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ABSTRACT 

Heart failure affects many people around the world and can lead to 

disease progression and death. Consequently, new stem and exosome-based 

therapies are needed to address this major health issue and to provide 

therapeutic options that will improve outcomes for the increasing number of 

patients with heart disease. Stem cell-derived exosomes have captivated 

researchers’ attention over the past couple of years based on their functional role 

in cellular signaling which highlights the vital component of the secretome of 

stem and progenitor cells. Since neonates have significantly enhanced 

regenerative ability, we hypothesized that exosomes isolated from Islet-1+ 

expressing neonatal human cardiovascular progenitors (CPCs) will induce 

transcriptomic changes associated with improved regenerative capability when 

co-cultured with CPCs derived from adult humans. In order to test this 

hypothesis, we isolated exosomes from human neonatal Islet-1+ cardiovascular 

progenitor cell clones, analyzed the exosome content using RNAseq and treated 

adult CPCs with exosomes derived from neonatal CPCs to assess the functional 

effect. Analysis of neonatal CPC-derived exosome content by RNAseq revealed 

that neonatal exosomes contain miRNAs that inhibit YAP1 repressors and 

expressed transcripts predicted to activate YAP1, the cell cycle, and GPCR 

signaling. In vitro, adult CPCs treated with exosomes derived from neonatal 

CPCs demonstrated activation of AKT signaling, which promotes survival and 

proliferation and several transcripts involved in proliferation and cell cycle 
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progression, including YAP1. YAP1 is lost after the neonatal period under normal 

development but can stimulate cardiac regeneration. Our results demonstrate 

that transcripts associated with enhanced regenerative effects can be induced in 

adult CPCs following treatment with neonatal CPC-derived exosomes. Our data 

suggests that neonatal Islet-1+ CPC exosome content can provide a stimulus 

that may improve functional outcomes when adult CPCs are used for cell-based 

cardiovascular repair.  
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CHAPTER ONE 

INTRODUCTION 

 

Background 

 

Current Limitations in Heart Repair 

Heart failure is a major cause of high morbidity and mortality rates 

(Camps-Vilaró et al., 2020; Dagenais et al., 2020). From a global perspective, 

heart failure affects 64 million people (Savarese et al., 2022). Heart failure is a 

syndrome which presents from any structural or functional cardiac abnormality 

and impairs ventricular filling or ejection of blood (Yancy et al., 2013). In the adult 

heart, a minimal potential for regenerative capacity exists and the loss of 

cardiomyocytes that occurs through myocardial injury such as myocardial 

infarction, is irreversible (Weinberger & Eschenhagen, 2021). After myocardial 

infarction, cardiac remodeling occurs (Garza et al., 2015). Remodeling includes 

hypertrophy; an enlargement of the size of cardiomyocytes and thickening of 

ventricular walls following proliferation of fibroblasts and accumulation of 

extracellular matrix proteins. This process affects cardiomyocyte biomechanical 

signaling and ultimately function (Münch & Abdelilah-Seyfried, 2021; Sutton & 

Sharpe, 2000). As a result, myocardial injury leads to a decline in left ventricular 

function and immediate recovery is both rare and incomplete (Weinberger & 
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Eschenhagen, 2021). This is because cardiomyocytes exit the cellular cycle after 

birth and do not proliferate to successively replace the lost tissue (Ahuja et al., 

2007; Powers & Huang, 2022). The rate of modest cardiomyocyte renewal in the 

human adult is about 1% turnover per year and declines to approximately 0.45% 

by the age of 75 (Bergmann et al., 2009, 2015). Rare proliferative events can 

occur within the adult myocardium, but terminally differentiated cardiomyocytes in 

the adult human heart would need to successfully enter the cellular cycle in 

sufficient numbers in order to induce cardiovascular repair (Günthel et al., 2018). 

Regimens which are currently used for the treatment of myocardial infarction 

consequently focus on targeting the resident cardiomyocyte neurohormonal 

physiology rather than attempting to replenish the missing cardiomyocytes 

(Sharma et al., 2015). Alternative approaches aimed at promoting proliferation in 

resident cardiac stem cells to stimulate cardiovascular regeneration after 

myocardial infarction would be beneficial.  

 

Stem Cells for Heart Repair 

Stem cells such as human embryonic stem cells, induced pluripotent stem 

cells (iPSCs), Islet-1+ expressing progenitors, and cardiac progenitor cells 

(CPCs) are being examined as potential sources of cells that can repair 

damaged tissue (Bartulos et al., n.d.; Ghazizadeh et al., 2018; reviewed in Kasai-

Brunswick et al., 2021). Embryonic stem cells are equipped with pluripotency and 
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can be differentiated into functional cardiomyocytes (Kehat et al., 2001; 

Yamanaka et al., 2008). Molecular and functional properties of embryonic stem 

cells and IPSCs share similarity and in the case of iPSCs, the use of stem cell 

derivatives that are matched to the recipient eliminates the potential for rejection 

of cells that were introduced (Choi et al., 2015; Ortuño-Costela et al., 2019). The 

use of iPSCs from a histocompatible source different from the potential recipient 

is also possible, however these cells may contain genetic variations based on the 

source cell population or alterations that occur due to reprogramming and 

maintenance. These variations could be problematic (Deleidi et al., 2011; G. 

Liang & Zhang, 2013). Additionally, if a population of differentiated human 

embryonic stem cells or iPSCs remained undifferentiated, a possibility of 

teratoma formation exists in vivo (Hentze et al., 2009; A. S. Lee et al., 2009; M.-

O. Lee et al., 2013). Using human embryonic stem cells raises ethical and safety 

concerns, because of their derivation and their tumorigenic potential 

(Deinsberger et al., 2020; Q. Sun et al., 2014). iPSC’s also raise ethical and 

safety concerns based on the potential for undesired differentiation and 

tumorigenic transformation as well as issues regarding donor’s privacy and 

intellectual property (Moradi et al., 2019; Volarevic et al., 2018). These concerns 

can be a limitation for future clinical applications.  
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Cardiovascular Progenitor Cells 

Another approach would be the use of cardiac progenitor cells, which 

have shown promise as a therapeutic model (reviewed in Bollini et al., 2011; 

reviewed in Witman et al., 2020a). Cardiac progenitors are a multipotent self-

renewing progenitor cell type arising from a subpopulation of mesodermal 

lineage precursors found at early cardiac stages of embryogenesis (Devine et al., 

n.d.; Mauretti et al., 2017; Witman et al., 2020b; S. M. Wu et al., 2006). Over the 

past few years, preclinical and clinical studies have utilized various sources of 

endogenous stem cells for the treatment of several cardiovascular diseases such 

as heart failure and myocardial infarction (reviewed in Fan et al., 2021; reviewed 

in Hou & Li, 2018). There are various cardiac progenitor cell populations 

identified that provide a better cell source for cardiovascular therapy (Le & 

Chong, 2016). To date, the results in patients with acute myocardial infarction 

and the use of cardiac stem cell-derived therapy using c-kit+ cells has only 

shown moderate improvement in therapeutic outcomes (Kasai-Brunswick et al., 

2021b). Therefore, a substantial clinical need for an optimal stem-cell therapy to 

address heart failure remains.  

 

Islet-1+ Expressing Progenitors as a Source for Cardiac Repair 

Islet-1+ expressing cardiac progenitor cells isolated from patients possess 

a unique differentiation potential and represent the cell population studied in our 
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laboratory (Fuentes et al., 2013a). Cells which are Islet-1+ have been shown to 

be essential in the cardiac developmental process based on a study using Islet-1 

deficient mice which lacked all structures derived from the second heart field (Cai 

et al., 2003). In another study, they observed that deletion of Islet-1 in mice leads 

to early embryonic lethality (Gao et al., 2019). Islet-1 expression in the early 

stages of cardiac development has been identified as a marker of cells of the 

second heart field, cardiac neural crest, and the proepicardium when co-

expressed with Nkx2.5 (Le & Chong, 2016; Shouman et al., 2021). Islet-1+ 

cardiovascular progenitors have shown promise in cell-based cardiovascular 

repair models (Bartulos et al., 2016; Foo et al., 2018; Y. Li et al., 2017). In an in 

vivo study using murine Islet-1+ CPC spheroids, there was significant 

improvement in left ventricular function and reduction in scar size in treated mice 

four weeks after injury (Bartulos et al., 2016). In an in vivo myocardial infarction 

model, Islet-1+ human embryonic stem cell-derived ventricular progenitors were 

injected into the myocardium of mice and resulted in preservation of myocardial 

contractile function (Foo et al., 2018). Islet-1+ cells represent a population of 

unique, rare, self-renewable, multipotent cells and are able to differentiate into 

the three cardiac lineages; cardiomyocytes, smooth muscle cells, and endothelial 

cells (Laugwitz et al., 2008; Y. Li et al., 2017). Our laboratory has established 

Islet-1+ neonatal and adult cardiac progenitor cell clones by single cell expansion 

to serve as a model for cardiovascular repair (Baio et al., 2018; Fuentes et al., 
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2013a). The use of single cell clones with a well-defined phenotype optimizes the 

safety profile and reproducibility for studies focused on the application of either 

stem cells or stem cell-derived exosomes as a model for cell-based 

cardiovascular repair.  

 

Stem and Progenitor Cell-derived Exosomes 

Stem cell-derived exosomes have served as a vital component of the 

secretome of stem and progenitor cells, based on their functional role in cellular 

signaling over the past couple of years (reviewed in Balbi & Vassalli, 2020; 

reviewed in Jayaraman et al., 2021). Recent studies have focused on the sole 

use of exosomes as a cell-free therapeutic approach in cardiovascular repair 

models (Barile et al., 2014; L. Chen et al., 2013; Gallet et al., 2017; Santoso et 

al., 2020; Yao et al., 2021a). This is because of the heterogenous composition 

and their ability to transfer functional proteins, metabolites, and nucleic acids to 

recipient cells (Gurung et al., 2021a; Y. Zhang et al., 2020). Exosomes are 

nanosized vesicles that can be secreted from several cell types (Teng & 

Fussenegger, 2021). There are now recommended set guidelines for 

extracellular vesicle studies provided by ISEV. Some of them include 

extracellular vesicle isolation, concentration, characterization, and nomenclature 

(Théry et al., 2018a; Witwer & Théry, 2019). Extracellular vesicle is the general 

nomenclature based on recommendations from ISEV. Measurable defined 
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characteristics such as origin of cell type, size, density, function, molecular 

markers such as CD63, CD81, CD82 are used to characterize these 

nanoparticles (Théry et al., 2018b).  

Exosomes, which are of endosomal origin, are composed of a single 

membrane and can range from 30 nm up to 200 nm with an average of 100 nm 

in diameter (Kalluri & LeBleu, 2020; Pegtel & Gould, 2019; Yi et al., 2020a). 

Variable exosome sizes have been identified, even when isolating vesicles from 

a single cell line (Pegtel & Gould, 2019). Exosomes contain variable proportions 

of genetic information which can be incorporated to the recipient cell (Danac et 

al., 2021; Narang et al., 2022). Current information on the genomic profile of 

exosomes derived from CPCs can be influential for determining molecular 

mechanisms mediating cardiac repair.  

Proteomic profiling identified pregnancy-associated plasma protein A 

(PAPP-A) highly enriched on the exosomal membrane of human CPCs, which 

activates ERK1/2 and Akt pathways in cardiomyocytes, leading to reduced 

apoptosis and improved ventricular function after ischemia/reperfusion (Barile et 

al., 2018). In a recent study using gene expression qPCR array, human CPCs 

under physoxia showed an increase in extracellular vesicle secretion and 

minimal changes in cellular expression of hypoxia related genes (Dougherty et 

al., 2020). Physoxia is described as 5% O2 saturation, the estimate of an in vivo 

scenario of tissue oxygenation; most tissue is 3.4% to 6.8% concentrated with O2 
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(Dougherty et al., 2020). Several miRNAs which are key for cardiac repair have 

been identified in CPCs and other stem cell-derived exosomes. These miRNAs 

can regulate cell differentiation, proliferation, angiogenesis, and inhibit apoptosis 

and fibrosis (Gray et al., 2015; reviewed in Thej & Kishore, 2021; reviewed in 

Wang et al., 2019). A table summarizing important miRNAs and transcripts found 

within exosomes derived from stem cells is found below (Table 1)  
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Table 1. Differentially Expressed miRNAs and Transcripts in Exosomes Derived from Stem Cells  

  Source  Content  miRNA Target or Function  Reference  

Cardiovascular  
Progenitor Cells  
(CPCs)  

Human CPCs  miR-210, 132  miRNA-210 targets ephrin A3 and PTP1 and inhibits 

apoptosis in vitro; miRNA-132 targets RasGap-p120 to 

inhibit apoptosis and enhance tube formation in vitro 

(Barile et 

al., 2014) 

Sca-1+ murine 

CPCs  

miR-21  Anti-apoptosis of cardiomyocytes in vitro (Xiao et al., 

2016) 

Hypoxia cultured 

murine CPCs  

miR-17, 210  Pro-angiogenic and contributes to improved cardiac 

function in vivo  
(Gray et al., 

2015) 

Cardiosphere-
derived cells   
(CDCs)  

Human CDCs  miR-4488  Contributes to anti-apoptotic effects in vitro  (Y.-N. Lin et 

al., 2021) 

Hypoxia cultured 

human CDCs  
miR-126, 130a, 210  Pro-angiogenic  (Namazi et 

al., 2018) 

Human CDCs  miR-181b  miR-181b targets PKC to mediate macrophage 

polarization in vitro 
(de Couto et 

al., 2017) 

Human and Swine 

CDCs  

miR-126, 132, 146a, 

181b, 210, 451  
Anti-fibrosis, anti-apoptosis, pro-angiogenic functions; miR-

146a reduces myocardial inflammation and apoptosis   
(Hirai et al., 

2020) 

Human CDCs  miR-21, 146a  miR-21 can reduce myocardial apoptosis by modulation of 

AKT-pathways, PDCD4, and FasL. miR-146a can repress 

IRAK1 and TRAF6  

(Vandergriff 

et al., 2018) 

Mesenchymal  
Stem Cells   
(MSCs)  

Murine MSCs  miR-182  
Improves cardiac function, reduces myocardial infarction 

size, inflammation, and cell pyroptosis in vivo 

(Yue et al., 

2022) 

Murine MSCs  miR-29, 24  Reduces fibrosis and inflammation and improves cardiac 

function in vivo 
(Shao et al., 

2017) 
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 Hypoxia cultured 

murine MSCs  

miR-125b  Suppresses proapoptotic genes p53 and BAK1 which 

contributes to anti-apoptotic function in vitro and in vivo  

(L.-P. Zhu et 

al., 2018) 

Murine MSCs  miR-25  Decreases pro-apoptotic proteins and EZH2 which leads 

to cardiomyocyte survival and suppresses inflammation in 

vitro and in vivo  

(Peng et al., 

2020) 

Rat bone marrow-

derived MSCs  
miR-144  Targets PTEN/AKT signaling and contributes to anti-

apoptotic effect on cardiomyocytes in hypoxic conditions  
(Wen et al., 

2020) 

Mouse bone 

marrow-derived 

MSCs  

miR-181, 223, 124, 
146a, 182, 125a, 103, 
221, 133, 150, 21, 22  

miRNAs are involved in inflammation modulation and/or 

cardiac repair; miR-182 in exosomes has an anti-

inflammatory effect in vivo 

(J. Zhao et 

al., 2019) 

Hypoxia cultured 

human MSCs  
miR-26a  Can target and suppress GSK3 and p--catenin to reduce 

Ischemia-reperfusion injury 
(H. Park et 

al., 2018) 

Induced  
Pluripotent Stem  
Cells  
(iPSCs)  

Murine iPSCs  miR-17-92 cluster, 19b, 
20a, 126, 130, 210, 
292, 293, 294, 295, let-
7, 145, 302a, VEGF-C, 

BMP-4, PDGF, 
PDGFs, TDGF1, FGFs, 
IGF-2, and CTGF  

Involved in angiogenesis, adaptation to hypoxic stress, 

regulation of cell cycle, mammalian development, aging, 

late developmental timing, regulation of cellular 

proliferation, differentiation, apoptosis, maintenance of 

self-renewal and pluripotency, and proteins involved in 

stimulating cardiomyogenesis and proliferation 

 

 

(Adamiak et 

al., 2018) 

Human iPSC-

derived CPCs  
miR-92a, 24, 93, 20b, 

107, 26a, 16, 130b  
Regulation of inflammation  (Lima 

Correa, El 
Harane, 
Gomez, et 
al., 2021) 

Other  

Adult murine 

cardiac stem cells  
Ccna2, miR-182, 183, 

96, 296, 298 
Positively regulates cell cycle, proliferation, and self-

renewal  
(Scalise et 

al., 2021) 

Human adipose-

derived stem cells  
miR-221, 222  Targets PUMA and ETS-1 proteins, decreases apoptosis 

and hypertrophy-related proteins in vivo  

(Lai et al., 

2020) 

Mice-derived 

cardiomyocyte  
miR-92a  Essential for activation of cardiac myofibroblasts in vitro 

and ex vivo  
(X. Wang et 

al., 2020) 

 



 

 11 

 Functional Studies with the Use of Stem Cell-derived Exosomes 

Functional studies with the use of stem cell-derived exosomes have 

provided information on variable applications in cardiac repair. Exosomal proteins 

derived from mesenchymal stem cells reduce the infarcted area by half, inhibit 

the proliferation and migration of vascular smooth muscle, reduce cardiomyocyte 

apoptosis, promote angiogenesis, reduce ventricular remodeling, and protect 

cardiac function (reviewed in B. Liang et al., 2020). Cardiac-derived progenitor 

cells expressing the early cardiac genes MEF2C, GATA4, and Mesp1 were used 

to demonstrate the cardioprotective and pro-angiogenic activity of exosomes 

isolated from these cells (Barile et al., 2018). These CPC-derived exosomes 

injected intramyocardially after permanent coronary artery ligation reduced infarct 

scar size and improved cardiac function after four weeks. Most importantly, this 

study observed a functional difference in cardiac protection between CPC-

derived exosomes more than bone marrow-derived mesenchymal 

stem/progenitor cell-derived exosomes (Barile et al., 2018). Cardiac progenitor 

cell-derived exosomes reduced cardiomyocyte apoptosis by 53% and were also 

shown to augment cardiac function after myocardial infarction (Barile et al., 2014; 

Mol et al., 2017). Patient-derived Sca-1+ CPC-derived exosomes significantly 

reduced infarct size whereas the parent CPC did not have this effect (Maring et 

al., 2019). A summary of the functional studies with the use of stem-cell derived 

extracellular vesicles for applications in cardiac repair is provided in the table 

below (Table 2). 
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Table 2. Functional Studies with The Use of Stem Cell-derived Exosomes for Cardiac Repair  

  Exosome  

Cell source 

Specific 

Markers 

Differentiation 

Potential  

Dosage of  

Exosomes  

  

Outcome  Reference  

 

 

 

 

 

 

 

 

 

Cardiovascular 

Progenitor 

Cells  

(CPCs) 

Human CPCs  c-Kit, CD105, 

Gata4, MEF2C, 

and Mesp1  

Cardiomyocytes 

(CMs) and 

endothelial cells 

(ECs) 

6 x 109 particles 

for neonatal rat in 

vivo model. 1011 

particles for adult 

rat in vivo model.  

Stimulated adult and 

neonatal cardiomyocyte 

cycling in vivo, improved 

ejection fraction and reduced 

scar size in adult rat after 

myocardial infarction  

(Balbi et al., 

2021; Smith et 

al., 2007)  

Human CPCs  c-Kit, CD105, 

Gata4, MEF2C, 

Mesp1, 

CXCR4, and 

PPAP-A 

CMs, ECs, 

adipogenic (AD), 

chondrogenic 

(CH), and 

osteogenic (OS) 

2 x1011 particles  Significantly reduced infarct 

size and improved left 

ventricle ejection fraction in 

vivo 

(Ciullo et al., 

2019; Smith et 

al., 2007) 

Human CPCs  c-Kit, CD105, 

Gata4, MEF2C, 

Mesp1, and 

PPAP-A 

CMs, ECs, AD, 

CH, and OS 

1011 exosomes  Reduced scar size and 

improved left ventricular 

function in vivo  

(Barile et al., 

2018; Smith et 

al., 2007) 

Adult  

human CPCs  

CD73, -90, -

105, Gata4, 

Tbx5, Tbx18, 

and Mesp1  

None reported  3x107 particles/ 

mL for in vitro, 

1x1011 

exosomes for in 

vivo study 

Inhibited apoptosis and 

promotes angiogenesis in 

vitro; improved cardiac 

function in vivo  

(Andriolo et al., 

2018)  

Human CPCs  CD13, -90, -44, 

Tbxt, Tbx18, -5 

MEF2C, Gata4, 

and Mesp1 

CMs, ECs, AD, 

CH, and OS 

3 doses of 

3x1010 particles  

In vivo prevention of 

Dox/Trz-induced myocardial 

fibrosis, left ventricular 

disfunction, and attenuated 

inflammation 

(Milano et al., 

2020) 

 
 
 

Human  

CDCs 

c-Kit, Sox2, 

Nanog, and 

MHC-I 

CMs, smooth 

muscle cells 

(SMs) and ECs 

16.5 x1011 

particles  

Decreased scar size and 

improved left ventricular 

ejection fraction in vivo  

(Gallet et al., 

2017; T.-S. Li et 

al., 2010) 
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Cardiosphere-
derived cells 

(CDCs) 

Human  

CDCs 

CD90 and 

CD105 

CMs 6 x109 exosomes  Reduced fibrosis and scar 

size, increased 

cardiomyocyte proliferation 

and angiogenesis 

(Tang et al., 

2017;Vandergriff 

et al., 2018) 

Human CDCs  c-Kit and CD105  CMs, ECs 2.0 x 109 

extracellular 

vesicles injected 

weekly for four 

consecutive 

weeks 

Reduced cardiac 

inflammation, improved 

cardiac function, suppressed 

arrhythmogenesis in an in 

vivo arrhythmogenic 

cardiomyopathy murine model  

(Y.-N. Lin et al., 

2021; Smith et 

al., 2007) 

 

 

 

 

 

 

 

 

 

 

 

 

Mesenchymal 

Stem Cells 

(MSCs) 

Murine bone 

marrow-derived 

MSCs  

CD29, -44, and 
Sca-1 

AD, CH, and OS 5.62 x 105 

exosomes  

Decreased infarct size after 
ischemia reperfusion injury 

(Luther et al., 

2018) 

Murine bone 

marrow-derived 

MSCs 

CD44, -105, and 

Sca-1 

None reported  4 x109 particles  Inhibited inflammation, 
reduced cardiomyocyte 
apoptosis and fibrosis, 
enhanced vasculogenesis 
and restored cardiac function 
in vivo  

(X. Wang et al., 

2018)  

Murine bone 

marrow-derived 

MSCs 

None reported  Can differentiate 

into muscle, fat, 

bone, and 

cartilage cells, no 

in vitro or in vivo 

data reported  

5.8 x1012 particles  Reduced myocardial 

remodeling in vivo and 

reduced cellular apoptosis in 

vitro 

(Ou et al., 2020)  

Mouse cardiac 
MSCs  

CD44, -105, -

140, Sca-1, and 

Gata4 

SMs  1 x1012 particles  Improved cardiac function, 

decreased fibrosis, and 

increased 

neovasculogenesis in vivo  

(Xuan et al., 

2020)  

Wharton’s 

Jelly-derived 

MSCs  

CD90 and CD105  None reported  1 x 1011 particle 

injections 

administered 

weekly: 6 total 

doses  

Decrease in infarct size, 

improved ejection fraction, 

cardiac performance, 

afterload, contractility and 

lusitropy  

(Bellio et al., 

2022) 



 

 14 

MSCs CD31, -34, -90, 

-105, and c-Kit  

None reported  1 x108 exosomes 

in a hyaluronic 

acid hydrogel  

Reduced left ventricular 

chamber size and preserved 

wall thickness in vivo  

(Cheng et al., 

2022; Qiao et al., 

2019) 

 

 

 

 

 

 

 

 

 

 

 

 

Induced 

Pluripotent 

Stem Cells 

(iPSCs) 

Human IPSC-

derived CPCs  

Islet-1, MEF2C, 

KDR, Gata4, 

PDGFR- , 

Nkx2.5 

CMs, ECs, and 

SMs  

1 x1010 particles  No humoral response to in 
vivo treatment, pro-
inflammatory monocytes and 
cytokines were decreased in 
vivo  

(Drowley et al., 

2016; Lima 

Correa, El 

Harane, Gomez, 

et al., 2021)  

Human IPSC-

derived CPCs  

Islet-1, MEF2C, 

KDR, Gata4, 

PDGFR- , 

Nkx2.5 

CMs, ECs, and 

SMs 

1 x 1010 (± 3,000) 

particles  

Failed to trigger 

cardiomyocyte proliferation 

but, decreased infarct size 

and fibrosis in vivo  

(Lima Correa, El 

Harane, Desgres, 

et al., 2021) 

Human MSC-

derived IPSC- 

differentiated 

cardiomyocytes 

Nanog, Oct 3/4, 

Sox2  

IPSCs into CMs  400 x 108 

exosomes  

Enhanced cardiomyocyte 

survival in vitro and cardiac 

function in vivo and induces 

transcriptional changes to 

the peri-infarct region by 

impacting mTOR signaling  

(Santoso et al., 

2020)  

Human IPSCs 

and IPSC-

derived 

cardiomyocytes  

None reported  CMs  3x1010 

extracellular 

vesicles  

IPSC-derived cardiomyocyte 

extracellular vesicles 

reduced infarct size, 

hypertrophy, apoptosis and 

arrythmias  

(B. Liu et al., 

2018) 

Human IPSC-

derived CPCs  

Islet-1, MEF2C, 

KDR, Gata4, 

PDGFR- , 

Nkx2.5 

CMs, ECs, SMs  3 x 1010 

extracellular 

vesicles for in 

vivo myocardial 

infarction model  

Significantly improved 
cardiac function, decreased 
left ventricular volumes, 
increased left ventricular 
ejection fraction, and 
induction of genes 
associated with cardiac 
functional improvement  

(El Harane et al., 

2018a)  
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Other 

Human 
adipose-
derived stem 
cells  

Not reported  ECs  1.3 x 1010 

particles in 

hindlimb Ischemia 

model, for 

myocardial 

infarction model 

two 2.2 x 107 

injections, and 

intravenous 4.3 x 

108 particle 

injections at 7, 14, 

21 days post-

surgery  

Promote angiogenesis and 

arteriogenesis in ischemic 

hindlimb in vivo while also 

improving cardiac function, 

reducing infarct size, and 

promoting angiogenesis in 

myocardial infarction in vivo 

model 

(Kang et al., 

2016; D. Zhu et 

al., 2022) 

Murine 

endothelial 

progenitor cells  

DiLDL, 

VEGFR2, and 

CD34 

Can differentiate 

into de novo 

vasculature; no 

data reported 

1.87 x 1011 

particles/mL for in 

vitro studies, 

9.33x1010 

particles/mL for in 

vivo studies, 

Proangiogenic effect in vitro, 

improved left ventricular 

contractility and structural 

integrity in vivo 

(Atluri et al., 

2014; Chung et 

al., 2020)  

Human 

embryonic 

stem cell-

derived CPCs  

SSEA1, Mesp1, 

MEF2C,  

Islet-1, Gata4, 

and Nkx2.5  

CMs, ECs, and 

SMs 

Around 485 ± 827 

x 108 particles in 

the normoxia 

group and 457 ± 

927 x108 particles 

for hypoxia 

treatment  

Hypoxia and normoxia 

improved cardiac function, 

reduced scar size, promoted 

angiogenesis and reduced 

fibrosis 

(J. Wang et al., 

2019; Q. Wu et 

al., 2020) 

Human and 

murine 

epicardial cells  

Murine 

epicardial cells: 

Wt1 

Murine epicardial 

cells can 

differentiate into 

SMs 

1.58 x108 

particles for ex 

vivo, 108 for in 

vivo 

Promote cell cycle activity ex 

vivo and increased 

proliferation in vivo 

(Austin et al., 

2008; del Campo 

et al., 2021)  

CMs: Cardiomyocytes,  
ECs: Endothelial cells, 

SMs: Smooth muscle cells 
AD: Adipogenic,  

CH: Chondrogenic 
OS: Osteogenic 
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 Islet-1+ Expressing Progenitors as a Source for Cardiac Repair 

 Neonatal Islet-1+ cardiovascular progenitor-derived exosomes may 

be a more advantageous source for cardiac repair since the neonatal heart is 

capable of regeneration during a temporary postnatal period (Weinberger & 

Eschenhagen, 2021). In a study using neonatal mice, cardiac regeneration was 

observed after ventricular resection, but the regenerative window for mice is soon 

diminished after birth and measured within three to seven days (Velayutham et 

al., 2019). Furthermore, in an in vivo myocardial infarction model using pigs, the 

regenerative potential is observed during the first two days after birth and 

potential is lost a few days after (Ye et al., 2018; W. Zhu et al., 2018). This 

regenerative window is in part achieved due to YAP1 signaling (Mia & Singh, 

2019; J. Wang et al., 2018). As the critical effector of the Hippo signaling 

pathway, YAP1 is sufficient to promote mitosis in cardiomyocytes and can 

activate surrounding tissue by means of secreted signals through downstream 

targets (Gong et al., 2021a; Mugahid et al., 2020a). The potential use of Islet-1+ 

neonatal cardiac progenitor-derived exosomes for the purpose of augmenting 

YAP1 expression and activating proliferation in patient-derived adult cardiac 

progenitors which have reduced regenerative ability is the focus of the work 

described in this thesis.  
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CHAPTER TWO 

MATERIALS AND METHODS 

In Vitro Exosome Isolation and Application  

 

Isolation and Culture of Human Neonatal Islet-1+ and Adult Cardiovascular 

Progenitor Cells 

The Institutional Review Board of Loma Linda University approved the 

protocol for use of tissue that was discarded during cardiovascular surgery, 

without identifiable private information, for this study with a waiver of informed 

consent. Human neonatal Islet-1+ cardiac progenitor and adult cardiac progenitor 

cell clones were previously isolated from discarded surgical cardiovascular tissue 

(Fuentes et al., 2013b) and were available for use in this study. Briefly, discarded 

atrial tissue from human neonates and adults was cut and digested in a 

collagenase solution (Roche Applied Science, Indianapolis, IN, USA). In order to 

isolate cardiovascular progenitors, this solution was strained through a 40 m cell 

strainer. Clonal populations of cells were established by a limiting dilution at a 

concentration of 0.8 cells per well which were further expanded. Human CPC 

clones used in the current project were cultured in growth media that included 

10% fetal bovine serum (FBS) or exosome-depleted 10% FBS (Genesee 

Scientific, San Diego, CA, USA), Medium 199 (Thermo Fisher Scientific, 

Waltham, MA, USA), 100 g/mL Penicillin-Streptomycin (Gibco, Thermo Fisher 

Scientific, Waltham, MA, USA), 22% EGM-2 Endothelial Cell Growth Medium-2 
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BulletKit (Lonza, Basel, Switzerland), and 1.0% minimum essential medium non-

essential amino acids solution (Life Technologies by Thermo Fisher Scientific, 

Waltham, MA, USA).  

 

Preparation of Exosome Depleted Fetal Bovine Serum 

Extracellular vesicles were removed from the serum used for cell culture, 

using an approach that removes approximately 95% of FBS-derived extracellular 

vesicles containing RNA (Shelke et al., 2014; Théry et al., 2006). Briefly, 10% 

fetal bovine serum (Genesee Scientific, San Diego, CA, USA) was subjected to 

ultracentrifugation at 100,000 x g for 18 hours at 4 C then filtered with a .22m 

filter to reduce contamination and stored in -18 C until needed. 

 

Collection, Isolation and Quantification of Exosomes from Neonatal Islet-1+ 

Cardiovascular Progenitor Conditioned Media 

Neonatal Islet-1+ cardiovascular progenitor cells were cultured in 6 well 

0.1% gelatin-coated plates and with exosome-depleted 10% FBS-prepared 

medium. Neonatal cardiovascular progenitor cells were grown in exosome- 

depleted media and were incubated at 37 C with 5% CO2 and 95% oxygen until 

90% confluency in order to collect conditioned media. Conditioned media was 

saved in -80 C and thawed at room temperature prior to exosome isolation 

based on previous recommendations (Bojmar et al., 2021; Trummer et al., 2009).  
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Total Exosome Isolation from Cell Culture Media 

Total Exosome Isolation Reagent was used according to manufacturer’s 

instructions (Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA). Briefly, 

conditioned media was centrifuged at 2,000 x g for 30 minutes and suspended 

with 0.5 volume of the Total Exosome Isolation reagent (10mL of media: 5 mL of 

reagent). The solution was incubated overnight at 4C, then subjected to a final 

centrifugation of 10,000 x g for 1 hour at 4 C. The supernatant was aspirated 

and discarded, and the pelleted exosomes were resuspended in 200 L of PBS 

(Genesee Scientific, San Diego, CA, USA). A dilution of 3:1000 was prepared for 

Nanosight analysis and stored at -20 C or -80 C for either short term or long 

term storage, as recommended (Bertokova et al., 2022; Bojmar et al., 2021).  

 

Differential Ultracentrifugation of Cell Culture Media for Exosome Isolation  

Differential ultracentrifugation was performed to separate particles by 

sedimentation dependent on size and density through sequential centrifugal 

speeds. The procedure was followed as previously described with slight 

modification (Livshits et al., 2015; Sidhom et al., 2020). Briefly, conditioned 

media collected from neonatal cardiovascular progenitors was subjected to a 

centrifugal force of 2,000 x g for 30 minutes for removal of cellular debris. The 

pellet was discarded, and the supernatant went through a subsequent centrifugal 

force of 10,0000 x g for 30 minutes at 4 C to remove apoptotic bodies and 

contaminating proteins. The pellet was discarded, and the supernatant was 
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subjected to a final centrifugation of 100,000 x g for 2 hours at 4C. The 

supernatant was aspirated, and the pellet was resuspended with 203 L of PBS 

(Genesee Scientific, San Diego, CA, USA). A dilution of 3:1000 was prepared for 

Nanosight and saved in -20 C or -80 C.  

 

Exo-Quick-TC ULTRA EV Isolation Kit for Cell Culture Media 

The Exo-Quick TC ULTRA EV isolation kit was used to purify exosomes 

from the media of neonatal cardiovascular progenitors according to 

manufacturer’s instructions (System Biosciences, Palo Alto, CA, USA). Briefly, 

conditioned media was centrifuged at 3,000 x g in order to remove cellular 

debris. The supernatant was resuspended with the ExoQuick-TC reagent using a 

ratio of 5mL of conditioned media to 1mL of reagent and was incubated overnight 

at 4 C. Subsequently, the solution was centrifuged for 10 minutes at a speed of 

3,000 x g at room temperature. The supernatant was aspirated to leave the 

precipitated exosomes for further collection. The pellet was resuspended with 

200 L of Buffer B, followed by addition of 200 L of Buffer A and resuspension. 

The solution was loaded onto a prepared isolation column and placed on a 

rotating shaker for 5 minutes at room temperature. The purified exosomes were 

eluted at a speed of 1,000 x g for 30 seconds, and this step was repeated. A 

dilution of 3:1000 was prepared for Nanosight preparation and saved in -20 C or 

-80 C.  
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Nanoparticle Tracking Analysis  

Analyses of particle size and concentration of exosomes isolated from 

neonatal cardiovascular progenitor cell conditioned media was performed using 

Nanosight NS300 instrument (Malvern Panalytical, Malvern, UK) and 

Nanoparticle Tracking Analysis (NTA) software (version 3.4; Malvern Panalytical, 

Malvern, UK). Exosome samples diluted in PBS (3:1,000) were thawed at room 

temperature. Samples were vortexed and sonicated for 30-45 seconds before 

injection. Five videos of one sample determined mean size and concentration of 

particles: syringe pump speed, 30.  

 

RNA Sequencing and Transcriptomic Analysis of Adult and Neonatal Islet-1+ 

CPC-derived Exosomes 

 RNA samples were previously extracted and purified from 

exosomes derived from adult and neonatal Islet-1+ cardiovascular progenitors. 

RNA samples were sent to the PrimBio Research Institute (Exton, PA, USA) for 

transcriptome analysis following the same protocol mentioned previously from 

our lab (Camberos et al., 2021). Briefly, rRNA was removed from total RNA 

samples with a rRNA removal kit from Illumina (San Diego, CA, USA). Ion Total 

RNA-Seq Kit v2 (Thermo Fisher Scientific, Waltham, MA, USA) was used to 

assemble sequencing libraries. Prior to PCR amplification, nucleic acid binding 

beads (Ambion, Austin, TX, USA) were used to purify the cDNA library. Agilent 

dsDNA High Sensitivity kit (Agilent, Santa Clara, CA, USA) was used to test 
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quality of libraries. Samples were enriched with a Ion OneTouch ED instrument 

and an Ion PI  Hi-Q OT2 200 Kit (Thermo Fisher Scientific, Waltham, MA, 

USA). Sequencing was performed with an Ion Proton sequencer (Thermo Fisher 

Scientific, Waltham, MA, USA) and a species-specific protocol. Sequence files 

were aligned to the human genome and quality of sequence files was performed 

using the Strand NGS program. Quantification and normalization of aligned reads 

were performed using the DEseq algorithm within the Strand NGS program. The 

Audic-Claverie test and the Benjamini-Hochberg correction test were used for 

statistical analysis. Significance was determined using a 2.0-fold change 

minimum cutoff.  

miRNAs which were predicted as upregulated or downregulated and 

showing greater than a 2.0 fold change in neonatal CPC-derived exosomes when 

compared to adult CPC-derived exosomes were uploaded to DIANA-miRPath 

v3.0 bioinformatics software (Vlachos et al., 2015). A KEGG analysis was 

performed on the dataset based on predicted targets of uploaded miRNAs. 

Categories specific to pathways involving development, proliferation, cell-cycle, 

or Hippo signaling pathway and only categories with a p-value of < 0.05 were 

reported. Total gene transcripts that were predicted to be upregulated and 

showing greater than a 2.0 fold change were then uploaded onto Ingenuity 

Pathway Analysis (IPA) (Qiagen, Valencia, CA, USA). A core analysis was 

performed with a parameter of human cells only was set for the anaylsis. 

Categories specific to pathways involving exosome biogenesis, development, 
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proliferation, cell-cycle, or Hippo signaling pathway and with a p-value of < 0.05 

were reported.  

 

Treatment of Human Adult Cardiac Progenitor Cells with Exosomes Isolated from 

Neonatal Cardiovascular Progenitors  

 Human adult cardiovascular progenitor cells were grown on CPC 

growth media until exosome addition. Adult CPC clones received concentrations 

of 5 – 6 x1010 exosomes isolated from human neonatal Islet-1+ CPC clones or 

similar volume of exosome-depleted media as a control. Cells underwent a 72-

hour incubation at 37 C with 5% CO2 and 95% Oxygen before subsequent 

experiments.  

 

Purification of RNA and Reverse Transcriptase Quantitative PCR 

Adult treated and non-treated CPCs received 700 L of QIAzol reagent 

(Qiagen, Valencia, CA, USA). Total RNA was purified by using an RNeasy mini 

kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. RNA 

quality was validated with a gel electrophoresis using a 1% agarose gel and high 

mass DNA ladder (Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA) 

(E. J. Park et al., 1996). 1 g of RNA was used to prepare cDNA with Superscript 

III (Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA). Reverse 

transcriptase quantitative PCR was performed using iTaq Universal SYBR 

Green Supermix (Bi-Rad, Hercules, CA, USA). Bio-Rad CFX96 Touch Real-Time 
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PCR Detection System was used to perform all RT-qPCR experiments (Bi-Rad, 

Hercules, CA, USA). PCR plates were run with the following settings 94 C for 10 

minutes, 94 C for 15 seconds, 56 – 58 C (depending on the primer) for 60 

seconds, and 72 C for 30 seconds, repeated for 45 cycles. Primers of our genes 

of interest were constructed using National Center for Biotechnology Information 

(NCBI) Primer-BLAST and are shown in Table 3. Reverse transcriptase 

quantitative PCR products were visualized using a 1%-2% agarose gel 

electrophoresis and a low mass DNA ladder to ensure that the correctly sized 

transcripts were amplified (Invitrogen by Thermo Fisher Scientific, Waltham, MA, 

USA).  

 

 

Table 3. Primer Sequences Used for RT-qPCR; (5’ to 3’ from left to right) 

 

Human Primers Sequence 

bACTIN - FWD TTT GAA TGA TGA GCC TTC GTC CCC 

bACTIN - REV GGT CTC AAG TCA GTG TAC AGG TAA GC  

CCNA2 - FWD AGG AAA GCT TCA GCT TGT GG 

CCNA2 - REV TTG AGG TAT GGG TCA GCA TC 

CCND1 - FWD TTC ACA GAG CGC CAG CCA GC  

CCND1 - REV CTT GGG AGC GGC GGC AAG AA 

CREB – FWD AGG TGT AGT TTG ACG CGG T 

CREB - REV GGA CTT GAA CTG TCT GCC CA 

CTGF - FWD CAC CCG GGT TAC CAA TGA CA 
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CTGF - REV TCC GGG ACA GTT GTA ATG GC 

ERBB4 - FWD TTC AGG ATG TGG ACG TTG CC 

ERBB4 - REV GGG CAA ATG TCA GTG CAA GG 

MYC – FWD AAG ACA GCG GCA GCC CGA AC 

MYC – REV TGG GCG AGC TGC TGT CGT TG  

PIK3CA - FWD AAC AAT GCC TCC ACG ACC AT 

PIK3CA - REV TCA CGG TTG CCT ACT GGT TC 

RelA - FWD GCG AGA GGA GCA CAG ATA CC 

RelA - REV GGG GTT GTT GTT GGT CTG GA 

SOX2 - FWD AAC CAG CGC ATG GAC AGT TA 

SOX2 - REV GAC TTG ACC ACC GAA CCC AT 

YAP1 - FWD TCC CAG ATG AAC GTC ACA GC 

YAP1 - REV TCA TGG CAA AAC GAG GGT CA  

 

 

Protein Purification from Human Adult CPCs after Exosome Treatment for 

Western Blot  

 Following a 72-hour neonatal Islet-1+ CPC-derived exosome 

treatment or control treatment, the adult CPCS were aspirated to remove any 

medium, washed with cold PBS (Genesee Scientific, San Diego, CA, USA) and 

were incubated with cold trypsin (Thermo Fisher Scientific, Waltham, MA, USA). 

Trypsinized cells were placed on ice until all cells became detached. Adult 

exosome and control samples received a protein lysis buffer solution consisting 

of RIPA buffer, 0.5M EDTA, protease inhibitor cocktail, sodium orthovanadate, 
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and sodium fluoride and were agitated for 1 hour at 4 C. The samples were then 

subjected to centrifugation at 14,000 x g and aliquoted for use. Protein 

concentration was quantified using the Micro BCA Protein Assay Kit 

(ThermoFisher Scientific, Waltham, MA, USA). Simple Wes by Protein Simple 

(ProteinSimple, San Jose, CA, USA) is an automated gel-free western blotting 

system and was used following the manufacturer’s instructions to analyze protein 

levels in adult CPCs. Antibodies used for western blot are shown in Table 4 

below (Cell Signaling Technology, Danvers, MA, USA).  

 

 

Table 4. Antibodies Used for Western Blot  

 
Antibody Species Antibody 

Dilution 

Size 

(kDa) 

Sample 

Used 

Catalog No. Manufactu

rer 

YAP1 Rabbit 1:200 65-78 0.4 

mg/L 

D8H1X Cell 

Signaling 

Technology 

Phosphoryla

ted YAP1 

Rabbit 1:200 65-78 0.4 

mg/L 

D9W2I Cell 

Signaling 

Technology 

beta-Actin Mouse 1:50 45 0.4 

mg/L 

8H10D10 Cell 

Signaling 

Technology 
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Statistical Analysis  

 Data was analyzed using Microsoft Excel and PRISM software 

programs and was reported as mean +/- standard error. Relative gene 

expression was calculated using the 2-CT
 method and P values < 0.05 were 

deemed significant (Livak & Schmittgen, 2001). Actin was used to normalize 

genes and proteins of interest. 
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CHAPTER THREE 

RESULTS  

Transcriptomic Analysis of Neonatal Cardiovascular Progenitor Cell-derived 
Exosomes and Their Functional Application in Adult CPCs 

 

The Transcriptome of Islet-1+ Neonatal Cardiac Progenitor Cell-derived 

Exosomes  

The transcriptome of human neonatal Islet-1+ cardiac progenitor cell-

derived exosomes was compared with the transcriptome of exosomes derived 

from human adult CPC clones. miRNAs which were differentially expressed, 

showing greater than a 2.0 fold change, were uploaded into DIANA-miRPath v3.0 

bioinformatics software to identify which KEGG pathways were predicted to be 

regulated by the exosome content of neonatal CPC. 

Figure 1A, identifies the pathways predicted to be regulated by miRNAs 

identified in neonatal CPC-derived exosomes. The most significant pathways 

found were the Hippo signaling pathway and cell cycle. These two pathways are 

critically important for cardiac regeneration. Previous studies have shown that the 

Hippo signaling pathway is critical for cardiomyocyte proliferation in the postnatal 

heart through activation of the downstream effector YAP1 (Z. Lin & Pu, 2014). In 

Figure 1A, there are an estimated 117 genes targeted by about 56 miRNAs 

identified in the neonatal exosome cargo regulating the Hippo signaling pathway. 

For example, miR-31 and miR-221 are able to indirectly activate YAP1 
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transcriptional activity through suppression of LATS (Aguennouz et al., 2020; 

Mitamura et al., 2014). In addition, miR-221 is capable of targeting cyclin-

dependent kinase inhibitors (CDKI) CKKN1B/p27 and CDKN1C/p57. 

Consequently, miR-221 can promote proliferation through modulation of cell-

cycle dependent genes (Fornari et al., 2008). The manipulation of the Hippo 

signaling pathway can influence YAP1-mediated de-differentiation of adult 

cardiomyocytes (Y. Zhu et al., 2021a). De-differentiation is necessary for cell 

cycle re-entry, and is a key step in activating cardiac regeneration (Y. Zhu et al., 

2021b). YAP1 signaling via exosomes can drive tissue repair in the infarcted 

heart by initiating a de-differentiation step in surrounding cardiac myocytes. 

In addition to the Hippo signaling pathway, several other significantly 

impacted pathways listed in Figure 1A are also involved in regeneration and in 

development of the human heart (Hesse et al., 2018; H. Li et al., 2021; Ozhan & 

Weidinger, 2015; Wadugu & Kühn, 2012). These pathways include cell cycle, 

Wnt signaling, ERBB signaling, and Notch signaling. These pathways interact 

with the Hippo signaling pathway and mediate YAP1 transcriptional activity 

(Aharonov et al., 2020; Flinn et al., 2020; F. Zhu et al., 2021). For example, 

Notch and Hippo signaling pathways are able to promote the expression of 

neuregulin (Artap et al., 2018; K. Zhang et al., 2012). Neuregulin plays a role in 

ERBB signaling by interacting directly with ERBB2/ERBB4 receptors and is able 

to stimulate cardiomyocyte proliferation (Vujic et al., 2020). Regulation of the 

actin cytoskeleton, TGF-beta signaling pathway, and Focal adhesion are 
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pathways which are influenced by the extracellular matrix. Mechanical or 

signaling cues activate YAP1 transcriptional activity (Morice et al., 2020; Seo & 

Kim, 2018). mTOR signaling has an improtant role in regulation of cellular 

growth, metabolism, proliferation, and survival (Saxton & Sabatini, 2017). 

Specifically, mTOR-dependent G1-phase progression of the cellular cycle is 

possible through S6KI and eukaryotic translation Initiation Factor 4E (eIF4E) 

(Fingar et al., 2004).  

DIANA miRPath is used to analyze miRNAs only.   We next uploaded 

transcripts showing greater than a 2.0 fold change into Ingenuity Pathway 

Analysis. This was done to identify biological relationships between transcripts 

and miRNAs in the neonatal CPC exosome content. In Figure 1B, several 

additional signaling pathways were identified as significantly impacted, including 

CREB signaling. The cyclic adenosine monophosphate response element-

binding protein (CREB) is able to promote the transcription of YAP1 by binding to 

the YAP1 promoter (Han, 2019). Several additional upstream components that 

have a significant impact on Hippo signaling include mechanical cues, G-protein 

coupled receptor signaling and oxidative stress (Luo & Yu, 2019; Meng et al., 

2016). Calcium signaling, cAMP-mediated signaling, growth hormone signaling, 

GP6, and protein kinase A signaling are all pathways critically necessary for 

physiological cardiac function and repair.  

Calcium signaling is required for early cardiac development and is 

necessary for the proliferation of cardiomyocytes in the embryonic heart 
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(Chernyavskaya et al., 2012; Porter Jr. et al., 2003). In addition, based on 

genetic analysis in early heart development, calcium signaling, paracrine 

communication and transcriptional signaling are major processes involved in 

cardiac morphogenesis (Chernyavskaya et al., 2012). cAMP utilizes PKA to 

activate the epidermal growth factor signaling pathway and ERK1/2 signaling to 

actvate cellular proliferation (Kiermayer et al., 2005). Growth hormone signaling 

has been shown to be necessary in liver regeneration given that impaired growth 

hormone signaling led to reduced cellular proliferation (Chia, 2014). Other 

significant pathways such as SNARE signaling are involved in exosomal 

biogenesis and secretion (Gurung et al., 2021b). Finally, cell cycle control of 

chromosomal replication is also found to be a significant pathway which predicts 

that the cyclin-dependent kinases are activated and being transferred through 

exosomal platforms to nearby cells and this predictation can be extremely 

important for cardiac repair.  

IPA allows for identification of predicted molecule activity in both upstream 

and downstream regulation of signaling pathways. This dataset was aligned with 

the Hippo signaling pathway in Figure 3A. The Molecule Activity Predictor (MAP) 

indicates that YAP1 is predicted to be able to translocate into the nucleus and 

interact with transcriptional factors involved with activation of cellular proliferation.  

Given that the cell cycle and Hippo signaling pathways are likely to be 

significantly impacted according to predictions made by the software used to 

analyze the CPC transcriptome, further experiments were done to functionally 
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assess YAP1 activation and proliferation. In order to examine whether or not 

cellular proliferation is induced by the content of neonatal exosomes in vitro, we 

initially isolated Islet-1+ neonatal cardiac progenitor cell-derived exosomes and 

quantified them by Nanosight. 
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Figure 1. Transcriptomic Analysis Reveals the Predicted Activation of YAP1 
and Cell Proliferation by Neonatal Cardiovascular Progenitor Cell-derived 
Exosomes  

(A) KEGG analysis of miRNAs identified by RNA sequencing of Isl-1+ 
neonatal versus adult CPC-derived exosomes (B) Canonical Pathways 
significantly impacted by upregulated miRNAs and transcripts in the Isl-1+ 
neonatal CPC exosome content (C) The Molecule Activity Predictor tool was 
used on IPA to predict the biological relationships between upregulated miRNAs 
and transcripts in relation to the Hippo signaling pathway. The z-score indicates 
the observed increase in the activation states of biological functions which are 
impacted by several signaling pathways. Orange z-score describes predicted 
activation while blue z-score indicates predicted inhibition. A -log(p-value) of 1.3 
is considered statistically significant.  
 

 

Purification of Neonatal Islet-1+ Cardiac Progenitor Cell-derived Exosomes 

 Exosomes capture an important part of the secretome that mediate 

functional alternations in recipient cells. Several methods have been used to 

obtain exosomes with an optimal size range of 30-150 nanometers and up to 200 

nanometers in size (Brennan et al., 2020; Xu et al., 2022). Purity, size, and 

concentration can be influenced by differential isolation methods and culture 

conditions (Ludwig et al., 2019). Successful isolation of purified functional 

exosomes would aid in the application of exosomes for cardiac therapy.  

No optimal method of exosome isolation exists. Ultracentrifugation utilizes 

high centrifugal force to extract exosomes from biological fluids based on 

differential sedimentation rates (H. T. Hu et al., 2021). The limitation of this 

approach is that ultracentrifugation can negatively impact purity and lacks high 

exosome yield (Ayala-Mar et al., 2019; Serrano-Pertierra et al., 2019). Moreover, 

the repeated subjection of nanoparticles to high centrifugal force can damage 
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exosomal membranes and alter their biological function (Butreddy et al., 2021; J. 

Chen et al., 2022). We compared ultracentrifugation to commercially available 

isolation kits to assess functional efficacy and to identify the optimal isolation 

methods for our proposed study. 

Commercial kits contain a precipitation reagent (hydrophilic polymer) 

which allows for the separation of exosomes from the cell culture medium. 

Precipitation-based methods preserve biological function but result in low purity 

after exosome isolation (Ayala-Mar et al., 2019). The ExoQuick-TC ULTRA EV 

Isolation Kit for Tissue Culture Medium differs from the Total Exosome Isolation 

kit based on the inclusion of a subsequent purification step after exosome 

precipitation. The kit provides a “purification column” and has significantly 

decreased the presence of contaminating proteins such as IgG and albumin in 

previous studies (Coughlan et al., 2020).  

Comparison of different isolation techniques using supernatant isolated 

from neonatal cardiac progenitor cells allowed us to determine the purity and size 

distribution of exosomes isolated from Islet-1+ progenitor cell conditioned media. 

The concentration of exosomes in our samples was performed using Nanosight 

instrument. Nanosight measures particle size distribution by nanoparticle tracking 

analysis. Briefly, Nanoparticle tracking analysis uses a specially aligned laser 

beam to illuminate particles in liquid suspension. The light scattered by each 

particle is focused onto a microscope and recorded onto a camera (Gardiner et 

al., 2013). Nanoparticle tracking analysis software tracks the particles moving in 
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Brownian motion to calculate particle size using the Stokes-Einstein equation 

(Comfort et al., 2021). Size distribution was determined by five video records for 

each sample, n=5. Concentration measurements represent mean +/- standard 

error.  

In Figure 2A, Nanoparticle tracking analysis of particles which were 

isolated by differential ultracentrifugation of the cell culture supernatant of Islet-1+ 

neonatal cardiovascular progenitor cells revealed a mean particle size of 193 nm 

and concentrations of 1.32x1010 +/- 4.7x109 with a mode of 131 nm. Figure 2B 

demonstrates the outcome when Nanoparticle tracking analysis was applied to a 

sample of isolated particles from this same neonatal cardiovascular progenitor 

cell clone using the Total Exosome Isolation kit. The results revealed a mean 

particle size of 180 nm and concentrations of 1.97x 1010 +/- 1.12x 109 with a 

mode of 141 nm using this isolation kit. As shown in Figure 2C, the ExoQuick-TC 

ULTRA-EV Isolation Kit resulted in isolation of particles found with a mean 

particle size of 176 nm and concentrations of 2.13x 1010 +/- 2.57x 1010 with a 

mode of 137 nm.  

We chose to use the ExoQuick-TC method going forward because the 

mean and mode particle sizes found within our sample remained under the 

threshold of exosome characterization, (< 200nm) (Yi et al., 2020b). Additionally, 

the ExoQuick-TC isolation method had the same starting volume as other 

exosome isolation methods and resulted in a 10-fold higher yield of exosomes. 

Given these results, including the extra purification step, we decided to continue 
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with the ExoQuick-TC method for downstream applications. Now that we had 

optimized the exosome isolation process for our proposed study, we next 

examined whether or not exosomes derived from neonatal cardiac progenitor 

cells can alter the transcriptome of adult cardiac progenitor cells and potentiate a 

proliferative state. 
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Figure 2. Nanosight Analysis of Exosome Size Using Three Different 
Methods of Isolation 
 
Nanosight was used to identify the size of extracellular vesicles isolated from 
neonatal Islet-1+ cardiac progenitor cell clones. Representative graphs of size 
distribution profile data, n=5 from one sample. (A) Nanoparticle tracking analysis 
of extracellular vesicles isolated using differential ultracentrifugation (B) 
Extracellular vesicles isolated by a precipitation-based Total Exosome Isolation 
kit by Invitrogen (C) Extracellular vesicle isolation and purification by a 
precipitation and column-based approach using ExoQuick-TC ULTRA-EV 
Isolation Kit for Tissue Culture Media  
 

 

YAP1 RNA and Protein Expression is Elevated in Adult Cardiac Progenitor Cell 

Clones Following a 72-hour Treatment with Islet-1+ Neonatal Cardiac Progenitor 

Cell-derived Exosomes 

 We treated adult cardiovascular progenitors with exosomes derived from 

neonatal Islet-1+ cardiac progenitor cells in order to functionally assess YAP1 

activation in the adult CPC. Adult cardiac progenitor cell clones received 

concentrations of 5 – 6 x 1010 exosomes isolated from human neonatal Islet-1+ 

CPC clones or similar volume of exosome depleted media as a control. RNA was 

extracted from adult cardiovascular progenitor cells after a 72-hour treatment of 

neonatal Islet-1+ cardiovascular progenitor cell derived-exosomes. In a different 

set of samples, protein was collected and isolated from adult CPCs after a 72-

hour treatment of neonatal Islet-1+ cardiovascular progenitor cell derived-

exosomes. We assessed RNA and protein isolated from the adult CPCs by RT-

qPCR and Western Blot analysis, respectively. 
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In Figure 3A, statistical analysis revealed significantly elevated levels of 

YAP1 RNA (1.53 ± 0.25 FC, * p = 0.0286) after a 72-hour treatment of neonatal 

cardiovascular derived exosomes. In Figure 3B, we confirmed the transcript size 

of the RT-qPCR amplified product, YAP1, by gel electrophoresis (187 bp). Since 

we saw a significant increase of YAP1 transcripts after neonatal exosome 

treatment, we quantified the protein levels of YAP1 before and after exosome 

treatment. We observed a significant increase in YAP1 protein (1.77 ± 0.09 FC, 

**** p<0.0001) as a result of exosome treatment as shown in Figure 3C. 

Quantification and visualization of YAP1 protein is shown in Figure 3D.  

We observed a significant increase in the ratio of phosphorylated YAP1 

relative to the non-phosphorylated YAP1 protein (1.11 ± 0.13 FC, * p= 0.0426) as 

shown in Figure 3E. Quantification and visualization of phosphorylated YAP1 and 

Actin protein is shown in Figure 3F. Based on several studies, depending on the 

phosphorylation site such as S127, phosphorylated YAP1 is still able to 

accumulate in the nucleus (reviewed in Piccolo et al., 2014a). This finding is 

consistent with the phosphorylated YAP1 antibody used in this experiment. The 

accumulation of YAP1 in the nucleus can lead to the interaction of transcription 

factors and subsequent activation of transcripts involved with proliferation which 

is necessary for cardiac repair.  
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Figure 3. Neonatal Cardiovascular Progenitor Cell-derived Exosome 
Treatment in Adult CPCs Results in Increased YAP1 Transcript and Protein 
Levels 
 
(A) YAP1 transcript is significantly elevated in the adult CPC following a 72-hour 
treatment with exosomes isolated from Islet-1+ neonatal cardiovascular 
progenitor cells as shown by RT-qPCR. (B) Gel electrophoresis of the RT-qPCR 
product YAP1, amplifies a product of the correct size (187 bp). Quantification of 
protein levels was performed with Protein SimpleWes automated gel-free 
western systems. (C) Analysis of YAP1 protein in the adult CPC following a 72-
hour treatment with exosomes isolated from Islet-1+ neonatal cardiovascular 
progenitor cells. (D) Corresponding visualization of YAP1 protein. (E) Analysis of 
phosphorylated YAP1/YAP1 ratio. (F) Quantification of Phosphorylated YAP1 
and ß-Actin protein levels in the adult CPC following exosome treatment. Fold 
changes are shown as the mean + SEM. All samples were run in quadruplicate 
and normalized to a housekeeping gene, Actin. 
 

 

YAP1-associated Transcripts Involved in Proliferation are Elevated in Adult 

Cardiac Progenitor Cell Clones Following a 72-hour Treatment with Islet-1+ 

Neonatal Cardiac Progenitor Cell-derived Exosomes  

 YAP1 is able to interact with ß-catenin in order to regulate levels of SOX2, 

a transcript that supports cardiomyocyte proliferation (Lopez-Hernandez et al., 

2021). Following a 72-hour co-culture of neonatal cardiac progenitor cell-derived 

exosomes with adult cardiac progenitor cells, we observed a significant increase 

in transcripts encoding SOX2 (2.45 ± 0.40 FC, **** p<0.0001) as shown in Figure 

4A, 4B. Intranuclear YAP1 translocation also upregulates CCNA2, a transcript 

present during the G2/M phase transition of the cell cycle (Z. Lin et al., 2015a; 

Zanconato et al., 2015). CCNA2 transcripts were elevated (1.24 ± 0.12 FC, * 

p=0.0462) in the adult CPC following a 72-hour treatment with exosomes as 
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shown in Figure 4C. DNA-binding transcription factors such as ERBB4 interact 

with YAP1 and are associated with proliferation (Haskins et al., 2014a). The 

YAP1-ERBB4 complex regulates organ and tissue growth (M.-K. Kim et al., 

2018). ERBB4 transcripts were found to be significantly increased (7.27 ± 5.24 

FC, * p=0.0230) in the adult CPC after exosome treatment, as shown in Figure 

4D. Collectively, we identified several transcripts that are associated with 

proliferation, and which were induced in adult cardiovascular progenitor cell 

clones following a short-term exposure to neonatal cardiovascular progenitor cell-

derived exosomes. We next addressed the influence of exosomes on the AKT 

signaling pathway due to the well-documented crosstalk with AKT and YAP1 in 

proliferative, pro-survival networks (Z. Lin et al., 2015b). 
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Figure 4. YAP1-associated Transcripts Involved in Proliferation are 
Elevated in Adult Cardiac Progenitor Cell Clones After Exosome Treatment   
 
(A) SOX2 is significantly elevated in adult CPCs following a 72-hour treatment 
with exosomes isolated from Islet-1+ neonatal cardiovascular progenitor cells as 
shown by RT-qPCR. (B) Gel electrophoresis of the RT-qPCR product SOX2, 
amplifies products of the correct size. (C) CCNA2 which is present during the 
G2/M phase transition of the cell cycle, is significantly elevated in the adult CPC 
following a 72-hour treatment with exosomes isolated from Islet-1+ neonatal 
cardiovascular progenitor cells as confirmed by RT-qPCR. (D) ERBB4 transcript 
levels are significantly elevated in the adult CPC following a 72-hour treatment 
with exosomes as shown by RT-qPCR. Samples were run in quadruplicate (A) or 
triplicate (C, D). All transcripts were normalized to the housekeeping gene, Actin. 
Fold changes are shown as the mean + SEM. 
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Transcripts Associated with the AKT Signaling Pathway are Elevated in the Adult 

CPC Following a 72-hour Treatment with Exosomes Derived from Neonatal Islet-

1+ Cardiac Progenitor Cells  

 The AKT signaling pathway can modulate cellular functions important in 

regeneration such as; cell cycle progression, cellular proliferation, motility, 

differentiation, angiogenesis, metabolism and cellular survival (Akinleye et al., 

2013; Long et al., 2021; Song et al., 2018; Xue & Hemmings, 2013). Transcripts 

associated with the AKT signaling pathway in adult CPCs were elevated as 

demonstrated by RT-qPCR after treatment with exosomes derived from neonatal 

cardiovascular progenitors for 72-hours. Since expression of YAP1 activation 

results in elevated expression of genes in the AKT signaling pathway such as 

Pik3ca and Pik3cb (Z. Lin et al., 2015b), we examined PIK3CA transcripts. 

PIK3CA is able to activate AKT via the PI3K-AKT signaling pathway (P. Liu et al., 

2009). We observed a significant increase in PIK3CA expression (2.46 ± 0.47 

FC, ** p=0.0011) in adult CPCs after exosome treatment, as shown in Figure 5A, 

5E. Increased transcription of pro-proliferative genes in this pathway, such as 

MYC, occurs through downstream targeting of PI3K-AKT and intranuclear YAP1 

transcriptional activation (Abeyrathna & Su, 2015; Borreguero-Muñoz et al., 

2019a; Monroe et al., 2019). MYC positively regulates G1/S phase cell cycle 

progression by regulation of cyclin E and CDK2 (Santoni-Rugiu et al., 2000) and 

accordingly, MYC transcripts were elevated (36.59 ± 4.39 FC, **** p<0.0001) in 

adult CPCs after co-culture with neonatal CPC exosomes as shown in Figure 5B, 
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5E. AKT stimulates the transcription factor NF-; a heterodimer composed of 

subunits p50 and RelA/p65 (Uzdensky et al., 2013). RelA/p65 can induce YAP1 

nuclear localization and inhibit its degradation (T. Zhao et al., 2022). Both NF- 

and YAP1 influence cell-cycle control and proliferation by regulating the 

transcription of CCND1 (Hinz et al., 1999; Mizuno et al., 2012; Uzdensky et al., 

2013; Yamaguchi & Taouk, 2020). As a result of exosome treatment, RelA (3.92 

± 0.42 FC, **** p<0.0001) and CCND1 (7.56 ± 2.86 FC, ** p=0.0024) transcripts 

were significantly increased in adult CPCs as shown in Figure 5C, 5D, 5E.  
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Figure 5. Transcripts Associated with the AKT Signaling Pathway are 
Elevated in Adult CPCs after Neonatal Exosome Treatment 
 
Quantitative RT-PCR data demonstrating transcripts associated with the AKT 
signaling pathway such as (A) PIK3CA (B) MYC (C) RelA and (D) CCND1 which 
were found to be significantly elevated in adult CPCs following a 72-hour co-
culture with exosomes isolated from Islet-1+ neonatal cardiovascular progenitor 
cells. (E) Gel electrophoresis of the RT-qPCR products MYC, RelA, and PIK3CA 
showing amplified products of the correct sizes (left to right): 147bp, 278bp, and 
330bp. All samples were run in triplicate and all transcripts were normalized to 
the housekeeping gene, Actin. Fold changes are shown as the mean + SEM. 
 

Proposed Signaling Pathway by Which Adult Cardiac Progenitor Cells are 

Induced to Proliferate after Neonatal CPC-derived Exosome Treatment 

It is known that exosomes can mediate downstream signaling events 

through ligand-receptor interactions or through fusion and release of exosome 

contents into the cytosol. This subsequently alters physiological properties of the 

recipient cell (Adamiak & Sahoo, 2018; Gurung et al., 2021c; Urbanelli et al., 

2013). In the context of influencing cellular proliferation, PI3K-AKT and Hippo 

signaling interaction has been illustrated mainly through receptor tyrosine 

kinases (Azad et al., 2020). Upon stimulation of these ligand-receptor 

interactions, the phosphorylation of PIK3CA/p110α, PIK3CB/p110β, or 

p110δ/PIK3CD and a p85 regulatory subunit will drive further activation of 

downstream signaling in the PI3K-AKT signaling pathway (Gangoda et al., 2015; 

Mazloumi Gavgani et al., 2018). Activation of PI3K-AKT signaling was observed 

in Figure 5A, 5E by an increase in PIK3CA expression (2.46 ± 0.47 FC, ** 

p=0.0011). AKT phosphorylates MST1/2 and the downstream effects can lead to 

nuclear YAP1 activity (Borreguero-Muñoz et al., 2019b; Ibar & Irvine, 2020; D. 
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Kim et al., 2010). YAP1 activation leads to transcription of downstream targets 

such as CTGF (Emmanouilidi & Falasca, 2017; R. Fan et al., 2013). We found an 

increase in CTGF transcript levels (1.62 ± 0.33 FC, *** p<0.0004) in adult CPCs 

after co-culture of neonatal CPC-derived exosomes, as shown in Figure 6B. 

CTGF has been shown to provoke cell cycle activity by significantly stimulating 

DNA synthesis in neonatal mammals (O’Meara et al., 2015a). 

Active AKT can also phosphorylate the IKK complex which leads to the 

enhancement of NF- transcriptional activity (Bai et al., 2009; Dan et al., 2008). 

NF- contains a family of transcriptional factors that function in inflammation, 

immunity, cellular proliferation, differentiation and survival (Oeckinghaus & 

Ghosh, 2009). Some of these targets include MYC and CCND1 (Hariri et al., 

2013). AKT phosphorylates CREB which leads to transcription of downstream 

genes involved in cellular proliferation and survival such as BCL-2, CCND1 and 

Cyclin A (CCNA2) (H. Wang et al., 2018a). CREB can also activate expression of 

YAP1 through AKT signaling (Yu et al., 2019), which was found to be elevated in 

adult CPCs (2.16 ± 0.329 FC, **** p<0.0001) after neonatal CPC exosome 

treatment, as shown in Figure 6A. Both CREB and YAP1 can facilitate 

transcription of downstream genes involved in cellular cycle such as CCND1 and 

CCNA2 (Rozengurt et al., 2018; H. Wang et al., 2018b). However, YAP1 has 

only been shown to transcriptionally induce SOX2 transcripts by occupying the 

promoter region of this gene (Bora-Singhal et al., 2015).  
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ERBB4 transcripts which are present in cardiovascular progenitor cell-

derived exosomes can further activate YAP1 nuclear transcriptional activity 

(Haskins et al., 2014b). Collectively, ERBB4, AKT-associated, and YAP1 

transcripts which are elevated by exosome treatment, lead to proliferation and 

cell cycle activity as shown in Figure 6C. 
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Figure 6. A Proposed Signaling Mechanism in Adult Cardiovascular 
Progenitors After Neonatal Cardiac Progenitor Cell-derived Exosome 
Treatment 
 
(A) CREB transcripts were found to be significantly elevated in adult CPCs after 
neonatal CPC exosome treatment (B) CTGF, a known downstream transcript of 
the Hippo signaling pathway, was increased in adult CPCs after co-culture with 
exosomes isolated from neonatal cardiovascular progenitors, as shown by RT-
qPCR (C) Proposed signaling mechanism in adult CPCs upon co-culture of 
exosomes isolated from neonatal Islet-1+ cardiac progenitor cells. Image created 
in BioRender.com. All samples were run in quadruplicate and normalized to the 
housekeeping gene, Actin. Fold changes are shown as the mean + SEM.  
 
  



 

51 

 

CHAPTER FOUR 

DISCUSSION 

Over the past couple of years, stem and progenitor cells and their 

exosomes have gained noteworthy recognition as a therapeutic approach for the 

purpose of cardiac regeneration and repair (reviewed in Mehanna et al., 2022). A 

robust regenerative response has been observed in the neonatal heart after 

being able to withstand apical resection in order to sufficiently stimulate 

functionality to the damaged myocardium (Lam & Sadek, 2018; Porrello et al., 

2011). This is due to the ability of the neonatal heart to proliferate in the early 

stages of the neonatal period. This unique feature subsequently deteriorates 

following birth (Bongiovanni et al., 2021). It is also well known that the adult 

mammalian heart has a limited capacity for repair given that the resident 

cardiomyocytes have exited the cellular cycle (Bongiovanni et al., 2021). 

Therefore, a therapeutic strategy to allow for proliferation to occur and for 

resident myocytes to enter the cell cycle in the adult myocardium after injury is 

necessary for regeneration.  

To our knowledge, current therapies with the use of stem-derived 

exosomes to attenuate the injured heart by cardiac regeneration are still being 

extensively studied in pre-clinical phases. This is due to need for standard 

exosome isolation and characterization protocols, optimal yield, targeted delivery, 

and the importance of identifying the optimal parent cell (Kwon, 2022; J. Zhang et 
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al., 2021). None of these studies have utilized exosomes derived from human 

neonatal cardiovascular progenitors with early-stage markers such as Isl1+. 

In this study, we have co-cultured neonatal Islet-1+ CPC-derived 

exosomes with adult cardiovascular progenitors to test the hypothesis that adult 

cardiovascular progenitors will have improved transcriptomic changes associated 

with improved regenerative capabilities in vitro when co-cultured with exosomes 

isolated from neonatal CPCs. The findings of this study present the benefits of 

the secretome of early-stage Islet-1+ neonatal cardiovascular progenitors when 

applied to adult cardiovascular progenitors.  

We have identified an optimal method of exosome isolation and we have 

characterized the size of the isolated particles which we found to be similar to 

well-characterized exosomes (Yi et al., 2020b). We found that 5 – 6 x1010 

exosomes were needed in order to identify a functional increase in cellular 

proliferation, similar to the concentration noted as necessary to achieve 

beneficial functional outcomes in other settings (El Harane et al., 2018b; J. Sun 

et al., 2020; Yao et al., 2021b).  

Within the neonatal CPC exosome content we have reported several 

miRNAs that contribute to signaling pathways that are important in cardiac 

development and regeneration (Hesse et al., 2018; H. Li et al., 2021; Ozhan & 

Weidinger, 2015; Wadugu & Kühn, 2012). Differentially expressed miRNAs in 

neonatal CPC-derived exosomes which were identified by DIANA-miRPath v3.0 

bioinformatics software included: cell cycle, Wnt signaling, ERBB signaling, and 
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Notch signaling. This data suggests that the use of exosomes derived from 

neonatal cardiovascular progenitors could potentially impact these pathways to 

drive regenerative-like processes. We also reported several other miRNAs and 

transcripts in the neonatal CPC exosome content that significantly contributed to 

pathways which connect to the Hippo signaling pathway such as TGF-beta, 

Focal adhesion, CREB signaling, ERBB signaling, and G-protein coupled 

(GPCR) signaling (Han, 2019; Haskins et al., 2014a; Luo & Yu, 2019; Morice et 

al., 2020; 2018).  

Upon close investigation into the transcriptomics data associated with 

GPCR signaling, we found that YAP1 activation was predicted in the pathway, 

leading to downstream transcriptional activity that results in proliferation of cells 

and AKT-mediated activation of NF-. We also found that intranuclear YAP1 

was predicted by transcriptomic analysis of the exosome content in neonatal 

CPCs. In vitro validation experiments demonstrate the activation of transcripts 

encoding YAP1 and RelA (subunit of NF-) in adult CPCs after exosome 

treatment in Figures 3A, 3B, 5C, 5E. This shows that the transcripts found within 

the exosomes of neonatal cardiovascular progenitors provide a translational 

function when applied to adult CPCs in vitro.  

We identified several miRNAs in the neonatal cardiovascular progenitors 

that are exclusively different from the adult CPC secretome such as miR-31 and 

miR-221. These miRNAs are all capable of targeting LATS and subsequently 

activating YAP1 transcriptional activity (Aguennouz et al., 2020; Mitamura et al., 
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2014), which is necessary for targeting cardiac repair. Overexpression of miR-31 

in cells has been shown to lead to YAP1 translocation, where it promoted the 

transcription of CCND1 (Mitamura et al., 2014). This finding is comparable with 

the increased transcription of CCND1 and YAP1 protein in this study. More 

importantly, miR-221 has been shown to be important in a miRNA cocktail which 

significantly improved functional recovery by regulating cell survival and 

apoptosis in a murine myocardial infarction model (S. Hu et al., 2011).  

We also reported that miRNA-221 can function in promoting proliferation 

by modulation of cell-cycle genes, an essential process that could be harnessed 

for cardiac repair and therapy (Fornari et al., 2008). We observed another 

important miRNA, miR-133a1 which was found to be expressed in neonatal CPC 

exosomes. This miRNA has been shown to enhance the protective capacity of 

cardiovascular progenitors in a myocardial infarction model by targeting genes 

related to cell death, hypertrophy, fibrosis, and apoptosis all which lead to in vitro 

contractile functional effects in the heart (Izarra et al., 2014).  

During myocardial infarction, extensive cardiomyocyte death, inflammation 

and fibrosis can occur which leads to fibrotic scar tissue replacement (Thomas & 

Grisanti, 2020). We have identified miRNAs in the neonatal exosome content 

which target fibrosis and inflammation. We identified miR-133a1 in our neonatal 

CPC exosome content which has been shown to have anti-fibrotic properties 

when applied by transfection in vivo (Y. Chen et al., 2017). We have also 

identified a miRNA from the miR-181 family, miR-181a, expressed in neonatal 
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CPC exosomes (X. Sun et al., 2014). This miRNA has been previously shown to 

inhibit the proinflammatory transcription factor c-FOS to repress pro-inflammatory 

responses upon transfection (C. Wu et al., 2012). Our data suggests that the 

secretome of the Islet-1+ neonatal cardiovascular progenitors has beneficial 

miRNAs and transcripts that promote cell cycle activity, can play a part in heart 

repair processes, and can contribute to pathways associated with proliferation 

such as Hippo signaling which leads to YAP1 activation. This content contributes 

to their functional benefits when applied to the adult CPC in vitro.  

YAP1 has been shown to induce cardiomyocytes to re-enter the cellular 

cycle and proliferate. In addition, activation of YAP1 can trigger surrounding cells 

through secreted factors to promote tissue repair (Gong et al., 2021b; Mugahid et 

al., 2020b). YAP1 can facilitate the regenerative potential of the adult heart (Xin 

et al., 2013a). These findings support the concept that YAP1 is a critical 

component of cardiac repair mechanisms. We have demonstrated that the 

addition of early-stage Islet-1+ neonatal progenitor-derived exosomes 

significantly altered transcript and protein levels of YAP1, which suggests YAP1 

activation and nuclear translocation (Fig 3 A, B, C, and D). We also observe a 

significant increase in the ratio of phosphorylated YAP1 relative to the non-

phosphorylated YAP1 protein (Fig 3F). Some studies have suggested that YAP1 

phosphorylated at Serine 127 is still able to accumulate into the nucleus (Piccolo 

et al., 2014b). Our model identifies Serine 127 phosphorylation of YAP1 during 

protein visualization by the Protein Simple Western blot system. Consistent with 
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this finding, we still observed activation of downstream transcripts such as CTGF 

(B. Zhao et al., 2008), in the adult CPC after neonatal cardiovascular progenitor 

cell-derived exosome treatment. CTGF triggers cell cycle activity in neonatal 

mammals, cellular proliferation, cellular migration and adhesion, angiogenesis 

and early wound healing and repair (O’Meara et al., 2015b; Shome et al., 2020). 

ERBB4 was identified in neonatal exosomes by transcriptomics and similarly 

activates YAP1 to promote downstream transcriptional activity (Haskins et al., 

2014c). CREB was also elevated in adult treated cells and can induce YAP1 

transcriptional function (J. Wang et al., 2013). YAP1 is a powerful driver of organ 

growth and progenitor proliferation (Barry et al., 2013).  

Modification of adult CPCs by exosome treatment resulting in elevated 

YAP1 transcription could improve cardiovascular repair outcomes. YAP1 

administration in a myocardial infarction model stimulates adult cardiomyocyte 

proliferation via IGF-1 and AKT signaling (Xin et al., 2013b). Our findings show 

that transcripts involved with the PI3K-AKT signaling pathway are activated in our 

model and include elevated levels of PI3KCA, c-MYC, RELA, and CCND1.  

CCND1 plays a critical role in promoting G1-S phase, while CCNA2 has a 

role in G1-S and G2-M transitions of the cellular cycle (Q. Wang et al., 2018; 

Xing et al., 2021). CCNA2 is a key player in the process of DNA replication since 

it combines with CDK2 in order to progress to mitosis (Kanakkanthara et al., 

2016). Neonatal cardiovascular progenitor cell-derived exosomes contain 

transcripts that promote the cell cycle and the cell cycle control of chromosomal 
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replication. The exosomes activate cell cycle transcripts CCND1 and CCNA2 

after co-culture with adult CPCs. This data supports the hypothesis that neonatal 

CPC-derived exosomes can alter the transcriptome of the adult cardiac 

progenitor cells and achieve a proliferative-like state by activating cell cycle 

transcripts. We have shown that several components contribute to YAP1 

activation in the adult CPC by neonatal cardiovascular progenitor cell exosome 

treatment after 72 hours and this leads to activation of transcripts involved in 

cellular cycle and proliferation which are necessary for cardiac repair.  

 

Conclusion 

Our findings provide evidence that neonatal cardiovascular progenitor cell-

derived exosomes contain valuable molecules that enhance the proliferative 

ability of adult cardiovascular progenitor cells upon co-culture in vitro. The 

neonatal cardiovascular progenitor cells contain miRNAs and transcripts that 

induce YAP1 transcription and activate the cell cycle in adult CPCs. This was 

assessed by observation of 1) Elevated levels of YAP1 transcript and protein 

levels 2) Elevated levels of transcripts important in PI3K-AKT signaling such as 

PI3K and RelA and some that have function in cell cycle-progression and 

proliferation such as c-MYC and CCND1 3) Elevation of transcripts involved G1-

S and G2-M progression in the cellular cycle such as CCNA2. YAP1 activation 

and transcriptional alteration in adult CPCs by neonatal cardiovascular progenitor 

cell-derived exosomes could have clinical benefit in cardiovascular repair through 
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potential activation of signaling in the recipient and potentially in the surrounding 

cell types when applied as a cell-based treatment.  
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