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ABSTRACT
 

In order to understand Groebner basis and its
 

applications, we need to study the commutative ring k\x^,...,x^\
 

where k is field. We prove the Hilbert Basis Thoerem which
 

states that polynomials in several variables have finite
 

spanning sets. We develop a division algorithm in A:[rj,...,r„],
 

so we are able to divide polynomials in several variables by
 

finite sets of divisors. Next we define a Groebner basis
 

and show that it produces a unique remainder in the division
 

algorithm. We apply Groebner basis to the problem of
 

determining ideal membership and the problem of solving a
 

system of polynomial equations in several variables.
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Introduction
 

We are studying geometry and commutative algebra. The
 

part of geometry that we are interested in is affine
 

varieties, which are the curves and surfaces of higher
 

dimensions defined by polynomials. We can visualize in one
 

dimension, two dimensions, and three dimensions, but what
 

about n dimensions where n is greater than 4? It is hard to
 

visualize the n-dimension space and we do not know much
 

about this space.
 

In order to understand this space, we need to study
 

ideals in the polynomial ring, where k ±s a. field.
 

That is A:[xi,...,r„] is a ring and fg=gf for all f,ge k[xi,...,x^].
 

Further the constant polynomial /=1 is the identity with
 

respect to multiplication. Thus k[xy,...,x^] is a commutative
 

ring with identity.
 

Now, let's look at a single variable polynomial, say
 

f{x)=x^+2x^—5x^+3x'^—x^+2x, and an ideal, • Is this
 

polynomial f{x) in the ideal ? No, it is not because
 

the ideal I=ix^'^ will not generate r. In the single
 

variable case, we have a criterion for ideal membership; a
 

polynomial f&I if and only if r^|/. On the other hand, if
 

we have an ideal generated by x, then polynomial f{x) will
 



be in the ideal (x) since f +2x®^ — x+1)-x. In a
 

polynomial ring in one variable - we show every ideal can be
 

generated by a single polynomial. Our main focus will be on
 

generating sets for ideals in a polynomial ring in several
 

variables. We will use generating sets to find an algorithm
 

to determine whether or not a polynomial belongs to an
 

ideal. l;./ \
 

We will show that ideals are generated by a finite
 

niomber of elements in ^fx,,...,x„]. We begin with Dickson's
 

Lemma, which states monomial ideals in /:[x,,...,x„j have a
 

finite basis. Then we wil1 prove the Hilbert Basis Theorem,
 

which states that all ideals in fe[x,,...,x„] have a finite
 

generating set.
 

Let's say we have a polynomial /e ^[x,,...,x„] and an ideal
 

/={fi,—,f,)• How can we determine if the polynomial fe I?
 

We will develop a division algorithm in A:[x,,...,x,J as a tool
 

to divide polynomials in n variables by a finite basis. We
 

will give an example to show that even though a polynomial
 

/e/, we might get a non-zero remainder when this
 

polynomial / is divided by finite basis. To correct this
 

problem, we will introduce the idea of a Groebner basis. We
 

will show that when a polynomial is divided by a Groebner
 

basis, the remainder is unique. Therefore, by applying the
 



division algorithm to a polynomial f&k\x^,...,x^^ we can tell
 

whether or not a polynomial belongs to an ideal generated by
 

a Groebner basis. We will also develop an algorithm to
 

transform an arbitrary basis into a Groebner basis. We will
 

conclude by applying a Groebner basis to the problem of
 

solving a system of polynomial equations in several
 

variables. Since V({/, =y((/i,...,/,)), we may replace
 

with a Groebner basis and still get the same
 

solution set. However, as we will show, if Ir\k\x^^^Q then
 

the last polynomial in a Groebner basis has only one
 

variable.
 



 

Twenti^twb'points/ plliS t^ipie^wpr^
 

points foriusiaig ail^]^ Game's over. I'm outta
 

here. Twenty-two points, plus triple-word-score, plus fifty
 

pdints for usinp all my letters. Game's, over. I'm outta
 

here'\ : //; ^
 

Grpebner,;'Basis/;,.
 

In order to understand Groebner basis, we need to
 

introduce some terminology. Affine varieties are curves,
 

surfaces, and higher dimensional objects defined by
 

Definition 1. Let k be a field, and let be
 

polynomials in A:[a',,...,x„]. Then we set
 

:/v(ai,...,aJ=
 

We call V(/,,...,/j) the affine variety defined by •
 

Other terminology that we need to define is an ideal in
 

the polynomial ring A:[r,,...,x„].
 

Definition 2. A subset /c is an Ideal if it
 

satisfies:
 

(ii) If f,gel, then f+gel.
 

(iii) 	If fe I and he k[x^,..., ], then hf g I. ; '
 

; We now define an ideal generated by a finite number of
 



Definition s. Let be polYnomials in k\x^,...,x^^.
 

Then we set = e . Note that this
 

is an ideal.
 

We have seen polynomials with single variable before.
 

For example, +12r^-lOr+5 is a polynomial in a
 

single variable. Let's look how this polynomial is
 

arranged. The polynomial is written with the highest
 

exponent at the left and the lowest at the right. We can
 

see this pattern because this is a single variable, and the
 

exponents have a natural order. What if we have several
 

variables? How are we going to arrange polynomials with
 

several variables? We need some more definitions to
 

describe ordering on monomials in polynomials with several
 

variables. A total ordering is one which has the reflexive,
 

transitive, and antisymmetric properties.
 

Definition 4. A monomial ordering on is any
 

relation > on Z^o' equivalently, any relation on the set
 

of monomials x" , aeZ>o, satisfying:
 

(i) > is a total (or linear) ordering on Z^q •
 

(ii) If a>P and 7eZ>o, then a+7>j3+7.
 



(iii) >: is a well-Grciering on ̂  This means that every
 

nonempty subset of has a smalj-est:;elements under
 

■> t . . . 'v. ."' 

NOWy we prbve some lemmas that relate to monomial 

ordering and a well-ordering. 

Lemma 1. An order relation > on Z>q is a well-ordering 

if and only if every strictly decreasing sequence in Z^o / 

a(l)>a(2)>a(3)> -- eventually termina.tes. 

Proof. we prove this lemma in if s contrapositive 

form: > is hot a well-ordering if arid only if there is an 

infinite strictly decreasing sequence in Z>o. If > is not a 

well-ordering, then we have some subset T c Z>o that has no 

least element. Then we can choose o;(l)€ T . Since Of(l) is not 

the least element in T, we have a{2) in T such that 

a(2)<a(l). Again, «(2) is not the least element in T, thus 

we have a(3) in T such that a(3)< a{2) and so on. ; This will 

give us an infinite strictly decreasing sequence of elements 

in T . : .f"' ' . •V-: , ' ' ' y- ' - ' 

Conversely, with any infinite strictly decreasing 

sequence a(l),a(2),a(3),..., then we have a nonempty subset 

T = {a(l),a(2),a(3),...} in Z>o with no least element. Thus > is 

not a well-ordering. □ 



 

 

Now we will introduce more definitions needed to
 

describe the ordering of monomials.
 

Definition 5. Let a=(a^,...,(X^) and Z>o. We
 

say a is greater than in lexicographic order if, in the
 

vector difference a-jSeZ", the left-most nonzero entry is
 

positive. We will write x" if .
 

Example 1:
 

1) (2, 3, 1) (1, 5, 3) since a-P= (1, -2, -2),
 

therefore
 

2) (3, 1, 2) (3, 1, 1) since a-fi= (0, 0, 1),
 

therefore x^yz^ x^yz
 

There are other ways to define monomial ordering.
 

Definition 6. Let a,j8eZ>o. We say a is greater than
 

n n
 

p in graded lex order, if |a|= 1^1~2^''
 
/=1 f=l
 

\a\=\P\ and a>,^^ fi.
 

Notice that graded lex order starts with total degrees
 

first, then if there is a tie then lex order applies.
 

Example 2:
 

1) (2, 1, 4) (3, 1, 1) since 1(2,1,4)1=7> 1(3,1,l|=5.
 

2) (3, 2, 2) (3, 1, 3) since |(3,2,2)|=1(3,1,3)1=7 and
 

(3,2,2)>,,,(3,1,3).
 



 

Definition 7. Let a,PsZlQ. We say a is greater than
 

in graded reverse lex order, P, if
 

n n
 

\a\=^ai>\P\=^Pi, or |a|=|jS| and, in a-j8eZ", the right-most
 
i=i 1=1
 

nonzero entry is negative.
 

The difference between graded lex order and graded
 

reverse lex order is that in graded lex order the left-most
 

nonzero coordinate of a—fi is positive while in graded
 

reverse lex order the right-most nonzero coordinate of a-fi
 

is negative.
 

Example 3:
 

1) (4, 3, 2) (4, 1, 1) since |(4,3,2j=9>|(4,1,1^=6.
 

2) (2, 3, 4) (3' 0' since |(2,3,4)|=|(3,0,6)|=9 and
 

a-P={-l,3-2).
 

We now extend some definitions for polynomials in one
 

variable to polynomials in several variables.
 

Definition 8. Let f be a nonzero polynomial
 
a
 

in A;[rj,...,jc„] and let > be a monomial order.
 

(i) the multidegree of / is mM/h'deg(/)=max(ae Z>o:a„ 0)
 

(the maximum is taken with respect to >)
 

(ii) the leading coefficient of / is
 

(iii) The leading monomial of / is LM(f)=
 



(iv) ' -The leading';ten^ LT(f)=LC(f)-LMXf)• \
 

We give an example of this in three variables. Let
 

f(x,y,z)-12x^yz^ . Using lex order, ,
 

mMtidegif)—(7,0,0), LC(f)=>-7, if
 

LT(f)=-lx^. Also, note that we have
 

multid&g{fg)—rnultid&g{f)+m^
 

We define monomial ideals :in .
 

Definition 9. An ideal /c is a monomial ideal
 

if there is a subset A ci Z>o(possibly infinite) such that I
 

consists of all polynomials which are finite sums of the
 

form > where ek[x„...,x„] and r" xf'^. In
 

this case, we write I=(^x"':0CG .
 

Lemma 2. Let l={^x":aeA^ be a monomial ideal. Then a
 

monomial lies in I if and only if x^ is divisible by x"
 

for some a€ A.
 

Proof. If x^ is divisible by x" for some ae A, then
 

x^ =cx" where c=fe[x, x„]. Thus x^ e 7 by definition of ideal.
 

Conversely, if x^ e 7, then x''= where c.e 7:[x,,...,xJ and
 

a(/)e A. Let «(/(,)= min{a(l),...,a(r)}. Then we can factor aii^)
 



 

from the right side of the equation,
 

. Therefore, we can write the
 
(=1 , i=l
 

equation as V Thus divides x^. □ 
i=i ■ ■ 

For the case of a single variable polynomials, we know 

that ideals in A;[x] are principal. Is this true if we go on 

to several variables? Let's look at the polynomial ring, 

A:[x,y] in two variables. 

Example 4: If k is a field, then (x,y) is not principal 

in A:[x, y]. 

Proof: Assume to the contrary that (x,j)=(/(x,y)) for 

some fe k[x,y]. This means xe {f{x,y)) and 3; e (/(x,y)) . Let' s 

look when xe (/(x,}')) . This implies that multideg{f{x,y)) is 

either (0,0) or (l,0). For ye{f(x,y)), this implies that 

multidcg{f{x,y)) has either (0,0) or (0,l). Thus, 

multideg{f{x,y))={0,0). This is a contradiction since Ig (x,};) . □ 

The abdve example shows that ideals in ^[xi,...^x„] need 

not be a principal. Next, we need to find out if these 

polynomials are generated by finite basis or infinite basis. 

Our next result, Dickson's Lemma, shows that monomial ideals 

are finitely generated. 

10 



Lemma 3(Dickson's Lemma). Let I={x"-.ae (zk\x^,...,x^\hB
 

a monomial ideal. Then there exists a(l),...,cc(j')€ A such that it
 

can be written in the form I . In particular, I
 

has a finite basis,.
 

Proof. We will prove Dickson's Lemma by induction on
 

the number of variables n.
 

Let n=\. In this case, I is generated by monomials
 

jc", where aeA(zZ>o. Let jS be the smallest element of A .
 

Because j8<a for all asA, x^ divides x" for all a.
 

Therefore, Now assume monomial ideals in n—\
 

variables are finitely generated. We will write monomials
 

in as x"w^ in where a=(«!,.. Z>o' and
 

)3eZ^o- Suppose 7 Gi:[ri,...,r„_i,w] is a monomial ideal. Let
 

J= :x'^ e Iforsome pi], a monomial ideal in A:[rj,...,r„_j]. From
 

our inductive hypothesis, there are finitely many
 

generators, x" such that 7= . Let )3(/) be such
 

that e I and let =max{j8(i)}. For 0<A:<j8, let
 

J=lx"''' x"" , a monomial ideal in A:[rj,...,x„_j]. Then by our
 

inductive hypothesis, each has a finite generating set
 

11
 



of morioraials 5j,>= ^ 5 . We
 
k=\
 

claim 5 generates 7. Let e/ .; We have two cases.
 

Casel: If b> , we have,r"= and
 

=C;W^ . Then x"w'' =^c.)c" . Thus
 

Casei2: If b<P, we have x°e 7^ so 7"­

Then : =' ĉ,x"~"'^}x"'^^w''. Thus e(s).
 
i=l
 

To finish the proof, we need to show that Iis generated by 

finitely many of the x"'s such that ae A., We have shown 

that I= for some x^^''e I Using Lemma 2, for each 

i, x^^ is divisible by x"-\ for some a{i)e A. Therefore, 

/=(x"^'\...,x"^'^). □ 

If I={f) is an ideal in a polynomial ring J:[x] in one 

variable, then another polynomial in one variable gel if 

and only if f\g . Does a similar result hold for 

polynomials in several variables? We first need a division 

algorithm for /:[x,,...,x,J. Since ideals are not necessarily 

principal, we must be able to "divide" a polynomial 

12 



 

finite number of polynomials. The next theorem shows that
 

this can be done. However, the quotient and remainder are
 

not unique.
 

Theorem 1(Division Algorithm), Fix a monomial order >
 

on Z^Q, and let F={f^ )be an ordered s-tuple of
 

polynomials in k[x^ ]. Then every fe A:[xi ] can be
 

written as f=d^fy+-- -+a^f^ +r, where and either
 

r=0:or r is a linear combination, with coefficients in k,
 

of monomials, none of which is divisible by any of
 

will call r a remainder of / on division
 

by F. Furthermore, if a,/ 0, then we have
 

multideg(f)>multidcg(a^fi).
 

Proof. Let F be a polynomial in Fix a
 

monomial order > on Z^q , Let F= ),/.e fe[xi,...,x„]. If
 

LF(/) does not divide Lr(F) for all j, then let r^=LT(P)
 

and P^ =P-r^ . If LF(/,.) divides LT(P) for some i, then we
 

let rj =0 and Fi =F-aj-/-rj where a,= . Thus we have a
 
■ LT(f-) 

new polynomial Fj. To see multidegiP^)< multideg(P), we look at 

•/.. The leading term of this polynomial is
 
LT(A)
 

LT{P) LT(P) - Thus we are subtracting

LT
 

Lm)
 

13
 



 

LT(P) from polynomial P so multidQg,(Pi)< multidQg(P). So, if we
 

continue this process, we get P> Pj > Pj>' where k is an
 

integer with ' h where
 

k[x^,...,xj is not divisible by LP(/,) for any i. If P^=0
 

for some fee Z>o , then we are done because we can solve for
 

P to get P=^aJi+r^ . If P^ ̂ 0, then there exists P^^+i of
 

the form P,^,=P,- "LT{f^), or P,+i =P- ' where
 

= r^. +Lr(Pj). Thus this process will eventually terminates 

by definition of a well-ordering. □ 

Example 5: Let us divide f = x^y + xy^ + y^ by divisors 

f^=xy-\ and /2=}'^-l using lex order with x>y . The 

division algorithm gives us 

+ + =(x+>')-(;cy-l)+l-(}'^-l)+rH-}'+l with remainder 

r = x+y+l. Now, apply the division algorithm except we 

switch the divisors f^ = y^-l and /2=xy-l. The result is 

x^y +xy^ + =(r+l);(y^-l)+x-(xy-l)+2x+l with remainder r = 2x +l. 
By just changing the order of divisors, we get different 

quotients and remainders. Later on, using Groebner basis, 

we will get a unique remainder. 

The Hilbert Basis Theorem states that every ideal in
 

fe[xj,...,x„] has a finite generating set.
 

14 



 : Basis Theorem)V Every ideal
 

/cA:[jCi,...,x„] has a finite generating set. That is,
 

I={gi,...,g^) for some e/.
 

Proof. First, if /={o} then it is certainly finitely
 

generated. Thus the theorem is true in this case. Now
 

assume / contains a nonzero:polynomial We will show
 

r=^g-,-^ ={LT{g^),...,LT{g,J) We first pr^
 

/i> . This is easy to show because each gje I. Thus
 

(gi,...,g^)c/. Now we show I <:i(^g^,...,gj^ ^ p&t P^I he any
 

polynomial in • Then divide P by using
 

division algorithm. Then we can write polynomial P in this
 

way: P=a,g,+• • • +fl,g,+r where «,,re k[x^ x„]and none ofr
 

divide r We claim that a-=0. If r^O, then
I /'•••' 

By Lemma 2, LT(r) must be divisible by some
 

LT{gf). This contradicts the choice of r(no LT(gj) can
 

divide LT(r)). Therefore r=0 and P=Ojgj H +0• Thus
 

Pe{g,,...,g,) which shows I c{gj,...,g,). □ .i 

The Hilbert Basis Theorem shows that if / cfc[xi,...,x„] 

then / =(/;,...,/,.) . So, /e / if and only if f where 

cij € A:[x,,...,x,J. It is natural to expect that /e/ if and 

15 



if when / is iyy
 

However, this need not be the case for an arbitrary basis.
 

Example 6: Let's divide a polynomial, p=.X7"-a*, by
 

divisors, Let :F= i The result
 

is -i= is the ; ■ 

remainder. Now, let's switch divisors with /, as a first
 

divisor. Thus, F=(/2,/i). The result is
 

xy^-X=X-{y^-1)+0•(.v)'+1)+0, where 0 is the remainder. This
 

shows that even when /e(/pA)/ the remainder depends on the
 

order of the divisors. The remainder may be either zero or
 

non-zero. ;In order to correct this problem, we introduce
 

the ideal of a Groebner basis.
 

Definition 10. Fix a monomial order. A finite subset
 

G= of an ideal I is said to be a Groebner basis (or
 

standard basis) if (L7(g,),..., ))=(Lr(/)).
 

The main problem in determining ideal membership is
 

that with an arbitrary basis, the remainders in division
 

algorithm need not be unique. The Groebner basis corrects
 

this flaw. •
 

;; Proposition 1v Let G=(g,,...,g,) be a Groebner basis for
 

an ideal /c^[x,,...,r„] and let /e . Then there is a
 

unique re ^[r,,...,x„] with the following two properties:
 

16
 



(i) No term of r is divisible by any of LT{g^),...,LT{g^).
 

(ii) 	 There is gel such that f=g+r.
 

In particular, r is the remainder on division of / by
 

G no matter how the elements of G are listed when using
 

the division algorithm.
 

Proof- By the division algorithm f=g+r, where no
 

term of the remainder r is divisible by LT{g^) for any i and
 

g=fljgi e/. Thus f=g+r satisfies the existence of
 

g and r.
 

To prove the uniqueness, suppose f=g+r=h+s where
 

g,he I. Then r —s=h —gel. if r—s^O, then
 

LT(r-s)e{LT(I))={LT(g, LT(g,)). By Lemma 2, LT{r-s) is
 

divisible by some LT(g,.). This is not true since every term
 

of LT(r)or LT(s), by definition of remainder, is not
 

divisible by any of LT(gi),...,LT(g,). Thus r-s=0. n
 

Corollary 1. Let G={gi,...,g,} be a Groebner basis for an
 

ideal I c:k[x^,...,x„] and let /e . Then fel if and
 

only if the remainder on division of / by G is zero.
 

Proof. If we have a remainder zero, then fel since /
 

can be written in as f=ayg^+-- -+a,g,e I by the division
 

algorithm. Conversely, suppose fel. Then we can write /
 

17
 



as f=f+0, which satisfies the two properties in 

Proposition 1. Thus 0 is the remainder of / on division 

by G . □ 

Definition 11. We will write f for the remainder on 

division of / by the ordered s-tuple F = . If F is a 

Groebner basis for then we can regard F as a set 

(without any particular order) by Proposition 1. 

Definition 12. Let be nonzero 

polynomials. 

(i) 	 If multideg(f)=a and multideg(g) = , then let 

7= (7iv,7„) / where 7; =max(«,.,j8,.) for each i. We call 

x''' the least common multiple of LM(f) and LM{g) , 

written r''=LCM(LM(/),LM(g)) . 

(ii) 	 The S-polynomial of / and g is the polynomial 

S{f,g)= . •/- -g • (Note that we are inverting
LTif) LT(g) 

the leading coefficients here as well. ) 

S 

Lemma 4 . Suppose we have a sum ^c-f^ , where Cg G k and 
i=l 

f s \ 
deg(/;) = 5 e Z>o for all i. If multideg Y,Cifi , then ^cj.

i=\ J 	 i=\ 

is a linear combination, with coefficients in. k , of the S­

18 



 

 

 

polynomials slfj,/^) for l< j,k <s. Furthermore, each: 5(/^.,/^)
 

has multidegree < 5.
 

Proof, Let //,=LC(/;) so that is the leading
 

■ \ ' 

coefficient of c,./^. From the hypothesis, . Let
 
i=\
 

. =f'A with leading coefficient 1. Let's look at the sum
 
% , , .
 

^c,d,pi+C2d^p^+r--+c/i,p^: Bow consid^
 
■ i=l.„ ■ '<=1 ■ , 

telescoping sum:
 

^CidiP.=Ciji(Pi -P2)+(<^1<^1+<^2^2Xi^2-P3)+fe^l +^2^2+^^3^3XP3 -/^4)+---+
 
i=l ;h /■ . 

(c,d,+-'-+c,^d^^,^-p,)+(c,d,+'^^ 

By assumption, Lr(/;) =4, , which implies that least ,common . 

multiple of LM(fj) and LM{f^) is . So we can write S-

polynomial in this way: 

Using and 2c.^// =0, we can rewrite as 
. \ ■ ' ■ ^=1 

We also know that Py and p^ have multidegree 5 and leading 

19 



coefficient 1, thus the difference has multidegree <:
 

8. Thus S{fj,f^) has multidegree < 8. □ : 

To see if a polynomial belongs to an ideal / in 

it[,v, j, we divide a polynomial by a Groebner basis and see 

if the remainder comes out to be zero or not. 

Theorem 3. Let / be a polynomial ideal. Then a basis 

G = for I is a Groebner basis for I if and only if 

for all pairs i j, the remainder on division of s{g-,gj) by 

G (listed in some order) is zero. 

Proof. => : If G is a Groebner basis, then s{gj,g^ )eI 

for all j,k . Then the remainder vfhen s{gj,g^) is divided by 

G is zero by Corollary 1. 

^: Let pel=(^g^,...,g,) be a nonzero polynomial. Then 

we can write the polynomial p as P =^hjgj where g, e G and 

h. e k\xy,...,A-J. Then it follows that multidcgip) < max(7nMZrideg(/?,.g,)) . 

Now, we need to show that if multideg(p) = for some 

i, then we can say LT(p) is divisible by LT{g^) thus 

LT{p) e {LT{g^ LT{g,)). Let m(/)=mMtedeg(/i;g;) and let 

£ = inax(m(l),..,m(?)) Then we have muJtideg{p)< £ . Each expression 

of the form p = ̂ h^gj can possibly have a different £ 

2 0 



  

depending on the clioice of . Since raonomial order is
 

a well-ordering, we can choose an expression, p=^h^g], of
 
i=l
 

the polynomial p to have e as minimal. We will prove
 

inultidQgip)=e by contradiction. We write p= ̂ higi+^KSi
 
m(i)=e m{i)<e
 

and assume multideg(p)<£. We can rewrite the polynomial p
 

as p= + %K8i- The second sum
 
m(/)=e m(i)=£ m(i)<e :
 

-LT{hj))gi , has multidegree < £ since for all i LT(A,)
 
m(i)=e
 

has been eliminated, thus both ; and
 

have multidegree < e. Let LT{h.)-c.x"^''> where . Then it
 

follows that J LT(h.)gi = ̂Cix"^'^gi . Now, by using Lemma 3,
 
m(i)=e m(i)=e \ '
 

we can write as a linear combination of S­
m{i)=e ■: 

polynomials ). We have 

cL«a)„ \ _ ccjj) - V; 

'■ ;c''» ■ x" 
^ j TTirr V 

J ' 

e-Yjt
X ' "" ̂  ■ ij;9 

k.
 
/
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where x''" =LCM{LM{gj\LM{g^^. Now we can write
 

Y^LT{h.,)g^ = ^c.^x''^''s(gj,g,) constant c^^&k. Now we
 
m(i)=e ■ j,k=l 

know that remainder of on division by g^,...,gf is zero
 

by the hypothesis of the theorem. By using division
 

algorithm, we can write s{gj,gi^)=^a-j^.gi , where e k[x^,...,x^].
 
'=1 ' ■ 

We can also find from the division algorithm that
 

multideg(a^j^g.)<multideg(s(gj,gJ) for all . Now, multiply 

by so that ■s(gj,g,,)='^by^g, vriiere 

byk = x^^'" • . From Lemma 3 and 

mMZft"deg(apg,.)<mM/r/deg(5(g^.,g^))< 7^.i, we get mM/h'deg(Z?,^.^gp < e . By 

substituting our results into the expression, Y,LTl\)g, , we 
m(i)=e 

get Y,^T{h,)g, = S(g],g^)= ft%h>cSi \ 
m(i)=s j,k=l j,k=l \ ^-1 y i=l 

I 

multi6&g{h[gi)<e . Thus, if we substitute ^LT{h^)gi =^h[gi 
m(i)=e i-l 

into the expression for the polynomial p , then we get 

P =^hi8i+ ^ ihi-LT{h,)8i)+ ^\g, which implies that 
1=1 m(i)=e m(i)<£ 

multideg{p)<S . This is a contradiction to the minimality of 

22 
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£. Therefore, i^ultideg(p)=^e is divisible by 

LT(g,) and LT(p)e(LT(g,l:^^^ □ 

Definition 13. Giyen / =(/i,...,/,):C A:[xi,...,x„], the M 

elimination ideal 7, is the ideal of defined by 

Theorem 4 (The Elimination Theorem) . Let / c:^[xj,...,x„] be 

an ideal and let G be a Groebner basis of I with respect 

to lex order where Xj > Xj > • • • > . Then, for every 0 <I<n, , 

the set G, =Gn^[x,+i,...p„] is a Groebner basis of the Ith 

elimination ideal I, . 

Proof. Fix I between 0 arid n . Then G,c/, and wevneed 

to Show {LT{Ii)) = {LT{Gi)) . Proving (LT(/,))b(LT(G,)) is obvious 

because of the construction of G, aI, . To prove 

{LT{IiJi c (^LT{GiJj , let f e If . This means that f^I also and 

LT{f) is divisible by LT(g) for some ge G since G is a , 

Groebner basis of / . Using lex order, any monomial in 

A:[xj,...,JC„_i] is greater than all monomials in A:[x,^j,...,x,J. So 

LT{g)e fc[x,^,,...,x„] implies i:[x;+i,...,x„]. Thus, G, . ^ 

Let's have an example of the Elimination Theorem. 

Example 7 : Let / = ̂ x" + + z" -l-tyz-l) . Then a Groebner 
basis for I with respect to lex order is 
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g,= yV+yV-}'V+i,
 

g2=x+y\+yz^-yz.
 

Using the Elimination Theorem, we get =I<^C\y,z]=(gi)
 

and /j=/nC[z]={0}. Somehow, we did not get a single
 

variable element in the Groebner basis.
 

Theorem 5(The Extension Theorem): Let
 

/=(/i,...,/,)cC[ri,...,JcJ and let /, be the first elimination
 

ideal of I. For each l<i<s, write // in the form
 

fi = gi{x2,...,Xn)xi'+ terms in which r, has degree <A(,., where
 

Nj>0 and g^ e C[x2,...,x„] is nonzero. Suppose that we have a
 

partial solution {a2,...,a^)eV{l^). If {a2,...,a„)^V{g^,...,g^), then
 

there exists aje C such that {a^,a2,...,a„)eV{l).
 

Even though we are not going to prove this theorem, we can
 

use this theorem to state polynomials in k[xy,...,x^] where the
 

Elimination Theorem does not apply to some polynomials in
 

k\x^,...,x^\. Like the example above, we can use the Extension
 

Theorem to see if we can extend partial solutions in V(/2)
 

to V{l).
 

In Example 7, we did not get a single variable element in
 

the Groebner basis. Thus we use an arbitrary number, %&€,
 

as a partial solution. Does this solution ^=V{l2) extend
 

to V{1)7 First, we substitute in the variable z into the
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first Qroebner base, and solve for variable y.; Say^ t^ 

solution for variable, :" Then ■wetsubstituta bot^ 

fi intb:the'seeond Groebner base, toisolve for variable 

' ■X. Thus, we are extended to Vil^. 

we will apply Groebnet basit to ideal i^embdrship' a^ 

the problem of sblvrhg a system of polynpinisi ^aqtiations in 

several variables. We will elso write algorith^^^ for these 

twO' problems.- ; ^ 

Example 8: First, we will look at the ideal. 

membership/ Let I = -Zj^e C[x,}',z] and 
JZ = like to know if FeI.:Mo, we need 

to find the Groebner basis for I We used Maple 5.1 to 

find the Groebner basis for I. The Groebner basis for I is 

(rz-y,^.,A:^ - ,x^y^Mz^,xy'* - ,y^ • Using .this basig,^ can , 

do the division algorithm to determine if Fe 1. This is
 

the algorithm for ideal membership:
 

with(Groebner) :
 

f [1] :=x*z-y^2:f [2] :=x'-3-z^2: f [3 ] :=x-^2*y^2-z^3: f [4] :=x*y^4­

z^4:f [5] :=y'^6-z'^5:
 

P;=i-4*xl2*yt2*z'^2+yh6+3*z^5:n:=5 :
 

for i from 1 to n do q[i] :=0 od: 

r:=0 : 

while PoO do
 

LTP:=leadmon(P,plex(x,y,z) ) [1]*leadmon(P,plex(x,y,z) ) [2] :
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k:=1:divoccured:=false:
 

while (k<=n) and (divoccured=false) do
 

LTfk:=leadmon(f[k],plex(x,y))[1]*leadmon(f[k],plex(x,y))[2]
 

if divide(LTP,LTfk,'d') then
 

print(k,d,LTfk):
 

q[k]:=q[k]+d:P:=expand(P-d*f[k]):divoccured:=true:
 

print(k,d,q[k],P):
 

else k:=k+l: fi:od:
 

if divoccured=false then
 

r:=r+LTP:P:=expand(P-LTP):
 

fi: ' ■
 

od:
 

After using this division algorithm, we have
 

F={-4xyh-4y^)-{f,)+0 {f2)+0-{f^)+0-{f,)-3-{f,)+0. Thus the
 

remainder is 0 and therefore, Fel.
 

We are applying the Groebner basis for the problem of
 

solving polynomials in several variables.
 

Example 9: We will use Lagrange Multiplier to show the
 

problem of solving polynomials in several variables. To
 

find the minimum distance d^{x,y)=x^+{y —'\^ between a point
 

on the parabola y= and the point (0,l), we can apply
 

Lagrange multipliers. We will get 2x=2Xx, 2y —2=—X, x^=y,
 

1 [T

thus 1=1, y=—,x=+^ —. Therefore, the minimum distance is
 

2 \2
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--1 -1 1-1
d--M ~2 4~4■ 

\ 
v2 ,
 

What if we use the same problem except we rotate the 

^3-4^^ 1equation using Ro = — ? The point (0,l) becomes 
4 3 

V y 

r4\ 

^ 3 4Y0^ 

.-4ill 
5 

3 
Thus, the new point is 

^4 3^ 
5'5 

This is how 

v5y 

we can get a rotated equation: 

(Y,y')Ro rio^ fx'^
\Ro + (o, 1)Ro = 0 

X9 -12^-'^ 
0 

-12 16a1/ 
+l(-4 -3)Ro = 

vly 
^4 3^ 

After all the calculations, we have new point and the 
5'5 

equation -24jcy +16}'^-20r-153'= 0 . Thus to find the minimum 

/ 4V 
distance d^{x,y)= — y-- from a point on the parabolaX-

5 

^4 3^-24ry+163;^-20x-15}' = 0 to the point , it will be 
5'5 

difficult to do so and we will show why. The Lagrange 

multipliers for the rotated equation are 
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—d{x,y)= -24xy+l6y^-20x-l5y)
 
dx ax
 

—d{x,y)=X^i^x^-24xy+l6y^-20x-15y)

dy ay
 

0=9x^—24xy+16y^-20x —15y
 

when 	we do partial derivatives of the rotated equation, we
 

get
 

=X{lSx-24y-20)
X—
 

5
 

y--	=X{32y-24x-15)
 

0= -24ry+16)^^ — 20r-15}'
 

That is why we can use the Groebner basis to solve this
 

polynomial. First, we need to find the Groebner basis for
 

this polynomial. The Groebner basis for this polynomial is
 

8
 
gj=18Ax — 24A}'— 20A —2x+—
 

g2=-24Ax+32Xy-15X-2y+­

=9x^-24xy+16y^ —20x—l5y
 

g^ =l25X+Sx+6y—10
 

92 ^ ^ 2 4 2
 
g.=-^—x-8xy-\ y y
S5 	 45 15 9
 

460 1250 2

86 =——x-365y+-j-y
 

46 8 2 40 3
 

Now 	we can notice that g-j has only a single variable
 

polynomial. Thus we can solve for variable y when gj=0.
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3 2 I—
 
The solution for variable y is y=0 or };=—±—V2. When
 

^ ^ 2 3
 

}'=0, we get x=0, when y=—+—-\/2, we get
 

2 3
 
when v= -—42, we get x=—-I 42. So we have three points


10 5 5 10
 

3
 
—
to compute into d^{x,y)= X y-- and see which point
 
5
 

gives the minimum distance. Let /7j =(0.0),
 

Pi= , and pj='IL+L42X--42 The pj
 
5 10 10 5 5 10 10 5
 

gives the distance ^/(0,0)=1, P2 gives the distance
 

2 3 3 2 ^ 3
 
d' 42. b—42 =—, and p, gives the distance
 

5 10 10 5 4
 

— Thus the minimum distance for
 
5 10 10 5 4
 
'U^42X-\42 = . 


3
 

rotated polynomial is —. This is the graph of rotated
 
4
 

polynomial with linear equations 3x-4y=0 and Ax+3y=5.
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Graph 1. Rotated'equation with linear equations.
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//;. condlusion.; 'V >
 

It is known that ideals in a polYhomial ring in a
 

single variable are principal. Also, there is a s.
 

Griterion for ideal membership; if <l =^{g) then f&I if and
 

bnly if g divides /v We showed by example that ideals in
 

a polynomial ring in several variables are not principal.
 

However, they are finitely generated which we showed in
 

Theorem 2, the Hilbert Basis Theorem. We
 

division algorithm for a polynomial in several variables.
 

We showed that the quotient and the remainder needed not be
 

unique. However, when a polynomial is divided by a Groebner
 

basis, the remainder is unique (Theorem 3). In Theorem 3,
 

we used this property to give a criterion for ideal
 

ip: If G-{gi,— is a Groebner basis and I={G)
 

then fel if and only if G divides /. We then showed that
 

if 1= has a Groebner basis, G={g, the system
 

/,=/j=• • • =f,=0 is equivalent to g, =•••=g,=0. In chis
 

second system, g^ will be a polynomial in a single variable
 

when Ink\_x^]={o}.
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