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Abstract

Since every nonabelian simple group is a homomorphic image of an involutory progenitor

2∗n : N , where N ≤ Sn is transitive, our motivation for the thesis has been to seek

finite homomorphic images of such progenitors and construct them using our technique

of double coset enumeration.

We have constructed U3(3) : 2 over 52 : S3, 2 × (A5 × A5) over D5 × D5, S6 over S5,

25 : S5 over S5, and 33 : 23 over 32 : 2.

We have discovered original symmetric presentations numerous group as homomorphic

images various progenitors. We have also found new monomial representations of groups

and given monomial progenitors. We have given isomorphism class of every image that

we have discovered.
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Chapter 1

Introduction

Let G be a finite group generated by n involutions; that is, G =< ti|1 ≤ I ≤ n > and let

N ≤ Sn. Then G = ∪m
i NwiN , where wi is a word in the tiS.

Subject to certain conditions, G is a homomorphic image of a progenitor of the form

2∗n : N , where N ≤ Sn.

Since a simple group satisfies the conditions satisfied by G above, every non-abelian sim-

ple group is a homomorphic image of 2∗n : N . Every element of G can be written as nw,

where n ∈ N and w is a word in the tis.

Now the double coset, NwN , is given by {Nwn|n ∈ N} = {Nnn−1wn|n ∈ N} =

{Nwn|n ∈ N} for a word w in the ti’s and the coset stabilising group of the coset Nw

is N (w) = {n ∈ N |Nwn = Nw}. Double coset enumeration of G over N is performed to

construct G.

We need to compute the number of right cosets in each double coset by using the formula
|N |

|N(w)| .

For the right coset Nw, it suffices to determine the double coset of Nwti for one represen-

tative ti from each orbit of the stabilising group N (w) on {t1, t2, . . . , tn}. The double coset
enumeration is complete if the set of right cosets is closed under the right multiplication

by the tis.

In chapter 2 we will define the important definitions and theorems which are the bases

for our research.

In the chapter 3 we will demonstrate the technique of double coset enumeration which

we use to construct finite images.
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In Chapter 4, we will introduce wreath products.

In chapter 5, we will demonstrate our method of finding symmetric presentations of pro-

genitors as well as additional relations. We will also list some of the finite images that

we have discovered.

In Chapter 6, we will demonstrate, with examples, how to determine the isomorphism

class of a group given in terms of its permutation generators.

In Chapter 7, we will discuss two linear groups.

In Chapter 8, we construct groups using our technique of double coset enumeration.

In Chapter 9, we give Magma codes to establish isomorphism classes of groups.

In Chapter 10, we have given tables of finite homomorphic images of progenitors.
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Chapter 2

Preliminaries

2.1 Definitions

Definition 2.1. If X is a nonempty set, a permutation of X is a bijection α : X → X

We denote the set of all permutations of X by Sx.

Definition 2.2. Sn is a symmetric group that composed by all bijective mapping ϕ : X →
X, where X is a nonempty set.

Definition 2.3. If x ∈ X and α ∈ Sx, then α fixes x if α(x) = x and α moves x if

α(x) ̸= x.

Definition 2.4. A permutation is said to be transposition if it changes two elements and

fixes the rest.

Definition 2.5. The alternating group An is a subgroup of Sn with order equal to n!
2 .

Definition 2.6. A (binary) operation on a nonempty set G is a function µ : G×G⇒ G.

Definition 2.7. A semigroup (G; ∗) is a nonempty set G equipped with an associative

operation ∗.

Definition 2.8. A group is a semigroup G containing an element e such that:

(i) e ∗ a = a = a ∗ for all a ∈ G;

(ii) for every a ∈ G; there is an element b ∈ G with a ∗b = e = b ∗ a.
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Definition 2.9. A group G is abelian if every pair a,b ∈ G commutes such as

a ∗ b = b ∗ a.

Definition 2.10. If G is a group, there is a unique element e with

e ∗ a = a = a ∗ e for all a ∈ G.

Moreover, for each a ∈ G, there is a unique b ∈ G with a ∗ b = e = b ∗ a.

We call e the identity of G and, if a ∗ b = e = b ∗ a, then we call b the inverse of a and

denote it by a−1.

Definition 2.11. (order of permutation) Let α = (x1, . . . , xi)(x1, . . . , xj) ∈ Sx, where

α is a multiple of two disjoint cycle. The order of α is the least common multiple of the

i-cycle and the j-cycle.

|α| = lcm(i,j).

Definition 2.12. If G is a group and a ∈ G, then

(a−1)−1= a.

Definition 2.13. Let (G, ∗) and (H, ◦) be groups. A function f : G ⇒ H is a homomor-

phism if, for all a,b ∈ G,

f(a ∗ b) = f(a) ◦ f(b).

Definition 2.14. An isomorphism is a homomorphism that is also a bijection. We say

that G is isomorphic to H, denoted by G ∼= H, if there exists an isomorphism f : G⇒ H.

Definition 2.15. A nonempty subset H of a group G is a subgroup of G if h ∈ H implies

h−1 ∈ H, and h, k ∈ H implies hk ∈ H. H ≤ G.

Definition 2.16. If H is any subgroup other than G, H is a proper subgroup of G.
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Definition 2.17. If H is the subgroup generated by the identity of group G, H is a trivial

subgroup of G.

Definition 2.18. If G is a group and a ∈ G, then the Cyclic subgroup generated by a is

the set of all powers of a and it is denoted by < a >.

Definition 2.19. Let f : (G; ∗) ⇒ (G′, ◦) be a homorphism.

(i) f(e) = e′, where e’ is the identity in G’ (ii) If a ∈ G, then f(a−1) = f(a)−1.

(iii) If a ∈ G and n ∈ Z, then f(an) = f(a)n.

Definition 2.20. Let G be a group and K ≤ G. K is a maximal subgroup of G if there

is no normal subgroup N ≤ G such that K < N < G.

Definition 2.21. A subset S of a group G is a subgroup if and only if 1 ∈ S and s,t ∈ S

imply st−1 ∈ S.

Definition 2.22. If g ∈ G and ϕ ∈ SX , then ϕ fixes g if ϕ(x) = g, ϕ moves g if ϕ(x) ̸= g.

Definition 2.23. If G is a group and a ∈ G, then the cyclic subgroup generated by a,

denoted by < a >, is the set of all powers of a. A group G is called cyclic if there is a ∈
G with G =< a >; that is, G consists of all the powers of a.

Definition 2.24. If S is a subgroup of G and if t ∈G, then a right coset of S in G is the

subset of G

St = st : s ∈ S

(a left coset is tS = ts : s ∈ S). One calls t a representative of St (and also of tS).

Definition 2.25. If α, β ∈ Sn, αandβ are disjoint if every element moved by one per-

mutation is fixed by the other. if
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α(n) ̸= n, then β(m) = m and if α(x) = x, then β(x) ̸= x.

Definition 2.26. If a permutation interchanges a pair of elements, it is called a trans-

position.

Definition 2.27. Let H be a nonempty subset of a group G. Let w ∈ G where

w = he11 h
e2
2 · · ·henn , with hi ∈H and ei = ±1. We say that w is a word on H.

Definition 2.28. Let H be a group. We say H is a direct product of two subgroups G

and K if:

• H = GK;

• G ∩K = 1,

Definition 2.29. If H ≤ G and x ∈ G, the subset of G, Hx = {xh : x ∈ H} is the right

coset of H in G.

Definition 2.30. If H ≤ G and x ∈ G, HxH = { HxH | x ∈ H} is the double coset of G.

Definition 2.31. If hn = 1 for all h ∈ G, the group G has an exponent n

Definition 2.32. If G is a finite group and a ∈G. Then the order of a divides |G|.

Definition 2.33. If p is a prime and |G| = p, then G is a cyclic group.

Definition 2.34. Let x ∈ G, the for x−1gx for x ∈ G is the conjugate of g in G.

Definition 2.35. If x, y ∈ G, the commutator of x and y, [x, y]is[x, y] = xyx−1y−1.

Definition 2.36. A group H is a p-group if the order of every element of H is a power

of p.

Let H be a finite group. If it is an abelian, it is called elementary abelian group and every

nontrivial element x ∈ H has a prime order p.

Definition 2.37. We call Xg stabiliser.Xg = {x ∈ X|gx = g}, where x is a word of t′is.

X(g) = {x ∈ X|Xgx} where g is a word of t′is.We call X(g) a coset stabiliser.

Definition 2.38. If X is a set and G be a group. We say X is a G-set if there exists a

function ϕ : G×X → X and the following hold for ϕ : (g;x) →gx.

• 1x = x, for all x∈ X.
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• g(hx) = (gh)x, for g,h ∈ G and x ∈ X.

Definition 2.39. A projective special linear group, PSL(n , F) is the set of all n × n

matrices with determinant 1 over field F factored by its center:

PSL(n, F ) = Ln(F ) =
SL(n,F )

Z(SL(n,F ) .

Definition 2.40. For the group G, (Z(G)) is a center of G. The set of all g ∈ G commute

with every elements of G.

Definition 2.41. We call D2n Dihedral Group. Dihedral group generated by two elements

x and y with presentation < x, y|xn = y2 = (xy)2 = 1 >. The order of D2n is equal to

2n and 2n ≥ 4.

Definition 2.42. If group G has a composition series, the factor groups of its series are

the Composition Factors of G.

Definition 2.43. Let X be a set and δ by a family of words on X. A group G has

Generators X and Relations δ if G ∼= K/R, where K is a free group with basis X and R

is the normal subgroup of K generated by δ. We say < X|δ > is a Presentation of G.

2.2 Group Extension Preliminaries

Definition 2.44. The Group Extension is an extension of a group N by a group K with

a normal subgroup H such that

H ∼= NandG/H ∼= K.

Definition 2.45. The Central Extension is the extension that N is the center of G if G

is a central extension of N by K which is based on

ψ : K ×K → N.(n1, k1) ∗ (n2, k2) = (n1 ∗ n2 ∗ ψ(k1, k2)k1k2).

Definition 2.46. The Semi-direct Product is a group extension composed by H and Q.

G = H : Q when H ∆ G. H has a complement Q1 ∼= Q.
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Definition 2.47. The Mixed Extension is the extension combined the properties of a

semi-product and a central extension. (N is a normal subgroup and it is not a central of

the group)

ϕ : K → Aut(N) and ψK ×K → N.

N ·K : (n1, k1) ∗ (n2, k2) = (n1 ∗ kk12 ∗ ψ(k1, k2), k1k2).
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2.3 Preliminary Theorems and Lemmas

Definition 2.48. First Isomorphism Theorem Let ϕ : G→ H be a homomor- phism

with ker ϕ then,

• [kerϕ∆G],

• [G/kerϕ ∼= imϕ].

Definition 2.49. Let X be a G-set, and let xy ∈ X.

• If K ≤ G, thenKx ∩Ky ̸= ∅; implies Kx = Ky,

• If K∆G, then the subsets Kx are Blocks of X.

Definition 2.50. (GrindStaff/ Factoring Lemma): Factoring the progenitor m∗n :

N by (ti, tj) for 1 ≤ i ≤ j ≤ n gives the group mn : N
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Chapter 3

Monomial Progenitors

3.1 Preliminaries

Definition 3.1. A monomial representation of a group G is a homomorphism from G

into GL(n,F),the group of nonsingular n×n matrices over the field F, in which the image

of every element of G is a monomial matrix over F.

Definition 3.2. (MonomialCharacter)Let G be a finite group and H ≤ G.The char-

acter X of G is monomial if X = λG, where λ is a linear character of H.

Definition 3.3. A matrix in which there is precisely one non-zero term in each row and

in each column is said to be monomial.

Definition 3.4. Let A(x) = (aij(x)) be a matrix representation of G of degree m.We

consider the characteristic polynomial of A(x), namely

det(λI −A(x)) =


λ− a11(x) −a12(x) · · · −a1m(x)

−a21(x) λ− a22(x) · · · −a2m(x)

· · · · · · · · · · · ·
−am1(x) −am2(x) · · · λ− amm(x)

 .

This is a polynomial of degree m in λ, and inspection shows that the coefficient of −λm−1

equal to
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ϕ(x) = a1(x) + a22(x) + · · ·+ amm(x).

It is customary to call the right-hand side of this equation the trace of A(x),

abbreviated to trA(x), so that

ϕ (x) = trA(x).

Definition 3.5. The sum of squares of the degrees of the distinct irreducible characters

of G is equal to |G|. The degree of a character χ is χ (1).Note that a character whose

degree is 1 is called a linear character.

Definition 3.6. Let H ≤ G and ϕ(u) be a charcter of H and define ϕ(x) = 0

if x ∈ H, then

ϕG(x) =

 ϕ(x) ,x ∈ H;

x /∈ H.

is an induced character of G.

Definition 3.7. FormulaforInducedCharacter Let G be a finite group and H be a

subgroup such that |G|
|H|=n.LetCα, α = 1, 2, . . . ,m be the conjugacy classes of G with

|Cα| = hα, α = 1, 2, . . . ,m. Let ϕ be a character of H and ϕG be the character of G

induced from the character ϕ of H up to G.The values of ϕG on the m classes of G are

given by:

ϕGα = n
hα∑

w∈Cα∩H
ϕ(w), α = 1, 2, 3, . . . ,m.
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3.2 Monomial Progenitors (13∗2 : m(12 : 2))

Consider G = < xx, yy, zz >, where

xx = (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12),

yy = (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)

and zz = (1, 11)(2, 10)(3, 9)(4, 8)(5, 7).

G = (12 : 2) has a monomial irreducible representation of degree 2.

Since, |G|
|H| =

24
12 = 2. |H| = 12, we need to find a subgroup H of order 12 and induce a

linear character of H up to G to obtain the irreducible character of degree 2 of G.

Consider the subgroup H of G generated by < (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12),

(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12), (1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8) > ∼= 12. G has the

following conjugacy classes.

C1 = {e}

C2 = {(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)}

C3 = {(1, 11)(2, 10)(3, 9)(4, 8)(5, 7)}

C4 = {(1, 2)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8)}

C5 = {(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)}

C6 = {(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)}

C7 = {(1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12)}

C8 = {(1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6)}

C9 = {(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)}.

The conjugacy classes of H are

D1 = {Id(H)}

D2 = {(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)}
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D3 = {(1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8)}

D4 = {(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)}

D5 = {(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)}

D6 = {(1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6)}

D7 = {((1, 11, 9, 7, 5, 3)(2, 12, 10, 8, 6, 4)}

D8 = {(1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12)}

D9 = {(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)}

D10 = {(1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6)}

D11 = {(1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8)}

D12 = {(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)}.

We verify in Magma,

Induction(CH[12],G) eq CG[9];\\

/*true*/
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We know that the character table of H is given by

Character Table of Group H

--------------------------

---------------------------------------------------

Class | 1 2 3 4 5 6 7 8 9 10 11

Size | 1 1 1 1 1 1 1 1 1 1 1

Order | 1 2 3 3 4 4 6 6 12 12 12

---------------------------------------------------

p = 2 1 1 4 3 2 2 3 4 7 8 7

p = 3 1 2 1 1 6 5 2 2 6 6 5

---------------------------------------------------

X.1 + 1 1 1 1 1 1 1 1 1 1 1

X.2 0 1 -1 1 1 -I I -1 -1 -I -I I

X.3 + 1 1 1 1 -1 -1 1 1 -1 -1 -1

X.4 0 1 -1 1 1 I -I -1 -1 I I -I

X.5 0 1 1 J-1-J 1 1-1-J J J -1-J J

X.6 0 1 -1 J-1-J -I I 1+J -J Z1 Z1#5 -Z1

X.7 0 1 1 J-1-J -1 -1-1-J J -J 1+J -J

X.8 0 1 -1 J-1-J I -I 1+J -J -Z1-Z1#5 Z1

X.9 0 1 1-1-J J 1 1 J-1-J -1-J J -1-J

X.10 0 1 -1-1-J J -I I -J 1+J Z1#5 Z1-Z1#5

X.11 0 1 1-1-J J -1 -1 J-1-J 1+J -J 1+J

X.12 0 1 -1-1-J J I -I -J 1+J-Z1#5 -Z1 Z1#5

--------------

Class | 12

Size | 1

Order | 12

--------------

p = 2 8

p = 3 5

--------------

X.1 + 1

X.2 0 I

X.3 + -1

X.4 0 -I

X.5 0 -1-J

X.6 0 -Z1#5

X.7 0 1+J

X.8 0 Z1#5
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X.9 0 J

X.10 0 -Z1

X.11 0 -J

X.12 0 Z1

Explanation of Character Value Symbols

--------------------------------------

# denotes algebraic conjugation, that is,

#k indicates replacing the root of unity w by w^k

J = RootOfUnity(3)

I = RootOfUnity(4)

Z1 = (CyclotomicField(12: Sparse := true)) ! [

RationalField() | 0, 0, 0, -1 ]

Consider the irreducible character ϕ of H and ϕG of G given below.

The output we have is given in the following table.
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Irreducible Character of ϕ

Class Size Representation ϕ

D1 1 Id(H) 1

D2 1 (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12) 1

D3 1 (1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8) −1− w

D4 1 (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12) w

D5 1 ((1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12) 1

D6 1 (1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6) 1

D7 1 (1, 11, 9, 7, 5, 3)(2, 12, 10, 8, 6, 4) w

D8 1 (1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12) −1− w

D9 1 (1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2) −1− w

D10 1 (1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6) w

D11 1 (1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8) −1− w

D12 1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) w

Table 3.1: Irreducible Character of ϕ

We have,

CH[12];

( 1, -1, -zeta(12)_3 - 1, zeta(12)_3, zeta(12)_4,

-zeta(12)_4, -zeta(12)_3, zeta(12)_3 + 1,

-zeta(12)_4*zeta(12)_3 - zeta(12)_4,

zeta(12)_4*zeta(12)_3, zeta(12)_4*zeta(12)_3 +

zeta(12)_4, -zeta(12)_4*zeta(12)_3 )

CG[9];

( 2, -2, 0, 0, -1, 0, 1, 2*zeta(12)_4*zeta(12)_3 +

zeta(12)_4, -2*zeta(12)_4*zeta(12)_3 - zeta(12)_4 )

We verify by hand that we have a monomial representation by inducing ϕ = CH[12] up

to ϕG = CG[9].

ϕ ↑GH
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ϕ ↑Gα=
n

hα

∑
w∈Cα∩H

= α(w), α = 1, 2, 3, ...,m

Using

ϕ ↑Gα=
n

hα

∑
w∈Cα∩H

= ϕ(w)

where n = |G|
|H| =

24
12 = 2

ϕ ↑G1 = n
hα

∑
w∈C1∩H = 2(ϕId(H)) = 2(1) = 2

ϕ ↑G2 = n
hα

∑
w∈C2∩H = 2

1(ϕ(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)) = (2)(1) = 2

ϕ ↑G3 = n
hα

∑
w∈C3∩H = 2

1(ϕ(1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8) =
1
2(−1− w) = −2− w

ϕ ↑G4 = n
hα

∑
w∈C4∩H = 2

1(ϕ(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)) =
1
2(w) = 2w

ϕ ↑G5 = n
hα

∑
w∈C5∩H = 2

1(ϕ(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)) = 2(1) = 2

ϕ ↑G6 = n
hα

∑
w∈C6∩H = 2

1(ϕ(1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6)) = (2)(1) = 2

ϕ ↑G7 = n
hα

(1, 11, 9, 7, 5, 3)(2, 12, 10, 8, 6, 4) = (1)(w) = w

ϕ ↑G8 = n
hα

∑
w∈C8∩H = 2

1(ϕ(1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12)) = (2)(−1− w) = −2− w

ϕ ↑G9 = n
hα

∑
w∈C9∩H = 2

1(ϕ(1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)) = (2)(−1− w) = −2− w

ϕ ↑G10= n
hα

∑
w∈C9∩H = 2

1(ϕv) = (2)(w) = w

ϕ ↑G11= n
hα

∑
w∈C9∩H = 2

1(ϕ(1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8)) = (2)(−1− w) = −2− w

ϕ ↑G12= n
hα

∑
w∈C9∩H = 2

1(ϕ(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)) = (2)(w) = 2w
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Thus, CH[12] ↑GH= CG[9]. Since CG[9] is faithful, our group has a faithful irreducible

monomial representation of degree 2.

We now find an irreducible monomial representation of G. From Magma, we can find

the transversals of H in G. Note that the number of transversals equals the order of G

divided by the order of H. Below is the code:

T:=Transversal(G,H);

T;

{@

Id(G),

(1, 11)(2, 10)(3, 9)(4, 8)(5, 7)

@}

#T;

2

Now the matrix becomes: A(xx) =

ϕ(t1xt−1
1 ) ϕ(t1xt

−1
2 )

ϕ(t2xt
−1
1 ) ϕ(t2xt

−1
2 )

,

A(xx) =

zeta212 − 1 0

0 −zeta212

,
Similarily with A(yy) and A(zz),

A(yy) =

ϕ(t1yt−1
1 ) ϕ(t1yt

−1
2 )

ϕ(t2yt
−1
1 ) ϕ(t2yt

−1
2 )

,

A(yy)=

zeta312 0

0 −zeta212

,

A(zz) =

ϕ(t1zt−1
1 ) ϕ(t1zt

−1
2 )

ϕ(t2zt
−1
1 ) ϕ(t2zt

−1
2 )

,

A(zz) =

0 1

1 0

,
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We verify these matrices by running the following loop.

> C := CyclotomicF ield(12);

> A := [[C.1, 0] : iin[1..2]];

¿for i,j in [1..2]doA[i, j] := 0; endfor;

¿ for i,j in [1..2]doifT [i] ∗ xx ∗ T [j]−1 in H then

> A[i, j] := CH[12](T [i] ∗ xx ∗ T [j]−1); endif ; endfor;

> GG := GL(2, C);

> GG!A;zeta212 − 1 0

0 −zeta212


Order(xx);

/*3*/

Order(GG!A);

/*3*/

B := [[C.1, 0] : iin[1..2]];

for i,j in [1..2]doB[i, j] := 0; endfor;

for i,j in [1..2]doifT [i] ∗ yy ∗ T [j]−1inHthen

B[i, j] := CH[12](T [i] ∗ yy ∗ T [j]−1); endif ; endfor;

GG!B;zeta312 0

0 −zeta312


Order(yy);

/*4*/

Order(GG!B);

/*4*/

D := [[C.1, 0] : iin[1..2]];

fori, jin[1..2]doD[i, j] := 0; endfor;

fori, jin[1..2]doifT [i] ∗ zz ∗ T [j]−1inHthen

D[i, j] := CH[12](T [i] ∗ zz ∗ T [j]−1); endif ; endfor;
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GG!D;

A(zz) =

0 1

1 0


Order(zz);

/*2*/

Order(GG!D);

/*2*/

The order of xx is 3 and the order of yy is 4 and the order of zz is 2. Now As 2 is

a primitive root of 12.

So zeta12 = 2

−zeta212 = −22 = −4 = 9mod13

zeta212 − 1 = 22 − 1 = 3

zeta312 = 23 = 8

−zeta122 = −8 = 5mod13

Lowest relative prime is 13

12|p− 1 ⇒ 12|13− 1

The permutation representation of A(xx), A(yy) and A(zz) of the monomial reprsen-

atation are:

So,the matrix A(xx) is:

=

zeta212 − 1 0

0 −zeta212

,
And it becomes,

A(xx)=

3 0

0 9

,
where a11 = 3, a22 = 9,

therefore, t1 → t1
3,t2 → t2

9.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t31 t92 t61 t52 t91 t2 t121 t102 t21 t62 t51 t22 t81 t112 t111 t72

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 18 11 10 17 2 23 20 3 12 9 4 15 22 21 14

17 18 19 20 21 22 23 24

t1 t32 t41 t122 t71 t82 t110 t42

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 6 7 24 13 16 19 8

Therefore,the new permutation of

A(xx) = (1,5,17)(2,18,6)(3,11,9)(4,10,12)(7,23,19) (8,20,24)(13,15,21)(14,22,16).

Similarly,the matrix A(yy) is:zeta312 0

0 −zeta312

,
and it becomes

A(yy) =

8 0

0 5

,
where a11 = 8, a22 = 5,

therefore, t1 → t1
5,t2 → t2

5.

Let us now verify if this representation is faithful.

IsIsomorphic(G,sub<GG|GG!A,GG!B,GG!D>);

true

Hence ⟨ A(xx),A(yy),A(zz)⟩ is a faithful monomial representation of 23 : 3.
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We first need to find a permutation representation using the field order and the degree of

representation. By Euler’s Formula, the primitive square root of unity is e
i2π
2 = cos (2π2 )

+ i sin (2π2 )= cos (π)+ i sin (π)= -1

The field order will be the smallest finite field that has square roots of unity. This will

be a cyclic group of order p − 1 where 12|p − 1. So the field order will be Z12. We will

use the matrices we created in order to label the automorphisms of ti’s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t81 t52 t35 t102 t111 t22 t61 t72 t11 t122 t91 t42 t41 t92 t121 t12

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
15 10 5 20 21 4 11 14 1 24 17 8 7 18 23 2

17 18 19 20 21 22 23 24

t71 t62 t21 t112 t101 t32 t51 t82

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
13 12 3 22 19 6 9 16
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Therefore,the new permutation of

A(yy)=(1,15,23,9)(2,10,24,16)(3,5,21,19) (4,20,22,6) (7,11,17,13)(8,14,18,12);

The matrix A(zz) is

A(zz) =

0 1

1 0

,
where a12 = 1, a21 = 1,

therefore, t1 → t2, t2 → t1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t2 t1 t22 t21 t32 t31 t42 t41 t52 t51 t62 t61 t72 t71 t82 t81

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 1 4 3 6 5 8 7 10 9 12 11 14 3 16 15

17 18 19 20 21 22 23 24

t92 t91 t102 t01 t112 t111 t122 t121

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
18 17 20 19 22 21 24 23

Therefore A(zz) = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14) (15,16)(17,18)(19,20)

(21,22)(23,24).

Since, the matrix representation has entries in Z13 our progenitor is 13∗2 : (12 : 2).

We show below using Magma, that a symmetric presentation of the progenitor is: 13

(Z13)
∗2 : (12 : 2) = < x, y, z, t|x3, y4, z2, (x, y), (x−1∗z)2, (y−1∗z)2, t13, t(x−1) = t9, t(y

−1) =

t5 > .

> S:=Sym(24);
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> xx:=S!(1,5,17)(2,18,6)(3,11,9)(4,10,12)(7,23,19)(8,20,24)(13,15,21)(14,22,16);

>yy:=S!(1,15,23,9)(2,10,24,16)(3,5,21,19)(4,20,22,6)(7,11,17,13)(8,14,18,12);

> zz:=S!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24);

N := sub < S|xx, yy, zz >;
♯N;

/*24*/

Stabiliser(N,1,3,5,7,9,11,13,15,17,19,21,23);

/*

Permutation group acting on a set of cardinality 24

Order = 12 = 22 ∗ 3
(1, 17, 5)(2, 6, 18)(3, 9, 11)(4, 12, 10)(7, 19, 23)(8, 24, 20)(13, 21, 15)(14, 16, 22)

(1, 9, 23, 15)(2, 16, 24, 10)(3, 19, 21, 5)(4, 6, 22, 20)(7, 13, 17, 11)(8, 12, 18, 14)

*/

FPGroup(N);

/*

Finitely presented group on 3 generators

Relations

$.1^{3} = Id($)

$.2^{4} = Id($)

$.3^{2} = Id($)

($.1, $.2) = Id($)

($.1^{-1} * $.3)^{2} = Id($)

($.2^{-1} * $.3)^{2} = Id($)

*/

G < x, y, z, t >:=Group< x, y, z, t|x3, y4, z2, (x, y), (x−1 ∗ z)2, (y−1 ∗ z)2, t13, t(x−1) =

t9, t(y
−1) = t5 >;

> ♯G;

/* 4056 */
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3.3 Monomial Progenitors A4

Consider G = < xx, yy >, where

xx = (1, 2, 3, 4),

yy = (1, 2).

Since, |G|
|H| =

24
12 = 2.|H| = 12, we need to find a subgroup H of order 12 and induce a

linear character of H up to G to obtain the irreducible character of degree 2 of G.

Consider the subgroup H of G generated by < Id(G), (1, 2)(3, 4), (1, 2, 3, 4), (1, 3, 2) > .

G has the following conjugacy classes.

C1 = Id(G),

C2 = (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3),

C3 = (1, 2), (1, 4), (3, 4), (2, 3), (1, 3), (2, 4),

C4 = (1, 2, 3), (1, 4, 2), (1, 3, 4), (1, 2, 4), (2, 4, 3), (1, 4, 3), (2, 3, 4), (1, 3, 2).

The conjugacy classes of H are

D1 = Id(G),

D2 = (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3),

D3 = (1, 2, 3), (1, 4, 2), (2, 4, 3), (1, 3, 4),

D4 = (1, 3, 2), (2, 3, 4), (1, 4, 3), (1, 2, 4).

Consider the irreducible characters ϕ (of H) and ϕG of G given below.
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Irreducible Character of ϕ

Class Size Representation ϕ

D1 1 Id(H) 1

D2 3 (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) 1

D3 4 (1, 2, 3), (1, 4, 2), (2, 4, 3), (1, 3, 4) w

D4 4 (1, 3, 2), (2, 3, 4), (1, 4, 3), (1, 2, 4) −w − 1

Table 3.2: Irreducible Character of ϕ

Irreducible Character of ϕ

Class Size Representation ϕ

C1 1 Id(H) 2

C2 3 (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) 2

C3 6 (1, 2), (1, 4), (3, 4), (2, 3), (1, 3), (2, 4) 0

C4 8 (1, 2, 3), (1, 4, 2), (1, 3, 4), (1, 2, 4), (2, 4, 3), (1, 4, 3), (2, 3, 4), (1, 3, 2) −1

Table 3.3: Irreducible Character of ϕ

Induce the character ϕ of H up to G to obtain the character ϕG of G.

ϕ ↑GH

ϕGα = n
hα

∑
w∈H∩Cα

ϕ(w), where n = |G|
|H| =

24
12 = 2.

ϕG1 = 2
1

∑
w∈H∩C1

ϕ(w)

So, ϕG1 = 2(ϕ(1)) = 2(1) = 2.

ϕG2 = 2
3

∑
w∈H∩C2

ϕ(w),

So, ϕG2 = 2
3(ϕ((1, 2)(3, 4) + (1, 3)(2, 4) + (1, 4)(2, 3)) = 2

3(1 + 1 + 1) = 2.

ϕG3 = 2
6

∑
w∈H∩C3

ϕ(w),
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So, ϕG3 = 2
6(ϕ(0)) =

2
6(0) = 0.

ϕG4 = 2
8

∑
w∈H∩Cα

ϕ(w),

So, ϕG4 = 2
8(4w + 4(−w − 1)) = −8

8 = −1.

ϕG5 = 2
6

∑
w∈H∩Cα

ϕ(w),

So, ϕG5 = 2
6(ϕ(0)) =

2
6(0) = 0.

ϕ ↑GH= 2 2 0 − 1.

(b) Show the monomial representation has the generators

A(xx) =

 ϕ(t1xt
−1
1 ) ϕ(t1xt

−1
2 )

ϕ(t2xt
−1
1 ) ϕ(t2xt

−1
2 )

 ,
=

 0 1

1 0

 .
A(yy) =

 ϕ(t1yt
−1
1 ) ϕ(t1yt

−1
2 )

ϕ(t2yt
−1
1 ) ϕ(t2yt

−1
2 )

 ,
=

 0 w

w2 0

 .
(c) Give a permutation representation of A(xx) and A(yy) of the monomial represen-

tation of part (b).

A =

 0 1

1 0

 ,

where a12 = 1 = a21 = 1.
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B =

 0 w

w2 0

, where a12 = 2, a21 = 1,

Therefore,

t1 → t12,

t2 → t11,

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t1 t22 t21 t32 t31 t42 t41 t52 t51 t62 t61

A(yy) =

 0w

w20

,
where a12 = 2, a21 = 4.

Therefore,

t1 → t22,

t2 → t41.

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t22 t41 t41 t81 = t1 t62 t11 = t51 t2 t21 t32 t31 t22 t21
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(d) Show that the monomial representation in (2) is not faithful.

|xx| = 4; .|yy| = 2

|xx ∗ yy| = 3

So,

|A(xx)| = 4;

|A(yy)| = 2.

Therefore; |A(xx) ∗A(yy)| = 2.

and

♯sub < GG|GG!A;GG!B >;

/ ∗ 6 ∗ /.
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Chapter 4

Wreath Product

4.1 Define Wreath Product

The wreath product of the groups H by K, denoted H ≀ K, is a semi-direct product

composed of as many copies of H as the number of letters on which the permutation

group K acts on. We define the wreath product below.

Definition 4.1. Let X and Y be non-empty sets. Let H be a permutation group on X and

K on Y . Let Z = X×Y . The wreath product is a permutation group on Z. We define

a permutation group on Z such that we let γ ∈ H and define a permutation of γ(y) of Z by

γ(y) =

(x, y1) → (γ(x), y1) if y1 = y

(x, y1) → (x, y1) if y1 ̸= y


Definition 4.2. Also, for k ∈ K, define k∗ : (x; y) = (x; (y)k) such that B = Πy∈YH(y)

is a direct product of the group generated by the γ(y)s. Thus, G = B : K∗ is called a

wreath product of H and K, where H is normal subgroup, denoted by H ≀K.
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4.2 Constructing Wreath product

The wreath product of H and K, written H≀K, is a permutation group G on Z = X×Y

denoted by
∏

y∈Y γ(y) : K∗

Consider H=< (1, 2, 3), (1, 2) >∼= S3 and K=< (4, 5, 6, 7, 8) > ∼= 5.

We will construct permutation generators of the wreath product H ≀K of H and K, as

well as give its presentation.

Now a presentation of H is {x,y—x3,y2,(x ∗ y)2 } and a presentation of K is |z5}.
Let H and K be permutation group on the sets X = {1,2,3} and Y = {4,5,6,7,8}, respec-
tively.

We defined a permutation group G on Z = X × Y

Z = X × Y = {(x,y) — x ∈ X , y ∈ Y }
We have, X ∗ Y= { (1,4), (1,5), (1,6), (1,7), (1,8), (2,4), (2,5), (2,6), (2,7), (2,8), (3,4),

(3,5), (3,6), (3,7), (3,8) }.

Let γ ∈ H, define the permutation γ(y1), where y1 ∈ Y , as follows.

Using wreath product definition we let γ = (123) ∈ H and y ∈ Y. We will compute

γ(4), γ(5), γ(6), γ(7), γ(8).

Now,

γ(y) =

(x, y1) → (γ(x), y1) if y1 = y

(x, y1) → (x, y1) if y1 ̸= y

 ,

The compute γ(4) in the following table.

Also, by definition this computation of γ(4) will only change elements which contain 1,

2, and 3 as the x-coordinate and 4 as the y-coordinate.
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Compute γ(4)

Labeling Element Compute γ Element Labeling

(9) (1, 4) (γ(1), 4) (2, 4) (14)

(10) (1, 5) (γ(1), 5) (1, 5) (10)

(11) (1, 6) (γ(1), 6) (1, 6) (11)

(12) (1, 7) (γ(1), 7) (1, 7) (12)

(13) (1, 8) (γ(1), 8) (1, 8) (13)

(14) (2, 4) (γ(2), 4) (3, 4) (19)

(15) (2, 5) (γ(2), 5) (2, 5) (15)

(16) (2, 6) (γ(2), 6) (2, 6) (16)

(17) (2, 7) (γ(2), 7) (2, 7) (17)

Table 4.1: Compute γ(4)

Compute γ(4)

Labeling Element Compute γ Element Labeling

(18) (2, 8) (γ(2), 8) (2, 8) (18)

(19) (3, 4) (γ(3), 5) (1, 4) (9)

(20) (3, 5) (γ(3), 5) (3, 5) (20)

(21) (3, 6) (γ(3), 6) (3, 6) (21)

(22) (3, 7) (γ(3), 7) (3, 7) (22)

(23) (3, 8) (γ(3), 8) (3, 8) (23)

Table 4.2: Compute γ(4)

From above table we got γ(4) = (9, 14, 19).

The below table compute the γ(5).
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Compute γ(5)

Labeling Element Compute γ Element Labeling

(9) (1, 4) (γ(1), 4) (1, 4) (9)

(10) (1, 5) (γ(1), 5) (2, 5) (15)

(11) (1, 6) (γ(1), 6) (1, 6) (11)

(12) (1, 7) (γ(1), 7) (1, 7) (12)

(13) (1, 8) (γ(1), 8) (1, 8) (13)

(14) (2, 4) (γ(2), 4) (2, 4) (14)

(15) (2, 5) (γ(2), 5) (3, 5) (20)

(16) (2, 6) (γ(2), 6) (2, 6) (16)

(17) (2, 7) (γ(2), 7) (2, 7) (17)

(18) (2, 8) (γ(2), 8) (2, 8) (18)

(19) (3, 4) (γ(3), 4) (3, 4) (19)

(20) (3, 5) (γ(1), 5) (1, 5) (10)

(21) (3, 6) (γ(3), 6) (3, 6) (21)

(22) (3, 7) (γ(3), 7) (3, 7) (22)

(23) (3, 8) (γ(3), 8) (3, 8) (23)

Table 4.3: Compute γ(5)

From above table we got γ(5) = (10, 15, 20).

Also, by definition this computation of γ(6) will only change elements which contain

1, 2, and 3 as the x-coordinate and 6 as the y-coordinate.

The below table compute the γ(6).
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Compute γ(6)

Labeling Element Compute γ Element Labeling

(9) (1, 4) (γ(1), 4) (1, 4) (9)

(10) (1, 5) (γ(1), 5) (1, 5) (10)

(11) (1, 6) (γ(1), 6) (2, 6) (16)

(12) (1, 7) (γ(1), 7) (1, 7) (12)

(13) (1, 8) (γ(1), 8) (1, 8) (13)

(14) (1, 4) (γ(1), 4) (2, 4) (14)

(15) (2, 5) (γ(2), 5) (2, 5) (15)

(16) (2, 6) (γ(2), 6) (3, 6) (21)

(17) (2, 7) (γ(2), 7) (2, 7) (17)

(18) (2, 8) (γ(2), 8) (2, 8) (18)

(19) (3, 4) (γ(3), 4) (3, 4) (19)

(20) (3, 5) (γ(3), 5) (3, 5) (20)

(21) (3, 6) (γ(3), 6) (1, 6) (11)

(22) (3, 7) (γ(3), 7) (3, 7) (22)

(23) (3, 8) (γ(3), 8) (3, 8) (23)

Table 4.4: Compute γ(6)

From above table we got γ(6) = (11, 16, 21).

Also, by definition this computation of γ(7) will only change elements which contain

1, 2, and 3 as the x-coordinate and 7 as the y-coordinate.

The below table compute the γ(7).
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Compute γ(7)

Labeling Element Compute γ Element Labeling

(9) (1, 4) (γ(1), 4) (1, 4) (9)

(10) (1, 5) (γ(1), 5) (1, 5) (10)

(11) (1, 6) (γ(1), 6) (1, 6) (11)

(12) (1, 7) (γ(1), 7) (2, 7) (17)

(13) (1, 8) (γ(1), 8) (1, 8) (13)

(14) (1, 4) (γ(1), 4) (2, 4) (14)

(15) (2, 5) (γ(2), 5) (3, 5) (20)

(16) (2, 6) (γ(2), 6) (2, 6) (16)

(17) (2, 7) (γ(2), 7) (3, 7) (22)

(18) (2, 8) (γ(2), 8) (2, 8) (18)

(19) (3, 4) (γ(3), 4) (3, 4) (9)

(20) (3, 5) (γ(1), 5) (1, 5) (10)

(21) (3, 6) (γ(3), 6) (3, 6) (21)

(22) (3, 7) (γ(3), 7) (1, 7) (12)

(23) (3, 8) (γ(3), 8) (3, 8) (23)

Table 4.5: Compute γ(7)

From above table we got γ(7) = (12, 17, 22).

Also, by definition this computation of γ(8) will only change elements which contain

1, 2, and 3 as the x-coordinate and 8 as the y-coordinate.

The below table compute the γ(8).
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Compute γ(8)

Labeling Element Compute γ Element Labeling

(9) (1, 4) (γ(1), 4) (1, 4) (9)

(10) (1, 5) (γ(1), 5) (1, 5) (10)

(11) (1, 6) (γ(1), 6) (1, 6) (11)

(12) (1, 7) (γ(1), 7) (1, 7) (12)

(13) (1, 8) (γ(1), 8) (2, 8) (18)

(14) (1, 4) (γ(1), 4) (2, 4) (14)

(15) (2, 5) (γ(2), 5) (3, 5) (20)

(16) (2, 6) (γ(2), 6) (2, 6) (16)

(17) (2, 7) (γ(2), 7) (2, 7) (17)

(18) (2, 8) (γ(2), 8) (3, 8) (23)

(19) (3, 4) (γ(3), 4) (3, 4) (9)

(20) (3, 5) (γ(1), 5) (1, 5) (10)

(21) (3, 6) (γ(3), 6) (3, 6) (21)

(22) (3, 7) (γ(3), 7) (3, 7) (22)

(23) (3, 8) (γ(3), 8) (1, 8) (13)

Table 4.6: Compute γ(8)

From above table we got γ(8) = (13, 18, 23).

Let k ∈ K then define the permutation k∗1 and k∗2 of z as follows:

Now we have K = ⟨(4, 5, 6, 7, 8)⟩ ∼= S3. Let k1 = (4, 5, 6, 7, 8) and k2 = (4, 5). Then as

the definition shows, k∗1, k
∗
2 will change all Y elements. Let compute k∗1 then we will get
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Action of k∗1

Labeling Element Action k∗1 Element Labeling

(9) (1, 4) (1, k∗1(4)) (1, 5) (10)

(10) (1, 5) (1, k∗1(5)) (1, 6) (11)

(11) (1, 6) (1, k∗1(4)) (1, 7) (12)

(12) (1, 7) (1, k∗1(5)) (1, 8) (13)

(13) (1, 8) (1, k∗1(8)) (1, 4) (9)

(14) (2, 4) (2, k∗1(4)) (2, 5) (15)

(15) (2, 5) (2, k∗1(5)) (2, 6) (16)

(16) (2, 6) (2, k∗1(6)) (2, 7) (17)

(17) (2, 7) (2, k∗1(7)) (2, 8) (18)

Table 4.7: Action of k∗1

Action of k∗1

Labeling Element Action k∗1 Element Labeling

(18) (2, 8) (2, k∗1(8)) (2, 4) (14)

(19) (3, 4) (3, k∗1(4)) (3, 5) (20)

(20) (3, 5) (3, k∗1(5)) (3, 6) (21)

(21) (3, 6) (3, k∗1(6)) (3, 7) (22)

(22) (3, 7) (3, k∗1(7)) (3, 8) (23)

(23) (3, 8) (3, k∗1(8)) (3, 4) (19)

Table 4.8: Action of k∗1

So, k∗1 = (9, 10, 11, 12, 13)(14, 15, 16, 17, 18)(19, 20, 21, 22, 23).

Then computing k∗2 we will get
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Action of k∗2

Labeling Element Action of k∗2 Element Labeling

(9) (1, 4) (1, k∗2(4)) (1, 5) (10)

(10) (1, 5) (1, k∗2(5)) (1, 4) (9)

(11) (1, 6) (1, k∗2(6)) (1, 6) (11)

(12) (1, 7) (1, k∗2(7)) (1, 7) (12)

(13) (1, 8) (1, k∗2(8)) (1, 8) (13)

(14) (2, 4) (2, k∗2(4)) (2, 5) (15)

(15) (2, 5) (2, k∗2(4)) (2, 4) (14)

(16) (2, 6) (2, k∗2(6)) (2, 6) (16)

(17) (2, 7) (2, k∗2(7)) (2, 7) (17)

(18) (2, 8) (2, k∗2(8)) (2, 8) (15)

(19) (3, 4) (3, k∗2(4)) (3, 5) (20)

(20) (3, 5) (3, k∗2(5)) (3, 4) (19)

(21) (3, 6) (3, k∗2(6)) (3, 6) (21)

(22) (3, 7) (3, k∗2(7)) (3, 7) (22)

(23) (3, 8) (3, k∗2(8)) (3, 8) (23)

Table 4.9: Action of k∗2

So, k∗2 = (9, 10), (14, 15), (19, 20).

Now we will write the presentation of this group. We will label them as follow,

a = (9,14,19),

b = (13,18),

c = (10,15,20),

d = (10,15),

e = (11,16,21),

f = (11,16),

g = (12,17,22),

h = (12,17),

i = (13,18,23),

j = (13,18).
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We will conjugate the elements from H with the elements from K such as,

a = γ1(4),

(9,14,19) → (10,15,20)=γ1(5)=c.

c = γ1(5),

(10,15,20) → (11,16,21)=γ1(6)=e.

e = γ1(6),

(11,16,21) →(12,17,22)=γ1(7)=g.

g = γ1(7),

(12,17,22) → (13,18,23)=γ1(8)=i.

i= γ1(8),

(13,18,23) → (9,14,19) =γ1(4)=a.

b= γ2(4),

(9,14) → (10,15)=γ2(5) = d.

d= γ2(5),

(10,15) → (11,16)=γ2(6) = f.

f= γ2(6),

(11,16) →(12,17)=γ2(7) = h.

h= γ2(7),

(12,17) → (13,18)=γ2(8) = j.

j= γ2(8),

(13,18) → (9,14)=γ2(4) = b.
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Presentation Of my group:

H=< (1, 2, 3) >,

K=< (1, 2, 3, 4, 5) > .

ak = x1k= x1(1,2,3,4,5) = x2 = c,

Similarly,

bk= y1k= y1(1,2,3,4,5) = y2 = d,

ck= x2k= x2(1,2,3,4,5) = x3 = e,

dk= y2k= y2(1,2,3,4,5) = y3 = f,

ek= x3k= x3(1,2,3,4,5) = x4 = g,

fk= y3k= y3(1,2,3,4,5) = y4 = h,

gk= x4k= x4(1,2,3,4,5) = x5 = i,

hk= y4k= y4(1,2,3,4,5) = y5 = j,

ik= x5k= x5(1,2,3,4,5) = x6=a,

jk= y5k= y5(1,2,3,4,5) = y6 = b.

k5, ak = c, ck = e, ek = g, gk = i, ik = a,

bk = d, dk = f, fk = h, hk = j, jk = b.
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Magma Code for Wreath Product

G< a, b, c, d, e, f, g, h, i, j > := Group< a, b, c, d, e, f, g, h, i, j|a3, b2, (a ∗ b)2,
c3, d2, (c ∗ d)2,
e3, f2, (e ∗ f)2,
g3, h2, (g ∗ h)2,
i3, j2, (i ∗ j)2,
(a,c), (a,d), (a,e), (a,f), (a,g), (a,h), (a,i), (a,j),

(b,c), (b,d), (b,e), (b,f), (b,g), (b,h), (b,i), (b,j),

(c,e), (c,f), (c,g), (c,h), (c,i), (c,j),

(d,e), (d,f), (d,g), (d,h), (d,i), (d,j),

(e,g), (e,h), (e,i), (e,j),

(f,g), (f,h), (f,i), (f,j),

(g,i), (g,j),

(h,i), (h,j)>;

♯G;

/*7776*/

65;

/*7776*/

G< a, b, c, d, e, f, g, h, i, j, k > := Group< a, b, c, d, e, f, g, h, i, j, k|a3, b2, (a ∗ b)2,
c3, d2, (c ∗ d)2,
e3, f2, (e ∗ f)2,
g3, h2, (g ∗ h)2,
i3, j2, (i ∗ j)2,
(a,c), (a,d), (a,e), (a,f), (a,g), (a,h), (a,i), (a,j),

(b,c), (b,d), (b,e), (b,f), (b,g), (b,h), (b,i), (b,j),

(c,e), (c,f), (c,g), (c,h), (c,i), (c,j),

(d,e), (d,f), (d,g), (d,h), (d,i), (d,j),

(e,g), (e,h), (e,i), (e,j),

(f,g), (f,h), (f,i), (f,j),

(g,i), (g,j),

(h,i), (h,j),
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k5, ak = c, ck = e, ek = g, gk = i,ik = a,

bk = d, dk = f, fk = h, hk = j, jk = b>;

♯G;

/*38880*/

65 ∗ 5;
/*38880*/

f,G1,k:=CosetAction(G, sub < G|Id(G) >);
W:=WreathProduct(Sym(3),CyclicGroup(5));

Next we will find the isomorphism type of the wreath product and N .

We will use the following inputted into magma.

IsIsomorphic(G1,W);

/* true Mapping from: GrpPerm: G1 to GrpPerm :

Composition of Mapping from: GrpPerm: G1 to GrpPC and

Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: W

*/
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Chapter 5

Finite Homomorphic Images

In this chapter we will discuss four involutory four progenitors. We will factor these

progenitors by the first order relations, nti, where n ∈ N , ti is a symmetric generator,

and determine finite homomorphic images.

5.1 Progenitor 2∗15 : (32 : S3)

We first give a symmetric presentation of the progenitor 2∗15 : (32 : S3).

N=< xx, yy > ∼= 32 : S3 where,

xx = (1, 15, 12, 8, 3, 9, 14, 13, 7, 4)(2, 11, 5, 6, 10), and

yy = (1, 11, 14, 6, 12, 2, 7, 5, 3, 10)(4, 8, 13, 15, 9).

A presentataion of N is,

NN< x, y, t >:= Group(y−1∗x−1)3, (y−1∗x)3, x−1∗y−1∗x3∗y−1∗x−1∗y, x2∗y∗x2∗y3 >.
N1 = Stabiliser(N,1).

= < yy−1 ∗ xx2 ∗ yy−1, < xx3 ∗ yy−1 ∗ xx > .

Thus,

G = 2∗15 : (32 : S3) = G< x, y, t >:= Group< x, y, t|(y−1 * x−1)3, (y−1 ∗ x)3, x−1 * y−1

* x3 * y−1 * x−1 * y ,x2 * y * x2 * y3, (t,y−1 ∗ x2 ∗ y−1),(t,x3 ∗ y−1 ∗ x) >.
We note that |G| = ∞.

We want to factor G by additional relations. There are many chooses for additional re-

lations. A first order relations of the form (nti)
a where n ∈ N and A is a parameter.

We will factor G by the first order relations. We explain below how to obtain first
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order efficiently.

Class Representative Elements of form πti

(2, 11, 5, 6, 10)(1, 9, 15, 14, 12, 13, 8, 7, 3, 4) x

(1, 9, 6)(2, 14, 15)(3, 4, 11)(5, 12, 13), (7, 8, 10) y

(2, 5, 10, 11, 6)(1, 12, 15, 3, 8, 9, 14, 13, 4, 7) x−1

(2, 10, 6, 5, 11)(1, 3, 15, 7, 9, 4, 12, 8, 13, 14) y−1

(2, 11, 5, 6, 10)(1, 14, 15, 12, 13, 8, 7, 4, 9, 3) x2

(2, 6, 11, 10, 5)(1, 7, 15, 14, 4, 13, 3, 9, 8, 12) xy

(1, 14, 12, 7, 3)(2, 5, 10, 11, 6)(4, 8, 13, 15, 9) xy−1

(1, 7, 14, 3, 12)(2, 10, 6, 5, 11), (4, 13, 9, 8, 15) yx

(2, 11, 5, 6, 10)(1, 9, 15, 14, 12, 13, 8, 7, 3, 4) y2

(2, 6, 11, 10, 5)(1, 9, 8, 7, 14, 15, 4, 3, 12, 13) yx−1

(2, 5, 10, 11, 6)(1, 9, 13, 12, 3, 4, 15, 14, 7, 8) x−1y

(2, 10, 6, 5, 11)(1, 9, 4, 3, 7, 8, 13, 12, 14, 15) x−2

Table 5.1: Conjugacy classes of elements of form πti
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5.1.1 Progenitor 2∗15 : N Factored By The First Order Relation

We run the following in magma to find finite homomorphic images. Some of the homo-

morphic images are given below.

Note that only the last image is a true image. for a, b, c, d, e, f, g, h, i, j, k, l, m, n, o,

p, q, r, s, u, v, w, z,

a1, b1, c1, d1 in [0..10] do

G< x, y, t > := Group< x, y, t| (y−1 * x−1)3, (y−1 ∗ x)3,
x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x−1 ∗ y, x2 ∗ y ∗ x2 ∗ y3, t2,
(t, y−1 * x2 * y−1), (t,x3 ∗ y−1 ∗ x),
(x ∗ t(y∗x−1))a, (x ∗ t)b, (y ∗ t)c, (y*t(y∗x−1))d, (y*t(y

−2))e,

(x(−1) ∗ t(y∗x−1))f , (x(−1) ∗ t)g, (y(−1) ∗ t(y∗x−1))h, (y(−1) ∗ t)i,
(x(2) ∗ t(y∗x−1))j , (x(2) ∗ t)k, (x*y*t(y∗x−1))l,

(x ∗ y ∗ t)m, (x*y(−1) ∗ t)n,
(x ∗ y(−1) ∗ t(y∗x(−1)))o,

(x ∗ y(−1) ∗ tx(−1)p

,

(y ∗ x ∗ t)q,
(y ∗ x ∗ t(y∗x(−1)))r,

(y ∗ x ∗ tx−1
)s,

(y2 ∗ ty∗x−1
)u,

(y(2) ∗ t)v,
(y ∗ x−1 ∗ t(y∗x−1))w,

(y ∗ x−1∗t))z,

(x−1 ∗ y ∗ t(y∗x(−1)))a1,

(x−1 ∗ y ∗ t)b1,
(x−2 ∗ t(y∗x−1

)c1,

(x−2 ∗ t)d1 >;

if Index (G, sub< G|x,y>) gt 1 then

a, b, c, d, e, f, g, h, i, j, k, l, m, n,

o, p,q, r, s, u, v, w, z, a1, b1, c1, d1,

Index (G, sub <G|x,y>); end if; end for;

1. b1 := 3; Index(G, sub < G|x, y >);
/*4*/
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f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*25*/

♯sub< G|x, y >;
/*150*/

♯G1;

*24*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

1

*/

2. a1:= 4; c1:= 2;

Inde(G,sub<G|x,y>);

/*8*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*25*/

#sub<G|x,y>;

/*150*/

#G1;

/*48*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

*
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| Cyclic(2)

1

*/

3. a1:= 5; c1:= 2;

Index(G,sub<G|x,y>);

/*20*/

f,G1,k:=CosetAction(G,sub<G|x,y>);

#k;

/*1*/

#sub<G|x,y>;

/*6*/

#G1;

/*120*/

CompositionFactors(G1);

/*

G

| Alternating(5)

*

| Cyclic(2)

1

*/

4. b1 := 5; c1 := 3;

Index(G, sub < G|x, y >);
/*832*/

♯sub< G|x, y >;
/*150*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| 2A(2, 4) = U(3, 4)

1

*/

♯DoubleCosets(G, sub < G|x, y >, sub < G|x, y >);
/*12*/
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♯k;

/*1*/

♯G1;

/*

124800

*/
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5.2 Progenitor 2∗25 : (D5 ×D5)

We first give a symmetric presentation of the progenitor 2∗25 : (D5 ×D5)

N=< xx, yy >; where

xx = (1, 19, 11, 17, 2)(3, 16, 15, 5, 6, 9, 24, 8, 21, 22)(4, 18, 13, 25, 7, 14, 20, 10, 23, 12),

and

yy = (1, 16)(2, 8)(3, 20)(4, 24)(5, 17)(6, 13)(7, 15)(9, 19)(10, 18)(11, 22)(14, 25)(21, 23).

A presentataion of N is,

NN< x, y, t >:= Group< x, y, t|y2, (xyx)2, x10, x−1yx−1yx−1yx−1yx−1yxyxyxyxyx−1y >.

N1 = Stabiliser(N,1),

= yy ∗xx∗yy ∗xx∗yy ∗xx∗yy ∗xx−1∗yy, xx∗yy ∗xx∗yy ∗xx∗yy ∗xx−1∗yy ∗xx∗yy > .

Thus,

G = 2∗25 : (D5×D5) = G< x, y, t >:=Group< x, y, t|y2, (x∗y ∗x)2, x10, x−1 ∗y ∗x−1 ∗y ∗
x−1∗y∗x−1∗y∗x−1∗y∗x∗y∗x∗y∗x∗y∗x∗y∗x−1∗y , t2, (t, y∗x∗y∗x∗y∗x∗y∗x−1∗y),
(t, x ∗ y ∗ x ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x ∗ y).
We note that |G| = ∞.

We want to factor G by additional relations. There are many chooses for additional re-

lations. A first order relations of the form (nti)
a where n ∈ N and A is a parameter.

We will factor G by the first order relations. We explain below how to obtain first

order efficiently.
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Conjugacy classes of elements of form πti

Class Representative Elements of form πti

(1, 17, 2, 11, 19), (3, 6, 9, 22, 21, 5, 24, 15, 16, 8), (4, 23, 14, 7, 25, 13, 12, 10, 20, 18) x

(6, 20, 19, 18, 22), (1, 5, 11, 9, 13, 4, 3, 14, 21, 10), (2, 8, 17, 16, 23, 7, 24, 12, 15, 25) y

(7), (2, 15), (4, 23), (8, 12), (13, 20), (1, 21, 24, 17), (3, 11, 19, 6), (5, 14, 25, 16), (9, 10, 18, 22) x−1

(1, 5, 11, 18, 9, 20, 2, 25, 8, 23, 6, 19, 14,22, 4, 24, 3, 17, 10, 16, 13, 21, 15, 12, 7) x2

(1, 17, 4, 7, 23, 20, 21, 15, 24, 6, 13, 5, 8,16, 22, 3, 14, 12, 25, 18, 9, 2, 19, 10, 11) xy

(1, 5, 2, 18, 8, 20, 17, 14, 11, 16, 4, 6, 9, 12, 19, 25, 7, 21, 22, 3, 23, 10, 15, 13, 24) yx

(1, 17, 21, 7, 24, 20, 14, 8, 25, 22, 13, 4, 2, 23, 19, 9, 3, 5, 15, 16, 6, 11, 10, 12, 18) yx−1

(1, 13, 2, 15, 20, 17, 22, 24, 4, 11, 25, 5, 3, 7, 19, 10, 8, 6, 23, 18, 16, 21, 14, 9, 12 ) x−1y

(1, 15, 2, 25, 24, 17, 13, 10, 3, 11, 22, 20, 18, 6, 19, 5, 4, 14, 21, 8, 7, 12, 16, 23, 9) x−2

(1, 18, 2, 9, 14, 17, 24, 22, 12, 11, 7, 3, 5,25, 19, 23, 6, 8, 10, 13, 21, 16, 20, 15, 4) x3

(1, 9, 2, 7, 22, 17, 18, 23, 5, 11, 24, 14, 13, 8, 19, 3, 12, 20, 16, 6, 25, 4, 21, 10, 15) x2y

(1, 19, 11, 17, 2), (3, 9, 16, 24, 15, 8, 5, 21, 6, 22), (4, 14, 18, 20, 13,10, 25, 23, 7, 12) xyx

(1, 17, 19, 2, 11), (3, 9, 5, 21, 24, 16, 22, 6, 15, 8), (4, 14, 25, 23, 20, 18, 12, 7, 13, 10) xyx−1

(6, 19, 22, 20, 18), (1, 11, 9, 5, 4, 13, 10, 14, 21, 3), (2, 17, 16, 8, 7, 23, 25, 12, 15, 24) yx2

(6, 20, 19, 18, 22), (1, 11, 10, 14, 5, 9, 3, 21, 4, 13), (2, 17, 25, 12, 8, 16, 24, 15, 7, 23) yxy

Table 5.2: Conjugacy classes of elements of form πti

5.2.1 Progenitor 2∗25 : N Factored By The First Order Relation

We run the following in magma to find finite homomorphic images. Some of the homo-

morphic images are given below.

Note that only the few images are a true images. for a, b, c, d, e, f, g, h, i, j, k, l, m, n,

o, p, q, r, s, u, v, w, z, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1 in [0..10] do

G< x, y, t >:=Group< x, y, t|y2, (x ∗ y ∗ x)2, x10,
x−1 ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y ∗ x−1 ∗ y,
t2, (t, y ∗ x ∗ y ∗ x ∗ y ∗ x ∗ y ∗ x−1 ∗ y),
(t, x ∗ y ∗ x ∗ y ∗ x ∗ y ∗ x−1 ∗ y ∗ x ∗ y), (x ∗ t)a,
(x ∗ t(y∗x−1)))b,

(x ∗ t(x∗y2))c,
(y ∗ t(x∗y∗x−1))d,

(y ∗ t)e,
(y ∗ t(x−1))f ,

(x(−1) ∗ t(y∗x∗y))g,
(x(−1) ∗ tx(−1)

)h,

(x(−1) ∗ tx ∗ y2)i,
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(x(−1) ∗ t(x(−1)∗y))j ,

(x(−1) ∗ t(x∗y∗x(−1)∗y))k,

(x(−1) ∗ t)l,
(x(−1) ∗ t(y∗x(−1)))m,

(x(−1) ∗ t(y∗x(2)))n,

(x(−1) ∗ t(x∗y))o,
(x2 ∗ t)p,
(x ∗ y ∗ t)q,
(y ∗ x ∗ t)r,
(y ∗ x(−1) ∗ t)s,
(x(−1) ∗ y ∗ t)u,
(x(−2) ∗ t)v,
(x3 ∗ t)w,
(x2 ∗ y ∗ t)z,
(x ∗ y ∗ x ∗ t)a1,
(x ∗ y ∗ x ∗ t(y∗x−1))b1,

(x ∗ y ∗ x ∗ t(x∗y)2)c1,
(x ∗ y ∗ x−1 ∗ t)d1,
(x ∗ y ∗ x−1 ∗ t(y∗x−1))e1,

(x ∗ y ∗ x−1 ∗ t(x∗y2))f1,
(y ∗ x2 ∗ ty∗x)g1,
(y ∗ x2 ∗ t)h1,
(y ∗ x(2) ∗ t(x(−1)))i1,

(y ∗ x ∗ y ∗ t(x∗y∗x−1))j1,

(y ∗ x ∗ y ∗ t)h1,
(y ∗ x ∗ y ∗ tx−1)k1 >;

if Index(G, sub < G|x, y >) gt 1 then

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,u,v,w,z,a1,b1,c1,d1,e1,f1,g1,h1,i1,j1,k1,l1,

Index(G, sub < G|x, y >); end if; end for;
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1. j1 := 3;

Index(G, sub < G|x, y >);
/*144*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub< G|x, y >;
/*100*/

♯G1;

/*14400*/

CompositionFactors(G1);

/*

G

| Alternating(5)

*

| Alternating(5)

*

| Cyclic(2)

*

| Cyclic(2)

1

*/

2. i1 := 3; j1 := 3;

Index(G, sub < G|x, y >);
/*72*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*100*/

♯G1;

/*7200*/

CompositionFactors(G1);

/*
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G

| Alternating(5)

*

| Alternating(5)

*

| Cyclic(2)

1

*/

3. h1 := 4; i1 := 4; j1 := 4;

Index(G, sub < G|x, y >);
/*384*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*100*/

♯G1;

/*38400*/

CompositionFactors(G1);

/* G

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

1

*/
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5.3 Progenitor 2∗30 : S5

We first give a symmetric presentation of the progenitor 2∗30 : S5

N=< xx, yy >; where

xx = (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)(19, 26)(21,25)(23, 28),

and

yy = (1, 2, 4, 7, 12, 19)(3, 5, 9, 15, 22, 27)(6, 10, 16, 23, 18, 25)(8, 13, 21)

(11, 17, 14)(20, 26, 29, 30, 28, 24).

A presentataion of N is

NN< x, y >:= Group< x, y|x2, y6, (y ∗ x ∗ y−1 ∗ x)2, (x ∗ y−1)5 > .

N1 = Stabiliser(N,1),

= < yy2 ∗ xx ∗ yy−2 ∗ xx ∗ yy2; yy2 ∗ xx ∗ yy−2 ∗ xx ∗ yy2 > .

Thus,

G = 2∗30 : S5 =G< x, y, t >:=Group< x, y, t|x2, y6, (y∗x∗y−1∗x)2, (x∗y−1)5, t2, (t, x), (t, y2∗
x ∗ y−2 ∗ x ∗ y2) > .

We note that |G| = ∞.

We want to factor G by additional relations. There are many chooses for additional re-

lations. A first order relations of the form (nti)
a where n ∈ N and A is a parameter.

We will factor G by the first order relations. We explain below how to obtain first

order efficiently.

Conjugacy classes of elements of form πti

Class Representation πti

(8, 13, 21), (11, 17, 14), (1, 7, 2, 12, 19, 4), (6, 18, 23, 25, 10, 16), (3, 26, 15, 29, 28, 5, 24, 27, 22, 20, 9, 30) x

(7, 25), (1, 11, 5, 20), (2, 19, 23, 10), (9, 24, 16, 21), (3, 26, 6, 13, 18, 30, 22, 8), (4, 12, 15, 17, 28, 29, 27, 14) y

(8, 21, 13), (11, 14, 17), (1, 4, 2, 12, 7, 19), (3, 9, 5, 22, 15, 27), (6, 16, 10, 18, 23, 25), (20, 29, 26, 28, 30, 24) y−1

(7, 25), (1, 11, 5, 20), (2, 23, 10, 19), (3, 6, 13, 22), (4, 15, 17, 27), (8, 30, 26, 18), (9, 24, 16, 21), (12, 28, 29, 14) xy

(1, 3, 8, 20, 19), (2, 6, 15, 22, 27), (4, 11, 24, 13, 25), (5, 14, 7, 18, 21), (9, 10, 16, 28, 17), (12, 26, 29, 30, 23) xy−1

(8, 13, 21), (11, 17, 14), (1, 2, 4, 7, 12, 19), (3, 5, 9, 15, 22, 27), (6, 10, 16, 23, 18, 25), (20, 26, 29, 30, 28, 24) yx

Table 5.3: Conjugacy classes of elements of form πti
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5.3.1 Progenitor 2∗30 : N Factored By The First Order Relation

We run the following in magma to find finite homomorphic images. The some of the

homomorphic images are below.

Note that only few of images are a true images. for a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,

u,v,w,z ,a1,b1,c1,d1,e1,f1,g1,h1,i1,j1,k1,l1,m1,n1 in [0 . . . 10] do

G < x, y, t >:= Group < x, y, t|x2, y6, (y ∗ x ∗ y−1 ∗ x)2, (x ∗ y−1)5, (t, x),

(t, y2 ∗ x ∗ y−2 ∗ x ∗ y2),
(x ∗ t(y∗x2))a ,

(x ∗ t(y3∗x))b ,
(x ∗ t)c,
(x ∗ t(y2∗x))d,
(x ∗ t(y∗x))e,
(y ∗ t(y3))f ,
(y ∗ t)g,
(y ∗ t(b))h,
(y ∗ t(y∗x∗y2))i,
(y ∗ t(y∗x))j ,
(y ∗ t(y2))k,
(y−1 ∗ t((y∗x)2)l,
(y−1 ∗ t(y3∗x))m,
(y−1 ∗ t)n,
(y−1 ∗ t(y∗x))o,
(y−1 ∗ t(y2∗x))p,
(y ∗ x ∗ t(y−1∗x∗y−1))q,

(x ∗ y ∗ t(y3))r,
(x ∗ y ∗ t)s,
(x ∗ y ∗ t(y))u,
(x ∗ y ∗ t(y∗x))v,
(x ∗ y ∗ t(y2))w,
(x ∗ y ∗ t(y∗x)2)z,
(x ∗ y ∗ t(y∗x∗y2))a1,
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(x ∗ y ∗ t(y−2))b1,

(x ∗ y−1 ∗ t)c1,
(x ∗ y−1 ∗ t(y))d1,
(x ∗ y−1 ∗ t(y2))e1,
(x ∗ y−1 ∗ t(y∗x∗y))f1,
(x ∗ y−1 ∗ t(y∗x∗y2))g1,
(x ∗ y−1 ∗ t(y−2))h1,

(y ∗ x ∗ t((y∗x)2)i1,
(y ∗ x ∗ t(y3∗x))j1, (y ∗ x ∗ t)k1,
(y ∗ x ∗ t(y∗x))l1,
(y ∗ x ∗ t(y2∗x))m1,

(y ∗ x ∗ t(y−1∗x∗y−1))n1 >;

if Index(G, sub < G|x, y >) gt 1 then

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,u,v,w,z,

a1,b1,c1,d1,e1,f1,g1,h1,i1,j1,k1,l1,m1,n1, Index(G, sub < G|x, y >); end if; end for;

1. l1 := 3;m1 := 4;

Index(G, sub < G|x, y >);
/*6*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯ k;

/*1*/

♯sub < G|x, y >;
/*120*/

♯G1;

/*720*/

CompositionFactors(G1);

/*

G

| Cyclic(2)
∗
| Alternating(6)
1
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*/

2. j1 := 3;n1 := 4;

Index(G, sub < G|x, y >);
/*32*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub< G|x, y >;
/*120*/

♯G1;

/*3840*/

CompositionFactors(G1);

/*

G

| Cyclic(2)
∗
| Alternating(5)
∗
| Cyclic(2)
∗
| Cyclic(2)
∗
| Cyclic(2)
∗
| Cyclic(2)
∗
| Cyclic(2)
1

*/

3. j1 := 4; k1 := 4; l1 := 8;m1 := 4;
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Index(G, sub < G|x, y >);
/*4*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*0*/

♯sub< G|x, y >;
/*0*/

♯G1;

/*4*/

CompositionFactors(G1);

/*

G

| Cyclic(2)
∗
| Cyclic(2)
1

*/
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5.4 Progenitor 26 : (32 : 2)

We first give a symmetric presenatation of thr progenitor 26 : (32 : 2)

N =< xx, yy >; where

xx = (1, 4)(2, 5)(3, 6), and

yy = (1,2,3).

A presenatation of N is,

NN< x, y >:= Group < x, y|x2, y3, y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y ∗ x > .

N1 = Stabiliser(N,1),

= < xx ∗ yy−1 ∗ xx > .

Thus,

G = 26 : (32 : 2) = G< x, y, t >:= Group< x, y, t|x2, y3, y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y ∗
x, t2, (t, yx), (t, ty), (t, t(y

2)), (t, tx) > .

We note that |G| = ∞.

We want to factor G by additional relations. There are many chooses for additional re-

lations. A first order relations of the form (nti)
a where n ∈ N and A is a parameter.

We will factor G by the first order relations. We explain below how to obtain first

order efficiently.

We find the class representative and elements by applying below loop in magma.

C:=Classes(N);

♯C;

/* 9 */.

for i in [2. . . ♯C] do i;

for j in [1 . . . ♯N ] do

if ArrayP[j] eq C[i][3]

then Sch[i]; end if;

end for;

Orbits(Centraliser(N,C[i][3]));

end for;

for j in [2 . . . 9] do for i in [1. . . ♯Sch] do if 1ArrayP [i] eq j then j, Sch[i]; break ; end if; end

for ; end for;
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5.4.1 Progenitor 2∗6 : N Factored By The First Order Relation

We run the following in magma to find finite homomorphic images. The some of the

homomorphic images are below.

Note that only few of images are a true images. for a,b,c,d,e,f,g,h,i,j,k [0 . . . 10] do,

G< x, y, t >:= Group¡x, y, t— x2, y3, y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y ∗ x, t2, (t, yx), (x ∗ t)a, (y ∗
t)b, (y(−1) ∗ t)c, (x ∗ y ∗ t)d, (x ∗ y ∗ t(x))e, (x ∗ y−1 ∗ t)f , (x ∗ y−1 ∗ t(x))g, (y ∗ x ∗ t)h, (y ∗ x ∗
t(x))i, (y−1 ∗ x ∗ t)j , (x ∗ y ∗ x ∗ t)k > .

if Index(G,sub< G|x, y >) gt 1 then

a, b, c, d, e, f, g, h, i, j, k, Index(G, sub < G|x, y >); end if; end for;

1. h := 4;

G< x, y, t >:=Group< x, y, t|x2, y3, y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y ∗ x, t2, (t, yx), (x ∗
t)a, (y ∗ t)b, (y(−1) ∗ t)c, (x ∗ y ∗ t)d, (x ∗ y ∗ t(x))e, (x ∗ y−1 ∗ t)f , (x ∗ y−1 ∗ t(x))g, (y ∗
x ∗ t)h, (y ∗ x ∗ t(x))i, (y−1 ∗ x ∗ t)j , (x ∗ y ∗ x ∗ t)k >;
Index(G, sub < G|x, y >);
/*128*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*18*/

♯G1;

/*216*/

CompositionFactors(G1);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)
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1

2. h := 5;

Index(G, sub < G|x, y >);
/*135*/

f,G1, k := CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*18*/

♯G1;

/*2430*/

CompositionFactors(G1);

G

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

3. j := 5; k := 2;

Index(G, sub < G|x, y >);
/*5*/

f,G1, k := CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
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/*2*/

♯G1;

/*10*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(5)

1

*/

4. j := 7; k := 2;

Index(G, sub < G|x, y >);
/*7*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*2*/

♯G1;

/*14*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(7)

1

*/

5. j := 10; k := 2;

Index(G, sub < G|x, y >);
/*10*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯k;
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/*1*/

♯sub < G|x, y >;
/*2*/

♯G1;

/*20*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(2)

1

*/

6. j := 8; k := 2;

Index(G, sub < G|x, y >);
/*8*/

f,G1,k:=CosetAction(G,sub< G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*2*/

♯G1;

/*16*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

*/
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7. j := 9; k := 2; Index(G, sub < G|x, y >);
/*9*/

f,G1, k := CosetAction(G, sub < G|x, y >);
♯k;

/*1*/

♯sub < G|x, y >;
/*2*/

♯G1;

/*18*/

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

1

*/
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Chapter 6

Isomorphism Types

Definition 6.1. Let H and K be groups. The direct product of H and K, denoted H ×
K, is the group with all elements as ordered pairs having the form (h, k) where h ∈ H, k

∈ K, and with operation (h, k)(h′,k′) = (hh′,kk′) .

Definition 6.2. Let G be a group. Then G is a semi-direct product of K by Q if K

△ G and K has a complement of Q1
∼= Q .

Definition 6.3. Let K and Q be groups. Then a group G, with K1 △ G, is an extension

of K by Q where K1
∼= K and G/K1

∼= Q.

Definition 6.4. Let G be a group with H≤ G and N ≤ G such that |G| = |N||H|. Then

G is a central extension by H, denoted G ∼= N · H, if N is the center of G .

Definition 6.5. Let G be a group with H ≤ G, N ≤ G, and N △ G such that |G| =
|N||H|. Then G is a mixed extension by H, denoted G ∼= N·:H, if G is formed by both

central extension and semi-direct products .

Largest Normal Abelian Subgroup In this chapter, we evaluate each image

of the progenitor G that noted to be faithful and whose number of subgroups generated by

x and y are equal to the order of our control group N , we will focus on the composition

factors to find the rough shape of the images. We will regard the rough shape as the

isomorphism type of the groups. There are four types of extension direct and semi-direct

product, mixed and central extension. We will include examples of each type using similar

road and most importantly using composition factors and normal lattice of each group.
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6.1 Semi-Direct Product 32 : 2

Consider the group G generated by

xx = (1, 4)(2, 5)(3, 6)

and yy = (1, 2, 3)

A presentation of G is:

G<x,y>:=Group<x,y| x^2,y^3,y^-1 * x * y^-1 * x *y * x * y * x>.

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G.

G = <xx,yy >;

CompositionFactors(G);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

1

Normal Lattice
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Figure 6.1: 32 : 2

By looking at the composition factors of G it is not clear what the isomorphism type is.

After analyzing the normal lattice of G, we see that NL[5] is the largest normal abelian

subgroup. The order of NL[5] is 9 and the order of G is 18. Now 18
9 = 2. But G does

not have a normal subgroup of order 2. Thus, G is an extension of NL[5] by a group

say q = G/NL[5] but it is not a direct product because q is not isomorphic to a normal

subgroup of G.

Now, we need to investigate to see whether G is the semi-direct product (split extension)

of NL[5] ∼= 32 by q ∼= 2.

We note that NL[5] is isomorphic to 3× 3, written 32, and NL[5] = < A,B >, where

A = (1,3,2) and

B = (1, 2, 3)(4, 6, 5).

q = < (1, 2), Id(q) >. Let T be the set of right coset representatives of N in G.

Now T[2] ≡ q.1 and T[3] eq q.2.

We have AT [2] = AB and BT [2] = B2

Thus, we see ac = ab, bc = b2.

We add these results in our presentation of H and verify that it is isomorphic to G to
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confirm our presentation of G.

H<a,b,c>:=Group<a,b,c|a^3,b^3,(a,b),c^2,a^c=a*b,b^c=

b^2>;

f,H1,k:=CosetAction(H,sub<H|Id(H)>);

IsIsomorphic(N,H1);

True

This G ∼= 32 : 2.
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6.2 Semi-Direct Product 22 : S3

We are given N is a transitive group on 8 letters which generated by

xx = (1, 6)(2, 5)(3, 7)(4, 8),

yy = (1, 3, 8)(4, 5, 7).

We begin by analyzing the composition factors and the normal lattice of N .

N = sub < S|xx,yy >,

CompositionFactors(N);

/*

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

1

*/

NL:=NormalLattice(N);

NL;

/*

Normal subgroup lattice

-----------------------

[4] Order 24 Length 1 Maximal Subgroups: 3

---

[3] Order 12 Length 1 Maximal Subgroups: 2

---

[2] Order 4 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

*/

Normal Lattice We then look for the largest abelian subgroup using the code.

foriin[1 · · · ♯NL]doif IsAbelian(N L[i])then i; end if ; end for;

/*

1

2

*/
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Figure 6.2: 23 : 3

By looking at the composition factors of N , it is not clear what the isomorphism type

may be.

After analyzing the normal lattice. we see that NL[2] is the largest normal abelian sub-

group. The order of NL[2] is 4.

Now, we need to investigate to see the group is the semi-direct product (split extension)

of NL[2] by q. It is clear that NL[2] has generators.

A = (1, 3)(2, 8)(4, 6)(5, 7),

B = (1, 8)(2, 3)(4, 5)(6, 7).

We see below that NL[2] ∼= 22.

X := [2, 2];

IsIsomorphic(NL2,AbelianGroup(GrpPerm,X));

/* true */

FPGroup(q);

/*

Finitely presented group on 2 generators
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Relations

£.1^2 = Id(£)
£.2^-3 = Id(£)
116

(£.2^-1 * £.1)^2 = Id(£)
*/

The group q has two generators say q.1 , q.2. We label them c , d, respectively. We

note that q ∼= S3. Our next step is to find the action of the generators of q (c ,d) on

the generators A , B of NL[2]. In order to do so, we need to look at the transversals of

NL[2].

ff(T[1])eq q.1;

ff(T[2])eq q.2;

G< a, b, c, d >:= Group < a, b, c, d|a^2, b^2,

(a, b), c^2, d^-3, (d^-1* c)^2, a^c = b, a^d =b,

b^c = a,b^d = a * b >;

#G;

/* 24 */

f,G,K:=CosetAction(G, sub < G|Id(G) >);

#G1;

IsIsomorphic(N,G1);

/*

true Mapping from: GrpPerm: N to GrpPerm: G1

Composition of Mapping from: GrpPerm: N to GrpPC and

Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: G1

*/

This tells is that we have the semi-direct product NL[2]:q, where NL[2]∼= 23 and q ∼= S3.

Thus we have N isomorphic to the semi-direct product 23 : S3.
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6.3 Semi-Direct Product S5 = (A5 : 2)

We are given G is a transitive group on 30 letters, which is generated by

xx = (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)(19, 26)(21, 25)(23, 28)

yy = (1, 2, 4, 7, 12, 19)(3, 5, 9, 15, 22, 27)(6, 10, 16, 23, 18, 25)(8, 13, 21)(11, 17, 14)

(20, 26, 29, 30, 28, 24),

We will find the isomorphisim type of G by first analyzing the composition factors and

the normal lattice of G:

CompositionFactors(G1);

G

| Cyclic(2)

*

| Alternating(5)

1

Normal Lattice

Figure 6.3: s6
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By looking to the composition factors of G it is not clear what the isomorphism type.

We see that NL[2] is normal in G and q = G/NL[2] ∼= 2. Thus we have G ∼= NL[2] : q.

Since NL[2] ∼= Alt(5) and q ∼= 2, G ∼= A5 : 2 ∼= S5.
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Chapter 7

Linear Maps

7.1 Linear Map of PSL(2, 7)

Let X =Z7 ∪ {∞}. The three linear maps on X that generates PSL(2, 7) are given by:

α, β, γ where

α : x→ x+ 1,

β : x→ Kx,

K is a nonzero square in F7 whose powers give all of the squares of F7, and

γ : x→ −1
x = −x−1.

Then α = (∞), (0, 1, 2, 3, 4, 5, 6).

In order to give the permutations for β , we need to find all nonzero squares for F7
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Square

square power ∼= 23 Result

02 modulo 7 0

12 modulo 7 1

22 modulo 7 3

32 = 9 modulo 7 2

42 = 16 modulo 7 2

52 = 25 modulo 7 4

62 = 36 modulo 7 1

72 = 49 modulo 7 0

Table 7.1: Compute β

The squares we have are (1, 2, 3, 4).

Now we need to find the smallest nonzero squares k whose power gives all of nonzero

squares. We use 2, since

20 = 1,

21 = 2,

22 = 4,

23 = 1.

Thus, β = (1, 2, 4)(3, 6, 5).

Now we will compute γ.

γ : x→ −1
x = −x−1

We have γ = (7, 8)(2, 3)(4, 5)(6, 1). We use magma to verify that PSL(2, 7) =< α, β, γ > .

S:=Sym(8);

a:=S!(1,2,3,4,5,6,7);

b:=S!(1,2,4)(3,6,5);

g:=S!(7,8)(2,3)(4,5)(6,1);

psl27:=sub<S|a,b,g>;

#psl27;

IsIsomorphic(PSL(2,7),psl27);

true Homomorphism of GrpPerm: $, Degree 8, Order 2^3 * 3

* 7 into GrpPerm: psl27, Degree 8, Order 2^3 * 3 * 7

induced by
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(3, 6, 7)(4, 5, 8) |--> (1, 7, 6)(2, 8, 5)

(1, 8, 2)(4, 5, 6) |--> (2, 8, 6)(3, 4, 5)

7.1.1 Linear Fractional Maps

We know that PSL(2, 7) = {x 7→ ax+b
cx+d |a, b, c, d ∈ Z7, ad− bc = 1 or ad− bc is a squares

}, where x ∈ X.

We need to compute the linear fractional maps and see what they give us using the

induced permutations that magma gives us in the previous isomorphism command.

It is given that PSL(2, 7) ∼=< A,B > where,

A = (1, 7, 6)(2, 8, 5),

B = (2, 8, 6)(3, 4, 5).

We will compute linear maps, ax+b
cx+d , for A and B.

First equation

a+b
c+d =⇒ 7a+ b = 7c+ d,

Second equation

7a+b
7c+d = 6 =⇒ 7a+ b = 142c+ 6d,

First, we will calculate a linear map for A and check our results.

ax+b
cx+d ,

a+b
c+d = 2 =⇒ a+ b = 2c+ d,

2a+b
2c+d = 7 =⇒ 2a+ b = 14c+ 7d,

Similarly, we will find a linear map for B following the same process.

a+b
c+d = 8 =⇒ a+ b = 8c+ d,

8a+b
8c+d = 2 =⇒ 8a+ b = 16c+ 8d,

We solve the above equations to get the linear maps for A and B and check if it works

for all elements.
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7.2 Linear Map of PSL(2, 13)

Let X = Z13 ∪∞. The threelinear maps on X that generates PSL(2, 13) are given by:

α, β, γ where,

α : x→ x+ 1,

β : x→ Kx,

K is a nonzero square in F13 whose powers give all of the squares of F13, and

γ : x→ −1
x = −x−1.

Then α = (∞), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12).

In order to find β permutations, we need to find all nonzero squares for F13.

Square

square power ∼= 23 Result

02 modulo 13 0

12 modulo 13 1

22 modulo 13 1

32 modulo 13 4

42 = 16 modulo 13 3

52 = 25 modulo 13 12

62 = 36 modulo 13 10

72 = 49 modulo 13 10

82 = 64 modulo 13 12

92 = 81 modulo 13 3

102 = 100 modulo 13 9

112 = 121 modulo 13 4

122 = 144 modulo 13 1

132 = 169 modulo 13 0

Table 7.2: Compute β

The squares we have are (1, 3, 4, 9, 10, 12).

Now we need to find the smallest nonzero squares K whose power gives all of nonzero

squares. We use 3, since
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30 = 1,

31 = 3,

32 = 9,

33 = 81 = 3,

34 = 243 = 9,

35 = 729 =, 1

36 = 2187 = 5,

37 = 6561 = 4,

28 = 19683 = 1.

β : x→ 2x,

1 → 3 → 9 → 5 → 4

(1, 3, 9, 5, 4).

2 → 6 → 7 → 10 → 8

(2, 6, 7, 10, 8).

Thus, β = (1, 3, 9, 5, 4)(2, 6, 7, 10, 8).

Now we will compute γ.

γ : x 7→ −1
x = −x−1

γ : x→ −1
x = −x−1.

We have γ = (11, 12)(1, 10)(2, 5)(3, 7)(4, 8)(6, 9).

We use magma to verify that PSL(2, 13) =< α, β, γ > .

S:=Sym(12);

a:=S!(11,1,2,3,4,5,6,7,8,9,10);

b:=S!(1,3,9,5,4)(2,6,7,10,8);

g:=S!(11,12)(1,10)(2,5)(3,7)(4,8)(6,9);

psl211:=sub<S|a,b,g>;

#PSL(2,11);

IsIsomorphic(PSL(2,11),psl 211);

true Homomorphism of GrpPerm: $, Degree 12, Order 2^2 *

3 * 5 * 11 into GrpPerm: psl211, Degree 12, Order 2^2 *

3 * 5 * 11 induced by

(3, 7, 9, 4, 5)(6, 8, 12, 10, 11) |--> (1, 2, 9, 10,12)(3, 7, 4, 8, 11)

(1, 8, 2)(3, 4, 7)(5, 12, 11)(6, 9, 10) |--> (1, 3, 4)(2, 12, 9)

(5, 11, 6)(7, 8, 10).
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7.2.1 Linear Fractional Maps

We know that PSL(2, 13) = {x 7→ ax+b
cx+d |a, b, c, d ∈ Z13, ad− bc = 1 or ad− bc is a squares

}, where x ∈ X.

We need to compute the linear fractional maps and see what they give us using the

induced permutations that magma gives us in the previous isomorphism command.

It is given that PSL(2, 13) ∼=< A,B > where,

A = (1, 2, 9, 10, 12)(3, 7, 4, 8, 11),

B = (1, 3, 4)(2, 12, 9)(5, 11, 6)(7, 8, 10).

We will compute linear maps, ax+b
cx+d for A and B.

First equation

a+b
c+d =⇒ a+ b = 2c+ 2d,

Second equation

2a+b
2c+d = 9 =⇒ 2a+ b = 18c+ 9d,

Third equation

18a+b
18c+9d = 10 =⇒ 18a+ b = 180 + 90d.

First, we will calculate a linear map for A and check our results.

ax+b
cx+d

First, we will calculate a linear map for A and check our results.

ax+b
cx+d ,

a+b
c+d = 2 =⇒ a+ b = 2c+ 2d,

2a+b
2c+d = 5 =⇒ 2a+ b = 10c+ 5d,

10a+b
10c+5d = 3 =⇒ 10a+ b = 30c+ 15d,

30a+b
30c+15d = 8 =⇒ 30a+ b = 180c+ 120d.

Similarly, we will find a linear map for B following the same process.

a+b
c+d = 12 =⇒ a+ b = 12c+ 12d,

12a+b
12c+d = 6 =⇒ 12a+ b = 72c+ 6d.

We solve the above equations to get the linear maps for A and B and check if it works

for all elements.
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Chapter 8

Double Coset Enumeration

8.1 Double Coset Enumeration Of S6 Over 23 : 2

Consider N=< x, y >; where x ∼ (1, 4)(2, 5)(3, 6), y ∼ (1,2,3).

Our progenitor is 2∗6 : (23 : 2). We prove that S6 ∼=
Group < x, y, t|x2, y3, y−1xy−1xyxyx, t2, (t, yx), (yxt)5 >.

We perform manual double coset enumeration of G over N. In order to find the order of G,

we need to determine all distinct double cosets NwN and find the number of right cosets

in each double coset. It suffices to find the double coset of Nwti for one representative ti

from each orbit of the coset stabiliser N (w) of the right coset Nw.

Now, |G|
|N | =

2430
18 =135. So, we have total 135 single cosets.

We expand the relation:(y ∗ x ∗ t)5.
Now (y ∗ x)5 = (y ∗ x)5 ∗ t(y∗x)

4

1 ∗ t(y∗x)
3

1 ∗ t(y∗x)
2

1 ∗ t(y∗x)1 ∗ t1,
So, above relation become:

(y ∗ x)5 ∗ t3 ∗ t6 ∗ t2 ∗ t5 ∗ t1.
• First Double Coset [*]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN is denoted by [∗] which contains 1 right coset. The coset stabiliser

of the coset Ne is N.

The number of right cosets in [*] is equal to |N |
|N |=

18
18 = 1.

Since N is transitive on X = {1, 2, 3, 4, 5, 6},
we need to determine the double coset of the right coset Nt1.
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Thus, the six cosets {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6} extend to the new double coset [1],

that means the six generators go forward to Nt1

• Second Double Coset Nt1N = [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6}. Firstly, the point stabilizer of 1 in N,

N1 = {n ∈ N |1n = 1}
We have, N1 = < (4, 5, 6) >.

The number of right cosets in [1] is equal to
|N |

|N(1)|=
18
3 = 6.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, and{4, 5, 6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t1, Nt1t2, Nt1t3, and Nt1t4 belong.

Now,

Nt1t1 = Nt21 = N ∈ [∗].
Since the orbit {1} contains one element, one symmetric generator goes back to the dou-

ble coset [*].

One symmetric generator will go back to [1].

Nt1t2 ∈ Nt1t2N, which is a new double coset. We denote this double coset by [12].

One symmetric generators will go to the new double coset [12].

Nt1t3 ∈ Nt1t3N, which is a new double coset. We denote this double coset by [13].

One symmetric generators will go to the new double coset [13].

Nt1t4 ∈ Nt1t4N, is a new double coset which we will denote [14].

Three symmetric generators will go to the new double coset [14].

• Third Double Coset Nt1t2N = [12]

Nt1 t2 = {N(t1t2)
n|n ∈ N}.

We now find the coset stabilizer N (12). Firstly, find the point stabilizer of 1 and 2 in N.

N12 = {n ∈ N |(12)n = 12}.
Thus, N12 = < (4, 5, 6) >
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Nt1t2N is denoted by [12].

The number of right cosets in [12] is equal to
|N |

|N |(12) = 18
3 = 6.

The orbits of N (12) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, and{4, 5, 6}.
Now we select a represenatative from each orbit and determine to which double coset

Nt1t2t1, Nt1t2t3, Nt1t2t4 belong.

As Nt1t2t2 = Nt1t
2
2 = Nt1 ∈ [1].

Nt1t2t1 ∈ Nt1t2t1N = [121] is a new double coset. We donate this double coset by

[121] One symmetric generator will go to the new double coset [121].

Nt1t2t3 ∈ Nt1t2t3N is a new double coset. We donate this double coset by [123] One

symmetric generator will go to the new double coset [123]

Nt1t2t4 ∈ Nt1t2t4N is a new double coset. We donate this double coset by [124] Three

symmetric generator will go to the new double coset [124]

• Fourth Double Coset Nt1t3N = [13]

Nt1 t3 = {N(t1t3)
n|n ∈ N}.

Firstly, the point stabilizer of 1 and 3 in N.

N (13) = {n ∈ N |(13)n = 13}
Nt1 t3N is denoted by [13]

The number of right cosets in [13] is equal to
|N |

|N |(13)=
18
3 = 6.

The orbits of N (13) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4, 5, 6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t3t1, Nt1t3t3, Nt1t3t4 belong.

This shows us the following:

Nt1t3t3 = Nt1t
2
3 = Nt1 ∈ [1]

Thus one symmetric generator will go back to [1].
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Nt1t3t4 ∈ Nt1t3t4N which is a new double coset. We donate this double coset by [134].

Three symmetric generator will go to the new double coset [134].

• Fifth Double Coset Nt1t4N = [14]

Nt1 t4 = {N(t1t4)
n|n ∈ N}.

Firstly, the point stabilizer of 1 and 4 in N.

N (14) = {n ∈ N |(14)n = 14}
Nt1 t4N is denoted by [14]

The number of right cosets in [14] is equal to
|N |

|N |(14)=
18
1 = 18.

The orbits of N (14) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.

Now we select a representative from each orbit and determine to which double coset

Nt1t4t1, Nt1t4t3, Nt1t4t4, Nt1t4t5, Nt1t4t6 belong.

This shows us the following:

Nt1t4t1 ∈ Nt1t4t1N which is a new double coset. We donate this double coset by [141].

One symmetric generator will go to the new double coset [1411].

• Sixth Double Coset Nt1t2t1N = [121]

Nt1 t2t1 = {N(t1t2)t1
n|n ∈ N}.

Firstly, the point stabilizer of 1, 2 and 1 in N.

N (121) = {n ∈ N |(121)n = 121}
Nt1 t2t1N is denoted by [121]

The number of right cosets in [121] is equal to

|N |
|N |(121)=

18
3 = 6.

The orbits of N (121) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4, 5, 6}.
Now we select a representative from each orbit and determine to which double coset



84

Nt1t2t1t1, Nt1t2t1t2, Nt1t2t1t3, Nt1t2t2t4 belongs.

This shows us the following:

Nt1t2t1t3 ∈ Nt1t2t1t3N which is a new double coset. We donate this double coset by

[1213]. One symmetric generator will go to the new double coset by [1213].

• Seventh Double Coset Nt1t2t3N = [123]

Nt1 t2t3 = {N(t1t2)t3
n|n ∈ N}.

Firstly, the point stabilizer of 1, 2 and 3 in N.

N (123) = n ∈ N |(123)n = 123

Nt1 t2t3N is denoted by [123]

The number of right cosets in [123] is equal to
|N |

|N |(123)=
18
3 = 6.

The orbits of N (123) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4, 5, 6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t2t3t1, Nt1t2t3t2, Nt1t2t3t3, Nt1t2t3t4 belong.

This shows us the following:

Nt1t2t3t4 ∈ Nt1t2t3t4N which is a new double coset. We donate this double coset by

[1234]. Three symmetric generator will go back to [1234].

• Eighth Double Coset Nt1t2t4N = [124]

Nt1 t2t4 = {N(t1t2)t4
n|n ∈ N}.

Firstly, find the point stabilizer of 1, 2 and 4 in N.

N (124) = n ∈ N |(124)n = 124

Nt1 t2t4N is denoted by [124]

The number of right cosets in [124] is equal to
|N |

|N |(124)=
18
1 = 18.

The orbits of N (123) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.

Now we select a representative from each orbit and determine to which double coset
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Nt1t2t4t1, Nt1t2t4t2, Nt1t2t4t3, Nt1t2t4t4, Nt1t2t4t54, Nt1t2t4t6 belong.

This shows as following.

Nt1t2t4t5 ∈ Nt1t2t4t5N which is a new double coset. We donate this double coset by

[1245]. One symmetric generator will go to the new double coset [1245].

Nt1t2t4t6 ∈ Nt1t2t4t6N which is a new double coset. We donate this double coset by

[1246]. One symmetric generator will go to the new double coset [1246].

• Ninth Double Coset Nt1t3t4N = [134]

Nt1t3t4N = {N(t1t3t4)
n|n ∈ N}.

Firstly, the point stabilizer of 1 , 3 and 4 in N.

N (134) = {n ∈ N |(134)n = 134}
Nt1 t3t4N is denoted by [124]

The number of right cosets in [134] is equal to
|N |

|N |(134)=
18
1 = 18.

The orbits of N (134) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t3t4t1, Nt1t3t4t2, Nt1t3t4t3, Nt1t3t4t4, Nt1t3t4t5, Nt1t3t4t6 belong.

This shows us the following.

Nt1t3t4t3 ∈ Nt1t3t4t3N is a new double coset. We donate this double coset by [1343].

One symmetric generator will go to the new double coset [1343].

Nt1t3t4t6 ∈ Nt1t3t4t6N is a new double coset. We donate this double coset by [1346].

One symmetric generator will go to the new double coset [1346].

• Tenth Double Coset Nt1t2t1t3N = [1213]

Nt1 t2t1t3 = {N(t1t2)t1t3
n|n ∈ N}.
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Firstly, the point stabilizer of 1, 2, 1 and 3 in N.

N (1213) = {n ∈ N |(1213)n = 1213}
Nt1 t2t1t3N is denoted by [1213]

The number of right cosets in [1213] is equal to
|N |

|N |(1213)=
18
1 = 18.

The orbits of N (1213) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3, 4, 5, 6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t2t1t3t1, Nt1t2t1t3t2, Nt1t2t1t3t3, Nt1t2t1t3t4t belong.

Nt1t2t1t3t1 ∈ Nt1t2t1t3t1N is a new double coset. We donate this double coset by

[12131]. One symmetric generator will go back to double coset [121].

Nt1t2t1t3t4 ∈ Nt1t2t1t3t4N is a new double coset. We donate this double coset by

[12134]. Three symmetric generator will go back to double coset [123].

• Eleventh Double Coset Nt1t2t3t4N = [1234]

Nt1 t2t3t4 = {N(t1t2)t3t4
n|n ∈ N}.

Firstly, the point stabilizer of 1, 2, 3 and 4 in N.

N (1234) = {n ∈ N |(1234)n = 1234}
Nt1 t2t3t4N is denoted by [1234]

The number of right cosets in [1234] is equal to
|N |

|N |(1234)=
18
1 = 18.

The orbits of N (1234) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.

Now we select a representative from each orbit and determine to which double coset

Nt1t2t3t4t1, Nt1t2t3t4t2, Nt1t2t3t4t3, Nt1t2t3t4t4, Nt1t2t3t4t5,

Nt1t2t3t4t6 belong.

This shows us the following.

Nt1t2t3t4t1 ∈ Nt1t2t3t4N which is a new double coset. We donate this double coset

by [1234]. Three symmetric generator will to the new double coset [1234].
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• Twelfth Double Coset Nt1t2t4t5N = [1245]

Nt1 t2t4t5 = {N(t1t2)t4t5
n|n ∈ N}.

Firstly, the point stabilizer of 1, 2, 4 and 5 in N.

N (1245) = {n ∈ N |(1245)n = 1245}
Nt1 t2t4t5N is denoted by [1245]

The number of right cosets in [1245] is equal to
|N |

|N |(1245)=
18
1 = 18.

The orbits of N (1245) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t2t4t5t1, Nt1t2t4t5t2, Nt1t2t4t5t3, Nt1t2t4t5t4, Nt1t2t4t5t5,

Nt1t2t4t5t6 belong.

Nt1t2t4t5t1 ∈ Nt1t2t4t5N which is a new double coset. We donate this double coset

by [1245]. One symmetric generator will go back to coset [124].

• Thirteenth Double Coset Nt1t2t4t6N = [1246]

Nt1 t2t4t6 = {N(t1t2)t4t6
n|n ∈ N}.

Firstly, the point stabilizer of 1, 2, 4 and 6 in N.

N (1246) = {n ∈ N |(1246)n = 1246}
Nt1 t2t4t6N is denoted by [1246]

The number of right cosets in [1246] is equal to
|N |

|N |(1246)=
18
1 = 18.

The orbits of N (1246) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.

Now we select a representative from each orbit and determine to which double coset

Nt1t2t4t6t1, Nt1t2t4t6t2, Nt1t2t4t6t3, Nt1t2t4t6t4, Nt1t2t4t6t5,

Nt1t2t4t6t6 belong.

This shows us the following.

‘ Nt1t2t4t6t1 ∈ Nt1t2t4t6t1N which is a new double coset. We donate this double coset
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by [12461]. One symmetric generator will go back to coset [134].

Nt1t2t4t6t4 ∈ Nt1t2t4t6t4N which is a new double coset. We donate this double coset by

[12464]. One symmetric generator will go back to coset [124].

• Fourteenth Double Coset Nt1t3t4t3N = [1343]

Nt1 t3t4t3 = {N(t1t3)t4t3
n|n ∈ N}.

We now find the Coset Stabilizer N (1343). Firstly, the point stabilizer of 1, 3, 4 and 3 in

N.

N (1343) = {n ∈ N |(1343n = 1343}
Nt1 t3t4t3N is denoted by [1343]

The number of right cosets in [1343] is equal to
|N |

|N |(1343)=
18
1 = 18.

The orbits of N (1343) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t3t4t3t1, Nt1t3t4t3t2, Nt1t3t4t3t3, Nt1t3t4t3t4, Nt1t3t4t3t5,

Nt1t3t4t3t6 belong.

Nt1t3t4t3t2 ∈ Nt1t3t4t3t2N which is a new double coset. We donate this double coset by

[13432]. One symmetric generator will go back to coset [121].

Nt1t3t4t3t4 ∈ Nt1t3t4t3t4N which is a new double coset. We donate this double coset by

[13434]. Two symmetric generator will go back to coset [141].

• Fifteenth Double Coset Nt1t3t4t6N = [1346]

Nt1 t3t4t6 = {N(t1t3)t4t6
n|n ∈ N}.

Firstly, the point stabilizer of 1, 3, 4 and 6 in N.

N (1346) = {n ∈ N |(1346n = 1346}
Nt1 t3t4t6N is denoted by [1346]

The number of right cosets in [1343] is equal to
|N |

|N |(1346)=
18
1 = 18.

The orbits of N (1346) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.
Now we select a representative from each orbit and determine to which double coset
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Nt1t3t4t6t1, Nt1t3t4t6t2, Nt1t3t4t6t3, Nt1t3t4t6t4, Nt1t3t4t6t5,

Nt1t3t4t6t6 belong.

Nt1t3t4t6t3 ∈ Nt1t3t4t6t3N which is a new double coset. We donate this double coset by

[13463]. One symmetric generator will go back to coset [145].
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Cayley Diagram

Figure 8.1: Cayley diagram for G over 32 : 2
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8.1.1 Magma Work 2 ∗ 6 : 23 : 2

S:=Sym(6);

xx := S!(1, 4)(2, 5)(3, 6) ;

yy := S!(1, 2, 3);

N:=sub< S|xx, yy >;
♯N ;

/*18*/

G< x, y, t >:=Group< x, y, t|x2, y3, y−1 ∗ x ∗ y−1 ∗ x ∗ y ∗ x ∗ y ∗ x, t2, (t, yx), (y ∗ x ∗ t)5 >;
♯G;

/* 2430*/

♯sub < G|x, y >;
/*18*/

f,G1,k:=CosetAction(G, sub < G|x, y >);
♯G1;

/* 2430 */

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(5)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

*/

IN:=sub<G1|f(x),f(y)>;

ts := [ Id(G1): i in [1 .. 6] ];

ts[1]:=f(t);

ts[2]:=f(t^(y)); ts[3]:=f(t^(y^-1)); ts[4]:=f(t^(x)); ts[5]:=f(t^(y * x));
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ts[6]:=f(t^(y^-1 * x));

#DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);

/*15*/

DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);

/*

{ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * t * y * t * y^-1 * t, GrpFP>,

<GrpFP, t* y * t * y * t, GrpFP>, <GrpFP, t * x * t * y^-1 * t, GrpFP>,

<GrpFP, t * x * t* y * t, GrpFP>, <GrpFP, t * y * t, GrpFP>,

<GrpFP, t * x * t, GrpFP>, <GrpFP, t, GrpFP>,

<GrpFP, t * y^-1 * t, GrpFP>,

<GrpFP, t * x * t * x * t, GrpFP>,

<GrpFP, t * y * t * y^-1 * t, GrpFP>,

<GrpFP, t * x * t * x * t * y * t, GrpFP>,

<GrpFP, t * x * t * y * t * x * t, GrpFP>,

<GrpFP, t * x * t * y^-1 * t * x * t,GrpFP>,

<GrpFP, t * y * t * x * t * y^-1 * t, GrpFP> }

*/

DC:=[Id(G1),f(t),f(t * x * t),f(t * y * t * y * t * y^-1 * t),

f(t* y * t * y * t),

f(t * x * t * y^-1 * t),f(t * x * t* y * t),f( t * y * t),f(t * y^-1 * t),

f(t * x * t * x * t),

f(t * y * t * y^-1 * t),f(t * y * t * x * t * y^-1 * t),

f(t * x * t * y^-1 * t * x * t),

f(t * x * t * y * t * x * t),

f(t * x * t * y * t * x * t) ];

Index(G1,IN);

/*135*/

cst := [null : i in $[1 ..Index(G1,IN)]] where null is [Integers() | ]$;

prodim := function(pt, Q, I)

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

for i := 1 to 6 do

cst[prodim(1, ts, [i])] := [i];

end for;

m:=0; for i in [1..135] do if cst[i] ne [] then m:=m+1; end if; end for;m;

/*6*/

Orbits(N);
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/*

[

GSet{@ 1, 4, 2, 5, 3, 6 @}

]

*/

N1:=Stabiliser(N,1);

Orbits(N1);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]

*/

#N/#N1;

/*6*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[1] eq m ∗ (DC[i])n then i; break; end

if; end for;end for;

/*1*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] eq m ∗ (DC[i])n then i; break;

end if; end for;end for;

/*9*/

for i in [1 · · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] eq m ∗ (DC[i])n then i; break;

end if; end for;end for;

/*8*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] eq m ∗ (DC[i])n then i; break;

end if; end for;end for;

/*3*/

S:={[1,2]};

SS:=S^N;SS;

/*

{

[ 1, 2 ]
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},

{

[ 4, 5 ]

},

{

[ 2, 3 ]

},

{

[ 5, 6 ]

},

{

[ 3, 1 ]

},

{

[ 6, 4 ]

}

@}

*/

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2 ]

}

*/

N12:=Stabiliser(N,[1,2]);

♯N12;

N12;

/*Permutation group N12 acting on a set of cardinality 6

Order = 3

(4, 5, 6)

*/

N12s:=N12;
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♯N12s;

/*3*/

tr1:=Transversal(N,N12s);

fori := 1to♯tr1 do

ss:=[1, 2]tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1 · · · 135]doifcst[i]ne[]
then m:=m+1;

end if; end for;m;

/*12*/

Orbits(N12s);

/*[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 5, 6 @}

]

*/

#N/#N12s;

/*6*/

for i in [1

· · · ♯

DC] do for m,n in IN do ifts[1] ∗ ts[2] ∗ ts[1] eq m ∗ (DC[i])n then i; break; end if; end

for;end for;

/*11*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[2] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/* 2 */

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[3] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;
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/*5*/

for i in [1· · · ♯DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*7*/

S:={[1,3]};

SS:=S^N;SS;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[3]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 3 ]

}

*/

N13:=Stabiliser(N,[1,3]);

N13;

/*

Permutation group N13 acting on a set of cardinality 6

Order = 3

(4, 5, 6)

*/

N13s:=N13;

#N13s;

/* 3 */

tr1:=Transversal(N,N13s);

for i:=1 to #tr1 do

ss:=[1,3]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/* 18*/

Orbits(N13s);

/*

[

GSet{@ 1 @},
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GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]

*/

#N/#N13s;

/*6*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[1] eq m ∗ (DC[i])n then i; break;

end if; end for;end for;

/* 11*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[2] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*5*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[3] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*2*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*6*/

S:={[1,4]};

SS:=S^N;SS;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[4]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

/*

{

[1,4]

}

*/
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N14:=Stabiliser(N,[1,4]);

N14;

/*Permutation group N14 acting on a set of cardinality 6

Order = 1

*/

N14s:=N14;

#N14s;

/*1*/

tr1:=Transversal(N,N14s);

for i:=1 to #tr1 do

ss:=[1,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*36*/

#N/#N14s;

/*18*/

Orbits(N14s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] ∗ ts[1] eq m ∗ (DC[i])nthen i; break;

end if; end for;end for;

/*10*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] ∗ ts[2] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*3*/
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for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] ∗ ts[3] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*3*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] ∗ ts[4] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*2*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] ∗ ts[5] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*6*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[4] ∗ ts[6] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*7*/

S:={[1,2,1]};

SS:=S^N;SS;

/*

GSet{@

{

[ 1, 2, 1 ]

},

{

[ 4, 5, 4 ]

},

{

[ 2, 3, 2 ]

},

{

[ 5, 6, 5 ]

},

{

[ 3, 1, 3 ]

},

{

[ 6, 4, 6 ]

}
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@}

*/

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[1]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

N121:=Stabiliser(N,[1,2,1]);

#N121;

/*3*/

N121s:=N121;

[1,2,1]^N121s;

/*

GSet{@

[ 1, 2, 1 ]

@}

*/

#N/#N121s;

/*6*/

tr1:=Transversal(N,N121s);

for i:=1 to #tr1 do

ss:=[1,2,1]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*42*/

Orbits(N121s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]

*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[1] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;
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/*9*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[2] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*8*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[3] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*4*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[4] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

S:={[1,2,3]};

SS:=S^N;SS;

/*

GSet{@

{

[ 1, 2, 3 ]

},

{

[ 4, 5, 6 ]

},

{

[ 2, 3, 1 ]

},

{

[ 5, 6, 4 ]

},

{

[ 3, 1, 2 ]

},

{

[ 6, 4, 5 ]

}

@}

*/

SSS:=Setseq(SS);
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for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[3]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

N123:=Stabiliser(N,[1,2,3]);

#N123;

/*3*/

N123s:=N123;

[1,2,3]^N123s;

/*

GSet{@

[ 1, 2, 3 ]

@}

*/

tr1:=Transversal(N,N123s);

for i:=1 to #tr1 do

ss:=[1,2,3]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*48*/

#N/#N123s;

/*6*/

Orbits(N123s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]

*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[3] ∗ ts[1] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*8*/
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for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[3] ∗ ts[2] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*4*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[3] ∗ ts[3] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*9*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*10*/

S:={[1,2,4]};

SS:=S^N;SS;

/*

GSet{@

{

[ 1, 2, 4 ]

},

{

[ 4, 5, 1 ]

},

{

[ 2, 3, 4 ]

},

{

[ 4, 5, 2 ]

},

{

[ 5, 6, 1 ]

},

{

[ 3, 1, 4 ]

},

{

[ 1, 2, 5 ]

},

{

[ 4, 5, 3 ]

},

{
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[ 5, 6, 2 ]

},

{

[ 6, 4, 1 ]

},

{

[ 2, 3, 5 ]

},

{

[ 1, 2, 6 ]

},

{

[ 5, 6, 3 ]

},

{

[ 6, 4, 2 ]

},

{

[ 3, 1, 5 ]

},

{

[ 2, 3, 6 ]

},

{

[ 6, 4, 3 ]

},

{

[ 3, 1, 6 ]

}

@}

*/

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[4]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

N124:=Stabiliser(N,[1,2,4]);

#N124;

/*1*/

N124s:=N124;

[1,2,4]^N124s;
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/*

GSet{@

[ 1, 2, 4 ]

@}

*/

tr1:=Transversal(N,N124s);

for i:=1 to #tr1 do

ss:=[1,2,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*66*/

#N/#N124s;

/*18*/

Orbits(N124s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] ∗ ts[1] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*3*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] ∗ ts[2] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] ∗ ts[3] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*10*/
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for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] ∗ ts[4]eqm*(DC[i])n then

i; break; end if; end for;end for;

/*9*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] ∗ ts[5]eqm*(DC[i])n then

i; break; end if; end for;end for;

/*14*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[4] ∗ ts[6] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*12*/

S:={[1,3,4]};

SS:=S^N;SS;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[3]*ts[4]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

N134:=Stabiliser(N,[1,3,4]);

#N134;

/*1*/

N134s:=N134;

[1,3,4]^N134s;

tr1:=Transversal(N,N134s);

for i:=1 to #tr1 do

ss:=[1,3,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*84*/

#N/#N134s;

/*18*/
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Orbits(N134s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] ∗ ts[1] eq m ∗ (DC[i])n then i;

break; end if; end for;end for;

/*3*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] ∗ ts[2] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*10*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] ∗ ts[3] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] ∗ ts[4] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*8*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] ∗ ts[5] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*12*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[3] ∗ ts[4] ∗ ts[6] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*13*/

S:={[1,2,1,3]};

SS:=S^N;SS;
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SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[1]*ts[3]

eq g*ts[Rep(SSS[i])[1]]

*ts[Rep(SSS[i])[2]]*

ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

N1213:=Stabiliser(N,[1,2,1,3]);

#N1213;

/*1*/

N1213s:=N1213;

[1,2,1,3]^N1213s;

tr1:=Transversal(N,N1213s);

for i:=1 to #tr1 do

ss:=[1,2,1,3]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*86*/

#N/#N1213s;

/*18*/

Orbits(N1213s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 5, 6 @}

]

*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[3] ∗ ts[1] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*11*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[3] ∗ ts[2] eq m ∗ (DC[i])n
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then i; break; end if; end for;end for;

/*11*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[3] ∗ ts[3] eq m ∗ (DC[i])n

then i; break; end if; end for;end for;

/*11*/

for i in [1· · · ♯ DC] do for m,n in IN do if ts[1] ∗ ts[2] ∗ ts[1] ∗ ts[3] ∗ ts[4] eq m ∗ (DC[i])n

then i; break; end if; end for;end for; /*5*/

S:={[1,2,3,4]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[3]*ts[4]

eq g*ts[Rep(SSS[i])[1]]

*ts[Rep(SSS[i])[2]]*

ts[Rep(SSS[i])[3]]*

ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

N1234:=Stabiliser(N,[1,2,3,4]);

#N1234;

/*1*/

N1234s:=N1234;

[1,2,3,4]^N1234s;

tr1:=Transversal(N,N1234s);

for i:=1 to #tr1 do

ss:=[1,2,3,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*104*/

#N/#N1234s;

/*18*/

Orbits(N1234s);
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/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1 · · · ♯DC]doform, ninINdoifts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] ∗ ts[1]eqm ∗ (DC[i])n then

i; break; end if; end for;end for;

for i in [1 · · · ♯DC]doform, ninINdoifts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] ∗ ts[2]eqm ∗ (DC[i])n then

i; break; end if; end for;end for;

/*3*/

for i in [1 · · · ♯DC]doform, ninINdoifts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] ∗ ts[3]eqm ∗ (DC[i])n then

i; break; end if; end for;end for;

for i in [1 · · · ♯DC]doform, ninINdoifts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] ∗ ts[4]eqm ∗ (DC[i])n then

i; break; end if; end for;end for;

/*5*/

for i in [1 · · · ♯DC]doform, ninINdoifts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] ∗ ts[5]eqm ∗ (DC[i])n then

i; break; end if; end for;end for;

/*6*/

for i in [1 · · · ♯DC]doform, ninINdoifts[1] ∗ ts[2] ∗ ts[3] ∗ ts[4] ∗ ts[6]eqm ∗ (DC[i])nthen
i; break; end if; end for;end for;

/*7*/

S:={[1,2,4,5]};

SS:=S^N;

SSS:=Setseq(SS);
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for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[4]*ts[5]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]\\

*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

N1245:=Stabiliser(N,[1,2,4,5]);

#N1245;

/*1*/

N1245s:=N1245;

[1,2,4,5]^N1245s;

tr1:=Transversal(N,N1245s);

for i:=1 to #tr1 do

ss:=[1,2,4,5]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*107*/

#N/#N1245s;

/*18*/

Orbits(N1245s);

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[5]*ts[1] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[5]*ts[2] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/
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for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[5]*ts[3] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[5]*ts[4] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[5]*ts[5] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[5]*ts[6] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

S:={[1,2,4,6]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[4]*ts[6]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

N1246:=Stabiliser(N,[1,2,4,6]);

#N1246;

/*1*/

N1246s:=N1246;

[1,2,4,6]^N1246s;

tr1:=Transversal(N,N1246s);

for i:=1 to #tr1 do

ss:=[1,2,4,6]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*113*/



113

#N/#N1246s;

/*18*/

Orbits(N1246s);

/*

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[6]*ts[1] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[6]*ts[2] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[6]*ts[3] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[6]*ts[4] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[6]*ts[5] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]*ts[6]*ts[6] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

S:={[1,3,4,3]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[3]*ts[4]*ts[3]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*

ts[Rep(SSS[i])[3]]
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*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

N1343:=Stabiliser(N,[1,3,4,3]);

#N1343;

/*1*/

N1343s:=N1343;

[1,3,4,3]^N1343s;

tr1:=Transversal(N,N1343s);

for i:=1 to #tr1 do

ss:=[1,3,4,3]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*131*/

#N/#N1343s;

/*18*/

Orbits(N1343s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[1] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*7*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[2] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*11*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[3] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/
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for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[4] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*10*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[5] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*10*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[6] eq

m*(DC[i])^n then i; break; end if; end for;end for;

S:={[1,3,4,6]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[3]*ts[4]*ts[6]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

N1346:=Stabiliser(N,[1,3,4,6]);

#N1346;

/*1*/

N1346s:=N1346;

[1,3,4,6]^N1346s;

tr1:=Transversal(N,N1346s);

for i:=1 to #tr1 do

ss:=[1,3,4,6]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..135] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*134*/

#N/#N1346s;

/*18*/

Orbits(N1346s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},
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GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[6]*ts[1] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[6]*ts[2] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[6]*ts[3] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[6]*ts[4] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[6]*ts[5] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]*ts[4]*ts[6]*ts[6] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*6*/
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8.2 Construction Of U(3, 4) : 2 Over N ∼ 52 : S3

Consider N = < x, y >; where

x ∼ (1, 15, 12, 8, 3, 9, 14, 13, 7, 4)(2, 11, 5, 6, 10) and

∼ (1, 11, 14, 6, 12, 2, 7, 5, 3, 10)(4, 8, 13, 15, 9);

Our progenitor is 52 : S3. We prove that U(3, 4) : 2 ∼= G < x, y, t >:= Group <

x, y, t|(y−1 ∗ x−1)3, (y−1 ∗ x)3, x−1 ∗ y−1 ∗ x3 ∗ y−1 ∗ x−1 ∗ y, x2 ∗ y ∗ x2 ∗ y3, t2, (t, y−1 ∗ x2 ∗
y−1), (t, x3 ∗ y−1 ∗ x), (x−1 ∗ y ∗ t)5, (x−2 ∗ t(y∗x−1

)3 >;

We perform manual double coset enumeration of G over N. We need to determine all

distinct double coset NwN and find the number of right cosets in each double coset. It

suffices to find the double coset of Nwti for one representative ti from each orbit of the

coset stabiliser N (w) of the right coset Nw, so we find the index which is the order of G

over the order of N.

Hence, |G|
|N | =

124800
150 = 832. So, we have 832 single cosets.

• First Double Coset [*]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The number of right coset in ∗ is equal to |N |
|N | =

150
150 = 1.

Since N is transitive on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.
We need only determine the double coset of the right coset Nt1.

Thus nine cosets extend to the new double coset [1], that mean the nine generators go

forward to Nt1.
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Cayley Diagram

Figure 8.2: Cayley diagram for G over S15

• Second Double Coset [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14, Nt15}. We

now find the Coset Stabilizer N (1). We first find the point stabilizer of 1 in N .

N1 = {n ∈ N |1n = 1}
N1 = (2, 5, 10, 11, 6)(4, 8, 13, 15, 9) (2, 13)(4, 10)(5, 8)(6, 15)(9, 11)

Thus,N (1) ≥ (2, 5, 10, 11, 6)(4, 8, 13, 15, 9) (2, 13)(4, 10)(5, 8)(6, 15)(9, 11)

The number of right cosets in [1] is equal to
|N |

|N |(1)=
150
10 = 15.

The orbits of N (1) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} are

{1}, {3}, {7}, {12}, {14}, {2, 5, 13, 10, 8, 15, 11, 4, 9, 6}.
Now we select a representative from each orbit and determine to which double coset

Nt1t1, Nt1t3, Nt1t7, Nt1t12, Nt1t14, Nt1t2belongs.

This shows us the following:

Nt1t1 = Nt21 = N ∈ [∗].

Since the orbit {1} contains one element, then one symmetric generator goes back to

the double coset [*].

Nt1 ∈ [1]

One symmetric generator will go back to [1].

Nt1t3N is a new double coset which we will denote [13].
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One symmetric generators will go to the new double coset [13].

Nt1t7N , Nt1t12N , Nt1t14N that each produce one symmetric generators which will

all go to [13].

Nt1t2N is a new double coset which we will denote [12].

Ten symmetric generators will go to the new double coset [13].

Cayley Diagram

Figure 8.3: Cayley diagram for G over S15

• Third Double Coset Nt1t3N = [13]

Nt1 t3 = N(t1t3)
n|n ∈ N.

We now find the Coset Stabilizer N (13). Firstly, find the point stabilizer of 1 and 3 in N.

N (13) = n ∈ N |(13)n = 13

Nt1 t3N is denoted by [13]

Thus,N13 = 1

The number of right cosets in [13] is equal to
|N |

|N |(13)=
150
1 = 150.

The orbits of N (12) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, {15}.
We take t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15 from each orbit respectively,
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and determine to which double coset Nt1t2t1, Nt1t2t2, Nt1t2t3, Nt1t2t4, Nt1t2t5, Nt1t2t6,

Nt1t2t7, Nt1t2t8, Nt1t2t9, Nt1t2t10, Nt1t2t11, Nt1t2t12, Nt1t2t13, Nt1t2t14, Nt1t2t15

belong.

Nt1t2t1 is a new double coset which will donate by [121] One symmetric generator will

go to [121].

Nt1t2t2 is a new double coset which will donate by [122] One symmetric generator will

go back to [1].

Nt1t2t3 is a new double coset which will donate by [123] One symmetric generator will

go to [13].

Nt1t2t4 is a new double coset which will donate by [124] One symmetric generator will

go to [124].

Nt1t2t5 is a new double coset which will donate by [125] One symmetric generator will

go to [123].

Nt1t2t6 is a new double coset which will donate by [126] One symmetric generator will

go to [123].

Nt1t2t7 is a new double coset which will donate by [127] One symmetric generator will

go to [127].

Nt1t2t8 is a new double coset which will donate by [128] One symmetric generator will

go to [123].

Nt1t2t9 is a new double coset which will donate by [129] One symmetric generator will

go to [129].

Nt1t2t10 is a new double coset whose one symmetric generator will go to [123].
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Nt1t2t11 is a new double coset whose one symmetric generator will go to [123].

Nt1t2t12 is a new double coset whose one symmetric generator will go to [127].

Nt1t2t13 is a new double coset whose one symmetric generator will go to [124].

Nt1t2t14 is a new double coset whose one symmetric generator will go to [123].

Nt1t2t15 is a new double coset whose one symmetric generator will go to [129].

Cayley Diagram

Figure 8.4: Cayley diagram for G over S15
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• Fourth Double Coset Nt1t2t9N = [129]

Nt1t2t9 = {N(t1t2t9)
n|n ∈ N}. We now find the Coset Stabilizer N (129). We first find

the point stabilizer of 1, 2 and 9 in N .

N129 = {n ∈ N |(129)n = 129} = {e}
We have N(t1t2t9) = N(t13t2t7).

Now N(t1t2t9)
(1,13)(3,15)(4,12)(7,9)(8,14) = N(t13t2t7) = Nt1t2t9.

=⇒ Nt1t2t
(1,13)(3,15)(4,12)(7,9)(8,14)
9 = Nt1t2t9

=⇒ (1, 13)(3, 15)(4, 12)(7, 9)(8, 14) ∈ N (129). So, N ((129) ≥ ⟨(1, 13)(3, 15)(4, 12)(7, 9)(8, 14)⟩.
The number of right cosets in Nt1t2t9N is calculated by the formula,

|N |
|N(129)| =

150
2 = 75.

The orbits of N (129) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} are orbits

{2}, {5}, {6}, {10}, {11}, {1, 13}, {3, 15}, {4, 12}, {7, 9}, {8, 14}
We will determine the double cosetesNt1t2t9t2, Nt1t2t9t5, Nt1t2t9t6, Nt1t2t9t10,

Nt1t2t9t11, Nt1t2t9t1, Nt1t2t9t3, Nt1t2t9t4, Nt1t2t9t7, Nt1t2t9t8

by selecting one representative from this orbit such as,

Nt1t2t9t2, Nt1t2t9t6, Nt1t2t9t4 has four symmetric generators go to [1,2,9].

Nt1t2t9t2N is a new double coset which has One symmetric generators we will denote

[1292].

Nt1t2t9t5N is a new double coset which has One symmetric generators we will denote

[1295].

Nt1t2t9t6N is a new double coset which has One symmetric generators we will denote

[1296].

Nt1t2t9t10N is a new double coset which has One symmetric generators we will denote

[12910].

Nt1t2t9t11N is a new double coset which has One symmetric generators we will denote

[12911].
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Nt1t2t9t1N is a new double coset which has two symmetric generators we will denote

[1291].

Nt1t2t9t3N is a new double coset which has two symmetric generators we will denote

[1293].

Nt1t2t9t4N is a new double coset which has two symmetric generators we will denote

[1294].

Nt1t2t9t7N is a new double coset which has two symmetric generators we will denote

[1297].

Nt1t2t9t8N is a new double coset which has two symmetric generators we will denote

[1298].

Cayley Diagram
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Figure 8.5: Cayley diagram for G over S15

Now look at the generators for [1,2,3] Nt1t2t9t5, Nt1t2t9t10, Nt1t2t9t11 has three symmet-

ric generator goes to [1,2,3].

Cayley Diagram
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Figure 8.6: Cayley diagram for G over S15

Now look at the generators for [1,2,4] Nt1t2t9t1, Nt1t2t9t3 has four symmetric generator

goes to [1,2,4].

Cayley Diagram
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Figure 8.7: Cayley diagram for G over S15

• Fifth Double Coset Nt1t2t7N = [127]

Nt1t2t7 = {N(t1t2t7)
n|n ∈ N}. We now find the Coset Stabilizer N (127). We first find

the point stabilizer of 1, 2 and 7 in N .

N127 = {n ∈ N |(127)n = 127}
N127 = ⟨(1, 2, 15)(3, 6, 9)(4, 7, 11)(5, 13, 14)(8, 12, 10)⟩.
We have N(t1t2t7)

(1,2,15)(3,6,9)(4,7,11)(5,13,14)(8,12,10).

=⇒ (1, 2, 15)(3, 6, 9)(4, 7, 11)(5, 13, 14)(8, 12, 10) ∈ N (127) Thus N ((127) ≥ ⟨N127, (1, 2, 15)

(3, 6, 9)(4, 7, 11)(5, 13, 14)(8, 12, 10)⟩
The number of right cosets in Nt1t2t7N is calculated by the formula,

|N |
|N(127)| =

150
3 = 50.

The orbits of N (129) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} are orbits

{1, 2, 15}, {3, 6, 9}, {4, 7, 11}, {5, 13, 14}, {8, 12, 10}.

We will determine the double cosetesNt1t2t7t1, Nt1t2t7t3, Nt1t2t7t4, Nt1t2t7t5,
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Nt1t2t7t8 by selecting one representative from this orbit such as,

Nt1t2t7t1N is a new double coset which has three symmetric generators we will denote

[1271].

Nt1t2t7t3N is a new double coset which has three symmetric generators we will denote

[1273].

Nt1t2t7t4N is a new double coset which has three symmetric generators we will denote

[1274].

Nt1t2t7t5N is a new double coset which has three symmetric generators we will denote

[1275].

Nt1t2t7t8N is a new double coset which has three symmetric generators we will denote

[1278].
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Cayley Diagram

Figure 8.8: Cayley diagram for G over S15
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Now look at the generators for [1,2,7] that connect to [124] and three symmetric generator

goes from [1,2,7]to [124].

Cayley Diagram

Figure 8.9: Cayley diagram for G over S15
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• Sixth Double Coset Nt1t2t4N = [124]

Nt1t2t4 = {N(t1t2t4)
n|n ∈ N}. We now find the Coset Stabilizer N (124). We first find

the point stabilizer of 1, 2 and 4 in N .

N124 = {n ∈ N |(124)n = 124}
N124 = ⟨(1, 6, 15)(2, 13, 14)(3, 11, 9)(4, 7, 10)(5, 8, 12)⟩.
We have N(t1t2t7)

(1,6,15)(2,13,14)(3,11,9)(4,7,10)(5,8,12).

=⇒ (1, 6, 15)(2, 13, 14)(3, 11, 9)(4, 7, 10)(5, 8, 12) ∈ N (124) Thus N ((124) ≥ ⟨N124, (1, 6, 15)

(2, 13, 14)(3, 11, 9)(4, 7, 10)(5, 8, 12)⟩
The number of right cosets in Nt1t2t4N is calculated by the formula,

|N |
|N(124)| =

150
3 = 50.

The orbits of N (124) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} are orbits

{1, 6, 15}, {2, 13, 14}, {3, 11, 9}, {4, 7, 10}, {5, 8, 12}
We will determine the double cosetesNt1t2t4t1, Nt1t2t4t2, Nt1t2t4t3, Nt1t2t4t4, Nt1t2t4t5

by selecting one representative from this orbit such as,

Nt1t2t4t1N is a new double coset which has three symmetric generators we will denote

[1241].

Nt1t2t4t2N is a new double coset which has three symmetric generators we will denote

[1242].

Nt1t2t4t3N is a new double coset which has three symmetric generators we will denote

[1243].

Nt1t2t4t4N is a new double coset which has three symmetric generators we will denote

[1244].

Nt1t2t4t5N is a new double coset which has three symmetric generators we will denote

[1245].

Cayley Diagram
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Figure 8.10: Cayley diagram for G over S15

• Seventh Double Coset Nt1t2t3N = [123]

Nt1t2t3 = {N(t1t2t3)
n|n ∈ N}. We now find the Coset Stabilizer N (123). We first find

the point stabilizer of 1, 2 and 3 in N .

N123 = {n ∈ N |(123)n = 123}
N123 = ⟨(1, 5)(2, 3)(6, 7)(10, 14)(11, 12)⟩.
We have N(t1t2t3)

(1,5)(2,3)(6,7)(10,14)(11,12).

=⇒ (1, 5)(2, 3)(6, 7)(10, 14)

(11, 12) ∈ N (123) Thus N ((123) ≥ ⟨N123, (1, 5)(2, 3)(6, 7)(10, 14)(11, 12)⟩
The number of right cosets in Nt1t2t34N is calculated by the formula,

|N |
|N(123)| =

150
2 = 75.

The orbits of N (123) on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} are orbits

{8}, {9}, {13}, {15}, {1, 5}, {2, 3}, {6, 7}, {10, 14}, {11, 12}.
We will determine the double cosetesNt1t2t3t8, Nt1t2t3t9, Nt1t2t3t13, Nt1t2t3t15,

Nt1t2t3t1, Nt1t2t3t2, Nt1t2t3t6, Nt1t2t3t10, Nt1t2t3t11.
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By selecting one representative from this orbit such as,

Nt1t2t3t4N is a new double coset which has one symmetric generators we will denote

[1234].

Nt1t2t3t8N is a new double coset which has one symmetric generators we will denote

[1238].

Nt1t2t3t9N is a new double coset which has one symmetric generators we will denote

[1239].

Nt1t2t3t13N is a new double coset which has one symmetric generators we will denote

[12313].

Nt1t2t3t15N is a new double coset which has one symmetric generators we will denote

[12313].

Nt1t2t3t1N is a new double coset which has two symmetric generators we will denote

[1231].

Nt1t2t3t2N is a new double coset which has two symmetric generators we will denote

[1232].

Nt1t2t3t6N is a new double coset which has two symmetric generators we will denote

[1232].

Nt1t2t3t10N is a new double coset which has two symmetric generators we will denote

[12310].

Nt1t2t3t11N is a new double coset which has two symmetric generators we will denote

[12311].
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Cayley Diagram

Figure 8.11: Cayley diagram for G over S15
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8.2.1 Magma Work U(3, 4) : 2 Over N ∼ 52 : S3

S:=Sym(15);

xx:=S!(1, 15, 12, 8, 3, 9, 14, 13, 7, 4)(2, 11, 5, 6, 10);

yy:=S!(1, 11, 14, 6, 12, 2, 7, 5, 3, 10)(4, 8, 13, 15, 9);

N:=sub< S|xx, yy >;
♯ N; /*150*/

G< x, y, t >:=Group< x, y, t|(y−1 ∗x−1)3, (y−1 ∗x)3, x−1 ∗ y−1 ∗x3 ∗ y−1 ∗x−1 ∗ y, x2 ∗ y ∗
x2 ∗ y3, t2, (t, y−1 ∗ x2 ∗ y−1), (t, x3 ∗ y−1 ∗ x), (x(−1) ∗ y ∗ t)5, (x(−2) ∗ t(y∗x(−1)

)3 >;

♯G;

/*124800*/

f,G1,k:=CosetAction(G,sub< G|x, y >);
CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| 2A(2, 4) = U(3, 4)

1

*/

NL:=NormalLattice(G1);

NL;

/*

Normal subgroup lattice

-----------------------

[3] Order 124800 Length 1 Maximal Subgroups: 2

---

[2] Order 62400 Length 1 Maximal Subgroups: 1

---
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[1] Order 1 Length 1 Maximal Subgroups:

*/

for i in [1..#NL] do if IsAbelian(NL[i]) then i; end if; end for;

/*

1

*/

/*to get the largest abelain group*/

IsAbelian(NormalLattice(N)[2]);

/*true*/

IsCyclic(NormalLattice(N)[2]);

/*false*/

q,ff:=quo<N|NormalLattice(N)[2]>;

q;

/*

Permutation group q acting on a set of cardinality 3

Order = 6 = 2 * 3

(2, 3)

(1, 2)

*/

IsIsomorphic(q,Sym(3));

/*

true Isomorphism of GrpPerm: q, Degree 3, Order 2 * 3

into GrpPerm: $, Degree 3, Order 2 * 3 induced by

(2, 3) |--> (2, 3)

(1, 2) |--> (1, 2)

*/

FPGroup(q);

/*

Finitely presented group on 2 generators

Relations

$.1^2 = Id($)

$.2^2 = Id($)

($.2 * $.1)^3 = Id($)

*/

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*12*/

DoubleCosets(G,H, sub<G|x,y>);

H:=sub<G|x,y,x * y * t * x^-2 * t * x^2 * t * y^-1>;

#H;

/*300*/

Index(G,H);
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/*416*/

f,G1,k:=CosetAction(G,H);

IN:=sub<G1|f(x),f(y)>;

IH:=sub<G1|f(x),f(y),f(x * y * t * x^-2 * t * x^2 * t * y^-1)>;

#DoubleCosets(G,H,sub<G|x,y>);

/*7*/

/* Do DCE of G over H and N*/

DoubleCosets(G,H, sub<G|x,y>);

/*{ <GrpFP: H, Id(G), GrpFP>, <GrpFP: H, t * x^-1 * t * y

* t, GrpFP>, <GrpFP: H, t * x * t * x * t, GrpFP>,

<GrpFP: H, t, GrpFP>, <GrpFP: H, t * x * t, GrpFP>,

<GrpFP: H, t * x * t * y^-1 * t, GrpFP>, <GrpFP: H, t *

y * t * y * t, GrpFP> }*/

DC:=[Id(G1),f(t),f(t * x * t),

f(t * x^-1 * t * y * t),f(t * x * t * x * t),

f( t * x * t * y^-1 * t),

f( t * y * t * y * t) ];

cst := [null : i in [1 .. 416]] where null is [Integers() | ];

prodim := function(pt, Q, I)

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

NN<a,b>:=Group<a,b| (b^-1 * a^-1)^3 , (b^-1 * a)^3 ,

a^-1 * b^-1 * a^3 * b^-1 * a^-1 * b ,a^2 * b * a^2 * b^3 >;

#NN;

/*150*/

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;
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end for;

for j in [2..15] do for i in [1..#Sch] do if 1^ArrayP[i] eq j then j,

Sch[i];

break;

end if; end for;

end for;

/*

2 b * a^-1

3 b^-2

4 a^-1

5 b * a

6 b^-1 * a^-1

7 a^-2

8 a^-1 * b

9 a * b

10 b^-1

11 b

12 a^2

13 a * b^-1

14 b^2

15 a

*/

ts := [ Id(G1): i in [1 .. 15] ];

ts[1]:=f(t);

ts[2]:=f(t^(y * x^-1)); ts[3]:=f(t^(y^-2)); ts[4]:=f(t^(x^-1));

ts[5]:=f(t^(y * x));

ts[6]:=f(t^(y^-1 * x^-1));

ts[7]:=f(t^(x^-2));

ts[8]:=f(t^(x^-1 * y)); ts[9]:=f(t^(x*y));

ts[10]:=f(t^(y^-1 )); ts[11]:=f(t^y);

ts[12]:=f(t^(x^2 )); ts[13]:=f(t^(x*y^-1));

ts[14]:=f(t^(y^2)); ts[15]:=f(t^x);

N1:=Stabiliser(N,1);

N1;

/*

Permutation group N1 acting on a set of cardinality 15

Order = 10 = 2 * 5

(2, 5, 10, 11, 6)(4, 8, 13, 15, 9)

(2, 13)(4, 10)(5, 8)(6, 15)(9, 11)

*/

for g in IH do for i in [1..15] do if ts[1] eq g*ts[i]

then i; end if; end for; end for;
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S:={[1]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IH do if ts[1]

eq g*ts[Rep(SSS[i])[1]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1 ]

}

*/

N1:=Stabiliser(N,1);

N1s:=N1;

#N1s;

/*10*/

tr1:=Transversal(N,N1s);

for i:=1 to #tr1 do

ss:=[1]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

/*15*/

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

Orbits(N1s);

/*

[

GSet{@ 1 @},

GSet{@ 3 @},

GSet{@ 7 @},

GSet{@ 12 @},

GSet{@ 14 @},

GSet{@ 2, 5, 13, 10, 8, 15, 11, 4, 9, 6 @}

]

*/

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[1]eqg ∗ (DC[i])h then i;
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break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[3]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[3] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[7] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[12] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[14] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

S:={[1,2]};

SS:=S^N;
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SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IH do if ts[1]*ts[2]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2 ]

}

*/

N12:=Stabiliser(N,[1,2]);

N12;

/*

Permutation group N12 acting on a set of cardinality 15

Order = 1

*/

N12s:=N12;

#N12s;

/*1*/

tr1:=Transversal(N,N12s);

for i:=1 to #tr1 do

ss:=[1,2]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*165*/

Orbits(N12s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @},

GSet{@ 7 @},

GSet{@ 8 @},

GSet{@ 9 @},

GSet{@ 10 @},

GSet{@ 11 @},
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GSet{@ 12 @},

GSet{@ 13 @},

GSet{@ 14 @},

GSet{@ 15 @}

]

*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[1] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[2] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*7*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[4] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*6*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[5] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[6] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do
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if ts[1]*ts[2]*ts[7] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*5

*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[8] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[9] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*4*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[10] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[11] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[12] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*5*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[13] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*6*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[14] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;
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/*7*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[15] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*4*/

N129:=Stabiliser(N,[1,2,9]);

N129;

/*

Permutation group N129s acting on a set of cardinality

15

Order = 2

(1, 13)(3, 15)(4, 12)(7, 9)(8, 14)

*/

N129s:=N129;

for g in N do if [1,2,9]^g eq [13,2,7]

then N129s:=sub<N|N129s,g>; end if ; end for;

[1,2,9]^N129s;

/*

GSet{@

[ 1, 2, 9 ],

[ 13, 2, 7 ]

@}

*/

#N/#N129s;

/*75*/

tr1:=Transversal(N,N129s);

for i:=1 to #tr1 do

ss:=[1,2,9]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*240*/

Orbits(N129s);

/*

[

GSet{@ 2 @},

GSet{@ 5 @},

GSet{@ 6 @},

GSet{@ 10 @},
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GSet{@ 11 @},

GSet{@ 1, 13 @},

GSet{@ 3, 15 @},

GSet{@ 4, 12 @},

GSet{@ 7, 9 @},

GSet{@ 8, 14 @}

]

*/

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[2]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 4 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[5]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/*7 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[6]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 4 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[10]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 7 */

for i in [1· · · 7] do
for g in IH do for h in IN do
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if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[11]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 7 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[1]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/*6 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[3]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 6 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[4]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/*4 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[7]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 3 */

for i in [1· · · 7] do
for g in IH do for h in IN do

if ts[1] ∗ ts[2] ∗ ts[9] ∗ ts[8]eqg ∗ (DC[i])h then i;

break i; break g; break h; end if; end for;end for;end for;
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/* 3 */

S:={[1,2,7]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IH do if ts[1]*ts[2]*ts[7]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2, 7 ]

}

{

[ 2, 15, 11 ]

}

{

[ 15, 1, 4 ]

}

*/

N127:=Stabiliser(N,[1,2,7]);

N127;

/* Permutation group N127 acting on a set of cardinality 15

Order = 1

*/

N127s:=N127;

for g in N do if [1,2,7]^g eq [2,15,11] then N127s:=sub<N|N127s,g>;

end if ; end for;

[1,2,7]^N127s;

N127s;

/*Permutation group N127s acting on a set of cardinality

15

Order = 3

(1, 2, 15)(3, 6, 9)(4, 7, 11)(5, 13, 14)(8, 12, 10)

*/

#N/#N127s;

/*50*/

tr1:=Transversal(N,N127s);

for i:=1 to #tr1 do

ss:=[1,2,7]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;
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end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*290*/

Orbits(N127s);

/*

[

GSet{@ 1, 2, 15 @},

GSet{@ 3, 6, 9 @},

GSet{@ 4, 7, 11 @},

GSet{@ 5, 13, 14 @},

GSet{@ 8, 12, 10 @}

]

*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[7]*ts[1] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3 */

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[7]*ts[3] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*5*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[7]*ts[4] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[7]*ts[5] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 7 */

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[7]*ts[8] eq g*(DC[i])^h then i;
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break i; break g; break h; end if; end for;end for;end for;

/* 7 */

S:={[1,2,4]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IH do if ts[1]*ts[2]*ts[4]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2, 4 ]

}

{

[ 6, 13, 7 ]

}

{

[ 15, 14, 10 ]

}

*/

N124:=Stabiliser(N,[1,2,4]);

N124s:=N124;

for g in N do if [1, 2, 4]g eq [6,13,7] then

N124s:=sub< N |N124s, g >; end if ; end for;

[1, 2, 4]N124s;

/*

GSet{@

[ 1, 2, 4 ],

[ 6, 13, 7 ],

[ 15, 14, 10 ]

@}

*/

N124s;

/*

(1, 6, 15)(2, 13, 14)(3, 11, 9)(4, 7, 10)(5, 8, 12)

*/

#N/#N124s;



149

/*50*/

tr1:=Transversal(N,N124s);

for i:=1 to #tr1 do

ss:=[1,2,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*340*/

Orbits(N124s);

/*

[

GSet{@ 1, 6, 15 @},

GSet{@ 2, 13, 14 @},

GSet{@ 3, 11, 9 @},

GSet{@ 4, 7, 10 @},

GSet{@ 5, 8, 12 @}

]

*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[4]*ts[1] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 4 */

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[4]*ts[2] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*6 */

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[4]*ts[3] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[4]*ts[4] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;
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/* 3 */

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[4]*ts[5] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/* 4 */

S:=[1,2,3];

SS := SN ;

SSS:=Setseq(SS);

for i in [1· · · ♯ SSS] do
for g in IH do if ts[1]*ts[2]*ts[3]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2, 3 ]

}

{

[ 5, 3, 2 ]

}

*/

N123:=Stabiliser(N,[1,2,3]);

N123s:=N123;

for g in N do if [1,2,3]^g eq [5,3,2]

then N123s:=sub<N|N123s,g>; end if ; end for;

[1,2,3]^N123s;

/*

GSet{@

[ 1, 2, 3 ],

[ 5, 3, 2 ]

@}

*/

N123s;

/*

Permutation group N123s acting on a set of cardinality

15
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Order = 2

(1, 5)(2, 3)(6, 7)(10, 14)(11, 12)

*/

#N/#N123s;

/*75*/

Orbits(N123s);

/*[

GSet{@ 4 @},

GSet{@ 8 @},

GSet{@ 9 @},

GSet{@ 13 @},

GSet{@ 15 @},

GSet{@ 1, 5 @},

GSet{@ 2, 3 @},

GSet{@ 6, 7 @},

GSet{@ 10, 14 @},

GSet{@ 11, 12 @}

]

*/

tr1:=Transversal(N,N123s);

for i:=1 to #tr1 do

ss:=[1,2,3]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*415*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[4] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*7*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[8] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*4*/
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for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[9] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*4*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[13] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*4*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[15] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*7*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[1] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*5*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[2] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[6] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*3*/

for i in [1..7] do

for g in IH do for h in IN do

if ts[1]*ts[2]*ts[3]*ts[10] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*7*/

for i in [1..7] do

for g in IH do for h in IN do
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if ts[1]*ts[2]*ts[3]*ts[11] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*5*/

S:=[1,2,3,4];

SS := SN ;

SSS:=Setseq(SS);

for i in [1· · · ♯ SSS] do
for g in IH do if ts[1]*ts[2]*ts[3]*ts[4]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2, 3, 4]

}

{

[ 5, 3, 2, 4 ]

}

*/

N1234:=Stabiliser(N,[1,2,3,4]);

N1234s:=N1234;

for g in N do if [1,2,3,4]^g eq [5,3,2,4]

then N1234s:=sub<N|N1234s,g>; end if ; end for;

[1,2,3,4]^N1234s;

#N/#N1234s;

/* 75 */

tr1:=Transversal(N,N123s);

for i:=1 to #tr1 do

ss:=[1,2,3,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*

415
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*/

S:={[1,2,3,8]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IH do if ts[1]*ts[2]*ts[3]*ts[8]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2, 3, 8 ]

}

{

[ 5, 3, 2, 8 ]

}

*/

N1238:=Stabiliser(N,[1,2,3,8]);

N1238s:=N1238;

for g in N do if [1,2,3,8]^g eq [5,3,2,8]

then N1238s:=sub<N|N1238s,g>; end if ; end for;

[1,2,3,8]^N1238s;

#N/#N1238s;

/*

75

*/

tr1:=Transversal(N,N123s);

for i:=1 to #tr1 do

ss:=[1,2,3,8]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*

415

*/

S:={[1,2,3,1]};
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SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IH do if ts[1]*ts[2]*ts[3]*ts[1]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2, 3, 1 ]

}

{

[ 11, 15, 10, 11 ]

}

{

[ 4, 12, 8, 4 ]

}

*/

N1231:=Stabiliser(N,[1,2,3,1]);

N1231s:=N1231;

for g in N do if [1, 2, 3, 1]g eq [11,15,10,11]then N1231s:=sub< N |N1231s, g >; end if ;

end for;

[1, 2, 3, 1]N1231s;

♯ N/ ♯ N1231s;

/*

50

*/

tr1:=Transversal(N,N123s);

for i:=1 to #tr1 do

ss:=[1,2,3,1]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..416] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/* 415 */
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8.3 Double Coset Enumeration Of S6 Over S5

Consider N = < x, y >; where

where x ∼ (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)(19, 26)(21,25)(23,

28),

y ∼ (1, 2, 4, 7, 12, 19)(3, 5, 9, 15, 22, 27)(6, 10, 16, 23, 18, 25)(8, 13,21)(11, 17, 14)(20,

26, 29, 30, 28, 24).

Our progenitor 2∗30 : S5. We prove that

S6 ∼= Group< x, y, t|x2, y6, (y ∗ x ∗ y−1 ∗ x)2, (x ∗ y−1)5, (t, x), (t, y2 ∗ x ∗ y−2 ∗ x ∗ y2), (y ∗
x ∗ t)3, (y ∗ x ∗ t(y2∗x))4 >;
We perform manual double coset enumeration of G over N. We need to determine all

distinct double coset NwN and find the number of right cosets in each double coset. It

suffices to find the double coset of Nwti for one representative ti from each orbit of the

coset stabiliser N (w) of the right coset Nw, so we find the index which is the order of G

over the order of N.

Hence, |G|
|N | =

720
120 = 6. So, we have total 6 single cosets.

• First Double Coset [*]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN is denoted by [*] which contains 1 right coset.The coset stsbiliser

of the coset Ne is N.

The number of right cosets in [*] is equal to |N |
|N | =

120
120 = 1.

Since N is transitive on {1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,25,
26,27,28,29,30},
We need to determine the double coset of the right coset Nt1.

Thus, the Thirty ti
′s which are Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10,

Nt11, Nt12, Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24, Nt25,

Nt26, Nt27, Nt28, Nt29, Nt30 extend the new double coset [1], that mean thirty generators

goes forward to Nt1.
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Cayley Diagram

Figure 8.12: Cayley diagram for G over S30

• Second Double Coset Nt1N = [1]

Nt1N = {Ntn1 |n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12,
Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24,

Nt25, Nt26, Nt27, Nt28, Nt29, Nt30}. Firstly, find the point stabilizer of 1 in N.

N1 = n ∈ N |1n = 1

N^1 =

(2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12,18)

(13,20)(17, 24)(19, 26)(21, 25)(23, 28)(2, 26)

(3, 19)(4, 18)(5, 13)(6, 12)(7,11)(8,20)(9,17)

(10, 28)(14, 24)(15, 23)(21, 25)(22,30)(27,29).

Thus,N (1) ≥

(2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12,18)

(13,20)(17, 24)(19, 26)(21, 25)(23, 28)(2, 26)

(3, 19)(4, 18)(5, 13)(6, 12)(7,11)(8,20)(9,17)

(10, 28)(14, 24)(15, 23)(21, 25)(22,30)(27,29).

⇒ ( 1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,

25,26,27,28,29,30) ∈ N (1).

The orbits of N (1) on

X = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} are

{1, 4, 6, 18, 12, 16}, {2, 3, 26, 7, 9, 30, 19, 11, 14, 17, 22, 24},
{5, 8, 13, 15, 21, 29, 20, 10, 23, 27, 25, 28}.
Then N (1) ≤ N1, (1, 4, 12)(2, 7, 19)(3, 9, 22)(5, 15, 27)(6, 16, 18)(8, 21, 13)(10, 23, 25)
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(11, 14, 17)(20, 29, 28)(24, 26, 30) >∼= S4.

So, Order of< N1, (1, 4, 12)(2, 7, 19)(3, 9, 22)(5, 15, 27)(6, 16, 18)(8, 21, 13)(10, 23, 25)

(11, 14, 17)(20, 29, 28)(24, 26, 30) > is 24.

The number of right cosets in [1] is equal to
|N |

|N |(1)=
120
24 = 5.

Now we choose the represenatative from the first orbit and 5 from the second orbit and

determine the double coset of Nt1t1, Nt1t5.

This shows us the following:

Nt1t1 = Nt21 = N ∈ [∗]
Since the orbit {1} contains one element, then one symmetric generator goes back to the

double coset [*].

Nt1 ∈ [1]

Six symmetric generator will go back to [1].

Nt1t2N is a new double coset which we will denote [12].

Twelve symmetric generators will go to the new double coset [12].

Nt1t5N is a new double coset which we will denote [15].

Twelve symmetric generators will go to the new double coset [12].

Cayley Diagram

Figure 8.13: Cayley diagram for G over S30
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• Third Double Coset Nt12N = [12]

Nt12N = {Ntn12|n ∈ N}.
={Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10, Nt11, Nt12,
Nt13, Nt14, Nt15, Nt16, Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23,

Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30}.
Firstly, find the point stabilizer of 1 in N.

N1 = n ∈ N |1n = 1.

N1 =1

Thus,N (1) ≥ (1)

⇒ ( 1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,25,

26,27,28,29,30) ∈ N (1)

The number of right cosets in [1] is equal to
|N |

|N |(1)=
120
1 = 120.

The orbits of N (1) on

X = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30} are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, {15},
{16}, {17}, {18}, {19}, {20}, {21}, {22},
{23}, {24}, {25}, {26}, {27}, {28}, {19}, {30}.
The number of right cosets in [1] is equal to
|N |

|N |(1)=
120
1 = 120.

Now we choose the represenatative from determine the double coset of

Nt1t1, Nt1t2, Nt1t3, Nt1t4, Nt1t5, Nt1t6,

Nt1t7, Nt1t8, Nt1t9, Nt1t10, Nt1t11, Nt1t12, Nt1t13, Nt1t14, Nt1t15,

Nt1t16, Nt1t17, Nt1t18, Nt1t19, Nt1t20, Nt1t21, Nt1t21, Nt1t22, Nt1t23

, Nt1t24, Nt1t25, Nt1t26, Nt1t27, Nt1t28, Nt1t29, Nt1t30.

This shows us the following:
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Cayley Diagram

Figure 8.14: Cayley diagram for G over S30

It is possible that the coset stabiliser of N (w) of the coset Nw increases and

therefore |N |
|N(w)| decreases. Our cayley diagram shows that

G = N ∪Nt1 ∪Nt1t2
|G| ≤ (|N |+ |N |

|N1| +
|N |
|N12|X|N |

|G| ≤ (1 + 30 + 120)X120 =⇒ |G| ≤ 151X120 =⇒ |G| ≤ 18000.

G acts on 720 cosets that are given in the cayley diagram.

Let X be the set of these 720 cosets.

Now, f : G→ Sx is a homomorphism.

G
Kerf

∼= Imf (First Isomorphism Theorem).

=⇒ G
Kerf

∼= ⟨f(x), f(y), f(t)⟩
=⇒ | G

Kerf | = |⟨f(x), f(y), f(t)⟩|.
But #⟨f(x), f(y), f(t)⟩ = 8064.

So, | G
kerf | = 18000

This means |G| ≥ 18000. We know |G| ≤ 18000 from cayley diagram.

Therefore, |G| = 18000.

From |G| = 18000× |Kerf | we find |Kerf | = 1

G ∼= ⟨f(x), f(y), f(t)⟩ but, ⟨f(x), f(y), f(t)⟩ ∼= (26 : S6)(7 : 3)

=⇒ G ∼= (2 ∗ 30 : S5).
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8.3.1 Magma Work S6 Over S5

S:=Sym(30);

xx:=S!(2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)

(19, 26)(21,25)(23, 28);

yy:=S!(1, 2, 4, 7, 12, 19)(3, 5, 9, 15, 22, 27)(6, 10, 16, 23, 18, 25)

(8, 13,21)(11, 17, 14)(20, 26, 29, 30, 28, 24);

N:=sub<S|xx,yy>;

#N;

/*120*/

G<x,y,t>:=Group<x,y,t|x^2, y^6, (y*x*y^-1*x)^2,(x*y^-1)^5,

(t,x),(t,y^2*x*y^-2*x*y^2),(y*x*t)^3,

(y*x*t^(y^2*x))^4>;

#G;

720

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

G

| Cyclic(2)

*

| Alternating(6)

1

NL:=NormalLattice(G1);

NL;

Normal subgroup lattice

-----------------------

[3] Order 720 Length 1 Maximal Subgroups: 2

---

[2] Order 360 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

IsAbelian(NormalLattice(N)[1]);

true

q,ff:=quo<N|NormalLattice(N)[2]>;

q;

Permutation group q acting on a set of cardinality 2

Order = 2

(1, 2)

(1, 2)

IsIsomorphic(G1,Sym(6));

true Isomorphism of GrpPerm: G1, Degree 6, Order 2^4 *

3^2 * 5 into GrpPerm: $, Degree 6, Order 2^4 * 3^2 * 5
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induced by

(3, 4) |--> (3, 4)

(2, 3)(4, 5, 6) |--> (2, 3)(4, 5, 6)

(1, 2)(3, 4) |--> (1, 2)(3, 4)

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

2

DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

{ <GrpFP, Id(G), GrpFP>, <GrpFP, t, GrpFP> }

IN:=sub<G1|f(x),f(y)>;

IN;

Permutation group IN acting on a set of cardinality 6

(3, 4)

(2, 3)(4, 5, 6)

#G1/#N;

/*6*/

ts := [ Id(G1): i in [1 .. 30] ];

ts[1]:=f(t);

ts[2]:=f(t^y );

ts[3]:=f(t^(y*x));

ts[4]:=f(t^(y^2));

ts[5]:=f(t^(y * x*y));

ts[6]:=f(t^(y^2 * x));

ts[7]:=f(t^(y^3));

ts[8]:=f(t^(y*x)^2);

ts[9]:=f(t^(y*x*y^2));

ts[10]:=f(t^(y^2*x*y ));

ts[11]:=f(t^(y^3*x));

ts[12]:=f(t^(x^2));

ts[13]:=f(t^(x*y^-1));

ts[14]:=f(t^(y*x*y^2*x));

ts[15]:=f(t^(y*x*y^3));

ts[16]:=f(t^(y^2*x*y^2));

ts[17]:=f(t^(y^3*x*y));

ts[18]:=f(t^(y^-2*x));

ts[19]:=f(t^(y^-1));

ts[20]:=f(t^(y^-1*x*y^-1));

ts[21]:=f(t^(y*x*y*x*y^-1));

ts[22]:=f(t^(y*x*y^-2));

ts[23]:=f(t^(y^-2*x*y^-1)); ts[24]:=f(t^(y^-1*x*y^-2));

ts[25]:=f(t^(y^2*x*y^-1));

ts[26]:=f(t^(y^-1*x));

ts[27]:=f(t^(y*x*y^-1)); ts[28]:=f(t^(y^-1*x*y^3));

ts[29]:=f(t^(x^y));

ts[30]:=f(t^(y^-1*x*y^2));
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DC:=[Id(G1),f(t) ];

cst := [null : i in [1 .. 6]] where null is [Integers() | ];

prodim := function(pt, Q, I)

function> v := pt;

function> for i in I do

function|for> v := v^(Q[i]);

function|for> end for;

function> return v;

function> end function;

N1:=Stabiliser(N,1);

N1;

Permutation group N1 acting on a set of cardinality 30

Order = 4 = 2^2

(2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)

(12, 18)(13,20)(17, 24)(19, 26)(21, 25)

(23, 28)(2, 26)(3, 19)(4, 18)(5, 13)

(6, 12)(7, 11)(8, 20)(9,17)(10, 28)

(14, 24)(15, 23)(21, 25)(22, 30)(27,29)

S:={[1]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]

eq g*ts[Rep(SSS[i])[1]]

then print SSS[i];

end if; end for; end for;

{

[ 1 ]

}

{

[ 4 ]

}

{

[ 6 ]

}

{

[ 12 ]

}

{

[ 16 ]

}

{
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[ 18 ]

}

N1:=Stabiliser(N,1);

N1s:=N1;

#N1s;

4

Orbits(N1s);

[

GSet{@ 1 @},

GSet{@ 16 @},

GSet{@ 7, 11 @},

GSet{@ 21, 25 @},

GSet{@ 22, 30 @},

GSet{@ 27, 29 @},

GSet{@ 2, 3, 26, 19 @},

GSet{@ 4, 6, 18, 12 @},

GSet{@ 5, 8, 13, 20 @},

GSet{@ 9, 14, 17, 24 @},

GSet{@ 10, 15, 28, 23 @}

]

N1s:=sub<N|N1,(1, 4, 12)(2, 7, 19)(3, 9, 22)(5,15,27)(6, 16, 18)

(8,21, 13)(10, 23, 25)(11, 14, 17)(20, 29, 28)(24,26, 30)>;

#N1s;

24

Orbits(N1s);

[

GSet{@ 1, 4, 6, 18, 12, 16 @},

GSet{@ 2, 3, 26, 7, 19, 9, 30, 11, 14, 17, 22, 24

@},

GSet{@ 5, 8, 13, 15, 20, 21, 10, 23, 27, 29, 25, 28

@}

]

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[1] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do
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if ts[1]*ts[5] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

S:={[1,2]};

SS:=S^N;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

{

[ 1, 2 ]

}

{

[ 1, 3 ]

}

{

[ 5, 13 ]

}

{

[ 7, 15 ]

}

{

[ 9, 16 ]

}

{

[ 11, 18 ]

}

{

[ 9, 21 ]

}

{

[ 11, 10 ]

}

{

[ 14, 16 ]

}

{

[ 14, 25 ]

}

{

[ 22, 13 ]

}
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{

[ 22, 12 ]

}

{

[ 27, 25 ]

}

{

[ 23, 15 ]

}

{

[ 6, 30 ]

}

{

[ 27, 21 ]

}

{

[ 23, 20 ]

}

{

[ 6, 3 ]

}

{

[ 24, 12 ]

}

{

[ 28, 10 ]

}

{

[ 4, 30 ]

}

{

[ 26, 18 ]

}

{

[ 4, 2 ]

}

{

[ 19, 20 ]

}

N12:=Stabiliser(N,[1,2]);

N12s:=N12;

#N12s;

1

N12;
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Permutation group N12 acting on a set of cardinality 30

Order = 1

tr1:=Transversal(N,N12s);

for i:=1 to #tr1 do

ss:=[1,2]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..6] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

5

Orbits(N12s);

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @},

GSet{@ 7 @},

GSet{@ 8 @},

GSet{@ 9 @},

GSet{@ 10 @},

GSet{@ 11 @},

GSet{@ 12 @},

GSet{@ 13 @},

GSet{@ 14 @},

GSet{@ 15 @},

GSet{@ 16 @},

GSet{@ 17 @},

GSet{@ 18 @},

GSet{@ 19 @},

GSet{@ 20 @},

GSet{@ 21 @},

GSet{@ 22 @},

GSet{@ 23 @},

GSet{@ 24 @},

GSet{@ 25 @},

GSet{@ 26 @},

GSet{@ 27 @},

GSet{@ 28 @},

GSet{@ 29 @},

GSet{@ 30 @}

]
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for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[1] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[2] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[3] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[4] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[5] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[6] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[7] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do
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for g in IN do for h in IN do

if ts[1]*ts[2]*ts[8] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[9] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[10] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[11] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[12] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[13] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[14] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[15] eq g*(DC[i])^h then i;
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break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[16] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[17] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[18] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[19] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[20] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[21] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[22] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/
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for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[23] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[24] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[25] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[26] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[27] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[28] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/

for i in [1..2] do

for g in IN do for h in IN do

if ts[1]*ts[2]*ts[29] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*1*/

for i in [1..2] do
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for g in IN do for h in IN do

if ts[1]*ts[2]*ts[30] eq g*(DC[i])^h then i;

break i; break g; break h; end if; end for;end for;end for;

/*2*/



173

8.4 Double Coset Enumeration Of 33 : 23 Over 32 : 2

Let N ∼= (32 : 2) with ⟨x, y⟩ where
x ∼ (1, 4)(2, 5)(3, 6), and

y ∼ (1, 2, 3).

Our progenitor 33 : 23. We prove that 33 : 23 ∼= Group< x, y, t|x2, y3, y−1 ∗ x ∗ y−1 ∗ x ∗
y ∗ x ∗ y ∗ x, t2, (t, yx), (y ∗ x ∗ t)4 >.
We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N . We need to determine all distinct double cosets NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw. We

find our index which is the order of G over the order of N . Hence, |G|
|N | =

216
18 = 12. We

have 12 distinct single cosets.

• First Double Coset [*]

NeN = {Nen|n ∈ N} = N.

The double coset NeN is denoted by [*] which contains 1 right coset.The coset stsbiliser

of the coset Ne is N.

The number of right cosets in [*] is equal to |N |
|N |=

18
18 = 1.

Since N is transitive on {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,},
We need to determine the double coset of the right coset Nt1.

Thus, the eighteen ti
′s which are extend the double coset [∗], that mean eighteen gener-

ators goes forward to Nt1.

Cayley Diagram

Figure 8.15: Cayley diagram for32 : 2 over 33 : 23
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• Second Double Coset Nt1N = [1]

Nt1N = {Nt1n |n ∈ N}.
={Nt1, Nt2, Nt3, Nt4, Nt5, Nt6}.Firstly, find the point stabilizer of 1 in N.

N1 = n ∈ N |1n = 1

N1 = ( 4,5,6)

Thus, N (1) ≥ N1 = ⟨(4, 5, 6)⟩.
The number of right cosets in Nt1N is calculated by the formula,
|N |

|N(1)| =
18
3 = 6.

The orbits of N (1) on X = {1, 2, 3, 4, 5, 6} are

{1}, {2}, {3}, {4, 5, 6}.

We will determine the double cosetes by selecting one representative from each orbit

such as,

Nt1t1, Nt1t2, Nt1t3, Nt1t4 belongs.

This shows us the following:

Nt1t1 = Nt21 = N ∈ [∗].
Since the orbit {1} contains one element, then one symmetric generator goes back to the

double coset [*].

Nt1 ∈ [1]

One symmetric generator will go back to [1].

Nt1t2N is a new double coset which we will denote [12].

One symmetric generators will go to the new double coset [14].

Nt1t3N is a new double coset which we will denote [13].

One symmetric generators will go to the new double coset [14].

Nt1t4N is a new double coset which we will denote [14].

Three symmetric generators will go to the new double coset [13].
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Cayley Diagram

Figure 8.16: Cayley diagram for 32 : 2 over 33 : 23

• Third Double Coset Nt1t2N = [12]

Nt1 t2 = {N(t1t2)
n|n ∈ N}.

We now find the Coset Stabilizer N (12). Firstly, find the point stabilizer of 1 and 2 in N.

N (12) = n ∈ N |(12)n = 12

Nt1 t2N is denoted by [12]

Thus,N12 = (4, 5, 6).

The number of right cosets in [12] is equal to
|N |

|N |(12)=
18
3 = 6.

The orbits of N (12) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4, 5, 6}.
We take t1, t2, t3, t4 from from each orbit respectively, and determine to which double

coset Nt1t2t1, Nt1t2t3, Nt1t2t4 belong.

As Nt1t2t2 = Nt1t
2
2 = Nt1 ∈ [1].
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Thus Nt1t2t1 is a new double coset which will donate by [121] One symmetric gener-

ator will go to [121].

Nt1t2t3 is a new double coset which will donate by [123] One symmetric generator will

go to [123]

Nt1t2t4 is a new double coset which will donate by [124] Three symmetric generator

will go back to [124]

Figure 8.17: Cayley diagram for 32 : 2 over 33 : 23
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• Fourth Double Coset Nt1t4N = [14]

Nt1 t4 = {N(t1t4)
n|n ∈ N}.

We now find the Coset Stabilizer N (14). Firstly, find the point stabilizer of 1 and 4 in N.

N (14) = n ∈ N |(14)n = 14.

Nt1 t4N is denoted by [14].

The number of right cosets in [14] is equal to
|N |

|N |(14)=
18
1 = 18.

The orbits of N (14) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4}, {5}, {6}.

We take t1, t2, t3, t5, t4, t6 from from each orbit respectively, and determine to which dou-

ble coset Nt1t4t1, Nt1t4t2, Nt1t4t3, Nt1t4t4, Nt1t4t5, Nt1t4t6 belong.

Thus Nt1t4t1 is a new double coset which will donate by [141] One symmetric generator

will go to [121].

Thus Nt1t4t2 is a new double coset which will donate by [141] One symmetric gener-

ator will go to [121].

Nt1t4t3 is a new double coset which will donate by [143] One symmetric generator will

go to [121]

Thus Nt1t4t4 is a new double coset which will donate by [144] One symmetric gener-

ator will go to [121].

Thus Nt1t4t5 is a new double coset which will donate by [145] One symmetric gener-

ator will go to [121].

Thus Nt1t4t6 is a new double coset which will donate by [146] One symmetric gener-

ator will go to [121].
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Figure 8.18: Cayley diagram for 32 : 2 over 33 : 23

• Fifth Double Coset Nt1t2t1N = [121]

Nt1 t2t1 = {N(t1t2)t1
n|n ∈ N}.

We now find the Coset Stabilizer N (121). Firstly, find the point stabilizer of 1,2 and 1 in

N.

N (121) = n ∈ N |(121)n = 121.

Nt1 t2t1N is denoted by [121].

The number of right cosets in [121] is equal to
|N |

|N |(123)=
18
3 = 6.

The orbits of N (123) on X= {1, 2, 3, 4, 5, 6} are {1}, {2}, {3}, {4, 5, 6}.
We take t1, t2, t3, t4 from from each orbit respectively, and determine to which double

coset Nt1t2t1t1, Nt1t2t1t2, Nt1t2t1t3, Nt1t2t1t4 belong.

Thus Nt1t2t1t1 and Nt1t2t1t2 are the double coset whose two symmetric generators will

go to [12].

Thus Nt1t2t1t3 is the double coset which whose one symmetric generators will go back
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to [1].

Thus Nt1t2t1t4 is the double coset which whose three symmetric generators will go back

to [14].

Figure 8.19: Cayley diagram for 32 : 2 over 33 : 23



180

8.4.1 Magma Work 32 : 2 Over 33 : 23

S:=Sym(6);

xx:=S!(1, 4)(2, 5)(3, 6) ;

yy:=S!(1,2,3);

N:=sub<S|xx,yy>;

#N;

/* 18 */

CompositionFactors(N);

/*

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

1

*/

G<x,y,t>:=Group<x,y,t| x^2,y^3,y^-1 * x * y^-1 * x *y * x * y * x,

t^2,

(t,y^x),(y*x*t)^4>;

#G;

CompositionFactors(G);

/* 216 */

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

/*

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

*/

NL:=NormalLattice(G1);

NL;

/*

Normal subgroup lattice
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-----------------------

[11] Order 216 Length 1 Maximal Subgroups: 8 9 10

---

[10] Order 108 Length 1 Maximal Subgroups: 7

[ 9] Order 108 Length 1 Maximal Subgroups: 6 7

[ 8] Order 108 Length 1 Maximal Subgroups: 7

---

[ 7] Order 54 Length 1 Maximal Subgroups: 4 5

[ 6] Order 36 Length 1 Maximal Subgroups: 4

---

[ 5] Order 27 Length 1 Maximal Subgroups: 2 3

[ 4] Order 18 Length 1 Maximal Subgroups: 3

---

[ 3] Order 9 Length 1 Maximal Subgroups: 1

---

[ 2] Order 3 Length 1 Maximal Subgroups: 1

---

[ 1] Order 1 Length 1 Maximal Subgroups:

*/

IsAbelian(NormalLattice(N)[2]);

/* true */

q,ff:=quo<N|NormalLattice(N)[2]>;

q;

/*

Permutation group q acting on a set of cardinality 3

Order = 6 = 2 * 3

(2, 3)

(1, 2, 3)

*/

FPGroup(q);

/* Finitely presented group on 2 generators

Relations

$.1^2 = Id($)

$.2^-3 = Id($)

($.2^-1 * $.1)^2 = Id($)

*/

IsIsomorphic(q,Sym(3));

/*

true Isomorphism of GrpPerm: q, Degree 3, Order 2 * 3

into GrpPerm: $, Degree 3, Order 2 * 3 induced by

(2, 3) |--> (2, 3)

(1, 2, 3) |--> (1, 2, 3)

*/
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H:=sub<G|x,y,t * y * t * y^-1>;

#H;

/* 54 */

IN:=sub<G1|f(x),f(y)>;

IH:=sub<G1|f(x),f(y),f(t * y * t * y^-1)>;

#DoubleCosets(G,H,sub<G|x,y>);

/*3*/

DoubleCosets(G,H, sub<G|x,y>);

/* { <GrpFP: H, Id(G), GrpFP>, <GrpFP: H, t * x * t,

GrpFP>, <GrpFP: H, t, GrpFP> }

*/

NN<a,b>:=Group<a,b| a^2,b^3,b^-1 * a * b^-1 * a * b * a * b * a>;

#NN;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for j in [2..6] do for i in [1..#Sch] do

if 1^ArrayP[i] eq j then j,Sch[i];

break;

end if; end for;

end for;

/*

2 b

3 b^-1

4 a

5 b * a

6 b^-1 * a

*/

DC:=[Id(G1),f(t),f(t * x * t) ];

IN:=sub<G1|f(x),f(y)>;

ts := [ Id(G1): i in [1 .. 6] ];



183

ts[1]:=f(t);

ts[2]:=f(t^(y));

ts[3]:=f(t^(y^-1));

ts[4]:=f(t^(x));

ts[5]:=f(t^(y * x));

ts[6]:=f(t^(y^-1 * x));

#DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);

/*4*/

DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);

/*{ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * t, GrpFP>,

<GrpFP, t, GrpFP>, <GrpFP, t * x * t, GrpFP> }

*/

DC:=[Id(G1),f(t),f(t * x * t),f(t*y*t) ];

Index(G1,IN);

/*12*/

cst := [null : i in [1 .. Index(G1,IN)]] where null is [Integers() | ];

prodim := function(pt, Q, I)

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

for i := 1 to 6 do

cst[prodim(1, ts, [i])] := [i];

end for;

m:=0; for i in [1..12] do if cst[i] ne [] then m:=m+1;

end if; end for;m;

/*6*/

Orbits(N);

/*[

GSet{@ 1, 4, 2, 5, 3, 6 @}

]

*/

N1:=Stabiliser(N,1);

Orbits(N1);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]
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*/

#N/#N1;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[1] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*1*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*4*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*4*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[4] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*3*/

S:={[1,2]};

SS:=S^N;SS;

/*

GSet{@

{

[ 1, 2 ]

},

{

[ 4, 5 ]

},

{

[ 2, 3 ]

},

{

[ 5, 6 ]

},

{

[ 3, 1 ]

},

{

[ 6, 4 ]

}

@}

*/
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SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

/*

{

[ 1, 2 ]

}

{

[ 2, 3 ]

}

{

[ 3, 1 ]

}

*/

N12:=Stabiliser(N,[1,2]);

#N12;

/*3*/

N12;

/*Permutation group N12 acting on a set of cardinality 6

Order = 3

(4, 6, 5)

*/

N12s:=N12;

#N12s;

/*3*/

tr1:=Transversal(N,N12s);

for i:=1 to #tr1 do

ss:=[1,2]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..12] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*8*/

Orbits(N12s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},



186

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]

*/

#N/#N12s;

/*6*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1] eq m*(DC[i])^n

then i; break; end if; end for;end for;

/*2*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[2] eq m*(DC[i])^n

then i; break; end if; end for;end for;

/* 2*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[3] eq m*(DC[i])^n

then i; break; end if; end for;end for;

/*2*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4] eq m*(DC[i])^n

then i; break; end if; end for;end for;

/*2*/

S:={[1,4]};

SS:=S^N;SS;

SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[4]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]

then print SSS[i];

end if; end for; end for;

/*

[ 1, 4 ]

}

{

[ 4, 1 ]

}

{

[ 5, 2 ]

}

{

[ 2, 5 ]

}

{

[ 6, 3 ]
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}

{

[ 3, 6 ]

}1818

*/

N14:=Stabiliser(N,[1,4]);

N14;

/*Permutation group N14 acting on a set of cardinality 6

Order = 1

*/

N14s:=N14;

#N14s;

/*1*/

tr1:=Transversal(N,N14s);

for i:=1 to #tr1 do

ss:=[1,4]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..12] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*11*/

Orbits(N14s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4 @},

GSet{@ 5 @},

GSet{@ 6 @}

]

*/

for i in [1..#DC] do for m,n in IN do

if ts[1]*ts[4]*ts[1] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*2*/

for i in [1..#DC] do for m,n in IN do
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if ts[1]*ts[4]*ts[2] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*2*/

for i in [1..#DC] do for m,n in IN do

if ts[1]*ts[4]*ts[3] eq m*(DC[i])^n then i;

break; end if; end for;end for;

for i in [1..#DC] do for m,n in IN do

if ts[1]*ts[4]*ts[4] eq m*(DC[i])^n then i;

break; end if; end for;end for;

for i in [1..#DC] do for m,n in IN do

if ts[1]*ts[4]*ts[5] eq m*(DC[i])^n then i;

break; end if; end for;end for;

for i in [1..#DC] do for m,n in IN do

if ts[1]*ts[4]*ts[6] eq m*(DC[i])^n then i;

break; end if; end for;end for;

/*2*/

S:={[1,2,1]};

SS:=S^N;SS;

/*

GSet{@

{

[ 1, 2, 1 ]

},

{

[ 4, 5, 4 ]

},

{

[ 2, 3, 2 ]

},

{

[ 5, 6, 5 ]

},

{

[ 3, 1, 3 ]

},

{

[ 6, 4, 6 ]

}

@}

*/
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SSS:=Setseq(SS);

for i in [1..#SSS] do

for g in IN do if ts[1]*ts[2]*ts[1]

eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]

then print SSS[i];

end if; end for; end for;

N121:=Stabiliser(N,[1,2,1]);

#N121;

/*3*/

N121s:=N121;

[1,2,1]^N121s;

/*

GSet{@

[ 1, 2, 1 ]

@}

*/

#N/#N121s;

/*6*/

tr1:=Transversal(N,N121s);

for i:=1 to #tr1 do

ss:=[1,2,1]^tr1[i];

cst[prodim(1,ts,ss)]:=ss;

end for;

m:=0; for i in [1..12] do if cst[i] ne []

then m:=m+1;

end if; end for;m;

/*11*/

Orbits(N121s);

/*

[

GSet{@ 1 @},

GSet{@ 2 @},

GSet{@ 3 @},

GSet{@ 4, 6, 5 @}

]

*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[1] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*4*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[2] eq
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m*(DC[i])^n then i; break; end if; end for;end for;

/*4*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[3] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*1*/

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[4] eq

m*(DC[i])^n then i; break; end if; end for;end for;

/*3*/
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8.5 Construction Of 2×(A5 × A5) Over D5 ×D5

Consider N = < x, y >, where

x = (1, 19, 11, 17, 2)(3, 16, 15, 5, 6, 9, 24, 8, 21, 22)(4, 18, 13, 25, 7, 14, 20, 10, 23, 12)

and

y = (1, 16)(2, 8)(3, 20)(4, 24)(5, 17)(6, 13)(7, 15)(9, 19)(10, 18)(11, 22)(14, 25)(21, 23).

Our progenitor D5×D5.We prove that D5×D5
∼= Group < x, y, t|y2, (x∗y∗x)2, x10, x−1∗

y∗x−1∗y∗x−1∗y∗x−1∗y∗x−1∗y∗x∗y∗x∗y∗x∗y∗x∗y∗x−1∗y, t2, (t, y∗x∗y∗x∗y∗x∗y∗
x−1∗y), (t, x∗y∗x∗y∗x∗y∗x−1∗y∗x∗y), (y∗x(2)∗t(x(−1)))3, (y∗x∗y∗t(x∗y∗x(−1)))3 > .

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N. We need to determine all distinct double coset NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find the index which is the order of G over the order of N.

Hence, |G|
|N | =

7200
100 = 72. So, we have 72 single cosets.

• First Double Coset [*]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The number of right coset in ∗ is equal to |N |
|N | =

100
100 = 1.

Since N is transitive on

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}.
We need only determine the double coset of the right coset Nt1.

Thus twenty-five cosets extend to the new double coset [1], that mean the twenty-five

generators go forward to Nt1.

• Second Double Coset Nt1N = [1]

Nt1N = {Ntn1 |n ∈ N}.
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7,
Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14, Nt15, Nt16,

Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24, Nt25}.
Firstly, the point stabilizer of 1 in N.
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N1 = {n ∈ N |1n = 1}.
N1 = < (2, 19)(3, 16)(4, 14)(5, 21)(6, 8)(7, 18)(9, 24)(10, 23)(11, 17)(12, 20)(13, 25)

(15, 22)(3, 9)(4, 14)(5, 21)(6, 22)(7, 12)(8, 15)(10, 13)(16, 24)(18, 20)(23, 25) >.

The number of right cosets in [1] is equal to
|N |

|N |(1)=
100
2 = 50.

The orbits of N (1) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25} are {1}, {2, 19}, {4, 14}, {5, 21}, {11, 17}, {3, 16, 9, 24},
{6, 8, 22, 15}, {7, 18, 12, 20}, {10, 23, 13, 25}.
Now we select a representative from each orbit and determine to which double coset

Nt1t1, Nt1t2, Nt1t4, Nt1t5, Nt1t11, Nt1t3, Nt1t6, Nt1t7, Nt1t10 belongs.

This shows us the following:

Nt1t1 = Nt21 = N ∈ [∗].
Since the orbit {1} contains one element, then one symmetric generator goes back

to the double coset [*].

One symmetric generator will go back to [1].

Nt1t2 ∈ Nt1t2N which is a new double coset. We denote this double coset by [12].

Two symmetric generators will go to the new double coset [12].

Nt1t4 ∈ Nt1t3N which is a new double coset. We denote this double coset by [14].

Two symmetric generators will go to the new double coset [14].

Nt1t5 ∈ Nt1t5N is a new double coset which we will denote [14].

Two symmetric generators will go to the new double coset [15].

Nt1t11 ∈ Nt1t11N is a new double coset which we will denote [111].

Two symmetric generators will go to the new double coset [111].

Nt1t3 ∈ Nt1t3N is a new double coset which we will denote [13].

Four symmetric generators will go to the new double coset [13].

Nt1t6 ∈ Nt1t6N is a new double coset which we will denote [16].
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Four symmetric generators will go to the new double coset [16].

Nt1t7 ∈ Nt1t7N is a new double coset which we will denote [17].

Four symmetric generators will go to the new double coset [17].

Nt1t10 ∈ Nt1t10N is a new double coset which we will denote [110].

Four symmetric generators will go to the new double coset [110].

• Third Double Coset Nt1t2N = [12]

Nt1t2N = {Nt1tn2 |n ∈ N}
Firstly, the point stabilizer of 1 and 2 in N,

N12 = {n ∈ N |12n = 12}
N12 = < (3, 9)(4, 14)(5, 21)(6, 22)(7, 12)(8, 15)(10, 13)(16, 24)(18, 20)(23, 25) >.

The number of right cosets in [1] is equal to
|N |

|N(12)|=
100
2 = 50.

The orbits of N (12) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25} are {1}, {2}, {11}, {17}, {19}, {3, 9}, {4, 14}, {5, 21}, {6, 22}, {7, 12},
{8, 15}, {10, 13}, {16, 24}, {18, 20}, {23, 25}.
Now we select a representative from each orbit and determine to which double

coset Nt1t1, Nt1t2, Nt1t11, Nt1t17, Nt1t19, Nt1t3, Nt1t4, Nt1t5, Nt1t6, Nt1t7, Nt1t8,

Nt1t10, Nt1t16, Nt1t18, Nt1t23 belongs.

This shows us the following:

Nt1t2t1 ∈ Nt1t2t1N which is a new double coset. We denote this double coset by [121].

One symmetric generators will go to the new double coset [121].

Nt1t2t2 ∈ Nt1t2t2N which is a new double coset. We denote this double coset by [122].

One symmetric generators will go to the new double coset [122].

Nt1t2t11 ∈ Nt1t2t11N which is a new double coset. We denote this double coset

by [1211].

One symmetric generators will go to the new double coset [1211].
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Nt1t2t17 ∈ Nt1t2t17N which is a new double coset. We denote this double coset

by [1217].

One symmetric generators will go to the new double coset [1217].

Nt1t2t19 ∈ Nt1t2t19N which is a new double coset. We denote this double coset

by [1219].

One symmetric generators will go to the new double coset [1219].

Nt1t2t3 ∈ Nt1t2t3N which is a new double coset. We denote this double coset by [123].

Two symmetric generators will go to the new double coset [123].

Nt1t2t4 ∈ Nt1t2t4N which is a new double coset. We denote this double coset by [124].

Two symmetric generators will go to the new double coset [124].

Nt1t2t5 ∈ Nt1t2t5N which is a new double coset. We denote this double coset by [125].

Two symmetric generators will go to the new double coset [121].

Nt1t2t6 ∈ Nt1t2t6N which is a new double coset. We denote this double coset by [126].

Two symmetric generators will go to the new double coset [126].

Nt1t2t7 ∈ Nt1t2t7N which is a new double coset. We denote this double coset by [127].

Two symmetric generators will go to the new double coset [127].

Nt1t2t8 ∈ Nt1t2t8N which is a new double coset. We denote this double coset by [128].

Two symmetric generators will go to the new double coset [128].

Nt1t2t10 ∈ Nt1t2t10N which is a new double coset. We denote this double coset

by [1210].

Two symmetric generators will go to the new double coset [1210].

Nt1t2t16 ∈ Nt1t2t16N which is a new double coset. We denote this double coset

by [1216].
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Two symmetric generators will go to the new double coset [1216].

Nt1t2t18 ∈ Nt1t2t18N which is a new double coset. We denote this double coset

by [1218].

Two symmetric generators will go to the new double coset [1218].

Nt1t2t23 ∈ Nt1t2t23N which is a new double coset. We denote this double coset

by [1223].

Two symmetric generators will go to the new double coset [1223].

• Fifth Double Coset Nt1t5N = [15]

Nt1t5N = {Nt1tn5 |n ∈ N}
Firstly, the point stabilizer of 1 and 5 in N,

N15 = {n ∈ N |15n = 15}
N15 = < (2, 19)(3, 24)(6, 15)(7, 20)(8, 22)(9, 16)(10, 25)(11, 17)(12, 18)(13, 23) >.

The number of right cosets in [1] is equal to
|N |

|N |(15)=
100
2 = 50.

The orbits of N (15) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25} are {1}, {4}, {5}, {14}, {21}, 2, 19}, {3, 24}, {6, 15}, {7, 20}, {8, 22}, {9, 16},
{10, 25}, {11, 17}, {12, 18}, {13, 23}.

Now we select a representative from each orbit and determine to which double

coset Nt1t5t1, Nt1t5t4, Nt1t5t5, Nt1t5t14, Nt1t5t21, Nt1t5t2, Nt1t5t3, Nt1t5t6, Nt1t5t7,

Nt1t5t8, Nt1t5t9, Nt1t5t10, Nt1t5t11, Nt1t5t12, Nt1t5t13 This shows us the following:

Nt1t5t1 ∈ Nt1t5t1N which is a new double coset. We denote this double coset by [151].

One symmetric generators will go to the new double coset [151].

Nt1t5t4 ∈ Nt1t5t4N which is a new double coset. We denote this double coset by [154].

One symmetric generators will go to the new double coset [154].

Nt1t5t5 ∈ Nt1t5t5N which is a new double coset. We denote this double coset by [155].

One symmetric generators will go to the new double coset [155].
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• Sixth Double Coset Nt1t6N = [16]

Nt1t6N = {Nt1tn6 |n ∈ N}
Firstly, the point stabilizer of 1 and 6 in N,

N16 = {n ∈ N |16n = 16}
N16 = < Id >.

The number of right cosets in [1] is equal to
|N |

|N(16)|=
100
1 = 100.

The orbits of N (16) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25} are {1}, {4}, {5}, {6}, {7}, {7}, {9}, {10}, {11}, {12}, {13}, {14}, {15}, {16},
{17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}.

Now we select a representative from each orbit and determine to which double

coset belongs to which coset. This shows us the following:

Nt1t6t1 ∈ Nt1t6t1N which is a new double coset. We denote this double coset by [161].

One symmetric generators will go to the new double coset [161].

Nt1t6t4 ∈ Nt1t6t4N which is a new double coset. We denote this double coset by [164].

One symmetric generators will go to the new double coset [164].

Nt1t64t5 ∈ Nt1t6t5N which is a new double coset. We denote this double coset

by [165].

One symmetric generators will go to the new double coset [165].

• Seventh Double Coset Nt1t7N = [17]

Nt1t7N = {Nt1tn7 |n ∈ N}
Firstly, the point stabilizer of 1 and 7 in N,

N17 = {n ∈ N |17n = 17}
N17 = < (1) >.

The number of right cosets in [1] is equal to
|N |

|N(17)|=
100
1 = 100.

The orbits of N (17) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,



197

22, 23, 24, 25} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14},
{15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}.
Now we select a representative from each orbit and determine to which double

coset Nt1t7t1, Nt1t7t2, Nt1t7t3, Nt1t7t4, Nt1t7t5, Nt1t7t6, Nt1t7t7, Nt1t7t8, Nt1t7t9,

Nt1t710, Nt1t7t11, Nt1t7t12, Nt1t7t13, Nt1t7t14, Nt1t7t15, Nt1t7t16, Nt1t7t17, Nt1t7t18,

Nt1t7t19, Nt1t7t20, Nt1t7t21, Nt1t7t22, Nt1t7t23, Nt1t7t24, Nt1t7t25.

This shows us the following:

Nt1t7t1 ∈ Nt1t7t1N which is a new double coset. We denote this double coset by [171].

One symmetric generators will go back to double coset [171].

Nt1t7t2 ∈ Nt1t7t2N which is a new double coset. We denote this double coset by [172].

One symmetric generators will go back to double coset [172].

Nt1t7t3 ∈ Nt1t7t3N which is a new double coset. We denote this double coset by [173].

One symmetric generators will go back to double coset [173].

Nt1t7t4 ∈ Nt1t7t4N which is a new double coset. We denote this double coset by [174].

One symmetric generators will go back to double coset [174].

Nt1t7t5 ∈ Nt1t7t5N which is a new double coset. We denote this double coset by [175].

One symmetric generators will go back to double coset [175].

Nt1t7t6 ∈ Nt1t7t6N which is a new double coset. We denote this double coset by [176].

One symmetric generators will go back to double coset [176].

Nt1t7t8 ∈ Nt1t7t8N which is a new double coset. We denote this double coset by [178].

One symmetric generators will go back to double coset [178].

Nt1t7t9 ∈ Nt1t7t9N which is a new double coset. We denote this double coset by [179].

One symmetric generators will go back to double coset [179].
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• Eighth Double Coset Nt1t8N = [18]

Nt1t8N = {Nt1tn8 |n ∈ N}
Firstly, the point stabilizer of 1 and 8 in N,

N18 = {n ∈ N |18n = 18}
N18 = < (1) >.

The number of right cosets in [1] is equal to
|N |

|N(18)|=
100
1 = 100.

The orbits of N (18) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14},
{15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}. Now we select a represen-

tative from each orbit and determine to which double coset Nt1t8t1, Nt1t8t2, Nt1t8t3,

Nt1t8t4, Nt1t8t5, Nt1t8t6, Nt1t8t7, Nt1t8t8, Nt1t8t9, Nt1t810,

Nt1t8t11, Nt1t8t12, Nt1t8t13, Nt1t8t14, Nt1t8t15, Nt1t8t16, Nt1t8t17, Nt1t8t18, Nt1t8t19,

Nt1t8t20, Nt1t8t21, Nt1t8t22, Nt1t87t23, Nt1t8t24, Nt1t8t25.

This shows us the following:

Nt1t8t1 ∈ Nt1t8t1N which is a new double coset. We denote this double coset by [181].

One symmetric generators will go back to double coset [181].

Nt1t8t2 ∈ Nt1t8t2N which is a new double coset. We denote this double coset by [182].

One symmetric generators will go back to double coset [182].

Nt1t8t3 ∈ Nt1t8t3N which is a new double coset. We denote this double coset by [183].

One symmetric generators will go back to double coset [183].

Nt1t8t4 ∈ Nt1t8t4N which is a new double coset. We denote this double coset by [184].

One symmetric generators will go back to double coset [184].

• Seventh Double Coset Nt1t7t3N = [173]

Nt1t7t3N = {Nt1t7tn3 |n ∈ N}
Firstly, the point stabilizer of 1 and 7 and 3 in N,

N173 = {n ∈ N |173n = 173}
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N173 = < (Id) >

The number of right cosets in [1] is equal to
|N |

|N(173)|=
100
1 = 100.

The orbits of N (173) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14},
{15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}. Now we select a represen-

tative from each orbit and determine to which double cosetNt1t7t3t1, Nt1t7t3t2, Nt1t7t3t3,

Nt1t7t3t4, Nt1t7t3t5, Nt1t7t3t6, Nt1t7t3t7, Nt1t7t3t8, Nt1t7t3t9, Nt1t7t3t10, Nt1t7t3t11,

Nt1t7t3t12, Nt1t7t3t13, Nt1t7t3t13, Nt1t7t3t14, Nt1t7t3t15, Nt1t7t3t16, Nt1t7t3t17,

Nt1t7t3t18, Nt1t7t3t19, Nt1t7t3t20, Nt1t7t3t21, Nt1t7t3t22, Nt1t7t3t23, Nt1t7t3t24,

Nt1t7t3t25. This shows us the following:

Nt1t7t3t2 ∈ NNt1t7t3t2N which is a new double coset. We denote this double coset

by [1732].

One symmetric generators will go back to double coset [1732].

Nt1t7t3t4 ∈ NNt1t7t3t4N which is a new double coset. We denote this double coset

by [1734].

One symmetric generators will go back to double coset [1734]

Nt1t7t3t18 ∈ Nt1t7t3t18N which is a new double coset. We denote this double coset

by [17318].

One symmetric generators will go back to double coset [17318].

• Eighth Double Coset Nt1t7t4N = [174]

Nt1t7t4N = {Nt1t7tn4 |n ∈ N}
Firstly, the point stabilizer of 1 and 7 and 4 in N,

N174 = {n ∈ N |174n = 174}
N174 = < (Id) >

The number of right cosets in [1] is equal to
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|N |
|N(174)|=

100
1 = 100.

The orbits of N (174) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14},
{15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}. Now we select a represen-

tative from each orbit and determine to which double cosetNt1t7t4t1, Nt1t7t4t2, Nt1t7t4t3,

Nt1t7t4t4, Nt1t7t4t5, Nt1t7t4t6, Nt1t7t4t7, Nt1t7t4t8, Nt1t7t4t9, Nt1t7t4t10, Nt1t7t4t11,

Nt1t7t4t12, Nt1t7t4t13, Nt1t7t4t13, Nt1t7t4t14, Nt1t7t4t15, Nt1t7t4t16, Nt1t7t4t17,

Nt1t7t4t18, Nt1t7t4t19, Nt1t7t4t20, Nt1t7t4t21, Nt1t7t4t22, Nt1t7t4t23, Nt1t7t4t24,

Nt1t7t4t25. This shows us the following:

Nt1t7t4t2 ∈ NNt1t7t4t2N which is a new double coset. We denote this double coset

by [1742].

One symmetric generators will go back to double coset [1742].

Nt1t7t4t3 ∈ NNt1t7t4t3N which is a new double coset. We denote this double coset

by [1743].

One symmetric generators will go back to double coset [1743]

Nt1t7t4t7 ∈ NNt1t7t4t7N which is a new double coset. We denote this double coset

by [1747].

One symmetric generators will go back to double coset [1747]

Nt1t7t4t23 ∈ Nt1t7t4t23N which is a new double coset. We denote this double coset

by [17423].

One symmetric generators will go back to double coset [17423].
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Cayley Diagram

Figure 8.20: Cayley diagram for G over S25
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8.6 Construction Of 25 : S5 Over S5

Consider N = < x, y >, where

x ∼ (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)(19, 26)(21,25) (23, 28)

and

y ∼ (1, 2, 4, 7, 12, 19)(3, 5, 9, 15, 22, 27)(6, 10, 16, 23, 18, 25)(8, 13,21)(11, 17, 14) (20,

26, 29, 30, 28, 24).

Our progenitor S5. We prove that S5 ∼= G¡x,y,t¿:= Group < x, y, t|x2, y6, (y ∗ x ∗ y−1 ∗
x)2, (x ∗ y−15), t2, (t, x), (t, y2 ∗ x ∗ y−2 ∗ x ∗ y2), (y ∗ x ∗ t(y3∗x))3, (y ∗ x ∗ t(y−1∗x∗y−1))4 > .

We will determine the order of G. We perform manual double coset enumeration (DCE)

of G over N. We need to determine all distinct double coset NwN and find the number

of right cosets in each double coset. It suffices to find the double coset of Nwti for one

representative ti from each orbit of the coset stabiliser N (w) of the right coset Nw, so we

find the index which is the order of G over the order of N.

Hence, |G|
|N | =

3840
120 = 32. So, we have 32 single cosets.

• First Double Coset [*]

NeN = {Nen|n ∈ N} = {N}.
The double coset NeN = [∗] contains 1 right coset. The coset stabiliser of the coset Ne

is N .

The number of right coset in ∗ is equal to |N |
|N | =

120
120 = 1.

Since N is transitive on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25.26.27.28.29.30}.
We need only determine the double coset of the right coset Nt1.

Thus thirty cosets extend to the new double coset [1], that mean the thirty generators go

forward to Nt1.

• Second Double Coset Nt1N = [1]

Nt1N = {Ntn1 |n ∈ N}.
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7,
Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14, Nt15, Nt16,

Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30}.
Firstly, the point stabilizer of 1 in N,
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N1 = {n ∈ N |1n = 1}
N1 = < (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)(19, 26)(21, 25)

(23, 28)(2, 26)(3, 19)(4, 18)(5, 13)(6, 12)(7, 11)(8, 20)(9, 17)(10, 28)(14, 24)(15, 23)(21, 25)

(22, 30)(27, 29) >.

The number of right cosets in [1] is equal to
|N |

|N(1)|=
120
4 = 30.

The orbits of N (1) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} are {1}, {16}, {7, 11}, {21, 25}, {22, 30}, {27, 29},
{2, 3, 26, 19}, {4, 6, 18, 12},
{5, 8, 13, 20}, {9, 14, 17, 24}, {10, 15, 28, 23}.
Now we select a representative from each orbit and determine to which double coset

Nt1t1, Nt1t16, Nt1t7, Nt1t21, Nt1t22, Nt1t27, Nt1t2, Nt1t4, Nt1t5, Nt1t9, Nt1t10 belongs.

This shows us the following:

Nt1t1 = Nt21 = N ∈ [∗]
Since the orbit {1} contains one element, then one symmetric generator goes back to the

double coset [*].

One symmetric generator will go to the new double coset [1].

Nt1t16 ∈ Nt1t16N which is a new double coset. We denote this double coset by [116].

One symmetric generators will go back to double coset [116].

Nt1t17 ∈ Nt1t17N which is a new double coset. We denote this double coset by [117].

Two symmetric generators will go back to double coset [117].

Nt1t21 ∈ Nt1t21N which is a new double coset. We denote this double coset by [121].

Two symmetric generators will go back to double coset [121].

Nt1t122 ∈ Nt1t122N which is a new double coset. We denote this double coset by



204

.

Two symmetric generators will go back to double coset [122].

Nt1t27 ∈ Nt1t27N which is a new double coset. We denote this double coset by [127].

Two symmetric generators will go back to double coset [127].

Nt1t2 ∈ Nt1t2N which is a new double coset. We denote this double coset by [12].

Two symmetric generators will go back to double coset [12].

Nt1t4 ∈ Nt1t4N which is a new double coset. We denote this double coset by [14].

Two symmetric generators will go back to double coset [14].

Nt1t5 ∈ Nt1t5N which is a new double coset. We denote this double coset by [15].

Two symmetric generators will go back to double coset [15].

Nt1t9 ∈ Nt1t9N which is a new double coset. We denote this double coset by [19].

Two symmetric generators will go back to double coset [19].

Nt1t10 ∈ Nt1t10N which is a new double coset. We denote this double coset by [110].

Two symmetric generators will go back to double coset [110].

• Third Double Coset Nt12N = [12]

Nt12N = {Ntn12|n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7,
Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14, Nt15, Nt16,

Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30}.
Firstly, the point stabilizer of 1 and 2 in N,

N17 = {n ∈ N |1n = 1}
N17 = < (Id) >.

The number of right cosets in [1] is equal to
|N |

|N |(1)=
120
1 = 120.

The orbits of N (12) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
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19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}, {26},
{27}, {28}, {29}, {30}.
Now we select a representative from each orbit and determine to which double coset

Nt1t2t1, Nt1t2t2, Nt1t2t3, Nt1t2t3, Nt1t2t4, Nt1t2t5, Nt1t2t6, Nt1t2t7, Nt1t2t8, Nt1t2t9,

Nt1t2t10, Nt1t2t11, Nt1t2t12, Nt1t2t13, Nt1t2t14, Nt1t2t15, Nt1t2t16, Nt1t7t17Nt1t2t18,

Nt1t2t19, Nt1t2t20, Nt1t2t21, Nt1t2t22, Nt1t2t23, Nt1t2t24, Nt1t2t25, Nt1t2t26, Nt1t2t27,

Nt1t2t28, Nt1t2t29, Nt1t2t30 belongs.

This shows us the following:

Nt1t2t1 ∈ Nt1t2t1N which is a new double coset. We denote this double coset by [121].

One symmetric generators will go back to double coset [121].

Nt1t2t3 ∈ Nt1t2t3N which is a new double coset. We denote this double coset by [123].

One symmetric generators will go back to double coset [123].

• Fourth Double Coset Nt14N = [14]

Nt14N = {Ntn14|n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7,
Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14, Nt15, Nt16,

Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30}.
Firstly, the point stabilizer of 1 and 4 in N,

N14 = {n ∈ N |1n = 1}
N14 = < (Id) >. The number of right cosets in [1] is equal to
|N |

|N |(1)=
120
1 = 120.

The orbits of N (14) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}, {26},
{27}, {28}, {29}, {30}.
Now we select a representative from each orbit and determine to which double coset

Nt1t4t1, Nt1t4t2, Nt1t4t3, Nt1t4t3, Nt1t4t4, Nt1t4t5, Nt1t4t6, Nt1t4t7, Nt1t4t8, Nt1t4t9,

Nt1t4t10, Nt1t4t11, Nt1t4t12, Nt1t4t13, Nt1t4t14, Nt1t4t15, Nt1t4t16, Nt1t4t17Nt1t4t18,



206

Nt1t4t19, Nt1t4t20, Nt1t4t21, Nt1t4t22, Nt1t4t23, Nt1t4t24, Nt1t4t25, Nt1t4t26, Nt1t4t27,

Nt1t4t28, Nt1t4t29, Nt1t4t30 belongs.

This shows us the following:

Nt1t4t1 ∈ Nt1t4t1N which is a new double coset. We denote this double coset by [141].

One symmetric generators will go back to double coset [141].

Nt1t4t2 ∈ Nt1t4t2N which is a new double coset. We denote this double coset by [142].

One symmetric generators will go back to double coset [142].

Nt1t4t3 ∈ Nt1t4t3Nwhich is a new double coset. We denote this double coset by [143].

One symmetric generators will go back to double coset [143].

Nt1t4t5 ∈ Nt1t4t5N which is a new double coset. We denote this double coset by [145].

One symmetric generators will go back to double coset [145].

Nt1t4t6 ∈ Nt1t4t6N which is a new double coset. We denote this double coset by [146].

One symmetric generators will go to the new double coset [146].

• Fifth Double Coset Nt143N = [143]

Nt143N = {Ntn143|n ∈ N}
= {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7,
Nt8, Nt9, Nt10, Nt11, Nt12, Nt13, Nt14, Nt15, Nt16,

Nt17, Nt18, Nt19, Nt20, Nt21, Nt22, Nt23, Nt24, Nt25, Nt26, Nt27, Nt28, Nt29, Nt30}.
Firstly, the point stabilizer of 1, 4 and 3 in N,

N143 = {n ∈ N |1n = 1}
N143 = < (Id) >.

The number of right cosets in [1] is equal to
|N |

|N(1)|=
120
1 = 120.

The orbits of N (143) on X= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30} are {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8},
{9}, {10}, {11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24},
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{25}, {26}, {27}, {28}, {29}, {30}.
Now we select a representative from each orbit and determine to which double

coset Nt1t4t3t1, Nt1t4t3t2, Nt1t4t3t3, Nt1t4t3t3, Nt1t4t3t4, Nt1t4t3t5, Nt1t4t3t6, Nt1t4t3t7,

Nt1t4t3t8, Nt1t4t3t9,Nt1t4t3t10, Nt1t4t3t11, Nt1t4t3t12, Nt1t4t3t13, Nt1t4t3t14, Nt1t4t3t15,

Nt1t4t3t16, Nt1t4t3t17Nt1t4t3t18, Nt1t4t3t19, Nt1t4t3t20, Nt1t4t3t21, Nt1t4tt322, Nt1t4t3t23,

Nt1t4t3t24, Nt1t4t3t25, Nt1t4t3t26, Nt1t4t3t27, Nt1t4t3t28, Nt1t4t3t29, Nt1t4t3t30 belongs.

This shows us the following:

Nt1t4t3t1 ∈ Nt1t4t3t1N which is a new double coset. We denote this double coset by

[1431].

One symmetric generators will go back to double coset [1431].

Nt1t4t3t2 ∈ Nt1t4t2t1N which is a new double coset. We denote this double coset by

[1432].

One symmetric generators will go back to double coset [1432].

Nt1t4t3t5 ∈ Nt1t4t3t5N which is a new double coset. We denote this double coset by

[1435].

One symmetric generators will go back to double coset [1435].

Nt1t4t3t6 ∈ Nt1t4t3t6N which is a new double coset. We denote this double coset by

[1436].

One symmetric generators will go back to double coset [1436].

Nt1t4t3t7 ∈ Nt1t4t3t7N which is a new double coset. We denote this double coset by

[1437].

One symmetric generators will go back to double coset [1437].

Nt1t4t3t8 ∈ Nt1t4t3t8N which is a new double coset. We denote this double coset by
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[1438].

One symmetric generators will go back to double coset [1438].

Nt1t4t3t9 ∈ Nt1t4t3t9N which is a new double coset. We denote this double coset by

[1439].

One symmetric generators will go back to double coset [1439].

Nt1t4t3t10 ∈ Nt1t4t3t10N which is a new double coset. We denote this double coset

by [14310].

One symmetric generators will go back to double coset [14310].

Nt1t4t3t11 ∈ Nt1t4t3t11N which is a new double coset. We denote this double coset

by [14311].

One symmetric generators will go back to double coset [14311].

Nt1t4t3t12 ∈ Nt1t4t3t12N which is a new double coset. We denote this double coset

by [14312].

One symmetric generators will go back to double coset [14312].

Nt1t4t3t13 ∈ Nt1t4t3t13N which is a new double coset. We denote this double coset

by [14313].

One symmetric generators will go back to double coset [14313].

Nt1t4t3t14 ∈ Nt1t4t3t14N which is a new double coset. We denote this double coset

by [14314].

One symmetric generators will go back to double coset [14314].

Nt1t4t3t16 ∈ Nt1t4t3t16N which is a new double coset. We denote this double coset

by [14316].

One symmetric generators will go back to double coset [14316].

Nt1t4t3t17 ∈ Nt1t4t3t17N which is a new double coset. We denote this double coset
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by [14317].

One symmetric generators will go back to double coset [14317].

Nt1t4t3t18 ∈ Nt1t4t3t18N which is a new double coset. We denote this double coset

by [14318].

One symmetric generators will go back to double coset [14318].

Nt1t4t3t19 ∈ Nt1t4t3t19N which is a new double coset. We denote this double coset

by [14319].

One symmetric generators will go back to double coset [14319].

Nt1t4t3t20 ∈ Nt1t4t3t20N which is a new double coset. We denote this double coset by

[14320].

One symmetric generators will go back to double coset [14320].

Nt1t4t3t21 ∈ Nt1t4t3t21N which is a new double coset. We denote this double coset

by [14321].

One symmetric generators will go back to double coset [14321].

Nt1t4t3t23 ∈ Nt1t4t3t23N which is a new double coset. We denote this double coset

by [14323].

One symmetric generators will go back to double coset [14323].

Nt1t4t3t24 ∈ Nt1t4t3t24N which is a new double coset. We denote this double coset

by [14324].

One symmetric generators will go back to double coset [14324].

Nt1t4t3t26 ∈ Nt1t4t3t26N which is a new double coset. We denote this double coset

by [14326].

One symmetric generators will go back to double coset [14326].

Nt1t4t3t27 ∈ Nt1t4t3t27N which is a new double coset. We denote this double coset

by [14327].
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One symmetric generators will go back to double coset [14327].

Nt1t4t3t28 ∈ Nt1t4t3t28N which is a new double coset. We denote this double coset

by [14328].

One symmetric generators will go back to double coset [14328].

Nt1t4t3t29 ∈ Nt1t4t3t29N which is a new double coset. We denote this double coset

by [14329].

One symmetric generators will go back to double coset [14329].

Nt1t4t3t30 ∈ Nt1t4t3t30N which is a new double coset. We denote this double coset

by [14330].

One symmetric generators will go back to double coset [14330].

Cayley Diagram

Figure 8.21: Cayley diagram for G over S25
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Chapter 9

Isomorphism Types of Transitive

Groups

First, we find the number of transitive groups on n letters. Second, we choose a group i

from the sequence to investigate further. The group is stored asN := TransitiveGroup(n, i).

We give isomorphism types of several such Ns.

9.1 Transitive Groups T(8,14)

T:=TransitiveGroup(8,14); We are given G, a transitive group on 8 letters. Since we have

more than two generators we can use the command in Magma to reduce the number of

generators to two.

for g,h in T[14] do if sub< T [14]|g, h >eq T[14]

then xx:=g; yy:=h;

end if; end for;

xx,yy;

xx;

/*(1, 6)(2, 5)(3, 7)(4, 8)*/

yy;

/*(1, 3, 8)(4, 5, 7)*/
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Now will check the N by putting below code in magma.

N:=sub< S|xx, yy >;
/*true*/

Now we get two generators xx and yy, so we identify the isomorphizm type of G.

S:=Sym(8);

xx:=S!(1, 6)(2, 5)(3, 7)(4, 8);

yy:=S!(1, 3, 8)(4, 5, 7);

N:=sub< S|xx, yy >;
/*true*/

N eq T[14];

/* true */

♯N ;

/*24*/

From composition Factors we will find the isomorphism type and from Normal Lattice

we will determine if we have a direct product or semi direct.

CompositionFactors(N);

/*

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(2)

*

| Cyclic(2)

1

*/

NL:=NormalLattice(N);

NL;

/*

Normal subgroup lattice

-----------------------

[4] Order 24 Length 1 Maximal Subgroups: 3

---

[3] Order 12 Length 1 Maximal Subgroups: 2
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---

[2] Order 4 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

*/

We then look to the Largest Abelian subGroup using the code.

foriin[1..♯NL]doifIsAbelian(NL[i])theni; endif ; endfor;

/*

1

2

*/

The largest abelian subgroup in NL[2] and G/NL[4] ∼= q.

The NL[2] produces two generators which named by A and B.

Generators(NL[2]);

/*

{

(1, 3)(2, 8)(4, 6)(5, 7),

(1, 8)(2, 3)(4, 5)(6, 7)

}

*/

A := N !(1, 3)(2, 8)(4, 6)(5, 7);

B := N !(1, 8)(2, 3)(4, 5)(6, 7);

NL2:=sub< N |A,B >;

NL2 eq NL[2];

/*we want to find isomorphisum type of NL2*/

X:=[2,2];

/*

true Mapping from: GrpPerm: NL2 to GrpPerm: , Degree 4, Order 22

Composition of Mapping from: GrpPerm: NL2 to GrpPC and

Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: , Degree 4, Order 22

*/
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IsIsomorphic(NL2,AbelianGroup(GrpPerm,X));

q,ff:=quo<N|NL2>;

q;

/*

Permutation group q acting on a set of cardinality 3

Order = 6 = 2 * 3

(2, 3)

(1, 2, 3)

*/

IsIsomorphic(q,Sym(3));

/*

true Isomorphism of GrpPerm: q, Degree 3, Order 2 * 3

into GrpPerm: $, Degree 3, Order 2 * 3 induced by

(2, 3) |--> (2, 3)

(1, 2, 3) |--> (1, 2, 3)

*/

T:=Transversal(N,NL2);

ff(T[2])eq q.1;

/* true */

ff(T[2])eq q.2;

/* false */

FPGroup(NL[2]);

/*

Finitely presented group on 2 generators

Relations

$.1^2 = Id($)

$.2^2 = Id($)

($.1 * $.2)^2 = Id($)

*/

FPGroup(q);

/*

Finitely presented group on 2 generators

Relations

$.1^2 = Id($)

$.2^-3 = Id($)

($.2^-1 * $.1)^2 = Id($)

*/

for i,j in[1..2] do if A^T[2] eq A^i * B^j then i,j;

end if;

end for;

/* 2 1 */

for i,j in[1..2] do if A^T[3] eq A^i * B^j then i,j;

end if;

end for;
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/* 1 1 */

for i,j in[1..2] do if B^T[2] eq A^i *B^j then i,j;

end if;

end for;

/* 1 2 */

for i,j in[1..2] do if B^T[3] eq A^i * B^j then i,j;

end if;

end for;

/* 1 2 */

G< a, b, c, d >:= Group < a, b, c, d|a^2, b^2,

(a, b), c^2, d^-3, (d^-1* c)^2, a^c = b, a^d =b,

b^c = a,b^d = a * b >;

#G;

/* 24 */

f,G,K:=CosetAction(G, sub < G|Id(G) >);
♯G1;

IsIsomorphic(N,G1);

/*

true Mapping from: GrpPerm: N to GrpPerm: G1

Composition of Mapping from: GrpPerm: N to GrpPC and

Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: G1

*/
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9.2 Transitive Groups T(35,10)

T := TransitiveGroup(35,10);

We are given G, a transitive group on 35 letters. Since we have more than two generators

we can use the command in Magma to reduce the number of generators to two.

T := TransitiveGroups(35);

T[10];

/*

Permutation group acting on a set of cardinality 35

Order = 210 = 2 * 3 * 5 * 7

(1, 16, 21, 11, 31, 26)(2, 17, 22, 12, 32, 27)(3, 18, 23, 13, 33, 28)(4, 19, 24, 14, 34, 29)(5,20,

25, 15, 35, 30)

(1, 28, 25, 2, 29, 21, 3, 30, 22, 4, 26, 23, 5, 27,24)(6, 13, 35, 7, 14, 31, 8, 15, 32, 9, 11, 33,

10, 12, 34)(16, 18, 20, 17, 19)

*/

Now we get two generators xx and yy, so we identity the isomorphism type of G.

S:= Sym(35);

xx := (1, 16, 21, 11, 31, 26)(2, 17, 22, 12, 32, 27)(3, 18, 23, 13, 33, 28)

(4, 19, 24, 14, 34, 29)(5, 20, 25, 15, 35, 30);

yy := (1, 28, 25, 2, 29, 21, 3, 30, 22, 4, 26, 23, 5, 27, 24)

(6, 13, 35, 7, 14, 31, 8, 15, 32, 9, 11, 33, 10, 12, 34)(16, 18, 20, 17, 19);

Now will check the N by putting below code in magma.

N := sub < S|xx, yy >;
♯N ;

/* 210 */

/* For finding the isomorphism type look for a minimial faithful Perm Rep */

SL:=Subgroups(N);

T:=X‘ subgroup: X in SL;
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♯T ;

/*210*/

TrivCore := H : HinT |♯Core(N,H)eq1;

mdeg := Min (Index(N,H):H in TrivCore);

Good := H:H in TrivCore — Index(N,H) eq mdeg;

♯Good;

/*1*/

H:= Rep(Good);

♯H;

/* 6*/

f2,N1,K2:= CosetAction(N,H);

N1;

/*

Permutation group N1 acting on a set of cardinality 35

Order = 210 = 2 * 3 * 5 * 7

(2, 3, 5, 9, 15, 24)(4, 7, 12, 20, 10, 16)(11, 18,21, 17, 25, 13)(14, 19, 26, 22, 29, 28)(23,

30, 34, 35, 32, 33)

(1, 2, 4, 8, 14, 23, 31, 16, 18, 27, 33, 3, 6, 11,19)(5, 10, 17, 26, 32, 9, 7, 13, 22, 30, 24, 12,

21, 28, 34)(15, 20, 25, 29, 35)

*/

N;

/*

Permutation group N acting on a set of cardinality 35

Order = 210 = 2 * 3 * 5 * 7

(1, 16, 21, 11, 31, 26)(2, 17, 22, 12, 32, 27)(3, 18, 23, 13, 33, 28)(4, 19, 24, 14, 34, 29)(5,

20, 25, 15, 35, 30)

(1, 28, 25, 2, 29, 21, 3, 30, 22, 4, 26, 23, 5, 27,24)(6, 13, 35, 7, 14, 31, 8, 15, 32, 9, 11, 33,

10, 12, 34)(16, 18, 20, 17, 19)

*/

Order(xx);

/*6*/
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From Composition Factors we will find the isomorphism type and Normal Lattice we

will determine if we have a direct product and not.

CompositionFactors(N);

G

| Cyclic(2)

*

| Cyclic(3)

*

| Cyclic(7)

*

| Cyclic(5)

1

NL:= NormalLattice(N);

NL;

/*

Normal subgroup lattice

-----------------------

[10] Order 210 Length 1 Maximal Subgroups: 7 8 9

---

[ 9] Order 105 Length 1 Maximal Subgroups: 5 6

[ 8] Order 70 Length 1 Maximal Subgroups: 4 6

[ 7] Order 42 Length 1 Maximal Subgroups: 4 5

---

[ 6] Order 35 Length 1 Maximal Subgroups: 2 3

[ 5] Order 21 Length 1 Maximal Subgroups: 3

[ 4] Order 14 Length 1 Maximal Subgroups: 3

---

[ 3] Order 7 Length 1 Maximal Subgroups: 1

[ 2] Order 5 Length 1 Maximal Subgroups: 1

---

[ 1] Order 1 Length 1 Maximal Subgroups:

*/

We now look to the Largest Abelian sub Group using the code.

for n in [1..♯NL] do if IsAbelian (NL[i]) then i; end if ; end for;



219

/*

1

2

3

6

*/

The Largest Abelian subgroup in NL[6] and G/NL[10]∼= q.

The NL[6] produce the two generators which named by A and B.

Generators (NL[6]);

/*

{

(1, 16, 31, 11, 26, 6, 21)(2, 17, 32, 12, 27, 7, 22)

(3, 18, 33, 13, 28, 8, 23)(4, 19, 34, 14, 29, 9, 24)

(5, 20, 35, 15, 30, 10, 25)

(1, 3, 5, 2, 4)(6, 8, 10, 7, 9)(11, 13, 15, 12, 14)

(16, 18, 2, 17, 19)(21, 23, 25, 22, 24)(26, 28, 30, 27, 29)

(31, 33, 35, 32, 34)

}

*/

A:=N!((1, 16, 31, 11, 26, 6, 21)(2, 17, 32, 12, 27, 7, 22)

(3, 18, 33, 13, 28, 8, 23)(4,19, 34, 14, 29, 9, 24)

(5, 20, 35, 15, 30, 10, 25));

B:=N!((1, 3, 5, 2, 4)(6, 8, 10, 7, 9)(11, 13, 15, 12, 14)

(16, 18, 20, 17, 19)(21, 23, 25,22, 24)(26, 28, 30, 27, 29)

(31, 33, 35, 32, 34));

/* A and B is the generator the largest abelian */

NL6:=sub<N|A,B>;

/* Check that NL[4] = NL4*/

NL[6] eq NL6;

/* True

N is not an extension of NL4 (normal) by N/NL6

Can this extnesion be a direct product meaning N =NL6 x N/NL6

*/

Order (NL6);

/* 35 */
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Order (N);

/* 210 */

Does NL have a subgroup (normal) of order 6

It does so it is a direct product (check normal lattice)

Now N = <xx,yy> and NL6=<A,B>. Then N/NL6 = <NL6xx,NL6yy>*/

q,ff: =quo<N|NL6>;

/* q is the isom type of N/NL6; that is, q N/NL6 */

T:=Transversal(N,NL6);

/* T gives right cosets of NL6 in N

Thus, N/NL6=<NL6T[2]> */

T[2] eq xx;

/* true */

#T;

/* 6*/

/ ∗ T = T [1], T [2], T [3], T [4], T [5]

N/NL4={NL4, NL4T[2],NL4^T[3]}

q=<q.1,q.2>, where ff(T[2])=q.1 ff(T[3])=q.2*/

ff(T[2]) eq q.1;

/* true */

q;

/* true */

ff(T[2])eq q.1;

Order(T[2]);

/*6*/

Order(q.1);

/*6*/

for i in [1..7] do for j in [1..5] do

if A^T[2] eq A^i*B^j then i,j; end if; end for; end for;

/*5 5 */

for i in [1..7] do for j in [1..5] do

if B^T[2] eq A^i*B^j then i,j; end if; end for; end for;

/* 7 1*/
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G < a, b, c >:= Group < a, b, c|a7, b5, (a, b), c6, ac = a5 ∗ b5, bc = b >;

♯G;

/*210*/

f,G1, k := CosetAction(G, sub < G|Id(G) >);
♯G1;

/*210*/

s:=IsIsomorphic(N,G1);

s;

/*true*/
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9.3 Transitive Groups T(35,17)

T:=TransitiveGroup(35,17);

We are given G, a transitive group on 35 letters. Since we have more than two generators

we can use the command in Magma to reduce the number of generators to two.

T:=TransitiveGroups(35);

T[17];

/*

Permutation group acting on a set of cardinality 35

Order = 840 = 23 * 3 * 5 * 7

(1, 21, 9, 30, 14, 34, 19, 5, 22, 10, 29, 15, 31, 16, 3, 23, 6,

27, 12, 32, 17, 4, 24, 8, 26, 13, 33, 20, 2, 25, 7, 28, 11, 35, 18)

(1, 26, 20, 7, 32, 24, 13, 3, 27, 17, 10, 31, 23, 14, 5, 29, 18,

9, 34, 25, 11)(2, 28, 16, 6, 35, 21, 12, 4, 30, 19, 8, 33, 22, 15)

*/

Now we get two generators xx and yy, so we identity the isomorphism type of G.

S:=Sym(35);

xx:=S!(1, 21, 9, 30, 14, 34, 19, 5, 22, 10, 29, 15, 31, 16, 3, 23, 6,

27, 12, 32, 17, 4, 24, 8, 26, 13, 33, 20, 2, 25, 7, 28, 11, 35, 18);

yy:=S!(1, 26, 20, 7, 32, 24, 13, 3, 27, 17, 10, 31, 23, 14, 5, 29, 18, 9,

34, 25, 11)(2, 28, 16, 6, 35, 21, 12, 4, 30, 19, 8, 33, 22, 15);

NowwillchecktheNbyputtingbelowcodeinmagma.

N:=sub¡S—xx,yy¿;

♯N ;

/* 840 */

/* For finding the isomorphism type look for a minimial faithful Perm Rep */
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SL:=Subgroups(N);

T:=X‘ subgroup: X in SL;

♯T ;

/* 38 */

TrivCore := {H:H in T| #Core(N,H) eq 1};

mdeg := Min ({Index(N,H):H in TrivCore});

Good := {H:H in TrivCore | Index(N,H) eq mdeg};

#Good;

/* 1 */

H:= Rep(Good);

#H;

/* 24 */

f2,N1,K2:= CosetAction(N,H);

N1;

/*

Permutation group N1 acting on a set of cardinality 35

Order = 840 = 2^3 * 3 * 5 * 7

(1, 2, 4, 8, 16, 9, 17, 25, 21, 28, 32, 29, 34, 31, 13, 22, 30,

23, 5, 10, 19, 11, 20, 26, 3, 6, 12, 7, 14, 18, 15, 24, 27,

33, 35)

(1, 3, 7, 15, 10, 20, 6, 13, 23, 19, 28, 34, 22, 16, 25, 32, 35,

4, 9, 18, 27)(2, 5, 11, 8, 17, 26, 12, 21, 29, 14, 24, 31, 30,

33)

*/

N;

/*

Permutation group N acting on a set of cardinality 35

Order = 840 = 2^3 * 3 * 5 * 7

(1, 21, 9, 30, 14, 34, 19, 5, 22, 10, 29, 15, 31, 16, 3, 23, 6,

27, 12, 32, 17, 4, 24, 8, 26, 13, 33, 20, 2, 25, 7, 28, 11,

35, 18)

(1, 26, 20, 7, 32, 24, 13, 3, 27, 17, 10, 31, 23, 14, 5, 29, 18,

9, 34, 25, 11)(2, 28, 16, 6, 35, 21, 12, 4, 30, 19, 8, 33, 22,

15)

*/

Order(xx);

/*35*/

From Composition Factor we will find the isomorphism type and Normal Lattice we
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will determine if we have a direct product and not.

CompositionFactors(N);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(7)

1

NL:= NormalLattice(N);

NL;

Normal subgroup lattice

-----------------------

[6] Order 840 Length 1 Maximal Subgroups: 4 5

---

[5] Order 420 Length 1 Maximal Subgroups: 2 3

[4] Order 120 Length 1 Maximal Subgroups: 3

---

[3] Order 60 Length 1 Maximal Subgroups: 1

---

[2] Order 7 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

Now we look for the Largest Abelian sub group using the code.

for n in [1 #NL] do if IsAbelian (NL[i]) then i; end if ; end for;

/*

1

2

*/

The Largest Abelian subgroup in NL[2]andG/NL[6] ∼= q.

The NL[2] produce the one generator which named by A.

A := N !(1, 34, 29, 23, 17, 13, 7)(2, 35, 30, 22, 16, 12, 8)
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(3, 32, 26, 25, 18, 14,10)(4, 33, 28, 21, 19, 15, 6)

(5, 31, 27, 24, 20, 11, 9) ;

NL2:=sub<N|NL[2]>;

q,ff:=quo<N|NL2>;

q;

Permutation group q acting on a set of cardinality 6

Order = 120 = 2^3 * 3 * 5

(2, 3, 5, 6, 4)

(1, 2, 4, 3, 6, 5)

FPGroup(NL[2]);

Permutation group q acting on a set of cardinality 6

Order = 120 = 2^3 * 3 * 5

(2, 3, 5, 6, 4)

(1, 2, 4, 3, 6, 5)

T:=Transversal(N,NL2);

ff(T[2])eq q.1;

/* true */

ff(T[3])eq q.2;

/* true */

for i in [1..7] do if A^T[2] eq A^i then i; end if ; end for;

/* 1 */

A^T[2] eq A;

/* true */

for i in [1..7] do if A^T[3] eq A^i then i; end if ; end for;

/* 1 */

A^T[3] eq A;

/* true */

G < a, b, c >:= Group < a, b, c|a7, b5, c6, (b ∗ c ∗ b∗)2, (b ∗ c−2)2 >;

♯G;

f,G1,K := CosetAction(G, sub < G|Id(G) >);
♯G1;

IsIsomorphic(G1,N);

/* true */
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9.4 Transitive Groups T(35,12)

T:=TransitiveGroup(35,12);

We are given G, a transitive group on 35 letters. Since we have more than two generators

we can use the command in Magma to reduce the number of generators to two.

T:=TransitiveGroups(35);

T[12];

/*

Permutation group acting on a set of cardinality 35

Order = 280 = 23 * 5 * 7

(1, 12, 5, 14)(2, 15, 4, 11)(3, 13)(6, 7, 10, 9)(16, 32, 20, 34)

(17, 35, 19, 31)(18, 33)(21, 27, 25, 29)(22, 30, 24, 26)(23, 28)

(1, 21)(2, 25)(3, 24)(4, 23)(5, 22)(6, 16)(7, 20)(8, 19)

(9,18)(10, 17)(12, 15)(13, 14)(26, 31)(27, 35)(28, 34)(29, 33)(30, 32)

*/

Now we get two generators xx and yy, so we identity the isomorphism type of G.

S:=Sym(35);

xx:=S! (1, 12, 5, 14)(2, 15, 4, 11)(3, 13)(6, 7, 10, 9)(16, 32, 20, 34)

(17, 35, 19, 31)(18, 33)(21, 27, 25, 29)(22, 30, 24, 26)(23, 28);

yy:=S!(1, 21)(2, 25)(3, 24)(4, 23)(5, 22)(6, 16)(7, 20)(8, 19)(9, 18)

(10, 17)(12, 15)(13, 14)(26, 31)(27, 35)(28, 34)(29, 33)(30, 32);

Now will check the N by putting below code in magma.

N := sub < S|xx, yy >;
♯N ;

/*280*/

* For finding the isomorphism type look for a minimial faithful Perm Rep */

SL:=Subgroups(N);

T:=X‘ subgroup: X in SL;

♯T ;

/*32*/
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TrivCore := H : HinT |♯Core(N,H)eq1;

mdeg :=Min(Index(N,H) : HinTrivCore);

Good := H : HinTrivCore|Index(N,H)eqmdeg;

♯Good;

/* 1 */

H:= Rep(Good);

♯H;

/* 8 */

f2,N1,K2:= CosetAction(N,H);

N1;

Permutation group N1 acting on a set of cardinality 35

Order = 280 = 23 ∗ 5 ∗ 7
(2, 3, 4, 6)(5, 8, 11, 16)(7, 10, 14, 21)(9, 13, 19, 28)

(12, 18, 26, 31)(15, 23)(17, 25, 30, 22)(20, 29, 32, 34)(24, 27)(33, 35)

(1, 2)(3, 5)(4, 7)(6, 9)(8, 12)(10, 15)(11, 17)(13, 20)(14, 22)

(16, 24)(18, 27)(19, 23)(21, 25)(26, 28)(29, 31)(30, 33)(32, 35)

N ;

PermutationgroupNactingonasetofcardinality35

Order = 280 = 23 ∗ 5 ∗ 7
(1, 12, 5, 14)(2, 15, 4, 11)(3, 13)(6, 7, 10, 9)(16, 32, 20, 34)

(17, 35, 19, 31)(18, 33)(21, 27, 25, 29)(22, 30, 24, 26)(23, 28)

(1, 21)(2, 25)(3, 24)(4, 23)(5, 22)(6, 16)(7, 20)(8, 19)(9, 18)

(10, 17)(12, 15)(13, 14)(26, 31)(27, 35)(28, 34)(29, 33)(30, 32)

Order(xx);

/ ∗ 4 ∗ /

From Composition Factors we will find the isomorphism type and Normal Lattice we

will determine if we have a direct product and not.

CompositionFactors(N);
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G

| Cyclic(2)

*

| Cyclic(7)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5)

1

NL:= NormalLattice(N);

NL;

Normal subgroup lattice

-----------------------

[14] Order 280 Length 1 Maximal Subgroups: 11 12 13

---

[13] Order 140 Length 1 Maximal Subgroups: 7 10

[12] Order 140 Length 1 Maximal Subgroups: 8 9 10

[11] Order 140 Length 1 Maximal Subgroups: 10

---

[10] Order 70 Length 1 Maximal Subgroups: 4 6

[ 9] Order 70 Length 1 Maximal Subgroups: 6

[ 8] Order 70 Length 1 Maximal Subgroups: 5 6

[ 7] Order 20 Length 1 Maximal Subgroups: 4

---

[ 6] Order 35 Length 1 Maximal Subgroups: 2 3

[ 5] Order 14 Length 1 Maximal Subgroups: 3

[ 4] Order 10 Length 1 Maximal Subgroups: 2

---

[ 3] Order 7 Length 1 Maximal Subgroups: 1

[ 2] Order 5 Length 1 Maximal Subgroups: 1

---

[ 1] Order 1 Length 1 Maximal Subgroups:

We now look to the Largest Abelian sub Group using the code.

for i in [1..#NL] do if IsAbelian(NL[i]) then i; end if; end for;

/*

1

2
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3

6

*/

The NL[6] is the Largest Abelian sub group and produce the two

generators which named A and B.



230

Chapter 10

Images of Progenitors

In this chapter, we will show the isomorphic images for most of the composition factors

we discovered.

10.1 (52 : (3 : 2))

We have the following information.

S:=Sym(15),

x ∼ (1, 15, 12, 8, 3, 9, 14, 13, 7, 4)(2, 11, 5, 6, 10);

y ∼ (1, 11, 14, 6, 12, 2, 7, 5, 3, 10)(4, 8, 13, 15, 9);

The order of |N | = 150 .

Images of 2∗15 : (52 : (3 : 2)

(53 : (3 : 2))

a b c d e f g h i j k l m n o p q r s u v

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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2∗12 : (2×A5)

w z a1 b1 c1 d1 G

0 0 0 3 0 0 23 : 3

0 0 4 0 2 0 24 : 3

0 0 5 0 2 0 2 : Alt5

0 0 0 5 3 0 U(3, 4) : 2

G<x,y,t>:=Group<x,y,t| (y^-1 * x^-1)^3 ,

(y^-1 * x)^3,

x^-1 * y^-1 * x^3 * y^-1 * x^-1 * y ,x^2 * y * x^2 *y^3,t^2,

(t,y^-1 * x^2 * y^-1),

(t,x^3 * y^-1 * x),

(x*t^(y*x^-1))^a,(x*t)^b, (y*t)^c,

(y*t^(y*x^-1))^d,

(y*t^(y^-2))^e,

(x^(-1)*t^(y*x^-1))^f,(x^(-1)*t)^g,

(y^(-1)*t^(y*x^-1))^h,(y^(-1)*t)^i,

(x^(2)*t^(y*x^-1))^j,(x^(2)*t)^k,

(x*y*t^(y*x^-1))^l,

(x*y*t)^m,(x*y^(-1)*t)^n,

(x*y^(-1)*t^(y*x^(-1)))^o,

(x*y^(-1)*t^x^(-1))^p,(y*x*t)^q,

(y*x*t^(y*x^(-1)))^r,(y*x*t^x^(-1))^s,

(y^(2)*t^(y*x^(-1)))^u,(y^(2)*t)^v,

(y*x^(-1)*t^(y*x^(-1)))^w,(y*x^(-1)*t)^z,

(x^(-1)*y*t^(y*x^(-1)))^a1, (x^(-1)*y*t)^b1,(x^(-2)*t^(y*x^(-1)))^c1,

(x^(-2)*t)^d1

>;
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10.2 (22 : 52)

We have the following information.

S:=Sym(25), we are working with 25 letters.

x ∼ (1, 19, 11, 17, 2)(3, 16, 15, 5, 6, 9, 24, 8, 21, 22)(4, 18, 13, 25, 7, 14, 20, 10, 23, 12);

y ∼ (1, 16)(2, 8)(3, 20)(4, 24)(5, 17)(6, 13)(7, 15)(9, 19)(10, 18)(11, 22)(14, 25)(21, 23);

The order of |N | = 100 .

(53 : (3 : 2))

a b c d e f g h i j k l m n o p q r s u v

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(53 : (3 : 2))

w z a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 G

0 0 0 0 0 0 0 0 0 0 0 3 0 0 22 : A5

0 0 0 0 0 0 0 0 0 0 3 0 0 0 22 : A5

0 0 0 0 0 0 0 0 0 0 3 3 0 0 (2 : A5) : a5

0 0 0 0 0 0 0 0 0 0 4 4 4 0 (27 × 5) : A5
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G<x,y,t>:=Group<x,y,t| y^2,

(x * y * x)^2,x^10,

x^-1 * y * x^-1 * y * x^-1 * y * x^-1 * y *

x^-1 * y * x * y * x * y * x * y * x * y * x^-1* y ,

t^2,

(t,y * x * y * x * y * x * y * x^-1 * y),

(t,x * y * x * y * x * y * x^-1 * y * x * y),

(x*t)^a,(x*t^(y*x^-1))^b,

(x*t^(x*y^2))^c,(y*t^(x*y*x^-1))^d,

(y*t)^e,

(y*t^(x^-1))^f,(x^(-1)*t^(y*x*y))^g,

(x^(-1)*t^x^(-1))^h,

(x^(-1)*t^x*y^2)^i,

(x^(-1)*t^(x^(-1)*y))^j,

(x^(-1)*t^(x*y*x^(-1)*y))^k,

(x^(-1)*t)^l,(x^(-1)*t^(y*x^(-1)))^m,

(x^(-1)*t^(y*x^(2)))^n,

(x^(-1)*t^(x*y))^o,(x^2*t)^p,(x*y*t)^q,

(y*x*t)^r,(y*x^(-1)*t)^s,(x^(-1)*y*t)^u,

(x^(-2)*t)^v,(x^3*t)^w,(x^2*y*t)^z,

(x*y*x*t)^a1,(x*y*x*t^(y*x^(-1)))^b1,

(x*y*x*t^((x*y)^2))^c1,

(x*y*x^(-1)*t)^d1,(x*y*x^(-1)*t^(y*x^(-1)))^e1,

(x*y*x^(-1)*t^(x*y^(2)))^f1,

(y*x^(2)*t^(y*x))^g1,(y*x^(2)*t)^h1,

(y*x^(2)*t^(x^(-1)))^i1,

(y*x*y*t^(x*y*x^(-1)))^j1,

(y*x*y*t)^k1,(y*x*y*t^(x^-1))^l1>;
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10.3 A5 ∗ 2

We have the following information.

S:=Sym(30), we are working with 25 letters.

x ∼ (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 15)(12, 18)(13, 20)(17, 24)(19, 26)(21, 25)(23, 28);

y ∼ (1, 2, 4, 7, 12, 19)(3, 5, 9, 15, 22, 27)(6, 10, 16, 23, 18, 25)(8, 13, 21)(11, 17, 14)(20, 26, 29, 30, 28, 24);

The order of |N | = 120 .

A5 ∗ 2

a b c d e f g h i j k l m n o p q r s u v

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(53 : (3 : 2))

w z a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m1 n1 G

0 0 0 0 0 0 0 0 0 0 3 0 0 3 4 0 A6 : 2

0 0 0 0 0 0 0 0 0 0 3 0 3 0 4 0 A6 : 2

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 4 26 : A5

0 0 0 0 0 0 0 0 0 0 0 4 4 8 4 0 2× 2

0 0 0 0 0 0 0 0 0 0 0 5 0 0 4 3 A6 : 2
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G<x,y,t>:=Group<x,y,t|x^2,y^6,

(y*x*y^-1*x)^2,

(x*y^-1)^5,

(t,x),(t,y^2*x*y^-2*x*y^2),

(x*t^(y * x^2))^a ,

(x*t^(y^3 * x))^b ,

(x*t)^c , (x*t^(y^2 * x))^d ,

(x*t^( y * x))^e,

(y*t^(y^3))^f, (y*t)^g ,

(y*t^(b))^h,

(y*t^(y * x * y^2))^i,

(y*t^(y*x))^j,

(y*t^(y^2))^k,

(y^-1*t^((y * x)^2))^l,

(y^-1*t^( y^3 * x))^m,

(y^-1*t)^n,

(y^-1*t^(y*x))^o,

(y^-1*t^(y^2*x))^p,

(y*x*t^(y^-1 * x * y^-1))^q,

(x*y*t^(y^3))^r, (x*y*t)^s,

(x*y*t^(y))^u,

(x*y*t^(y*x))^v,

(x*y*t^(y^2))^w,

(x*y*t^(y*x)^2)^z,

(x*y*t^(y*x*y^2))^a1,

(x*y*t^(y^-2))^b1,

(x*y^-1*t)^c1,

(x*y^-1*t^(y))^d1,

(x*y^-1*t^(y^2))^e1,

(x*y^-1*t^(y*x*y))^f1,

(x*y^-1*t^(y*x*y^2))^g1,

(x*y^-1*t^(y^-2))^h1,

(y*x*t^((y*x)^2))^i1,

(y*x*t^(y^3*x))^j1,(y*x*t)^k1,

(y*x*t^(y*x))^l1,(y*x*t^(y^2*x))^m1,

(y*x*t^(y^-1*x*y^-1))^n1 >;
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