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ABSTRACT 

Whole number bias (WNB) has been defined as the tendency to apply 

natural number knowledge to rational numbers. This misapplication can often 

lead to erroneous responses in mathematical tasks and understanding of rational 

number properties. Whole number bias can be explored using Dual Processing 

Theories. According to Dual Processing Theory we have two types of thinking: 

Type I and Type II. Type I is fast, heuristic based, intuitive, and doesn’t require 

working memory, while Type II is slow, logic based, analytical, and requires 

working memory. Some researchers argue that WNB is an intuitive phenomenon 

and occurs from a failure to activate Type II thinking. Two models explain the 

relationship between Type I and Type II processing. Default Interventionist (DI) 

model states the two types of thinking are exclusive and we first activate Type I 

processing, then if conflict is detected we activate Type II thinking. Hybrid model 

states we have two types of Type I processing: heuristic intuitions and logical 

intuitions. According to Hybrid model, Type II processing is only activated if a 

higher order of thinking is required. Individual factors such as numeracy and 

math anxiety could affect WNB. Attentional Control Theory states that anxiety 

consumes mental resources, resulting in reduction of executive functioning, 

including the ability to inhibit internal and external stimuli that interferes with task 

performance. The purpose of this study was to assess WNB from a Dual 

Processing perspective and examine how individual differences such as 

numeracy and math anxiety would affect WNB and math performance in a 



iv 

fraction magnitude comparison task. It was predicted that individual differences in 

numeracy and math anxiety would help describe WNB according to each model. 

The results support the notion when numeracy is low, a process similar to what is 

described by DI will take place whereas when numeracy is high, a process 

similar to what is described by Hybrid model will take place.  

Keywords: Whole Number Bias, Dual Processing Theory, Numeracy, Math 

Anxiety 
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CHAPTER ONE 

INTRODUCTION 

 

Math and science education is important in modern society. They teach 

students important critical thinking and gives them problem-solving skills. There 

are also many jobs which require some form of Science, Technology, 

Engineering, and Mathematics (STEM) background, and these jobs are projected 

to expand in the coming years. According to the U.S. Bureau of Labor Statistics 

(BLS) (2021), in the United States alone, jobs in professional, business, and 

scientific industries are expected to grow 2.1%. Furthermore, occupations 

involving computers and mathematical components are expected to see fast 

growth in employment. This is partly due to the increased need of telework 

caused by the recent Covid pandemic. There is also a greater need for 

occupations that involve analyzing and interpreting large datasets, such as 

statisticians and data scientists.  According to the Bureau of Labor Statistics, 

statisticians and data scientists and mathematical science occupations are 

expected to be part of the fastest growing occupations. In the next decade 

employment of statisticians is expected to grow 35.4% and that of data scientists 

and mathematical science 31.4%. With the expected employment growth in 

mind, understanding basic mathematical concepts, such as rational number 

processing, is vital. Unfortunately, people who aim to join this rapidly growing 

work force may have difficulties with understanding mathematical concepts or 
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experience math anxiety.  

Math anxiety has been shown to be a great impairment for students when 

learning about mathematical concepts. Unfortunately, students who have high 

math anxiety (HMA) are often more likely to have less motivation and less self-

confidence which results in them avoiding mathematical majors in college, thus 

avoiding careers which utilize math skills (e.g., Ashcraft, 2002). In general, there 

is a negative relationship between math anxiety and math achievement. As math 

anxiety increases, math achievement decreases (e.g., Foley et al., 2017; 

Hembree, 1990). Students with HMA tend to take fewer math related courses 

and receive lower grades (e.g., Ashcraft & Krause, 2007). When students take 

less math courses, have poor motivation and poor performance in math, they are 

less likely to pursue degrees which have heavy involvement of mathematical 

concepts. This leads to less employment of jobs which require mathematical 

understanding.  

Rational numbers are numbers that are represented as fractions or 

decimals in an infinite number of ways (e.g., McMullen & Van Hoof, 2020). 

Understanding rational numbers is an integral part of learning mathematics (e.g., 

Christou et al., 2020; Siegler et al., 2013). People often display a whole number 

bias (WNB) or natural number bias (NNB) toward rational numbers. WNB is the 

tendency to apply natural number knowledge to rational numbers which can often 

lead to erroneous responses in mathematical tasks and understanding of rational 

number properties (e.g., McMullen & Van Hoof, 2020; Ni & Zhou, 2005; 
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Vamvakoussi et al., 2012). This phenomenon can be seen when participants are 

shown decimals and ignore the placement of the decimal in the number. For 

example, if participants are shown 0.13 and 0.4, they might respond that 0.13 is 

larger, ignoring the placement of the decimal and will look only at how many 

digits there are. Another example of WNB is seen when participants are 

activating the components (numerator and denominator) of a fraction as separate 

whole numbers instead of one whole magnitude, combining the two components 

(e.g., Obersteiner et al., 2013). More examples of how WNB is measured will be 

discussed later. This phenomenon has also been observed among school 

children (e.g., Christou et al., 2020; Obersteiner et al., 2016; Rossi et al., 2019) 

and educated/expert adults (e.g., Christou et al., 2020; Fazio et al., 2016; 

Obersteiner et al., 2013, 2016; Vamvakoussi et al., 2012; Van Hoof et al., 2020) 

in various tasks. Whole number bias can be measured in three ways: patterns of 

errors, reaction times, and/or strategies employed by the participant (e.g., Alibali 

& Sidney, 2015). The tasks used to measure WNB can vary widely in how the 

stimuli are presented and which dimension the task is measuring.  

Tasks to Measure Whole Number Bias 

There are several tasks which are used to measure whole number bias 

and they can be categorized as either non-symbolic or symbolic.  Non-symbolic 

tasks consist of shapes such as balls, dots, or lines of different colors 

representing the parts of a ratio (numerator and denominator; see Figure 1). 

These types of tasks do not use Arabic symbols to represent numbers, instead 
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participants only see dots or lines. Participants are then tasked with estimating 

numerosities for each color shape (representing the numerator or denominator) 

and asked to determine which array of shapes is larger in magnitude. According 

to Matthews et al. (2016), there are two systems which are used to explain how 

we perceive number sets: object tracking system (OTS) and approximate number 

system (ANS).  

 

 

Figure 1. Sample stimuli from Matthews et al. (2016)   
Participants are asked to indicate which ratio is larger, either white dots to black 
dots or white line lengths to black line lengths. a and b have dots or lines 
appearing separately whereas c and d have the dots or lines integrated. E and f 
are the control conditions where participants are asked to indicate which array of 
dots or line segment is greater. 
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OTS supports fast and precise enumeration of small sets which is referred 

to as subitizing, whereas ANS supports fast approximations of large sets (e.g., 

Matthews et al., 2016; Piazza, 2010). These two systems are often error-prone in 

fractional magnitudes because fractions can be presented in an infinite number 

of ways (e.g., Matthews et al., 2016). These systems allow participants to quickly 

respond to non-symbolic tasks without the need for counting each item. The 

advantages to using non-symbolic tasks is that they show the most basic form of 

processing numbers and therefore, are more intuition based because there is no 

processing of symbolic numbers. However, this kind of tasks does have 

limitations. For example, when numerosities get too large, estimations get worse 

because participants are no longer able to subitize and the ANS can only go so 

far in estimations.  

There is literature which investigated whether non-symbolic tasks predict 

symbolic math performance and other research which examined how non-

symbolic tasks relate to WNB. For example, Matthews et al. (2016) examined if 

performance in non-symbolic ratio tasks could predict performance in symbolic 

math tasks. They used a ratio comparison task (RCT; see Figure 1) as a non-

symbolic task, and various symbolic math performance tasks including a fraction 

knowledge assessment, symbolic fraction comparison task, and an algebra 

entrance exam. In the RCT task, participants were asked to select the larger ratio 

from each set of dots or to indicate which line segment was larger. They found 

that performance on these non-symbolic RCT could predict symbolic math 
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performance. They posit that these RCTs accessed intuitive knowledge of 

fractions and found participants who performed well also performed well on 

algebra assessments, symbolic fraction comparison task and fraction knowledge 

assessments. These findings suggest that participants can have intuitions about 

continuous numbers and not just whole numbers. Although their results suggest 

participants have intuitions about ratio processing, they did not examine intuitions 

of WNB.  

Alonso-Diaz et al. (2018) examined WNB in non-symbolic and symbolic 

tasks across two experiments. In the first experiment participants were presented 

with stimuli in one of three conditions: non-symbolic (dot size equal), non-

symbolic (cumulative surface area equal), or symbolic (numeral stimuli; See 

Figure 2). All participants were asked a ratio knowledge question. For the non-

symbolic conditions (dot size equal, cumulative surface area equal), participants 

were asked to verbally report the proportion of white or orange balls in each urn. 

In the symbolic condition, participants were asked the question: “If an urn has 15 

green balls and 15 red balls, what is the probability of pulling a red ball?”. They 

found most participants were able to state that the ratios were the same between 

urns. This suggests participants had a basic understanding of rational number 

concepts. Next, they asked participants to choose which urn they preferred if 

they were pull a white ball and win $100 or pull an orange ball and win $0. They 

found that participants chose the urn with more balls significantly more often than 

the urn with less balls, even though the two urns had the same ratio, regardless 
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of stimulus size for non-symbolic stimuli. The same pattern was found for the 

symbolic condition, in which the larger number fraction was chosen more often 

than the smaller number fraction even though the ratios were the same between 

urns (e.g., 9/9 versus 4/4). These results showed that participants are biased 

toward the larger number of items even though they are aware that the ratios are 

the same between urns because they thought larger numbers meant greater 

chance of winning, thus the participants showed a WNB. In other words, these 

participants showed explicit knowledge of ratio understanding and they still chose 

the urn with the larger numbers. If there was no WNB they the urns would be no 

difference in which urn was chosen. In Experiment 2, the stimuli were different 

colored dots presented in a circle with a dotted outline (See Figure 3). 

Participants were asked to indicate which circle of dots had a higher winning 

probability. The winning probability was the chance of a participant choosing the 

correct color (in this case orange) to win $100 versus $0 if a green ball was 

chosen. They also manipulated congruency, in which larger ratio also had larger 

numerosity (more dots overall) in congruent trials, whereas in incongruent trials, 

the larger ratio had smaller numerosity (less dots overall). They found a 

congruency effect for accuracy on the probability distance (the distance between 

the ratios for each pair of urns). For congruent items, accuracy increased as the 

probability distance increased, and for incongruent items, accuracy increased as 

the probability distance increased but at a slower rate. Participants in these 

experiments did prefer the option with greater numerosity of winners, but it was 
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not due to a lack of understanding of ratios, as in both experiments, participants 

showed explicit ratio knowledge. According to Alonso-Diaz et al. (2018) their 

study suggests that there is an intrinsic WNB in which participants are more 

focused on the number of items presented rather than the magnitude.  

 

 

Figure 2. Sample stimuli from Alonso-Diaz et al. (2018) experiment 1.  
Participants were presented one of these three trials. They were asked to 
indicate which of the two urns they would prefer to choose form to pull the 
winning color (either white or orange). 
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Figure 3. Sample stimuli from Alonso-Diaz et al. (2018) experiment 2.  
Participants chose the circle they thought would have the greater chance of 
winning. They were told to imagine that if they pulled an orange ball, they would 
win $100, but if they pulled the green ball, they would not win any money. The 
numbers below each circle represent the chance of winning in that circle. 

 

WNB can be measured using symbolic tasks such as, fraction magnitude 

comparison, decimal comparison, algebraic equations, and density propensity. 

These tasks evaluate different dimensions of how rational numbers are different 

from natural numbers: representations, size, operations, and density (e.g., 

Obersteiner et al., 2016).  

The fraction magnitude comparison task is one way to measure size of 

rational numbers in comparison to natural numbers. This task is the comparison 

of two fractions and participants are asked to indicate which fraction of the two is 

greater in magnitude (e.g., DeWolf & Vosniadou, 2015; Morales et al., 2020; 

Obersteiner et al., 2013, 2020; Van Hoof et al., 2020). Fraction comparison items 

can either be common component items in which the numerator or denominators 

are shared or without common components in which there are no shared 

components between fractions. For common component items that are 

congruent, the denominators are the same between fractions, whereas for 

incongruent items the numerators are the same between fractions (e.g., 
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Vamvakoussi et al., 2012). For these items, congruent trials coincide with natural 

number rules whereas incongruent trials do not. For example, 3/5 versus 4/5, 3 is 

less than 4 which follows the same rules as natural numbers, however in an 

incongruent trial, such as 5/9 versus 5/11, the reasoning must be reversed, since 

9 is less than 11, but 5/9 is larger in magnitude than 5/11. In without common 

component congruent items, participants might compare 5/13 versus 9/15 and 

are asked which is larger. For this item, the components (numerator and 

denominator) separately are larger in numerosity (9 > 5 and 15 > 13) and larger 

in magnitude (9/15 = 0.6, 5/13 = 0.38) which also follow natural number rules. 

For without common component incongruent items, the larger fraction in 

magnitude has smaller components in numerosity (e.g., 12/27 versus 15/49 in 

which 12 < 15 and 27 < 49 but 12/27 > 15/49) which does not follow natural 

number rules. In without common component items, there can also be instances 

that are considered neutral in which both components vary between fractions and 

one side is not larger in numerosity than the other (e.g., 6/14 versus 8/11; 6<8 

but 14>11, but 6/14 < 8/11). An advantage to using a fraction magnitude 

comparison task is that it is easy to manipulate task complexity such as items 

having more or less digits, sharing common components or no common 

components as well as manipulating the distance between the two fractions. It is 

also possible to manipulate the familiarity of fractions. For example, it is far 

easier to compare fractions such as 1/4 or 1/2 compared to 4/14 or 7/34. 
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However, for this type of task, there are many strategies, and it is difficult to be 

certain which strategies are employed by participants.  

The second way to measure size of rational numbers compared to natural 

numbers is the decimal comparison task. The decimal comparison task is the 

comparison of two decimals in which the length of decimals or how many decimal 

places are manipulated. For example, comparing 0.13 versus 0.2, participants 

may ignore the placement of the decimal point and compare 13 versus 2. 

Therefore, the WNB is evident when participants choose the longer decimal even 

if it is not larger in magnitude (e.g., Roell et al., 2019). An advantage of this task 

is its simpler presentation of rational numbers which look more like natural 

numbers. However, it is harder for participants to exhibit a WNB in this task 

because its difficulty level is low. Participants have been shown to ignore part of 

the decimal and to focus solely on the tenths place in this task (e.g., Dewolf et 

al., 2015). In this task, they can quickly determine which is larger without 

considering the entire number, therefore this task is not ideal for examining WNB. 

A third way to measure WNB is through an algebraic equations task which 

measures the operation dimension of WNB. This task is used to assess 

misconceptions of algebraic rules, such as addition and multiplication make the 

result larger, and subtraction and division make it smaller. These rules are 

applicable to whole numbers (other than one) but might be erroneously applied to 

equations with rational numbers (e.g., Obersteiner et al., 2016). This 

misconception illustrates a bias toward whole numbers thus showing a WNB 
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effect. Rational numbers less than one will not abide by the same rules natural 

numbers abide by in multiplication and division. An example of this task is when 

participants are presented with an equation with an unknown variable and asked 

to determine the validity of the statement. For true congruent and incongruent 

trials, the phrase “can be” is used, whereas for false congruent and incongruent 

trials, the phrase “always” is used. For example, in a congruent, true trial 

participants are presented with an equation such as 5 + 2x, and they are asked 

whether the result “can be” greater than 5. Here, the answer is true because the 

result can be greater than 5. However, in a congruent false trial, participants are 

presented with “1 + 10y is always greater than 1”. Participants must respond with 

false, since the outcome is not always greater than 1. For an incongruent true 

trial, participants are presented with “3 + 12z can be smaller than 3”. For this trial, 

a correct answer is true. However, in an incongruent false trial, participants are 

presented with “2 + 4y is always smaller than 2”. The correct answer here is false 

since the outcome is not always smaller than 2. (e.g., Vamvakoussi et al., 2012). 

This task focuses more on how individuals apply natural number knowledge and 

evaluates whether those individuals can adapt their thinking to rational numbers. 

However, this task requires participants to have a much more abstract 

understanding of addition, multiplication, subtraction, and division when 

reasoning about rational numbers.  

The final way WNB can be assessed is through a density propensity task 

which measures the density of rational numbers. This task examines the 
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overapplication of natural number rules in which there is always a successor or 

antecessor to any number. However, in the case of rational numbers, there are 

an infinite number of numbers between any two numbers (e.g., McMullen & Van 

Hoof, 2020). One example of this task is when participants are given two rational 

numbers, such as 5/9 and 8/9, then participants are asked how many numbers 

exists between these two numbers. When participants display a WNB, they 

respond by saying there are only two numbers (6/9 and 7/9; McMullen & Van 

Hoof, 2020). However, the correct response would be “too many to count”, or “an 

infinite number”. This task examines whether participants have a conceptual 

understanding of rational numbers and what makes them different from natural 

numbers. However, this task does not examine participant’s understanding of 

number magnitude and is therefore limited in ways to manipulate task difficulty. 

While considering all the tasks to measure WNB, the fraction magnitude 

comparison task seems to show the largest effect of WNB and be the most 

manipulatable of all the tasks. The decimal comparison task is simple, so it 

makes it too easy for participants to do, and participants sometimes do not 

consider the entire number when reasoning. The algebraic equation task appears 

to be too abstract for participants because it would require additional instruction 

on participants using rational numbers and possible clarification of what a rational 

number means. Finally, the density propensity task does not assess participants’ 

understanding of magnitude. The density propensity task is also very simple, and 

it is solely assessing whether participants understand there are infinite numbers 
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between two rational numbers. These characteristics suggest the fraction 

magnitude comparison task as the best measure to assess participants’ WNB, 

even though one downside is it may not be easy to determine which strategies 

participants may employ during the task. 

Numeracy and Whole Number Bias 

Alibali and Sidney (2015) argue that activation of mental representations 

of rational number knowledge would affect performance on tasks. Poor activation 

of mental representations of rational numbers would lead to poorer performance 

on specific tasks. There are two main strategies are often used in a fraction 

magnitude comparison task: componential and holistic. A componential strategy 

is when participants only look at the parts of a fraction (numerator and/or 

denominator) without considering its magnitude, whereas a holistic strategy is 

when participants consider the fraction as one number and consider its 

magnitude. Alibali and Sidney (2015) also report that a participant’s level of 

mathematical understanding or numeracy would elicit different strategy patterns. 

For example, for a non-math expert group, in a fraction magnitude comparison 

task, participants may compare uncommon components (componential strategy) 

if the fractions share components for both congruent (same denominator) and 

incongruent (same numerator) items. This strategy often uses intuitions about 

natural numbers, such that larger in numerosity means larger in magnitude. 

However, if the fractions do not share components and are congruent, 

participants will choose the fraction based on how large the fractions components 
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are in relation to each other. If the fraction does not share components and are 

incongruent, non-expert participants will guess. This is not the same strategy 

pattern seen in expert math participants. First, according to Alibali and Sidney 

(2015), if fractions share a component, expert math participants will use a 

componential strategy and compare the uncommon component (same as the 

non-expert group). However, if the fractions do not share components, expert 

math participants will estimate or compute both fractions’ magnitudes (holistic 

strategy). If the difference between fraction magnitudes is large, they will respond 

with which fraction is larger by estimating magnitudes; however, if the difference 

between fraction magnitudes is small, expert math participants will compute each 

fractions magnitude or will convert the fractions to common denominators and 

report which fraction is larger by comparing the numerators.  

It is important to understand individuals with different levels of numerosity 

use different strategies about rational numbers which in turn may result in 

differences in performance in a WNB task (e.g., Obersteiner et al., 2016; 

Obersteiner et al., 2020). In other words, low numeracy (LN) participants may 

exhibit a WNB because they are more prone to using a componential strategy 

applying only natural number intuitions to all problem types. On the other hand, 

high numeracy (HN) participants may exhibit no WNB or even a reverse 

congruency effect because they could be utilizing both componential and holistic 

strategies. However, as we learn about rational numbers, we can start 

developing new ways of thinking about them. For example, HN participants could 
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develop learned intuitions about rational numbers (e.g., Van Hoof et al., 2020). 

This is because when we initially start learning about rational numbers, we 

already have learned natural number rules and these natural number rules do not 

apply to rational number information. For example, when we learn about 

algebraic equations, we learn using natural numbers and using these types of 

numbers always leads to the same results, such that when adding or multiplying 

two terms the result is always larger and when subtraction or dividing, the result 

is always smaller. These learned intuitions about natural numbers are then 

challenged when learning about rational numbers such that when multiplying a 

number by a rational number less than one, the result is smaller and when 

dividing by a number less than one, the result is larger. Therefore, while we learn 

about rational numbers, it is possible misconceptions may develop into intuitions 

about rational numbers, and they compete with natural number intuitions (e.g., 

Rinne et a., 2017; Van Hoof et al., 2020). Rinne et al. (2017) state when children 

initially learn how to reason about fractions and determine which fraction is 

larger, they are biased by natural number rules and choose fractions that have 

larger components. Then when they start understanding fractions more, they 

start exhibiting a bias towards fractions which have smaller components because 

they learned natural number rules do not always apply. In other words, in early 

understanding of fractions, when asked which fraction is larger, children will 

choose fractions that are larger in numerosity and as they learn more about 

fractions, they will start choosing fractions that are smaller in numerosity. These 
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secondary learned intuitions about rational numbers, although misconceptions, 

facilitate performance in incongruent items. For example, in a fraction magnitude 

comparison task, congruent items could be solved using intuitions about natural 

numbers, whereas incongruent items could  

be solved using these learned intuitions about rational number (see Table 1).  

This learned intuition about rational numbers is only beneficial for 

incongruent items because in these items, the fraction which is larger in 

magnitude has smaller components and is therefore smaller in numerosity. 

Intuitions about natural numbers are only beneficial for congruent items because 

in these items, the fraction which is larger in magnitude is also larger in 

numerosity. Therefore, when participants apply natural number intuitions in a 

fraction magnitude comparison task, it would result in a WNB whereas if 

participants only apply rational number intuitions, it would result in a reverse 

WNB (see Table 1).  

 

Table 1. Examples of whole number bias and rational number bias in 
fraction magnitude comparison task. 

 CC  WCC   

 C IC  C IC   

 1/7 vs. 5/7 4/8 vs. 4/9  7/9 vs 3/8 5/9 vs 3/4   
NNB Correct Incorrect  Correct Incorrect   
RNB Incorrect Correct  Incorrect Correct   

        
Natural Number strategy: Longer is larger, 3.5 < 3.42 (incorrect) 
Rational Number strategy: Shorter is larger, 2.7 > 2.35 (correct), 3.4 > 3.42 
(incorrect) 

Note. NNB = Natural Number Bias; RNB = Rational Number Bias 
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Morales et al. (2020) examined participants from a highly selective 

university who were students from the Department of Physical and Mathematical 

Sciences, using a fraction magnitude comparison task. Their fraction items were 

both on one side of 1/2 to avoid the benchmarking strategy. Their item design 

was: 2 (Components: common components vs without common components) x 3 

(Congruency: Congruent, Incongruent, Neutral) x 3 (Gap Thinking: leads to 

corrects answer, leads to incorrect answer, both fractions have the same gap). 

Morales et al. (2020) revealed a significant reverse congruency effect in reaction 

time and accuracy for items that did not share components. In other words, 

incongruent problems were solved more quickly and accurately than congruent 

ones. This suggests these high numeracy (HN) participants were not affected by 

WNB. It is possible these HN participants were exhibiting learned intuitions about 

rational numbers which resulted in a reverse WNB for accuracy and reaction 

time. Morales et al. (2020) also reported that gap thinking had no effect on 

reaction time or accuracy. 

Dual Processing Theories and Whole Number Bias 

Dual processing theory (DPT) is described using two types of thinking: 

Type I and Type II. Type I thinking is thought to be fast, automatic, and does not 

require working memory to respond, whereas Type II thinking is thought to be 

slower, more effortful, and would require working memory resources (e.g., 

Gawronski & Creighton, 2013; Stanovich, 2009). There are several models which 

aim to explain the relationship between these two types of thinking. First, the 
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Default Interventionist Model (DI; e.g., Evans, 2008; Evans & Stanovich, 2013) 

claims the two types of thinking are exclusive in which Type I is heuristic based 

and Type II is analytical based. According to this model, Type I always occurs 

first and Type II is only engaged when a conflict in the initial response is 

detected; and therefore, a higher order of thinking must take place. Once Type II 

thinking is engaged, a second, more logical response might be generated which 

may be different from the initial Type I response. Another model is the Parallel 

Model (e.g., Sloman, 1996). This model claims both types of thinking occur 

simultaneously. A third model is the Hybrid Model (e.g., De Neys, 2017; 

Pennycook, et al., 2015; Trippas et al., 2017). The Hybrid Model aims to combine 

aspects of both DI and Parallel processing by stating that Type I processing can 

be either heuristic or logic based and still be fast or automatic without the use of 

working memory resources. It also states that Type II processing may take place 

if more effortful reasoning is required (see Figure 4). It could be argued that Type 

I processing would facilitate a componential strategy since this strategy requires 

little effort and individuals can apply intuitions about number information, 

whereas Type II processing would facilitate a holistic strategy since this strategy 

requires more effort and mindware to compute or estimate a magnitude.  
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Figure 4. Three Models of Dual Processing Theory 
 

 

There are several studies which examined WNB using DPT.  Van Hoof et 

al. (2020) examined adult participants in a fraction magnitude comparison task. 

They tested participants at two different times. On day 1, there was no time 

restriction for participants to solve problems, then on day 2, a time restriction was 

placed based on participants median response times from day 1. They aimed to 
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examine whether using time restriction would elicit more intuitive responses from 

their participants and avoid Type II thinking. Their items varied in complexity and 

were controlled for the distance effect such that all items were between 0.153 

and 0.176 in magnitude between fractions. They also controlled for 

benchmarking strategy by having fractions magnitude above 0.2, or below 0.8 

and having both fractions on one side of 1/2. Finally, they only included items 

that were less than 1 and in simplest form. The same items were administered 

for each testing day. They had four research questions. First, they examined 

whether participants would exhibit a WNB with no time restriction for both 

accuracy and reaction time. They found for the first test day participants were 

significantly more accurate and faster on congruent trials than incongruent trials; 

therefore, confirming traces of WNB in their participants. The second question 

was about the intuitive nature of WNB. On the second day of testing, with the 

time restriction, they found significantly lower accuracy on the congruent and 

incongruent items than the first day of testing in which there was no response 

time restriction. Also, the decrease in accuracy from day 1 to day 2 was 

significantly greater for incongruent items than for congruent ones, thus 

confirming the intuitive nature of WNB. Question three was aimed to examine 

whether participants exhibited conflict detection. They found reaction times were 

significantly shorter for correctly solved congruent trials than for incorrectly 

solved incongruent trials during the response time restriction day (day 2), which 

suggested conflict detection was present. They had a fourth question about the 
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nature of the conflict detection. According to DI, conflict detection occurs in Type 

II thinking intervention whereas the Hybrid model claims conflict detection can 

occur intuitively from competing intuitions (Van Hoof et al., 2020). Since reaction 

times were restricted on day 2, Type II thinking was not activated and responses 

were based on intuitions which suggests conflicted detection was intuitive 

because reactions times were significantly shorter for correctly solved congruent 

trials than incorrectly solved incongruent trials, therefore, supporting the Hybrid 

model. Although this paper explored how Type I thinking effects performance on 

a fraction magnitude comparison task, it failed to consider how participants would 

do when they are able to activate Type II thinking.  

Vamvakoussi et al., (2012) examined performance on four tasks (fraction 

magnitude comparison, decimal magnitude comparison, operations of 

addition/subtraction and multiplication/division, and density propensity of 

fractions and decimals) and explained their results using the dual processing 

theory. They hypothesized that correct incongruent responses would have longer 

reaction times compared to correct congruent reaction times which would provide 

support for DI model. Their findings were inconsistent between the two 

magnitude comparison tasks (fraction and decimal). For fraction comparison 

items that shared a common component (same numerator or same 

denominator), they found no difference in accuracy between congruent (same 

denominator) and incongruent items (same numerator). However, reaction times 

were significantly longer in incongruent than congruent trials, suggesting Type I 
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responses were inhibited in these trials supporting DI model. For fractions 

without common components, there were no differences in reaction time or 

accuracy between congruent and incongruent trials which suggests, participants 

were not subject to larger in numerosity means larger in magnitude, rather they 

used holistic strategies, in which they computed the magnitude of each fraction, 

using Type II processing. Although there was no difference in reaction time for 

decimal comparison problems, there was a difference in accuracy in which 

incongruent trials were more accurate than congruent trials indicating a reverse 

congruency effect. Two possible explanations were provided. First, participants 

were prone to a “shorter is larger” concept sometimes seen in older children and 

adults. Second, participants became suspicious of the task which resulted in 

poorer performance in congruent items. For both operation items 

(addition/subtraction and multiplication/division), there was significantly lower 

accuracy and longer RTs for incongruent trials than congruent trials suggesting 

intuitions of operations (Type I thinking) were inhibited to respond correctly, and 

participants activated Type II thinking. For density propensity items, there was 

significantly higher accuracy in congruent compared to incongruent items, but no 

difference in reaction time, suggesting that the idea of infinite numbers existing 

between two rational numbers was difficult to understand overall. Their findings 

in the fraction magnitude comparison task in general support the DI model 

because in simple items (common component), Type II thinking was activated for 

incongruent trials but not congruent trials, resulting in a WNB in reaction time, 
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whereas in more complex items (without common component), Type II thinking 

was activated for both congruent and incongruent trials resulting in no WNB in 

reaction time or accuracy.  

Obersteiner et al. (2013) aimed to determine whether expert math level 

participants from the Department of Mathematics or from the Section of Applied 

Mathematics and Numerical Analysis of the Department of Computer Science 

could overcome WNB on fraction comparison problems. They examined whether 

participants would use a componential or holistic strategy. As previously stated, 

the componential strategy (Type I) is when participants ignore the magnitude of a 

fraction and look only at its components (numerator and/or denominator) as 

separate numbers. The holistic strategy (Type II) is when participants compute or 

estimate a magnitude of the fraction and assess the fraction as one number 

instead of two separate numbers. There were five types of fraction comparison 

pairs: two with common components and three without common components. In 

the common components congruent (CC-CO) items shared denominators (e.g., 

7/8 versus 5/8), whereas common component incongruent items (CC-IC) shared 

numerators (e.g., 5/9 versus 5/7). It was expected that participants would apply a 

componential strategy as it is the most efficient way to complete these items. In 

the without common components congruent (WCC-CO) condition, each 

component (both numerator and denominator) of one fraction was larger than the 

respective component of the other fraction and larger in magnitude (e.g., 24/25 

versus 11/19). In the without common components incongruent (WCC-IC) 
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condition, the parts were smaller but the fraction was larger in magnitude (e.g., 

25/36 versus 19/24). In the without common components neutral (WCC-N) 

condition, both parts of one fraction were not larger than the other fraction (e.g., 

17/41 versus 11/57). Accuracy was not assessed because it was at ceiling level 

for these expert level participants, therefore only reaction time was examined. 

They found a WNB in CC items but not in WCC items. In other words, in CC 

items, reaction times were significantly faster in congruent trials than incongruent 

trials, whereas in WCC items, there was no difference in reaction time between 

congruent and incongruent trials which supports the bias is rooted in intuition and 

supports DI model since it was found in expert mathematicians in items that 

require simple straightforward processing (CC) and not more complex items 

(WCC). Furthermore, it was reported that for WCC items, reaction times were 

predicted by the distance between fraction magnitudes, but reaction time could 

not be predicted by the distance between numerators or distance between 

denominators, which suggested participants used holistic strategies rather than 

componential strategies. Although Obersteiner et al. (2013) was able to find 

WNB in expert math participants and explain their findings using DI model, they 

did not examine non expert participants and see how they would perform on a 

WNB task.  

Obersteiner et al. (2016) claimed that natural numbers are included in 

rational numbers; for example, 1, 3, and 4 are included in 1/3, 1/4, and they 

automatically activate natural number knowledge. This automatization of 
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activating natural number knowledge could also be happening in algebraic 

expression problems. For example, participants who are presented with algebraic 

expression problems may activate rule-based solutions to the problems (e.g., 

multiplication makes the result bigger, and division makes the result smaller). If 

participants are solely considering natural numbers, this may be the case; 

however, when they are plugging in rational numbers, these ‘rules’ could lead to 

incorrect answers. Experiment one examined secondary school students. 

Participants were presented with algebraic expressions, such as 4 * x < 4, and 

asked to determine if they could be true or not. They were first presented a 

natural number block, then a rational number block and both block contained the 

same stimuli except x was different between the blocks. For the natural number 

block, participants were told “x” was a natural number, and the correct answer 

was yes for half of the items while for the other half, the correct answer was no. 

Also,, all items were congruent, which meant that using a natural number would 

always yield a correct response. For the rational number block, the same items 

were used but participants were told “x” represented a positive rational number. 

For congruent items, natural numbers would yield a correct response and for 

incongruent items, natural numbers would yield an incorrect response. For these 

items, the correct answer was always yes if participants were using a positive 

rational number. They found students had better accuracy on natural number 

block compared to rational number block overall, which suggested participants 

applied the same strategy and plugged-in natural numbers for both blocks. Within 
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the rational number block, they found that accuracy was higher for congruent 

items than for incongruent items, suggesting a WNB. They also found that the 

accuracy of congruent items in the rational number block was not significantly 

different from the accuracy in the natural number block, possibly because their 

students were not aware of the differences in the task requirement between 

natural block and rational block. Also, the students RTs were shorter in the 

rational number block than in the natural number block. However, within the 

rational block there was no difference in reaction time between congruent and 

incongruent items suggesting natural number knowledge was applied, and 

participants did not engage in Type II processing. This may have been due to 

participants not understanding the differences between blocks or possible 

training effects from the natural number block, which always occurred first. 

Another explanation could be that their participants used their heuristics about 

operations such as multiplication makes the result larger, and division makes the 

result smaller which is true when natural numbers are plugged in. In a second 

experiment, they examined expert mathematicians in the same procedure as 

experiment one. All participants had a master’s degree or PhD in mathematics. 

They expected no difference between natural and rational number blocks and no 

difference between congruent and incongruent items in the rational block for 

accuracy. Also, they predicted accuracy to be at the ceiling level and reaction 

time would be shorter for rational block items than for natural block items 

because these participants would be able to apply knowledge of the algebraic 



28 

 

expressions solvability in which using any rational number would always yield 

correct results for rational block items. Results showed no difference within the 

rational block between congruent and incongruent items for accuracy or reaction 

time. However, accuracy was greater for the rational number block items than for 

the natural number block items suggesting these highly proficient participants 

were relying on their knowledge of the algebraic expression’s solvability rather 

than general rules of multiplication and division, therefore showing no WNB. 

Reaction times were also significantly shorter for rational number block items 

than for natural number block items and they attributed this to a possible training 

effect since the they always performed the natural number block first. They 

suggested this could be due to participants relying on item structure instead of 

considering the problems item by item in the natural number block. These 

findings support the notion that WNB is affected by experience or expertise 

because their main finding was that their student group was affected by WNB 

whereas the expert group was not. It could be argued their findings gave support 

for a hybrid model. In other words, LN participants exhibited a traditional WNB 

such that they had greater accuracy on congruent than incongruent problems 

suggesting they did not have the necessary mindware to complete the task. HN 

participants (expert math group), on the other hand, showed no difference in 

accuracy or reaction time between congruent and incongruent items in the 

rational number block. Also, the finding of greater accuracy in rational number 

block items than natural number block items suggest their knowledge of the 
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solvability of algebraic equations could have been a hinderance to their ability to 

solve natural number block items since it appears participants still tried to plug in 

a rational number to solve the expression even in the natural number block 

items. Their knowledge made them faster and more accurate on a more difficult 

problem, therefore, intuitive Type I logical processing may have been displayed 

in these participants.  

Obersteiner et al. (2020) aimed to examine how college students with 

different math experience levels would perform in a fraction magnitude 

comparison task using without common component items. They examined 

congruency (congruent versus incongruent), benchmarking strategy (straddling, 

in between, and close to 0 or 1), and half of the participants received a tip on how 

to apply a benchmarking strategy by thinking of well-known fractions such as 1/2 

or 1/4. Math experience was determined by how many calculus courses had 

been taken by participants. The low math experience group had less than two 

semesters of calculus, whereas the high experience group had two semesters of 

calculus or more. Overall, there was a reverse congruency effect. Accuracy was 

better on incongruent items compared to congruent ones. High math experience 

participants were more accurate than low math experience participants, but they 

had similar reaction times. The highest accuracy was on close-to-0-1 problems 

followed by straddling problems and in-between problems had the lowest 

accuracy. A three-way interaction was found in reaction time among congruency, 

problem type and mathematics experience. Low math experience participants 
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had a reverse congruency effect for in between and straddling benchmark 

problems but not close to 0 or 1. High math experience participants did not show 

a congruency effect in any benchmark type suggesting they had a greater 

understanding of rational numbers. There were two possible explanations for 

these findings. First, this bias exists in the lower math experience participants 

because they relied on a gap thinking strategy that is successful on incongruent 

items more often than congruent items which would explain the reverse WNB. 

Second, they state participants may have been exhibiting a bias seen in Rinne et 

al. (2017) such that fractions with smaller components are larger in magnitude 

which facilitates performance on incongruent and not congruent items. These 

findings also suggest high math experience participants used a different strategy 

than their low math experience counterparts, possibly a holistic strategy. The tip 

given to half of the participants had no effect on performance. This study 

supported the finding that benchmarks, especially 0 and 1, are important in 

fraction comparison tasks and it allowed participants to overcome WNB more 

easily. They claim that their results of a reverse congruency effect challenge dual 

processing account of WNB because they did not find a WNB suggesting their 

participants were not affected by intuitions about natural numbers. These findings 

do challenge the default interventionist model but provide support for a hybrid 

model because their participants exhibited logical intuitions about rational 

numbers since performance was better on incongruent items than congruent 

items. It is important to note, their participants were from a highly selective 
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university and overall had high SAT and ACT scores, and it is possible these 

participants may not exhibit a traditional WNB because of their expertise, 

therefore their results may not generalize to other populations. Although many of 

these papers explain WNB using dual processing theory, they did not examine 

how other factors would influence the bias, such as math anxiety or working 

memory capacity. 

Math Anxiety and Whole Number Bias 

Another factor that may affect WNB is math anxiety (MA). MA can be 

defined as feelings of apprehension, fear or tension which interferes with math 

performance (e.g., Ashcraft, 2002). Anxiety in general has been shown to affect 

performance on a variety of cognitive tasks because anxiety is known to occupy 

mental resources; and therefore, it would impair task performance (e.g., Beilock 

& Maloney, 2015). For example, Attentional Control Theory (ACT) by Eysenck 

(e.g., Eysenck et al., 2007) argues that anxiety occupies mental resources which 

reduces executive functioning. This includes the ability to inhibit responses to 

internal and external stimuli which could interfere with task execution. ACT also 

distinguishes between effectiveness and efficiency. Effectiveness is measured 

through accuracy rates, whereas efficiency is the amount of effort put into a task 

and is measured with a composite score of accuracy divided by response times. 

Efficiency is used because effectiveness (accuracy) alone may not measure 

effects of anxiety on cognition if participants put in enough effort into the task. In 

other words, highly anxious individuals may have the same accuracy as their low 
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anxious counterparts but at the cost of reaction time such that highly anxious 

individuals would have greater reaction time than low anxious individuals.  

ACT could also explain the relationship between math anxiety and 

mathematical tasks. Performance on math tasks is impaired when participants 

experience high MA. As stated before, there is a negative relationship between 

math anxiety and math achievement (e.g., Ashcraft, 2002; Ashcraft & Krause, 

2007; Hembree, 1990). Where does this relationship stem from? Does math 

anxiety cause poor performance or does poor performance on mathematical 

tasks result in greater math anxiety? Foley (2017) argued that math anxiety has a 

bidirectional relationship with performance. In other words, math anxiety could 

cause poorer performance on math related tasks, but poorer performance could 

also result in higher math anxiety. Other researchers propose different accounts 

of the relationship. Ashcraft and Krause (2007) argued that math anxiety was 

learned in class settings. For example, when a student is called to the board to 

work a problem and they do poorly, they are embarrassed in front of their peers 

and teacher which could result in greater anxiety. They also stated that if 

students have low math aptitude or low working memory capacity, they may be at 

risk for developing math anxiety. There are several math anxiety measures. 

These measures assess a variety of aspects which involve mathematical 

understanding during academic situations (e.g., taking a math exam or reading a 

mathematics textbook), attitudes towards mathematics in everyday life (e.g., 

calculating a tip at a restaurant), and emotions such as nervous, anxious, 
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confidence, and afraid (e.g., Ma, 1999). A measure widely used to assess 

mathematics anxiety is the Mathematics Anxiety Rating Scale (MARS) which was 

developed by Richardson and Suinn (1972). This is a 98-item questionnaire 

which used a 5-point Likert scale (1 not at all anxious to 5 very much anxious). 

The MARS has a test-retest reliability of r = 0.85 and is negatively correlated with 

math performance (r = -0.64). Plake and Parker (1982) revised MARS to a 

shortened 24-item questionnaire, Mathematics Anxiety Rating Scale-Revised 

(MARS-R). The MARS-R correlated with MARS (r = 0.97) and was reliable (r = 

0.98). Hopko et al. (2003) further shortened the scale and termed it the 

Abbreviated Math Anxiety Scale (AMAS). AMAS is a 9-item questionnaire with 

good test-retest reliability (r = 0.85) and strong convergent validity with MARS-R 

with r = 0.85.  

Sidney et al. (2019) investigated effects of math skills, math anxiety (MA), 

working memory (WM), and strategy variability on math performance using a 

fraction magnitude comparison task. They theorized strategy variability would 

mediate the relationship between MA and math performance and that math skills 

and WM would moderate the relationship between strategy variability and math 

performance (see Figure 5). They found that strategy variability mediated the 

relationship between MA and math performance, and WMC and math skills 

moderated the relationship between strategy variability and performance. For 

high math skill participants, high and low WM showed the equivalent level of 

performance. For low math skill students, low WM participants performance 
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increased as strategy variability increased while there was no change in 

performance or strategy variability for high WM participants. High math skill 

participants should have greater mindware of mathematics understanding 

whereas low math skills should show lower mindware. Also, higher WM would 

show better Type II processing than low WM participants since Type II 

processing requires WM. Therefore, the results that showed no WM effects on 

math performance for high math skill participants suggest that high math skill 

participants had the mindware to employ efficient strategies, regardless of their 

WM capacity. For low math skills students, low WM participants performance 

increased as strategy variability increased while there was no change in 

performance for high WM participants. This suggests that for low WM 

participants they would be able to overcome difficulties in Type II thinking if they 

were able to better adapt their strategy use. This also suggests participants with 

low math skills and high WM were able to activate Type II thinking while it was 

more difficult for low math skills and low WM participants since they did not have 

same mental resources. Their findings could support a Hybrid model of DPT 

becasue high math skill participants could be showing intuitive logic which is why 

there is no difference in WM on performance. However low math skill 

participants’ performance was dependent on WM suggesting they may have 

activated Type II thinking and did not have intuitive Type I logic.  

MA occupies attentional resources that reduce WM resources which then 

reduce math performance (e.g., Ashcraft & Krause, 2007; Szczygiel et al., 2021). 
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In a study involving children, Szczygiel et al. (2021) examined the mediating role 

of WM on MA and math achievement and found that WM mediated the 

relationship between MA and math achievement such that as MA increased, WM 

resources decreased and while WM decreased so did math achievement. 
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Figure 5. Experiment results from Sidney et al. (2019).  
Lines indicate significant relationships between variables.  A: Experiment 1 
results. B: Experiment 2 results. 
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Summary 

Whole Number Bias (WNB) can be examined from the perspective of dual 

processing theory (DPT). The effect of WNB has been previously explained from 

a Default Interventionist (DI) approach. According to the DI model, WNB occurs 

from a failure to activate Type II thinking and WNB is rooted in heuristic intuition. 

For rational number problems Type I processing is engaged when an intuitive 

answer, based on natural number knowledge, is easily activated. According to 

the DI model, for congruent problems, Type I processing would lead to correct 

answers whereas for incongruent problems, Type II processing must be activated 

to respond correctly. Furthermore, incongruent problems would take longer to 

respond to regardless of individual differences such as numeracy and anxiety. 

According to the Hybrid model, WNB would occur differently based on individual 

differences such as numeracy. The Hybrid model states that Type I processing 

can be both heuristic and logic based in which processing still occurs quickly and 

without working memory resources. Type II processing is still analytical based 

and requires working memory resources. It could be argued that HN participants 

may have logical Type I processing which could be examined in accuracy and 

reaction time data. HN participants should show greater accuracy and shorter 

reaction times than LN participants, thus showing a smaller WNB effect. This 

would suggest reasoning about rational numbers for HN participants is more 

intuitive because of their mindware. For LN participants, they would still have to 

activate their Type II thinking to perform the task which would result in longer 
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reaction times than HN participants. In other words, DI model would explain 

performance in individuals with LN, whereas the Hybrid model would explain 

performance in individuals with HN. 

Math experience (ME) has not been consistently evaluated throughout the 

literature and could be one reason why there are inconsistent results reported. 

Obersteiner et al. (2013) examined expert math level participants in a fraction 

magnitude comparison task and reported a congruency effect for common 

component items in which reaction times were shorter for congruent than 

incongruent problems, but no difference was found for without common 

component items. In other words, their high ME participants showed a WNB in 

fractions which shared components, but no WNB in items that do not share 

components. However, Morales et al. (2020) examined participants from a highly 

selective university and found a reverse congruency effect in both reaction time 

and accuracy in a fraction magnitude comparison task for items that did not 

share components. These findings support the notion that HN participants have 

intuitive logic because as item difficulty increases, participants are no longer 

influenced by natural number intuitions and may utilize rational number intuitions. 

Another reason for inconsistent results could be from differences in problem 

types. In addition to differences in how ME is measured, some researchers have 

focused more on types of strategies participants might use. Obersteiner et al. 

(2020) did not find the WNB in high ME participants. They examined participants 

from a highly selective university and separated them based on how many 
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calculus courses they had taken. Across all participants and conditions, they 

found a reverse congruency effect in a fraction magnitude comparison task. They 

further reported that their low ME participants exhibited a reverse congruency 

effect on some item types (in-between and straddling) whereas high ME did not 

show any congruency effect on any problem types. Since these participants were 

from a highly selective university, their low ME participants could have 

misconceptions about rational numbers they never unlearned but their high ME 

participants were able to successfully do the task without showing a WNB 

suggesting they have a better understanding of rational numbers.  

Anxiety would affect Type II thinking since anxiety occupies mental 

resources. According to Attentional Control Theory, individuals with high anxiety 

would take longer to respond than low anxiety individuals to maintain their 

accuracy. This makes high anxiety individuals less efficient than low anxiety 

individuals. 

Although no literature exists examining the relationship between math 

anxiety and WNB, there is research which examines math anxiety and math 

performance. Szczygiel et al. (2021) found that WM mediated the relationship 

between MA and math achievement. In other words, as MA increased, WM 

resources decreased and while WM decreased, math achievement decreased. 

The math achievement assessment was developed around core curriculum for 

elementary school children and math education. It consisted of questions 

regarding addition, subtraction, multiplication, and division as well as clock 
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reading and knowledge of dates and money. Sidney et al. (2019) found that 

strategy variability mediated the relationship between MA and math performance, 

and WMC and math skills moderated the relationship between strategy variability 

and performance. In other words, as math anxiety increased, strategy variability 

decreased and as strategy variability decreased, math performance decreased. 

Also, in low math skills, for low WM participants, as strategy variability increased, 

performance increased but for high WM participants strategy variability did not 

affect performance. In High math skills, WM did not moderate performance (see 

Figure 5). This finding suggests high math skills participants were showing 

intuitive logic since mental resources (WM) had no effect on performance 

however low math skills participants performance was dependent on available 

mental resources (WM). Unfortunately, this study did not examine reaction time, 

consider congruency as a factor, or speculate on WNB. 

Aim and Hypothesis 

The overall goal of the present study was to show how numeracy and 

math anxiety affect WNB in adult participants while considering DI and Hybrid 

models of Dual Processing Theory (DPT). To investigate this relationship, 

participants were divided into two groups, low numeracy (LN) group and high 

numeracy (HN) group based on scores in the numeracy task. Participants were 

also split into two groups for MA (i.e., low MA and high MA). The current study 

manipulated commonality of components (common components versus without 

common components) and congruency (congruent versus incongruent). It was 
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predicted that the individual differences innumeracy and math anxiety would 

influence how WNB is presented. A congruency effect for accuracy is present if 

accuracy is greater for congruent items compared to incongruent items. A 

congruency effect for reaction time is present if reaction times are shorter for 

congruent compared to incongruent. A WNB is present when there is a 

congruency effect because application of natural number rules results in better 

performance on congruent than incongruent items. No congruency effect would 

suggest that natural number intuitions were not applied; and therefore, no WNB. 

However, a reverse congruency effect would suggest reverse WNB, in which 

intuitions of rational number rules were applied which results in better 

performance on incongruent than congruent items.  

According to the DI model, participants would start in Type I intuitive 

processing and use a componential strategy applying intuitions about natural 

numbers. Then if participants detect conflict, they will move to Type II processing 

in which they would use a holistic strategy by estimating or computing a 

magnitude of each fraction. The Hybrid model would predict participants would 

have two types of intuitive Type I processing: intuition based on natural number 

rules and intuition based on rational number rules (e.g., Van Hoof et al., 2020). 

Furthermore, findings in Sidney et al. (2019) support the notion that LN 

participants may operate in a process described by DI model since their 

performance was dependent on their WM (mental resources) whereas HN 

participants may operate in a process described by Hybrid model since their 
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performance was not dependent on their WM (mental resources) and could have 

been using logical Type I processing (see Table 1). Also, according to Attentional 

Control Theory (ACT) anxiety impairs mental resources which suggests 

participants with HMA may have longer reaction times to maintain ACC if they 

are using Type II processing to complete the task. Anxiety may not have as great 

of an effect if participants are using Type I processing since Type I does not 

require the same mental resources as Type II.  

It was predicted the LN group would use the process similar to what is 

predicted by DI. They would begin with Type I processing, relying on natural 

number intuitions and if they detect conflict, they will move to Type II processing 

to complete the items. Therefore, LN participants will exhibit a WNB in ACC and 

in RT because they rely on Type I processing for congruent items but would need 

to activate Type II thinking for incongruent items thus leading to longer RT and 

lower ACC in incongruent items.  

It was predicted the HN group would use the process similar to what is 

predicted by Hybrid model. They would be able to complete all items using Type I 

processing using either their intuitions about natural numbers which facilitates 

performance on congruent items or rational numbers which facilitates 

performance on incongruent items thus leading to no WNB in ACC or RT (see 

Table 1). 

Finally, it was predicted math anxiety would have a greater effect on LN 

participants than HN because LN are predicted to use a process similar to what 
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is predicted by DI which would require the use of Type II thinking on incongruent 

items; therefore, it would result in a greater WNB in HMA because it would impair 

performance in LN participants resulting in lower ACC compared to their LMA 

counterparts because anxiety occupies mental resources. Math anxiety would 

not have as great an effect on HN because they are predicted to operate in a 

process similar to Hybrid model in which there is logical Type I processing; 

therefore, math anxiety would not affect performance in HN participants. 

Summary of Hypothesis 

Hypothesis 1 

LN participants performance would be similar to what is predicted by DI 

model in that they would be able to operate in Type I processing until they detect 

conflict and will then move to Type II processing. Furthermore, math anxiety 

would impair performance in LN because they would activate Type II processing. 

Hypothesis 2 

HN participants performance would be similar to what is predicted by 

Hybrid model in that they would be able to operate in Type I processing for all 

types of items. Furthermore, math anxiety would not impair performance in HN 

because they would be operating in Type I processing for all items. 

 

 

 
 
  



44 

 

CHAPTER TWO 

METHODS 

Participants 

Participants were one hundred and seventy-seven undergraduate 

students at a public University in California. Of the 177 participants, 50 were 

removed from the analyses based on performance in the Fraction Magnitude 

Comparison Task. Participants who did not respond to 20 or more items in the 

task were removed from the sample. Then means and standard deviations were 

computed for accuracy and reaction time for each condition in the Fraction 

Magnitude Comparison Task. Participants were then removed if they showed 0% 

accuracy on any condition. Finally, participants were removed from the sample if 

they had less than 25% total accuracy or were +/- 2.5 standard deviations (SD) in 

any condition for accuracy or reaction time. The final sample size for the current 

study was 127. Among the participants (M age = 24.9, SD age = 5.72; Female = 

112), 52.0% were Seniors, 37.0% were Juniors, 7.9% were Sophomores, and 

2.4% were Freshman. Also 76.4% were Hispanic or Latino, 8.7% were White, 

3.9% were Black or African American, 3.2% were Asian, 1.6% American Indian 

or Alaska Native, 1.6% were Native Hawaiian or Pacific Island, and 3.9% 

responded other. Participants signed an informed consent approved by the 

Institutional Review Board and received extra credit in their selected psychology 

courses upon completion of the experiment. 
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Overall Design 

The design was: 2 (Numeracy: high, low) x 2 (Math Anxiety: high, low) x 2 

(Components: common, without common) x 2 (Congruency: congruent, 

incongruent). Participants were divided into separate groups based on their 

numeracy (low versus high) and math anxiety (low versus high) scores. 

Materials and Procedure 

All tasks and measurements were administered in Qualtrics on 

participants personal computers. The Qualtrics survey link was accessed through 

participants SONA account. Data was analyzed using SPSS v28.  

Fraction Magnitude Comparison Task  

This task was adopted from Morales et al. (2020) and consisted of 180 

pairs of fractions in which congruency and commonality of components were 

manipulated. Common component fraction pairs were separated into congruent 

in which fractions share denominators (i.e., 33/65 versus 49/65) and incongruent 

items in which fractions share numerators (i.e., 25/96 versus 25/66). Without 

common component fraction pairs were separated into congruent, incongruent, 

and neutral. Without common component congruent items are when components 

(numerator and denominator) of one fraction are larger in numerosity and in 

magnitude than components (numerator and denominator) of the comparison 

fraction [i.e., 34/65 (0.523) versus 57/74 (0.770)]. Without common components 

incongruent items are when the components of one fraction is larger in 

numerosity but not larger in magnitude compared to the other fraction [i.e., 39/52 
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(0.75) versus 45/76 (0.592)]. Without common components neutral items are 

when both components of one fraction are not larger in numerosity compared to 

the comparison fraction [i.e., 18/49 (0.367) versus 12/59 (0.203)]. In other words, 

the numerator of the first fraction is larger than the numerator of the second 

fraction, but the denominator of the first fraction is smaller than the denominator 

of the second fraction. All fraction pairs met specific criteria: all denominators 

ranged from 31 to 99, all numerators ranged from 11 up to the corresponding 

denominator minus 11, and each fraction pair are on the same side of 1/2. 

Participants were presented one fraction pair at a time and used their mouse to 

indicate which fraction in a pair was larger in magnitude. The fraction pair 

remained on the screen until the participant responded or for 10 seconds. 

Accuracy was computed by taking the average correct responses for each 

condition. Reaction time was computed by taking the average page submit 

output for each condition.  

Numeracy  

This task was adopted from Bonato et al. (2007) and is a fraction 

knowledge assessment task which consisted of 10 operation and 10 magnitude 

comparison questions. For operation problems, participants were asked to solve 

an equation involving fractions and all answers were to be in fraction form (see 

Appendix A). For magnitude comparison problems, participants were presented 

with two fractions with an inequality symbol (>) between the two fractions and 

participants were asked to indicate if the inequality was true or false. Participants 
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for this task indicated their response using their mouse and keyboard into the 

provided space and were allowed to use a paper and pencil to work out the 

problems if needed. Participants were asked to avoid outside resources, such as 

calculators, and rely solely on their knowledge to complete the task. There was 

no time constraint.  

Abbreviated Math Anxiety Scale (AMAS)  

This task was adopted from Hopko et al. (2003) and consisted of 9 items 

(see Appendix B). Responses were on a 5-point Likert scale in which 1 (low 

anxiety) and 5 (high anxiety); the larger the score, the more anxious they were. 

Participants used their mouse to indicate their response for each item.  

Demographic Survey  

Demographics were collected from participants. They were questions 

regarding age, gender, highest level of math reached, major, mental illness, 

learning disabilities, stress, motivation, and their testing environment.  

General Procedure 

Participants accessed the Qualtrics survey from their SONA account. 

Participants were screened for what type of device they were using and any 

participant attempting to complete the study on a mobile device was 

automatically blocked out of the survey. After signing the informed consent, 

participants were provided an overview of the tasks and given instructions on 

what kind of environment they should complete the study in. They were asked to 

be in a quiet area free from distractions (e.g., phones, kids, pets, etc.) but were 
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allowed to have a paper and pencil to perform calculations if needed. Participants 

then completed the tasks in the following order: informed consent, AMAS, 

numeracy, fraction magnitude comparison task, and demographics. Once 

participants complete all tasks, they were provided a debriefing statement and 

redirected to SONA to receive credit. The entire study took approximately 60 

minutes to complete. 
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CHAPTER THREE 

RESULTS 

 

Participants were divided into two groups in each of the two participant 

factors, numeracy (low versus high) and math anxiety scores (low versus high) 

independently; therefore, there were a total of four groups. The means and 

standard deviations for each group are in Table 2. Accuracy, response time (RT) 

and processing efficiency coefficient (computed by Accuracy/RT; Eysenck et al., 

2007) were calculated in the Fraction Magnitude Comparison Task (FMCT). 

 

Table 2. Numeracy and Math Anxiety group means 
and standard deviations.  

   NUM Score  MA Score 
Numeracy 
Group 

MA 
Group N Mean SD  Mean SD 

Low Low 30 0.52 0.17  2.51 0.49 

 High 37 0.51 0.18  3.77 0.43 

High Low  34 0.87 0.08  2.40 0.54 

 High 26 0.84 0.07  3.68 0.39 

Note. MA = math anxiety; NUM = numeracy; N = number of 
participants in each group 

 

Accuracy 

Mean accuracy data are shown in Table 3 and were submitted to a 

2(Numeracy: low vs high) x 2(Math Anxiety: low vs high) x 2[Components: 

common (CC) vs. without common (WCC)] x 2(Congruency: congruent vs 

incongruent) mixed ANOVA.  There was a main effect of numeracy, F(1, 123) = 
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13.296, p < 0.001, ƞp
2 = 0.098, showing HN participants had greater accuracy 

than LN participants. There was no main effect of math anxiety F(1, 123) = 2.454, 

p = 0.120, ƞp
2 = 0.02. There was a main effect of components, F(1, 123) = 

128.896, p < 0.001, ƞp
2 = 0.512, which showed significantly higher accuracy in 

CC items than WCC items. A significant Components x Math Anxiety interaction 

was found, F(1, 123) = 4.987, p = 0.027, ƞp
2 = 0.039, which showed higher ACC 

in CC than WCC, and the difference between CC and WCC was greater for LMA 

than HMA. There was a significant Numeracy x Congruency interaction, F(1, 

123) = 17.067, p < 0.001, ƞp
2 = 0.122, in which the LN group showed the 

congruency effect whereas the HN group showed the reverse congruency effect. 

There was a significant Components x Congruency interaction, F(1, 123) = 

78.238, p < 0.001, ƞp
2 = 0.389, in which there was the congruency effect in the 

CC items whereas the reverse congruency effect in the WCC items. A marginally 

significant Numeracy x Components interaction was found, F(1, 123) = 3.531, p = 

0.063, ƞp
2 = 0.028, which showed that there was significantly greater ACC on CC 

than WCC and the difference between CC and WCC was greater for HN than 

LN. Finally a marginally significant Math Anxiety x Congruency interaction was 

found, F(1, 123) = 2.838, p = 0.095, ƞp
2 = 0.023, in which LMA showed a 

marginal reverse congruency effect and HMA did not. No other main effects and 

two-way interactions reached statistical significance.  
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Table 3. Mean accuracy rates and standard deviations for each condition in the 
Fraction Magnitude Comparison Task.  

      CC   WCC 

      C   IC   C   IC 

Numeracy MA N Mean  SD   Mean  SD   Mean  SD   Mean  SD 

Low Low 30 0.81 0.21   0.68 0.33   0.61 0.18   0.63 0.32 

  High 37 0.78 0.21   0.60 0.34   0.64 0.20   0.55 0.32 

High Low 34 0.90 0.17   0.90 0.19   0.56 0.20   0.88 0.17 

  High 26 0.81 0.28   0.79 0.25   0.61 0.19   0.77 0.24 

Note. MA = math anxiety; CC = Common Component; WCC = Without Common Component; C 
= Congruent; IC = Incongruent.  

 
More important, there was a significant Numeracy x Components x 

Congruency interaction, F(1, 123) = 9.432, p = 0.003, ƞp
2 = 0.071, as shown in 

Figure 6. LN participants were significantly more accurate on congruent trials 

than incongruent trials (congruency effect) in CC items, t(66) = 4.52, p < 0.001, 

however they did not display a significant difference between congruent and 

incongruent trials in WCC items, t(66) = 0.67, p = 0.506, (see Figure 6). HN 

participants did not display a significant difference between congruent and 

incongruent trials in CC items, t(59) = 0.55, p = 0.583; however, they had 

significantly better accuracy in incongruent trials than congruent trials (reverse 

congruency effect) in WCC items, t(59) = 7.35, p < 0.011, (see Figure 6).  
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Figure 6: Accuracy Numeracy x Components x Congruency interaction.  
* = p < .05; error bars are 95% CI 

 

There was a significant Math Anxiety x Components x Congruency 

interaction, F(1, 123) = 5.845, p = 0.017, ƞp
2 = 0.045, as shown in Figure 7. Low 

math anxiety (LMA) participants were significantly more accurate in congruent 

trials than incongruent trials (congruency effect) for CC items, t(63) = 2.65, p = 

0.010, whereas they were significantly more accurate in incongruent trials than 

congruent trials (reverse congruency effect) for WCC items, t(63) = 4.10, p < 

0.001. Also, in CC items for LMA LN participants there was a significant 

congruency effect t(29) = 2.87, p = 0.008, whereas LMA HN participants did not 

have a congruency effect t(33) = 0.30, p = 0.769. In WCC items, for LMA LN 

participants there was no congruency effect, t(29) = 0.31, p = 0.758, whereas 

LMA HN participants had a significant reverse congruency effect t(33) = 8.44, p < 

0.001. HMA participants were significantly more accurate on congruent trials than 

incongruent trials (congruency effect) for CC items, t(62) = 3.16, p = 0.002 

whereas in WCC  items, there was no difference between congruent and 
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incongruent trials, t(62) = 0.33, p = 0.745. The congruency effect for CC items, 

was not statistically different between the low and high MA groups, t(125) = 1.19, 

p = 0.237. Also, in WCC items for HMA LN participants there was a significant 

congruency effect t(36) = 3.49, p = 0.001, whereas LMA HN participants did not 

have a congruency effect t(25) = 0.47, p = 0.646. In WCC items, for HMA LN 

participants there was no congruency effect t(36) = 1.12, p = 0.268, whereas 

LMA HN participants had a significant reverse congruency effect t(25) = 2.78, p = 

0.010. 

 

 

Figure 7: Accuracy Math Anxiety x Components x Congruency interaction.  
* = p < .05; error bars are 95% CI 
 

Reaction Time 

Reaction time (RT) was computed by taking the average page submit data 

for each of the four conditions (means and standard deviations are shown in 

Table 4 and were submitted to a 2(Numeracy: low vs high) x 2(Math Anxiety: low 

vs high) x 2[Components: common (CC) vs. without common (WCC)]x 
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2(Congruency: congruent vs incongruent) mixed ANOVA.  There was a main 

effect of numeracy, F(1, 123) = 8.409, p = 0.004, ƞp
2 = 0.064 showing that HN 

participants took longer to respond than LN participants. There was also a main 

effect of math anxiety in RT, F(1, 123) = 5.871, p = 0.017, ƞp
2 = 0.046, showing 

HMA participants responded faster than LMA participants. There was a main 

effect of components, F(1, 123) = 55.888, p < 0.001, ƞp
2 = 0.312, which showed 

significantly longer RT in WCC items than CC items. Also a main effect of 

congruency was found, F(1, 123) = 17.919, p < 0.001, ƞp
2 = 0.127, showing 

significantly longer RT in congruent trials than incongruent trials (reverse 

congruency effect). A Numeracy x Components interaction was significant, F(1, 

123) = 12.457, p < 0.001, ƞp
2 = 0.092, which showed significantly longer RT in 

WCC than CC and the difference was significantly greater for HN than LN. A 

Math Anxiety x Components interaction was significant, F(1, 123) = 5.855, p = 

0.017, ƞp
2 = 0.045, which showed significantly longer RT in WCC than CC and 

the difference between CC and WCC was greater for LMA than HMA. A 

Components x Congruency interaction was significant F(1, 123) = 82.298, p < 

0.001, ƞp
2 = 0.401, which showed that there was the congruency effect in CC but 

the reverse congruency effect in WCC. Finally, a marginally significant Numeracy 

x Math Anxiety x Congruency interaction was found, F(1, 123) = 2.828, p = 

0.095, ƞp
2 = 0.022. No other main effects and 2-way interactions reached 

statistical significance.  
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Table 4. Mean reaction times (RTs in msec) and standard deviations for each 
condition in the Fraction Magnitude Comparison Task.  

   CC  WCC 

   C  IC  C  IC 

Numeracy MA N Mean SD   Mean SD   Mean SD   Mean SD 

Low Low 30 3832 1127  3963 1357  4253 1593  4000 1430 

 High 37 3219 1179  3297 1155  3576 1617  3282 1305 

High Low 34 4029 1106  4199 1072  5251 1484  4527 1184 

 High 26 3769 959  4121 1039  4567 1412  4006 1057 

Note. MA = math anxiety; CC = Common Component; WCC = Without Common Component; C 
= Congruent; IC = Incongruent.  

 
 

More important, there was a significant Numeracy x Components x 

Congruency interaction, F(1, 123) = 13.822, p < 0.001, ƞp
2 = 0.101, as shown in 

Figure 8. LN participants had marginally longer RT in incongruent trials than 

congruent trials for CC items (congruency effect), t(66) = 1.95, p = 0.055 

whereas they had significantly longer RT in congruent trials than incongruent 

trials for WCC items (reverse congruency effect), t(66) = 4.07, p < 0.001. HN 

participants had significantly longer RT in incongruent trials than congruent trials 

for common component items (congruency effect), t(59) = 4.68, p < 0.001, 

whereas in WCC items, they had significantly longer RT in congruent trials than 

incongruent trials (reverse congruency effect), t(59) = 7.19, p < 0.001. Finally, the 

congruency effect in CC items was marginally greater for HN participants than 

LN participants, t(125) = 1.98, p = 0.050. The reverse congruency effect in WCC 

items was significantly greater for HN participants than LN participants, t(125) = 

3.36, p = 0.001.  
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Figure 8: Reaction Time Numeracy x Components x Congruency interaction: 
* = p < .05; + = p < .10; error bars are 95% CI 
 

More important there was a marginal Numeracy x Math Anxiety x 

Components interaction, F(1, 123) = 3.423, p = 0.067, ƞp
2 = 0.027, as shown in 

Figure 9. In CC items, math anxiety had an effect on LN participants, such that 

LMA had significantly longer RT than HMA, t(65) = 2.20, p = 0.031. However, in 

CC items, math anxiety did not have an effect on HN participants, t(58) = 0.63, p 

= 0.532. In CC items, numeracy did not have an effect on LMA participants, t(62) 

= 0.75, p = 0.453. However, in CC items, numeracy had an effect on HMA, such 

that LN had significantly shorter RT than HN, t(61) = 2.47, p = 0.016. 

 In WCC items, math anxiety had a marginal effect on LN participants such 

that LMA had marginally longer RT than HMA, t(65) = 1.94, p = 0.057. Also, math 

anxiety had a marginal effect on HN participants such that LMA had marginally 

longer RT than HMA, t(58) = 1.84, p = 0.071. For LMA, numeracy had an effect 

such that LN responded significantly faster than HN, t(62) =2.19, p = 0.032. Also 

for HMA, LN had significantly faster RT than HN, t(61) = 2.49, p = 0.015.  
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Differences were also found within each group between CC items and 

WCC items. In all four groups, RTs were significantly or marginally significantly 

shorter in CC than in WCC items, LN LMA: t(29) = 2.37, p = 0.025. LN HMA: 

t(36) = 1.74, p = 0.090. HN LMA: t(33) = 7.08, p < 0.001. HN HMA: t(25) = 3.84, p 

< 0.001. 

 
 

 

Figure 9: Reaction Time Numeracy x Math Anxiety x Components interaction:  
* = p < .05; + = p < .10; error bars are 95% CI 
 

Processing Efficiency Coefficient 

Processing Efficiency Coefficient (PEC) was computed by dividing 

accuracy by reaction time and is a measure of efficiency. An efficiency score is 

computed because effectiveness, measured by accuracy, may not measure 

effects of anxiety on cognition. In other words, if participants put enough effort 

into the task, there may be no difference between low and high anxiety groups 

regarding accuracy because one group may take longer to respond to maintain a 
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higher accuracy score. Therefore, a composite score of accuracy and reaction 

time is computed to assess efficiency between groups.  Means and standard 

deviations of PEC are shown in Table 5 and were submitted to a 2 (Numeracy: 

low vs high) x 2 (Math Anxiety: low vs high) x 2 [Components: common (CC) vs. 

without common (WCC)] x 2 (Congruency: congruent vs incongruent) mixed 

ANOVA. For PEC, there were no main effects of numeracy F(1, 123) = 0.284, p = 

0.595, ƞp
2 = 0.002, or math anxiety, F(1, 123) = 0.592, p = 0.443, ƞp

2 = 0.005. 

There was a main effect of components, F(1, 123) = 88.008, p < 0.001, ƞp
2 = 

0.417, which showed participants were significantly more efficient in CC items 

than WCC items. There was a Numeracy x Components interaction, F(1, 123) = 

12.682, p < 0.001, ƞp
2 = 0.093, which showed higher efficiency in CC than WCC 

and the difference between CC and WCC was greater for HN than LN. There 

was also a Math Anxiety x Components interaction, F(1, 123) = 4.114, p = 0.045, 

ƞp
2 = 0.032, which showed greater efficiency in CC than WCC and the difference 

between CC and WCC was greater for LMA than HMA. A Numeracy x 

Congruency interaction was found, F(1, 123) = 14.762, p < 0.001, ƞp
2 = 0.107, 

which showed congruency effect for LN and a reverse congruency effect for HN. 

Finally a Components x Congruency interaction was found, F(1, 123) = 48.213, p 

< 0.001, ƞp
2 = 0.282, which showed a congruency effect in CC but no congruency 

effect in WCC. No other main effects and two-way interactions reached statistical 

significance.  
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Table 5. Processing efficiency coefficient means and standard deviations for 
each condition in the Fraction Magnitude Comparison Task.  

   CC  WCC 

   C  IC  C  IC 

Numeracy MA N Mean SD   Mean SD   Mean SD   Mean SD 

Low Low 30 0.23 0.10  0.18 0.08  0.19 0.15  0.17 0.08 

 High 37 0.27 0.11  0.20 0.11  0.23 0.14  0.18 0.10 

High Low 34 0.25 0.09  0.23 0.09  0.11 0.06  0.21 0.07 

 High 26 0.23 0.09  0.20 0.07  0.15 0.08  0.20 0.07 

Note. CC = MA = math anxiety; Common Component; WCC = Without Common Component; 
C = Congruent; IC = Incongruent.  

 
 

More important, there was a significant Numeracy x Components x 

Congruency interaction, F(1, 123) = 15.394, p < 0.001, ƞp
2 = 0.111, as shown in 

Figure 10. LN participants were significantly more efficient in congruent trials 

than incongruent trials for CC items (congruency effect), t(66) = 4.24, p < 0.001, 

and marginally more efficient in congruent trials than incongruent trials for WCC 

items (congruency effect), t(66) = 1.79, p = 0.078. HN participants were 

significantly more efficient in CC congruent trials than CC incongruent trials 

(congruency effect), t(59) = 2.87, p = 0.006, however they were significantly more 

efficient in WCC incongruent trials than WCC congruent trials (reverse 

congruency effect), t(59) = 6.78, p < 0.001. The congruency effect in CC items 

was significantly greater in LN participants than HN participants, t(125) = 2.55, p 

= 0.012. In WCC items, HN participants showed a reverse congruency effect 

while LN participants showed a marginal congruency effect. In other words, the 

LN group showed the same pattern as the accuracy data in CC, and the HN 



60 

 

group showed the same pattern as the accuracy data in WCC.  However, the 

congruency effects in LN WCC and HN CC were driven by RT because there 

were no congruency effects in ACC for these items but there were congruency 

effects in RT.  

 

 

 
Figure 10: Processing Efficiency Coefficient Numeracy x Components x 
Congruency interaction:  
* = p < .05; + = p < .10; error bars are 95% CI 
 

More important there was a significant Numeracy x Math Anxiety x 

Components interaction, F(1, 123) = 4.995, p = 0.027, ƞp
2 = 0.039, as shown in 

Figure 11. In CC items, math anxiety did not have an effect on LN participants, 

t(65) = 1.37, p = 0.175 or HN participants, t(58) = 1.13, p = 0.264. In CC items, 

numeracy had a marginal effect on LMA participants such that HN participants 

were marginally more efficient than LN participants, t(62) = 1.71, p = 0.091. In 

CC items, numeracy had no effect on HMA participants, t(61) = 0.79, p = 0.433. 

In WCC items, math anxiety did not have an effect on LN participants, t(65) = 
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1.16, p = 0.250, or HN participants, t(58) = 0.92, p = 0.362. In WCC items, 

numeracy did not have an effect on LMA participants, t(62) = 0.96, p = 0.341, or 

HMA, t(61) = 1.48, p = 0.144. In all four groups, participants showed higher PEC 

in CC than in WCC trials. LN LMA: t(29) = 2.59, p = 0.015. LN HMA:  t(36) = 

3.00, p = 0.005. HN LMA: t(33) = 10.12, p < 0.001. HN HMA: t(25) = 4.31, p < 

0.001. 

 

 
Figure 11: Processing Efficiency Coefficient Numeracy x Math Anxiety x 
Components interaction:  
* = p < .05; + = p < .10; error bars are 95% CI  
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CHAPTER FOUR 

DISCUSSION 

 
The current study aimed to show how individual differences (numeracy 

and math anxiety) would influence the Whole number bias (WNB) in 

undergraduate participants. The current study also examined which model of 

Dual Processing Theory (DPT), the DI model or Hybrid model, would explain the 

WNB. In the fraction magnitude comparison task, commonality of components 

(CC vs WCC) and congruency (congruent vs incongruent) were manipulated. 

Application of natural number intuitions (larger in numerosity means larger in 

magnitude) would lead to correct responses in congruent but not incongruent 

items which also results in WNB (congruency effect). Application of rational 

number intuitions (larger in numerosity means smaller in magnitude) leads to the 

correct response in incongruent but not congruent items which also results in a 

reverse WNB (reverse congruency effect).  

There are two strategies which are often employed in a fraction 

comparison task. The first, a componential strategy, is when participants 

compare the components (numerator and denominator) of a fraction to the 

comparison fractions’ components without considering the magnitude of each 

fraction. This strategy requires little effort (Type I) and often leads to incorrect 

responses depending on which intuition (natural number or rational number) is 

used, since natural number intuitions facilitate performance on congruent items, 

whereas rational number intuitions facilitate performance on incongruent items. 
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Between the two intuitions, students typically acquire the natural number intuition 

first, and the rational number intuition might be obtained after some practice and 

experience in math. In other words, students with LN may possess only the 

natural number intuition, whereas students with HN may possess the rational 

number intuition as well. The second, a holistic strategy, is when participants 

compute or estimate the magnitude of each fraction and compare these 

magnitudes to determine which fraction is larger. Although this strategy is more 

reliable, it requires more effort and knowledge about fractions which every 

individual may not have.  

DI model would predict participants would operate first in Type I 

processing relying only on natural number intuitions. Then, if conflict is detected, 

participants would move to Type II processing and use the holistic strategy to 

solve the problems. Hybrid model would predict participants would have two 

types of Type I intuitions: natural number and rational number, and these 

intuitions would be used to solve the items. LN participants would follow a similar 

process described by DI model whereas, HN participants would follow a similar 

process described by Hybrid model. Furthermore, math anxiety would have an 

effect on LN participants since they would activate Type II processing similar to 

what is predicted by DI model, but math anxiety would have no effect on HN 

participants because they would be operating in Type I processing similar to what 

is predicted by Hybrid model. 
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Effects of Numeracy on Components and Congruency 

A 3-way interaction: Numeracy x Components x Congruency was found in 

ACC, RT, and PEC. First, the effects of numeracy were found in the accuracy 

data, as shown in Figure 6, that LN showed the congruency effect, whereas HN 

did not in CC items. However, HN showed the reverse congruency effect, but LN 

did not in WCC items. 

In RT (see Figure 8), in CC items, both LN and HN participants showed 

congruency effects, however HN participants showed a greater magnitude of the 

congruency effect. In WCC items, both numeracy groups showed a reverse 

congruency effect, however the magnitude of the reverse congruency effect was 

greater for HN than LN participants.  

In the processing efficiency (see Figure 10), both LN and HN participants 

exhibited a congruency effect in CC items, however the magnitude was greater 

for LN than HN participants. In WCC items, LN participants had a marginal 

congruency effect whereas, HN participants showed a reverse congruency effect. 

These results showed that LN exhibited the congruency effect in CC, 

whereas HN exhibited the reverse congruency effect in WCC across the three 

measures. This suggests in CC items, LN participants relied on the natural 

number intuitions by using a componential strategy as predicted by the DI model, 

whereas HN relied on both natural number intuitions and rational number 

intuitions, by applying componential strategies as predicted by the Hybrid model 

which resulted in no WNB in ACC and but a WNB in RT. It appears HN 
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participants applied their strong intuitions of natural numbers to CC congruent 

items and a secondary intuition about rational number in CC incongruent 

problems which resulted in longer RT in incongruent items, further supporting 

that they operated in a process similar to one described by Hybrid model. In 

WCC items, LN participants showed lower ACC and shorter RTs than HN 

participants, suggesting they guessed on these items because they either lacked 

the mindware to activate Type II processing or lacked motivation to complete the 

task.   In WCC items, it appears HN participants applied rational number 

intuitions which resulted in a reverse WNB in both ACC and RT because rational 

number intuitions facilitate performance in incongruent but not congruent items. It 

is also possible HN participants detected conflict in WCC congruent items and 

tried to calculate the magnitudes, which resulted in significantly longer RT; 

however, they were not able to overcome their intuitions about rational numbers 

or activated Type II thinking. The PEC further supports the notion that LN 

participants utilized natural number intuitions (Type I processing) because they 

showed better efficiency in congruent than incongruent items for CC and WCC. 

For HN participants, in CC items, they had greater efficiency in congruent than 

incongruent items, but in WCC they had greater efficiency in incongruent than 

congruent items. This suggests in CC items, HN participants applied natural 

number intuitions resulting in greater efficiency in congruent than incongruent 

condition, whereas in WCC items, they applied rational number intuitions 

resulting in greater efficiency in incongruent than congruent items. These results 
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seem to suggest that the LN group relied on the natural number intuition only, 

supporting the DI model, whereas the HN group used the natural number and 

rational number intuitions, supporting the hybrid model. 

Effects of Math Anxiety on Components and Congruency 

A 3-way interaction: Math Anxiety x Components x Congruency was found 

in ACC (see Figure 7). It revealed both LMA and HMA participants exhibited the 

same magnitude of congruency effects in CC items, whereas in WCC items, LMA 

participants exhibited a reverse congruency effect, and HMA did not show any 

effect. These findings suggest in CC items, MA did not influence the occurrence 

of WNB, and this could be due to the simplicity of these items, whereas WCC 

items are more complex and would require a greater understanding of rational 

number information. In other words, CC items, may facilitate Type I processing, 

whereas WCC items may facilitate Type II processing which made it difficult for 

HMA participants to do well.  Also, these findings are similar to ones in ACC for 

numeracy, such that LMA are comparable to HN whereas HMA are comparable 

to LN. Further analysis revealed that for CC items for both LMA and HMA, LN 

participants exhibited a congruency effect and HN did not, therefore LN 

participants seem to have driven this effect. In WCC items further analysis 

revealed in LMA and HMA participants, HN exhibited a reverse congruency effect 

whereas LN had no effect, therefore the effect in LMA was driven by HN 

participants but the effect was not great enough in HMA participants. Therefore, 

for CC items it appears DI model would better explain results because these 
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items facilitated the use of Type I processing and results were driven by LN 

participants who applied natural number intuitions leading to WNB for LMA and 

HMA. In WCC items, it appears Hybrid model would better explain the results 

because in LMA participants, there was a reverse WNB driven by HN participants 

who applied rational number intuitions, however HMA participants had overall low 

ACC suggesting they may have been avoidant of the task and guessed. 

Effects of Numeracy and Math Anxiety on Components 

Finally, a 3-way interaction: Numeracy x Math Anxiety x Components, was 

found in RT (see Figure 9) and PEC (see Figure 11).  In the RT data (Figure 9) 

HMA group showed faster RTs than LMA group except for HN in CC items, 

which suggests that for HN participants, CC items were easy enough that anxiety 

would not affect performance as their accuracy rates were close to 90% (see 

Figure 6). This finding also suggests, in the other three conditions, that either 

HMA participants gave up on the task, and/or LMA participants tried harder to 

solve problems.  

For PEC, LMA should show higher efficiency than HMA if anxiety 

consumes working memory resources, as suggested by Eysenck’s ACT model.  

However, as shown in Figure 11, only HN in CC condition show a trend that LMA 

has higher efficiency than HMA. In all other conditions, there are trends in the 

other direction, that HMA tend to show higher efficiency than LMA, however they 

are not statistically significant. A significant effect was found in LMA between HN 

and LN in CC condition as shown in Figure 11 A.  These data seem to suggest 
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that PEC in the present study was driven by shorter RTs in the HMA and LN 

participants. As was discussed above, the HMA and LN participants tended to 

give up on tasks, whereas LMA and HN participants tended to try harder, taking 

longer time. 

Conclusion 

Overall, numeracy seems to have stronger effects than anxiety on the 

performance of the fraction comparison task. Also, the present study results 

seem to suggest that LN participants relied on the natural number intuitions, 

resulting in a WNB in CC items, supporting the DI model. They were not able to 

successfully activate Type II processing in WCC because they lacked the 

mindware or motivation which led to them guessing on these items also resulting 

in lower ACC and relatively shorter RTs. The data from HN participants, on the 

other hand, appear to support the Hybrid model because they did not exhibit a 

WNB in ACC for CC items, whereas they showed the reverse congruency effect 

in WCC items, suggesting that they have both natural number intuitions and 

rational number intuitions. However, it is unlikely HN participants activated Type 

II thinking in WCC congruent items because although their RTs were significantly 

longer, suggesting they detected conflict, their ACC in congruent items was 

relatively low implying they were not successful in overcoming their intuitions 

about rational numbers.  

The effect of math anxiety on components and congruency revealed that 

anxiety did not influence how WNB would be presented in simple items (CC), 
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however, as complexity increased (WCC items), anxiety had a greater effect. In 

other words, there was no difference in the presence of WNB in CC items 

between LMA and HMA participants, suggesting mental resources were not 

affected by anxiety, which might also imply that participants were not engaged in 

Type II processing. However, in WCC items, anxiety had an effect in LMA 

participants, who showed a reverse WNB, and further analysis revealed this 

finding was driven by HN participants; however, in HMA participants, for WCC 

items, there was no congruency effect suggesting that in HMA participants 

mental resources were occupied or participants were unmotivated or avoidant of 

the task which resulted in relatively low ACC.  

In terms of RT, the effect of math anxiety seems to be greater for LN than 

HN because, in LN participants, RTs in CC and WCC items were significantly 

longer for LMA than HMA; however, in HN participants, math anxiety only had an 

effect on WCC items, such that LMA participants had significantly longer RT than 

HMA suggesting when numeracy is high, math anxiety only has an effect on 

more complex items. Finally, math anxiety did not significantly affect efficiency. 

This may have been due to HMA and LN participants who seemed to have given 

up on the task, whereas LMA and HN participants appeared to have tried harder. 

Limitations and Future Directions 

There were some limitations in the current study. First, data was collected 

online using Qualtrics which may make findings in RT less reliable than other 

forms of data collection. Second, the measure of PEC assumes that efficiency 
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increases if participants can solve problems in a shorter period of time. However, 

current data shows that greater PEC may not reflect greater task efficiency, since 

some participants may have given up on task performance and responded 

quickly. In other words, PEC may not be a reliable measure of efficiency when 

levels of motivation vary across participants.  

Future research should examine how participants reasoned during a 

fraction magnitude comparison task by asking them to write down how they 

would determine which fraction is larger on a set number of items. This can be 

used to better understand how participants reason about fraction information and 

may unveil possible misconceptions some participants have about rational 

numbers depending on their complexity and individual differences. Finally, further 

research examining different biases in rational number information may help 

instructors understand how misconceptions are developed and better aid them in 

helping students overcome these misconceptions during learning. 
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APPENDIX A 

NUMERACY TASK 
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Please make sure you have a sheet of paper and a pen or pencil to complete the 

task.  

 

Calculators or other electronic devices are not permitted to solve any of the 

questions. We are interested in your performance on the next task without the 

use of these devices.  

 

There are two parts which will be randomly presented to you. 

 

In one part, there are 10 questions, and you will be asked to indicate the answer 

to an equation. All answers for this part must be in fraction form and in simplest 

form. Any other form will be considered wrong.  

 

In the other part, there are 10 questions you will be asked to indicate whether the 

inequality is true or false.  

 
Operation Items: 
1/4 + 3/8 = 

3/5 – 1/3 = 

3/10 + 5/6 = 

5/8 – 3/4 = 

3/4 X 1/6 = 

25/3 X 7/10 = 

1/2 ÷ 3/4 = 

5/6 ÷ 21/3 = 

(1/2)(2/3) + (5/6)(2/5) = 

(1/4)(3 -3/5) = 

 

Magnitude Comparison Items: 
1/1 > 1/5 True – False  

1/4 > 1/5 True – False 

1/6 > 1/5 True – False 

1/8 > 1/5 True – False 

1/5 > 1 True – False 

3/5 > 1 True – False 

7/5 > 1 True – False 

3/7 > 3/9 True – False 

8/6 > 6/4 True – False 

7/8 > 2/3 True - False 

 
 
Adopted from Bonato et al. (2007) 
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APPENDIX B 

THE ABBREVIATED MATH ANXIETY SCALE (AMAS) 
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Please rate each item below in terms of how anxious you would feel during the 

event specified.  

1 = Low Anxiety, 2 = Some Anxiety, 3 = Moderate Anxiety, 4 = Quite a bit of 

Anxiety, 5 = High Anxiety 

1. Having to use the tables in the back of a mathematics book. 

2. Thinking about an upcoming math test one day before.  

3. Watching a teacher work an algebraic equation on the blackboard. 

4. Taking an examination in a mathematics course. 

5. Being given a homework assignment of many difficult problems which is 

due the next class meeting. 

6. Listening to a lecture in mathematics class. 

7. Listening to another student explain a mathematics formula. 

8. Being given a “pop” quiz in a mathematics class. 

9. Starting a new chapter in a mathematics book. 

 

Adopted from Hopko et al. (2003) 
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APPENDIX C 

IRB APPROVAL 
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