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Abstract

The Pearson correlation coefficient is a commonly used measure of correlation, but it has

limitations as it only measures the linear relationship between two numerical variables.

In 2007, Székely et al. [SRB07] introduced the distance correlation, which measures all

types of dependencies between random vectors X and Y in arbitrary dimensions, not just

the linear ones. In this thesis, we propose a filter method that utilizes distance correlation

as a criterion for feature selection in Random Forest regression. We conduct extensive

simulation studies to evaluate its performance compared to existing methods under various

data settings, in terms of the prediction mean squared error. The results show that our

proposed method is competitive with existing methods and outperforms all other methods

in high-dimensional (p ≥ 300) nonlinearly related data sets. The applicability of the

proposed method is also illustrated by two real data applications.
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Chapter 1

Introduction

Feature selection is a crucial aspect of model construction in machine learning.

Its main objective is to identify the most significant features and rule out less significant

ones. This process involves selecting a subset of the feature space. Feature selection

is widely used for various reasons, including enhancing model interpretability, reducing

learning time, improving learning accuracy, and overcoming the curse of dimensionality,

among other things. Feature selection is widely employed in many fields, particularly

in classification tasks like bioinformatics data analysis, image recognition, change point

detection, and others.

Several feature selection methods have been proposed in the literature, for ex-

ample, AIC and BIC criteria are used to identify the ‘best model’. One popular method

is the Lasso, which was introduced by [Tib96] and employs ℓ1 regularized linear regression

model. Other Lasso-based feature selection methods have been developed since then, such

as Adaptive Lasso ([Zou06]), Lars ([EHJT04]), and elastic net ([ZH05]), among others.

However, when dealing with high-dimensional data, Lasso methods can face two signifi-

cant problems: high computational cost and over-fitting. The correlation coefficient (CC)

is a criterion, introduced by [Pea96], utilized in feature selection for multiple machine

learning algorithms. The CC is represented by the symbol ρ when describing a popula-

tion. However, when referring to a sample, it is usually denoted as r or rx,y. Suppose

a sample size n and vectors X = {x1, ..., xn}, and Y = {y1, ..., yn}, with sample means

given by x and y respectively, and the sample standard deviations are Sx for X and Sy

for Y . Then, sample CC is defined as
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rx,y =
Cov(X,Y )

SxSy
,

where the sample covariance is,

Cov(X,Y ) =
1

n− 1

n∑
i=1

(xi − x)(yi − y), (1.1)

and,

Sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2, Sy =

√√√√ 1

n− 1

n∑
i=1

(yi − y)2.

The CC values can range from −1 to 1, and a CC of -1 or +1 indicates a perfect

linear relationship. In particular, the stronger the correlation, the closer the CC comes to

±1.

Consider a set of p features, X = (X1, . . . , Xp), and the dependent variable

Y . The goal is to estimate the regression function f(x) = E(Y |X = x) and we assume

that Y = f(x) + ϵ. We observe a sample of independent and identically distributed

(i.i.d.) training observations Dn =
{
(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

}
, where each Xi =(

Xi1, . . . , Xip

)⊤ denotes a set of p variables from a feature space X . Let ϵi’s be i.i.d.

with mean 0 and variance σ2 and p∗ refers to the chosen features after removing the

ones that have less correlation with the response. The remaining p− p∗ variables have no

influence on the response. We also assume that the expected value E(Y |X∗) is completely

determined by a set of p∗ < p variables, which means E(Y |X∗) = E(Y |X1, X2, . . . , Xp∗).

[CLWY18] used the CC, amongst other measures, for feature selection in high

dimensional data analysis. [HH+10] made improvements to their models using the CC

as well as a clustering technique to filter out less important parameters. We even see

[LMC+20] use the CC for detecting daily activities in smart homes, where models rely

heavily on selecting the appropriate features for these daily activities, and thus on feature

selection. In the study by [Won19], the CC was used as a criterion to identify features

that displayed a high correlation with the response. The approach was applied to enhance

random forest regression models.

Despite its usefulness, the CC has some limitations. Firstly, it only measures

the linear relationships between two random variables, X and Y . Additionally, ρ = 0

only implies independence if X and Y have a bivariate normal joint distribution. To
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remedy the shortcomings of the Pearson CC, [SRB07] introduced the distance correlation

(DC), which can measure all types of dependence between two random vectors, X and

Y , in any number of dimensions. In their work, [LB16] opted to use DC over CC as a

feature selection measure due to its advantages. Leger provided an illustrative example,

where X is a uniform random variable in [−1, 1] and Y is expressed as Y = e−10X2 . For

1000 random samples the CC is 0.02, whereas the DC is 0.50. We will explore distance

correlation in more detail later. However, it is worth noting that the definition of DC

is similar (at least symbolically) to that of CC, as we will see that DC is defined as the

distance covariance of X and Y divided by the square root of the distance variance of X

multiplied by the distance variance of Y .

1.1 Feature Selection

There are several techniques proposed in the literature to evaluate feature sub-

sets in machine learning. The filter method, as presented by [Hal00] and [DCSL02] utilizes

the intrinsic properties of data to assess feature subsets. The wrapper method, as dis-

cussed by [CF94] and [DB00] determines the best subset of features useful for the task

based on the performance of the learning algorithm. Finally, the hybrid approach, as de-

scribed by [Ng98],[Das01] and [XJK01], makes use of both filters and wrappers by utilizing

independent criteria and learning algorithms to measure feature subsets.

1.1.1 Filter Method

A filter method assesses feature relevance from the intrinsic properties of the

data. Features are typically ranked on some feature relevance score and low scoring

features are removed from the feature space. Only the remaining features are then used

in the classification algorithm. In essence ‘filtering out’ the features that do not help the

classification algorithm sufficiently. Figure 1.1 below is an illustration of the filter method.



4

Subset Generation

Subset Evaluation

Induction Algorithm

Heuristic

Merit

Feature

Subset

Final

Subset

Training Data

Test Data

Result

Validation

Figure 1.1: Filter Method

The techniques, although quick and scale-able, may ignore feature dependencies

which may lead to worse classification performance [Pap13]. We give an example of a

feature relevance definition.

Let F be the full set of features and C be the target class. Let Fi ∈ F and

Si = F − Fi.

Definition 1.1 (Irrelevance) A feature Fi is irrelevant if and only if:

P(C|Fi, S
′
i) = P(C|S′

i), ∀S′
i ⊆ Si.

Irrelevance of a feature means that the feature is not necessary for the classi-

fication since the class distribution from any subset of other features does not change

after eliminating the irrelevant feature. Relevance is not as straightforward a definition.

[KJ97], however, give definitions for a strong and a weak relevance of features with a Bayes

classifier. Essentially the strong relevance of a feature implies that a feature is required

for an optimal set, while weak relevance implies that the feature may be required in some

cases to improve the prediction.

1.1.2 Wrapper Method

Filter methods perform the search for an optimal feature subset independently

of the classifier building step, while wrapper methods do not. Wrapper methods integrate

the classifier hypothesis search within the feature subset search. This integration can

help to identify interactions between the feature subset search and model selection that
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other methods may not find. However, the drawbacks of the wrapper method include

computational cost and a higher risk of overfitting. One popular example of this method

in action would be genetic algorithms [Dav91]. Figure 1.2 below depicts the wrapper

method.

Subset Generation

Subset Evaluation

Induction Algorithm

Induction Algorithm

Estimated

Accuracy

Hypothesis

Feature

Subset

Feature

Subset

Final

Subset

Training Data

Test Data

Result

Validation

Figure 1.2: Wrapper Method

1.1.3 Hybrid Method

The hybrid method combines filter and wrapper methods. In other words, it

integrates the search for an optimal subset of features into the classifier construction. This

search occurs in the combined space of feature subsets and hypotheses. Hybrid methods

share similarities with wrapper methods but are less computationally expensive [SIL07].

Examples of hybrid or embedded methods include support vector machine [GWBV02]

and logistic regression [MH05].

1.2 Random Forests

Random Forest (RF) is an ensemble learning algorithm proposed by Breiman

([Bre01]) in 2001 that is widely used for both classification and regression tasks.

Aside 1.2 An ensemble learning algorithm is a algorithm that uses many models and

aggregates the models for better results.
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RF constructs a large number of decision trees during the training process and outputs the

mean prediction of the individual trees. During the training process, each decision tree

is grown using a randomly selected subset of the input features and a random subset of

the training data. This randomness helps to reduce the overfitting problem commonly en-

countered in decision trees. At test time, the RF aggregates the predictions of all decision

trees to provide the final prediction. RF is known for its high accuracy, robustness to noise

and outliers, and scalability to large datasets. It has been widely used in various fields,

including remote sensing, finance, bioinformatics, and image processing. For example,

[HCCG05] used RF to classify hyperspectral data. Previously the data presented many

challenges to classification algorithms as it is high dimension data with classes that are

sometimes quite mixed. RF proved to be an improvement to the classification of NASA’s

hyperspectral data. We also see many biomedical applications such as in genomics. We

see [ALX+20] use RF for biomarker identification, which is one of the major goals in

functional genomics.

As mentioned earlier, RF utilizes decision trees and can perform both classifica-

tion and regression analyses. They achieve this by using a combination of the bootstrap

aggregation method and the random subspace method to generate a collection of decision

trees, which are then utilized for classification purposes. When building an RF, the best

predictor from a randomly chosen subset of predictors is used to divide each node. Al-

though this method may seem counterintuitive, it has proven to be more effective than

other classifiers such as discriminant analysis, support vector machines, and neural net-

works. Additionally, [Bre01] showed that this approach is resistant to overfitting. Below

we can see the original algorithm used by Breiman.

Algorithm: Breiman’s Random Forest

Given the training data set Dn,

1. Generate B bootstrap samples of size n from the training data.

2. For each b-th bootstrap sample, b = 1, 2, ..., B, grow a tree f̂b by recursively repeating

the following steps for each terminal node of the tree until the minimum node size

nmin is reached;

(a) Select m features at random out of the p feature variables.
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(b) Choose the best-split feature and split among the m features.

(c) Split the node into 2 daughter nodes.

3. Output the ensemble of trees f̂1, f̂2, ..., f̂B and the predicted value is obtained by

combining the ensemble of trees.

To make a prediction at a new point x0,
1

B

B∑
b=1

f̂b(x0) for regression problems

majority voting
{
f̂b(x0)

}B

1
for classification problems

An example of a classification tree can be seen below. Notice the three discrete

classifications: ‘eat a meal’,‘eat a snack’, and ‘don’t eat’.

Is really hungry

Eat a Meal Only sort of hungry

Eat a snack Don’t eat

Figure 1.3: Classification Tree
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Dosage < 5g

Effectiveness 50% Dosage ≥ 20g

Effectiveness 15% Dosage ≥ 50g

5% Effective 100% Effective

Figure 1.4: Regression Tree
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Figure 1.5: Possible Sample Data for Regression Tree

When discussing RF, it is important to mention classification and regression

trees (CARTs). While classification trees predict outcomes to be in some discrete class,

regression trees predict continuous outcomes to be some real number. Examples of po-

tential classification and regression trees are shown in Figures 1.3 and 1.4, where a left

arrow implies true and a right arrow implies false. In this case, a regression tree is used



9

to predict the effectiveness of drug dosage. The tree shows that the effectiveness of the

drug dips around the 20g dosage and becomes super effective at 50g. This is a scenario

where a linear regression fit cannot be used to predict effectiveness. However, the main

issue with CARTs is overfitting, where the model performs well with the training data but

poorly with new data. To address this issue, RFs use multiple trees and aggregate their

predictions, as using just one decision tree would lead to overfitting of the training data

and large errors with the test data.

However, a crucial aspect of Breiman’s RF algorithm that we have yet to discuss

is step 2b, which involves selecting the optimal split feature and splitting among the m

features. While it is simple to randomly select m features out of p features in the previous

step, determining the best-split feature among these randomly selected features is more

complex. The choice of metric for selecting the best-split feature depends on whether the

random forest is being used for classification or regression tasks, as certain metrics may be

better suited for one or the other. For classification trees, the Gini impurity is a suitable

metric for selecting the best node. The Gini impurity measures the effectiveness of a node

split by counting the number of misclassified data points at that split over the total number

of data points. In other words, it calculates the probability that a randomly chosen data

point would be incorrectly labeled due to choosing this node split. By computing the Gini

impurity for each feature and selecting the feature with the smallest Gini impurity, we

can ensure that the best split is made for classification trees.

More precisely the Gini impurity can be defined as follows. In a classification

problem with J classes and relative frequencies of these classes denoted by pi, where

i ∈ {1, 2, ..., J}, the probability of selecting an item with label i is pi, and the probability

of misclassification is
∑

k ̸=i pk = 1− pi. The Gini impurity (IG) is calculated by summing

the pairwise products of these two probabilities. We see below that the Gini impurity can

be calculated by summing the relative frequencies squared and subtracting from 1.
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J∑
i=1

pi
∑
k ̸=i

pk

 =
J∑

i=1

(pi(1− pi))

=
J∑

i=1

(pi − p2i )

=

J∑
i=1

pi −
J∑

i=1

p2i

= 1−
J∑

i=1

p2i .

In the case of regression trees, determining the best split is a matter of minimizing

the sum of squared residuals. In [Won19], a widely-used algorithm for minimizing the

mean squared error of all decision trees in RF is described as follows:

Algorithm: Variable Importance

1. For the b-th tree, b = 1, 2, ..., B, do the following.

(a) Pass the out-of-bag (OOB) samples, that is the observations that are not se-

lected in the b-th bootstrap samples down the tree and compute the mean

squared error.

(b) For each feature Xj , j = 1, 2, ..., p, randomly permute the values for Xj in the

OOB sample, keeping all other features intact.

(c) Pass the permuted OOB samples down the tree and recompute the mean

squared error.

2. Compute the average increase in the mean squared error as a result of the randomly

permuted values across all the trees.

While the Breiman RF is useful, it is not without limitations. According to

[HTF01], when a data set has a small number of relevant features and a large number

of irrelevant features, RF algorithms may struggle to achieve their intended predictive

performance, particularly if the algorithm only selects a few features at each node. To

address these limitations, several methods have been proposed in the literature to improve
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the performance of Breiman’s traditional RF. To address these limitations, [BDL08] es-

tablish the consistency of a special type of purely RF model where strong variables have

a larger probability of selection as a splitting variable.

1.3 Reinforcement Learning Trees

Another approach to improving the Breiman random forest was proposed by

[ZZK15]. They suggested a modification called Reinforcement Learning Trees (RLT),

which also utilizes bootstrapped samples and ensemble methods to construct decision

trees. However, the key difference lies in the process of internal node splitting. RLT uses

an embedded model at each internal node to identify relevant features for splitting, muting

noise variables, and prioritizing strong variables in the initial stages of tree construction,

gradually decreasing the number of candidate variables towards the terminal nodes. This

technique improves the selection of splitting variables, as it allows for muting variables

based on relevance assessment at each internal node split. Let V IA(j) be variable im-

portance measure for each variable j ∈ P at an internal node A. At each node, RLT

constructs RF and uses it to compute the estimate of the variable importance, V̂ IA(j),

for every variable j ∈ P at node A. The algorithm for RLT is shown below, which is

similar to Breiman’s algorithm except for the node-splitting process.

Algorithm: Reinforcement Learning Trees (RLT)
Given a training data set Dn,

1. Generate B bootstrap samples from Dn,

2. For each b-th bootstrap sample, b = 1, 2, ..., B, fit a RLT model f̂b using the follow-

ing:

(a) Construct an embedded model f̂∗
A to the training data in internal node A and

this is done using only set of features {1, 2, ..., p} \ P d
A, that is, P \ Pd

A, where

Pd
A is the set of variables that are muted at node A and P = {1, 2, . . . , p}.

(b) Compute the variable importance V̂ IA(j) using the fitted embedded model f̂∗
A

for each variable Xj , where j ∈ P.

(c) The internal node is then split into 2 daughter nodes either using a one-

dimensional split or a high dimensional split. Details are given in [ZZK15].
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(d) The set of muted variable Pd is updated for the 2 daughter nodes by including

the features with the smallest variable importance measures at the current

node.

(e) Continue steps (a)-(d) on each daughter node until the minimum node size,

nmin is reached.

3. Aggregate all B trees to obtain a final model, thus

f̂ =

B−1
∑B

b=1 f̂b for regression problems

I
(
0.5 < B−1

∑B
b=1 f̂b

)
for classification problems

1.4 Motivation

In their study, [Won19] explored the use of RF algorithms for regression prob-

lems by focusing on selecting significant features that have a strong correlation with the

response variable. They utilized the filter method to find the optimal feature subset, and

we are interested in applying a similar filter method using the distance correlation (DC)

instead of their CC method. We anticipate that using the DC as a criterion for our filter

method may provide advantages over the CC method, particularly in detecting nonlinear

relationships in sample data. Additionally, we plan to evaluate the performance of our

method against more sophisticated techniques, such as the RLT method. We expect our

results to be comparable to the CC method’s performance with linearly related data, as

the DC should be sufficient to detect such relationships.



13

Chapter 2

Distance Correlation Based Feature

Selection

As previously stated in Chapter 1, we plan to train RF models using different

techniques to determine if any benefits exist using the method presented in this chapter.

The method outlined in this chapter is a DC-based feature selection method in RF, as the

chapter title suggests. Our approach will be compared to the existing feature selection

methods, namely CC, RLT, and the conventional Breiman RF. We will use the mean-

squared error (MSE) as a performance metric.

2.1 Distance Correlation (DC)

In their work, [SRB07] proposed a statistical measure called distance correlation

(DC) that quantifies all forms of dependence between random vectors X and Y in arbitrary

dimensions, unlike Pearson CC, which is limited to two-dimensional variables. The DC

ranges from 0 to 1, and it equals 0 only when the random vectors are independent.

According to [SR09a], the DC is effective in detecting nonlinear relationships that cannot

be detected by the Pearson CC. The DC (R), is a measure of dependence between two

variables that measure the distance between their two characteristic functions. In the

bivariate normal case, the DC becomes the Pearson product-moment correlation ρ (CC).

Following [SR09a], for jointly distributed random vector X ∈ Rp and Y ∈ Rq, let fX,Y (t, s)

be the joint characteristic function of (X,Y ) and fX(t) and fY (s) be the corresponding
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marginal characteristic functions.

Definition 2.1 Suppose random variables X and Y have finite and positive variances.

Then, the distance correlation (R) is defined as,

R(X,Y ) =
dCov(X,Y )√

dCov(X,X) · dCov(Y, Y )
, (2.1)

where dCov(X,Y ) is the distance covariance between random variables X and Y .

The calculation of dCov(X,Y ) is more complex compared to the relatively sim-

ple calculations performed when computing the covariance for the CC. However, we are

fortunate that the R package “energy,” authored by Rizzo, simplifies the calculation of the

following definition.

Definition 2.2 The distance covariance dCov(X,Y ) between X and Y is defined as the

nonnegative square-root of

dCov(X,Y) =

√∫
Rp+q

||fX,Y (t, s)− fX(t)fY (s)||2w(t, s)dtds, (2.2)

where fX(·), fY (·), and fX,Y (·) are the characteristic and joint characteristic

functions of the random variables X (p-dimensional) and Y (q-dimensional). The weight

function is given by w(t, s) = (cpcq||t||pp+1||s||
q
q+1)

−1 and w(t, s) > 0 a.s. t ∈ Rp, s ∈ Rq

and cd is the normalizing constant defined as π(1+d)/2/Γ((1 + d)/2).

For more details, readers are referred to [SR23]. It is interesting to note that, according

to [SR09b], the population distance covariance coincides with the covariance with respect

to Brownian motion, the random motion of particles suspended in a medium. In the same

article, the distance correlation is described as the “natural extension” of the CC, and it is

clear that the DC offers certain advantages over the CC. Before proceeding, let us outline

some of the properties of the DC.

1. R(X,Y ) is defined for X and Y in arbitrary dimensions;

2. R = 0 characterizes independence of X and Y .

3. 0 ≤ R ≤ 1.
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4. If R = 1, then there exists a vector a, a nonzero real number b and an orthogonal

matrix C such that Y = a+ bXC.

In terms of advantages, DC surpasses CC in several ways. For example, while

CC is restricted to two-dimensional variables, DC can handle variables in any dimension.

Moreover, the range of R is between 0 and 1, which is inclusive. It is interesting to note

that when CC = 0, there is no linear correlation, but this does not indicate independence,

whereas R(X,Y ) = 0 indicates independence between X and Y . Our aim is to utilize

DC as a criterion for our filter method. However, having these advantages over CC does

not necessarily mean that our filter method would perform better than the one presented

in [Won19]. Nonetheless, there is a reason for optimism since [DKS22] employs DC as a

feature selection criterion in selecting features for energy polynomials. It is worth noting

that they achieved a performance that matched that of the unfiltered models using two

orders of magnitude fewer parameters.

2.2 Feature Selection Method in Random Forest

Our focus is on exploring how distance correlation can facilitate feature selection.

To this end, we employ a feature selection algorithm to enhance our machine-learning

models, particularly random forests. The goal of our feature selection algorithm is to

reduce the feature space by considering the DC between each feature and the dependent

variable, using a threshold value of R, denoted by R∗.

As outlined above, our approach involves creating a subset of this feature space

using training data, which will then be employed to train a random forest model. To

achieve this, we first specify a threshold value, denoted by R∗. We then compute R(Y,Xi)

for i = 1, . . . , p. Based on the resulting distance correlation values, we identify a subset

of X∗, denoted by X∗ ⊆ X, that includes any feature Xj satisfying R(Y,Xj) ≥ R∗. We

subsequently employ X∗ to construct a random forest and compute the mean squared

error (MSE) using test data.

Algorithm: Proposed DC based Method

Given a training data set Dn and the distance correlation set
−→
R∗ of length s,
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1. Compute the distance correlation between Y and each feature Xj and rank the

features using the distance correlation.

2. For each R∗,

(a) eliminate the less correlated variables using the specified R∗ as a threshold.

(b) Using the new training data with reduced feature space, construct a random

forest using the Breiman RF algorithm.

3. Given the s constructed random forests, select the model with the minimum predic-

tion error based on the value of R∗.

2.3 Theoretical Results

In this section, we develop large sample theory for the proposed DC-based feature

selection method. We assume that our features are statistically independent and that only

the relevant ones have a strong correlation with the response variable. Consider the model

Y = f(Xi) + ϵi.

As in [ZZK15], we assume a moment condition on the random error terms ϵi.

Our goal is to ensure that our variable importance measure still converges and that it

depends only on the filtered features. The j−th variable importance is calculated based

on randomly permuting the values of Xj in the out-of-bag sample which is denoted by X̃j .

Given that we are using a regression tree and have chosen to minimize the sum of squared

errors as our criterion, the resulting squared error after permutation can be calculated

EX̃j

(
Y − f̂

(
X1, . . . , X̃j , . . . , Xp∗

))2

We can express the variable importance for the j-th variable as follows.

V Ij =

E

[(
f
(
X1, . . . , X̃j , . . . , Xp

)
− f

(
X1, . . . , Xj , . . . , Xp

))2]
E

[(
Y − f

(
X1, . . . , X̃j , . . . , Xp

))2] . (2.3)
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Theorem 2.3 Under assumptions 3.1, 3.2, 3.3, and 3.4 of [ZZK15], and there exists a

fixed constant 1 < B < ∞, for any κ > 0, the estimated variable importance converges to

the true variable importance at an exponential rate. That is

P
(
|V̂ Ij − V Ij | > κ

)
≤ e−κ·nν(p∗)/B,

where 0 < v(p∗) ≤ 1 is a function of the dimension p∗, which represents the reduced

number of features obtained using the DC-based filter method. V Ij is a measure of variable

importance for each variable j ∈ P, as defined in (2.3), along with its estimate V̂ Ij.

Proof: Following the similar arguments used in [Won19], we can prove the Theorem 2.3

and are thus omitted.
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Chapter 3

Simulation Study

In this section, we perform a simulation study to assess the efficacy of our pro-

posed method. In addition to the simulation setup used in [Won19], we examine two

additional settings. For each setting, we generate 200 training samples and 1000 test

samples. We evaluate the performance of our approach for various numbers of features,

namely p = 80, 100, 300, 500.

• Under settings 1 & 2, we consider the following model

Model 1: Yi = 5
(
Xi,1 +Xi,2 +Xi,3 +Xi,4

)
+ ϵi (3.1)

where ϵi’s are the random errors that are normally distributed with a mean of 0 and

variance of 1.

– Setting 1: Generate Xi from a normal distribution: N
(
0p×1,Σp×p

)
, where

Σi,j = ρ|i−j|, with ρ = 0.5 and 0.8.

– Setting 2: Generate Xi from a normal distribution: N
(
0p×1,Σp×p

)
, where

Σi,j = ρ|i−j| + 0.2I(i ̸= j), with ρ = 0.5, where I(·) is called the indicator

function.

• Under setting 3, we consider the following model

Model 2: Yi = X2
i,1 +Xi,20 +X3

i,33 +X2
i,55 + ϵi (3.2)

where ϵi’s are the random errors that are normally distributed with a mean of 0 and

variance of 1.
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– Setting 3: Generate Xi from a normal distribution: N
(
0p×1,Σp×p

)
, where

Σi,j = ρ|i−j|, with ρ = 0.8.

• Under setting 4, we consider the following model

Model 3: Yi = 100×
(
Xi,1 − 0.5

)2 × (
Xi,2 − 0.25

)+
+ ϵi (3.3)

where (·)+ represents the positive part and ϵi’s are the random errors that are

normally distributed with a mean of 0 and variance of 1.

– Setting 4: Generate Xi from Unif[0, 1]p.

The first step of our method involves calculating the distance correlation be-

tween the response variable Y and each feature variable Xj for all j = 1, . . . , p. Next,

we use pre-defined thresholds to select significant features. These thresholds are deter-

mined based on minimum distance correlation levels between Y and Xj , which include
−→
R∗ =

{
0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60

}
. If R∗ = 0, then all features are selected and

included in the random forest regression. Conversely, if R∗ = 0.5, then only features with

a distance correlation of at least 0.5 with the response variable are selected and added to

the RF at each stage. We repeated the procedure 200 times to obtain reliable results.

3.1 Analysis of the Linear Models

Table 3.1 presents the results for all methods for Model 1 and Setting 1 with

ρ = 0.5.
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Table 3.1: Prediction Mean Squared Error for Model 1 and Setting 1 with ρ = 0.5

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 30.4468 32.3146 37.0157 39.9092
No RLTNo1 17.1149 18.2449 20.6827 22.2395

RLTNo2 8.3586 9.2965 10.8636 12.1497
RLTNo5 5.9539 6.8420 8.4067 9.5437

Moderate RLTMod1 23.5688 24.9247 29.2962 31.4494
RLTMod2 12.7399 13.8862 16.9476 19.1914
RLTMod5 9.7806 10.9047 13.5140 15.6142

CC (r∗) 0 30.4568 32.3099 36.9560 39.9454
0.1 22.8696 24.6372 29.9454 33.0442
0.2 16.5787 16.7887 16.9566 18.2652
0.3 15.9218 15.8904 15.7830 15.7455
0.4 13.3106 13.4890 13.0326 13.0766
0.5 12.5500 12.8932 12.4917 12.5678
0.6 16.4444 16.9558 16.4051 15.5541

DC (R∗) 0 30.5103 32.2662 36.9264 39.9739
0.1 30.4394 32.3129 36.9792 39.9157
0.2 30.4860 32.2304 37.0245 39.8639
0.3 30.2126 32.1138 37.0334 39.8655
0.4 20.8794 22.2660 27.2499 30.5149
0.5 16.7517 16.6341 16.3208 16.6678
0.6 13.7511 13.8123 13.5889 13.3938

One trend that is evident is that the increase in the number of parameters (p)

leads to an increase in the MSE. This implies that the model’s accuracy decreases as the

number of parameters increases, which is expected. The RLTNo5 model, which is RLT

without muting where five features are utilized in the linear combination to create a split

candidate, performed significantly better than other models. On the other hand, the

traditional RF had the worst performance, which is desirable since our aim is to enhance

the traditional RF with our methods. The optimal r∗ threshold is likely between 0.4 and

0.6, although the optimal R∗ threshold value is inconclusive. Nonetheless, the general

trend indicates that as R∗ increases, MSE decreases. It appears that the best model

has an R∗ > 0.6, but we found that this was not the case. For R∗ > 0.6, the model’s

accuracy decreased, and we even encountered errors for R∗ values that were excessively

high since this meant that the model was discarding all parameters, and as a result, no

random forest could be generated. It is probable that for these settings, the optimal R∗

threshold is between 0.5 and 0.7.
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We observed a significant improvement in the CC method’s performance in the

RF model when r∗ increased from 0.1 to 0.2 in the p = 500 column. This resulted

in a 44.7% decrease in MSE. Similarly, there was a 45.4% reduction in MSE when our

method’s threshold R∗ increased from 0.4 to 0.5. It is possible that the similarity in the

magnitude of these MSE drops is coincidental. However, we observed a similar pattern

for p = 80, 100, and 300. To clarify, let MSEDCR∗,p represent the DC MSE at R∗ and p.

Similarly, let MSECCr∗,p be the CC MSE at r∗ and p. We noticed the following trend:

∣∣∣∣MSEDC.5,80

MSEDC.4,80

−
MSECC.2,80

MSECC.1,80

∣∣∣∣ = 0.0774∣∣∣∣MSEDC.5,100

MSEDC.4,100

−
MSECC.2,100

MSECC.1,100

∣∣∣∣ = 0.0656∣∣∣∣MSEDC.5,300

MSEDC.4,300

−
MSECC.2,300

MSECC.1,300

∣∣∣∣ = 0.0327∣∣∣∣MSEDC.5,500

MSEDC.4,500

−
MSECC.2,500

MSECC.1,500

∣∣∣∣ = 0.0065

The DC-based model accuracy eventually improves to a comparable level with

the CC-based model when R∗ reaches approximately 0.5. However, this is not the optimal

R∗ value, just as r∗ = 0.2 is not the optimal threshold. In this case, the CC method easily

identifies the more important parameters, while the DC method is more cautious and

does not filter out parameters with weak linear correlations. The best prediction MSEs

are achieved at r∗ = 0.5 for the CC method and R∗ = 0.6 for the DC method. Although

a higher R∗ threshold is required for the DC method to optimize, the prediction MSE

results are comparable to those of the CC method.
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Table 3.2: Prediction Mean Squared Error for Model 1 and Setting 1 with ρ = 0.8

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 16.4542 16.8286 20.2293 21.4920
No RLTNo1 11.1426 11.6650 13.5729 14.1749

RLTNo2 6.8722 7.3101 8.8551 9.6527
RLTNo5 5.4821 5.8649 7.3025 8.0649

Moderate RLTMod1 14.9992 15.5370 18.7807 19.8693
RLTMod2 10.3251 10.8486 13.8485 15.1718
RLTMod5 8.4156 8.9015 11.3316 12.5533

CC (r∗) 0 16.4618 16.8028 20.2333 21.5206
0.1 13.0510 13.2847 16.1036 17.3913
0.2 10.7760 10.5976 10.9608 11.1928
0.3 10.2295 10.0385 10.0109 10.0872
0.4 9.2580 9.0398 9.0732 9.1315
0.5 8.5590 8.4243 8.5828 8.5259
0.6 9.1113 9.0128 9.1327 9.0838

DC (R∗) 0 16.4589 16.8685 20.2596 21.5370
0.1 16.4747 16.8312 20.2180 21.5444
0.2 16.4707 16.7899 20.1973 21.5172
0.3 16.3218 16.7368 20.2653 21.5056
0.4 12.2518 12.5301 14.5710 15.9063
0.5 10.3558 10.2450 10.2731 10.3228
0.6 9.4236 9.2640 9.3533 9.3839

According to Table 3.2, we see the same optimal threshold values of r∗ and R∗.

The optimal MSEs for the DC and CC methods are even closer, but the CC method

still has a slight edge. The race for the best MSE is now closer with RLT, but RLTNo5

remains the best model, while the traditional RF remains the least accurate. As the

correlation between parameters and the response variable increases, the MSE generally

decreases compared to Table 3.1.
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Table 3.3: Prediction Mean Squared Error for Model 1 and Setting 2 with ρ = 0.5

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 21.9640 23.6652 28.2053 30.0032
No RLTNo1 13.0988 14.2620 16.5793 17.3747

RLTNo2 7.3378 8.2417 10.2177 11.1712
RLTNo5 5.5720 6.3689 8.2305 9.2038

Moderate RLTMod1 17.9596 19.3122 23.0986 24.3520
RLTMod2 11.4233 12.5715 16.2147 17.8654
RLTMod5 9.1465 10.2833 13.5496 15.2372

CC (r∗) 0 21.9342 23.6987 28.1940 29.9885
0.1 21.7451 23.6321 28.2193 29.9617
0.2 20.9032 22.9340 27.5293 29.3341
0.3 16.8882 18.6162 23.0721 25.1728
0.4 11.9670 12.4959 13.4938 14.0448
0.5 11.3873 11.7433 11.6022 11.3566
0.6 9.0305 9.2198 9.3215 9.1254

DC (R∗) 0 21.9021 23.7338 28.1547 29.9792
0.1 21.8892 23.7192 28.1623 30.0492
0.2 21.8888 23.6486 28.1887 30.0208
0.3 21.8853 23.7239 28.2238 29.9949
0.4 21.6011 23.4470 28.0920 29.8334
0.5 19.3799 21.3558 26.1481 28.1744
0.6 12.5753 13.4929 15.1863 16.6041

In Table 3.3, we observe that the CC method outperforms our method and marks

the first instance where a better model than RLTNo5 is identified. It is possible that the

DC method could achieve comparable results at a higher threshold, but we did not have

the opportunity to optimize this threshold for the DC method.
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Figure 3.1: Prediction MSE Comparison for Setting 1 (ρ = 0.5, 0.8) and Setting 2 with
ρ = 0.5
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3.2 Analysis of the Nonlinear Model

In this section, we examine a nonlinear model as outlined in setting 3. The

results are presented in Table 3.4.

Table 3.4: Prediction Mean Squared Error for Model 2 and Setting 3 with ρ = 0.8

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 9.4389 9.5245 10.4246 10.7869
No RLTNo1 8.6755 8.7385 9.4071 9.7955

RLTNo2 8.5479 8.6631 9.4587 9.9032
RLTNo5 8.6720 8.7762 9.5994 10.0118

Moderate RLTMod1 9.6584 9.7615 10.7009 11.2133
RLTMod2 9.7378 9.8579 10.9569 11.4871
RLTMod5 9.8222 9.9758 11.0402 11.6132

CC (r∗) 0 10.5241 10.4354 11.7246 12.1731
0.1 11.0046 10.9849 12.0554 12.3790
0.2 11.3745 11.1895 11.8162 11.9509
0.3 10.8041 10.5800 10.9673 10.8763

DC (R∗) 0 9.4371 9.5271 10.4387 10.7732
0.1 9.4270 9.5461 10.4322 10.7692
0.2 9.4465 9.5276 10.4433 10.7636
0.3 9.4336 9.5344 10.4295 10.7577
0.4 8.9385 8.9611 9.6091 9.8364
0.5 9.4990 9.4992 9.5010 9.4111
0.6 10.4607 10.4244 10.3874 10.3362

These results are particularly exciting as they reveal the advantages of using

DC as a feature selection criterion. It is worth noting that the CC method threshold

stops at 0.3 because, as the data is not constructed under a linear model, setting a

CC threshold higher than 0.3 will filter out all the parameters of the model, making it

impossible to construct an RF. This is not the case with the DC method, as it is capable

of detecting nonlinear correlations and allowing more parameters to survive the filter

method. Although the CC method does not perform well in this case, we can see that

RLT remains the best method for p = 80, 100, and 300. However, for the high-dimensional

case, our proposed method performs best, indicating that it could be an improvement over

RF in high-dimensional scenarios. In the future, it would be interesting to compare the

proposed method with other machine learning techniques in high-dimensional datasets

that exhibit nonlinear correlations. Additionally, we assess the benefits of the proposed
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method using the simulation setting employed in a previous study [ZZK15]. The outcomes

of this analysis are presented in Table 3.5.

Table 3.5: Prediction Mean Squared Error for Model 3 and Setting 4
Method p = 80 p = 100 p = 300 p = 500

Traditional RF 6.1719 6.3132 7.0491 7.4381
No RLTNo1 2.4868 2.4958 2.9554 3.3648

RLTNo2 2.5882 2.6486 3.3094 3.8033
RLTNo5 2.8512 2.8675 3.5907 4.3271

Moderate RLTMod1 3.1720 3.1258 3.8918 4.5346
RLTMod2 3.6176 3.5186 4.5701 5.1221
RLTMod5 3.7851 3.7519 4.8743 5.7918

CC (r∗) 0 6.1638 6.2397 7.0040 7.4891
0.1 8.6832 8.9644 9.0353 9.1730
0.2 10.7540 10.7789 10.7112 10.5731
0.3 12.2340 12.2444 11.8764 12.3109

DC (R∗) 0 6.1879 6.1030 7.0218 7.5451
0.1 6.1925 6.0984 6.9839 7.4811
0.2 6.2513 6.0910 6.9863 7.4811
0.3 6.1112 6.0962 7.0018 7.4744
0.4 5.5324 5.5445 6.2003 6.7826
0.5 2.6557 2.5385 2.8895 3.2704
0.6 9.8633 9.5040 9.4988 9.9643

The performance of our DC method is outstanding compared to both traditional

RF and the CC method in this nonlinear simulated dataset, similar to our other nonlinear

simulated dataset. It is worth noting that the CC method has a lower threshold, as a

threshold higher than 0.3 eliminates all parameters from the RF model. As we have

previously observed, RLT performs exceptionally well here. However, as seen in setting 3,

as the number of parameters increases, our proposed method appears to gain an advantage

over RLT. Specifically, the DC-based feature selection method outperforms RLT for p =

300 and p = 500. This once again supports the notion that the DC-based method may

be an excellent candidate for high-dimensional data analysis.
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Figure 3.2: Prediction MSE Comparison for Model 2 & 3

According to Figure 3.2, it is evident that the DC-based method outperforms

CC significantly. In setting 4, we observe that our optimal MSE is often less than half of

the CC method’s MSE.
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Chapter 4

Real Data Applications

To illustrate the practical usage, we apply our proposed methods to two real

datasets, which are provided below.

1. Riboflavin Data:

This dataset contains riboflavin production by Bacillus subtilis. There are n =

71 observations of p = 4088 predictors (gene expressions) and a one-dimensional

response variable.

2. Boston Housing Data:

This dataset contains housing data for 506 census tracts of Boston from the 1970

census. There are n = 506 observations of p = 14 predictors.
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4.1 Riboflavin Data

The Riboflavin dataset is a widely-used dataset found in the ‘hdi’ R package,

provided by [BKM14]. It consists of 71 observations of 4088 predictors, representing

the expression levels of 4088 genes, and a single response variable, which is the riboflavin

production of Bacillus Subtilis. The objective of our study is to predict the log-transformed

riboflavin production rate using gene expressions as predictors. This dataset is an example

of a high-dimensional dataset, as the number of features is much larger than the number

of observations, i.e., p > n. The results of our analysis are presented in Table 4.1.

Table 4.1: Prediction Mean Squared Error for Riboflavin Data
Traditional RF 0.5029

No RLTNo1 0.5521
RLTNo2 0.5459
RLTNo5 0.5436

Moderate RLTMod1 0.5555
RLTMod2 0.5216
RLTMod5 0.5623

Threshold CC (r∗) DC (R∗)

0.00 0.5026 0.5071
0.05 0.4936 0.5133
0.10 0.4866 0.5049
0.15 0.4654 0.5104
0.20 0.4521 0.5130
0.25 0.4356 0.5043
0.30 0.4217 0.5063
0.35 0.4083 0.5076
0.40 0.3864 0.5100
0.45 0.4076 0.5029
0.50 0.5594 0.4990
0.55 0.4175 0.4873
0.60 0.5565 0.4628
0.65 NA 0.4358
0.70 NA 0.4126

To ensure stable results, we conduct 200 repetitions and calculate the average

prediction mean squared error. The findings indicate that the CC-based feature selection

method is much more precise than the RLT methods and significantly better than the

traditional RF. Our proposed method comes in second place with an optimal threshold

of 0.7. It is worth noting that a better R∗ threshold may exist in the range of (6.5,7.5).
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Figure 4.1: Boxplot for Prediction MSE Comparison for Riboflavin Data

The results indicate that the methods have similar accuracy, but the CC method

performs better. In support of this, Figure 4.1 shows a continued decrease in MSE as

the R∗ threshold increases, suggesting that an optimal threshold may exist beyond 0.7.

However, even with this potential for improvement, the results obtained with our proposed

method are comparable at best to those of the CC method.
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Figure 4.2: Prediction MSE Comparison for Riboflavin Data for CC and DC-based
Methods

Figure 4.2 illustrates the diminishing returns of increasing the CC threshold and

highlights the potential for a better prediction of mean squared error (MSE) by increasing

the DC threshold.
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4.2 Boston Housing Data

The Boston housing data set is provided by [HJR78] and is a built-in data set in

R. Unlike the riboflavin data set, it has a lower dimensionality with only 13 predictors and

a 1-dimensional response variable. The data set contains 506 observations and provides

information gathered from the 1970s census. The predictors include the per capita crime

rate by town, the average number of rooms per dwelling, the pupil-teacher ratio by town,

and other factors. The response variable is the median value of owner-occupied homes in

$1000. The objective is to use the available information, such as the per capita crime rate

by town (CRIM), nitric oxides concentration (NOX), proportion of non-retail business

acres per town (INDUS), and full-value property-tax rate per $10,000 (TAX), among

others, to predict the median value of owner-occupied homes.

Table 4.2: Prediction Mean Squared Error for Boston Housing Data
Traditional RF 11.6123

No RLTNo1 16.5492
RLTNo2 16.7430
RLTNo5 16.0898

Moderate RLTMod1 16.0028
RLTMod2 15.6108
RLTMod5 15.6015

Threshold CC (r∗) DC (R∗)

0.1 11.5548 11.5702
0.15 11.5674 11.5258
0.2 11.5926 11.5477
0.25 11.9115 11.5586
0.3 12.6297 11.5891
0.35 12.7505 11.5651
0.4 12.9315 11.5344
0.45 15.3672 11.5441
0.5 18.6801 11.5417
0.55 21.5029 11.5951
0.6 21.7865 11.9905
0.65 22.6410 12.5806
0.7 30.9052 13.0999

We applied the same methodology to analyze the Boston housing dataset, and

the prediction MSE results are presented in Table 4.2. Similar to the Riboflavin dataset,

we don’t observe any improvement in the model by using the RLT method, but we see
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slight improvements from the two filter methods compared to traditional RF. Furthermore,

we notice that our proposed method slightly outperforms the CC method. Moreover, we

observe that our proposed DC-based method has relatively stable results irrespective of

the R∗, whereas the CC method shows an increasing trend in prediction MSE and results

in almost three times the MSE of the traditional RF as r∗ varies from 0.1 to 0.7.
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Figure 4.3: Prediction MSE Comparison for Boston Housing Data for CC and DC-based
Methods

Once again, the results obtained support the notion that our DC-based feature

selection method is more conservative in eliminating predictors that are relevant to the

RF model compared to other methods. It is interesting to note that a similar trend as

seen in Figure 3.1 can also be observed in Figure 4.3, where the change in MSE of the CC

method from r∗ = 0.2 to 0.4 is similar to that of the DC method from R∗ = 0.5 to 0.7.

This change in MSE is approximately 12% for both methods as r∗ and R∗ vary within

those ranges.
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Figure 4.4: Boxplot of Prediction MSE for Boston Housing Data
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Chapter 5

Conclusion and Discussion

5.1 Performance of the Proposed DC-Based Filter Method

In this thesis, we proposed a novel variable selection procedure for RF using

distance correlation. We observed that the proposed DC-based method performed very

well in most cases, especially in nonlinear models. Although we anticipated that our

approach would perform similarly or better than the CC-based filter method, we were

pleasantly surprised to find that it outperformed RLT methods under high-dimensional

settings. Our approach consistently outperformed the traditional RF method, and in the

case of the nonlinear models, it even outperformed the CC method.

In the linearly simulated data, we observed that the DC method performed

similarly to the CC method in most cases. However, we noticed that optimizing the

DC prediction MSE required a higher threshold, which is not surprising given that our

method is more conservative in feature filtering. This is not a significant disadvantage,

except perhaps for computational cost, as more features are retained in the RF model

construction. To address this, we can adjust the threshold to a higher value.

We observed only one case where DC significantly underperformed the CC

method, which was in setting 2. In this case, a strong linear correlation was simulated,

and thus, the CC method was expected to perform well, which was indeed the case. How-

ever, in situations like this, we can consider increasing the DC threshold to 0.7 or 0.8 and

see if the prediction MSE improves and becomes comparable to that of the CC method,

as we observed previously. Our method demonstrated its superior performance in nonlin-
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ear models, particularly in high-dimensional cases. This piqued our interest in exploring

high-dimensional datasets. Finally, two real data applications are provided to illustrate

the advantage of the proposed methods.

5.2 Future Work

As with many studies, our work leaves us with some unanswered questions,

some of which may be easier to address. For instance, we are interested in finding an

optimal threshold in cases where the DC method underperformed the CC method, and

thus, we could decrease the step size between thresholds or devise an algorithm to identify

the optimal threshold. However, to make meaningful comparisons with the CC method

prediction MSE, we also need to optimize the r∗ threshold. Therefore, we leave these

considerations for future work.

Another area for future work, although more challenging than the previous one,

would be to integrate our DC filter method with the RLT model, thereby combining the

two best-performing methods to assess if a better model can be developed.

We should note that in the simulation data, we intentionally generated uncor-

related features. Therefore, an area for future research would be to conduct a simulation

study of highly correlated predictors and assess the effectiveness of our proposed method

in such scenarios. We can find inspiration from research such as [JNS+20], which employs

machine learning to investigate correlated meteorological parameters.

Finally, we are interested in applying our proposed method on high-dimensional,

nonlinearly related datasets. Given the increasing demand for machine learning models

that can handle high-dimensional datasets [D+00], we are keen on applying our approach

to such data.
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