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ABSTRACT 

In recent years, deep learning has grown rapidly, and it has been 

creatively implemented for various applications. In 2019, deep learning based 

EdgeConnect image inpainting algorithm came out and occupied a place in the 

image inpainting field. Unlike traditional image inpainting methods which mainly 

read and use the color information of the remaining part of the image to fill the 

missing regions of the image, EdgeConnect uses the innovative edge-first and 

color-next approach. It uses an edge detector to generate an edge map of an 

image with missing regions, then the missing edges are completed by an edge 

model, finally the completed edge map is recolored by an inpaint model. The 

result of this algorithm has a significant improvement in the smoothness of the 

image, compared with conventional image inpainting methods.  

In this project, EdgeConnect is improved to become a completely deep 

learning-based image inpainting method. 

This project first implements the EdgeConnect approach. In the 

implementation, the project selects the optimal training parameters for the three 

model training phases included EdgeConnect: edge model, inpainting model and 

joint model, based on the original research paper and the discussions online. 

Then the EdgeConnect approach is improved by replacing the traditional Canny 

edge-detection with the deep learning algorithm, Holistically-Nested Edge 

Detection (HED). With the integration of HED, the accuracy of image inpainting is 

improved. To compare the performance, the original EdgeConnect and the 
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modified EdgeConnect are both trained on the same set of data and the results 

are scored using the image inpainting quality assessment metrics such as PSNR, 

SSIM, MAE and FID. 

The results show that the modified EdgeConnect approach with the 

integration of HED not only improves the learning performance of edge detection, 

but also improves the overall quality of the final image inpainting. 

The improved EdgeConnect approach proposed and implemented in this 

project has higher learning efficiency and better image inpainting performance. 
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CHAPTER ONE 

INTRODUCTION 

Background 

The most fundamental function of image inpainting is to fill the missing 

regions of the image. 

The conventional image inpainting algorithm mainly reads the color 

information of the unmasked parts of the image and then calculates similar 

information to fill the missing regions. Although this conventional image inpainting 

method can successfully recolored the missing regions, it usually cannot 

reconstruct a reasonable image structure, oftentimes the results are too smooth 

or blurred, and the whole recolored image may deviate far from original image 

structure so that people may not understand what it was. 

EdgeConnect is a new image inpainting method that can better fill the 

missing regions. The algorithm follows the innovative edge-first and color-next 

approach. It includes edge generator and image completion network. The edge 

generator to generate a complete edge map from the image with missing 

regions, and the image completion network is used to fill the missing regions of 

image by coloring the edge map. 

EdgeConnect attempts to restore the entire image structure based on 

remaining structure information of the image, and to then restore the entire image 

based on the restored structure map and the remaining color information of the 
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image. Thus, EdgeConnect method reduces the appearance of unreasonable 

parts of the restored image [1]. 

 
 Figure 1 [1]. EdgeConnect Samples 

Figure 1 above shows the image inpainting process. The input images on 

the left images in each row are the masked images where white regions are the 

missing regions. Each image in the middle column is edge map generated by 

edge detection and restored by deep learning. The images on the right column in 

each row are the restored images after filling missing regions by deep learning. 

Objectives 

The objective of this project is to study deep-learning based EdgeConnect 

approach and make further improvement of this approach. 
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The model training of EdgeConnect consists of three parts. The first part is 

to convert the image into an edge map through edge detection, which is also a 

part of preprocessing. In the second part, the edge model is trained by the edge 

map. The third part is to train the inpainting model through the edge map and the 

ground truth with missing regions (original masked image) and mask. 

In the first part of EdgeConnect, the Canny edge detection is used for 

edge map conversion [1]. In this project, with the intention to improve the 

accuracy of the whole image inpainting algorithm, the first part is replaced and 

implemented with deep learning-based edge detection, Holistically-Nested Edge 

Detection (HED) [2]. 

Holistically-nested edge detection (HED) is an end-to-end edge detection 

algorithm that uses “holistically” in name to indicate that the result of edge 

prediction is based on an image-to-image, end-to-end process; while “nested” 

emphasizes the process of generating results is the process of training. The 

algorithm uses a multi-scale approach for feature learning, and the final output of 

the HED method is far superior to the Canny algorithm [2]. 

To verify the improvement of deep learning edge detection on image 

inpainting, comparison experiments are conducted. While ensuring that the 

experimental conditions are the same, the models are trained separately from 

scratch to restore a set of images with one model implemented using with for 

edge detection and another model trained using HED for edge detection. At the 
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end, the image painting results are scored with image inpainting quality metrics 

to determine whether the modified image inpainting algorithm has been 

improved. 
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CHAPTER TWO 

EDGECONNECT 

Runtime Environment 

To reproduce EdgeConnect, the same runtime environment is needed to 

be set up. 

Computer software technology is advancing rapidly, and the latest 

versions of some software are not compatible for the EdgeConnect project which 

is only three years old. 

In terms of software operating environment, python 3.7 is the most 

suitable version for the project, The following packages are also used: 

 

Table 1. Package List  

site-packges Version 

matplotlib 2.2.5  

numpy 1.21.5  

opencv-python 3.4.17.63 

Pillow 6.2.1 

PyYAML 5.4.1 

scikit-image 0.14.5  

scipy 1.2.3  

pytorch 1.0.0  

torchvision 0.2.1.  

 

The CUDA 10.2 is adapt to version 1.0 of the pytorch, because the latest 

CUDA 11 may not allow the torch to recognize the GPU, the same version of 

pytorch can be adapted to multiple versions of CUDA, so please select the wheel 

file of pytorch corresponding to the CUDA version to download and install. 
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Figure 2[1]. EdgeConnect Network Structure. 

Program 

EdgeConnect proposed an image inpainting network, which consists of 

two stages, as shown in Figure 2. 𝐺1 is edge generator and 𝐺2 is image 

inpainting network. 

Two networks are used in both stages as follows: 

The generator uses a network architecture which is commonly used for 

image-to-image translation tasks such as style transfer, super-resolution, etc. [3]. 

The discriminator uses a 70x70 PatchGAN, which means the discriminant image 

is divided into 70x70 for discrimination, and the results are averaged [4]. The 

entire network uses instance normalization, the normalization process simplifies 

generation by allowing instance-specific contrast information to be removed from 

content images in tasks such as image stylization [5]. 

Edge Generator 

As can be seen from the left side of Figure 2, in edge generation, mask 

(𝑀), edge with missing regions (�̃�𝑔𝑡) and grayscale with missing regions (𝐼𝑔𝑟𝑎𝑦) 

are used as inputs, predicted edge map (𝐶𝑝𝑟𝑒𝑑) will be generated by edge 
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generator, the edge generator 𝐺1 is trained using the standard adversarial loss 

and the feature matching loss. 

𝐼𝑔𝑡 is the ground truth, 𝐼𝑔𝑟𝑎𝑦 represents the grayscale of the ground truth. 

𝐶𝑔𝑡 is the edge map of the real image. 

𝑀 is the mask. 

⊙ is hadamard product, for two matrices A and B of the same dimension 

m × n, the Hadamard product 𝐴 ⊙ 𝐵 is a matrix of the same dimension as the 

operands, with elements given by (𝐴 ⊙ 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗(𝐵)𝑖𝑗 [6]. 

Deleting the mark regions in ground truth and edge map to generate 

image with missing regions (𝐼𝑔𝑟𝑎𝑦) and edge map with missing regions (�̃�𝑔𝑡) and 

mark it with a wavy line on the letter: 

𝐼𝑔𝑟𝑎𝑦  =  𝐼𝑔𝑟𝑎𝑦  ⊙ (1 −  𝑀) 

�̃�𝑔𝑡 =   �̃�𝑔𝑡  ⊙ (1 −  𝑀) 

𝐶𝑝𝑟𝑒𝑑 is the prediction result of the Edge Generator. 

𝐼𝑔𝑡 = 𝐼𝑔𝑡  ⊙ (1 −  𝑀), 𝐼𝑔𝑡 is ground truth with missing regions. 

𝐼𝑝𝑟𝑒𝑑 is the result of image inpainting. 

Predicted edge map generated by generator ( 𝐺1 ) Edge Generator can be 

expressed as： 

𝐶𝑝𝑟𝑒𝑑 = 𝐺1(𝐼𝑔𝑟𝑎𝑦, �̃�𝑔𝑡, 𝑀) 

The following loss function is constructed to train this adversarial network 

to obtain the edge generator [1]: 
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ℒ𝑎𝑑𝑣,1 = 𝐸(𝐶𝑔𝑡,𝐼𝑔𝑟𝑎𝑦) log[𝐷1(𝐶𝑔𝑡, 𝐼𝑔𝑟𝑎𝑦)] + 𝐸𝐼𝑔𝑟𝑎𝑦
log[1 − 𝐷1 (𝐶𝑝𝑟𝑒𝑑, 𝐼𝑔𝑟𝑒𝑦)] 

Equation 1. 

ℒ𝑎𝑑𝑣,1 is adversarial loss. 

ℒ𝐹𝑀 = 𝐸 [∑
1

𝑁𝑖

𝐿

𝑖=1

||𝐷1
(𝑖)

(𝐶𝑔𝑡) − 𝐷1
(𝑖)

(𝐶𝑝𝑟𝑒𝑑) ||1] 

Equation 2. 

ℒ𝐹𝑀 is feature map loss, the input image is discriminated using a pre-

trained VGG network, similar to PatchGAN, but since VGG is not trained to 

extract the contour edges of an image, we cannot use the VGG results directly 

[4]. We use ℒ to represent the last convolutional layer of the discriminator. 𝑁𝑖 is 

the activation in the 𝑖'th layer of the discriminator. 

The edge maps are discriminated using an edge discriminator that 

combines the adversarial loss with the feature matching loss [1]: 

𝑚𝑖𝑛
𝐺1

𝑚𝑎𝑥
𝐷1

ℒ𝐺1
=  

𝑚𝑖𝑛
𝐺1

(𝜆𝑎𝑑𝑣,1

𝑚𝑎𝑥
𝐷1

(ℒ𝑎𝑑𝑣,1) +  𝜆𝐹𝑀ℒ𝐹𝑀) 

Equation 3. 

𝜆𝑎𝑑𝑣,1 = 1, 𝜆𝐹𝑚 = 10 

Image Completion Network 

As the right side of Figure 2, in image completion network, ground truth 

with missing regions (𝐼𝑔𝑡) and composite edge map (𝐶𝑐𝑜𝑚𝑝) are used as inputs, 

predicted result RGB image (𝐼𝑝𝑟𝑒𝑑) will be generated by inpainting generator, the 

inpainting generator 𝐺1 is trained using the standard adversarial loss and the 

feature matching loss. 
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Predicted result RGB image (𝐼𝑝𝑟𝑒𝑑) is generated by inpainting generator ( 

𝐺2 ) image completion generator can be expressed as [1]: 

𝐼𝑝𝑟𝑒𝑑  =  𝐺2(𝐼𝑔𝑡, 𝐶𝑐𝑜𝑚𝑝) 

Equation 4. 

where 𝐶𝑐𝑜𝑚𝑝 =  �̃�𝑔𝑡 ⊙  (1 –  𝑀)  +  𝐶𝑝𝑟𝑒𝑑  ⊙  𝑀, which is the combination of 

the edge of the edge map with missing regions (�̃�𝑔𝑡  ⊙  （1 −  M）) and the 

edge predicted ( 𝐶𝑝𝑟𝑒𝑑  ⊙  𝑀) by 𝐺1. 

The following loss function is constructed to train this adversarial network 

to obtain the Edge Generator [1]. 

ℒ𝑎𝑑𝑣,2 = 𝐸(𝐼𝑔𝑡,𝐶𝑐𝑜𝑚𝑝) log[𝐷2(𝐼𝑔𝑡, 𝐶𝑐𝑜𝑚𝑝)] + 𝐸𝐶𝑐𝑜𝑚𝑝
log[1 − 𝐷2 (𝐼𝑝𝑟𝑒𝑑, 𝐶𝑐𝑜𝑚𝑝)] 

Equation 5. 

ℒ𝑎𝑑𝑣,2 is adversarial loss. 

ℒ𝑝𝑟𝑒𝑐 = 𝐸 [∑
1
𝑁𝑖

𝑖 ||𝜙1
(𝑖)

(𝐼𝑔𝑡) − 𝜙1
(𝑖)

(𝐼𝑝𝑟𝑒𝑑)||1] 

Equation 6. 

ℒ𝑝𝑟𝑒𝑐 is perceptual loss, the input images are discriminated using the pre-

trained VGG-19 network. 

ℒ𝑠𝑡𝑦𝑙𝑒 = 𝐸𝑗[ ||𝐺𝑗
𝜙

(𝐼𝑝𝑟𝑒𝑑) − 𝐺𝑗
𝜙

(𝐼𝑔𝑡)||1] 

Equation 7. 

ℒ𝑠𝑡𝑦𝑙𝑒 is style loss. The 𝐺𝑗
𝜙

in Equation 7. is a Gram Matrix of 𝐶𝑗  ×  𝐶𝑗  

constructed on the activation function eigenmap 𝜙𝑗 [7]. 
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The edge maps are discriminated using a map discriminator combining 

absolute value parametrization (L1 distance 𝑙1), adversarial loss, perceptual loss, 

and style loss [1]. 

ℒ𝐺2 =  𝜆𝑙1
ℒ𝑙2

+  𝜆𝑎𝑑𝑣,2ℒ𝑎𝑑𝑣,2 +  𝜆𝑝ℒ𝑝𝑒𝑟𝑐 + 𝜆𝑠ℒ𝑠𝑡𝑦𝑙𝑒 

Equation 8. 

𝜆𝑙1
= 1, 𝜆𝑎𝑑𝑣,2 =  𝜆𝑝 = 0.1, 𝜆𝑠𝑡𝑦𝑙𝑒 = 250 

 

Model training 

A total of two programs are prepared for the experiment, one is the 

original EdgeConnect, and the other is Improved EdgeConnect, kept the same as 

that of original EdgeConnect except for the different edge detection used. 

Edge model training 

The edge model is working for edge generator (𝐺1) to generate predicted 

edge map. 

To train the edge model, it requires reading the edge map with missing 

regions, greyscale image and mask as input for training, since edge map with 

missing regions can be generated by canny edge detection or HED in improved 

EdgeConnect, so the ground truth and the mask are inputted the program.  The 

program will combine the ground truth and mask into a masked image (image 

with missing regions) like the left image in Figure 1 to generate an edge map with 

missing regions by edge detection. The original image validation set to output 

samples for validation, in order to show the model training results, every 1000 
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iterations, it will use some images selected from the image validation set and 

mask validation set as input into the model to generate predicted edge map 

samples. 

The pixels of the image must can be divisible by 4, otherwise it is possible 

to make the program stop by accident because the pixels before and after the 

image convolution are different. For example, 402/4 = 100.5 ≈ 100, but 100 * 4 = 

400, which means 100 doesn’t equal to 100.5. 

Inpaint model training 

The inpainting model is working for image completion network to generate 

predicted RGB image. The model will fill in the color of the missing regions of 

edge map which generated by edge detection. 

To train the inpainting model, it is necessary to input masked image 

(image with missing regions), edge map generated by Canny edge detector or 

HED and mask, though the edge map of ground truth will be generated from in 

program. 

The model completes the image inpainting by coloring the edge map and 

then filling the missing regions of the masked image. 

Edge-inpaint training 

After edge and inpaint models are trained, there is a third training, it 

replaces the edge map in the inpainting model training with the predicted edge 

map from the output of the edge model to improve the inpainting model. So 
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masked images, predicted edge map and mask are inputted and 𝐺2 generates 

predicted RGB image. 

The network structure of EdgeConnect inpainting approach is given in 

Figure 2. The first generator G1 takes the mask, masked edge image and the 

masked grayscale image as input and gives a predicted edge map. The second 

generator G2 takes the predicted edge map and the masked RGB image as input 

and outputs a predicted RGB image [8]. 

Model testing 

The purpose of model testing is to verify the ability of the models’ image 

inpainting through the actual output. In addition to observing the results to check 

the model training effect, the results are also quantitatively measured using the 

image inpainting metrics as evaluation. 

In this section, the images in the test set need to be pre-masked outside 

the program, and only the masked images set, and the mask set need to be 

inputted, and they need to be aligned one to one in their respective folders (same 

sorting order). 

The program will read the masked image and mask, then generate a 

predicted edge map by the edge generator 𝐺1, and then color the edge map 

through the edge completion network 𝐺2, finally inpaint the missing regions of 

masked image by colored edge map. The mask is used to determine what 

regions of masked image need to be restored. 
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For now, the images with missing regions in test set are all restored as the 

result of model testing, the results will be needed in evaluation later. 

Finally, the test part is also actually the process of inpainting the image 

after the models is all trained. 

Evaluation 

The output set of the model testing and the corresponding ground truth set 

are used as the input for the evaluation. The two sets of images need to be in 

one-to-one correspondence and have the same file name, otherwise the program 

will not detect them. The two sets of data will be compared in terms of Peak 

Signal-to-Noise Ratio (PSNR), Structural similarity (SSIM), Mean Absolute Error 

(MAE) and Fréchet inception distance (FID). Through these metrics, we can see 

the gap by scores between the restored image and the ground truth. 

Summary 

During the entire EdgeConnect process, the training part is the most 

important part of the whole project. Although the edge detection only exists as 

the first step, the edge map generated by the edge detection is used in almost 

every step of the model training. Therefore, the accuracy of the edge map 

determines the effect of the edge model and the inpaint model. It is no 

exaggeration to say that the quality of the edge detector directly affects the 

quality of image inpainting. 
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At the same time, the current use of EdgeConnect has some defects, such 

as the model testing part, the software no longer provides automatic masking 

function, but requires users to manually batch composite images with missing 

regions outside the program. If users do not want to use Canny edge detector, 

then they need to use an additional three folders to store the edge map and edge 

map with missing regions which are needed to be manually preprocessed with 

other edge detection outside the EdgeConnect. 

In the program test, in most cases, even if some images’ pixels are not a 

multiple of 4, the program can run normally, but the program always stops 

running because of one of the images. 
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CHAPTER THREE 

EXPERIMENT 

Before experiment, there are some preparations need to be done to make 

the experiment go smoothly. 

Preparation work 

Preprocessing 

"makimg.py" is wrote and added to the project to generate mask images in 

batches for the test set, which solved the problem of requiring manual masking in 

the test part but could not find the script. 

"batch_rezise.py" is wrote and added to the project, so that when the 

number of files in training set, test set and validation set is too large and the 

pixels of one image causing program stop cannot be found, the images and the 

masks can be batch preprocessed to 256*256 or any unified specification like 

500*500 to avoid program errors. 

In order to avoid the need of pre-generating the edge map of HED outside 

the EdgeConnect, the project provides two solutions, one is to rewrite and add 

the "hed_processing.py" file to project to generate the edge map in batches 

outside the EdgeConnect to use with the original EdgeConnect, the second is 

integrating the HED into EdgeConnect allows the use of the HED in programs. 
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Dataset 

The project has prepared two datasets, the first dataset is one of 

EdgeConnect used in their paper called Places2 from Massachusetts Institute of 

Technology, it includes over 400 unique scene categories. such as abbey, 

badlands, campus, etc. [9]. 

The other database is downloaded from the web, it includes different 

breeds of cats in different environments [10][11]. 

In addition, a mask dataset called Quick Draw Irregular Mask Dataset by 

Karim Iskakov which is combination of 50 million strokes drawn by human hand. 

The function of the mask dataset is to cover parts of the image in the original 

image dataset, thereby forming a lost area on the original image [12]. 

In each dataset, 48,000 images are selected as the training set, limited by 

the memory capacity of the graphics card, the batch size is different in different 

parts of training, and 48000 is just a multiple of 3 batch sizes to ensure that the 

samples are fully trained. 4,000 as the test set, and 4,000 as the validation set. 

The training set is used to train the model to improve accuracy, and the validation 

machine is used to generate image inpainting samples during the training 

process to view the training effect of the current model and restore the images of 

the test set through the trained model. 

The script "maskimg.py" is used in advance to combine the ground truth 

and mask into a masked image, which is convenient for the model testing later, 

ground truth of test set also needed in the evaluation part. 
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HED 

In Improved EdgeConnect, HED has been integrated for edge detection. 

Structure 

 
Figure 3 [10]. HED Network Structure. 

The HED model consists of five layers of feature extraction architecture, in 

each layer: layer feature maps are extracted using VGG blocks, layer outputs are 

computed using layer feature maps, and layer outputs are up-sampled. Finally, 

the final output of the model is fused with the output of the five layers: the 

channel dimension is stitched with the output of the five layers 1x1 convolution to 

fuse the layer outputs [10]. 
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Loss function 

Overall, this loss function has two parts: side-output is the prediction result 

of five different scales in Figure 3, by up-sampling into the original Figure size, 

and then doing cross-entropy with mask. Because there are five diagrams, the 

loss is the sum of five. Five graphs fusion out of Y, fusion is the Y and the ground 

truth of the cross-entropy. 

𝑴 is number of Side output layers, W is the collection of all standard 

network layer parameters, w is the corresponding weights, Index 𝑗 is over the 

image spatial dimensions of image 𝑋, h is the fusion weight, �̂� is edge map 

prediction, 𝐃𝐢𝐬𝐭(⋅,⋅) is the distance between the fused predictions and the ground 

truth label map, which set as cross-entropy loss. 

There is side out loss function and weight-fusion loss function, 

ℒ𝑠𝑖𝑑𝑒(𝐖, 𝐰) =  ∑ 𝛼𝑚ℓ𝑠𝑖𝑑𝑒
(𝑚)

(𝐖, 𝐰(𝒎))

𝑀

𝑚=1

 

Equation 9. 

ℒ𝑓𝑢𝑠𝑒(𝐖, 𝐰, 𝐡) = Dist(𝑌, �̂�𝑓𝑢𝑠𝑒) 

Equation 10. 

the objective function when training the model is to minimize the sum of 

the side branch ℒ𝑠𝑖𝑑𝑒(𝑊, 𝑤) and fuse loss ℒ𝑓𝑢𝑠𝑒(𝑊, 𝑤, ℎ) [10]: 

(𝐖, 𝐰, 𝐡)∗ = argmin (ℒ𝑠𝑖𝑑𝑒(𝐖, 𝐰) + ℒ𝑓𝑢𝑠𝑒(𝐖, 𝐰, 𝐡)) 

Equation 11. 
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Comparison 

The purpose of this experiments is to carry out the effect of two different 

edge detectors on image inpainting, so in the experiments, the experiments 

abandoned the use of the EdgeConnect author's model that has gone through 

2,000,000 iterations, and instead trained it myself from 0 iteration. Since the 

target number of iterations of my model is significantly less than the model of the 

original author, the effect of the model has a significant worse compared to the 

original author. Except for the difference in edge detectors, the two sets of 

models were trained under the same learning rate, number of batches, learning 

rate, and iterations, etc. 

Edge model training 

So, for the edge model training, Setting the learning rate at 0.0001 and set 

the size of batches to 16, while setting the style loss weight at 250 to ensure the 

best training effect. To ensure that both models have the same training 

environment, the edge training for both groups will stop at 20 epochs. 

Because the edge model training is directly based on the original edge 

maps generated by the edge detection and predicted edge map generated by 𝐺1 

affect the third part of model training, the edge maps have a direct impact on the 

deep learning. 
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Figure 4. Edge Model Training Sample (Canny, Cat) 
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Figure 5. Edge Model Training Sample (HED, Cat) 

In Figure 4, the first images in column are the ground truth (original 

image). The second images in the column are the masked image (also input). 

The third images in column are the edge map from ground truth by Canny edge 
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generator. The fourth images in column are the actual output of the network. 

Finally, the fifth images in column are the combination of the third and fourth 

images in column, the known area is from the third images in column and the 

masked area is from the fourth images in column. 

In Figure 5, the third images in column are the edge map from ground 

truth by Canny edge generator and the others are same to Figure 4. 

The process generates the predicted edge map by the edge model, then 

use it to fill the missing regions of masked images’ edge map and check the 

precision and recall after comparing the predicted edge map and original edge 

map. Every 1000 iterations, the program will test the model by validation set, to 

show the learning result of the model at that time. 

As epochs increase, the edge predicted by the edge model will become 

more and more accurate. 

 
Figure 6. Precision of Canny and HED During the Edge Model Training (Cat) 



 

 

 

23 

 

 
Figure 7. Recall of Canny and HED During the Edge Model Training (Cat) 

Precision means the percent of correctly predicted edge lines in all 

predicted edge lines. Recall means the percent of correctly predicted edge lines 

in all edge lines needed to be predicted. 

After the edge model training, the difference between Canny edge 

detection and HED can be seen from the accuracy and recall of feedback during 

training. With the same learning rate, the edge restoration level of the edge 

model learned through the edge map generated by HED higher than Canny's. 

The same effect can also be seen from the edge training of the 

comparative experiment based on another set of Places2 datasets. 
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Figure 8. Edge Model Training Sample (Canny, Placese2) 
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Figure 9. Edge Model Training Sample (HED, Placese2) 
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Figure 10. Precision Of Canny and HED During the Edge Model Training (Places2) 

 
Figure 11. Recall Of Canny and HED During the Edge Model Training (Places2) 

Inpaint model training 

In the next training of the inpainting model, because the size of the input 

becomes larger, the GPU memory must be increased to maintain the previous 

batch size setting or reduce the size of the batch. 

Therefore, in this section, other settings remain the same, but the batch 

size is changed to 8. In the inpaint training, the model still needs the edge map 

as input and then combines the colors of the ground truth with missing regions 

and predicted RGB image. 

In this training, the output (predicted RGB image) generated by the inpaint 

model will be closer and closer to the ground truth, so the inpainting effect will be 

better and better. 
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Figure 12. Inpaint Model Training Sample (Canny, Cat) 
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Figure 13. Inpaint Model Training Sample (HED, Cat) 
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Figure 14. Inpaint Model Training Sample (Canny, Places2) 
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Figure 15. Inpaint Model Training Sample (HED, Places2) 
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Figure 16. PSNR Of Canny and HED During the Inpaint Model Training (Places2) 

 
Figure 17. MAE Of Canny and HED During the Inpaint Model Training (Places2) 

On each row in Figure 12, starting from the left, first image is the ground 

truth (original image), second image is the masked image (also input). The third 

is the edge map from original image by Canny edge detection. The fourth image 

is the actual output of the network. Finally, the last image is the combination of 

the second and fourth image: the known area is from the second image and the 

masked area is from the fourth image. 

In Figure 13, the third image on column is the edge map from ground truth 

by HED. 

PSNR is peak signal-to-noise ratio, it is the basis for judging image noise. 

The smaller the PSNR value, the more noise the image has, which means the 

more blurred the image is, the worse the level of image restoration is. 

MAE means Mean Absolute Error，it is used to reflect the error value 

between the predicted image and the original image. The smaller the value, the 

better restoration. 
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Although their difference is not large, it can be seen that HED's inpaint 

model is still superior to Canny's. Because in the Figure 16 PSNR chart, the most 

of blue value is under orange’s and also in Figure 17 MAE, the blue is always at 

orange’s upside. 

For consistency, both groups of model training were stopped after 

completing 15 epochs. 

Edge-inpaint training 

The final edge-inpaint training only backpropagates for inpaint model but 

use the output of edge model as edge input, this is for 𝐺2 to adapt to the 

predicted edge map of 𝐺1 as input. Because the training requires the input of 

both models, the memory requirement is increased again. Currently, the size of 

batch processing is decreased to 6, and change the learning rate to 0.00001 to 

help the model converge. This training ends after 10 epochs. 

In other words, this third training just replaces the correct edge map with 

the edge map predicted by the edge model to train the inpainting ability of the 

inpaint model, which can well adjust the inpaint model to adapt to the edge 

model, this also explains importance of edge detection for overall image 

inpainting. 
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Figure 18. Edge-Inpaint Training Sample (Canny, Cat) 

In Figure 18, the first images in column are the ground truth (original 

image). The second images in column are the masked image (also input). The 

third images in column are the predicted edge from the edge model (Canny). The 
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fourth images in column are the actual output of the network. Finally, the fifth 

images in column are the combination of the second and fourth images in 

column, the known area is from the second images in column and the masked 

area are from the fourth images in column. 
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Figure 19. Edge-Inpaint Training Sample (HED, Cat) 

 
In Figure 19, the third image in column is the predicted edge from the 

edge model (HED). 
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Figure 20. Edge-Inpaint Training Sample (Canny, Places2) 
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Figure 21. Edge-Inpaint Training Sample (HED, Places2) 
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Figure 22. PSNR Of Canny and HED During the Edge Inpaint Model Training (Places2) 

 
Figure 23. MAE Of Canny and HED During the Edge Inpaint Model Training (Places2) 

The trend of edge-inpaint mode is similar to inpaint mode, most HED 

scores are better than Canny's. 

Evaluation 

After training the model, put the test set with masked image into "test.py" 

for image inpainting, and then put the results and the ground truth into 

"metrics.py" and "fid-score.py" for scoring, finally obtain the average value of the 

inpainting degree of test set images for the models trained based on two sets of 

different edge detections: 
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Figure 24. Evaluation of Edgeconnect (Canny, Cat) 

 

 
Figure 25. Evaluation of Edgeconnect (HED, Cat) 
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Table 2. The Metrics Score of Canny Edge Detection and HED (Cat) 

 PSNR SSIM MAE FID 

EdgeConnect 
(Canny) 

20.0498 0.7600 0.0536 47.9557 

EdgeConnect 
(HED) 

20.4113 0.7779 0.0594 33.3415 

Improvement + 1.8% + 2.3% - 10.8% + 30.47% 

The “+” sign represents the improvement in performance, and the “-” sign 
represents the decline in performance. Red numbers are better performance 
scores. 
 

 
Figure 26: Evaluation of EdgeConnect (Places2) 1 

 

 
Figure 27: Evaluation of EdgeConnect (Places2) 2 
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Figure 28: Evaluation of EdgeConnect (Places2) 3 

 
Table 3. The Metrics Score of Canny Edge Detection and HED (Places2) 

 PSNR SSIM MAE FID 

EdgeConnect 
(Canny) 

19.8260 
 

0.7239 
 

0.0603 
 

34.2741 
 

EdgeConnect 
(HED) 

20.4005 
 

0.7497 
 

0.0565 
 

27.0358 
 

Improvement + 2.90% + 3.56% + 6.3% + 21.12% 

The “+” sign represents the improvement in performance, and the “-” sign 
represents the decline in performance. Red numbers are better performance 
scores 

 

The term peak signal-to-noise ratio (PSNR) is most used to measure the 

quality of reconstruction of lossy compression codecs (e.g., for image 

compression). The signal in this case is the original data, and the noise is the 

error introduced by compression. Typical values for the PSNR in lossy image and 

video compression are between 30 and 50 dB, provided the bit depth is 8 bits 

[13] High PSNR means good image quality and less ERROR introduced to the 

image [14]. 
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𝑃𝑆𝑁𝑅 =  10𝑙𝑜𝑔10  (
(𝐿 − 1)2

𝑀𝑆𝐸
) = 20𝑙𝑜𝑔10 (

𝐿 − 1

𝑅𝑀𝑆𝐸
) 

Equation 12. 

The structural similarity index measure (SSIM) measures image similarity 

in terms of brightness, contrast, and structure, respectively. The value range of 

SSIM is [0, 1], the larger the value, the smaller the image distortion [15]. 

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2  +  𝜇𝑦

2 +  𝑐1)(𝜎𝑥
2 +  𝜎𝑦

2 + 𝑐2)
 

Equation 13. 

Where 𝜇𝑥 is the average of x; 𝜇𝑦 is the average of y; 𝜎𝑥
2 is the variance of 

x; 𝜎𝑦
2 is the variance of y; 𝜎𝑥𝑦 is the covariance of x and y. 

𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 variables to stabilize the division with weak 

denominator. 

L is the dynamic range of the pixel-values (typically this is 

2#𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 –  1 ). 

𝑘1 = 0.01 and 𝑘2=0.03 by default. 

The mean absolute error (MAE) is used to measure the mean absolute 

error between the predicted value and the true value. The smaller the MAE, the 

better the model [16]. It is defined as follows: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖

𝑛

𝑖=1

− 𝑦�̂�|, 𝑀𝐴𝐸𝜖[0, +∞) 

Equation 14. 
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The Fréchet Inception Distance score (FID) is a measure of calculating the 

distance between the real image and the feature vector of the generated image, 

the smaller the index value, the more similar the generated image is to the real 

image, it can be computed from the mean and the covariance of the activations 

when the synthesized and real images are fed into the Inception network as [17]: 

𝐹𝐼𝐷 = ||𝜇 − 𝜇𝑤||2
2  +  𝑡𝑟 (𝛴 + 𝛴𝑤 − 2 (𝛴

1
2𝛴𝑤𝛴

1
2)

1
2

) 

Equation 15. 

As can be seen from the Table 2, EdgeConnect (HED) is better than 

EdgeConnect (Canny) in three of the four matrices, and the difference in MAE is 

only 0.0058, which is not a big difference. 

In Table 3, in PSNR, lager on is better, SSIM larger on better, MAE 

smaller one better, FID, Smaller one better, so, the EdgeConnect with HED is 

better than Canny's in all four metrics. Therefore, replacing Canny edge detection 

with HED has a considerable improvement in image inpainting.
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CHAPTER FOUR 

CONCLUSION AND FUTURE WORK 

Improved EdgeConnect 

The original EdgeConnect uses Canny edge detection to generate edge 

maps by default, but it can be seen from the above comparative experiments that 

a better edge detection can significantly improve the image inpainting algorithm 

and results. In the project, HED is integrated into EdgeConnect, which improves 

the effect of edge model and inpainting model and thus makes the effect of 

image inpainting better. 

During the implementation, the HED batch program is added to project, 

which is outside the EdgeConnect to generate edge maps in batches, and then 

the training set, test set, and validation set folders for the third-party edge 

detection reserved by the original author are used to train the edge and 

inpainting models. 

The improved EdgeConnect allows the choice of edge detection: either 

Canny or HED edge detection. 

Therefore, compared with the original EdgeConnect, little has changed in 

the way the program is used, but the image inpainting quality has been greatly 

improved. The implementation makes it easier for performance comparison. It 

also allows integration with other edge detection methods in the future. 

Future Work 

The following regions can the considered for future work. 
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1) Increasing the training time and the number of training set allows the 

model to be better trained to improve the accuracy of image inpainting. 

2) Developing a better method to estimate the degree of convergence, 

alternating Model 2 and Model 3 with regular training might improve the 

effect of the inpaint model. 

3) Using Canny and HED to train alternately in the improved EdgeConnect, 

integrate the results to see if it can help get better result. 

4) The occasional problem that the image resolution is not consistent before 

and after convolution can be solved in program, for example, by numerical 

conversion in program. 

5) Since HED also uses deep learning, we can improve the accuracy of 

image inpainting by improving the accuracy of edge detection. 

6) Fragmentary functions outside the main program, such as adding masks 

to images, benchmark, etc., can be integrated into the main program for 

further automation. 
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APPENDIX A 

CODE 
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MAIN.PY 

import os 

import cv2 

import random 

import numpy as np 

import torch 

import argparse 

from shutil import copyfile 

from src.config import Config 

from src.edge_connect import EdgeConnect 

 

 

def main(mode=None): 

    r"""starts the model 

 

    Args: 

        mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified 

    """ 

 

    config = load_config(mode) 

 

 

    # cuda visble devices 

    os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in config.GPU) 
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    print( os.environ['CUDA_VISIBLE_DEVICES']) 

 

 

    # init device 

    if torch.cuda.is_available(): 

        config.DEVICE = torch.device("cuda") 

        torch.backends.cudnn.benchmark = True   # cudnn auto-tuner 

        print("using GPU") 

    else: 

        config.DEVICE = torch.device("cpu") 

        print("using CPU") 

 

 

 

    # set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader) 

    cv2.setNumThreads(0) 

 

 

    # initialize random seed 

    torch.manual_seed(config.SEED) 

    torch.cuda.manual_seed_all(config.SEED) 

    np.random.seed(config.SEED) 

    random.seed(config.SEED) 
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    # build the model and initialize 

    model = EdgeConnect(config) 

    model.load() 

 

 

    # model training 

    if config.MODE == 1: 

        config.print() 

        print('\nstart training...\n') 

        model.train() 

 

    # model test 

    elif config.MODE == 2: 

        print('\nstart testing...\n') 

        model.test() 

 

    # eval mode 

    else: 

        print('\nstart eval...\n') 

        model.eval() 
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def load_config(mode=None): 

    r"""loads model config 

 

    Args: 

        mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified 

    """ 

 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--path', '--checkpoints', type=str, default='./checkpoints', 

help='model checkpoints path (default: ./checkpoints)') 

    parser.add_argument('--model', type=int, choices=[1, 2, 3, 4], help='1: edge model, 2: 

inpaint model, 3: edge-inpaint model, 4: joint model') 

 

    # test mode 

    if mode == 2: 

        parser.add_argument('--input', type=str, help='path to the input images directory or an 

input image') 

        parser.add_argument('--mask', type=str, help='path to the masks directory or a mask 

file') 

        parser.add_argument('--edge', type=str, help='path to the edges directory or an edge 

file') 

        parser.add_argument('--output', type=str, help='path to the output directory') 

 

    args = parser.parse_args() 
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    config_path = os.path.join(args.path, 'config.yml') 

 

    # create checkpoints path if does't exist 

    if not os.path.exists(args.path): 

        os.makedirs(args.path) 

 

    # copy config template if does't exist 

    if not os.path.exists(config_path): 

        copyfile('./config.yml.example', config_path) 

 

    # load config file 

    config = Config(config_path) 

 

    # train mode 

    if mode == 1: 

        config.MODE = 1 

        if args.model: 

            config.MODEL = args.model 

 

    # test mode 

    elif mode == 2: 

        config.MODE = 2 

        config.MODEL = args.model if args.model is not None else 3 

        config.INPUT_SIZE = 0 
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        if args.input is not None: 

            config.TEST_FLIST = args.input 

 

        if args.mask is not None: 

            config.TEST_MASK_FLIST = args.mask 

 

        if args.edge is not None: 

            config.TEST_EDGE_FLIST = args.edge 

 

        if args.output is not None: 

            config.RESULTS = args.output 

 

    # eval mode 

    elif mode == 3: 

        config.MODE = 3 

        config.MODEL = args.model if args.model is not None else 3 

 

    return config 

 

 

if __name__ == "__main__": 

    main() 
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EDGE_CONNECT.PY 

 

import os 

from pickle import GLOBAL 

import numpy as np 

import torch 

from torch.utils.data import DataLoader 

from .dataset import Dataset, CropLayer 

from .models import EdgeModel, InpaintingModel 

from .utils import Progbar, create_dir, stitch_images, imsave 

from .metrics import PSNR, EdgeAccuracy 

import cv2 

import time 

 

 

 

class EdgeConnect(): 

    def __init__(self, config): 

        self.config = config 

 

        if config.MODEL == 1: 

            model_name = 'edge' 

        elif config.MODEL == 2: 

            model_name = 'inpaint' 
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        elif config.MODEL == 3: 

            model_name = 'edge_inpaint' 

        elif config.MODEL == 4: 

            model_name = 'joint' 

 

        self.debug = False 

        self.model_name = model_name 

        self.edge_model = EdgeModel(config).to(config.DEVICE) 

        self.inpaint_model = InpaintingModel(config).to(config.DEVICE) 

 

        self.psnr = PSNR(255.0).to(config.DEVICE) 

        self.edgeacc = EdgeAccuracy(config.EDGE_THRESHOLD).to(config.DEVICE) 

 

         

 

 

        # test mode 

        if self.config.MODE == 2: 

            self.test_dataset = Dataset(config, config.TEST_FLIST, config.TEST_EDGE_FLIST, 

config.TEST_MASK_FLIST, augment=False, training=False) 

        else: 

            self.train_dataset = Dataset(config, config.TRAIN_FLIST, config.TRAIN_EDGE_FLIST, 

config.TRAIN_MASK_FLIST, augment=True, training=True) 
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            self.val_dataset = Dataset(config, config.VAL_FLIST, config.VAL_EDGE_FLIST, 

config.VAL_MASK_FLIST, augment=False, training=True) 

            self.sample_iterator = self.val_dataset.create_iterator(config.SAMPLE_SIZE) 

 

        self.samples_path = os.path.join(config.PATH, 'samples') 

        self.results_path = os.path.join(config.PATH, 'results') 

 

        if config.RESULTS is not None: 

            self.results_path = os.path.join(config.RESULTS) 

 

        if config.DEBUG is not None and config.DEBUG != 0: 

            self.debug = True 

 

        self.log_file = os.path.join(config.PATH, 'log_' + model_name + '.dat') 

 

    def load(self): 

        if self.config.MODEL == 1: 

            self.edge_model.load() 

 

        elif self.config.MODEL == 2: 

            self.inpaint_model.load() 

 

        else: 

            self.edge_model.load() 
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            self.inpaint_model.load() 

 

    def save(self): 

        if self.config.MODEL == 1: 

            self.edge_model.save() 

 

        elif self.config.MODEL == 2 or self.config.MODEL == 3: 

            self.inpaint_model.save() 

 

        else: 

            self.edge_model.save() 

            self.inpaint_model.save() 

 

    def train(self): 

        train_loader = DataLoader( 

            dataset=self.train_dataset, 

            batch_size=self.config.BATCH_SIZE, 

            num_workers=4, 

            drop_last=True, 

            shuffle=True 

        ) 

 

        epoch = 0 

        keep_training = True 
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        model = self.config.MODEL 

        max_iteration = int(float((self.config.MAX_ITERS))) 

        total = len(self.train_dataset) 

 

        if total == 0: 

            print('No training data was provided! Check \'TRAIN_FLIST\' value in the configuration file.') 

            return 

 

        while(keep_training): 

            epoch += 1 

            print('\n\nTraining epoch: %d' % epoch) 

 

            progbar = Progbar(total, width=20, stateful_metrics=['epoch', 'iter']) 

 

            for items in train_loader: 

                

                self.edge_model.train() 

                self.inpaint_model.train() 

 

                images, images_gray, edges, masks = self.cuda(*items) 

 

                # edge model 

                if model == 1: 

                    # train 
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                    outputs, gen_loss, dis_loss, logs = self.edge_model.process(images_gray, edges, masks) 

 

                    # metrics 

                    precision, recall = self.edgeacc(edges * masks, outputs * masks) 

                    logs.append(('precision', precision.item())) 

                    logs.append(('recall', recall.item())) 

 

                    # backward 

                    self.edge_model.backward(gen_loss, dis_loss) 

                    iteration = self.edge_model.iteration 

 

 

                # inpaint model 

                elif model == 2: 

                    # train 

                    outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, edges, masks) 

                    outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

                    # metrics 

                    psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged)) 

                    mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float() 

                    logs.append(('psnr', psnr.item())) 

                    logs.append(('mae', mae.item())) 
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                    # backward 

                    self.inpaint_model.backward(gen_loss, dis_loss) 

                    iteration = self.inpaint_model.iteration 

 

 

                # inpaint with edge model 

                elif model == 3: 

                    # train 

                    if True or np.random.binomial(1, 0.5) > 0: 

                        outputs = self.edge_model(images_gray, edges, masks) 

                        outputs = outputs * masks + edges * (1 - masks) 

                    else: 

                        outputs = edges 

 

                    outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, outputs.detach(), 

masks) 

                    outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

                    # metrics 

                    psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged)) 

                    mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float() 

                    logs.append(('psnr', psnr.item())) 

                    logs.append(('mae', mae.item())) 
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                    # backward 

                    self.inpaint_model.backward(gen_loss, dis_loss) 

                    iteration = self.inpaint_model.iteration 

 

 

                # joint model 

                else: 

                    # train 

                    e_outputs, e_gen_loss, e_dis_loss, e_logs = self.edge_model.process(images_gray, edges, 

masks) 

                    e_outputs = e_outputs * masks + edges * (1 - masks) 

                    i_outputs, i_gen_loss, i_dis_loss, i_logs = self.inpaint_model.process(images, e_outputs, 

masks) 

                    outputs_merged = (i_outputs * masks) + (images * (1 - masks)) 

 

                    # metrics 

                    psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged)) 

                    mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float() 

                    precision, recall = self.edgeacc(edges * masks, e_outputs * masks) 

                    e_logs.append(('pre', precision.item())) 

                    e_logs.append(('rec', recall.item())) 

                    i_logs.append(('psnr', psnr.item())) 

                    i_logs.append(('mae', mae.item())) 

                    logs = e_logs + i_logs 
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                    # backward 

                    self.inpaint_model.backward(i_gen_loss, i_dis_loss) 

                    self.edge_model.backward(e_gen_loss, e_dis_loss) 

                    iteration = self.inpaint_model.iteration 

 

 

                if iteration >= max_iteration: 

                    keep_training = False 

                    break 

 

                logs = [ 

                    ("epoch", epoch), 

                    ("iter", iteration), 

                ] + logs 

 

                progbar.add(len(images), values=logs if self.config.VERBOSE else [x for x in logs if not 

x[0].startswith('l_')]) 

 

                # log model at checkpoints 

                if self.config.LOG_INTERVAL and iteration % self.config.LOG_INTERVAL == 0: 

                    self.log(logs) 

 

                # sample model at checkpoints 
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                if self.config.SAMPLE_INTERVAL and iteration % self.config.SAMPLE_INTERVAL == 0: 

                    self.sample() 

 

                # evaluate model at checkpoints 

                if self.config.EVAL_INTERVAL and iteration % self.config.EVAL_INTERVAL == 0: 

                    print('\nstart eval...\n') 

                    self.eval() 

 

                # save model at checkpoints 

                if self.config.SAVE_INTERVAL and iteration % self.config.SAVE_INTERVAL == 0: 

                    self.save() 

 

        print('\nEnd training....') 

 

    def eval(self): 

        val_loader = DataLoader( 

            dataset=self.val_dataset, 

            batch_size=self.config.BATCH_SIZE, 

            drop_last=True, 

            shuffle=True 

        ) 

 

        model = self.config.MODEL 

        total = len(self.val_dataset) 
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        self.edge_model.eval() 

        self.inpaint_model.eval() 

 

        progbar = Progbar(total, width=20, stateful_metrics=['it']) 

        iteration = 0 

 

        for items in val_loader: 

             

            iteration += 1 

            images, images_gray, edges, masks = self.cuda(*items) 

 

            # edge model 

            if model == 1: 

                # eval 

                outputs, gen_loss, dis_loss, logs = self.edge_model.process(images_gray, edges, masks) 

 

                # metrics 

                precision, recall = self.edgeacc(edges * masks, outputs * masks) 

                logs.append(('precision', precision.item())) 

                logs.append(('recall', recall.item())) 

 

 

            # inpaint model 
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            elif model == 2: 

                # eval 

                outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, edges, masks) 

                outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

                # metrics 

                psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged)) 

                mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float() 

                logs.append(('psnr', psnr.item())) 

                logs.append(('mae', mae.item())) 

 

 

            # inpaint with edge model 

            elif model == 3: 

                # eval 

                outputs = self.edge_model(images_gray, edges, masks) 

                outputs = outputs * masks + edges * (1 - masks) 

 

                outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, outputs.detach(), 

masks) 

                outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

                # metrics 

                psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged)) 
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                mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float() 

                logs.append(('psnr', psnr.item())) 

                logs.append(('mae', mae.item())) 

 

 

            # joint model 

            else: 

                # eval 

                e_outputs, e_gen_loss, e_dis_loss, e_logs = self.edge_model.process(images_gray, edges, 

masks) 

                e_outputs = e_outputs * masks + edges * (1 - masks) 

                i_outputs, i_gen_loss, i_dis_loss, i_logs = self.inpaint_model.process(images, e_outputs, masks) 

                outputs_merged = (i_outputs * masks) + (images * (1 - masks)) 

 

                # metrics 

                psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged)) 

                mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float() 

                precision, recall = self.edgeacc(edges * masks, e_outputs * masks) 

                e_logs.append(('pre', precision.item())) 

                e_logs.append(('rec', recall.item())) 

                i_logs.append(('psnr', psnr.item())) 

                i_logs.append(('mae', mae.item())) 

                logs = e_logs + i_logs 
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            logs = [("it", iteration), ] + logs 

            progbar.add(len(images), values=logs) 

 

    def test(self): 

        self.edge_model.eval() 

        self.inpaint_model.eval() 

 

        model = self.config.MODEL 

        create_dir(self.results_path) 

 

        test_loader = DataLoader( 

            dataset=self.test_dataset, 

            batch_size=1, 

        ) 

 

        index = 0 

        for items in test_loader: 

         

            name = self.test_dataset.load_name(index) 

            images, images_gray, edges, masks = self.cuda(*items) 

            index += 1 

 

            # edge model 
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            if model == 1: 

                outputs = self.edge_model(images_gray, edges, masks) 

                outputs_merged = (outputs * masks) + (edges * (1 - masks)) 

 

            # inpaint model 

            elif model == 2: 

                outputs = self.inpaint_model(images, edges, masks) 

                outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

            # inpaint with edge model / joint model 

            else: 

                edges = self.edge_model(images_gray, edges, masks).detach() 

                outputs = self.inpaint_model(images, edges, masks) 

                outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

            output = self.postprocess(outputs_merged)[0] 

            path = os.path.join(self.results_path, name) 

            print(index, name) 

 

            imsave(output, path) 

 

            if self.debug: 

                edges = self.postprocess(1 - edges)[0] 

                masked = self.postprocess(images * (1 - masks) + masks)[0] 
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                fname, fext = name.split('.') 

 

                imsave(edges, os.path.join(self.results_path, fname + '_edge.' + fext)) 

                imsave(masked, os.path.join(self.results_path, fname + '_masked.' + fext)) 

 

        print('\nEnd test....') 

 

    def sample(self, it=None): 

        # do not sample when validation set is empty 

        if len(self.val_dataset) == 0: 

            return 

 

        self.edge_model.eval() 

        self.inpaint_model.eval() 

 

        model = self.config.MODEL 

        items = next(self.sample_iterator) 

        images, images_gray, edges, masks = self.cuda(*items) 

 

        # edge model 

        if model == 1: 

            iteration = self.edge_model.iteration 

            inputs = (images_gray * (1 - masks)) + masks 

            outputs = self.edge_model(images_gray, edges, masks) 
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            outputs_merged = (outputs * masks) + (edges * (1 - masks)) 

 

        # inpaint model 

        elif model == 2: 

            iteration = self.inpaint_model.iteration 

            inputs = (images * (1 - masks)) + masks 

            outputs = self.inpaint_model(images, edges, masks) 

            outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

        # inpaint with edge model / joint model 

        else: 

            iteration = self.inpaint_model.iteration 

            inputs = (images * (1 - masks)) + masks 

            outputs = self.edge_model(images_gray, edges, masks).detach() 

            edges = (outputs * masks + edges * (1 - masks)).detach() 

            outputs = self.inpaint_model(images, edges, masks) 

            outputs_merged = (outputs * masks) + (images * (1 - masks)) 

 

        if it is not None: 

            iteration = it 

 

        image_per_row = 2 

        if self.config.SAMPLE_SIZE <= 6: 

            image_per_row = 1 
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        images = stitch_images( 

            self.postprocess(images), 

            self.postprocess(inputs), 

            self.postprocess(edges), 

            self.postprocess(outputs), 

            self.postprocess(outputs_merged), 

            img_per_row = image_per_row 

        ) 

 

 

        path = os.path.join(self.samples_path, self.model_name) 

        name = os.path.join(path, str(iteration).zfill(5) + ".png") 

        create_dir(path) 

        print('\nsaving sample ' + name) 

        images.save(name) 

 

    def log(self, logs): 

        with open(self.log_file, 'a') as f: 

            f.write('%s\n' % ' '.join([str(item[1]) for item in logs])) 

 

    def cuda(self, *args): 

        return (item.to(self.config.DEVICE) for item in args) 
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    def postprocess(self, img): 

        # [0, 1] => [0, 255] 

        img = img * 255.0 

        img = img.permute(0, 2, 3, 1) 

        return img.int()
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MODELS.PY 

import os 

import torch 

import torch.nn as nn 

import torch.optim as optim 

from .networks import InpaintGenerator, EdgeGenerator, Discriminator 

from .loss import AdversarialLoss, PerceptualLoss, StyleLoss 

 

 

class BaseModel(nn.Module): 

    def __init__(self, name, config): 

        super(BaseModel, self).__init__() 

 

        self.name = name 

        self.config = config 

        self.iteration = 0 

 

        self.gen_weights_path = os.path.join(config.PATH, name + '_gen.pth') 

        self.dis_weights_path = os.path.join(config.PATH, name + '_dis.pth') 

 

    def load(self): 

        if os.path.exists(self.gen_weights_path): 

            print('Loading %s generator...' % self.name) 

 



 

 

 

74 

 

            if torch.cuda.is_available(): 

                data = torch.load(self.gen_weights_path) 

            else: 

                data = torch.load(self.gen_weights_path, map_location=lambda storage, loc: 

storage) 

 

            self.generator.load_state_dict(data['generator']) 

            self.iteration = data['iteration'] 

 

        # load discriminator only when training 

        if self.config.MODE == 1 and os.path.exists(self.dis_weights_path): 

            print('Loading %s discriminator...' % self.name) 

 

            if torch.cuda.is_available(): 

                data = torch.load(self.dis_weights_path) 

            else: 

                data = torch.load(self.dis_weights_path, map_location=lambda storage, loc: storage) 

 

            self.discriminator.load_state_dict(data['discriminator']) 

 

    def save(self): 

        print('\nsaving %s...\n' % self.name) 

        torch.save({ 

            'iteration': self.iteration, 
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            'generator': self.generator.state_dict() 

        }, self.gen_weights_path) 

 

        torch.save({ 

            'discriminator': self.discriminator.state_dict() 

        }, self.dis_weights_path) 

 

 

class EdgeModel(BaseModel): 

    def __init__(self, config): 

        super(EdgeModel, self).__init__('EdgeModel', config) 

 

        # generator input: [grayscale(1) + edge(1) + mask(1)] 

        # discriminator input: (grayscale(1) + edge(1)) 

        generator = EdgeGenerator(use_spectral_norm=True) 

        discriminator = Discriminator(in_channels=2, use_sigmoid=config.GAN_LOSS != 'hinge') 

        if len(config.GPU) > 1: 

            generator = nn.DataParallel(generator, config.GPU) 

            discriminator = nn.DataParallel(discriminator, config.GPU) 

        l1_loss = nn.L1Loss() 

        adversarial_loss = AdversarialLoss(type=config.GAN_LOSS) 

 

        self.add_module('generator', generator) 

        self.add_module('discriminator', discriminator) 
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        self.add_module('l1_loss', l1_loss) 

        self.add_module('adversarial_loss', adversarial_loss) 

 

        self.gen_optimizer = optim.Adam( 

            params=generator.parameters(), 

            lr=float(config.LR), 

            betas=(config.BETA1, config.BETA2) 

        ) 

 

        self.dis_optimizer = optim.Adam( 

            params=discriminator.parameters(), 

            lr=float(config.LR) * float(config.D2G_LR), 

            betas=(config.BETA1, config.BETA2) 

        ) 

 

    def process(self, images, edges, masks): 

        self.iteration += 1 

 

 

        # zero optimizers 

        self.gen_optimizer.zero_grad() 

        self.dis_optimizer.zero_grad() 
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        # process outputs 

        outputs = self(images, edges, masks) 

        gen_loss = 0 

        dis_loss = 0 

 

 

        # discriminator loss 

        dis_input_real = torch.cat((images, edges), dim=1) 

        dis_input_fake = torch.cat((images, outputs.detach()), dim=1) 

        dis_real, dis_real_feat = self.discriminator(dis_input_real)        # in: (grayscale(1) + edge(1)) 

        dis_fake, dis_fake_feat = self.discriminator(dis_input_fake)        # in: (grayscale(1) + 

edge(1)) 

        dis_real_loss = self.adversarial_loss(dis_real, True, True) 

        dis_fake_loss = self.adversarial_loss(dis_fake, False, True) 

        dis_loss += (dis_real_loss + dis_fake_loss) / 2 

 

 

        # generator adversarial loss 

        gen_input_fake = torch.cat((images, outputs), dim=1) 

        gen_fake, gen_fake_feat = self.discriminator(gen_input_fake)        # in: (grayscale(1) + 

edge(1)) 

        gen_gan_loss = self.adversarial_loss(gen_fake, True, False) 

        gen_loss += gen_gan_loss 
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        # generator feature matching loss 

        gen_fm_loss = 0 

        for i in range(len(dis_real_feat)): 

            gen_fm_loss += self.l1_loss(gen_fake_feat[i], dis_real_feat[i].detach()) 

        gen_fm_loss = gen_fm_loss * self.config.FM_LOSS_WEIGHT 

        gen_loss += gen_fm_loss 

 

 

        # create logs 

        logs = [ 

            ("l_d1", dis_loss.item()), 

            ("l_g1", gen_gan_loss.item()), 

            ("l_fm", gen_fm_loss.item()), 

        ] 

 

        return outputs, gen_loss, dis_loss, logs 

 

    def forward(self, images, edges, masks): 

        edges_masked = (edges * (1 - masks)) 

        images_masked = (images * (1 - masks)) + masks 

        inputs = torch.cat((images_masked, edges_masked, masks), dim=1) 
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        outputs = self.generator(inputs)                                    # in: [grayscale(1) + edge(1) + 

mask(1)] 

        return outputs 

 

    def backward(self, gen_loss=None, dis_loss=None): 

        if dis_loss is not None: 

            dis_loss.backward() 

        self.dis_optimizer.step() 

 

        if gen_loss is not None: 

            gen_loss.backward() 

        self.gen_optimizer.step() 

 

 

class InpaintingModel(BaseModel): 

    def __init__(self, config): 

        super(InpaintingModel, self).__init__('InpaintingModel', config) 

 

        # generator input: [rgb(3) + edge(1)] 

        # discriminator input: [rgb(3)] 

        generator = InpaintGenerator() 

        discriminator = Discriminator(in_channels=3, use_sigmoid=config.GAN_LOSS != 'hinge') 

        if len(config.GPU) > 1: 

            generator = nn.DataParallel(generator, config.GPU) 
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            discriminator = nn.DataParallel(discriminator , config.GPU) 

 

        l1_loss = nn.L1Loss() 

        perceptual_loss = PerceptualLoss() 

        style_loss = StyleLoss() 

        adversarial_loss = AdversarialLoss(type=config.GAN_LOSS) 

 

        self.add_module('generator', generator) 

        self.add_module('discriminator', discriminator) 

 

        self.add_module('l1_loss', l1_loss) 

        self.add_module('perceptual_loss', perceptual_loss) 

        self.add_module('style_loss', style_loss) 

        self.add_module('adversarial_loss', adversarial_loss) 

 

        self.gen_optimizer = optim.Adam( 

            params=generator.parameters(), 

            lr=float(config.LR), 

            betas=(config.BETA1, config.BETA2) 

        ) 

 

        self.dis_optimizer = optim.Adam( 

            params=discriminator.parameters(), 

            lr=float(config.LR) * float(config.D2G_LR), 
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            betas=(config.BETA1, config.BETA2) 

        ) 

 

    def process(self, images, edges, masks): 

        self.iteration += 1 

 

        # zero optimizers 

        self.gen_optimizer.zero_grad() 

        self.dis_optimizer.zero_grad() 

 

 

        # process outputs 

        outputs = self(images, edges, masks) 

        gen_loss = 0 

        dis_loss = 0 

 

 

        # discriminator loss 

        dis_input_real = images 

        dis_input_fake = outputs.detach() 

        dis_real, _ = self.discriminator(dis_input_real)                    # in: [rgb(3)] 

        dis_fake, _ = self.discriminator(dis_input_fake)                    # in: [rgb(3)] 

        dis_real_loss = self.adversarial_loss(dis_real, True, True) 

        dis_fake_loss = self.adversarial_loss(dis_fake, False, True) 
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        dis_loss += (dis_real_loss + dis_fake_loss) / 2 

 

 

        # generator adversarial loss 

        gen_input_fake = outputs 

        gen_fake, _ = self.discriminator(gen_input_fake)                    # in: [rgb(3)] 

        gen_gan_loss = self.adversarial_loss(gen_fake, True, False) * 

self.config.INPAINT_ADV_LOSS_WEIGHT 

        gen_loss += gen_gan_loss 

 

 

        # generator l1 loss 

        gen_l1_loss = self.l1_loss(outputs, images) * self.config.L1_LOSS_WEIGHT / 

torch.mean(masks) 

        gen_loss += gen_l1_loss 

 

 

        # generator perceptual loss 

        gen_content_loss = self.perceptual_loss(outputs, images) 

        gen_content_loss = gen_content_loss * self.config.CONTENT_LOSS_WEIGHT 

        gen_loss += gen_content_loss 

 

 

        # generator style loss 
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        gen_style_loss = self.style_loss(outputs * masks, images * masks) 

        gen_style_loss = gen_style_loss * self.config.STYLE_LOSS_WEIGHT 

        gen_loss += gen_style_loss 

 

 

        # create logs 

        logs = [ 

            ("l_d2", dis_loss.item()), 

            ("l_g2", gen_gan_loss.item()), 

            ("l_l1", gen_l1_loss.item()), 

            ("l_per", gen_content_loss.item()), 

            ("l_sty", gen_style_loss.item()), 

        ] 

 

        return outputs, gen_loss, dis_loss, logs 

 

    def forward(self, images, edges, masks): 

        images_masked = (images * (1 - masks).float()) + masks 

        inputs = torch.cat((images_masked, edges), dim=1) 

        outputs = self.generator(inputs)                                    # in: [rgb(3) + edge(1)] 

        return outputs 

 

    def backward(self, gen_loss=None, dis_loss=None): 

        dis_loss.backward() 
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        self.dis_optimizer.step() 

 

        gen_loss.backward() 

        self.gen_optimizer.step() 
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METRICS.PY 

import numpy as np 

import argparse 

import matplotlib.pyplot as plt 

 

from glob import glob 

from ntpath import basename 

from scipy.misc import imread 

from skimage.measure import compare_ssim 

from skimage.measure import compare_psnr 

from skimage.color import rgb2gray 

 

 

def parse_args(): 

    parser = argparse.ArgumentParser(description='script to compute all statistics') 

    parser.add_argument('--data-path', help='Path to ground truth data', type=str) 

    parser.add_argument('--output-path', help='Path to output data', type=str) 

    parser.add_argument('--debug', default=0, help='Debug', type=int) 

    args = parser.parse_args() 

    return args 

 

 

def compare_mae(img_true, img_test): 

    img_true = img_true.astype(np.float32) 
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    img_test = img_test.astype(np.float32) 

    return np.sum(np.abs(img_true - img_test)) / np.sum(img_true + img_test) 

 

 

args = parse_args() 

for arg in vars(args): 

    print('[%s] =' % arg, getattr(args, arg)) 

 

path_true = args.data_path 

path_pred = args.output_path 

 

psnr = [] 

ssim = [] 

mae = [] 

names = [] 

index = 1 

 

files = list(glob(path_true + '/*.jpg')) + list(glob(path_true + '/*.png')) 

for fn in sorted(files): 

    name = basename(str(fn)) 

    names.append(name) 

 

    img_gt = (imread(str(fn)) / 255.0).astype(np.float32) 

    img_pred = (imread(path_pred + '/' + basename(str(fn))) / 255.0).astype(np.float32) 
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    img_gt = rgb2gray(img_gt) 

    img_pred = rgb2gray(img_pred) 

 

    if args.debug != 0: 

        plt.subplot('121') 

        plt.imshow(img_gt) 

        plt.title('Groud truth') 

        plt.subplot('122') 

        plt.imshow(img_pred) 

        plt.title('Output') 

        plt.show() 

 

    psnr.append(compare_psnr(img_gt, img_pred, data_range=1)) 

    ssim.append(compare_ssim(img_gt, img_pred, data_range=1, win_size=51)) 

    mae.append(compare_mae(img_gt, img_pred)) 

    if np.mod(index, 100) == 0: 

        print( 

            str(index) + ' images processed', 

            "PSNR: %.4f" % round(np.mean(psnr), 4), 

            "SSIM: %.4f" % round(np.mean(ssim), 4), 

            "MAE: %.4f" % round(np.mean(mae), 4), 

        ) 

    index += 1 
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np.savez(args.output_path + '/metrics.npz', psnr=psnr, ssim=ssim, mae=mae, names=names) 

print( 

    "PSNR: %.4f" % round(np.mean(psnr), 4), 

    "PSNR Variance: %.4f" % round(np.var(psnr), 4), 

    "SSIM: %.4f" % round(np.mean(ssim), 4), 

    "SSIM Variance: %.4f" % round(np.var(ssim), 4), 

    "MAE: %.4f" % round(np.mean(mae), 4), 

    "MAE Variance: %.4f" % round(np.var(mae), 4) 

) 
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FID_SCORE.PY 

import os 

import pathlib 

from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter 

 

import torch 

import numpy as np 

from scipy.misc import imread 

from scipy import linalg 

from torch.autograd import Variable 

from torch.nn.functional import adaptive_avg_pool2d 

 

from inception import InceptionV3 

 

 

parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) 

parser.add_argument('--path', type=str, nargs=2, help=('Path to the generated images or 

to .npz statistic files')) 

parser.add_argument('--batch-size', type=int, default=64, help='Batch size to use') 

parser.add_argument('--dims', type=int, default=2048, 

choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), help=('Dimensionality of Inception features to use. By 

default, uses pool3 features')) 

parser.add_argument('-c', '--gpu', default='', type=str, help='GPU to use (leave blank for CPU 

only)') 
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def get_activations(images, model, batch_size=64, dims=2048, 

                    cuda=False, verbose=False): 

    """Calculates the activations of the pool_3 layer for all images. 

    Params: 

    -- images      : Numpy array of dimension (n_images, 3, hi, wi). The values 

                     must lie between 0 and 1. 

    -- model       : Instance of inception model 

    -- batch_size  : the images numpy array is split into batches with 

                     batch size batch_size. A reasonable batch size depends 

                     on the hardware. 

    -- dims        : Dimensionality of features returned by Inception 

    -- cuda        : If set to True, use GPU 

    -- verbose     : If set to True and parameter out_step is given, the number 

                     of calculated batches is reported. 

    Returns: 

    -- A numpy array of dimension (num images, dims) that contains the 

       activations of the given tensor when feeding inception with the 

       query tensor. 

    """ 

    model.eval() 

 

    d0 = images.shape[0] 
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    if batch_size > d0: 

        print(('Warning: batch size is bigger than the data size. ' 

               'Setting batch size to data size')) 

        batch_size = d0 

 

    n_batches = d0 // batch_size 

    n_used_imgs = n_batches * batch_size 

 

    pred_arr = np.empty((n_used_imgs, dims)) 

    for i in range(n_batches): 

        if verbose: 

            print('\rPropagating batch %d/%d' % (i + 1, n_batches), 

                  end='', flush=True) 

        start = i * batch_size 

        end = start + batch_size 

 

        batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor) 

        batch = Variable(batch, volatile=True) 

        if cuda: 

            batch = batch.cuda() 

 

        pred = model(batch)[0] 

 

        # If model output is not scalar, apply global spatial average pooling. 
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        # This happens if you choose a dimensionality not equal 2048. 

        if pred.shape[2] != 1 or pred.shape[3] != 1: 

            pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) 

 

        pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) 

 

    if verbose: 

        print(' done') 

 

    return pred_arr 

 

 

def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): 

    """Numpy implementation of the Frechet Distance. 

    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) 

    and X_2 ~ N(mu_2, C_2) is 

            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). 

    Stable version by Dougal J. Sutherland. 

    Params: 

    -- mu1   : Numpy array containing the activations of a layer of the 

               inception net (like returned by the function 'get_predictions') 

               for generated samples. 

    -- mu2   : The sample mean over activations, precalculated on an 

               representive data set. 



 

 

 

95 

 

    -- sigma1: The covariance matrix over activations for generated samples. 

    -- sigma2: The covariance matrix over activations, precalculated on an 

               representive data set. 

    Returns: 

    --   : The Frechet Distance. 

    """ 

 

    mu1 = np.atleast_1d(mu1) 

    mu2 = np.atleast_1d(mu2) 

 

    sigma1 = np.atleast_2d(sigma1) 

    sigma2 = np.atleast_2d(sigma2) 

 

    assert mu1.shape == mu2.shape, \ 

        'Training and test mean vectors have different lengths' 

    assert sigma1.shape == sigma2.shape, \ 

        'Training and test covariances have different dimensions' 

 

    diff = mu1 - mu2 

 

    # Product might be almost singular 

    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) 

    if not np.isfinite(covmean).all(): 

        msg = ('fid calculation produces singular product; ' 
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               'adding %s to diagonal of cov estimates') % eps 

        print(msg) 

        offset = np.eye(sigma1.shape[0]) * eps 

        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) 

 

    # Numerical error might give slight imaginary component 

    if np.iscomplexobj(covmean): 

        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): 

            m = np.max(np.abs(covmean.imag)) 

            raise ValueError('Imaginary component {}'.format(m)) 

        covmean = covmean.real 

 

    tr_covmean = np.trace(covmean) 

 

    return (diff.dot(diff) + np.trace(sigma1) + 

            np.trace(sigma2) - 2 * tr_covmean) 

 

 

def calculate_activation_statistics(images, model, batch_size=64, 

                                    dims=2048, cuda=False, verbose=False): 

    """Calculation of the statistics used by the FID. 

    Params: 

    -- images      : Numpy array of dimension (n_images, 3, hi, wi). The values 

                     must lie between 0 and 1. 
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    -- model       : Instance of inception model 

    -- batch_size  : The images numpy array is split into batches with 

                     batch size batch_size. A reasonable batch size 

                     depends on the hardware. 

    -- dims        : Dimensionality of features returned by Inception 

    -- cuda        : If set to True, use GPU 

    -- verbose     : If set to True and parameter out_step is given, the 

                     number of calculated batches is reported. 

    Returns: 

    -- mu    : The mean over samples of the activations of the pool_3 layer of 

               the inception model. 

    -- sigma : The covariance matrix of the activations of the pool_3 layer of 

               the inception model. 

    """ 

    act = get_activations(images, model, batch_size, dims, cuda, verbose) 

    mu = np.mean(act, axis=0) 

    sigma = np.cov(act, rowvar=False) 

    return mu, sigma 

 

 

def _compute_statistics_of_path(path, model, batch_size, dims, cuda): 

    npz_file = os.path.join(path, 'statistics.npz') 

    if os.path.exists(npz_file): 

        f = np.load(npz_file) 
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        m, s = f['mu'][:], f['sigma'][:] 

        f.close() 

    else: 

        path = pathlib.Path(path) 

        files = list(path.glob('*.jpg')) + list(path.glob('*.png')) 

 

        imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files]) 

 

        # Bring images to shape (B, 3, H, W) 

        imgs = imgs.transpose((0, 3, 1, 2)) 

 

        # Rescale images to be between 0 and 1 

        imgs /= 255 

 

        m, s = calculate_activation_statistics(imgs, model, batch_size, dims, cuda) 

        np.savez(npz_file, mu=m, sigma=s) 

 

    return m, s 

 

 

def calculate_fid_given_paths(paths, batch_size, cuda, dims): 

    """Calculates the FID of two paths""" 

    for p in paths: 

        if not os.path.exists(p): 
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            raise RuntimeError('Invalid path: %s' % p) 

 

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] 

 

    model = InceptionV3([block_idx]) 

    if cuda: 

        model.cuda() 

 

    print('calculate path1 statistics...') 

    m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims, cuda) 

    print('calculate path2 statistics...') 

    m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, dims, cuda) 

    print('calculate frechet distance...') 

    fid_value = calculate_frechet_distance(m1, s1, m2, s2) 

 

    return fid_value 

 

 

if __name__ == '__main__': 

    args = parser.parse_args() 

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu 

 

    fid_value = calculate_fid_given_paths(args.path, 

                                          args.batch_size, 
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                                          args.gpu != '', 

                                          args.dims) 

    print('FID: ', round(fid_value, 4)) 
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MASKIMG.PY 

# Required Libraries 

import cv2 

import numpy as np 

from os import listdir 

from os.path import isfile, join 

from pathlib import Path 

import argparse 

import numpy 

 

# Argument parsing variable declared 

ap = argparse.ArgumentParser() 

 

ap.add_argument("-i", "--image", 

    required=True, 

    help="Path to folder") 

ap.add_argument("-e", "--mask", 

    required=True, 

    help="Path to folder") 

 

args = vars(ap.parse_args()) 

 

 

# Find all the images in the provided images folder 
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mypath1 = args["image"] 

mypath2 = args["mask"] 

onlyfiles1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))] 

onlyfiles2 = [f for f in listdir(mypath2) if isfile(join(mypath2, f))] 

images = numpy.empty(len(onlyfiles1), dtype=object) 

masks = numpy.empty(len(onlyfiles2), dtype=object) 

 

# Iterate through every image 

# and resize all the images. 

for n in range(0, len(onlyfiles1)): 

 

 path1 = join(mypath1, onlyfiles1[n]) 

 path2 = join(mypath2, onlyfiles2[n]) 

 images[n] = cv2.imread(join(mypath1, onlyfiles1[n]), 

      cv2.IMREAD_UNCHANGED) 

 masks[n] = cv2.imread(join(mypath2, onlyfiles2[n]), 

      cv2.IMREAD_UNCHANGED) 

 # Load the image in img variable 

 img = cv2.imread(path1, 1) 

 msk= cv2.imread(path2, 1) 

 resize_width = int(256) 

 resize_hieght = int(256) 

 resized_dimensions = (resize_width, resize_hieght) 

 resized_msk = cv2.resize(msk, resized_dimensions, interpolation=cv2.INTER_AREA) 
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 # Define a resizing Scale 

 # To declare how much to resize 

 mask_img = cv2.bitwise_or(resized_msk, img) 

 

 # Create resized image using the calculated dimensions 

 

 # Save the image in Output Folder 

 cv2.imwrite( 

 'output/' + str(n) + '_resized.png', mask_img) 

 

print("Images masked Successfully") 
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HED_PROCESSING.PY 

import cv2 as cv 

import os 

import numpy as np 

import time 

 

 

# ! [CropLayenr] 

class CropLayer(object): 

    def __init__(self, params, blobs): 

        self.xstart = 0 

        self.xend = 0 

        self.ystart = 0 

        self.yend = 0 

 

    # Our layer receives two inputs. We need to crop the first input blob 

    # to match a shape of the second one (keeping batch size and number of channels) 

    def getMemoryShapes(self, inputs): 

        inputShape, targetShape = inputs[0], inputs[1] 

        batchSize, numChannels = inputShape[0], inputShape[1] 

        height, width = targetShape[2], targetShape[3] 

 

        # self.ystart = (inputShape[2] - targetShape[2]) / 2 

        # self.xstart = (inputShape[3] - targetShape[3]) / 2 
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        self.ystart = int((inputShape[2] - targetShape[2]) / 2) 

        self.xstart = int((inputShape[3] - targetShape[3]) / 2) 

 

        self.yend = self.ystart + height 

        self.xend = self.xstart + width 

 

        return [[batchSize, numChannels, height, width]] 

 

    def forward(self, inputs): 

        return [inputs[0][:, :, self.ystart:self.yend, self.xstart:self.xend]] 

 

 

def hed(net, start_paths, target_paths): 

    width = 256 

    height = 256 

    for start_path_i in range(len(start_paths)): 

        s_path = start_paths[start_path_i] 

        t_path = target_paths[start_path_i] 

        if not os.path.exists(t_path): 

            os.makedirs(t_path) 

        image_lists = [os.path.join(s_path, i) for i in os.listdir(s_path)] 

        size = len(image_lists) 

        for img_i, img_path in enumerate(image_lists): 
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            if '.jpg' not in img_path.lower() and '.png' not in img_path.lower(): 

                continue 

            if img_i % 10 == 0: 

                print(f'{t_path} finish {img_i}/{size}.') 

            frame = cv.imread(img_path) 

 

            inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(width, height), 

                                       mean=(104.00698793, 116.66876762, 122.67891434), 

                                       swapRB=False, crop=False) 

            net.setInput(inp) 

 

            out = net.forward() 

            out = out[0, 0] 

            out = cv.resize(out, (frame.shape[1], frame.shape[0])) 

            out = out * 255 

            cv.imwrite(os.path.join(t_path, img_path[img_path.rfind('\\')+1:]), out.astype('uint8')) 

            time.sleep(0.05) 

    return 

 

 

def flist(paths, outputs): 

    ext = {'.JPG', '.JPEG', '.PNG', '.TIF', 'TIFF'} 

    for path_i, path in enumerate(paths): 

        output = outputs[path_i] 
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        images = [] 

        for root, dirs, files in os.walk(path): 

            print('loading ' + root) 

            for file in files: 

                if os.path.splitext(file)[1].upper() in ext: 

                    images.append(os.path.join(root, file)) 

 

        images = sorted(images) 

        np.savetxt(output, images, fmt='%s') 

    return 

 

 

if __name__ == '__main__': 

    # ! [CropLayer] 

 

    # ! [Register] 

    cv.dnn_registerLayer('Crop', CropLayer) 

    # ! [Register] 

 

    # Load the model. 

    prototxt_path = 'deploy.prototxt' 

    caffemodel_path = 'hed_pretrained_bsds.caffemodel' 

    net = cv.dnn.readNet(cv.samples.findFile(prototxt_path), 

cv.samples.findFile(caffemodel_path)) 
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    start_paths = ['training/cat_train', 'training/cat_test_original', 'training/cat_val'] 

    target_paths = ['training/cat_edges_train', 'training/cat_edges_test', 'training/cat_edges_val'] 

    hed(net, start_paths, target_paths) 

 

    outputs = ['datasets/cat_edges_train.flist', 'datasets/cat_edges_test.flist', 

'datasets/cat_edges_val.flist'] 

    flist(target_paths, outputs) 
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DATASET.PY 

import os 

import glob 

import scipy 

import torch 

import random 

import numpy as np 

import torchvision.transforms.functional as F 

from torch.utils.data import DataLoader 

from PIL import Image 

from scipy.misc import imread 

from skimage.feature import canny 

from skimage.color import rgb2gray, gray2rgb 

from .utils import create_mask 

import cv2 

 

 

class CropLayer(object): 

    def __init__(self, params, blobs): 

        self.xstart = 0 

        self.xend = 0 

        self.ystart = 0 

        self.yend = 0 
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    # Our layer receives two inputs. We need to crop the first input blob 

    # to match a shape of the second one (keeping batch size and number of channels) 

    def getMemoryShapes(self, inputs): 

        inputShape, targetShape = inputs[0], inputs[1] 

        batchSize, numChannels = inputShape[0], inputShape[1] 

        height, width = targetShape[2], targetShape[3] 

 

        # self.ystart = (inputShape[2] - targetShape[2]) / 2 

        # self.xstart = (inputShape[3] - targetShape[3]) / 2 

 

        self.ystart = int((inputShape[2] - targetShape[2]) / 2) 

        self.xstart = int((inputShape[3] - targetShape[3]) / 2) 

 

        self.yend = self.ystart + height 

        self.xend = self.xstart + width 

 

        return [[batchSize, numChannels, height, width]] 

 

    def forward(self, inputs): 

        return [inputs[0][:, :, self.ystart:self.yend, self.xstart:self.xend]] 

 

 

 

# hed network 
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global net_hed  

cv2.dnn_registerLayer('Crop', CropLayer) 

prototxt_path = 'deploy.prototxt' 

caffemodel_path = 'hed_pretrained_bsds.caffemodel' 

net_hed = cv2.dnn.readNet(cv2.samples.findFile(prototxt_path), 

cv2.samples.findFile(caffemodel_path)) 

 

 

 

 

class Dataset(torch.utils.data.Dataset): 

    def __init__(self, config, flist, edge_flist, mask_flist, augment=True, training=True): 

        super(Dataset, self).__init__() 

        self.augment = augment 

        self.training = training 

        self.data = self.load_flist(flist) 

        self.edge_data = self.load_flist(edge_flist) 

        self.mask_data = self.load_flist(mask_flist) 

        self.input_size = config.INPUT_SIZE 

        self.sigma = config.SIGMA 

        self.edge = config.EDGE 

        self.mask = config.MASK 

        self.nms = config.NMS 
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        # in test mode, there's a one-to-one relationship between mask and image 

        # masks are loaded non random 

        if config.MODE == 2: 

            self.mask = 6 

 

    def __len__(self): 

        return len(self.data) 

 

    def __getitem__(self, index): 

        try: 

            item = self.load_item(index) 

        except: 

            print('loading error: ' + self.data[index]) 

            item = self.load_item(0) 

 

        return item 

 

    def load_name(self, index): 

        name = self.data[index] 

        return os.path.basename(name) 

 

    def load_item(self, index): 

 

        size = self.input_size 
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        # load image 

        img = imread(self.data[index]) 

 

        # gray to rgb 

        if len(img.shape) < 3: 

            img = gray2rgb(img) 

 

        # resize/crop if needed 

        if size != 0: 

            img = self.resize(img, size, size) 

 

        # create grayscale image 

        img_gray = rgb2gray(img) 

 

        # load mask 

        mask = self.load_mask(img, index) 

 

        # load edge 

        edge = self.load_edge(img_gray, img, index, mask) 

 

        # augment data 

        if self.augment and np.random.binomial(1, 0.5) > 0: 

            img = img[:, ::-1, ...] 
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            img_gray = img_gray[:, ::-1, ...] 

            edge = edge[:, ::-1, ...] 

            mask = mask[:, ::-1, ...] 

 

        return self.to_tensor(img), self.to_tensor(img_gray), self.to_tensor(edge), 

self.to_tensor(mask) 

 

    def load_edge(self, img, img_ori, index, mask): 

        sigma = self.sigma 

 

        # in test mode images are masked (with masked regions), 

        # using 'mask' parameter prevents canny to detect edges for the masked regions 

        mask = None if self.training else (1 - mask / 255).astype(np.bool) 

 

        # canny 

        if self.edge == 1: 

            # no edge 

            if sigma == -1: 

                return np.zeros(img.shape).astype(np.float) 

 

            # random sigma 

            if sigma == 0: 

                sigma = random.randint(1, 4) 

            return canny(img, sigma=sigma, mask=mask).astype(np.float) 
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        # external 

        else: 

            imgh, imgw = img.shape[0:2] 

            if len(self.edge_data) != 0: 

                edge = imread(self.edge_data[index]) 

            else: 

                width = 256 

                height = 256 

                img_input = cv2.cvtColor(img_ori, cv2.COLOR_RGB2BGR) 

                frame = img_input.copy() 

 

                inp = cv2.dnn.blobFromImage(frame, scalefactor=1.0, size=(width, height), 

                                           mean=(104.00698793, 116.66876762, 122.67891434), 

                                           swapRB=False, crop=False) 

                net_hed.setInput(inp) 

 

                out = net_hed.forward() 

                out = out[0, 0] 

                out = cv2.resize(out, (frame.shape[1], frame.shape[0])) 

                edge = out.copy() 

            edge = self.resize(edge, imgh, imgw) 

 

            # non-max suppression 
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            if self.nms == 1: 

                edge = edge * canny(img, sigma=sigma, mask=mask) 

 

            return edge 

 

    def load_mask(self, img, index): 

        imgh, imgw = img.shape[0:2] 

        mask_type = self.mask 

 

        # external + random block 

        if mask_type == 4: 

            mask_type = 1 if np.random.binomial(1, 0.5) == 1 else 3 

 

        # external + random block + half 

        elif mask_type == 5: 

            mask_type = np.random.randint(1, 4) 

 

        # random block 

        if mask_type == 1: 

            return create_mask(imgw, imgh, imgw // 2, imgh // 2) 

 

        # half 

        if mask_type == 2: 

            # randomly choose right or left 
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            return create_mask(imgw, imgh, imgw // 2, imgh, 0 if random.random() < 0.5 else 

imgw // 2, 0) 

 

        # external 

        if mask_type == 3: 

            mask_index = random.randint(0, len(self.mask_data) - 1) 

            mask = imread(self.mask_data[mask_index]) 

            mask = self.resize(mask, imgh, imgw) 

            mask = (mask > 0).astype(np.uint8) * 255       # threshold due to interpolation 

            return mask 

 

        # test mode: load mask non random 

        if mask_type == 6: 

            mask = imread(self.mask_data[index]) 

            mask = self.resize(mask, imgh, imgw, centerCrop=False) 

            mask = rgb2gray(mask) 

            mask = (mask > 0).astype(np.uint8) * 255 

            return mask 

 

    def to_tensor(self, img): 

        img = Image.fromarray(img) 

        img_t = F.to_tensor(img).float() 

        return img_t 
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    def resize(self, img, height, width, centerCrop=True): 

        imgh, imgw = img.shape[0:2] 

 

        if centerCrop and imgh != imgw: 

            # center crop 

            side = np.minimum(imgh, imgw) 

            j = (imgh - side) // 2 

            i = (imgw - side) // 2 

            img = img[j:j + side, i:i + side, ...] 

 

        img = scipy.misc.imresize(img, [height, width]) 

 

        return img 

 

    def load_flist(self, flist): 

        if isinstance(flist, list): 

            return flist 

 

        # flist: image file path, image directory path, text file flist path 

        if isinstance(flist, str): 

            if os.path.isdir(flist): 

                flist = list(glob.glob(flist + '/*.jpg')) + list(glob.glob(flist + '/*.png')) 

                flist.sort() 

                return flist 
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            if os.path.isfile(flist): 

                try: 

                    return np.genfromtxt(flist, dtype=np.str, encoding='utf-8') 

                except: 

                    return [flist] 

 

        return [] 

 

    def create_iterator(self, batch_size): 

        while True: 

            sample_loader = DataLoader( 

                dataset=self, 

                batch_size=batch_size, 

                drop_last=True 

            ) 

 

            for item in sample_loader: 

                yield item 
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APPENDIX B 

OUTPUT SAMPLE
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OUTPUT SAMPLE (CANNY) 
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OUTPUT SAMPLE (HED) 
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