77\

CALIFORNIA STATE UNIVERSITY California State University, San Bernardino
SAN BERNARDINO
CSUSB ScholarWorks
Electronic Theses, Projects, and Dissertations Office of Graduate Studies
8-2022

DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING

Zheng Zheng

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

b Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Recommended Citation

Zheng, Zheng, "DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING" (2022). Electronic Theses,
Projects, and Dissertations. 1536.

https://scholarworks.lib.csusb.edu/etd/1536

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1536?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING

A Project
Presented to the
Faculty of
California State University,

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in

Computer Science

by
Zheng Zheng

August 2022

DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING

A Project
Presented to the
Faculty of
California State University,

San Bernardino

by

Zheng Zheng

August 2022

Approved by:

Haiyan Qiao, Committee Chair

Kerstin Voigt, Committee Member

Yan Zhang, Committee Member

© 2022 Zheng Zheng

ABSTRACT

In recent years, deep learning has grown rapidly, and it has been
creatively implemented for various applications. In 2019, deep learning based
EdgeConnect image inpainting algorithm came out and occupied a place in the
image inpainting field. Unlike traditional image inpainting methods which mainly
read and use the color information of the remaining part of the image to fill the
missing regions of the image, EdgeConnect uses the innovative edge-first and
color-next approach. It uses an edge detector to generate an edge map of an
image with missing regions, then the missing edges are completed by an edge
model, finally the completed edge map is recolored by an inpaint model. The
result of this algorithm has a significant improvement in the smoothness of the
image, compared with conventional image inpainting methods.

In this project, EdgeConnect is improved to become a completely deep
learning-based image inpainting method.

This project first implements the EdgeConnect approach. In the
implementation, the project selects the optimal training parameters for the three
model training phases included EdgeConnect: edge model, inpainting model and
joint model, based on the original research paper and the discussions online.
Then the EdgeConnect approach is improved by replacing the traditional Canny
edge-detection with the deep learning algorithm, Holistically-Nested Edge
Detection (HED). With the integration of HED, the accuracy of image inpainting is

improved. To compare the performance, the original EdgeConnect and the

modified EdgeConnect are both trained on the same set of data and the results
are scored using the image inpainting quality assessment metrics such as PSNR,
SSIM, MAE and FID.

The results show that the modified EdgeConnect approach with the
integration of HED not only improves the learning performance of edge detection,
but also improves the overall quality of the final image inpainting.

The improved EdgeConnect approach proposed and implemented in this

project has higher learning efficiency and better image inpainting performance.

ACKNOWLEDGEMENTS

| would like to thank my advisor, Professor Haiyan Qiao, for her guidance
of this project and also for her help and advice with my graduate studies. | feel
very privileged to have had the opportunity to work on a project in an area of
great personal interest under Professor Qiao’s supervision.

| am grateful to the committee members Professors Yan Zhang and
Kerstin Voigt for their help on my preparation for the MS oral exam and MS
project proposal. The class | took with Professor Zhang sparked my interest in
deep learning.

| sincerely thank Professors Voigt and Zhang for their suggestions and
support in this project.

Finally, I would like to thank my dear family for their love and trust in me
over the years. Special thanks go to my friends who had discussions with me on

this project.

TABLE OF CONTENTS

AB ST RA CT e i
ACKNOWLEDGEMENTS ...t e %
LIST OF TABLES ... et viii
LIST OF FIGURESo IX
LIST OF EQUATIONS ... Xi

CHAPTER ONE: INTRODUCTION

BaACKGIOUNG ...t 1

(@ o =Tox 1)Y= USSR 2
CHAPTER TWO: EDGECONNECQCT ...t 5
RUNtIME ENVIFONMENT ... 5
PrOGIaM ..o 6

EdQE GENEIALONc.eeieeee et 6

Image Completion NEtWOIK ..o 8

MOAEl trAININGocvviivicce e 10

Edge Model TraiNing........ccoeceeieiieiicc e 10

INnpaint Model TraiNiNg ..o 11

Edge-Inpaint Trainingcccooveiiieeieseeese e 11

MOAEl TESTING ..ottt sae e e 12
EVAIUBLION ..o s 13
SUMIMETY <.ttt bttt b e sb et b e enbeene s 13
CHAPTER THREE: EXPERIMENT ... 15
Preparation WOTK ... s 15

Vi

PrEPIOCESSING ...ttt 15

Dataset... ... 16

HED e 17
SEHUCTUIE ..o s 17

LOSS FUNCLION. ..ottt 18

(@] 4 g1 =T 150 o USRS 19

Edge Model TraiNing........ccoeceiieiieiecc e 19

Inpaint Model TraiNiNgcccooiiiiiieee e 26

Edge-Inpaint TraiNingcccccveieiieiicccec e 32

EVAIUBLION ...t 38
CHAPTER FOUR: CONCLUSION AND FUTURE WORKc.ccoiiiiiiiiiieeeeiin, 44
Improved EAGECONNECLccveie e 44
FULUIE WOTK ...t 44
APPENDIX Az CODE....coiii et eeeenans 46
APPENDIX B: OUTPUT SAMPLE ... e 121
Output SAMPIE (CANNY)...ooiiiiiiiiie s 121
Output SAMPIE (HED).......coiiiiiiiieeeeee s 126
REFERENGCESot e e 130

Vil

Table 1. Package List

LIST OF TABLES

Table 2. The Metrics Score of Canny Edge Detection and HED (cat) 40

Table 3. The Metrics Score of Canny Edge Detection and HED (Places2) 41

viii

LIST OF FIGURES

Figure 1. EAgeconnect SamPIES.........oouuuuiiiiiiiiiiieiiiiie et 2
Figure 2. Edgeconnect Network StruCture.ouuveeiiiieieiiieeeeice e 6
Figure 3. HED NetWOrk StrUCTUIE.uuiiiei it 17
Figure 4. Edge Model Training Sample (Canny, Cat).........cccevvvviineeeeeeeeeeeiinnnnnn. 20
Figure 5. Edge Model Training Sample (HED, Cat)...........ccevvvvvviiinieeeeieeeeiiiiinnnn. 21

Figure 6. Precision of Canny and HED During the Edge Model Training (Cat) .. 22

Figure 7. Recall of Canny and HED During the Edge Model Training (Cat) 23
Figure 8. Edge Model Training Sample (Canny, Placese?2).........cccccccccvvvvvvennnnnn. 24
Figure 9. Edge Model Training Sample (HED, Placese2).........cccccccccvvvvrirnennnnnn. 25

Figure 10. Precision of Canny and HED During the Edge Model Training
(PIACES2) ..ttt 26

Figure 11. Recall of Canny and HED During the Edge Model Training (Places2)

... 26
Figure 12. Inpaint Model Training Sample (Canny, Cat)........ccccccvvvviiiiiiiiieennnnn. 27
Figure 13. Inpaint Model Training Sample (HED, Cat)ccccccvvvvviiiiiiiiiiiennnnn. 28
Figure 14. Inpaint Model Training Sample (Canny, Places2)cccccccccvvvvennnnnn. 29
Figure 15. Inpaint Model Training Sample (HED, Places2)cccccccccvvvvevennnnnn. 30

Figure 16. PSNR of Canny and HED During the Inpaint Model Training (Places2)

Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

(Places?2)

Figure 23.

(Places?2)

Figure 24.
Figure 25.
Figure 26:
Figure 27:

Figure 28:

Edge-Inpaint Training Sample (Canny, Cat)..........ccccevvvviiiinieeieeennns 33
Edge-Inpaint Training Sample (HED, Cat)..........ccceevvvviviiiiiiiieeeieeeeans 35
Edge-Inpaint Training Sample (Canny, Places2)...........ccccccceeeevveennns 36
Edge-Inpaint Training Sample (HED, Places2)cccccccceeiiiiiiiinnnnns 37
PSNR of Canny and HED During the Edge Inpaint Model Training
.. 38
MAE of Canny and HED During the Edge Inpaint Model Training
.. 38
Evaluation of Edgeconnect (Canny, Cat)...........ccccccuviimiiiiiiiiiiiiniinnnns 39
Evaluation of Edgeconnect (HED, Cat)ccccccuvmiiiiiimiiiiiiiiiiiiinnns 39
Evaluation of Edgeconnect (Places2) 1.........ccccccouvmvuiimmminniniiiiiiiiinnns 40
Evaluation of Edgeconnect (Places2) 2...........ccccuvvevimiiiiiiiniiiiiiiiiinnns 40
Evaluation of Edgeconnect (Places2) 3..........cccccuuvmmiiiiiiiiiiiiiiiiiiinnnns 41

LIST OF EQUATIONS

EQUALION L. . 8
EQUALION 2. ... 8
EQUALION 3. ... 8
EQUALION 4. ... 9
EQUALION 5. ... 9
EQUALION B. ... 9
EQUALION 7. e 9
EQUALION 8. ... 10
EQUALION 9. ... 18
EQUALION 10, .. 18
EQUALION L1, . 18
EQUALION 12, .. 42
EQUALION 13, ... 42
EQUALION 14, .. 42
EQUALION 15, ... 43

Xi

CHAPTER ONE

INTRODUCTION

Background

The most fundamental function of image inpainting is to fill the missing
regions of the image.

The conventional image inpainting algorithm mainly reads the color
information of the unmasked parts of the image and then calculates similar
information to fill the missing regions. Although this conventional image inpainting
method can successfully recolored the missing regions, it usually cannot
reconstruct a reasonable image structure, oftentimes the results are too smooth
or blurred, and the whole recolored image may deviate far from original image
structure so that people may not understand what it was.

EdgeConnect is a new image inpainting method that can better fill the
missing regions. The algorithm follows the innovative edge-first and color-next
approach. It includes edge generator and image completion network. The edge
generator to generate a complete edge map from the image with missing
regions, and the image completion network is used to fill the missing regions of
image by coloring the edge map.

EdgeConnect attempts to restore the entire image structure based on
remaining structure information of the image, and to then restore the entire image

based on the restored structure map and the remaining color information of the

image. Thus, EdgeConnect method reduces the appearance of unreasonable

parts of the restored image [1].

&
R At
v \
714
>::_:,»~;~

Figure 1 [1]. EdgeConnect Samples

Figure 1 above shows the image inpainting process. The input images on
the left images in each row are the masked images where white regions are the
missing regions. Each image in the middle column is edge map generated by
edge detection and restored by deep learning. The images on the right column in

each row are the restored images after filling missing regions by deep learning.

Objectives
The obijective of this project is to study deep-learning based EdgeConnect

approach and make further improvement of this approach.

The model training of EdgeConnect consists of three parts. The first part is
to convert the image into an edge map through edge detection, which is also a
part of preprocessing. In the second part, the edge model is trained by the edge
map. The third part is to train the inpainting model through the edge map and the
ground truth with missing regions (original masked image) and mask.

In the first part of EdgeConnect, the Canny edge detection is used for
edge map conversion [1]. In this project, with the intention to improve the
accuracy of the whole image inpainting algorithm, the first part is replaced and
implemented with deep learning-based edge detection, Holistically-Nested Edge
Detection (HED) [2].

Holistically-nested edge detection (HED) is an end-to-end edge detection
algorithm that uses “holistically” in name to indicate that the result of edge
prediction is based on an image-to-image, end-to-end process; while “nested”
emphasizes the process of generating results is the process of training. The
algorithm uses a multi-scale approach for feature learning, and the final output of
the HED method is far superior to the Canny algorithm [2].

To verify the improvement of deep learning edge detection on image
inpainting, comparison experiments are conducted. While ensuring that the
experimental conditions are the same, the models are trained separately from
scratch to restore a set of images with one model implemented using with for

edge detection and another model trained using HED for edge detection. At the

3

end, the image painting results are scored with image inpainting quality metrics
to determine whether the modified image inpainting algorithm has been

improved.

CHAPTER TWO

EDGECONNECT

Runtime Environment

To reproduce EdgeConnect, the same runtime environment is needed to
be set up.

Computer software technology is advancing rapidly, and the latest
versions of some software are not compatible for the EdgeConnect project which
is only three years old.

In terms of software operating environment, python 3.7 is the most

suitable version for the project, The following packages are also used:

Table 1. Package List

site-packges Version
matplotlib 2.2.5
numpy 1.21.5
opencv-python 3.4.17.63
Pillow 6.2.1
PyYAML 54.1
scikit-image 0.14.5
scipy 1.2.3
pytorch 1.0.0
torchvision 0.2.1.

The CUDA 10.2 is adapt to version 1.0 of the pytorch, because the latest
CUDA 11 may not allow the torch to recognize the GPU, the same version of
pytorch can be adapted to multiple versions of CUDA, so please select the wheel

file of pytorch corresponding to the CUDA version to download and install.

5

HxW Hxw HxW

G

H/4 x W/4

Gz

H/Z x W/i2 H/2 x W/2

/] H/4 x Wi4
‘ > DD;
4 :

Edge Map Input

D

FD [][] Real/Fake (Loat) H:’ [][] Real/Fake
' (Lop)

 Feature Matching (L)

Figure 2[1]. EdgeConnect Network Structure.

H/2 x W/2

Dilated Conv + Residual Blocks

Grayscale

Program

EdgeConnect proposed an image inpainting network, which consists of
two stages, as shown in Figure 2. G, is edge generator and G, is image
inpainting network.

Two networks are used in both stages as follows:

The generator uses a network architecture which is commonly used for
image-to-image translation tasks such as style transfer, super-resolution, etc. [3].
The discriminator uses a 70x70 PatchGAN, which means the discriminant image
is divided into 70x70 for discrimination, and the results are averaged [4]. The
entire network uses instance normalization, the normalization process simplifies
generation by allowing instance-specific contrast information to be removed from

content images in tasks such as image stylization [5].

Edge Generator

As can be seen from the left side of Figure 2, in edge generation, mask
(M), edge with missing regions (C,.) and grayscale with missing regions (I,q,)

are used as inputs, predicted edge map (C,,.q) Will be generated by edge

generator, the edge generator G, is trained using the standard adversarial loss
and the feature matching loss.

I, is the ground truth, I, represents the grayscale of the ground truth.

Cy¢ is the edge map of the real image.

M is the mask.

© is hadamard product, for two matrices A and B of the same dimension
m x n, the Hadamard product A © B is a matrix of the same dimension as the
operands, with elements given by (A O B);; = (4);;(B);; [6].

Deleting the mark regions in ground truth and edge map to generate
image with missing regions (igmy) and edge map with missing regions (Cgt) and

mark it with a wavy line on the letter:

Igray = Igray Oa-m

Cot = Cgt O@a-Mm

C

prea 1S the prediction result of the Edge Generator.

Iy =1;; © (1 — M), I is ground truth with missing regions.

I

prea 1S the result of image inpainting.

Predicted edge map generated by generator (G;) Edge Generator can be
expressed as:

Cpred = Gl(igray» C~gt» M)

The following loss function is constructed to train this adversarial network

to obtain the edge generator [1]:

Ladv,l = E(Cgt.lgmy) log[Dl(Cgt; Igray)] + Elgmy log[l - Dl (Cpred; Igrey)]

Equation 1.
Laav 1 1S adversarial loss.

L
1 -

Lem = E 2ﬁ ||D1(l)(Cgt) = D1 (Cprea) Ilx
l

i=1

Equation 2.

Ly is feature map loss, the input image is discriminated using a pre-
trained VGG network, similar to PatchGAN, but since VGG is not trained to
extract the contour edges of an image, we cannot use the VGG results directly
[4]. We use L to represent the last convolutional layer of the discriminator. N; is
the activation in the i'th layer of the discriminator.

The edge maps are discriminated using an edge discriminator that

combines the adversarial loss with the feature matching loss [1]:

minmax min max
G, D Lg, = G, (Aadv,l D, (Ladv,1) + AFMLFM)

Equation 3.

Aadv,l =1,Apm =10

Image Completion Network

As the right side of Figure 2, in image completion network, ground truth
with missing regions (igt) and composite edge map (C.omp) are used as inputs,
predicted result RGB image (I,,,..4) Will be generated by inpainting generator, the

inpainting generator G, is trained using the standard adversarial loss and the

feature matching loss.

Predicted result RGB image (I,,..4) is generated by inpainting generator (

G,) image completion generator can be expressed as [1]:

Ipred = Gz(igt: Ccomp)

Equation 4.

where Coomp = Cjt © (1- M) + Cpreq © M, which is the combination of

the edge of the edge map with missing regions (C‘gt ® (1 — M))andthe
edge predicted (Cpreq O M) by G;.
The following loss function is constructed to train this adversarial network

to obtain the Edge Generator [1].

Ladv,z = E(Igt.Ccomp) log[DZ (Igt: Ccomp)] + ECcomp IOg[l - D, (Ipred' Ccomp)]
Equation 5.

Laav,2 1S adversarial loss.

Lprec =E [Zl Nil||¢1(l) (Igt) - ¢§i) (Ipred)lll]
Equation 6.

L,rec is perceptual loss, the input images are discriminated using the pre-
trained VGG-19 network.
Lseyie = Ej ||Gj¢(1p7"€d) - Gj¢(lgt)||1]
Equation 7.

Lgtyie 1S Style loss. The Gj¢in Equation 7. is a Gram Matrix of C; x C;

constructed on the activation function eigenmap ¢; [7].

The edge maps are discriminated using a map discriminator combining
absolute value parametrization (L1 distance [,), adversarial loss, perceptual loss,
and style loss [1].

Lg, = ALy, + Aaav2Laavz + ApLperc + AsLstyie

Equation 8.

All = 1,Aadv’2 = Ap = O-lrlstyle = 250

Model training
A total of two programs are prepared for the experiment, one is the
original EdgeConnect, and the other is Improved EdgeConnect, kept the same as

that of original EdgeConnect except for the different edge detection used.

Edge model training

The edge model is working for edge generator (G,) to generate predicted
edge map.

To train the edge model, it requires reading the edge map with missing
regions, greyscale image and mask as input for training, since edge map with
missing regions can be generated by canny edge detection or HED in improved
EdgeConnect, so the ground truth and the mask are inputted the program. The
program will combine the ground truth and mask into a masked image (image
with missing regions) like the left image in Figure 1 to generate an edge map with
missing regions by edge detection. The original image validation set to output

samples for validation, in order to show the model training results, every 1000
10

iterations, it will use some images selected from the image validation set and
mask validation set as input into the model to generate predicted edge map
samples.

The pixels of the image must can be divisible by 4, otherwise it is possible
to make the program stop by accident because the pixels before and after the
image convolution are different. For example, 402/4 = 100.5 = 100, but 100 * 4 =

400, which means 100 doesn’t equal to 100.5.

Inpaint model training

The inpainting model is working for image completion network to generate
predicted RGB image. The model will fill in the color of the missing regions of
edge map which generated by edge detection.

To train the inpainting model, it is necessary to input masked image
(image with missing regions), edge map generated by Canny edge detector or
HED and mask, though the edge map of ground truth will be generated from in
program.

The model completes the image inpainting by coloring the edge map and

then filling the missing regions of the masked image.

Edge-inpaint training

After edge and inpaint models are trained, there is a third training, it
replaces the edge map in the inpainting model training with the predicted edge

map from the output of the edge model to improve the inpainting model. So

11

masked images, predicted edge map and mask are inputted and G, generates
predicted RGB image.

The network structure of EdgeConnect inpainting approach is given in
Figure 2. The first generator G1 takes the mask, masked edge image and the
masked grayscale image as input and gives a predicted edge map. The second
generator G2 takes the predicted edge map and the masked RGB image as input

and outputs a predicted RGB image [8].

Model testing

The purpose of model testing is to verify the ability of the models’ image
inpainting through the actual output. In addition to observing the results to check
the model training effect, the results are also quantitatively measured using the
image inpainting metrics as evaluation.

In this section, the images in the test set need to be pre-masked outside
the program, and only the masked images set, and the mask set need to be
inputted, and they need to be aligned one to one in their respective folders (same
sorting order).

The program will read the masked image and mask, then generate a
predicted edge map by the edge generator G,, and then color the edge map
through the edge completion network G, finally inpaint the missing regions of
masked image by colored edge map. The mask is used to determine what

regions of masked image need to be restored.

12

For now, the images with missing regions in test set are all restored as the
result of model testing, the results will be needed in evaluation later.
Finally, the test part is also actually the process of inpainting the image

after the models is all trained.

Evaluation
The output set of the model testing and the corresponding ground truth set
are used as the input for the evaluation. The two sets of images need to be in
one-to-one correspondence and have the same file name, otherwise the program
will not detect them. The two sets of data will be compared in terms of Peak
Signal-to-Noise Ratio (PSNR), Structural similarity (SSIM), Mean Absolute Error
(MAE) and Fréchet inception distance (FID). Through these metrics, we can see

the gap by scores between the restored image and the ground truth.

Summary
During the entire EdgeConnect process, the training part is the most
important part of the whole project. Although the edge detection only exists as
the first step, the edge map generated by the edge detection is used in almost
every step of the model training. Therefore, the accuracy of the edge map
determines the effect of the edge model and the inpaint model. It is no
exaggeration to say that the quality of the edge detector directly affects the

quality of image inpainting.

13

At the same time, the current use of EdgeConnect has some defects, such
as the model testing part, the software no longer provides automatic masking
function, but requires users to manually batch composite images with missing
regions outside the program. If users do not want to use Canny edge detector,
then they need to use an additional three folders to store the edge map and edge
map with missing regions which are needed to be manually preprocessed with
other edge detection outside the EdgeConnect.

In the program test, in most cases, even if some images’ pixels are not a
multiple of 4, the program can run normally, but the program always stops

running because of one of the images.

14

CHAPTER THREE
EXPERIMENT
Before experiment, there are some preparations need to be done to make

the experiment go smoothly.

Preparation work

Preprocessing

"makimg.py" is wrote and added to the project to generate mask images in
batches for the test set, which solved the problem of requiring manual masking in
the test part but could not find the script.

"batch_rezise.py" is wrote and added to the project, so that when the
number of files in training set, test set and validation set is too large and the
pixels of one image causing program stop cannot be found, the images and the
masks can be batch preprocessed to 256*256 or any unified specification like
500*500 to avoid program errors.

In order to avoid the need of pre-generating the edge map of HED outside
the EdgeConnect, the project provides two solutions, one is to rewrite and add
the "hed_processing.py" file to project to generate the edge map in batches
outside the EdgeConnect to use with the original EdgeConnect, the second is

integrating the HED into EdgeConnect allows the use of the HED in programs.

15

Dataset

The project has prepared two datasets, the first dataset is one of
EdgeConnect used in their paper called Places2 from Massachusetts Institute of
Technology, it includes over 400 unique scene categories. such as abbey,
badlands, campus, etc. [9].

The other database is downloaded from the web, it includes different
breeds of cats in different environments [10][11].

In addition, a mask dataset called Quick Draw Irregular Mask Dataset by
Karim Iskakov which is combination of 50 million strokes drawn by human hand.
The function of the mask dataset is to cover parts of the image in the original
image dataset, thereby forming a lost area on the original image [12].

In each dataset, 48,000 images are selected as the training set, limited by
the memory capacity of the graphics card, the batch size is different in different
parts of training, and 48000 is just a multiple of 3 batch sizes to ensure that the
samples are fully trained. 4,000 as the test set, and 4,000 as the validation set.
The training set is used to train the model to improve accuracy, and the validation
machine is used to generate image inpainting samples during the training
process to view the training effect of the current model and restore the images of
the test set through the trained model.

The script "maskimg.py" is used in advance to combine the ground truth
and mask into a masked image, which is convenient for the model testing later,

ground truth of test set also needed in the evaluation part.

16

HED

In Improved EdgeConnect, HED has been integrated for edge detection.

Structure

Input imageX

Side-output 2

Side-output 3 {’S()i
S

1

Receptive Field Size Bl <9
Side-output 4 @
s JLRLLLLLLL: Weighted-fusion layer Error Propagation Path (/f ""
_____ i .) Y|l Uground truth

* 1 Side-output layer Error Propagation Path

Figure 3 [10]. HED Network Structure.

The HED model consists of five layers of feature extraction architecture, in
each layer: layer feature maps are extracted using VGG blocks, layer outputs are
computed using layer feature maps, and layer outputs are up-sampled. Finally,
the final output of the model is fused with the output of the five layers: the
channel dimension is stitched with the output of the five layers 1x1 convolution to

fuse the layer outputs [10].

17

Loss function

Overall, this loss function has two parts: side-output is the prediction result
of five different scales in Figure 3, by up-sampling into the original Figure size,
and then doing cross-entropy with mask. Because there are five diagrams, the
loss is the sum of five. Five graphs fusion out of Y, fusion is the Y and the ground
truth of the cross-entropy.

M is number of Side output layers, W is the collection of all standard
network layer parameters, w is the corresponding weights, Index j is over the
image spatial dimensions of image X, h is the fusion weight, Y is edge map
prediction, Dist(-,) is the distance between the fused predictions and the ground
truth label map, which set as cross-entropy loss.

There is side out loss function and weight-fusion loss function,

M
Lsige(W, W) = Z At (W, wm)
m=1
Equation 9.
Leuse(W,w, h) = Dist(Y, ¥ryq)
Equation 10.

the objective function when training the model is to minimize the sum of

the side branch Lg;4.(W,w) and fuse loss L. (W, w, h) [10]:

(W, w, h)" = argmin (Lyige (W, W) + Lyyse (W, w, h))

Equation 11.

18

Comparison

The purpose of this experiments is to carry out the effect of two different
edge detectors on image inpainting, so in the experiments, the experiments
abandoned the use of the EdgeConnect author's model that has gone through
2,000,000 iterations, and instead trained it myself from O iteration. Since the
target number of iterations of my model is significantly less than the model of the
original author, the effect of the model has a significant worse compared to the
original author. Except for the difference in edge detectors, the two sets of
models were trained under the same learning rate, number of batches, learning

rate, and iterations, etc.

Edge model training

So, for the edge model training, Setting the learning rate at 0.0001 and set
the size of batches to 16, while setting the style loss weight at 250 to ensure the
best training effect. To ensure that both models have the same training
environment, the edge training for both groups will stop at 20 epochs.

Because the edge model training is directly based on the original edge
maps generated by the edge detection and predicted edge map generated by G,
affect the third part of model training, the edge maps have a direct impact on the

deep learning.

19

3 ;»;{‘-

F|re 4 Edge Model Training §ap| (anny, Cat

20

s
L 2

B

—_——

¥
= vl
=

| w

~

- Flgue Eée Model Training Safnple (ED, Cat)
In Figure 4, the first images in column are the ground truth (original

image). The second images in the column are the masked image (also input).

The third images in column are the edge map from ground truth by Canny edge
21

generator. The fourth images in column are the actual output of the network.

Finally, the fifth images in column are the combination of the third and fourth

images in column, the known area is from the third images in column and the
masked area is from the fourth images in column.

In Figure 5, the third images in column are the edge map from ground
truth by Canny edge generator and the others are same to Figure 4.

The process generates the predicted edge map by the edge model, then
use it to fill the missing regions of masked images’ edge map and check the
precision and recall after comparing the predicted edge map and original edge
map. Every 1000 iterations, the program will test the model by validation set, to
show the learning result of the model at that time.

As epochs increase, the edge predicted by the edge model will become

more and more accurate.

Edge Model Training

06

o Canny ss—HED

Figure 6. Precision of Canny and HED During the Edge Model Training (Cat)

22

Edge Model Training:recall rate

0.45
0.4
035
03
0.25
0.2
0.15
0.1
0.05

— CANNY —HED

Figure 7. Recall of Canny and HED During the Edge Model Training (Cat)

Precision means the percent of correctly predicted edge lines in all
predicted edge lines. Recall means the percent of correctly predicted edge lines
in all edge lines needed to be predicted.

After the edge model training, the difference between Canny edge
detection and HED can be seen from the accuracy and recall of feedback during
training. With the same learning rate, the edge restoration level of the edge
model learned through the edge map generated by HED higher than Canny's.

The same effect can also be seen from the edge training of the

comparative experiment based on another set of Places2 datasets.

23

NI
=

{ e

Figure 8. Edge Model Training Sample(Canny, Placese?2)

24

i W&%y -‘ i *Wﬂg A ‘""W.Nn'
i T \

Figure 9. Edge Model Training Sample (HED, Placese?2)

25

Precision

=——C_Precision =——H

Figure 10. Precision Of Canny and HED During the Edge Model Training (Places?2)

Recall

—_Rocall —r_Recall

Figure 11. Recall Of Canny and HED During the Edge Model Training (Places?2)

Inpaint model training

In the next training of the inpainting model, because the size of the input
becomes larger, the GPU memory must be increased to maintain the previous
batch size setting or reduce the size of the batch.

Therefore, in this section, other settings remain the same, but the batch
size is changed to 8. In the inpaint training, the model still needs the edge map
as input and then combines the colors of the ground truth with missing regions
and predicted RGB image.

In this training, the output (predicted RGB image) generated by the inpaint
model will be closer and closer to the ground truth, so the inpainting effect will be

better and better.

26

Figure 12. Inpaint Model Training Sample (Canny, Cat)

27

\'
<.
\mf

\"*‘

2
8

Figure 14. Inpaint Model Training ample (Canny, Places?2)

29

a

7.; “ 2 “,"’ : ."‘4
EW- £ - R

—

1 ro .\

& 2

Figure 15. Inpaint Model Training Sample (HED, Places?2)

30

PSNR

Figure 16. PSNR Of Canny and HED During the Inpaint Model Training (Places?2)

Figure 17. MAE Of Canny and HED During the Inpaint Model Training (Places?2)

On each row in Figure 12, starting from the left, first image is the ground
truth (original image), second image is the masked image (also input). The third
is the edge map from original image by Canny edge detection. The fourth image
is the actual output of the network. Finally, the last image is the combination of
the second and fourth image: the known area is from the second image and the
masked area is from the fourth image.

In Figure 13, the third image on column is the edge map from ground truth
by HED.

PSNR is peak signal-to-noise ratio, it is the basis for judging image noise.
The smaller the PSNR value, the more noise the image has, which means the
more blurred the image is, the worse the level of image restoration is.

MAE means Mean Absolute Error, it is used to reflect the error value

between the predicted image and the original image. The smaller the value, the

better restoration.

31

Although their difference is not large, it can be seen that HED's inpaint
model is still superior to Canny's. Because in the Figure 16 PSNR chart, the most
of blue value is under orange’s and also in Figure 17 MAE, the blue is always at
orange’s upside.

For consistency, both groups of model training were stopped after

completing 15 epochs.

Edge-inpaint training

The final edge-inpaint training only backpropagates for inpaint model but
use the output of edge model as edge input, this is for G, to adapt to the
predicted edge map of G; as input. Because the training requires the input of
both models, the memory requirement is increased again. Currently, the size of
batch processing is decreased to 6, and change the learning rate to 0.00001 to
help the model converge. This training ends after 10 epochs.

In other words, this third training just replaces the correct edge map with
the edge map predicted by the edge model to train the inpainting ability of the
inpaint model, which can well adjust the inpaint model to adapt to the edge
model, this also explains importance of edge detection for overall image

inpainting.

32

Hi\";\iﬂ '

l \

‘ F|gure 18 Edge Inpaint Trammg Sample (Canny, Cat)

In Figure 18, the first images in column are the ground truth (original
image). The second images in column are the masked image (also input). The

third images in column are the predicted edge from the edge model (Canny). The
33

fourth images in column are the actual output of the network. Finally, the fifth
images in column are the combination of the second and fourth images in
column, the known area is from the second images in column and the masked

area are from the fourth images in column.

34

4 Figure 19 Edge Inpaint Tralnlng Sample (HED Cat)

In Figure 19, the third image in column is the predicted edge from the

edge model (HED).

35

Figure 20. Edge-Inpaint Training Sample (Canny, PIaceISZM).

36

Figure 21. Edge-Inpaint Training Sample (HED, Places?2)

37

=——C_PSNR =——H_PSNR

Figure 22. PSNR Of Canny and HED During the Edge Inpaint Model Training (Places?2)

MAE
06
05
04
03
02

01

—C_MAE = H_MAE

Figure 23. MAE Of Canny and HED During the Edge Inpaint Model Training (Places?2)

The trend of edge-inpaint mode is similar to inpaint mode, most HED

scores are better than Canny's.

Evaluation
After training the model, put the test set with masked image into "test.py"
for image inpainting, and then put the results and the ground truth into
"metrics.py" and "fid-score.py" for scoring, finally obtain the average value of the
inpainting degree of test set images for the models trained based on two sets of

different edge detections:

38

s
ase?

image; proce;;ed : 19.334
1 238

MA
images processed MA
images processed MA
images processed MA
images processed MA
images pl-ncessed MA
images processed MA
images processed MA
images processed MA
images processed MA
images processed 19.5587 MA
images processed 19.5858 MA
images processed 19.6185% MA
images processed 19.6372 MA
images processed MA
images processed MA
images processed MA
images pl-ncessed MA
images processed MA
images processed MA
images processed MA
images processed MA
images processed MA
image., processed MA
images processed 20.84%8 Mi

384

A
A.768@ SSIM Variance 66 MAE: B.@5%36 MAE Uariance: @ 4
S D \edge COnNnNect > pythnn «/scripts/fid_score.py [./training/cat_test_originals. ./checkpoints/cat/results]
raceback (most recent call last)>:
File "./scripts-fid score.py”. line 238, in <module>
args.dims)
File "./scripts/fid_score.py". line 21 in calculate fid given_paths
1-a1.,e RuntimeError<’ Invalid path s’ P>
: Invalid path: [./training/cat_test _originals
[PS D:“edge—connect?> python ./scripts/fid_score.py .“training/cat_test_originals,. ./checkpoints~cat/results a
[Downloading: “https:~/ download.pytorch.org/models/inception w3 _google—-la%abald.pth" to C:\Users 18249/ .torchsmodels“inception_v3_google—1a|

alculate pathl statistics
-#scripts/fid_score.py:195 eprecationWarning: “imread” is deprecated?
1m-ead is depxecated in SciPy 1.8.8. and will he removed in 1.2.8.
Use *‘imageio.imread’ " dinstead.
imgs = np.array(limread{str{fnd>d.astypelnp.floatd2? for fn in files1d
./scripts/fid_score.py:86: UserWarning: volatile was removed and now has no effect. Use “with torch.no_grad<>:" instead.
batch = Uariable<hatch. volatile=True)>
NUsers\18249\ApplatasLocal~Prograns\Python\Python3?\1lib\site—packages:torchsnnsfunctional.py:2351: UserWarning: nn.functional.upsample i
warnings.warn{''nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.'>
NUserss18249\ApplatasLocalsPrograns\Python\Python3?\lib\site—packagesstorchsnnsfunctional.py:2423: UserWarning: Default upsampling hehav
rue if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format{(mode>>
alculate path2 statistics
alculate frechet distance
[FID: 47.9557

Figure 24. Evaluation of Edgeconnect (Canny, Cat)

images processed PSNR: 19.9715
images processed PSNR: 19.9432
images processed PSHR:
images processed PSNR
images processed
images processed
images cessed
images cessed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images cessed
images cessed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed
images processed

B images processed

i Uariance: B.0861 MAE: @.A594 MAE Uariance: B.00A4
./training/cat_test_original/. ./checkpoints/cat_HED/results

alculate path2 statistics
core.py:195: DeprecationMarning: “dimread” is deprecated'
“imread® is deprel:ated 1n SclP -8.0. and will be removed in
mageio.inread” " i
imgs = np. array([1m»ead(vt»(fn)). stypelnp.float32> for fn in files1>
./scripts/fid_score.py:86: UserWarning: volatile was removed and now has no effect. Use ‘with torch.no_grad<>:" instead.
batch = Uariable<batch, wvolatil rue
Nlsers\1B249\AppDatasLocal\Programs“\Pyt hon\Python37\1ib\s ite—packages\torchsnn\functional . py:2351: Userlarning: nn.functional.upsanmple is
warnings.warn{"nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.’
SUserssi1@82495AppDatasLocalsPrograms\Python\Python3?\1lib\zite—packages:torchsnn~functional . py:2423: UserWarning: Default upsampling bhehavid
e if the old behavior is desired. See the documentation of nn.Upsample for details.
'See the documentation of nn.Upsample for details.".format{mode
alculate frechet distance...
ID: 33_3415

Figure 25. Evaluation of Edgeconnect (HED, Cat)

39

Table 2. The Metrics Score of Canny Edge Detection and HED (Cat)

PSNR SSIM MAE FID
EdgeConnect | 20.0498 0.7600 0.0536 47.9557
(Canny)
EdgeConnect | 20.4113 0.7779 0.0594 33.3415
(HED)
Improvement |+ 1.8% +2.3% -10.8% +30.47%
The “+” sign represents the improvement in performance, and the “-” sign

represents the decline in performance. Red numbers are better performance
scores.

21

205

19.5

19

185

0.78
0.77
0.76
0.75
074
0.73
072
0.71

0.69
0.68
0.67

R —

PSNR

——

images
100
200
300
400
500
600

700

2 2 9 o
S © o &
® o S =

-

1200
1300

1400

1500
1600
1700
1800
1900

e (_PSNR e H_PSNR

2000
2100

Figure 26: Evaluation of EdgeConnect (Places2) 1

SSIM

2200
2300

2400

2500
2600
2700
2800

2900
3000
3100
3200

3300
3400
3500
3600
3700
3800

3900

W

/\

images
100
200
300
400
500
600

700

800
900
1000
1100

1200
1300
1400

1500

1600
1700
1800
1900

—C SSIM et _SSIM

2000
2100
2200
2300

2400

Figure 27: Evaluation of EdgeConnect (Places2) 2

40

2500
2600
2700
2800

2900
3000
3100
3200

3300
3400
3500
3600
3700
3800

3900

MAE

0.062

0.06
0.058
0.056

0.054
0.052

0.05
0.048
0.046

images
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900

o C_MAE H_MAE

Figure 28: Evaluation of EdgeConnect (Places2) 3

Table 3. The Metrics Score of Canny Edge Detection and HED (Places?2)

PSNR SSIM MAE FID
EdgeConnect | 19.8260 0.7239 0.0603 34.2741
(Canny)
EdgeConnect | 20.4005 0.7497 0.0565 27.0358
(HED)
Improvement | + 2.90% + 3.56% +6.3% +21.12%

The “+” sign represents the improvement in performance, and the “-” sign
represents the decline in performance. Red numbers are better performance
scores

The term peak signal-to-noise ratio (PSNR) is most used to measure the
quality of reconstruction of lossy compression codecs (e.g., for image
compression). The signal in this case is the original data, and the noise is the
error introduced by compression. Typical values for the PSNR in lossy image and
video compression are between 30 and 50 dB, provided the bit depth is 8 bits

[13] High PSNR means good image quality and less ERROR introduced to the

image [14].

41

PSNR = 10l (& - 1° = 201 (L_l)
= 200010 \ Tysg) T 270910 \RusE

Equation 12.

The structural similarity index measure (SSIM) measures image similarity
in terms of brightness, contrast, and structure, respectively. The value range of

SSIM is [0, 1], the larger the value, the smaller the image distortion [15].

(Z,ux,uy + cl)(Zaxy + cz)

SSIM (x,y) =
22 (2 + Wi+ c1)(02 + o +c,)

Equation 13.

Where ., is the average of x; u,, is the average of y; o5 is the variance of
X; oy is the variance of y; o,,, is the covariance of x and y.

c; = (kyL)?, ¢, = (k,L)? variables to stabilize the division with weak
denominator.

L is the dynamic range of the pixel-values (typically this is

2#bits per pixel _ 1)

k1 = 001 and k2=0.03 by default
The mean absolute error (MAE) is used to measure the mean absolute
error between the predicted value and the true value. The smaller the MAE, the

better the model [16]. It is defined as follows:

n
1
MAE = EZ ly; — 5.1, MAE€[0, +c0)
i=1

Equation 14.

42

The Fréchet Inception Distance score (FID) is a measure of calculating the
distance between the real image and the feature vector of the generated image,
the smaller the index value, the more similar the generated image is to the real
image, it can be computed from the mean and the covariance of the activations

when the synthesized and real images are fed into the Inception network as [17]:

1
FID = ||u — py |3 + tr (2 +2,-2 (ﬁzwx%)i)
Equation 15.

As can be seen from the Table 2, EdgeConnect (HED) is better than
EdgeConnect (Canny) in three of the four matrices, and the difference in MAE is
only 0.0058, which is not a big difference.

In Table 3, in PSNR, lager on is better, SSIM larger on better, MAE
smaller one better, FID, Smaller one better, so, the EdgeConnect with HED is
better than Canny's in all four metrics. Therefore, replacing Canny edge detection

with HED has a considerable improvement in image inpainting.

43

CHAPTER FOUR
CONCLUSION AND FUTURE WORK
Improved EdgeConnect

The original EdgeConnect uses Canny edge detection to generate edge
maps by default, but it can be seen from the above comparative experiments that
a better edge detection can significantly improve the image inpainting algorithm
and results. In the project, HED is integrated into EdgeConnect, which improves
the effect of edge model and inpainting model and thus makes the effect of
image inpainting better.

During the implementation, the HED batch program is added to project,
which is outside the EdgeConnect to generate edge maps in batches, and then
the training set, test set, and validation set folders for the third-party edge
detection reserved by the original author are used to train the edge and
inpainting models.

The improved EdgeConnect allows the choice of edge detection: either
Canny or HED edge detection.

Therefore, compared with the original EdgeConnect, little has changed in
the way the program is used, but the image inpainting quality has been greatly
improved. The implementation makes it easier for performance comparison. It
also allows integration with other edge detection methods in the future.

Future Work

The following regions can the considered for future work.

44

1)

2)

3)

4)

5)

6)

Increasing the training time and the number of training set allows the
model to be better trained to improve the accuracy of image inpainting.
Developing a better method to estimate the degree of convergence,
alternating Model 2 and Model 3 with regular training might improve the
effect of the inpaint model.

Using Canny and HED to train alternately in the improved EdgeConnect,
integrate the results to see if it can help get better result.

The occasional problem that the image resolution is not consistent before
and after convolution can be solved in program, for example, by numerical
conversion in program.

Since HED also uses deep learning, we can improve the accuracy of
image inpainting by improving the accuracy of edge detection.
Fragmentary functions outside the main program, such as adding masks
to images, benchmark, etc., can be integrated into the main program for

further automation.

45

APPENDIX A

CODE

46

MAIN.PY
import os
import cv2
import random
import numpy as np
import torch
import argparse
from shutil import copyfile
from src.config import Config

from src.edge_connect import EdgeConnect

def main(mode=None):

r*""starts the model

Args:

mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified

config = load_config(mode)

cuda visble devices

os.environ['CUDA_VISIBLE_DEVICES'] = ',"join(str(e) for e in config.GPU)

47

print(os.environ['CUDA_VISIBLE_DEVICES'])

init device

if torch.cuda.is_available():
config.DEVICE = torch.device("cuda")
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
print("using GPU")

else:
config.DEVICE = torch.device("cpu")

print("using CPU")

set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader)

cv2.setNumThreads(0)

initialize random seed
torch.manual_seed(config.SEED)
torch.cuda.manual_seed_all(config.SEED)
np.random.seed(config.SEED)

random.seed(config.SEED)

48

build the model and initialize
model = EdgeConnect(config)

model.load()

model training

if config.MODE == 1:
config.print()
print("\nstart training...\n")

model.train()

model test
elif config.MODE == 2:
print("\nstart testing..\n")

model.test()

eval mode
else:
print("\nstart eval..\n")

model.eval()

49

def load_config(mode=None):

r"""loads model config

Args:

mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified

parser = argparse.ArgumentParser()

parser.add_argument('--path’, '--checkpoints', type=str, default="./checkpoints’,
help="model checkpoints path (default: ./checkpoints)’)

parser.add_argument('--model’, type=int, choices=[1, 2, 3, 4], help="1: edge model, 2:

inpaint model, 3: edge-inpaint model, 4: joint model’)

test mode
if mode == 2:

parser.add_argument('--input’, type=str, help="path to the input images directory or an

input image')

parser.add_argument('--mask’, type=str, help="path to the masks directory or a mask
file")

parser.add_argument('--edge’, type=str, help="path to the edges directory or an edge
file")

parser.add_argument('--output’, type=str, help="path to the output directory’)

args = parser.parse_args()

50

config_path = os.path.join(args.path, 'config.yml’)

create checkpoints path if does't exist
if not os.path.exists(args.path):

os.makedirs(args.path)

copy config template if does't exist
if not os.path.exists(config_path):

copyfile('./config.yml.example', config_path)

load config file

config = Config(config_path)

train mode

if mode == 1:
config.MODE = 1
if args.model:

config. MODEL = args.model

test mode
elif mode == 2:
config.MODE = 2
config.MODEL = args.model if args.model is not None else 3

config.INPUT_SIZE = 0

51

if args.input is not None:

config.TEST_FLIST = args.input

if args.mask is not None:

config.TEST_MASK_FLIST = args.mask

if args.edge is not None:

config.TEST_EDGE_FLIST = args.edge

if args.output is not None:

config.RESULTS = args.output

eval mode
elif mode == 3:
config.MODE = 3

config.MODEL = args.model if args.model is not None else 3

return config

if _name__ =="_main_"

main()

52

53

EDGE_CONNECT.PY

import os

from pickle import GLOBAL

import numpy as np

import torch

from torch.utils.data import DatalLoader

from .dataset import Dataset, CropLayer

from .models import EdgeModel, InpaintingModel

from .utils import Progbar, create_dir, stitch_images, imsave
from .metrics import PSNR, EdgeAccuracy

import cv2

import time

class EdgeConnect():
def __init__(self, config):

self.config = config

if config.MODEL == 1:
model_name = 'edge’

elif config.MODEL == 2:
model_name = 'inpaint’

54

elif config.MODEL == 3:
model_name = 'edge_inpaint’
elif config.MODEL == 4:

model_name = ‘joint’

self.debug = False
self. nodel_name = model_name
self.edge_model = EdgeModel(config).to(config.DEVICE)

self.inpaint_model = InpaintingModel(config).to(config.DEVICE)

self.psnr = PSNR(255.0).to(config.DEVICE)

self.edgeacc = EdgeAccuracy(config.EDGE_THRESHOLD).to(config.DEVICE)

test mode
if self.config.MODE == 2:
self.test_dataset = Dataset(config, config. TEST_FLIST, config.TEST_EDGE_FLIST,
config.TEST_MASK_FLIST, augment=False, training=False)
else:
self.train_dataset = Dataset(config, config. TRAIN_FLIST, config.TRAIN_EDGE_FLIST,

config. TRAIN_MASK_FLIST, augment=True, training=True)

55

self.val_dataset = Dataset(config, config.VAL_FLIST, config.VAL_EDGE_FLIST,
config.VAL_MASK_FLIST, augment=False, training=True)

self.sample_iterator = self.val_dataset.create_iterator(config.SAMPLE_SIZE)

self.samples_path = os.path.join(config.PATH, 'samples’)

self.results_path = os.path.join(config.PATH, 'results')

if config.RESULTS is not None:

self.results_path = os.path.join(config.RESULTS)

if config.DEBUG is not None and config.DEBUG != O:

self.debug = True

self.log_file = os.path.join(config.PATH, 'log_' + model_name + ".dat’)

def load(self):
if self.config. MODEL == 1:

self.edge_model.load()

elif self.config.MODEL == 2:

self.inpaint_model.load()

else:

self.edge_model.load()

56

self.inpaint_model.load()

def save(self):
if self.config.MODEL == 1:

self.edge_model.save()

elif self.config.MODEL == 2 or self.config. MODEL == 3:

self.inpaint_model.save()

else:
self.edge_model.save()

self.inpaint_model.save()

def train(self):
train_loader = Dataloader(
dataset=self.train_dataset,
batch_size=self.config.BATCH_SIZE,
num_workers=4,
drop_last=True,

shuffle=True

epoch =0

keep_training = True

57

model = self.config.MODEL
max_iteration = int(float((self.config.MAX_ITERS)))

total = len(self.train_dataset)

if total == 0:

print('No training data was provided! Check \'TRAIN_FLIST\' value in the configuration file.")

return

while(keep_training):

epoch +=1

print("\n\nTraining epoch: %d" % epoch)

progbar = Progbar(total, width=20, stateful_metrics=['epoch’, 'iter'])

for items in train_loader:

self.edge_model.train()

self.inpaint_model.train()

images, images_gray, edges, masks = self.cuda(*items)

edge model
if model == 1:
train

58

outputs, gen_loss, dis_loss, logs = self.edge_model.process(images_gray, edges, masks)

metrics
precision, recall = self.edgeacc(edges * masks, outputs * masks)
logs.append((‘precision’, precision.item()))

logs.append((‘recall’, recall.item()))

backward
self.edge_model.backward(gen_loss, dis_loss)

iteration = self.edge_model.iteration

inpaint model
elif model == 2:
train
outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, edges, masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

metrics

psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()
logs.append((‘psnr’, psnr.item()))

logs.append(('mae’, mae.item()))

59

backward
self.inpaint_model.backward(gen_loss, dis_loss)

iteration = self.inpaint_model.iteration

inpaint with edge model
elif model == 3:
train
if True or np.random.binomial(1, 0.5) > 0O:
outputs = self.edge_model(images_gray, edges, masks)
outputs = outputs * masks + edges * (1 - masks)
else:

outputs = edges

outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, outputs.detach(),
masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

metrics

psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()
logs.append((‘psnr’, psnr.item()))

logs.append(('mae’, mae.item()))

60

backward
self.inpaint_model.backward(gen_loss, dis_loss)

iteration = self.inpaint_model.iteration

joint model
else:
train
e_outputs, e_gen_loss, e_dis_loss, e_logs = self.edge_model.process(images_gray, edges,
masks)
e_outputs = e_outputs * masks + edges * (1 - masks)
i_outputs, i_gen_loss, i_dis_loss, i_logs = self.inpaint_model.process(images, e_outputs,
masks)

outputs_merged = (i_outputs * masks) + (images * (1 - masks))

metrics

psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()
precision, recall = self.edgeacc(edges * masks, e_outputs * masks)
e_logs.append(('pre’, precision.item()))

e_logs.append((‘rec’, recall.item()))

i_logs.append(('psnr’, psnr.item()))

i_logs.append(('mae’, mae.item()))

logs = e_logs + i_logs

61

backward
self.inpaint_model.backward(i_gen_loss, i_dis_|oss)
self.edge_model.backward(e_gen_loss, e_dis_loss)

iteration = self.inpaint_model.iteration

if iteration >= max_iteration:
keep_training = False

break

logs = [
("epoch”, epoch),
("iter", iteration),

] + logs

progbar.add(len(images), values=logs if self.config.VERBOSE else [x for x in logs if not

x[0].startswith('_")])

log model at checkpoints
if self.config.LOG_INTERVAL and iteration % self.config.LOG_INTERVAL == 0:

self.log(logs)

sample model at checkpoints

62

if self.config. SAMPLE_INTERVAL and iteration % self.config.SAMPLE_INTERVAL == 0:

self.sample()

evaluate model at checkpoints
if self.config.EVAL_INTERVAL and iteration % self.config.EVAL_INTERVAL == 0:
print("\nstart eval..\n")

self.eval()

save model at checkpoints
if self.config.SAVE_INTERVAL and iteration % self.config.SAVE_INTERVAL == 0:

self.save()

print("\nEnd training....")

def eval(self):
val_loader = Dataloader(
dataset=self.val_dataset,
batch_size=self.config.BATCH_SIZE,
drop_last=True,

shuffle=True

model = self.config.MODEL

total = len(self.val_dataset)

63

self.edge_model.eval()

self.inpaint_model.eval()

progbar = Progbar(total, width=20, stateful_metrics=['it"])

iteration = 0

for items in val_loader:

iteration += 1

images, images_gray, edges, masks = self.cuda(*items)

edge model
if model == 1:
eval

outputs, gen_loss, dis_loss, logs = self.edge_model.process(images_gray, edges, masks)

metrics
precision, recall = self.edgeacc(edges * masks, outputs * masks)
logs.append(('precision’, precision.item()))

logs.append((‘recall’, recall.item()))

inpaint model

64

elif model == 2:
eval
outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, edges, masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

metrics

psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()
logs.append((‘psnr', psnr.item()))

logs.append(('mae’, mae.item()))

inpaint with edge model
elif model == 3:
eval
outputs = self.edge_model(images_gray, edges, masks)

outputs = outputs * masks + edges * (1 - masks)

outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, outputs.detach(),

masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

metrics

psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

65

masks)

mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()
logs.append((‘psnr', psnr.item()))

logs.append(('mae’, mae.item()))

joint model
else:
eval

e_outputs, e_gen_loss, e_dis_loss, e_logs = self.edge_model.process(images_gray, edges,

e_outputs = e_outputs * masks + edges * (1 - masks)
i_outputs, i_gen_loss, i_dis_loss, i_logs = self.inpaint_model.process(images, e_outputs, masks)

outputs_merged = (i_outputs * masks) + (images * (1 - masks))

metrics

psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()
precision, recall = self.edgeacc(edges * masks, e_outputs * masks)
e_logs.append(('pre’, precision.item()))

e_logs.append(('rec’, recall.item()))

i_logs.append(('psnr’, psnr.item()))

i_logs.append(('mae’, mae.item()))

logs = e_logs + i_logs

66

logs = [("it", iteration),] + logs

progbar.add(len(images), values=Ilogs)

def test(self):
self.edge_model.eval()

self.inpaint_model.eval()

model = self.config.MODEL

create_dir(self.results_path)

test_loader = Dataloader(
dataset=self.test_dataset,

batch_size=1,

index = 0

for items in test_loader:

name = self.test_dataset.load_name(index)
images, images_gray, edges, masks = self.cuda(*items)

index +=1

edge model

67

if model == 1:
outputs = self.edge_model(images_gray, edges, masks)

outputs_merged = (outputs * masks) + (edges * (1 - masks))

inpaint model
elif model == 2:
outputs = self.inpaint_model(images, edges, masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

inpaint with edge model / joint model

else:
edges = self.edge_model(images_gray, edges, masks).detach()
outputs = self.inpaint_model(images, edges, masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

output = self.postprocess(outputs_merged)[0]
path = os.path.join(self.results_path, name)

print(index, name)

imsave(output, path)

if self.debug:
edges = self.postprocess(1 - edges)[0]

masked = self.postprocess(images * (1 - masks) + masks)[0]

68

fname, fext = name.split('.")

imsave(edges, os.path.join(self.results_path, fnrame + '_edge.' + fext))

imsave(masked, os.path.join(self.results_path, fname + '_masked." + fext))

print(\nEnd test....")

def sample(self, it=None):
do not sample when validation set is empty
if len(self.val_dataset) == 0:

return

self.edge_model.eval()

self.inpaint_model.eval()

model = self.config.MODEL
items = next(self.sample_iterator)

images, images_gray, edges, masks = self.cuda(*items)

edge model
if model == 1:
iteration = self.edge_model.iteration
inputs = (images_gray * (1 - masks)) + masks

outputs = self.edge_model(images_gray, edges, masks)

69

outputs_merged = (outputs * masks) + (edges * (1 - masks))

inpaint model
elif model == 2:
iteration = self.inpaint_model.iteration
inputs = (images * (1 - masks)) + masks
outputs = self.inpaint_model(images, edges, masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

inpaint with edge model / joint model

else:
iteration = self.inpaint_model.iteration
inputs = (images * (1 - masks)) + masks
outputs = self.edge_model(images_gray, edges, masks).detach()
edges = (outputs * masks + edges * (1 - masks)).detach()
outputs = self.inpaint_model(images, edges, masks)

outputs_merged = (outputs * masks) + (images * (1 - masks))

if it is not None:

iteration = it

image_per_row = 2
if self.config.SAMPLE_SIZE <= 6:

image_per_row = 1

70

images = stitch_images(
self.postprocess(images),
self.postprocess(inputs),
self.postprocess(edges),
self.postprocess(outputs),
self.postprocess(outputs_merged),

img_per_row = image_per_row

path = os.path.join(self.samples_path, self. model_name)
name = os.path.join(path, str(iteration).zfill(5) + ".png")
create_dir(path)

print("\nsaving sample ' + name)

images.save(name)

def log(self, logs):

with open(self.log_file, 'a") as f:

fwrite('%s\n' % ' "join([str(item[1]) for item in logs]))

def cuda(self, *args):

return (item.to(self.config.DEVICE) for item in args)

71

def postprocess(self, img):
#1[0, 1] => [0, 255]
img = img * 255.0
img = img.permute(0, 2, 3, 1)

return img.int()

72

MODELS.PY
import os
import torch
import torch.nn as nn
import torch.optim as optim
from .networks import InpaintGenerator, EdgeGenerator, Discriminator

from .loss import AdversarialLoss, PerceptuallLoss, StyleLoss

class BaseModel(nn.Module):
def __init__(self, name, config):

super(BaseModel, self).__init_ ()

self.name = name
self.config = config

self.iteration = 0

self.gen_weights_path = os.path.join(config.PATH, name + '_gen.pth’)

self.dis_weights_path = os.path.join(config.PATH, name + '_dis.pth’)

def load(self):

if os.path.exists(self.gen_weights_path):

print('Loading %s generator..." % self.name)

73

if torch.cuda.is_available():
data = torch.load(self.gen_weights_path)
else:
data = torch.load(self.gen_weights_path, map_location=lambda storage, loc:

storage)

self.generator.load_state_dict(data['generator'])

self.iteration = data['iteration’]

load discriminator only when training
if self.config.MODE == 1 and os.path.exists(self.dis_weights_path):

print('Loading %s discriminator..." % self.name)

if torch.cuda.is_available():
data = torch.load(self.dis_weights_path)
else:

data = torch.load(self.dis_weights_path, map_location=lambda storage, loc: storage)

self.discriminator.load_state_dict(data['discriminator'])

def save(self):
print(\nsaving %s..\n"' % self.name)
torch.save({

'iteration': self.iteration,

74

'generator': self.generator.state_dict()

}, self.gen_weights_path)

torch.save({
'discriminator": self.discriminator.state_dict()

}, self.dis_weights_path)

class EdgeModel(BaseModel):
def __init__(self, config):

super(EdgeModel, self).__init__('EdgeModel’, config)

generator input: [grayscale(1) + edge(1) + mask(1)]
discriminator input: (grayscale(1) + edge(1))
generator = EdgeGenerator(use_spectral_norm=True)
discriminator = Discriminator(in_channels=2, use_sigmoid=config. GAN_LOSS != 'hinge')
if len(config.GPU) > 1:
generator = nn.DataParallel(generator, config.GPU)
discriminator = nn.DataParallel(discriminator, config.GPU)
I1_loss = nn.L1Loss()

adversarial_loss = AdversarialLoss(type=config.GAN_LOSS)

self.add_module('generator’, generator)

self.add_module('discriminator’, discriminator)

75

self.add_module('l1_loss', I1_loss)

self.add_module('adversarial_loss', adversarial_loss)

self.gen_optimizer = optim.Adam(
params=generator.parameters(),
Ir=float(config.LR),

betas=(config.BETA1, config.BETA2)

self.dis_optimizer = optim.Adam(
params=discriminator.parameters(),
Ir=float(config.LR) * float(config.D2G_LR),

betas=(config.BETA1, config.BETA2)

def process(self, images, edges, masks):

self.iteration += 1

zero optimizers
self.gen_optimizer.zero_grad()

self.dis_optimizer.zero_grad()

76

process outputs
outputs = self(images, edges, masks)
gen_loss =0

dis_loss = 0

discriminator loss

dis_input_real = torch.cat((images, edges), dim=1)

dis_input_fake = torch.cat((images, outputs.detach()), dim=1)

dis_real, dis_real_feat = self.discriminator(dis_input_real) # in: (grayscale(1) + edge(1))

dis_fake, dis_fake_feat = self.discriminator(dis_input_fake) # in: (grayscale(1) +
edge(1))

dis_real_loss = self.adversarial_loss(dis_real, True, True)

dis_fake_loss = self.adversarial_loss(dis_fake, False, True)

dis_loss += (dis_real_loss + dis_fake_loss) / 2

generator adversarial loss

gen_input_fake = torch.cat((images, outputs), dim=1)

gen_fake, gen_fake_feat = self.discriminator(gen_input_fake) #in: (grayscale(1) +
edge(1))

gen_gan_loss = self.adversarial_loss(gen_fake, True, False)

gen_loss += gen_gan_loss

77

generator feature matching loss
gen_fm_loss = 0
for i in range(len(dis_real_feat)):
gen_fm_loss += self.I1_loss(gen_fake_featl[i], dis_real_feat[i].detach())
gen_fm_loss = gen_fm_loss * self.config.FM_LOSS_WEIGHT

gen_loss += gen_fm_loss

create logs

logs = [
("l_d1", dis_loss.item()),
("l_g1", gen_gan_loss.item()),

("I_fm", gen_fm_loss.item()),

return outputs, gen_loss, dis_loss, logs

def forward(self, images, edges, masks):

edges_masked = (edges * (1 - masks))

images_masked = (images * (1 - masks)) + masks

inputs = torch.cat((images_masked, edges_masked, masks), dim=1)

78

outputs = self.generator(inputs) # in: [grayscale(1) + edge(1) +
mask(1)]

return outputs

def backward(self, gen_loss=None, dis_loss=None):
if dis_loss is not None:
dis_loss.backward()

self.dis_optimizer.step()

if gen_loss is not None:
gen_loss.backward()

self.gen_optimizer.step()

class InpaintingModel(BaseModel):
def __init__(self, config):

super(InpaintingModel, self).__init__('InpaintingModel’, config)

generator input: [rgb(3) + edge(1)]

discriminator input: [rgb(3)]

generator = InpaintGenerator()

discriminator = Discriminator(in_channels=3, use_sigmoid=config. GAN_LOSS != 'hinge')
if len(config.GPU) > 1:

generator = nn.DataParallel(generator, config.GPU)

79

discriminator = nn.DataParallel(discriminator , config.GPU)

I1_loss = nn.L1Loss()
perceptual_loss = PerceptualLoss()
style_loss = StyleLoss()

adversarial_loss = AdversarialLoss(type=config.GAN_LOSS)

self.add_module('generator’, generator)

self.add_module('discriminator’, discriminator)

self.add_module('l1_loss', I1_loss)
self.add_module('perceptual_loss', perceptual_loss)
self.add_module('style_loss', style_loss)

self.add_module('adversarial_loss', adversarial_loss)

self.gen_optimizer = optim.Adam(
params=generator.parameters(),
Ir=float(config.LR),

betas=(config.BETA1, config.BETA2)

self.dis_optimizer = optim.Adam(
params=discriminator.parameters(),

Ir=float(config.LR) * float(config.D2G_LR),

80

betas=(config.BETA1, config.BETA2)

def process(self, images, edges, masks):

self.iteration += 1

zero optimizers
self.gen_optimizer.zero_grad()

self.dis_optimizer.zero_grad()

process outputs
outputs = self(images, edges, masks)
gen_loss =0

dis_loss = 0

discriminator loss

dis_input_real = images

dis_input_fake = outputs.detach()

dis_real, _ = self.discriminator(dis_input_real) #1in: [rgb(3)]
dis_fake, _ = self.discriminator(dis_input_fake) #in: [rgb(3)]
dis_real_loss = self.adversarial_loss(dis_real, True, True)

dis_fake_loss = self.adversarial_loss(dis_fake, False, True)

81

dis_loss += (dis_real_loss + dis_fake_loss) / 2

generator adversarial loss

gen_input_fake = outputs

gen_fake, _ = self.discriminator(gen_input_fake) #in: [rgb(3)]

gen_gan_loss = self.adversarial_loss(gen_fake, True, False) *
self.config.INPAINT_ADV_LOSS_WEIGHT

gen_loss += gen_gan_loss

generator |1 loss
gen_l1_loss = self.l1_loss(outputs, images) * self.config.L1_LOSS_WEIGHT /
torch.mean(masks)

gen_loss += gen_|1_loss

generator perceptual loss
gen_content_loss = self.perceptual_loss(outputs, images)
gen_content_loss = gen_content_loss * self.config. CONTENT_LOSS_WEIGHT

gen_loss += gen_content_loss

generator style loss

82

gen_style_loss = self.style_loss(outputs * masks, images * masks)
gen_style_loss = gen_style_loss * self.config.STYLE_LOSS_WEIGHT

gen_loss += gen_style_loss

create logs

logs = [
("l_d2", dis_loss.item()),
("l_g2", gen_gan_loss.item()),
("LLI1", gen_I1_loss.item()),
("l_per", gen_content_loss.item()),

("I_sty", gen_style_loss.item()),

return outputs, gen_loss, dis_loss, logs

def forward(self, images, edges, masks):
images_masked = (images * (1 - masks).float()) + masks
inputs = torch.cat((images_masked, edges), dim=1)
outputs = self.generator(inputs) #in: [rgh(3) + edge(1)]

return outputs

def backward(self, gen_loss=None, dis_loss=None):

dis_loss.backward()

83

self.dis_optimizer.step()

gen_loss.backward()

self.gen_optimizer.step()

84

85

METRICS.PY

import numpy as np
import argparse

import matplotlib.pyplot as plt

from glob import glob

from ntpath import basename

from scipy.misc import imread

from skimage.measure import compare_ssim
from skimage.measure import compare_psnr

from skimage.color import rgh2gray

def parse_args():
parser = argparse.ArgumentParser(description="script to compute all statistics’)
parser.add_argument('--data-path’, help="Path to ground truth data’, type=str)
parser.add_argument('--output-path’, help="'Path to output data’, type=str)
parser.add_argument('--debug’, default=0, help='Debug’, type=int)
args = parser.parse_args()

return args

def compare_mae(img_true, img_test):

img_true = img_true.astype(np.float32)

86

img_test = img_test.astype(np.float32)

return np.sum(np.abs(img_true - img_test)) / np.sum(img_true + img_test)

args = parse_args()
for arg in vars(args):

print('[%s] ="' % arg, getattr(args, arg))

path_true = args.data_path

path_pred = args.output_path

psnr = []
ssim =]
mae = []
names = []

index = 1

files = list(glob(path_true + '/*jpg")) + list(glob(path_true + '/*.png"))
for fn in sorted(files):
name = basename(str(fn))

names.append(name)

img_gt = (imread(str(fn)) / 255.0).astype(np.float32)

img_pred = (imread(path_pred + '/' + basename(str(fn))) / 255.0).astype(np.float32)

87

img_gt = rgb2gray(img_gt)

img_pred = rgb2gray(img_pred)

if args.debug != 0:
plt.subplot('121")
plt.imshow(img_gt)
plt.title('Groud truth')
plt.subplot('122")
plt.imshow(img_pred)
plt.title('Output’)

plt.show()

psnr.append(compare_psnr(img_gt, img_pred, data_range=1))
ssim.append(compare_ssim(img_gt, img_pred, data_range=1, win_size=51))
mae.append(compare_mae(img_gt, img_pred))
if np.mod(index, 100) == 0:

print(

str(index) + ' images processed’,
"PSNR: %.4f" % round(np.mean(psnr), 4),
"SSIM: %.4f" % round(np.mean(ssim), 4),
"MAE: %.4f" % round(np.mean(mae), 4),
)

index +=1

88

np.savez(args.output_path + '/metrics.npz’, psnr=psnr, ssim=ssim, mae=mae, names=names)

print(
"PSNR: %.4f" % round(np.mean(psnr), 4),
"PSNR Variance: %.4f" % round(np.var(psnr), 4),
"SSIM: %.4f" % round(np.mean(ssim), 4),
"SSIM Variance: %.4f" % round(np.var(ssim), 4),
"MAE: %.4f" % round(np.mean(mae), 4),

"MAE Variance: %.4f" % round(np.var(mae), 4)

89

90

FID_SCORE.PY
import os
import pathlib

from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

import torch

import numpy as np

from scipy.misc import imread

from scipy import linalg

from torch.autograd import Variable

from torch.nn.functional import adaptive_avg_pool2d

from inception import InceptionV3

parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)

parser.add_argument('--path’, type=str, nargs=2, help=('Path to the generated images or
to .npz statistic files"))

parser.add_argument('--batch-size', type=int, default=64, help="Batch size to use')

parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), help=('Dimensionality of Inception features to use. By
default, uses pool3 features'))

parser.add_argument('-c', '--gpu’, default=", type=str, help="GPU to use (leave blank for CPU
only))

91

def get_activations(images, model, batch_size=64, dims=2048,
cuda=False, verbose=False):

"""Calculates the activations of the pool_3 layer for all images.

Params:

--images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.

-- model : Instance of inception model

-- batch_size : the images numpy array is split into batches with
batch size batch_size. A reasonable batch size depends
on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose :If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.

nun

model.eval()

d0 = images.shape[0]

92

if batch_size > dO:
print(("Warning: batch size is bigger than the data size. '
'Setting batch size to data size"))

batch_size = dO

n_batches = d0 // batch_size

n_used_imgs = n_batches * batch_size

pred_arr = np.empty((n_used_imgs, dims))
for i in range(n_batches):
if verbose:
print("\rPropagating batch %d/%d"' % (i + 1, n_batches),
end=", flush=True)
start = i * batch_size

end = start + batch_size

batch = torch.from_numpy(images|start:end]).type(torch.FloatTensor)
batch = Variable(batch, volatile=True)
if cuda:

batch = batch.cudal()

pred = model(batch)[0]

If model output is not scalar, apply global spatial average pooling.

93

This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:

pred = adaptive_avg_pool2d(pred, output_size=(1, 1))

pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)

if verbose:

print(' done')

return pred_arr

def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):

"""Numpy implementation of the Frechet Distance.

The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)

and X 2 ~ N(mu_2, C_2) is

dA2 = ||mu_1 - mu_2|[*2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

Stable version by Dougal J. Sutherland.

Params:

--mul : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions’)
for generated samples.

--mu2 :The sample mean over activations, precalculated on an

representive data set.

94

-- sigma: The covariance matrix over activations for generated samples.

-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.

Returns:

-- : The Frechet Distance.

mul = np.atleast_Td(muT)

mu2 = np.atleast_Td(mu2)

sigmal = np.atleast_2d(sigmaT)

sigma2 = np.atleast_2d(sigma2)

assert mul.shape == mu2.shape, \
‘Training and test mean vectors have different lengths'
assert sigmal.shape == sigma2.shape, \

‘Training and test covariances have different dimensions'

diff = mu1 - mu2

Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():

msg = (‘fid calculation produces singular product; '

95

‘adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1l.shape[0]) * eps

covmean = linalg.sqrtm((sigmal + offset).dot(sigma2 + offset))

Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))

covmean = covmean.real

tr_covmean = np.trace(covmean)

return (diff.dot(diff) + np.trace(sigma1) +

np.trace(sigma2) - 2 * tr_covmean)

def calculate_activation_statistics(images, model, batch_size=64,
dims=2048, cuda=False, verbose=False):
"""Calculation of the statistics used by the FID.
Params:
--images : Numpy array of dimension (n_images, 3, hi, wi). The values

must lie between 0 and 1.

96

-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda . If set to True, use GPU
-- verbose :If set to True and parameter out_step is given, the
number of calculated batches is reported.
Returns:
--mu :The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
act = get_activations(images, model, batch_size, dims, cuda, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)

return mu, sigma

def _compute_statistics_of_path(path, model, batch_size, dims, cuda):
npz_file = os.path.join(path, 'statistics.npz’)
if os.path.exists(npz_file):

f = np.load(npz_file)

97

m, s = f['mu'][:], f['sigma'][:]
f.close()

else:
path = pathlib.Path(path)

files = list(path.glob('*,jpg")) + list(path.glob('*.png")

imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files])

Bring images to shape (B, 3, H, W)

imgs = imgs.transpose((0, 3, 1, 2))

Rescale images to be between 0 and 1

imgs /= 255

m, s = calculate_activation_statistics(imgs, model, batch_size, dims, cuda)

np.savez(npz_file, mu=m, sigma=s)

returnm, s

def calculate_fid_given_paths(paths, batch_size, cuda, dims):
"""Calculates the FID of two paths"""
for p in paths:

if not os.path.exists(p):

98

raise RuntimeError('Invalid path: %s' % p)

block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

model = InceptionV3([block_idx])
if cuda:

model.cuda()

print('calculate path1 statistics...")
m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims, cuda)
print('calculate path2 statistics...")
m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, dims, cuda)
print('calculate frechet distance...)

fid_value = calculate_frechet_distance(m1, s1, m2, s2)

return fid_value

if _name__=="'_main_"
args = parser.parse_args()

os.environ['CUDA _VISIBLE_DEVICES'] = args.gpu

fid_value = calculate_fid_given_paths(args.path,

args.batch_size,

99

args.gpu =",
args.dims)

print('FID: ', round(fid_value, 4))

100

MASKIMG.PY

Required Libraries

import cv2

import numpy as np

from os import listdir

from os.path import isfile, join
from pathlib import Path
import argparse

import numpy

Argument parsing variable declared

ap = argparse.ArgumentParser()

ap.add_argument(-image",
required=True,
help="Path to folder")

ap.add_argument("-e", "--mask",
required=True,

help="Path to folder")

args = vars(ap.parse_args())

Find all the images in the provided images folder

101

mypath1 = args["image"]

mypath2 = args["mask"]

onlyfiles1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))]
onlyfiles2 = [f for f in listdir(mypath2) if isfile(join(mypath2, f))]
images = numpy.empty(len(onlyfiles1), dtype=object)

masks = numpy.empty(len(onlyfiles2), dtype=object)

|terate through every image
and resize all the images.

for nin range(0, len(onlyfiles1)):

path1 = join(mypath1, onlyfiles1[n])

path2 = join(mypath2, onlyfiles2[n])

images[n] = cv2.imread(join(mypath1, onlyfiles1[n]),
cv2.IMREAD_UNCHANGED)

masks[n] = cv2.imread(join(mypath2, onlyfiles2[n]),
cv2.IMREAD_UNCHANGED)

Load the image in img variable

img = cv2.imread(path1, 1)

msk= cv2.imread(path2, 1)

resize_width = int(256)

resize_hieght = int(256)

resized_dimensions = (resize_width, resize_hieght)

resized_msk = cv2.resize(msk, resized_dimensions, interpolation=cv2.INTER_AREA)

102

Define a resizing Scale

To declare how much to resize

mask_img = cv2.bitwise_or(resized_msk, img)

Create resized image using the calculated dimensions

Save the image in Output Folder

cv2.imwrite(

‘output/' + str(n) + '_resized.png’, mask_img)

print("lmages masked Successfully")

103

104

HED_PROCESSING.PY

import cv2 as cv
import os
import numpy as np

import time

| [CropLayenr]
class CroplLayer(object):
def __init__(self, params, blobs):
self.xstart = 0
selfxend = 0
self.ystart = 0

selfyend =0

Our layer receives two inputs. We need to crop the first input blob
to match a shape of the second one (keeping batch size and number of channels)
def getMemoryShapes(self, inputs):

inputShape, targetShape = inputs[0], inputs[1]

batchSize, numChannels = inputShapel[0], inputShape[1]

height, width = targetShape[2], targetShape[3]

self.ystart = (inputShape[2] - targetShape[2]) / 2
self.xstart = (inputShape[3] - targetShape[3]) / 2

105

self.ystart = int((inputShapel[2] - targetShape[2]) / 2)

self.xstart = int((inputShape[3] - targetShape[3]) / 2)

self.yend = self.ystart + height

self.xend = selfxstart + width

return [[batchSize, numChannels, height, width]]

def forward(self, inputs):

return [inputs[O][;, :, self.ystart:self.yend, self.xstart:self.xend]]

def hed(net, start_paths, target_paths):
width = 256
height = 256
for start_path_i in range(len(start_paths)):
s_path = start_paths[start_path_i]
t_path = target_paths[start_path_i]
if not os.path.exists(t_path):
os.makedirs(t_path)
image_lists = [os.path.join(s_path, i) for i in os.listdir(s_path)]
size = len(image_lists)

for img_i, img_path in enumerate(image_lists):

106

if 'jpg' not in img_path.lower() and '.png' not in img_path.lower():
continue

ifimg_i % 10 == 0:
print(f'{t_path} finish {img_i}/{size}.")

frame = cv.imread(img_path)

inp = cv.dnn.blobFromIimage(frame, scalefactor=1.0, size=(width, height),
mean=(104.00698793, 116.66876762, 122.67891434),
swapRB=False, crop=False)

net.setinput(inp)

out = net.forward()

out = out[0, 0]

out = cv.resize(out, (frame.shape[1], frame.shape[0]))

out = out * 255

cv.imwrite(os.path.join(t_path, img_path[img_path.rfind("\\')+ 1:]), out.astype('uint8'))
time.sleep(0.05)

return

def flist(paths, outputs):
ext = {"JPG', "JPEG', "PNG', "TIF', 'TIFF}
for path_i, path in enumerate(paths):

output = outputs[path_i]

107

images = []
for root, dirs, files in os.walk(path):
print('loading ' + root)
for file in files:
if os.path.splitext(file)[1].upper() in ext:

images.append(os.path.join(root, file))

images = sorted(images)
np.savetxt(output, images, fmt='%s")

return

if _name__ =="'_main_"

| [CropLayer]

| [Register]
cv.dnn_registerLayer('Crop', CropLayer)

| [Register]

Load the model.

prototxt_path = 'deploy.prototxt'

caffemodel_path = 'hed_pretrained_bsds.caffemodel’
net = cv.dnn.readNet(cv.samples.findFile(prototxt_path),

cv.samples.findFile(caffemodel_path))

108

start_paths = ['training/cat_train’, 'training/cat_test_original’, 'training/cat_val']
target_paths = ['training/cat_edges_train’, 'training/cat_edges_test', 'training/cat_edges_val']

hed(net, start_paths, target_paths)

outputs = ['datasets/cat_edges_train.flist', 'datasets/cat_edges_test.flist',

‘datasets/cat_edges_val.flist']

flist(target_paths, outputs)

109

DATASET.PY
import os
import glob
import scipy
import torch
import random
import numpy as np
import torchvision.transforms.functional as F
from torch.utils.data import DatalLoader
from PIL import Image
from scipy.misc import imread
from skimage.feature import canny
from skimage.color import rgh2gray, gray2rgb
from .utils import create_mask

import cv2

class CroplLayer(object):
def __init_ (self, params, blobs):
selfxstart = 0
selfxend =0
self.ystart = 0

selfyend =0

110

Our layer receives two inputs. We need to crop the first input blob
to match a shape of the second one (keeping batch size and number of channels)
def getMemoryShapes(self, inputs):

inputShape, targetShape = inputs[0], inputs[1]

batchSize, numChannels = inputShapel[0], inputShape[1]

height, width = targetShape[2], targetShape[3]

self.ystart = (inputShape[2] - targetShape[2]) / 2

self.xstart = (inputShape[3] - targetShape[3]) / 2

self.ystart = int((inputShapel[2] - targetShape[2]) / 2)

self.xstart = int((inputShape[3] - targetShape[3]) / 2)

self.yend = self.ystart + height

self.xend = selfxstart + width

return [[batchSize, numChannels, height, width]]

def forward(self, inputs):

return [inputs[O0][;, :, self.ystart:self.yend, self.xstart:self.xend]]

hed network

111

global net_hed

cv2.dnn_registerLayer('Crop’, CroplLayer)

prototxt_path = 'deploy.prototxt’

caffemodel_path = 'hed_pretrained_bsds.caffemodel’

net_hed = cv2.dnn.readNet(cv2.samples.findFile(prototxt_path),

cv2.samples.findFile(caffemodel_path))

class Dataset(torch.utils.data.Dataset):
def __init__(self, config, flist, edge_flist, mask_flist, augment=True, training=True):

super(Dataset, self).__init_ ()
self.augment = augment
self.training = training
self.data = self.load_flist(flist)
self.edge_data = self.load_flist(edge_flist)
self. mask_data = self.load_flist(mask_flist)
self.input_size = config.INPUT_SIZE
self.sigma = config.SIGMA
self.edge = config.EDGE
self.mask = config.MASK

self.nms = config.NMS

112

in test mode, there's a one-to-one relationship between mask and image
masks are loaded non random
if config.MODE == 2:

self.mask = 6

def _len_ (self):

return len(self.data)

def __getitem__(self, index):
try:
item = self.load_item(index)
except:
print(loading error: ' + self.data[index])

item = self.load_item(0)

return item

def load_name(self, index):

name = self.data[index]

return os.path.basename(name)

def load_item(self, index):

size = self.input_size

113

load image

img = imread(self.data[index])

gray to rgb
if len(img.shape) < 3:

img = gray2rgb(img)

resize/crop if needed
if size 1= 0:

img = self.resize(img, size, size)

create grayscale image

img_gray = rgb2gray(img)

load mask

mask = self.load_mask(img, index)

load edge

edge = self.load_edge(img_gray, img, index, mask)

augment data
if self.augment and np.random.binomial(1, 0.5) > 0O:

img = img[;, =-1, ..]

114

img_gray = img_grayl[:, ::-1, .]
edge = edgel[; :-1, ..]

mask = mask[;, -1, ...]

return self.to_tensor(img), self.to_tensor(img_gray), self.to_tensor(edge),

self.to_tensor(mask)

def load_edge(self, img, img_ori, index, mask):

sigma = self.sigma

in test mode images are masked (with masked regions),
using 'mask' parameter prevents canny to detect edges for the masked regions

mask = None if self.training else (1 - mask / 255).astype(np.bool)

canny

if self.edge == 1:
no edge
if sigma == -1:

return np.zeros(img.shape).astype(np.float)

random sigma
if sigma == 0:
sigma = random.randint(1, 4)

return canny(img, sigma=sigma, mask=mask).astype(np.float)

115

external

else:
imgh, imgw = img.shape[0:2]
if len(self.edge_data) != 0:

edge = imread(self.edge_data[index])

else:
width = 256
height = 256

img_input = cv2.cvtColor(img_ori, cv2.COLOR_RGB2BGR)

frame = img_input.copy()

inp = cv2.dnn.blobFromimage(frame, scalefactor=1.0, size=(width, height),
mean=(104.00698793, 116.66876762, 122.67891434),
swapRB=False, crop=False)

net_hed.setlnput(inp)

out = net_hed.forward()

out = out[0, 0]

out = cv2.resize(out, (frame.shape[1], frame.shape[0]))
edge = out.copy()

edge = self.resize(edge, imgh, imgw)

non-max suppression

116

if self.nms == 1:

edge = edge * canny(img, sigma=sigma, mask=mask)

return edge

def load_mask(self, img, index):
imgh, imgw = img.shape[0:2]

mask_type = self.mask

external + random block
if mask_type == 4:

mask_type = 1 if np.random.binomial(1, 0.5) == 1 else 3

external + random block + half
elif mask_type == 5:

mask_type = np.random.randint(1, 4)

random block
if mask_type == 1:

return create_mask(imgw, imgh, imgw // 2, imgh // 2)

half
if mask_type == 2:

randomly choose right or left

117

return create_mask(imgw, imgh, imgw // 2, imgh, 0 if random.random() < 0.5 else

imgw // 2, 0)

external
if mask_type == 3:
mask_index = random.randint(0, len(self.mask_data) - 1)
mask = imread(self.mask_data[mask_index])
mask = self.resize(mask, imgh, imgw)
mask = (mask > 0).astype(np.uint8) * 255 # threshold due to interpolation

return mask

test mode: load mask non random
if mask_type == 6:
mask = imread(self.mask_data[index])
mask = self.resize(mask, imgh, imgw, centerCrop=False)
mask = rgb2gray(mask)
mask = (mask > 0).astype(np.uint8) * 255

return mask

def to_tensor(self, img):
img = Image.fromarray(img)
img_t = F.to_tensor(img).float()

return img_t

118

def resize(self, img, height, width, centerCrop=True):

imgh, imgw = img.shape[0:2]

if centerCrop and imgh != imgw:
center crop
side = np.minimum(imgh, imgw)
j = (imgh - side) // 2
i = (imgw - side) // 2

img = img][jj + side, iii + side, ..]

img = scipy.misc.imresize(img, [height, width])

return img

def load_flist(self, flist):
if isinstance(flist, list):

return flist

flist: image file path, image directory path, text file flist path
if isinstance(flist, str):
if os.path.isdir(flist):
flist = list(glob.glob(flist + '/*jpg")) + list(glob.glob(flist + '/*.png"))
flist.sort()

return flist

119

if os.path.isfile(flist):
try:
return np.genfromtxt(flist, dtype=np.str, encoding="utf-8")
except:

return [flist]

return []

def create_iterator(self, batch_size):
while True:
sample_loader = DatalLoader(
dataset=self,
batch_size=batch_size,

drop_last=True

for item in sample_loader:

yield item

120

APPENDIX B

OUTPUT SAMPLE

121

OUTPUT SAMPLE (CANNY)

122

" \!\.!l.!m,my

i

alll i

iy

123

124

| St

125

OUTPUT SAMPLE (HED)

126

3 .-
h\‘v‘!\ 3
1A% N 4
'Ilriulf‘ Ariclla
= .

127

7, S [EE
>] l‘ \"l

& jq | .
N
3

- 3 >4 | T g ol ez et diea »
1S e e %
L el TR R

128

129

REFERENCES
[1] Nazeri, K., Ng, E., Joseph, T., Qureshi, F. Z., and Ebrahimi, M.,
“‘EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning”,
2019.
[2] Xie, S. and Tu, Z., “Holistically-Nested Edge Detection”, 2015.
[3] Johnson, J., Alahi, A., Fei-Feli, L. (2016). Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds) Computer Vision — ECCV 2016. ECCV 2016. Lecture Notes in

Computer Science(), vol 9906. Springer, Cham. https://doi.org/10.1007/978-3-

319-46475-6 43

[4] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A., “Image-to-Image
Translation with Conditional Adversarial Networks”, 2016.

[5] Ulyanov, D., Vedaldi, A., and Lempitsky, V., “Instance Normalization: The
Missing Ingredient for Fast Stylization”, 2016.

[6] E. Million, “The Hadamard product Elizabeth million April 12, 2007 1
introduction and basic results,” 2007.

[7] Sajjadi, M. S. M., Schélkopf, B., and Hirsch, M., “EnhanceNet: Single
Image Super-Resolution Through Automated Texture Synthesis”, 2016.

[8] T. Chu, "“Lines First, Color Next” An Inspirational Deep Image Inpainting
Approach”, Medium, 2022. [Online]. Available:
https://towardsdatascience.com/lines-first-color-next-an-inspirational-deep-

image-inpainting-approach-b2d980efb364. [Accessed: 18- Apr- 2022]

130

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43

[9] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[10] Crawford, C. and Nian., “Cat Dataset”, 2018,
https://www.kaggle.com/datasets/crawford/cat-
dataset?datasetld=13371&sortBy=dateRun&tab=profile

[11] MA7555., “Cat Breeds Dataset”, 2020,
https://www.kaggle.com/datasets/ma7555/cat-breeds-dataset

[12] Iskakov, K., “QD-IMD: Quick Draw Irregular Mask Dataset” , 2018, QD-
IMD, https://github.com/karfly/qd-imd

[13] Faragallah O. S. etal., "A Comprehensive Survey Analysis for Present
Solutions of Medical Image Fusion and Future Directions,” in IEEE Access, vol.
9, pp. 11358-11371, 2021, doi: 10.1109/ACCESS.2020.3048315.

[14] "Python | Peak Signal-to-Noise Ratio (PSNR) - GeeksforGeeks",
GeeksforGeeks, 2022. [Online]. Available:
https://www.geeksforgeeks.org/python-peak-signal-to-noise-ratio-psnr/.
[Accessed: 18- Apr- 2022]

[15] "Structural similarity - Wikipedia", En.wikipedia.org, 2022. [Online].
Available: https://en.wikipedia.org/wiki/Structural_similarity. [Accessed: 18- Apr-

2022]

131

[16] "Mean absolute error - Wikipedia", En.wikipedia.org, 2022. [Online].

Available: https://en.wikipedia.org/wiki/Mean_absolute_error. [Accessed: 18- Apr-

2022]
[17] "Fréchet inception distance - Wikipedia", En.wikipedia.org, 2022. [Online].
Available: https://en.wikipedia.org/wiki/Fr%eC3%A9chet_inception_distance.

[Accessed: 18- Apr- 2022]

132

	DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING
	Recommended Citation

	tmp.1657316289.pdf.uNGzS

