
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

8-2022

DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING

Zheng Zheng

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Zheng, Zheng, "DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING" (2022). Electronic Theses,
Projects, and Dissertations. 1536.
https://scholarworks.lib.csusb.edu/etd/1536

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1536?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Zheng Zheng

August 2022

DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Zheng Zheng

August 2022

Approved by:

Haiyan Qiao, Committee Chair

Kerstin Voigt, Committee Member

Yan Zhang, Committee Member

© 2022 Zheng Zheng

iii

ABSTRACT

In recent years, deep learning has grown rapidly, and it has been

creatively implemented for various applications. In 2019, deep learning based

EdgeConnect image inpainting algorithm came out and occupied a place in the

image inpainting field. Unlike traditional image inpainting methods which mainly

read and use the color information of the remaining part of the image to fill the

missing regions of the image, EdgeConnect uses the innovative edge-first and

color-next approach. It uses an edge detector to generate an edge map of an

image with missing regions, then the missing edges are completed by an edge

model, finally the completed edge map is recolored by an inpaint model. The

result of this algorithm has a significant improvement in the smoothness of the

image, compared with conventional image inpainting methods.

In this project, EdgeConnect is improved to become a completely deep

learning-based image inpainting method.

This project first implements the EdgeConnect approach. In the

implementation, the project selects the optimal training parameters for the three

model training phases included EdgeConnect: edge model, inpainting model and

joint model, based on the original research paper and the discussions online.

Then the EdgeConnect approach is improved by replacing the traditional Canny

edge-detection with the deep learning algorithm, Holistically-Nested Edge

Detection (HED). With the integration of HED, the accuracy of image inpainting is

improved. To compare the performance, the original EdgeConnect and the

iv

modified EdgeConnect are both trained on the same set of data and the results

are scored using the image inpainting quality assessment metrics such as PSNR,

SSIM, MAE and FID.

The results show that the modified EdgeConnect approach with the

integration of HED not only improves the learning performance of edge detection,

but also improves the overall quality of the final image inpainting.

The improved EdgeConnect approach proposed and implemented in this

project has higher learning efficiency and better image inpainting performance.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Haiyan Qiao, for her guidance

of this project and also for her help and advice with my graduate studies. I feel

very privileged to have had the opportunity to work on a project in an area of

great personal interest under Professor Qiao’s supervision.

I am grateful to the committee members Professors Yan Zhang and

Kerstin Voigt for their help on my preparation for the MS oral exam and MS

project proposal. The class I took with Professor Zhang sparked my interest in

deep learning.

I sincerely thank Professors Voigt and Zhang for their suggestions and

support in this project.

Finally, I would like to thank my dear family for their love and trust in me

over the years. Special thanks go to my friends who had discussions with me on

this project.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ... viii

LIST OF FIGURES ...ix

LIST OF EQUATIONS ..xi

CHAPTER ONE: INTRODUCTION

Background ... 1

Objectives .. 2

CHAPTER TWO: EDGECONNECT ... 5

Runtime Environment .. 5

Program ... 6

Edge Generator .. 6

Image Completion Network .. 8

Model training ... 10

Edge Model Training .. 10

Inpaint Model Training ... 11

Edge-Inpaint Training .. 11

Model Testing ... 12

Evaluation .. 13

Summary ... 13

CHAPTER THREE: EXPERIMENT .. 15

Preparation Work ... 15

vii

Preprocessing ... 15

Dataset ... 16

HED .. 17

Structure .. 17

Loss Function .. 18

Comparison ... 19

Edge Model Training .. 19

Inpaint Model Training ... 26

Edge-Inpaint Training .. 32

Evaluation .. 38

CHAPTER FOUR: CONCLUSION AND FUTURE WORK 44

Improved EdgeConnect .. 44

Future Work... 44

APPENDIX A: CODE .. 46

APPENDIX B: OUTPUT SAMPLE .. 121

Output Sample (Canny)... 121

Output Sample (HED) .. 126

REFERENCES ... 130

viii

LIST OF TABLES

Table 1. Package List ... 5

Table 2. The Metrics Score of Canny Edge Detection and HED (cat) 40

Table 3. The Metrics Score of Canny Edge Detection and HED (Places2) 41

ix

LIST OF FIGURES

Figure 1. Edgeconnect Samples ... 2

Figure 2. Edgeconnect Network Structure. ... 6

Figure 3. HED Network Structure. .. 17

Figure 4. Edge Model Training Sample (Canny, Cat) ... 20

Figure 5. Edge Model Training Sample (HED, Cat) .. 21

Figure 6. Precision of Canny and HED During the Edge Model Training (Cat) .. 22

Figure 7. Recall of Canny and HED During the Edge Model Training (Cat) 23

Figure 8. Edge Model Training Sample (Canny, Placese2) 24

Figure 9. Edge Model Training Sample (HED, Placese2) 25

Figure 10. Precision of Canny and HED During the Edge Model Training

(Places2) .. 26

Figure 11. Recall of Canny and HED During the Edge Model Training (Places2)

 ... 26

Figure 12. Inpaint Model Training Sample (Canny, Cat) 27

Figure 13. Inpaint Model Training Sample (HED, Cat) 28

Figure 14. Inpaint Model Training Sample (Canny, Places2) 29

Figure 15. Inpaint Model Training Sample (HED, Places2) 30

Figure 16. PSNR of Canny and HED During the Inpaint Model Training (Places2)

 ... 31

Figure 17. MAE of Canny and HED During the Inpaint Model Training (Places2)

 ... 31

x

 ... 33

Figure 18. Edge-Inpaint Training Sample (Canny, Cat) 33

Figure 19. Edge-Inpaint Training Sample (HED, Cat) ... 35

Figure 20. Edge-Inpaint Training Sample (Canny, Places2) 36

Figure 21. Edge-Inpaint Training Sample (HED, Places2) 37

Figure 22. PSNR of Canny and HED During the Edge Inpaint Model Training

(Places2) .. 38

Figure 23. MAE of Canny and HED During the Edge Inpaint Model Training

(Places2) .. 38

Figure 24. Evaluation of Edgeconnect (Canny, Cat) ... 39

Figure 25. Evaluation of Edgeconnect (HED, Cat) ... 39

Figure 26: Evaluation of Edgeconnect (Places2) 1 ... 40

Figure 27: Evaluation of Edgeconnect (Places2) 2 ... 40

Figure 28: Evaluation of Edgeconnect (Places2) 3 ... 41

xi

LIST OF EQUATIONS

Equation 1. ... 8

Equation 2. ... 8

Equation 3. ... 8

Equation 4. ... 9

Equation 5. ... 9

Equation 6. ... 9

Equation 7. ... 9

Equation 8. ... 10

Equation 9. ... 18

Equation 10. ... 18

Equation 11. ... 18

Equation 12. ... 42

Equation 13. ... 42

Equation 14. ... 42

Equation 15. ... 43

1

CHAPTER ONE

INTRODUCTION

Background

The most fundamental function of image inpainting is to fill the missing

regions of the image.

The conventional image inpainting algorithm mainly reads the color

information of the unmasked parts of the image and then calculates similar

information to fill the missing regions. Although this conventional image inpainting

method can successfully recolored the missing regions, it usually cannot

reconstruct a reasonable image structure, oftentimes the results are too smooth

or blurred, and the whole recolored image may deviate far from original image

structure so that people may not understand what it was.

EdgeConnect is a new image inpainting method that can better fill the

missing regions. The algorithm follows the innovative edge-first and color-next

approach. It includes edge generator and image completion network. The edge

generator to generate a complete edge map from the image with missing

regions, and the image completion network is used to fill the missing regions of

image by coloring the edge map.

EdgeConnect attempts to restore the entire image structure based on

remaining structure information of the image, and to then restore the entire image

based on the restored structure map and the remaining color information of the

2

image. Thus, EdgeConnect method reduces the appearance of unreasonable

parts of the restored image [1].

 Figure 1 [1]. EdgeConnect Samples

Figure 1 above shows the image inpainting process. The input images on

the left images in each row are the masked images where white regions are the

missing regions. Each image in the middle column is edge map generated by

edge detection and restored by deep learning. The images on the right column in

each row are the restored images after filling missing regions by deep learning.

Objectives

The objective of this project is to study deep-learning based EdgeConnect

approach and make further improvement of this approach.

3

The model training of EdgeConnect consists of three parts. The first part is

to convert the image into an edge map through edge detection, which is also a

part of preprocessing. In the second part, the edge model is trained by the edge

map. The third part is to train the inpainting model through the edge map and the

ground truth with missing regions (original masked image) and mask.

In the first part of EdgeConnect, the Canny edge detection is used for

edge map conversion [1]. In this project, with the intention to improve the

accuracy of the whole image inpainting algorithm, the first part is replaced and

implemented with deep learning-based edge detection, Holistically-Nested Edge

Detection (HED) [2].

Holistically-nested edge detection (HED) is an end-to-end edge detection

algorithm that uses “holistically” in name to indicate that the result of edge

prediction is based on an image-to-image, end-to-end process; while “nested”

emphasizes the process of generating results is the process of training. The

algorithm uses a multi-scale approach for feature learning, and the final output of

the HED method is far superior to the Canny algorithm [2].

To verify the improvement of deep learning edge detection on image

inpainting, comparison experiments are conducted. While ensuring that the

experimental conditions are the same, the models are trained separately from

scratch to restore a set of images with one model implemented using with for

edge detection and another model trained using HED for edge detection. At the

4

end, the image painting results are scored with image inpainting quality metrics

to determine whether the modified image inpainting algorithm has been

improved.

5

CHAPTER TWO

EDGECONNECT

Runtime Environment

To reproduce EdgeConnect, the same runtime environment is needed to

be set up.

Computer software technology is advancing rapidly, and the latest

versions of some software are not compatible for the EdgeConnect project which

is only three years old.

In terms of software operating environment, python 3.7 is the most

suitable version for the project, The following packages are also used:

Table 1. Package List

site-packges Version

matplotlib 2.2.5

numpy 1.21.5

opencv-python 3.4.17.63

Pillow 6.2.1

PyYAML 5.4.1

scikit-image 0.14.5

scipy 1.2.3

pytorch 1.0.0

torchvision 0.2.1.

The CUDA 10.2 is adapt to version 1.0 of the pytorch, because the latest

CUDA 11 may not allow the torch to recognize the GPU, the same version of

pytorch can be adapted to multiple versions of CUDA, so please select the wheel

file of pytorch corresponding to the CUDA version to download and install.

6

Figure 2[1]. EdgeConnect Network Structure.

Program

EdgeConnect proposed an image inpainting network, which consists of

two stages, as shown in Figure 2. 𝐺1 is edge generator and 𝐺2 is image

inpainting network.

Two networks are used in both stages as follows:

The generator uses a network architecture which is commonly used for

image-to-image translation tasks such as style transfer, super-resolution, etc. [3].

The discriminator uses a 70x70 PatchGAN, which means the discriminant image

is divided into 70x70 for discrimination, and the results are averaged [4]. The

entire network uses instance normalization, the normalization process simplifies

generation by allowing instance-specific contrast information to be removed from

content images in tasks such as image stylization [5].

Edge Generator

As can be seen from the left side of Figure 2, in edge generation, mask

(𝑀), edge with missing regions (�̃�𝑔𝑡) and grayscale with missing regions (𝐼𝑔𝑟𝑎𝑦)

are used as inputs, predicted edge map (𝐶𝑝𝑟𝑒𝑑) will be generated by edge

7

generator, the edge generator 𝐺1 is trained using the standard adversarial loss

and the feature matching loss.

𝐼𝑔𝑡 is the ground truth, 𝐼𝑔𝑟𝑎𝑦 represents the grayscale of the ground truth.

𝐶𝑔𝑡 is the edge map of the real image.

𝑀 is the mask.

⊙ is hadamard product, for two matrices A and B of the same dimension

m × n, the Hadamard product 𝐴 ⊙ 𝐵 is a matrix of the same dimension as the

operands, with elements given by (𝐴 ⊙ 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗(𝐵)𝑖𝑗 [6].

Deleting the mark regions in ground truth and edge map to generate

image with missing regions (𝐼𝑔𝑟𝑎𝑦) and edge map with missing regions (�̃�𝑔𝑡) and

mark it with a wavy line on the letter:

𝐼𝑔𝑟𝑎𝑦 = 𝐼𝑔𝑟𝑎𝑦 ⊙ (1 − 𝑀)

�̃�𝑔𝑡 = �̃�𝑔𝑡 ⊙ (1 − 𝑀)

𝐶𝑝𝑟𝑒𝑑 is the prediction result of the Edge Generator.

𝐼𝑔𝑡 = 𝐼𝑔𝑡 ⊙ (1 − 𝑀), 𝐼𝑔𝑡 is ground truth with missing regions.

𝐼𝑝𝑟𝑒𝑑 is the result of image inpainting.

Predicted edge map generated by generator (𝐺1) Edge Generator can be

expressed as：

𝐶𝑝𝑟𝑒𝑑 = 𝐺1(𝐼𝑔𝑟𝑎𝑦, �̃�𝑔𝑡, 𝑀)

The following loss function is constructed to train this adversarial network

to obtain the edge generator [1]:

8

ℒ𝑎𝑑𝑣,1 = 𝐸(𝐶𝑔𝑡,𝐼𝑔𝑟𝑎𝑦) log[𝐷1(𝐶𝑔𝑡, 𝐼𝑔𝑟𝑎𝑦)] + 𝐸𝐼𝑔𝑟𝑎𝑦
log[1 − 𝐷1 (𝐶𝑝𝑟𝑒𝑑, 𝐼𝑔𝑟𝑒𝑦)]

Equation 1.

ℒ𝑎𝑑𝑣,1 is adversarial loss.

ℒ𝐹𝑀 = 𝐸 [∑
1

𝑁𝑖

𝐿

𝑖=1

||𝐷1
(𝑖)

(𝐶𝑔𝑡) − 𝐷1
(𝑖)

(𝐶𝑝𝑟𝑒𝑑) ||1]

Equation 2.

ℒ𝐹𝑀 is feature map loss, the input image is discriminated using a pre-

trained VGG network, similar to PatchGAN, but since VGG is not trained to

extract the contour edges of an image, we cannot use the VGG results directly

[4]. We use ℒ to represent the last convolutional layer of the discriminator. 𝑁𝑖 is

the activation in the 𝑖'th layer of the discriminator.

The edge maps are discriminated using an edge discriminator that

combines the adversarial loss with the feature matching loss [1]:

𝑚𝑖𝑛
𝐺1

𝑚𝑎𝑥
𝐷1

ℒ𝐺1
=

𝑚𝑖𝑛
𝐺1

(𝜆𝑎𝑑𝑣,1

𝑚𝑎𝑥
𝐷1

(ℒ𝑎𝑑𝑣,1) + 𝜆𝐹𝑀ℒ𝐹𝑀)

Equation 3.

𝜆𝑎𝑑𝑣,1 = 1, 𝜆𝐹𝑚 = 10

Image Completion Network

As the right side of Figure 2, in image completion network, ground truth

with missing regions (𝐼𝑔𝑡) and composite edge map (𝐶𝑐𝑜𝑚𝑝) are used as inputs,

predicted result RGB image (𝐼𝑝𝑟𝑒𝑑) will be generated by inpainting generator, the

inpainting generator 𝐺1 is trained using the standard adversarial loss and the

feature matching loss.

9

Predicted result RGB image (𝐼𝑝𝑟𝑒𝑑) is generated by inpainting generator (

𝐺2) image completion generator can be expressed as [1]:

𝐼𝑝𝑟𝑒𝑑 = 𝐺2(𝐼𝑔𝑡, 𝐶𝑐𝑜𝑚𝑝)

Equation 4.

where 𝐶𝑐𝑜𝑚𝑝 = �̃�𝑔𝑡 ⊙ (1 – 𝑀) + 𝐶𝑝𝑟𝑒𝑑 ⊙ 𝑀, which is the combination of

the edge of the edge map with missing regions (�̃�𝑔𝑡 ⊙ （1 − M）) and the

edge predicted (𝐶𝑝𝑟𝑒𝑑 ⊙ 𝑀) by 𝐺1.

The following loss function is constructed to train this adversarial network

to obtain the Edge Generator [1].

ℒ𝑎𝑑𝑣,2 = 𝐸(𝐼𝑔𝑡,𝐶𝑐𝑜𝑚𝑝) log[𝐷2(𝐼𝑔𝑡, 𝐶𝑐𝑜𝑚𝑝)] + 𝐸𝐶𝑐𝑜𝑚𝑝
log[1 − 𝐷2 (𝐼𝑝𝑟𝑒𝑑, 𝐶𝑐𝑜𝑚𝑝)]

Equation 5.

ℒ𝑎𝑑𝑣,2 is adversarial loss.

ℒ𝑝𝑟𝑒𝑐 = 𝐸 [∑
1
𝑁𝑖

𝑖 ||𝜙1
(𝑖)

(𝐼𝑔𝑡) − 𝜙1
(𝑖)

(𝐼𝑝𝑟𝑒𝑑)||1]

Equation 6.

ℒ𝑝𝑟𝑒𝑐 is perceptual loss, the input images are discriminated using the pre-

trained VGG-19 network.

ℒ𝑠𝑡𝑦𝑙𝑒 = 𝐸𝑗[||𝐺𝑗
𝜙

(𝐼𝑝𝑟𝑒𝑑) − 𝐺𝑗
𝜙

(𝐼𝑔𝑡)||1]

Equation 7.

ℒ𝑠𝑡𝑦𝑙𝑒 is style loss. The 𝐺𝑗
𝜙

in Equation 7. is a Gram Matrix of 𝐶𝑗 × 𝐶𝑗

constructed on the activation function eigenmap 𝜙𝑗 [7].

10

The edge maps are discriminated using a map discriminator combining

absolute value parametrization (L1 distance 𝑙1), adversarial loss, perceptual loss,

and style loss [1].

ℒ𝐺2 = 𝜆𝑙1
ℒ𝑙2

+ 𝜆𝑎𝑑𝑣,2ℒ𝑎𝑑𝑣,2 + 𝜆𝑝ℒ𝑝𝑒𝑟𝑐 + 𝜆𝑠ℒ𝑠𝑡𝑦𝑙𝑒

Equation 8.

𝜆𝑙1
= 1, 𝜆𝑎𝑑𝑣,2 = 𝜆𝑝 = 0.1, 𝜆𝑠𝑡𝑦𝑙𝑒 = 250

Model training

A total of two programs are prepared for the experiment, one is the

original EdgeConnect, and the other is Improved EdgeConnect, kept the same as

that of original EdgeConnect except for the different edge detection used.

Edge model training

The edge model is working for edge generator (𝐺1) to generate predicted

edge map.

To train the edge model, it requires reading the edge map with missing

regions, greyscale image and mask as input for training, since edge map with

missing regions can be generated by canny edge detection or HED in improved

EdgeConnect, so the ground truth and the mask are inputted the program. The

program will combine the ground truth and mask into a masked image (image

with missing regions) like the left image in Figure 1 to generate an edge map with

missing regions by edge detection. The original image validation set to output

samples for validation, in order to show the model training results, every 1000

11

iterations, it will use some images selected from the image validation set and

mask validation set as input into the model to generate predicted edge map

samples.

The pixels of the image must can be divisible by 4, otherwise it is possible

to make the program stop by accident because the pixels before and after the

image convolution are different. For example, 402/4 = 100.5 ≈ 100, but 100 * 4 =

400, which means 100 doesn’t equal to 100.5.

Inpaint model training

The inpainting model is working for image completion network to generate

predicted RGB image. The model will fill in the color of the missing regions of

edge map which generated by edge detection.

To train the inpainting model, it is necessary to input masked image

(image with missing regions), edge map generated by Canny edge detector or

HED and mask, though the edge map of ground truth will be generated from in

program.

The model completes the image inpainting by coloring the edge map and

then filling the missing regions of the masked image.

Edge-inpaint training

After edge and inpaint models are trained, there is a third training, it

replaces the edge map in the inpainting model training with the predicted edge

map from the output of the edge model to improve the inpainting model. So

12

masked images, predicted edge map and mask are inputted and 𝐺2 generates

predicted RGB image.

The network structure of EdgeConnect inpainting approach is given in

Figure 2. The first generator G1 takes the mask, masked edge image and the

masked grayscale image as input and gives a predicted edge map. The second

generator G2 takes the predicted edge map and the masked RGB image as input

and outputs a predicted RGB image [8].

Model testing

The purpose of model testing is to verify the ability of the models’ image

inpainting through the actual output. In addition to observing the results to check

the model training effect, the results are also quantitatively measured using the

image inpainting metrics as evaluation.

In this section, the images in the test set need to be pre-masked outside

the program, and only the masked images set, and the mask set need to be

inputted, and they need to be aligned one to one in their respective folders (same

sorting order).

The program will read the masked image and mask, then generate a

predicted edge map by the edge generator 𝐺1, and then color the edge map

through the edge completion network 𝐺2, finally inpaint the missing regions of

masked image by colored edge map. The mask is used to determine what

regions of masked image need to be restored.

13

For now, the images with missing regions in test set are all restored as the

result of model testing, the results will be needed in evaluation later.

Finally, the test part is also actually the process of inpainting the image

after the models is all trained.

Evaluation

The output set of the model testing and the corresponding ground truth set

are used as the input for the evaluation. The two sets of images need to be in

one-to-one correspondence and have the same file name, otherwise the program

will not detect them. The two sets of data will be compared in terms of Peak

Signal-to-Noise Ratio (PSNR), Structural similarity (SSIM), Mean Absolute Error

(MAE) and Fréchet inception distance (FID). Through these metrics, we can see

the gap by scores between the restored image and the ground truth.

Summary

During the entire EdgeConnect process, the training part is the most

important part of the whole project. Although the edge detection only exists as

the first step, the edge map generated by the edge detection is used in almost

every step of the model training. Therefore, the accuracy of the edge map

determines the effect of the edge model and the inpaint model. It is no

exaggeration to say that the quality of the edge detector directly affects the

quality of image inpainting.

14

At the same time, the current use of EdgeConnect has some defects, such

as the model testing part, the software no longer provides automatic masking

function, but requires users to manually batch composite images with missing

regions outside the program. If users do not want to use Canny edge detector,

then they need to use an additional three folders to store the edge map and edge

map with missing regions which are needed to be manually preprocessed with

other edge detection outside the EdgeConnect.

In the program test, in most cases, even if some images’ pixels are not a

multiple of 4, the program can run normally, but the program always stops

running because of one of the images.

15

CHAPTER THREE

EXPERIMENT

Before experiment, there are some preparations need to be done to make

the experiment go smoothly.

Preparation work

Preprocessing

"makimg.py" is wrote and added to the project to generate mask images in

batches for the test set, which solved the problem of requiring manual masking in

the test part but could not find the script.

"batch_rezise.py" is wrote and added to the project, so that when the

number of files in training set, test set and validation set is too large and the

pixels of one image causing program stop cannot be found, the images and the

masks can be batch preprocessed to 256*256 or any unified specification like

500*500 to avoid program errors.

In order to avoid the need of pre-generating the edge map of HED outside

the EdgeConnect, the project provides two solutions, one is to rewrite and add

the "hed_processing.py" file to project to generate the edge map in batches

outside the EdgeConnect to use with the original EdgeConnect, the second is

integrating the HED into EdgeConnect allows the use of the HED in programs.

16

Dataset

The project has prepared two datasets, the first dataset is one of

EdgeConnect used in their paper called Places2 from Massachusetts Institute of

Technology, it includes over 400 unique scene categories. such as abbey,

badlands, campus, etc. [9].

The other database is downloaded from the web, it includes different

breeds of cats in different environments [10][11].

In addition, a mask dataset called Quick Draw Irregular Mask Dataset by

Karim Iskakov which is combination of 50 million strokes drawn by human hand.

The function of the mask dataset is to cover parts of the image in the original

image dataset, thereby forming a lost area on the original image [12].

In each dataset, 48,000 images are selected as the training set, limited by

the memory capacity of the graphics card, the batch size is different in different

parts of training, and 48000 is just a multiple of 3 batch sizes to ensure that the

samples are fully trained. 4,000 as the test set, and 4,000 as the validation set.

The training set is used to train the model to improve accuracy, and the validation

machine is used to generate image inpainting samples during the training

process to view the training effect of the current model and restore the images of

the test set through the trained model.

The script "maskimg.py" is used in advance to combine the ground truth

and mask into a masked image, which is convenient for the model testing later,

ground truth of test set also needed in the evaluation part.

17

HED

In Improved EdgeConnect, HED has been integrated for edge detection.

Structure

Figure 3 [10]. HED Network Structure.

The HED model consists of five layers of feature extraction architecture, in

each layer: layer feature maps are extracted using VGG blocks, layer outputs are

computed using layer feature maps, and layer outputs are up-sampled. Finally,

the final output of the model is fused with the output of the five layers: the

channel dimension is stitched with the output of the five layers 1x1 convolution to

fuse the layer outputs [10].

18

Loss function

Overall, this loss function has two parts: side-output is the prediction result

of five different scales in Figure 3, by up-sampling into the original Figure size,

and then doing cross-entropy with mask. Because there are five diagrams, the

loss is the sum of five. Five graphs fusion out of Y, fusion is the Y and the ground

truth of the cross-entropy.

𝑴 is number of Side output layers, W is the collection of all standard

network layer parameters, w is the corresponding weights, Index 𝑗 is over the

image spatial dimensions of image 𝑋, h is the fusion weight, �̂� is edge map

prediction, 𝐃𝐢𝐬𝐭(⋅,⋅) is the distance between the fused predictions and the ground

truth label map, which set as cross-entropy loss.

There is side out loss function and weight-fusion loss function,

ℒ𝑠𝑖𝑑𝑒(𝐖, 𝐰) = ∑ 𝛼𝑚ℓ𝑠𝑖𝑑𝑒
(𝑚)

(𝐖, 𝐰(𝒎))

𝑀

𝑚=1

Equation 9.

ℒ𝑓𝑢𝑠𝑒(𝐖, 𝐰, 𝐡) = Dist(𝑌, �̂�𝑓𝑢𝑠𝑒)

Equation 10.

the objective function when training the model is to minimize the sum of

the side branch ℒ𝑠𝑖𝑑𝑒(𝑊, 𝑤) and fuse loss ℒ𝑓𝑢𝑠𝑒(𝑊, 𝑤, ℎ) [10]:

(𝐖, 𝐰, 𝐡)∗ = argmin (ℒ𝑠𝑖𝑑𝑒(𝐖, 𝐰) + ℒ𝑓𝑢𝑠𝑒(𝐖, 𝐰, 𝐡))

Equation 11.

19

Comparison

The purpose of this experiments is to carry out the effect of two different

edge detectors on image inpainting, so in the experiments, the experiments

abandoned the use of the EdgeConnect author's model that has gone through

2,000,000 iterations, and instead trained it myself from 0 iteration. Since the

target number of iterations of my model is significantly less than the model of the

original author, the effect of the model has a significant worse compared to the

original author. Except for the difference in edge detectors, the two sets of

models were trained under the same learning rate, number of batches, learning

rate, and iterations, etc.

Edge model training

So, for the edge model training, Setting the learning rate at 0.0001 and set

the size of batches to 16, while setting the style loss weight at 250 to ensure the

best training effect. To ensure that both models have the same training

environment, the edge training for both groups will stop at 20 epochs.

Because the edge model training is directly based on the original edge

maps generated by the edge detection and predicted edge map generated by 𝐺1

affect the third part of model training, the edge maps have a direct impact on the

deep learning.

20

Figure 4. Edge Model Training Sample (Canny, Cat)

21

Figure 5. Edge Model Training Sample (HED, Cat)

In Figure 4, the first images in column are the ground truth (original

image). The second images in the column are the masked image (also input).

The third images in column are the edge map from ground truth by Canny edge

22

generator. The fourth images in column are the actual output of the network.

Finally, the fifth images in column are the combination of the third and fourth

images in column, the known area is from the third images in column and the

masked area is from the fourth images in column.

In Figure 5, the third images in column are the edge map from ground

truth by Canny edge generator and the others are same to Figure 4.

The process generates the predicted edge map by the edge model, then

use it to fill the missing regions of masked images’ edge map and check the

precision and recall after comparing the predicted edge map and original edge

map. Every 1000 iterations, the program will test the model by validation set, to

show the learning result of the model at that time.

As epochs increase, the edge predicted by the edge model will become

more and more accurate.

Figure 6. Precision of Canny and HED During the Edge Model Training (Cat)

23

Figure 7. Recall of Canny and HED During the Edge Model Training (Cat)

Precision means the percent of correctly predicted edge lines in all

predicted edge lines. Recall means the percent of correctly predicted edge lines

in all edge lines needed to be predicted.

After the edge model training, the difference between Canny edge

detection and HED can be seen from the accuracy and recall of feedback during

training. With the same learning rate, the edge restoration level of the edge

model learned through the edge map generated by HED higher than Canny's.

The same effect can also be seen from the edge training of the

comparative experiment based on another set of Places2 datasets.

24

Figure 8. Edge Model Training Sample (Canny, Placese2)

25

Figure 9. Edge Model Training Sample (HED, Placese2)

26

Figure 10. Precision Of Canny and HED During the Edge Model Training (Places2)

Figure 11. Recall Of Canny and HED During the Edge Model Training (Places2)

Inpaint model training

In the next training of the inpainting model, because the size of the input

becomes larger, the GPU memory must be increased to maintain the previous

batch size setting or reduce the size of the batch.

Therefore, in this section, other settings remain the same, but the batch

size is changed to 8. In the inpaint training, the model still needs the edge map

as input and then combines the colors of the ground truth with missing regions

and predicted RGB image.

In this training, the output (predicted RGB image) generated by the inpaint

model will be closer and closer to the ground truth, so the inpainting effect will be

better and better.

27

Figure 12. Inpaint Model Training Sample (Canny, Cat)

28

Figure 13. Inpaint Model Training Sample (HED, Cat)

29

Figure 14. Inpaint Model Training Sample (Canny, Places2)

30

Figure 15. Inpaint Model Training Sample (HED, Places2)

31

Figure 16. PSNR Of Canny and HED During the Inpaint Model Training (Places2)

Figure 17. MAE Of Canny and HED During the Inpaint Model Training (Places2)

On each row in Figure 12, starting from the left, first image is the ground

truth (original image), second image is the masked image (also input). The third

is the edge map from original image by Canny edge detection. The fourth image

is the actual output of the network. Finally, the last image is the combination of

the second and fourth image: the known area is from the second image and the

masked area is from the fourth image.

In Figure 13, the third image on column is the edge map from ground truth

by HED.

PSNR is peak signal-to-noise ratio, it is the basis for judging image noise.

The smaller the PSNR value, the more noise the image has, which means the

more blurred the image is, the worse the level of image restoration is.

MAE means Mean Absolute Error，it is used to reflect the error value

between the predicted image and the original image. The smaller the value, the

better restoration.

32

Although their difference is not large, it can be seen that HED's inpaint

model is still superior to Canny's. Because in the Figure 16 PSNR chart, the most

of blue value is under orange’s and also in Figure 17 MAE, the blue is always at

orange’s upside.

For consistency, both groups of model training were stopped after

completing 15 epochs.

Edge-inpaint training

The final edge-inpaint training only backpropagates for inpaint model but

use the output of edge model as edge input, this is for 𝐺2 to adapt to the

predicted edge map of 𝐺1 as input. Because the training requires the input of

both models, the memory requirement is increased again. Currently, the size of

batch processing is decreased to 6, and change the learning rate to 0.00001 to

help the model converge. This training ends after 10 epochs.

In other words, this third training just replaces the correct edge map with

the edge map predicted by the edge model to train the inpainting ability of the

inpaint model, which can well adjust the inpaint model to adapt to the edge

model, this also explains importance of edge detection for overall image

inpainting.

33

Figure 18. Edge-Inpaint Training Sample (Canny, Cat)

In Figure 18, the first images in column are the ground truth (original

image). The second images in column are the masked image (also input). The

third images in column are the predicted edge from the edge model (Canny). The

34

fourth images in column are the actual output of the network. Finally, the fifth

images in column are the combination of the second and fourth images in

column, the known area is from the second images in column and the masked

area are from the fourth images in column.

35

Figure 19. Edge-Inpaint Training Sample (HED, Cat)

In Figure 19, the third image in column is the predicted edge from the

edge model (HED).

36

Figure 20. Edge-Inpaint Training Sample (Canny, Places2)

37

Figure 21. Edge-Inpaint Training Sample (HED, Places2)

38

Figure 22. PSNR Of Canny and HED During the Edge Inpaint Model Training (Places2)

Figure 23. MAE Of Canny and HED During the Edge Inpaint Model Training (Places2)

The trend of edge-inpaint mode is similar to inpaint mode, most HED

scores are better than Canny's.

Evaluation

After training the model, put the test set with masked image into "test.py"

for image inpainting, and then put the results and the ground truth into

"metrics.py" and "fid-score.py" for scoring, finally obtain the average value of the

inpainting degree of test set images for the models trained based on two sets of

different edge detections:

39

Figure 24. Evaluation of Edgeconnect (Canny, Cat)

Figure 25. Evaluation of Edgeconnect (HED, Cat)

40

Table 2. The Metrics Score of Canny Edge Detection and HED (Cat)

 PSNR SSIM MAE FID

EdgeConnect
(Canny)

20.0498 0.7600 0.0536 47.9557

EdgeConnect
(HED)

20.4113 0.7779 0.0594 33.3415

Improvement + 1.8% + 2.3% - 10.8% + 30.47%

The “+” sign represents the improvement in performance, and the “-” sign
represents the decline in performance. Red numbers are better performance
scores.

Figure 26: Evaluation of EdgeConnect (Places2) 1

Figure 27: Evaluation of EdgeConnect (Places2) 2

41

Figure 28: Evaluation of EdgeConnect (Places2) 3

Table 3. The Metrics Score of Canny Edge Detection and HED (Places2)

 PSNR SSIM MAE FID

EdgeConnect
(Canny)

19.8260

0.7239

0.0603

34.2741

EdgeConnect
(HED)

20.4005

0.7497

0.0565

27.0358

Improvement + 2.90% + 3.56% + 6.3% + 21.12%

The “+” sign represents the improvement in performance, and the “-” sign
represents the decline in performance. Red numbers are better performance
scores

The term peak signal-to-noise ratio (PSNR) is most used to measure the

quality of reconstruction of lossy compression codecs (e.g., for image

compression). The signal in this case is the original data, and the noise is the

error introduced by compression. Typical values for the PSNR in lossy image and

video compression are between 30 and 50 dB, provided the bit depth is 8 bits

[13] High PSNR means good image quality and less ERROR introduced to the

image [14].

42

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
(𝐿 − 1)2

𝑀𝑆𝐸
) = 20𝑙𝑜𝑔10 (

𝐿 − 1

𝑅𝑀𝑆𝐸
)

Equation 12.

The structural similarity index measure (SSIM) measures image similarity

in terms of brightness, contrast, and structure, respectively. The value range of

SSIM is [0, 1], the larger the value, the smaller the image distortion [15].

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)

Equation 13.

Where 𝜇𝑥 is the average of x; 𝜇𝑦 is the average of y; 𝜎𝑥
2 is the variance of

x; 𝜎𝑦
2 is the variance of y; 𝜎𝑥𝑦 is the covariance of x and y.

𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 variables to stabilize the division with weak

denominator.

L is the dynamic range of the pixel-values (typically this is

2#𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 – 1).

𝑘1 = 0.01 and 𝑘2=0.03 by default.

The mean absolute error (MAE) is used to measure the mean absolute

error between the predicted value and the true value. The smaller the MAE, the

better the model [16]. It is defined as follows:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖

𝑛

𝑖=1

− 𝑦�̂�|, 𝑀𝐴𝐸𝜖[0, +∞)

Equation 14.

43

The Fréchet Inception Distance score (FID) is a measure of calculating the

distance between the real image and the feature vector of the generated image,

the smaller the index value, the more similar the generated image is to the real

image, it can be computed from the mean and the covariance of the activations

when the synthesized and real images are fed into the Inception network as [17]:

𝐹𝐼𝐷 = ||𝜇 − 𝜇𝑤||2
2 + 𝑡𝑟 (𝛴 + 𝛴𝑤 − 2 (𝛴

1
2𝛴𝑤𝛴

1
2)

1
2

)

Equation 15.

As can be seen from the Table 2, EdgeConnect (HED) is better than

EdgeConnect (Canny) in three of the four matrices, and the difference in MAE is

only 0.0058, which is not a big difference.

In Table 3, in PSNR, lager on is better, SSIM larger on better, MAE

smaller one better, FID, Smaller one better, so, the EdgeConnect with HED is

better than Canny's in all four metrics. Therefore, replacing Canny edge detection

with HED has a considerable improvement in image inpainting.

44

CHAPTER FOUR

CONCLUSION AND FUTURE WORK

Improved EdgeConnect

The original EdgeConnect uses Canny edge detection to generate edge

maps by default, but it can be seen from the above comparative experiments that

a better edge detection can significantly improve the image inpainting algorithm

and results. In the project, HED is integrated into EdgeConnect, which improves

the effect of edge model and inpainting model and thus makes the effect of

image inpainting better.

During the implementation, the HED batch program is added to project,

which is outside the EdgeConnect to generate edge maps in batches, and then

the training set, test set, and validation set folders for the third-party edge

detection reserved by the original author are used to train the edge and

inpainting models.

The improved EdgeConnect allows the choice of edge detection: either

Canny or HED edge detection.

Therefore, compared with the original EdgeConnect, little has changed in

the way the program is used, but the image inpainting quality has been greatly

improved. The implementation makes it easier for performance comparison. It

also allows integration with other edge detection methods in the future.

Future Work

The following regions can the considered for future work.

45

1) Increasing the training time and the number of training set allows the

model to be better trained to improve the accuracy of image inpainting.

2) Developing a better method to estimate the degree of convergence,

alternating Model 2 and Model 3 with regular training might improve the

effect of the inpaint model.

3) Using Canny and HED to train alternately in the improved EdgeConnect,

integrate the results to see if it can help get better result.

4) The occasional problem that the image resolution is not consistent before

and after convolution can be solved in program, for example, by numerical

conversion in program.

5) Since HED also uses deep learning, we can improve the accuracy of

image inpainting by improving the accuracy of edge detection.

6) Fragmentary functions outside the main program, such as adding masks

to images, benchmark, etc., can be integrated into the main program for

further automation.

46

APPENDIX A

CODE

47

MAIN.PY

import os

import cv2

import random

import numpy as np

import torch

import argparse

from shutil import copyfile

from src.config import Config

from src.edge_connect import EdgeConnect

def main(mode=None):

 r"""starts the model

 Args:

 mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified

 """

 config = load_config(mode)

 # cuda visble devices

 os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in config.GPU)

48

 print(os.environ['CUDA_VISIBLE_DEVICES'])

 # init device

 if torch.cuda.is_available():

 config.DEVICE = torch.device("cuda")

 torch.backends.cudnn.benchmark = True # cudnn auto-tuner

 print("using GPU")

 else:

 config.DEVICE = torch.device("cpu")

 print("using CPU")

 # set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader)

 cv2.setNumThreads(0)

 # initialize random seed

 torch.manual_seed(config.SEED)

 torch.cuda.manual_seed_all(config.SEED)

 np.random.seed(config.SEED)

 random.seed(config.SEED)

49

 # build the model and initialize

 model = EdgeConnect(config)

 model.load()

 # model training

 if config.MODE == 1:

 config.print()

 print('\nstart training...\n')

 model.train()

 # model test

 elif config.MODE == 2:

 print('\nstart testing...\n')

 model.test()

 # eval mode

 else:

 print('\nstart eval...\n')

 model.eval()

50

def load_config(mode=None):

 r"""loads model config

 Args:

 mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified

 """

 parser = argparse.ArgumentParser()

 parser.add_argument('--path', '--checkpoints', type=str, default='./checkpoints',

help='model checkpoints path (default: ./checkpoints)')

 parser.add_argument('--model', type=int, choices=[1, 2, 3, 4], help='1: edge model, 2:

inpaint model, 3: edge-inpaint model, 4: joint model')

 # test mode

 if mode == 2:

 parser.add_argument('--input', type=str, help='path to the input images directory or an

input image')

 parser.add_argument('--mask', type=str, help='path to the masks directory or a mask

file')

 parser.add_argument('--edge', type=str, help='path to the edges directory or an edge

file')

 parser.add_argument('--output', type=str, help='path to the output directory')

 args = parser.parse_args()

51

 config_path = os.path.join(args.path, 'config.yml')

 # create checkpoints path if does't exist

 if not os.path.exists(args.path):

 os.makedirs(args.path)

 # copy config template if does't exist

 if not os.path.exists(config_path):

 copyfile('./config.yml.example', config_path)

 # load config file

 config = Config(config_path)

 # train mode

 if mode == 1:

 config.MODE = 1

 if args.model:

 config.MODEL = args.model

 # test mode

 elif mode == 2:

 config.MODE = 2

 config.MODEL = args.model if args.model is not None else 3

 config.INPUT_SIZE = 0

52

 if args.input is not None:

 config.TEST_FLIST = args.input

 if args.mask is not None:

 config.TEST_MASK_FLIST = args.mask

 if args.edge is not None:

 config.TEST_EDGE_FLIST = args.edge

 if args.output is not None:

 config.RESULTS = args.output

 # eval mode

 elif mode == 3:

 config.MODE = 3

 config.MODEL = args.model if args.model is not None else 3

 return config

if __name__ == "__main__":

 main()

53

54

EDGE_CONNECT.PY

import os

from pickle import GLOBAL

import numpy as np

import torch

from torch.utils.data import DataLoader

from .dataset import Dataset, CropLayer

from .models import EdgeModel, InpaintingModel

from .utils import Progbar, create_dir, stitch_images, imsave

from .metrics import PSNR, EdgeAccuracy

import cv2

import time

class EdgeConnect():

 def __init__(self, config):

 self.config = config

 if config.MODEL == 1:

 model_name = 'edge'

 elif config.MODEL == 2:

 model_name = 'inpaint'

55

 elif config.MODEL == 3:

 model_name = 'edge_inpaint'

 elif config.MODEL == 4:

 model_name = 'joint'

 self.debug = False

 self.model_name = model_name

 self.edge_model = EdgeModel(config).to(config.DEVICE)

 self.inpaint_model = InpaintingModel(config).to(config.DEVICE)

 self.psnr = PSNR(255.0).to(config.DEVICE)

 self.edgeacc = EdgeAccuracy(config.EDGE_THRESHOLD).to(config.DEVICE)

 # test mode

 if self.config.MODE == 2:

 self.test_dataset = Dataset(config, config.TEST_FLIST, config.TEST_EDGE_FLIST,

config.TEST_MASK_FLIST, augment=False, training=False)

 else:

 self.train_dataset = Dataset(config, config.TRAIN_FLIST, config.TRAIN_EDGE_FLIST,

config.TRAIN_MASK_FLIST, augment=True, training=True)

56

 self.val_dataset = Dataset(config, config.VAL_FLIST, config.VAL_EDGE_FLIST,

config.VAL_MASK_FLIST, augment=False, training=True)

 self.sample_iterator = self.val_dataset.create_iterator(config.SAMPLE_SIZE)

 self.samples_path = os.path.join(config.PATH, 'samples')

 self.results_path = os.path.join(config.PATH, 'results')

 if config.RESULTS is not None:

 self.results_path = os.path.join(config.RESULTS)

 if config.DEBUG is not None and config.DEBUG != 0:

 self.debug = True

 self.log_file = os.path.join(config.PATH, 'log_' + model_name + '.dat')

 def load(self):

 if self.config.MODEL == 1:

 self.edge_model.load()

 elif self.config.MODEL == 2:

 self.inpaint_model.load()

 else:

 self.edge_model.load()

57

 self.inpaint_model.load()

 def save(self):

 if self.config.MODEL == 1:

 self.edge_model.save()

 elif self.config.MODEL == 2 or self.config.MODEL == 3:

 self.inpaint_model.save()

 else:

 self.edge_model.save()

 self.inpaint_model.save()

 def train(self):

 train_loader = DataLoader(

 dataset=self.train_dataset,

 batch_size=self.config.BATCH_SIZE,

 num_workers=4,

 drop_last=True,

 shuffle=True

)

 epoch = 0

 keep_training = True

58

 model = self.config.MODEL

 max_iteration = int(float((self.config.MAX_ITERS)))

 total = len(self.train_dataset)

 if total == 0:

 print('No training data was provided! Check \'TRAIN_FLIST\' value in the configuration file.')

 return

 while(keep_training):

 epoch += 1

 print('\n\nTraining epoch: %d' % epoch)

 progbar = Progbar(total, width=20, stateful_metrics=['epoch', 'iter'])

 for items in train_loader:

 self.edge_model.train()

 self.inpaint_model.train()

 images, images_gray, edges, masks = self.cuda(*items)

 # edge model

 if model == 1:

 # train

59

 outputs, gen_loss, dis_loss, logs = self.edge_model.process(images_gray, edges, masks)

 # metrics

 precision, recall = self.edgeacc(edges * masks, outputs * masks)

 logs.append(('precision', precision.item()))

 logs.append(('recall', recall.item()))

 # backward

 self.edge_model.backward(gen_loss, dis_loss)

 iteration = self.edge_model.iteration

 # inpaint model

 elif model == 2:

 # train

 outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, edges, masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 # metrics

 psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

 mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()

 logs.append(('psnr', psnr.item()))

 logs.append(('mae', mae.item()))

60

 # backward

 self.inpaint_model.backward(gen_loss, dis_loss)

 iteration = self.inpaint_model.iteration

 # inpaint with edge model

 elif model == 3:

 # train

 if True or np.random.binomial(1, 0.5) > 0:

 outputs = self.edge_model(images_gray, edges, masks)

 outputs = outputs * masks + edges * (1 - masks)

 else:

 outputs = edges

 outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, outputs.detach(),

masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 # metrics

 psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

 mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()

 logs.append(('psnr', psnr.item()))

 logs.append(('mae', mae.item()))

61

 # backward

 self.inpaint_model.backward(gen_loss, dis_loss)

 iteration = self.inpaint_model.iteration

 # joint model

 else:

 # train

 e_outputs, e_gen_loss, e_dis_loss, e_logs = self.edge_model.process(images_gray, edges,

masks)

 e_outputs = e_outputs * masks + edges * (1 - masks)

 i_outputs, i_gen_loss, i_dis_loss, i_logs = self.inpaint_model.process(images, e_outputs,

masks)

 outputs_merged = (i_outputs * masks) + (images * (1 - masks))

 # metrics

 psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

 mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()

 precision, recall = self.edgeacc(edges * masks, e_outputs * masks)

 e_logs.append(('pre', precision.item()))

 e_logs.append(('rec', recall.item()))

 i_logs.append(('psnr', psnr.item()))

 i_logs.append(('mae', mae.item()))

 logs = e_logs + i_logs

62

 # backward

 self.inpaint_model.backward(i_gen_loss, i_dis_loss)

 self.edge_model.backward(e_gen_loss, e_dis_loss)

 iteration = self.inpaint_model.iteration

 if iteration >= max_iteration:

 keep_training = False

 break

 logs = [

 ("epoch", epoch),

 ("iter", iteration),

] + logs

 progbar.add(len(images), values=logs if self.config.VERBOSE else [x for x in logs if not

x[0].startswith('l_')])

 # log model at checkpoints

 if self.config.LOG_INTERVAL and iteration % self.config.LOG_INTERVAL == 0:

 self.log(logs)

 # sample model at checkpoints

63

 if self.config.SAMPLE_INTERVAL and iteration % self.config.SAMPLE_INTERVAL == 0:

 self.sample()

 # evaluate model at checkpoints

 if self.config.EVAL_INTERVAL and iteration % self.config.EVAL_INTERVAL == 0:

 print('\nstart eval...\n')

 self.eval()

 # save model at checkpoints

 if self.config.SAVE_INTERVAL and iteration % self.config.SAVE_INTERVAL == 0:

 self.save()

 print('\nEnd training....')

 def eval(self):

 val_loader = DataLoader(

 dataset=self.val_dataset,

 batch_size=self.config.BATCH_SIZE,

 drop_last=True,

 shuffle=True

)

 model = self.config.MODEL

 total = len(self.val_dataset)

64

 self.edge_model.eval()

 self.inpaint_model.eval()

 progbar = Progbar(total, width=20, stateful_metrics=['it'])

 iteration = 0

 for items in val_loader:

 iteration += 1

 images, images_gray, edges, masks = self.cuda(*items)

 # edge model

 if model == 1:

 # eval

 outputs, gen_loss, dis_loss, logs = self.edge_model.process(images_gray, edges, masks)

 # metrics

 precision, recall = self.edgeacc(edges * masks, outputs * masks)

 logs.append(('precision', precision.item()))

 logs.append(('recall', recall.item()))

 # inpaint model

65

 elif model == 2:

 # eval

 outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, edges, masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 # metrics

 psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

 mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()

 logs.append(('psnr', psnr.item()))

 logs.append(('mae', mae.item()))

 # inpaint with edge model

 elif model == 3:

 # eval

 outputs = self.edge_model(images_gray, edges, masks)

 outputs = outputs * masks + edges * (1 - masks)

 outputs, gen_loss, dis_loss, logs = self.inpaint_model.process(images, outputs.detach(),

masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 # metrics

 psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

66

 mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()

 logs.append(('psnr', psnr.item()))

 logs.append(('mae', mae.item()))

 # joint model

 else:

 # eval

 e_outputs, e_gen_loss, e_dis_loss, e_logs = self.edge_model.process(images_gray, edges,

masks)

 e_outputs = e_outputs * masks + edges * (1 - masks)

 i_outputs, i_gen_loss, i_dis_loss, i_logs = self.inpaint_model.process(images, e_outputs, masks)

 outputs_merged = (i_outputs * masks) + (images * (1 - masks))

 # metrics

 psnr = self.psnr(self.postprocess(images), self.postprocess(outputs_merged))

 mae = (torch.sum(torch.abs(images - outputs_merged)) / torch.sum(images)).float()

 precision, recall = self.edgeacc(edges * masks, e_outputs * masks)

 e_logs.append(('pre', precision.item()))

 e_logs.append(('rec', recall.item()))

 i_logs.append(('psnr', psnr.item()))

 i_logs.append(('mae', mae.item()))

 logs = e_logs + i_logs

67

 logs = [("it", iteration),] + logs

 progbar.add(len(images), values=logs)

 def test(self):

 self.edge_model.eval()

 self.inpaint_model.eval()

 model = self.config.MODEL

 create_dir(self.results_path)

 test_loader = DataLoader(

 dataset=self.test_dataset,

 batch_size=1,

)

 index = 0

 for items in test_loader:

 name = self.test_dataset.load_name(index)

 images, images_gray, edges, masks = self.cuda(*items)

 index += 1

 # edge model

68

 if model == 1:

 outputs = self.edge_model(images_gray, edges, masks)

 outputs_merged = (outputs * masks) + (edges * (1 - masks))

 # inpaint model

 elif model == 2:

 outputs = self.inpaint_model(images, edges, masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 # inpaint with edge model / joint model

 else:

 edges = self.edge_model(images_gray, edges, masks).detach()

 outputs = self.inpaint_model(images, edges, masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 output = self.postprocess(outputs_merged)[0]

 path = os.path.join(self.results_path, name)

 print(index, name)

 imsave(output, path)

 if self.debug:

 edges = self.postprocess(1 - edges)[0]

 masked = self.postprocess(images * (1 - masks) + masks)[0]

69

 fname, fext = name.split('.')

 imsave(edges, os.path.join(self.results_path, fname + '_edge.' + fext))

 imsave(masked, os.path.join(self.results_path, fname + '_masked.' + fext))

 print('\nEnd test....')

 def sample(self, it=None):

 # do not sample when validation set is empty

 if len(self.val_dataset) == 0:

 return

 self.edge_model.eval()

 self.inpaint_model.eval()

 model = self.config.MODEL

 items = next(self.sample_iterator)

 images, images_gray, edges, masks = self.cuda(*items)

 # edge model

 if model == 1:

 iteration = self.edge_model.iteration

 inputs = (images_gray * (1 - masks)) + masks

 outputs = self.edge_model(images_gray, edges, masks)

70

 outputs_merged = (outputs * masks) + (edges * (1 - masks))

 # inpaint model

 elif model == 2:

 iteration = self.inpaint_model.iteration

 inputs = (images * (1 - masks)) + masks

 outputs = self.inpaint_model(images, edges, masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 # inpaint with edge model / joint model

 else:

 iteration = self.inpaint_model.iteration

 inputs = (images * (1 - masks)) + masks

 outputs = self.edge_model(images_gray, edges, masks).detach()

 edges = (outputs * masks + edges * (1 - masks)).detach()

 outputs = self.inpaint_model(images, edges, masks)

 outputs_merged = (outputs * masks) + (images * (1 - masks))

 if it is not None:

 iteration = it

 image_per_row = 2

 if self.config.SAMPLE_SIZE <= 6:

 image_per_row = 1

71

 images = stitch_images(

 self.postprocess(images),

 self.postprocess(inputs),

 self.postprocess(edges),

 self.postprocess(outputs),

 self.postprocess(outputs_merged),

 img_per_row = image_per_row

)

 path = os.path.join(self.samples_path, self.model_name)

 name = os.path.join(path, str(iteration).zfill(5) + ".png")

 create_dir(path)

 print('\nsaving sample ' + name)

 images.save(name)

 def log(self, logs):

 with open(self.log_file, 'a') as f:

 f.write('%s\n' % ' '.join([str(item[1]) for item in logs]))

 def cuda(self, *args):

 return (item.to(self.config.DEVICE) for item in args)

72

 def postprocess(self, img):

 # [0, 1] => [0, 255]

 img = img * 255.0

 img = img.permute(0, 2, 3, 1)

 return img.int()

73

MODELS.PY

import os

import torch

import torch.nn as nn

import torch.optim as optim

from .networks import InpaintGenerator, EdgeGenerator, Discriminator

from .loss import AdversarialLoss, PerceptualLoss, StyleLoss

class BaseModel(nn.Module):

 def __init__(self, name, config):

 super(BaseModel, self).__init__()

 self.name = name

 self.config = config

 self.iteration = 0

 self.gen_weights_path = os.path.join(config.PATH, name + '_gen.pth')

 self.dis_weights_path = os.path.join(config.PATH, name + '_dis.pth')

 def load(self):

 if os.path.exists(self.gen_weights_path):

 print('Loading %s generator...' % self.name)

74

 if torch.cuda.is_available():

 data = torch.load(self.gen_weights_path)

 else:

 data = torch.load(self.gen_weights_path, map_location=lambda storage, loc:

storage)

 self.generator.load_state_dict(data['generator'])

 self.iteration = data['iteration']

 # load discriminator only when training

 if self.config.MODE == 1 and os.path.exists(self.dis_weights_path):

 print('Loading %s discriminator...' % self.name)

 if torch.cuda.is_available():

 data = torch.load(self.dis_weights_path)

 else:

 data = torch.load(self.dis_weights_path, map_location=lambda storage, loc: storage)

 self.discriminator.load_state_dict(data['discriminator'])

 def save(self):

 print('\nsaving %s...\n' % self.name)

 torch.save({

 'iteration': self.iteration,

75

 'generator': self.generator.state_dict()

 }, self.gen_weights_path)

 torch.save({

 'discriminator': self.discriminator.state_dict()

 }, self.dis_weights_path)

class EdgeModel(BaseModel):

 def __init__(self, config):

 super(EdgeModel, self).__init__('EdgeModel', config)

 # generator input: [grayscale(1) + edge(1) + mask(1)]

 # discriminator input: (grayscale(1) + edge(1))

 generator = EdgeGenerator(use_spectral_norm=True)

 discriminator = Discriminator(in_channels=2, use_sigmoid=config.GAN_LOSS != 'hinge')

 if len(config.GPU) > 1:

 generator = nn.DataParallel(generator, config.GPU)

 discriminator = nn.DataParallel(discriminator, config.GPU)

 l1_loss = nn.L1Loss()

 adversarial_loss = AdversarialLoss(type=config.GAN_LOSS)

 self.add_module('generator', generator)

 self.add_module('discriminator', discriminator)

76

 self.add_module('l1_loss', l1_loss)

 self.add_module('adversarial_loss', adversarial_loss)

 self.gen_optimizer = optim.Adam(

 params=generator.parameters(),

 lr=float(config.LR),

 betas=(config.BETA1, config.BETA2)

)

 self.dis_optimizer = optim.Adam(

 params=discriminator.parameters(),

 lr=float(config.LR) * float(config.D2G_LR),

 betas=(config.BETA1, config.BETA2)

)

 def process(self, images, edges, masks):

 self.iteration += 1

 # zero optimizers

 self.gen_optimizer.zero_grad()

 self.dis_optimizer.zero_grad()

77

 # process outputs

 outputs = self(images, edges, masks)

 gen_loss = 0

 dis_loss = 0

 # discriminator loss

 dis_input_real = torch.cat((images, edges), dim=1)

 dis_input_fake = torch.cat((images, outputs.detach()), dim=1)

 dis_real, dis_real_feat = self.discriminator(dis_input_real) # in: (grayscale(1) + edge(1))

 dis_fake, dis_fake_feat = self.discriminator(dis_input_fake) # in: (grayscale(1) +

edge(1))

 dis_real_loss = self.adversarial_loss(dis_real, True, True)

 dis_fake_loss = self.adversarial_loss(dis_fake, False, True)

 dis_loss += (dis_real_loss + dis_fake_loss) / 2

 # generator adversarial loss

 gen_input_fake = torch.cat((images, outputs), dim=1)

 gen_fake, gen_fake_feat = self.discriminator(gen_input_fake) # in: (grayscale(1) +

edge(1))

 gen_gan_loss = self.adversarial_loss(gen_fake, True, False)

 gen_loss += gen_gan_loss

78

 # generator feature matching loss

 gen_fm_loss = 0

 for i in range(len(dis_real_feat)):

 gen_fm_loss += self.l1_loss(gen_fake_feat[i], dis_real_feat[i].detach())

 gen_fm_loss = gen_fm_loss * self.config.FM_LOSS_WEIGHT

 gen_loss += gen_fm_loss

 # create logs

 logs = [

 ("l_d1", dis_loss.item()),

 ("l_g1", gen_gan_loss.item()),

 ("l_fm", gen_fm_loss.item()),

]

 return outputs, gen_loss, dis_loss, logs

 def forward(self, images, edges, masks):

 edges_masked = (edges * (1 - masks))

 images_masked = (images * (1 - masks)) + masks

 inputs = torch.cat((images_masked, edges_masked, masks), dim=1)

79

 outputs = self.generator(inputs) # in: [grayscale(1) + edge(1) +

mask(1)]

 return outputs

 def backward(self, gen_loss=None, dis_loss=None):

 if dis_loss is not None:

 dis_loss.backward()

 self.dis_optimizer.step()

 if gen_loss is not None:

 gen_loss.backward()

 self.gen_optimizer.step()

class InpaintingModel(BaseModel):

 def __init__(self, config):

 super(InpaintingModel, self).__init__('InpaintingModel', config)

 # generator input: [rgb(3) + edge(1)]

 # discriminator input: [rgb(3)]

 generator = InpaintGenerator()

 discriminator = Discriminator(in_channels=3, use_sigmoid=config.GAN_LOSS != 'hinge')

 if len(config.GPU) > 1:

 generator = nn.DataParallel(generator, config.GPU)

80

 discriminator = nn.DataParallel(discriminator , config.GPU)

 l1_loss = nn.L1Loss()

 perceptual_loss = PerceptualLoss()

 style_loss = StyleLoss()

 adversarial_loss = AdversarialLoss(type=config.GAN_LOSS)

 self.add_module('generator', generator)

 self.add_module('discriminator', discriminator)

 self.add_module('l1_loss', l1_loss)

 self.add_module('perceptual_loss', perceptual_loss)

 self.add_module('style_loss', style_loss)

 self.add_module('adversarial_loss', adversarial_loss)

 self.gen_optimizer = optim.Adam(

 params=generator.parameters(),

 lr=float(config.LR),

 betas=(config.BETA1, config.BETA2)

)

 self.dis_optimizer = optim.Adam(

 params=discriminator.parameters(),

 lr=float(config.LR) * float(config.D2G_LR),

81

 betas=(config.BETA1, config.BETA2)

)

 def process(self, images, edges, masks):

 self.iteration += 1

 # zero optimizers

 self.gen_optimizer.zero_grad()

 self.dis_optimizer.zero_grad()

 # process outputs

 outputs = self(images, edges, masks)

 gen_loss = 0

 dis_loss = 0

 # discriminator loss

 dis_input_real = images

 dis_input_fake = outputs.detach()

 dis_real, _ = self.discriminator(dis_input_real) # in: [rgb(3)]

 dis_fake, _ = self.discriminator(dis_input_fake) # in: [rgb(3)]

 dis_real_loss = self.adversarial_loss(dis_real, True, True)

 dis_fake_loss = self.adversarial_loss(dis_fake, False, True)

82

 dis_loss += (dis_real_loss + dis_fake_loss) / 2

 # generator adversarial loss

 gen_input_fake = outputs

 gen_fake, _ = self.discriminator(gen_input_fake) # in: [rgb(3)]

 gen_gan_loss = self.adversarial_loss(gen_fake, True, False) *

self.config.INPAINT_ADV_LOSS_WEIGHT

 gen_loss += gen_gan_loss

 # generator l1 loss

 gen_l1_loss = self.l1_loss(outputs, images) * self.config.L1_LOSS_WEIGHT /

torch.mean(masks)

 gen_loss += gen_l1_loss

 # generator perceptual loss

 gen_content_loss = self.perceptual_loss(outputs, images)

 gen_content_loss = gen_content_loss * self.config.CONTENT_LOSS_WEIGHT

 gen_loss += gen_content_loss

 # generator style loss

83

 gen_style_loss = self.style_loss(outputs * masks, images * masks)

 gen_style_loss = gen_style_loss * self.config.STYLE_LOSS_WEIGHT

 gen_loss += gen_style_loss

 # create logs

 logs = [

 ("l_d2", dis_loss.item()),

 ("l_g2", gen_gan_loss.item()),

 ("l_l1", gen_l1_loss.item()),

 ("l_per", gen_content_loss.item()),

 ("l_sty", gen_style_loss.item()),

]

 return outputs, gen_loss, dis_loss, logs

 def forward(self, images, edges, masks):

 images_masked = (images * (1 - masks).float()) + masks

 inputs = torch.cat((images_masked, edges), dim=1)

 outputs = self.generator(inputs) # in: [rgb(3) + edge(1)]

 return outputs

 def backward(self, gen_loss=None, dis_loss=None):

 dis_loss.backward()

84

 self.dis_optimizer.step()

 gen_loss.backward()

 self.gen_optimizer.step()

85

86

METRICS.PY

import numpy as np

import argparse

import matplotlib.pyplot as plt

from glob import glob

from ntpath import basename

from scipy.misc import imread

from skimage.measure import compare_ssim

from skimage.measure import compare_psnr

from skimage.color import rgb2gray

def parse_args():

 parser = argparse.ArgumentParser(description='script to compute all statistics')

 parser.add_argument('--data-path', help='Path to ground truth data', type=str)

 parser.add_argument('--output-path', help='Path to output data', type=str)

 parser.add_argument('--debug', default=0, help='Debug', type=int)

 args = parser.parse_args()

 return args

def compare_mae(img_true, img_test):

 img_true = img_true.astype(np.float32)

87

 img_test = img_test.astype(np.float32)

 return np.sum(np.abs(img_true - img_test)) / np.sum(img_true + img_test)

args = parse_args()

for arg in vars(args):

 print('[%s] =' % arg, getattr(args, arg))

path_true = args.data_path

path_pred = args.output_path

psnr = []

ssim = []

mae = []

names = []

index = 1

files = list(glob(path_true + '/*.jpg')) + list(glob(path_true + '/*.png'))

for fn in sorted(files):

 name = basename(str(fn))

 names.append(name)

 img_gt = (imread(str(fn)) / 255.0).astype(np.float32)

 img_pred = (imread(path_pred + '/' + basename(str(fn))) / 255.0).astype(np.float32)

88

 img_gt = rgb2gray(img_gt)

 img_pred = rgb2gray(img_pred)

 if args.debug != 0:

 plt.subplot('121')

 plt.imshow(img_gt)

 plt.title('Groud truth')

 plt.subplot('122')

 plt.imshow(img_pred)

 plt.title('Output')

 plt.show()

 psnr.append(compare_psnr(img_gt, img_pred, data_range=1))

 ssim.append(compare_ssim(img_gt, img_pred, data_range=1, win_size=51))

 mae.append(compare_mae(img_gt, img_pred))

 if np.mod(index, 100) == 0:

 print(

 str(index) + ' images processed',

 "PSNR: %.4f" % round(np.mean(psnr), 4),

 "SSIM: %.4f" % round(np.mean(ssim), 4),

 "MAE: %.4f" % round(np.mean(mae), 4),

)

 index += 1

89

np.savez(args.output_path + '/metrics.npz', psnr=psnr, ssim=ssim, mae=mae, names=names)

print(

 "PSNR: %.4f" % round(np.mean(psnr), 4),

 "PSNR Variance: %.4f" % round(np.var(psnr), 4),

 "SSIM: %.4f" % round(np.mean(ssim), 4),

 "SSIM Variance: %.4f" % round(np.var(ssim), 4),

 "MAE: %.4f" % round(np.mean(mae), 4),

 "MAE Variance: %.4f" % round(np.var(mae), 4)

)

90

91

FID_SCORE.PY

import os

import pathlib

from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

import torch

import numpy as np

from scipy.misc import imread

from scipy import linalg

from torch.autograd import Variable

from torch.nn.functional import adaptive_avg_pool2d

from inception import InceptionV3

parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)

parser.add_argument('--path', type=str, nargs=2, help=('Path to the generated images or

to .npz statistic files'))

parser.add_argument('--batch-size', type=int, default=64, help='Batch size to use')

parser.add_argument('--dims', type=int, default=2048,

choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), help=('Dimensionality of Inception features to use. By

default, uses pool3 features'))

parser.add_argument('-c', '--gpu', default='', type=str, help='GPU to use (leave blank for CPU

only)')

92

def get_activations(images, model, batch_size=64, dims=2048,

 cuda=False, verbose=False):

 """Calculates the activations of the pool_3 layer for all images.

 Params:

 -- images : Numpy array of dimension (n_images, 3, hi, wi). The values

 must lie between 0 and 1.

 -- model : Instance of inception model

 -- batch_size : the images numpy array is split into batches with

 batch size batch_size. A reasonable batch size depends

 on the hardware.

 -- dims : Dimensionality of features returned by Inception

 -- cuda : If set to True, use GPU

 -- verbose : If set to True and parameter out_step is given, the number

 of calculated batches is reported.

 Returns:

 -- A numpy array of dimension (num images, dims) that contains the

 activations of the given tensor when feeding inception with the

 query tensor.

 """

 model.eval()

 d0 = images.shape[0]

93

 if batch_size > d0:

 print(('Warning: batch size is bigger than the data size. '

 'Setting batch size to data size'))

 batch_size = d0

 n_batches = d0 // batch_size

 n_used_imgs = n_batches * batch_size

 pred_arr = np.empty((n_used_imgs, dims))

 for i in range(n_batches):

 if verbose:

 print('\rPropagating batch %d/%d' % (i + 1, n_batches),

 end='', flush=True)

 start = i * batch_size

 end = start + batch_size

 batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor)

 batch = Variable(batch, volatile=True)

 if cuda:

 batch = batch.cuda()

 pred = model(batch)[0]

 # If model output is not scalar, apply global spatial average pooling.

94

 # This happens if you choose a dimensionality not equal 2048.

 if pred.shape[2] != 1 or pred.shape[3] != 1:

 pred = adaptive_avg_pool2d(pred, output_size=(1, 1))

 pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)

 if verbose:

 print(' done')

 return pred_arr

def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):

 """Numpy implementation of the Frechet Distance.

 The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)

 and X_2 ~ N(mu_2, C_2) is

 d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

 Stable version by Dougal J. Sutherland.

 Params:

 -- mu1 : Numpy array containing the activations of a layer of the

 inception net (like returned by the function 'get_predictions')

 for generated samples.

 -- mu2 : The sample mean over activations, precalculated on an

 representive data set.

95

 -- sigma1: The covariance matrix over activations for generated samples.

 -- sigma2: The covariance matrix over activations, precalculated on an

 representive data set.

 Returns:

 -- : The Frechet Distance.

 """

 mu1 = np.atleast_1d(mu1)

 mu2 = np.atleast_1d(mu2)

 sigma1 = np.atleast_2d(sigma1)

 sigma2 = np.atleast_2d(sigma2)

 assert mu1.shape == mu2.shape, \

 'Training and test mean vectors have different lengths'

 assert sigma1.shape == sigma2.shape, \

 'Training and test covariances have different dimensions'

 diff = mu1 - mu2

 # Product might be almost singular

 covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)

 if not np.isfinite(covmean).all():

 msg = ('fid calculation produces singular product; '

96

 'adding %s to diagonal of cov estimates') % eps

 print(msg)

 offset = np.eye(sigma1.shape[0]) * eps

 covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

 # Numerical error might give slight imaginary component

 if np.iscomplexobj(covmean):

 if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):

 m = np.max(np.abs(covmean.imag))

 raise ValueError('Imaginary component {}'.format(m))

 covmean = covmean.real

 tr_covmean = np.trace(covmean)

 return (diff.dot(diff) + np.trace(sigma1) +

 np.trace(sigma2) - 2 * tr_covmean)

def calculate_activation_statistics(images, model, batch_size=64,

 dims=2048, cuda=False, verbose=False):

 """Calculation of the statistics used by the FID.

 Params:

 -- images : Numpy array of dimension (n_images, 3, hi, wi). The values

 must lie between 0 and 1.

97

 -- model : Instance of inception model

 -- batch_size : The images numpy array is split into batches with

 batch size batch_size. A reasonable batch size

 depends on the hardware.

 -- dims : Dimensionality of features returned by Inception

 -- cuda : If set to True, use GPU

 -- verbose : If set to True and parameter out_step is given, the

 number of calculated batches is reported.

 Returns:

 -- mu : The mean over samples of the activations of the pool_3 layer of

 the inception model.

 -- sigma : The covariance matrix of the activations of the pool_3 layer of

 the inception model.

 """

 act = get_activations(images, model, batch_size, dims, cuda, verbose)

 mu = np.mean(act, axis=0)

 sigma = np.cov(act, rowvar=False)

 return mu, sigma

def _compute_statistics_of_path(path, model, batch_size, dims, cuda):

 npz_file = os.path.join(path, 'statistics.npz')

 if os.path.exists(npz_file):

 f = np.load(npz_file)

98

 m, s = f['mu'][:], f['sigma'][:]

 f.close()

 else:

 path = pathlib.Path(path)

 files = list(path.glob('*.jpg')) + list(path.glob('*.png'))

 imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files])

 # Bring images to shape (B, 3, H, W)

 imgs = imgs.transpose((0, 3, 1, 2))

 # Rescale images to be between 0 and 1

 imgs /= 255

 m, s = calculate_activation_statistics(imgs, model, batch_size, dims, cuda)

 np.savez(npz_file, mu=m, sigma=s)

 return m, s

def calculate_fid_given_paths(paths, batch_size, cuda, dims):

 """Calculates the FID of two paths"""

 for p in paths:

 if not os.path.exists(p):

99

 raise RuntimeError('Invalid path: %s' % p)

 block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

 model = InceptionV3([block_idx])

 if cuda:

 model.cuda()

 print('calculate path1 statistics...')

 m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims, cuda)

 print('calculate path2 statistics...')

 m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, dims, cuda)

 print('calculate frechet distance...')

 fid_value = calculate_frechet_distance(m1, s1, m2, s2)

 return fid_value

if __name__ == '__main__':

 args = parser.parse_args()

 os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

 fid_value = calculate_fid_given_paths(args.path,

 args.batch_size,

100

 args.gpu != '',

 args.dims)

 print('FID: ', round(fid_value, 4))

101

MASKIMG.PY

Required Libraries

import cv2

import numpy as np

from os import listdir

from os.path import isfile, join

from pathlib import Path

import argparse

import numpy

Argument parsing variable declared

ap = argparse.ArgumentParser()

ap.add_argument("-i", "--image",

 required=True,

 help="Path to folder")

ap.add_argument("-e", "--mask",

 required=True,

 help="Path to folder")

args = vars(ap.parse_args())

Find all the images in the provided images folder

102

mypath1 = args["image"]

mypath2 = args["mask"]

onlyfiles1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))]

onlyfiles2 = [f for f in listdir(mypath2) if isfile(join(mypath2, f))]

images = numpy.empty(len(onlyfiles1), dtype=object)

masks = numpy.empty(len(onlyfiles2), dtype=object)

Iterate through every image

and resize all the images.

for n in range(0, len(onlyfiles1)):

 path1 = join(mypath1, onlyfiles1[n])

 path2 = join(mypath2, onlyfiles2[n])

 images[n] = cv2.imread(join(mypath1, onlyfiles1[n]),

 cv2.IMREAD_UNCHANGED)

 masks[n] = cv2.imread(join(mypath2, onlyfiles2[n]),

 cv2.IMREAD_UNCHANGED)

 # Load the image in img variable

 img = cv2.imread(path1, 1)

 msk= cv2.imread(path2, 1)

 resize_width = int(256)

 resize_hieght = int(256)

 resized_dimensions = (resize_width, resize_hieght)

 resized_msk = cv2.resize(msk, resized_dimensions, interpolation=cv2.INTER_AREA)

103

 # Define a resizing Scale

 # To declare how much to resize

 mask_img = cv2.bitwise_or(resized_msk, img)

 # Create resized image using the calculated dimensions

 # Save the image in Output Folder

 cv2.imwrite(

 'output/' + str(n) + '_resized.png', mask_img)

print("Images masked Successfully")

104

105

HED_PROCESSING.PY

import cv2 as cv

import os

import numpy as np

import time

! [CropLayenr]

class CropLayer(object):

 def __init__(self, params, blobs):

 self.xstart = 0

 self.xend = 0

 self.ystart = 0

 self.yend = 0

 # Our layer receives two inputs. We need to crop the first input blob

 # to match a shape of the second one (keeping batch size and number of channels)

 def getMemoryShapes(self, inputs):

 inputShape, targetShape = inputs[0], inputs[1]

 batchSize, numChannels = inputShape[0], inputShape[1]

 height, width = targetShape[2], targetShape[3]

 # self.ystart = (inputShape[2] - targetShape[2]) / 2

 # self.xstart = (inputShape[3] - targetShape[3]) / 2

106

 self.ystart = int((inputShape[2] - targetShape[2]) / 2)

 self.xstart = int((inputShape[3] - targetShape[3]) / 2)

 self.yend = self.ystart + height

 self.xend = self.xstart + width

 return [[batchSize, numChannels, height, width]]

 def forward(self, inputs):

 return [inputs[0][:, :, self.ystart:self.yend, self.xstart:self.xend]]

def hed(net, start_paths, target_paths):

 width = 256

 height = 256

 for start_path_i in range(len(start_paths)):

 s_path = start_paths[start_path_i]

 t_path = target_paths[start_path_i]

 if not os.path.exists(t_path):

 os.makedirs(t_path)

 image_lists = [os.path.join(s_path, i) for i in os.listdir(s_path)]

 size = len(image_lists)

 for img_i, img_path in enumerate(image_lists):

107

 if '.jpg' not in img_path.lower() and '.png' not in img_path.lower():

 continue

 if img_i % 10 == 0:

 print(f'{t_path} finish {img_i}/{size}.')

 frame = cv.imread(img_path)

 inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(width, height),

 mean=(104.00698793, 116.66876762, 122.67891434),

 swapRB=False, crop=False)

 net.setInput(inp)

 out = net.forward()

 out = out[0, 0]

 out = cv.resize(out, (frame.shape[1], frame.shape[0]))

 out = out * 255

 cv.imwrite(os.path.join(t_path, img_path[img_path.rfind('\\')+1:]), out.astype('uint8'))

 time.sleep(0.05)

 return

def flist(paths, outputs):

 ext = {'.JPG', '.JPEG', '.PNG', '.TIF', 'TIFF'}

 for path_i, path in enumerate(paths):

 output = outputs[path_i]

108

 images = []

 for root, dirs, files in os.walk(path):

 print('loading ' + root)

 for file in files:

 if os.path.splitext(file)[1].upper() in ext:

 images.append(os.path.join(root, file))

 images = sorted(images)

 np.savetxt(output, images, fmt='%s')

 return

if __name__ == '__main__':

 # ! [CropLayer]

 # ! [Register]

 cv.dnn_registerLayer('Crop', CropLayer)

 # ! [Register]

 # Load the model.

 prototxt_path = 'deploy.prototxt'

 caffemodel_path = 'hed_pretrained_bsds.caffemodel'

 net = cv.dnn.readNet(cv.samples.findFile(prototxt_path),

cv.samples.findFile(caffemodel_path))

109

 start_paths = ['training/cat_train', 'training/cat_test_original', 'training/cat_val']

 target_paths = ['training/cat_edges_train', 'training/cat_edges_test', 'training/cat_edges_val']

 hed(net, start_paths, target_paths)

 outputs = ['datasets/cat_edges_train.flist', 'datasets/cat_edges_test.flist',

'datasets/cat_edges_val.flist']

 flist(target_paths, outputs)

110

DATASET.PY

import os

import glob

import scipy

import torch

import random

import numpy as np

import torchvision.transforms.functional as F

from torch.utils.data import DataLoader

from PIL import Image

from scipy.misc import imread

from skimage.feature import canny

from skimage.color import rgb2gray, gray2rgb

from .utils import create_mask

import cv2

class CropLayer(object):

 def __init__(self, params, blobs):

 self.xstart = 0

 self.xend = 0

 self.ystart = 0

 self.yend = 0

111

 # Our layer receives two inputs. We need to crop the first input blob

 # to match a shape of the second one (keeping batch size and number of channels)

 def getMemoryShapes(self, inputs):

 inputShape, targetShape = inputs[0], inputs[1]

 batchSize, numChannels = inputShape[0], inputShape[1]

 height, width = targetShape[2], targetShape[3]

 # self.ystart = (inputShape[2] - targetShape[2]) / 2

 # self.xstart = (inputShape[3] - targetShape[3]) / 2

 self.ystart = int((inputShape[2] - targetShape[2]) / 2)

 self.xstart = int((inputShape[3] - targetShape[3]) / 2)

 self.yend = self.ystart + height

 self.xend = self.xstart + width

 return [[batchSize, numChannels, height, width]]

 def forward(self, inputs):

 return [inputs[0][:, :, self.ystart:self.yend, self.xstart:self.xend]]

hed network

112

global net_hed

cv2.dnn_registerLayer('Crop', CropLayer)

prototxt_path = 'deploy.prototxt'

caffemodel_path = 'hed_pretrained_bsds.caffemodel'

net_hed = cv2.dnn.readNet(cv2.samples.findFile(prototxt_path),

cv2.samples.findFile(caffemodel_path))

class Dataset(torch.utils.data.Dataset):

 def __init__(self, config, flist, edge_flist, mask_flist, augment=True, training=True):

 super(Dataset, self).__init__()

 self.augment = augment

 self.training = training

 self.data = self.load_flist(flist)

 self.edge_data = self.load_flist(edge_flist)

 self.mask_data = self.load_flist(mask_flist)

 self.input_size = config.INPUT_SIZE

 self.sigma = config.SIGMA

 self.edge = config.EDGE

 self.mask = config.MASK

 self.nms = config.NMS

113

 # in test mode, there's a one-to-one relationship between mask and image

 # masks are loaded non random

 if config.MODE == 2:

 self.mask = 6

 def __len__(self):

 return len(self.data)

 def __getitem__(self, index):

 try:

 item = self.load_item(index)

 except:

 print('loading error: ' + self.data[index])

 item = self.load_item(0)

 return item

 def load_name(self, index):

 name = self.data[index]

 return os.path.basename(name)

 def load_item(self, index):

 size = self.input_size

114

 # load image

 img = imread(self.data[index])

 # gray to rgb

 if len(img.shape) < 3:

 img = gray2rgb(img)

 # resize/crop if needed

 if size != 0:

 img = self.resize(img, size, size)

 # create grayscale image

 img_gray = rgb2gray(img)

 # load mask

 mask = self.load_mask(img, index)

 # load edge

 edge = self.load_edge(img_gray, img, index, mask)

 # augment data

 if self.augment and np.random.binomial(1, 0.5) > 0:

 img = img[:, ::-1, ...]

115

 img_gray = img_gray[:, ::-1, ...]

 edge = edge[:, ::-1, ...]

 mask = mask[:, ::-1, ...]

 return self.to_tensor(img), self.to_tensor(img_gray), self.to_tensor(edge),

self.to_tensor(mask)

 def load_edge(self, img, img_ori, index, mask):

 sigma = self.sigma

 # in test mode images are masked (with masked regions),

 # using 'mask' parameter prevents canny to detect edges for the masked regions

 mask = None if self.training else (1 - mask / 255).astype(np.bool)

 # canny

 if self.edge == 1:

 # no edge

 if sigma == -1:

 return np.zeros(img.shape).astype(np.float)

 # random sigma

 if sigma == 0:

 sigma = random.randint(1, 4)

 return canny(img, sigma=sigma, mask=mask).astype(np.float)

116

 # external

 else:

 imgh, imgw = img.shape[0:2]

 if len(self.edge_data) != 0:

 edge = imread(self.edge_data[index])

 else:

 width = 256

 height = 256

 img_input = cv2.cvtColor(img_ori, cv2.COLOR_RGB2BGR)

 frame = img_input.copy()

 inp = cv2.dnn.blobFromImage(frame, scalefactor=1.0, size=(width, height),

 mean=(104.00698793, 116.66876762, 122.67891434),

 swapRB=False, crop=False)

 net_hed.setInput(inp)

 out = net_hed.forward()

 out = out[0, 0]

 out = cv2.resize(out, (frame.shape[1], frame.shape[0]))

 edge = out.copy()

 edge = self.resize(edge, imgh, imgw)

 # non-max suppression

117

 if self.nms == 1:

 edge = edge * canny(img, sigma=sigma, mask=mask)

 return edge

 def load_mask(self, img, index):

 imgh, imgw = img.shape[0:2]

 mask_type = self.mask

 # external + random block

 if mask_type == 4:

 mask_type = 1 if np.random.binomial(1, 0.5) == 1 else 3

 # external + random block + half

 elif mask_type == 5:

 mask_type = np.random.randint(1, 4)

 # random block

 if mask_type == 1:

 return create_mask(imgw, imgh, imgw // 2, imgh // 2)

 # half

 if mask_type == 2:

 # randomly choose right or left

118

 return create_mask(imgw, imgh, imgw // 2, imgh, 0 if random.random() < 0.5 else

imgw // 2, 0)

 # external

 if mask_type == 3:

 mask_index = random.randint(0, len(self.mask_data) - 1)

 mask = imread(self.mask_data[mask_index])

 mask = self.resize(mask, imgh, imgw)

 mask = (mask > 0).astype(np.uint8) * 255 # threshold due to interpolation

 return mask

 # test mode: load mask non random

 if mask_type == 6:

 mask = imread(self.mask_data[index])

 mask = self.resize(mask, imgh, imgw, centerCrop=False)

 mask = rgb2gray(mask)

 mask = (mask > 0).astype(np.uint8) * 255

 return mask

 def to_tensor(self, img):

 img = Image.fromarray(img)

 img_t = F.to_tensor(img).float()

 return img_t

119

 def resize(self, img, height, width, centerCrop=True):

 imgh, imgw = img.shape[0:2]

 if centerCrop and imgh != imgw:

 # center crop

 side = np.minimum(imgh, imgw)

 j = (imgh - side) // 2

 i = (imgw - side) // 2

 img = img[j:j + side, i:i + side, ...]

 img = scipy.misc.imresize(img, [height, width])

 return img

 def load_flist(self, flist):

 if isinstance(flist, list):

 return flist

 # flist: image file path, image directory path, text file flist path

 if isinstance(flist, str):

 if os.path.isdir(flist):

 flist = list(glob.glob(flist + '/*.jpg')) + list(glob.glob(flist + '/*.png'))

 flist.sort()

 return flist

120

 if os.path.isfile(flist):

 try:

 return np.genfromtxt(flist, dtype=np.str, encoding='utf-8')

 except:

 return [flist]

 return []

 def create_iterator(self, batch_size):

 while True:

 sample_loader = DataLoader(

 dataset=self,

 batch_size=batch_size,

 drop_last=True

)

 for item in sample_loader:

 yield item

121

APPENDIX B

OUTPUT SAMPLE

122

OUTPUT SAMPLE (CANNY)

123

124

125

126

OUTPUT SAMPLE (HED)

127

128

129

130

REFERENCES

[1] Nazeri, K., Ng, E., Joseph, T., Qureshi, F. Z., and Ebrahimi, M.,

“EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning”,

2019.

[2] Xie, S. and Tu, Z., “Holistically-Nested Edge Detection”, 2015.

[3] Johnson, J., Alahi, A., Fei-Fei, L. (2016). Perceptual Losses for Real-Time

Style Transfer and Super-Resolution. In: Leibe, B., Matas, J., Sebe, N., Welling,

M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in

Computer Science(), vol 9906. Springer, Cham. https://doi.org/10.1007/978-3-

319-46475-6_43

[4] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A., “Image-to-Image

Translation with Conditional Adversarial Networks”, 2016.

[5] Ulyanov, D., Vedaldi, A., and Lempitsky, V., “Instance Normalization: The

Missing Ingredient for Fast Stylization”, 2016.

[6] E. Million, “The Hadamard product Elizabeth million April 12, 2007 1

introduction and basic results,” 2007.

[7] Sajjadi, M. S. M., Schölkopf, B., and Hirsch, M., “EnhanceNet: Single

Image Super-Resolution Through Automated Texture Synthesis”, 2016.

[8] T. Chu, "“Lines First, Color Next” An Inspirational Deep Image Inpainting

Approach", Medium, 2022. [Online]. Available:

https://towardsdatascience.com/lines-first-color-next-an-inspirational-deep-

image-inpainting-approach-b2d980efb364. [Accessed: 18- Apr- 2022]

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43

131

[9] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10

million image database for scene recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2017.

[10] Crawford, C. and Nian., “Cat Dataset”, 2018,

https://www.kaggle.com/datasets/crawford/cat-

dataset?datasetId=13371&sortBy=dateRun&tab=profile

[11] MA7555., “Cat Breeds Dataset”, 2020,

https://www.kaggle.com/datasets/ma7555/cat-breeds-dataset

[12] Iskakov, K., “QD-IMD: Quick Draw Irregular Mask Dataset” , 2018, QD-

IMD, https://github.com/karfly/qd-imd

[13] Faragallah O. S. et al., "A Comprehensive Survey Analysis for Present

Solutions of Medical Image Fusion and Future Directions," in IEEE Access, vol.

9, pp. 11358-11371, 2021, doi: 10.1109/ACCESS.2020.3048315.

[14] "Python | Peak Signal-to-Noise Ratio (PSNR) - GeeksforGeeks",

GeeksforGeeks, 2022. [Online]. Available:

https://www.geeksforgeeks.org/python-peak-signal-to-noise-ratio-psnr/.

[Accessed: 18- Apr- 2022]

[15] "Structural similarity - Wikipedia", En.wikipedia.org, 2022. [Online].

Available: https://en.wikipedia.org/wiki/Structural_similarity. [Accessed: 18- Apr-

2022]

132

[16] "Mean absolute error - Wikipedia", En.wikipedia.org, 2022. [Online].

Available: https://en.wikipedia.org/wiki/Mean_absolute_error. [Accessed: 18- Apr-

2022]

[17] "Fréchet inception distance - Wikipedia", En.wikipedia.org, 2022. [Online].

Available: https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance.

[Accessed: 18- Apr- 2022]

	DEEP LEARNING EDGE DETECTION IN IMAGE INPAINTING
	Recommended Citation

	tmp.1657316289.pdf.uNGzS

