. 

The potential ramifications of this study are substantial. Given the 

increasing frequency and severity of wildfires, likely exacerbated by climate 

change, reliable prediction models like the one developed in this study can be 

integral to planning and mitigation strategies. They can offer valuable insights for 

decision-makers to develop effective forest management plans, distribute 

resources wisely, and enact proper public safety measures, thereby minimizing 

the damaging impacts of wildfires. 

Future research on wildfire prediction could explore various avenues to 

improve models’ accuracy and reliability. One possibility is using different deep 

learning architectures, which better capture the complex relationships between 

distinct factors contributing to wildfire risk. Another option is incorporating other 

data types, such as weather patterns or more granular land use data. These 

modifications could give the model a complete picture of the wildfire risk 

landscape, leading to more accurate predictions. 

In addition to improving the accuracy of models, it is also essential to 

ensure that they are scalable and can be used in real-world scenarios. This 

improvement means addressing any identified shortcomings in the models, such 
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as their ability to manage large datasets or their performance in different 

geographic areas. It is also vital to ensure that models are updated regularly with 

new data to keep pace with changing wildfire risk conditions. 

Despite the challenges, this research has successfully proved the 

application of a deep learning model for predicting wildfire risk, contributing to a 

vital area of study with extensive real-world implications. The research is a 

promising step towards improving prediction models and, by extension, 

contributing to more effective wildfire management strategies. The continued 

refinement and advancement in this field have the potential to lead to fewer 

wildfire incidents and a safer environment. 
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