
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Electronic Theses, Projects, and Dissertations Office of Graduate Studies 

5-2022 

Improved Sensor-Based Human Activity Recognition Via Hybrid Improved Sensor-Based Human Activity Recognition Via Hybrid 

Convolutional and Recurrent Neural Networks Convolutional and Recurrent Neural Networks 

Sonia Perez-Gamboa 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Perez-Gamboa, Sonia, "Improved Sensor-Based Human Activity Recognition Via Hybrid Convolutional and 
Recurrent Neural Networks" (2022). Electronic Theses, Projects, and Dissertations. 1428. 
https://scholarworks.lib.csusb.edu/etd/1428 

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. 
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator 
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu. 

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1428?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


IMPROVED SENSOR-BASED HUMAN ACTIVITY RECOGNITION VIA 

HYBRID CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS 

 

 

A Project 

Presented to the 

Faculty of 

California State University, 

San Bernardino 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

in 

Computer Science 

 

 

by 

Sonia Perez-Gamboa 

May 2022 

  



IMPROVED SENSOR-BASED HUMAN ACTIVITY RECOGNITION VIA 

HYBRID CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS 

 

 

A Project 

Presented to the 

Faculty of 

California State University, 

San Bernardino 

 

 

by 

Sonia Perez-Gamboa 

May 2022 

Approved by: 

 

Qingquan Sun, Advisor, Computer Science & Engineering 

 
George Georgiou, Committee Member 

 
Haiyan Qiao, Committee Member 

 



© 2022 Sonia Perez-Gamboa  
 



iii 

ABSTRACT 

Non-intrusive sensor-based human activity recognition is utilized in a 

spectrum of applications including fitness tracking devices, gaming, health care 

monitoring, and smartphone applications. Deep learning models such as 

convolutional neural networks (CNNs) and long short-term memory (LSTMs) 

recurrent neural networks provide a way to achieve human activity recognition 

accurately and effectively. This project designed and explored a variety of multi-

layer hybrid deep learning architectures which aimed to improve human activity 

recognition performance by integrating local features and was scale invariant 

with dependencies of activities. We achieved a 94.7% activity recognition rate on 

the University of California, Irvine public domain dataset for human activity 

recognition containing 6 activities with a 2-layer CNN-1-layer LSTM hybrid model. 

Additionally, we achieved an 88.0% activity recognition rate on the University of 

Texas at Dallas Multimodal Human Activity dataset containing 27 activities with a 

4-layer CNN-1-layer LSTM hybrid model. For both datasets, our hybrid models 

outperformed other deep learning models and traditional machine learning 

methods.   
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CHAPTER ONE 

INTRODUCTION 

Background 

Human activity recognition (HAR) is the ability of a system to properly 

detect and identify specific human activities by analyzing data that is typically 

collected through a sensor or camera. HAR is utilized in a spectrum of 

applications such as fitness tracking devices, monitoring the care of elders [1], 

gaming [2], health care monitoring [3], and smart homes [4]. Fitness tracking 

devices such as smartwatches and activity tracking bands allow for non-intrusive, 

automated collection of user data that can be recorded and analyzed in 

companion applications to provide insight into the user’s performance. These 

devices are able to automatically identify the activity the user is performing, 

removing the need for the user to manually track their activity, and allowing for 

more data analysis. In [1], researchers developed a small, compact system that 

can be worn by elderly people living alone. Their activity can be monitored 

remotely by their family or caregiver, and they can be alerted if the person falls 

down. In [2], a mobile game application was controlled by the movements and 

breathing of the user. HAR has also been used in health care monitoring, where 

a recovering patient’s fine motor skills were monitored, and the therapy was 

adjusted accordingly [3]. HAR is used to observe the behavioral interaction 

between people, as was used in [4], where the activity was analyzed to 

determine if there was a conflict between people in a smart home setting.  
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The ever-growing demand for applications that can assist in not just these 

use cases, but across all domains, reinforces the need to determine the most 

efficient method of HAR. Several studies have adopted traditional machine 

learning methods for HAR, but these methods include the major drawback of 

requiring an expert in the field to complete necessary feature extraction before 

data can be classified. Contrary to previously used techniques, deep learning 

methods are capable of completing feature extraction without requiring a human 

expert. Deep learning utilizes artificial neural networks, with convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) being some of the most 

widely used for HAR. 

Purpose 

This research aims to develop a hybrid deep learning model that utilizes 

both CNNs and RNNs, specifically long short-term memory (LSTM) RNNs, to 

increase the overall recognition rate when applied to sensor-based HAR. The 

motivation behind this research is to 1) support the idea that deep learning 

methods yield high accuracy of HAR when compared to traditional machine 

learning, and 2) improve the performance of deep learning models by presenting 

a lightweight, hybrid, multi-layer deep learning model that achieves a balance 

between high recognition rate and training time consumption. The use of HAR is 

a task used across many domains whose purpose is to automate the recognition 

of simple or specialized activities. Therefore, it is important to find the most 

efficient method to accomplish this. 
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CHAPTER TWO 

HUMAN ACTIVITY DATA 

Collection Methods 

Choosing the best modality for recording human activity is the first step in 

accomplishing HAR. Some of the most common systems to use include optical 

motion capture systems, simple cameras, and wearable sensors. Optical motion 

capture systems utilize infrared cameras and reflective sensors. Reflective 

sensors are placed on a subject at major joints and areas of interest. The 

cameras then emit infrared light and capture the reflection off the sensors. 

Optical motion capture systems provide very accurate human activity data but 

are considerably more expensive than other modalities. Image and videos 

recorded through simple cameras provide us with accurate mediums and are at 

the core of current computer vision research. Some obstacles presented by 

optical motion capture systems and simple cameras are: 1) Images and videos 

can capture surrounding movements that are not part of the human activity, 2) 

the captures can be negatively affected by lighting or other elements in the 

environment, and 3) since body parts can be blocked by other body parts or 

camera angles, it is necessary to increase the number of cameras in both of 

these systems to increase the accuracy, leading to an increase in cost. Wearable 

sensors such as gyroscopes, accelerometers, heart monitors, and electrodes are 

small sensors that do not have the limitations of cameras and optical motion 

captures systems and still provide accurate recordings of human activity. 
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Additionally, they are inexpensive, have low energy consumption, are small, and, 

therefore, are non-intrusive.  

Inertial Sensors 

Our research focused on exploring the use of inertial sensors to collect 

human activity data. Inertial sensors are sensors that record specific gravity and 

angular rates of the subjects or objects to which they are attached to. Inertial 

sensors consist of gyroscopes, accelerometers, and an optional magnetometer. 

Accelerometers provide measurements of linear acceleration on 3 axes, while 

gyroscopes provide measurements of angular velocity on 3 axes. Inertial sensors 

can vary in size, but our research focused on small, non-intrusive, wearable 

inertial sensors.  

The embedded gyroscope and accelerometer of a Samsung Galaxy S II 

smartphone were used to collect inertial measurements on subjects in [5]. The 

smartphone measures 4.93 inches (H) x 2.6 inches (W) x 0.334 inches (D), and 

weighs about 4.1 ounces, making it lightweight and easy for subjects to wear. 

Researchers in [6] used a micro electro-mechanical systems (MEMS) sensor to 

capture acceleration and angular velocity data. The sensor is similar in size to a 

U.S quarter, which measures about 0.945 inches in diameter, making it small and 

non-intrusive. Figure 1 shows the smartphone used in [5], and Figure 2 shows 

the inertial sensor used in [6]. Subjects in both studies wore the sensors on 

single locations of their body and completed several activities multiple times. The 
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sensors captured the acceleration and angular velocity measurements, and 

researchers were then able to extract the raw inertial sensor signals.  

 

 

 
Figure 1.  Samsung Galaxy S II Phone and Wearable Case.  
 

 

 

 

 

 

 
Figure 2.  MEMS Inertial Sensor. 
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CHAPTER THREE 

HUMAN ACTIVITY RECOGNITION 

Traditional Machine Learning vs. Deep Learning 

Once the human activity data containing raw sensor signals are obtained, 

the next step in the HAR process is to choose the best method to properly 

analyze the data. For years, artificial intelligence has been used to accomplish 

recognition and classification problems. Artificial Intelligence (AI) is the concept 

of constructing computers, or machines, in such a way that they possess the 

same characteristics as human intelligence. One way to accomplish AI is through 

traditional machine learning (TML), which uses different algorithms to analyze 

data, learn from it, and then make a prediction or classification about something 

related to the data. The idea is to introduce sufficient data to a machine so it may 

learn enough from it to properly predict or classify a new piece of information. 

Some common TML algorithms used for sensor-based HAR are support vector 

machines (SVM), collaborative representation classifiers (CRC), decision trees, 

discriminant analysis, nearest neighbor classifiers, and ensemble classifiers. In 

[5], [7], and [8], Multi-Class SVMs (MC-SVM) and Multiclass Hardware Friendly 

SVMs (MC-HF-SVM) were used to successfully classify several simple human 

activities. In [9], researchers compared the performance of over 20 different TML 

algorithms on 5 simple activities.  

As successful as TML methods have been in sensor-based HAR, the 

process is not completely automated. A critical step in the classification process 
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for TML, described in Figure 3, is the necessity of a human expert within the 

domain to manually extract features that the TML algorithm needs to make 

predictions. This requirement for feature extraction limits the flexibility of these 

methods. 

 

 

Figure 3.  Process for HAR with Traditional Machine Learning. 
 

 

Another pitfall of TML is its performance as the amount of input data is 

increased. With advances in technology and accessibility to very large amounts 

of data, the goal is for algorithm performance to proportionally increase with the 

amount of data available. Unfortunately, research has shown that as the amount 

of input data for TML algorithms increases, the performance of the algorithms 

plateaus [10]. This lack of improvement means that TML cannot fully take 

advantage the large amounts of data available. The drawbacks of TML bring 

attention to a different subset of AI, which introduces a more efficient approach to 

the HAR problem: deep learning. 

Data Collection
Feature extraction 
done by a domain 

expert

Input data into 
model to train 

Predict/Recognize 
Activities
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Deep learning is a method of machine learning that utilizes artificial neural 

networks to accomplish the tasks of automatic activity recognition and 

classification with little to no human intervention. Figure 4 presents the process of 

activity recognition with deep learning algorithms, showing there is no need for a 

human expert to complete feature extraction. 

 

 

Figure 4.  Process for HAR with Deep Learning. 
 
 

 Additionally, deep learning algorithms have been shown to increase in 

performance as the amount of data presented increases (see Figure 5). 

  

Data Collection
Input data into 

model to extract 
features and train

Predict/Recognize 
Activities
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Figure 5.  Performance of Algorithms vs. Amount of Data. 
Alom, Md. Zahangir & Taha, Tarek & Yakopcic, Chris & Westberg, Stefan & 
Sidike, Paheding & Nasrin, Mst & Hasan, Mahmudul & Essen, Brian & Awwal, 
Abdul & Asari, Vijayan, “A State-of-the-Art Survey on Deep Learning Theory and 
Architectures,” Electronics 8, no. 3:292, 2019. 
https://doi.org/10.3390/electronics8030292 

 

 

Deep learning models such as RNNs and CNNs have more recently been 

used to complete HAR due to their capability of automatically completing feature 

extraction on raw data without requiring a human expert, while also obtaining 

high recognition accuracy. Training deep neural networks can be computationally 

expensive, taking hours or several days to train models [11]. This project aims to 

compare the performance and accuracy of different deep learning models on 

sensor-based human activity datasets while achieving balance between 

recognition rate and total training time. 

https://doi.org/10.3390/electronics8030292
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Related Works 

Deep learning techniques have been used across the field of machine 

learning to accomplish sensor-based HAR in different domains. CNNs use 

convolution to convolve over input signals and efficiently identify local patterns 

and create feature maps. CNNs have proven to work for HAR due to their 

capability of capturing local dependencies on signal data, as well as their 

preservation of feature scale invariance when completing feature extraction. In 

[12], [13], and [14], researchers present CNN models that achieved strong HAR 

accuracy when compared to other state-of-the-art approaches. In [12], they 

explore the effect that different parameter values have on the overall accuracy. It 

was found that pooling size, weight decay, and drop out must be modified 

relative to the number of different activities a dataset has, as well as the number 

of available samples in order to achieve the best accuracy. 

LSTM RNNs have also been used to achieve HAR due to their ability to 

properly handle the long-term dependencies in time-series data such as sensor 

signals. In [15], researchers designed a multi-layer LSTM RNN model, which had 

a lower recognition time than CNN-based models it was compared to and had a 

higher recognition accuracy. In [16], a bidirectional LSTM outperformed regular 

CNN and regular LSTM models when applied to a large dataset. Researchers 

also found that RNNs such as LSTMs outperform CNNs in recognizing activities 

that are short in duration but have a natural ordering, such as opening and 

closing doors. 
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Recently, the combination of CNN and RNN models has been explored to 

further improve the performance of sensor-based HAR. A deep convolutional and 

recurrent model referred to as “DeepConvLSTM” was presented in [17], which 

achieved a higher HAR rate than a baseline CNN model. In [18], a combination 

of CNN, LSTM, and hybrid models were implemented to achieve HAR, with a 3-

layer LSTM outperforming the other presented models. [19] compares the 

performance of baseline LSTM and CNN models against a hybrid model and 

found the hybrid to outperform the baseline models.  

In [12]-[19], sensor-based human activity datasets of varying sizes are 

used to test all the implemented models. The studies include small datasets of 6-

12 activities, medium datasets of 18 activities, and large datasets that include up 

to 46 gestures. Although the large datasets include many actions, they are very 

simple gestures that are used within specific work environments, such as 

assembly line workers. We wish to utilize datasets that include several 

complicated, highly correlated human activities.  

Our work is based on a hybrid multi-layered CNN and LSTM model that 

presents the following contributions to the field of sensor-based HAR: 1) We 

design and implement a lightweight, multi-layer hybrid model that has high-

performance accuracy when applied to simple and highly correlated activities; 2) 

we develop several CNN, LSTM, and hybrid models in the same environment to 

properly compare performances; and 3) we develop models that have a balance 

between high HAR accuracy and low training time.  
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CHAPTER FOUR 

METHODOLOGY 

To properly compare the performances of deep learning models on 

sensor-based human activity datasets, we chose to explore and implement 

several deep learning models including vanilla CNNs and LSTMs, multi-layer 

CNNs and LSTMs, and finally, hybrid multilayer CNN-LSTMs. 

Convolutional Neural Networks (CNN) 

CNNs are deep learning models that utilize convolutional layers, pooling 

layers, fully connected layers, and hidden layers to accomplish classification and 

recognition. CNNs are popular in the field of computer vision, which performs 

classification and recognition of images and videos. Because of this, 2-

Dimensional (2D) CNNs are used to properly handle the image and video inputs. 

Since our datasets contain raw signal data, we utilize 1-Dimensional (1D) CNNs, 

which are advantageous and preferable over 2D CNNs whenever possible 

because of their reduced complexity. Input signal data is fed into the 

convolutional layers, which convolve over the sequence. A convolution is a linear 

operation that multiplies an array of input data and a specified filter, with the filter 

being smaller than the input. The specific multiplication applied is the dot product, 

which multiplies the smaller filter and a filter-sized portion of the input and then 

sums the products. Since the filter is smaller than the input, this means it can be 

repeatedly applied across multiple sections of the input data until the whole input 

data is covered. The convolution process can be visualized with the following 
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equations: Given an input x, which is of length m; a filter w , which is of length n; 

the resulting sequence of dot products y will be the same length as x  [20] 

𝑥𝑥 = [𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑚𝑚−1] 

𝑤𝑤 = [𝑤𝑤0,𝑤𝑤1,𝑤𝑤2, …, 𝑤𝑤𝑛𝑛−1] 

𝑦𝑦 = [𝑦𝑦0,𝑦𝑦1,𝑦𝑦2, …, 𝑦𝑦𝑚𝑚−1] 

It is common practice when implementing CNNs to have an odd filter size. 

Therefore, n would have the following constraints: 1) n < m; 2) n is odd; and 3) 

we can express the length of our filter as n = 2p + 1, where  𝑝𝑝 < 𝑛𝑛
2
 .  We can 

update our notation to be 

𝑥𝑥 = [𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑚𝑚−1] 

𝑤𝑤 = [𝑤𝑤−𝑝𝑝,𝑤𝑤−𝑝𝑝+1, … ,𝑤𝑤0, …, 𝑤𝑤𝑝𝑝−1,𝑤𝑤𝑝𝑝] 

𝑦𝑦 = [𝑦𝑦0,𝑦𝑦1,𝑦𝑦2, …, 𝑦𝑦𝑚𝑚−1] 

Considering the steps of the dot product, we can further expand the result 

y as 

𝑦𝑦0 =  𝑥𝑥0𝑤𝑤0 + 𝑥𝑥1𝑤𝑤−1 + ⋯+  𝑥𝑥𝑝𝑝𝑤𝑤−𝑝𝑝 

𝑦𝑦1 =  𝑥𝑥0𝑤𝑤1 +  𝑥𝑥1𝑤𝑤0 +  𝑥𝑥1𝑤𝑤−1 + ⋯+  𝑥𝑥𝑝𝑝+1𝑤𝑤−𝑝𝑝 

𝑦𝑦2 =  𝑥𝑥0𝑤𝑤2 + 𝑥𝑥1𝑤𝑤1 + ⋯+ 𝑥𝑥𝑝𝑝+2𝑤𝑤−𝑝𝑝 

… 

𝑦𝑦𝑚𝑚−1 =  𝑥𝑥0𝑤𝑤𝑚𝑚−1 + 𝑥𝑥1𝑤𝑤𝑚𝑚−2 + ⋯+  𝑥𝑥𝑝𝑝+𝑚𝑚−1𝑤𝑤𝑝𝑝 
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We can now use the summation shorthand to represent these equations 

more concisely: 

𝑦𝑦𝑗𝑗 =  � 𝑥𝑥𝑗𝑗−𝑘𝑘𝑤𝑤𝑘𝑘

𝑝𝑝

𝑘𝑘= −𝑝𝑝

 

These convolutions identify local correlations within the input data and 

result in feature maps, which hold the exact location of detected features from 

the input data. The feature maps are then passed through a pooling layer, which 

reduces the sensitivity of the output feature map by down-sampling the detected 

features. Pooling helps the network identify the same feature, even if the exact 

location of the feature changes from one input sequence to the next [11]. The 

resultant feature maps are then fed into fully connected layers which combine 

different learned local structures and complete the final classification. CNNs have 

proven to effectively perform independent, non-handcrafted feature extraction on 

raw sensor data, which enhances the overall classification accuracy of the model 

[21]. 

For our sensor-based HAR case, we designed CNNs, whose architecture 

can be seen in Figure 6, with 1D convolutional layers, pooling layers, and dense 

layers. The chosen number of filters, kernel size, and the activation function were 

influenced by [12], although we made further modifications through trial and error 

as results were obtained.  
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Figure 6.  Baseline CNN Architecture. 
 

 

Long Short-Term Memory Neural Networks (LSTM) 

Traditional feed-forward neural networks are models that are made up of 

input, hidden, and output layers where data moves in a forward motion without 

looping or going backward. Given a time series prediction problem such as an 

inertial signal, the value of a current time sample is influenced by previous time 

samples. Therefore, it is important for a network to take into consideration data 

that has already passed, making feed-forward networks unfit to handle time 

series data.  
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RNNs are special neural networks that can properly handle time series 

data or input sequences by feeding themselves information from past data to 

influence current data. For the current input sequence to be properly influenced, 

RNNs utilize back propagation through time (BPTT), which is a method of 

adjusting the weights that affect the training of a neural network by calculating 

the weight values that would result in the lowest loss. BPTT makes RNNs 

susceptible to exploding or vanishing gradients due to the constant derivation 

that occurs. Researchers developed an LSTM RNN to address this common 

issue with the addition of a special memory cell within each LSTM unit [22].  

Hidden states in RNNs, including LSTMs, are variables that contain 

sequence information up to the current time step, 𝑡𝑡, meaning that the hidden 

state, ℎ𝑡𝑡  , at any time step is influenced by the current input, 𝑥𝑥𝑡𝑡  , and previous 

hidden state, ℎ𝑡𝑡−1 . The special memory cell in LSTMs is similar to hidden states, 

but its value is also influenced by additional gates. LSTMs utilize an output gate, 

input gate, and forget gate to determine what information is important enough to 

remember and what can be forgotten. Given ℎ hidden units, a batch size of 𝑛𝑛, 

and an input sequence of size 𝑑𝑑, the input is 𝑋𝑋𝑡𝑡 ∈  ℝ𝑛𝑛 × 𝑑𝑑 and ℎ𝑡𝑡−1  ∈  ℝ𝑛𝑛 ×ℎ. 

Given this, the LSTM gates are defined as follows. 

The input gate, 𝐼𝐼𝑡𝑡, which decides when data will be read into the memory 

cell, is calculated as  

𝐼𝐼𝑡𝑡 =  𝜎𝜎(𝑋𝑋𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑖𝑖 + 𝑏𝑏𝑖𝑖) ; 
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the forget gate, 𝐹𝐹𝑡𝑡, which decides what information can be removed from 

the cell, is calculated as  

𝐹𝐹𝑡𝑡 =  𝜎𝜎�𝑋𝑋𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑓𝑓 + 𝑏𝑏𝑓𝑓� ; 

and lastly, the output gate, 𝑂𝑂𝑡𝑡, which reads out entries from the memory 

cell, is calculated as  

𝑂𝑂𝑡𝑡 =  𝜎𝜎(𝑋𝑋𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑜𝑜 + 𝑏𝑏𝑜𝑜) ; 

where 𝑊𝑊𝑥𝑥𝑥𝑥, 𝑊𝑊𝑥𝑥𝑥𝑥, 𝑊𝑊𝑥𝑥𝑥𝑥 , 𝑊𝑊ℎ𝑖𝑖,  𝑊𝑊ℎ𝑓𝑓, and 𝑊𝑊ℎ𝑜𝑜 are weight parameters, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑓𝑓, 

and 𝑏𝑏𝑜𝑜 are bias parameters, and  𝜎𝜎 is a sigmoid activation function.  

Each of these gates influences the final value of the memory cell, which 

then enables the LSTM to learn and retain dependencies on long input 

sequences, which has been shown to work well for HAR using sensor data [23]. 

As the network processes more time steps, the memory cell “learns” based on 

the current input and past inputs, enabling it to properly retain information on 

hundreds of future inputs.  

For our baseline LSTM model we combine LSTM and dense layers with 

100 units each (see Figure 7).  
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Figure 7.  Baseline LSTM Architecture. 
 

 

CNN-LSTM Hybrid  

After reviewing our baseline CNN and LSTM architectures, we designed a hybrid 

CNN-LSTM architecture that takes advantage of the feature extraction 

capabilities of a CNN and the retention of temporal dependencies of an LSTM. 

The architecture that we use is shown in Figure 8. We made modifications to this 

architecture by varying the number of CNN and LSTM layers to see how 

accuracy performance is affected. The process of HAR for the hybrid models is 

as follows: 1) Sensor data is input through 1D convolutional layer(s) which results 

in independent, non-handcrafted feature maps, 2) the output is passed through a 

max-pooling layer to down-sample the feature maps, 3) the remaining feature 

maps are then flattened to be processed through the LSTM layer(s), which 

identify temporal dependencies, and 4) the LSTM layer(s) output a vector of 

predictions which is passed through a softmax dense layer to complete the final 
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classification. We used this architecture for implementing a variety of hybrid 

architectures.
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Figure 8: CNN-LSTM Hybrid Model 
S. Perez-Gamboa, Q. Sun and Y. Zhang, "Improved Sensor Based Human Activity Recognition via Hybrid 
Convolutional and Recurrent Neural Networks," 2021 IEEE International Symposium on Inertial Sensors and 
Systems (INERTIAL), 2021, pp. 1-4, doi: 10.1109/INERTIAL51137.2021.9430460. 
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CHAPTER FIVE 

EXPERIMENT AND IMPLEMENTATION 

Datasets 

I trained and tested our implemented models with the University of 

California, Irvine (UCI) public domain dataset for HAR [5] and the University of 

Texas at Dallas Multimodal Human Activity (UTD-MHA) dataset [6]. 

UC Irvine Dataset 

The first dataset we used to test our models is publicly available on the 

UCI Machine Learning repository. It is a dataset containing inertial data from the 

embedded accelerometer and gyroscope in a Samsung Galaxy S II smartphone 

(see Figure 1). A total of 30 subjects, ages ranging from 19 to 48, wore the 

smartphone on their waist and performed six daily living activities, twice: 

“standing”, “sitting”, “laying down”, “walking”, “walking downstairs”, and “walking 

upstairs”. Researchers collected the triaxial linear acceleration and angular 

velocity data at a sampling rate of 50Hz. Once all data was obtained, it was pre-

processed using a median and 3rd order Butterworth filter. It was then fitted into 

2.56-second fixed-width sliding windows with 50% overlap. Figures 9 and 10 

provide images and graphs of the “walking” and “walking upstairs” actions and 

their corresponding acceleration data.  
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Figure 9.  Image and Acceleration Signal for “Walking”. 
D. Anguita, A. Ghio, L. Oneto, X.Parra and J. Reyes-Ortiz. “A Public Domain 
Dataset for Human Activity Recognition Using Smartphones,” 21th European 
Symposium on Artificial Neural Networks, Computational Intelligence and 
Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013. 
 
 
 
 
 
 
 
 

 

Figure 10.  Image and Acceleration Signal for “Walking Upstairs”. 
D. Anguita, A. Ghio, L. Oneto, X.Parra and J. Reyes-Ortiz. “A Public Domain 
Dataset for Human Activity Recognition Using Smartphones,” 21th European 
Symposium on Artificial Neural Networks, Computational Intelligence and 
Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013. 

 



23 
 

UTD-MHA Dataset 

The UTD-MHA dataset contains inertial sensor data that provides linear 

acceleration and angular velocity signals obtained from a low-cost wireless 

wearable inertial sensor that was built at the university (see Figure 2). 

Researchers in [6] had 8 subjects wear the inertial sensor and perform 27 

different actions, 4 times. The subjects wore the inertial sensor on their right wrist 

for actions 1 through 21, and on their right thigh for actions 22-27. Table 1 has a 

full list of all 27 activities.  
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Table 1. Human Actions in UTD-MHA Dataset 
 

 
C. Chen, R. Jafari, and N. Kehtarnavaz, "UTD-MHAD: A Multimodal Dataset for 
Human Action Recognition Utilizing a Depth Camera and a Wearable Inertial 
Sensor", Proceedings of IEEE International Conference on Image Processing, 
Canada, September 2015. 
 

Researchers collected the signals at a sampling rate of 50Hz. Unlike the 

UCI dataset, which is provided pre-processed, these inertial signals were not pre-

processed. It is common in signal processing to apply noise filters to remove 

non-vital information (“noise”). I applied a median filter, which is a non-linear 

filtering technique used to remove noise from images and signals by removing 

outlier data. I also applied a low pass 3rd order Butterworth filter with a cutoff 

frequency of 20Hz. Figure 11 shows an image of the “bowling” action and its 
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corresponding acceleration signal before and after filtering. The goal of noise 

filtering the data is to remove unnecessary noise without altering the overall 

signal to the point where it is no longer valid. 
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Figure 11.  Image of “Bowling” Action (Top), Raw and Filtered Acceleration Signals (Bottom). 
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In addition to applying noise filters, it is also necessary to segment our 

data before feeding it into our deep learning models. The sliding window 

segmentation approach splits a raw sensor signal into windows of fixed size or 

fixed number of samples. Literature has shown that overlapping sliding windows 

increases the recognition rate in HAR [24]. Therefore, we segmented our data 

into windows of 144 time-steps with 50% overlap. 

Experiment Setup 

For deep learning models, the most critical part of the HAR process is 

properly training the model on sufficient data so that it can accurately identify 

new, unseen data. I separated both the UCI and UTD-MHA datasets into 70% 

training and 30% testing subsets, with no overlap between the subsets. 

To properly compare the performances of different deep learning models 

on the datasets, I designed the following: baseline CNN and LSTM models, 

multilayer CNN and LSTM models, and a variety of multilayer CNN-LSTM hybrid 

models. The number of epochs for training and hyperparameters such as the 

number of filters, kernels, dropout rates, and the number of nodes were selected 

by using [12] as a starting point and manually fine-tuning them through trial and 

error.  

For the larger UTD-MHA dataset, I first ran all models with 15 activities, 

and then for all 27 activities. Starting with a lower total of activities allowed me to 

fine-tune the final models for the more complicated 27 activities.  
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Implementation 

Implementation of the models was done using the Python programming 

language, Keras application programming interface (API), and Tensorflow 

framework. Deep learning algorithms require large amounts of computing power, 

and typically running these algorithms on a system with only a Central 

Processing Unit (CPU) can take anywhere from hours to days.  Graphics 

Processing Units (GPUs), which are more powerful than CPUs, are preferred 

when running deep learning algorithms since they can quickly compute the 

complex mathematical operations required by deep learning neural networks. 

GPUs can be expensive, therefore I utilized cloud GPU computing to run our 

deep learning models. GPU cloud computing reduced the overall training time for 

our models, allowing me to easily adjust model parameters and complete more 

runs to get thorough results. I obtained results by running all models using an 

Amazon Elastic Compute Cloud instance with the following configuration: 1 

NVIDIA Tesla V100 GPU, 8 Intel Xeon E5-2686 v4 CPUs, 16 gigabyte (GB) GPU 

Memory, and a 100 GB solid state drive (SSD). 
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CHAPTER SIX 

RESULTS 

Overall Performance Accuracy 

The results of all implemented deep learning models and 2 traditional 

machine learning methods on the UCI HAR dataset are shown in Table 2, with 

the best performing model highlighted in bold [11]. The table lists the overall 

performance accuracy of each model in classifying the 6 activities, as well as the 

training time for the respective models. The same hyperparameters were applied 

to all the models, and they were all trained with the same data subset. Therefore, 

comparing the overall training time of each of these models gives us a better idea 

of how lightweight and efficient a model is. One drawback of deep learning 

algorithms can be the long training times, so obtaining a high accuracy with a low 

training time is compelling in the field of deep learning. From Table 2, we see that 

the 2-layer CNN combined with 1-layer LSTM outperformed all other models with 

a high accuracy of 94.7% and a training time of 7.7 minutes. All deep learning 

models outperformed the traditional methods presented by [5], which upholds 

that deep learning methods which automatically extract features and complete 

classification, outperform TML methods that require hand-crafted features [11]. 
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Table 2. Summary of Performance Accuracy – UCI Dataset 

S. Perez-Gamboa, Q. Sun and Y. Zhang, "Improved Sensor Based Human Activity Recognition via Hybrid 
Convolutional and Recurrent Neural Networks," 2021 IEEE International Symposium on Inertial Sensors and 
Systems (INERTIAL), 2021, pp. 1-4, doi: 10.1109/INERTIAL51137.2021.9430460. 

 

Model UCI HAR Accuracy (%) Training Time (minutes)
MC-SVM [5] 89.3 Unknown

MC-HF-SVM [5] 89.0 Unknown
1-layer LSTM 90.2 7.3
2-layer LSTM 91.0 14.91
1-layer CNN 91.1 3.2
2-layer CNN 92.4 3.5

1-layer CNN-1-layer LSTM 91.9 4.4
1-layer CNN-2-layer LSTM 91.0 4.2
2-layer CNN-1-layer LSTM 94.7 7.7
2-layer CNN-2-layer LSTM 94.3 6.7
2-layer CNN-3-layer LSTM 92.5 9.3
3-layer CNN-1-layer LSTM 91.6 4.9
3-layer CNN-2-layer LSTM 91.7 7.4
3-layer CNN-3 layer LSTM 92.9 9.9
4-layer CNN-1 layer LSTM 93.8 7.1
4-layer CNN-2-layer LSTM 92.5 7.2

Summary of Performance Accuracy & Training Time
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Based on the results of the UCI dataset, I noticed that models with an 

even number of CNN layers outperformed models with an odd number of CNN 

layers. These models were excluded from the next experiment with the UTD-

MHA dataset. The results of all implemented deep learning models and 1 

traditional machine learning method on the UTD-MHA dataset are shown in 

Table 3, with the best performing model being the 4-layer CNN-1-layer LSTM 

hybrid model with an accuracy of 92.94% for 15 activities, and 88.04% for 27 

activities. Again, all deep learning methods outperformed the traditional method 

presented in [6], which confirms that deep learning is better for HAR, given large 

datasets with highly correlated activities. 

Comparing our LSTM and CNN-only models from both datasets, we can 

see that the CNN models not only outperform the LSTM; they take less time to 

train. This is expected due to the sequential dependencies that embody LSTM 

and other RNN architectures. As explained in the methodology section, each 

time-step of an input sequence passed through an LSTM will be processed 

through gates to determine what information to keep in the memory cell. Each 

evaluation depends on the completion of previous steps, resulting in slower 

performance.
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Table 3. Summary of Performance Accuracy – UTD-MHA Dataset 

Summary of Performance Accuracy & Training Time 

Model  Accuracy - 15 Activities 
(%) 

Training Time 
(minutes) 

Accuracy - 27 Activities 
(%) 

Training Time 
(minutes) 

CRC [6] Unknown Unknown 67.20 Unknown 

1-layer LSTM 88.42 5.36 84.55 9.82 

2-layer LSTM 90.25 16.48 87.27 17.74 

1-layer CNN 90.25 0.81 65.92 2.65 

2-layer CNN 91.53 0.93 87.78 3.95 
2-layer CNN-1-layer 

LSTM 92.79 1.48 82.50 4.77 

2-layer CNN-2-layer 
LSTM 92.66 1.59 87.92 4.60 

2-layer CNN-3-layer 
LSTM 92.12 4.11 87.99 5.88 

4-layer CNN-1 layer 
LSTM 92.94 2.08 88.04 7.04 
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Performance Metrics 

When using human activity datasets for training and testing deep learning 

models, it is important for the dataset to be balanced in terms of the number and 

type of activities. An imbalanced dataset could mean that the overall 

performance accuracy is influenced by one activity that has a high recognition 

rate but ignores an activity with a poor recognition rate. To ensure that our 

datasets are balanced when applied to our models, it is important to examine the 

precision score, recall score, and F1 score for each. 

When our models are classifying the sensor data, we encounter the 

following possibilities: true positives (𝑇𝑇𝑇𝑇), true negatives (𝑇𝑇𝑇𝑇), false positives 

(𝐹𝐹𝐹𝐹), and false negatives (𝐹𝐹𝐹𝐹). TP and TN classifications occur when our model 

correctly predicts whether the input sequence is or is not an activity, while FP and 

FN classifications occur when our model makes an incorrect prediction.  

A precision score denotes the ratio of an activity’s TP classifications to the 

total TP and FP classifications for that activity. A precision score answers the 

question: How many human activities were accurately recognized and labeled by 

the model? Precision (𝑃𝑃) is calculated with the following: 

 

𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
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A recall score denotes the ratio of an activity’s TP classifications to all 

classifications of that activity. Recall answers the question: of all the actual 

sequences of a specific activity, how many did the model correctly label? Recall 

(𝑅𝑅) is calculated with the following: 

 

𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

An F1 score is the weighted average of the precision score and the recall 

score, and takes both false positives and false negatives into account. The F1 

score equally considers all classifications, giving us a more accurate look at the 

performance of a model. F1 scores (F1) are calculated with the following: 

 

𝐹𝐹1 =  2 × 
𝑅𝑅 × 𝑃𝑃
𝑅𝑅 + 𝑃𝑃

 

 

Table 4 shows the average of each of these metrics for all our deep 

learning models on the UCI Dataset. It shows us that our 2-layer CNN-1-layer 

LSTM model had the highest overall metrics with a mean precision score of 95%, 

mean recall score of 95%, and mean F1 score of 95%, which correctly reflects its 

high overall performance accuracy of 94.7%  
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Table 4. Summary of Performance Metrics - UCI Dataset 

S. Perez-Gamboa, Q. Sun and Y. Zhang, "Improved Sensor Based Human 
Activity Recognition via Hybrid Convolutional and Recurrent Neural Networks," 
2021 IEEE International Symposium on Inertial Sensors and Systems 
(INERTIAL), 2021, pp. 1-4, doi: 10.1109/INERTIAL51137.2021.9430460. 
 

Table 5 shows the average of each of these metrics for all our deep 

learning models on the UTD-MHA Dataset. It shows us that our 4-layer CNN-1-

layer LSTM model had one of the highest overall metrics, which correctly reflects 

its high overall accuracy for both 15 and 27 activities.  

By comparing Tables 2, 3, 4, and 5, we can see that our models’ overall 

accuracy is proportional to their performance metrics, which lets us know that our 

datasets were balanced.  

Model Mean Precision (%) Mean Recall (%) Mean Recall (%)
1-layer LSTM 91 90 90
2-layer LSTM 91 91 91
1-layer CNN 91 91 91
2-layer CNN 93 93 92

1-layer CNN-1-layer LSTM 91 91 91
1-layer CNN-2-layer LSTM 91 91 91
2-layer CNN-1-layer LSTM 95 95 95
2-layer CNN-2-layer LSTM 94 94 94
2-layer CNN-3-layer LSTM 93 93 92
3-layer CNN-1-layer LSTM 92 92 92
3-layer CNN-2-layer LSTM 92 92 92
3-layer CNN-3 layer LSTM 93 93 93
4-layer CNN-1 layer LSTM 94 94 94
4-layer CNN-2-layer LSTM 93 93 93

Summary of Performance Metrics
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Table 5. Summary of Performance Metrics – UTD-MHA Dataset 
 

 

 

Model 
Mean Precision (%)             

15 Activities
Mean Recall (%)             

15 Activities
Mean F1-Score (%)             

15 Activities
Mean Precision (%)             

27 Activities
Mean Recall (%)           

27 Activities
Mean F1-Score (%)           

27 Activities

1-layer LSTM 90 88 88 86 85 85
2-layer LSTM 91 90 90 89 88 87
1-layer CNN 91 90 90 70 67 65
2-layer CNN 92 92 92 88 88 88

2-layer CNN-1-layer LSTM 93 93 93 83 82 82
2-layer CNN-2-layer LSTM 93 93 93 88 88 88
2-layer CNN-3-layer LSTM 92 92 92 87 88 87
4-layer CNN-1 layer LSTM 93 93 93 89 88 88

Summary of Performance Metrics 
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Top Performing Models 

After considering the performance of all our models, we offer a closer look 

at the top-performing hybrid models for both datasets.  

2-layer CNN-1-layer LSTM Hybrid Model for UC Irvine Dataset 

When our deep learning models are being trained, the training data is 

presented in batches until the entire training subset is passed through. With each 

batch, our model makes predictions and based on the error of these predictions, 

the weights of the model are updated. A single iteration of all training data 

passing through the model is referred to as an “epoch”. The number of epochs 

for training deep learning models is usually large to allow the model to properly 

train by repeatedly seeing the training data and sufficiently updating its weights to 

minimize loss. As we increase the number of epochs, we expect the overall 

accuracy to increase as well. Figure 12 demonstrates the accuracy rate of our 

model over epochs as it was repeatedly training, and as it was testing with 

unseen testing data. We can see that our model’s performance as it is training is 

what we expect: as the number of epochs increases, so does the accuracy. We 

expect our training data to have a higher accuracy than the testing data since it is 

data that the model repeatedly sees after each epoch. The testing data will have 

a lower accuracy because it is unseen data that is passed through the model 

only once to make the final predictions.  
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Figure 12. Accuracy vs Epochs for Training and Testing (UCI). 
 

 

Figure 13 presents a confusion matrix for our model for each of the 6 

activities in the dataset. The confusion matrix provides insight into the number of 

times our model classified a specific activity correctly or incorrectly classified it as 

another activity. Figure 13 shows that our model struggled the most with 

differentiating between the “sitting” and “standing” actions, this is likely due to the 

similarity in acceleration and subject orientation while performing these actions. 

Our model had a 100% correct classification rate for the “laying” activity, and only 

misclassified “walking downstairs” 3 times [11]. 
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Figure 13.  Confusion Matrix for UCI Dataset of 6 Activities. 
S. Perez-Gamboa, Q. Sun and Y. Zhang, "Improved Sensor Based Human 
Activity Recognition via Hybrid Convolutional and Recurrent Neural Networks," 
2021 IEEE International Symposium on Inertial Sensors and Systems 
(INERTIAL), 2021, pp. 1-4, doi: 10.1109/INERTIAL51137.2021.9430460. 
 

 

Figure 14 gives us a closer look at the precision score, recall score, and 

F1 score for each of the activities. By comparing Figure 13 and Figure 14, we 

can see that the results of the confusion matrix are directly proportional to the 

performance metrics. 
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Figure 14.  2-layer CNN-1-layer LSTM Hybrid Model Performance Metrics. 
S. Perez-Gamboa, Q. Sun and Y. Zhang, "Improved Sensor Based Human 
Activity Recognition via Hybrid Convolutional and Recurrent Neural Networks," 
2021 IEEE International Symposium on Inertial Sensors and Systems 
(INERTIAL), 2021, pp. 1-4, doi: 10.1109/INERTIAL51137.2021.9430460.  
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4-layer CNN-2-layer LSTM Hybrid Model for UTD-MHA Dataset 

Figure 15 demonstrates the accuracy rate of our 4-layer CNN-2-layer 

LSTM hybrid model over epochs as it was training and as it was testing with 

unseen data. We can see that although the training accuracy varies, the testing 

accuracy steadily increases as the # of epochs increases. This shows us that we 

could potentially increase the # of epochs to increase the overall performance, 

although this would mean that training time would also be increased. 

 

 

 
Figure 15.  Accuracy vs Epochs for Training and Testing (UTD-MHA). 
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Figure 16 presents a confusion matrix for our model for each of the 27 

activities in the dataset. This shows us that our model identified the “swipe right”, 

“clap”, “basketball shoot”, “squat”, and “lunge” actions quite well. It struggled the 

most classifying “throw”, “tennis swing”, and “pickup & throw”. 

 

 

 
Figure 16.  Confusion Matrix for UTD-MHA Dataset of 27 Activities. 
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Figure 17 gives us a closer look at the precision, recall, and F1 scores for 

each of the activities. We can see that “swipe right”, “clap”, “cross arms”, “jog”, 

“walk”, “sit2stand”, “stand2sit”, and “lunge” all had the highest recall score, 

meaning almost all sequences for those activities were correctly labeled. “Draw 

triangle”, “baseball swing”, and “draw x” had the lowest precision score, which 

means that the activities were incorrectly labeled by our model. As mentioned, 

the F1 score is one of the most useful ways to examine the classification 

accuracy of a model. The model performed best with “clap”, “walk”, and 

“stand2sit” with a 100% F1 score. The model struggled most with “tennis swing”, 

“push”, and “tennis serve”. By comparing Figure 16 and Figure 17, we can see 

that the results of the confusion matrix are directly proportional to the 

performance metrics. 
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Figure 17. 4-layer CNN-1-layer LSTM Hybrid Model Performance Metrics 
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CHAPTER SEVEN 

CONCLUSION 

For this project, I explored the combination of deep learning models when 

analyzing two human activity datasets containing inertial sensor data. All 

presented deep learning models outperform previously presented TML methods. 

Our 2-layer CNN-1-layer LSTM hybrid model on the UCI dataset outperforms all 

other deep learning models with an accuracy of 94.7%. Additionally, our 4-layer 

CNN-1-layer LSTM hybrid model on the UTD-MHA dataset outperforms all other 

deep learning models with an accuracy of 92.94% for 15 activities, and 88.04% 

for 27 activities. Our presented lightweight hybrid models not only have a high-

performance accuracy, but also have a fast model training time, which is 

compelling in the deep learning field. Overall, this project strengthens the 

premise that deep learning models are highly efficient in accomplishing sensor-

based HAR and that there are simple ways to improve their performance through 

slight architecture adjustments. These models can be used for HAR across many 

domains such as health, fitness, social work, sociology, and gaming. There is 

further work that can be done in this area to strengthen performance, such as 

exploring different methods of sensor-based human data processing, optimizing 

deep learning model hyperparameters, and considering other deep learning 

models to combine. I hope to one day continue this research and apply it in other 

research fields. 
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