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Abstract

When it is not possible to integrate a function we resort to Numerical Integration. For

example the ubiquitous Normal curve tables are obtained using Numerical Integration.

The antiderivative of the defining function for the normal curve involves the formula for

antiderivative of e−x
2

which can’t be expressed in the terms of basic functions.

One of the best known Numerical Integration formula is the so-called Simpson’s rule.

The rule states that we can replace
∫ b
a f(x) dx by

b− a
6

[f(a) + 4f(
a+ b

2
) + f(b)].

Of course for most functions Simpson’s rule is going to give us just an approxi-

mation for the true value of the integral, so it is very important to be able to control the

error for this approximation. It is known that for four times differentiable functions

∫ b

a
f(x) dx− b− a

6
[f(a) + 4f(

a+ b

2
) + f(b)] = − 1

90
(
b− a

2
)5f iv(ψ) (0.0.1)

where f iv(ψ) is the value of the fourth derivative at some point ψ ∈ (a, b). From this

formula it follows that Simpon’s rule can be used to evaluate integrals off all polynomials

of degree 3 or less. This is because the fourth derivative for these polynomials is identi-

cally zero hence the error term − 1
90( b−a2 )5f iv(ψ) is zero. For other functions we need an

estimate on the size of its fourth derivatives.

Simpson’s rule is studied in most Calculus books, and in all undergraduate Numeri-

cal Analysis books, but proofs of (0.0.1) are not provided. Hence if one is interested in a

proof of (0.0.1), either it can be found in advanced Numerical Analysis books as a special

case of the so called Newton-Cotes formulas, or in math journals such as American Math-

ematical Monthly. My thesis adviser Hajrudin Fejzić, has recently published yet another

proof in [Fej17]. In this thesis I plan to introduce Numerical Integration formulas such

as simpler Composite and Midpoint rules as well as Simpson’s rule and I will provide the

proofs to these rules using the ideas developed in [Fej17] as well as new proofs based on

ideas of Dr. Fejzić that were communicated to me.
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Chapter 1

Introduction

If f(x) is positive over the interval [a, b], then the area between the x axis and

the graph of f(x) over the interval [a, b] is
∫ b
a f(x) dx. In order to find this integral we

first have to find the antiderivative of f(x) which may be very difficult to do, or as in the

case of the Gaussian function, f(x) = e−x
2
, a function that is used to describe the normal

distributions, has no antiderivative (other than F (x) =
∫ x
−∞ e

−t2 dt.) Fortunately, we can

approximate this integral to any level of accuracy with the help of Numerical Integration.

The simplest Numerical Integration formulas are Trapezoid rule

∫ b

a
f(x) dx ≈ f(a) + f(b)

2
(b− a)

the Midpoint rule

∫ b

a
f(x) dx ≈ f

(
a+ b

2

)
(b− a)

and Simpson’s rule

∫ b

a
f(x) dx ≈

f(a) + 4f
(
a+b
2

)
+ f(b)

6
(b− a).

These rules are special cases of the so called Newton-Cotes formulas, and they

are obtained by approximating the function with the interpolating polynomials. For ex-

ample Trapezoid rule is obtained by integrating the line connecting (a, f(a)) and (b, f(b)).

This integral represents the area of the corresponding trapezoid, hence the name Trape-

zoid rule. The Midpoint rule is obtained by integrating the line y = f(a+b2 ), while
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the Simpson’s rule is obtained by integrating the parabola through the points (a, f(a)),

(a+b2 , f(a+b2 )), and (b, f(b)).

It is known that the errors obtained using Newton-Cotes formulas for differen-

tiable functions, depend only on higher order derivatives of f(x) evaluated at some point

ψ ∈ (a, b). For example the errors for Trapezoid, Midpoint, and Simpson’s rule are

ET =

∫ b

a
f(x) dx− f(a) + f(b)

2
(b− a) = −(b− a)3

12
f ′′(ψ)

EM =

∫ b

a
f(x) dx− f

(
a+ b

2

)
(b− a) =

(b− a)3

24
f ′′(ψ)

ES =

∫ b

a
f(x) dx−

f(a) + 4f
(
a+b
2

)
+ f(b)

6
(b− a) = −(b− a)5

180
f iv(ψ)

respectively.

Introductory books on Numerical Integration give only proof of Trapezoid Rule,

and no proof for Midpoint and Simpson’s rules. We will reproduce the proof for Trapezoid

Rule given in [CK13]. Advanced books on Numerical Integration, see [IK66], provide

proofs for all Newton-Cotes formulas based on the theory of divided differences. Hence

the formulas for the errors ET , EM , and ES can be derived from the statement of this

advanced theorem.

The lack of elementary proofs for Midpoint and Simposn’s rule in Introductory

books on Numerical Integration has been puzzling so much that a number of papers

have been published in journals devoted to undergraduate research such as American

Mathematical Monthly and Mathematics Magazine. See [Tal06] and [CN03]. Each of

these proofs comes with authors claim that they are elementary enough and appropriate

for undergraduate text in Numerical Integration. However the authors of Introductory

Numerical Analysis have not bought into their claims yet. We will illustrate some of these

ideas from [Gor02]. Gordon in [Gor02] provides elementary proofs to these rules through

a series of lemmas and exercises with hints. We will provide complete proofs using ideas

from Gordon’s book.

Finally we will give original proofs to these three rules and to Simpson’s 3
8 ’s

rule that were communicated to me by Dr. Fejzić. Dr. Fejzić’s proofs are elementary

in nature and only use the basic properties of continuous, differentiable and integrable

functions. We point out that Dr. Fejzić’s results are stronger than above mentioned
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results since the requirement for f(x) at the end points is the continuity only, while

most other proofs, including the theorem from advanced books on Numerical Integration,

require that f(x) is n times continuously differentiable on [a, b]. For comparison, this is

equivalent to replacing the conditions of Rolle’s theorem, f is continuous on [a, b] and

differentiable on (a, b) with f(x) is continuously differentiable on [a, b].

1.1 Riemann Integral

In this section we will review basic definitions and properties of Riemann inte-

grals.

Definition 1.1. Suppose f : [a, b] → R is a bounded function and P is a partition

x0, . . . , xn of [a, b]. The lower Riemann sum L(f, P, [a, b]) and the upper Riemann sum

U(f, P, [a, b]) are defined by

L(f, P, [a, b]) =

n∑
j=1

(xj − xj−1) inf
[xj−1,xj ]

f

and

U(f, P, [a, b]) =

n∑
j=1

(xj − xj−1) sup
[xj−1,xj ]

f.

Theorem 1.2. Suppose f : [a, b]→ R is a bounded function and P , P ′ are partitions of

[a, b] such that the list defining P is a sublist of the list defining P ′. Then

L(f, P, [a, b]) ≤ L(f, P ′, [a, b]) ≤ U(f, P ′, [a, b]) ≤ U(f, P, [a, b]).

Definition 1.3. Suppose f : [a, b] → R is a bounded function. The lower Riemann

integral L(f, [a, b]) and the upper Riemann integral U(f, [a, b]) of f are defined by

L(f, [a, b]) = sup
P
L(f, P, [a, b])

and

U(f, [a, b]) = inf
P
U(f, P, [a, b]),

where the supremum and infimum above are taken over all partitions P of [a, b].
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Definition 1.4. A bounded function on a closed bounded interval is called Riemann

integrable if its lower Riemann integral equals its upper Riemann integral.

If f : [a, b]→ R is Riemann integrable, then the Riemann integral
∫ b
a f is defined by∫ b

a
f = L(f, [a, b]) = U(f, [a, b]).

Theorem 1.5. Every continuous real-valued function on each closed bounded interval is

Riemann integrable.

It is important to note that the converse is not true. A function that is Riemann

integrable could be a function that is not continuous. For example, consider the piecewise

function,

f(x) =


−1 −2 ≤ x < 0

0 x = 0

1 0 < x ≤ 2

Figure 1.1: Riemann Integrable: Piecewise Function

By definition, Figure 1.1 is a piecewise function that is Riemann integrable since

its lower Reimann integral equals its upper Riemann integral. However, despite being

Riemann integrable, it is not continuous. Therefore, the converse is not true.
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Theorem 1.6 (Mean Value Theorem for Integrals). If f is continuous on [a, b], then

there exists a point c ∈ [a, b] such that f(c)(b− a) =
∫ b
a f .

Theorem 1.7 (Fundamental Theorem of Calculus). Suppose that f is Riemann integrable

on [a, b].

a) If a function F is defined by F (x) =
∫ x
a f for each x ∈ [a, b], then F is continuous on

[a, b] and differentiable at each point x ∈ [a, b] for which f is continuous. At these points,

F ′(x) = f(x).

b) If G is an antiderivative of f on [a, b], then
∫ b
a f = G(b)−G(a).

Theorem 1.8. Let f : [a, b]→ R and let c ∈ (a, b).

a) If f is Riemann integrable on [a, b], then f is Riemann integrable on each subinterval

of [a, b].

b) If f is Riemann integrable on each of the intervals [a, c] and [c, b], then f is Riemann

integrable on [a, b] and
∫ b
a f =

∫ c
a f +

∫ b
c f .

1.2 Basic properties of continuous and differentiable func-

tions

In this section we will review basic properties of continuous and differentiable

functions.

Theorem 1.9. Let I be an interval, let f : I → R, and let c ∈ I. If f is differentiable at

c, then f is continuous at c. Consequently, if f is differentiable on an interval J , then f

is continuous on J .

Proposition 1.10. If f(x) > 0 for a < x < b then
∫ b
a f(x) dx > 0.

Theorem 1.11 (Mean Value Theorem). If f : [a, b] → R is continuous on [a, b] and

differentiable on (a, b), then there exists a point c ∈ (a, b) such that f ′(c) = f(b)−f(a)
(b−a) .

Theorem 1.12 (Intermediate Value Theorem for continuous functions (and derivatives)).

Suppose that f : [a, b]→ R is continuous (differentiable) on [a, b]. If v is a number between

f(a) and f(b), (f ′(a) and f ′(b)) then there is a point c ∈ (a, b) such that f(c) = v

(f ′(c) = v).
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Theorem 1.13 (First Derivative Test). Suppose f is continuous on an open interval

(a, b) and differentiable on (a, b) except possibly at the point c ∈ (a, b) and assume that c

is a critical point of f .

a) If f ′ is positive on (a, c) and negative on (c, b), then f has a relative maximum value

at c.

b) If f ′ is negative on (a, c) and positive on (c, b), then f has a relative minimum value at

c.

Theorem 1.14 (Second Derivative Test). Suppose that f is twice differentiable on an

open interval (a, b) and that f ′(c) = 0 for some point c ∈ (a, b).

a) If f ′′(c) < 0, then f has a relative maximum value at c.

b) If f ′′(c) > 0, then f has a relative minimum value at c.

1.3 Rolle’s Theorem and Fundamental Lemma

Rolle’s theorem will play an important role in our treatment of the subject.

Theorem 1.15 (Rolle’s Theorem). Let f : [a, b] → R be continuous on [a, b] and differ-

entiable on (a, b). If f(a) = f(b), then there exists a point c ∈ (a, b) such that f ′(c) = 0.

The Rolle’s Theorem relies on three conditions. If any of these conditions fail,

the Rolle’s Theorem does not work. The three conditions are:

1. f is differentiable on an open interval, (a, b)

2. f is continuous on the closed interval, [a, b]

3. f(a) = f(b)

Counterexample 1: In this example condition (2) is not met. Consider the function

f(x) =

2x− 2 x < 2

2x− 4 x ≥ 2

Figure 1.2 shows that this function is differentiable on the open interval, (1, 2) and

f(1) = f(2), however it is not continuous at x = 2. When we derive this piecewise

function, we get f ′(x) = 2, thus there can’t exist a point c ∈ (1, 2) where f ′(c) = 0.
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Figure 1.2: Rolle’s Theorem’s counterexample 1: Piecewise Function

Counterexample 2: In this example, condition (3) is not met. Consider the function

f(x) = x. Figure 1.3 shows that this function is differentiable on any open interval, (a, b)

and it is continuous on any closed interval, [a, b], however f(a) 6= f(b). When we derive

this function, we get f ′(x) = 1, thus there can’t exist a point c ∈ (a, b) where f ′(c) = 0.

Figure 1.3: Rolle’s Theorem’s counterexample 2: Linear Function
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Counterexample 3: In this example, condition (1) is not met. Consider the function

f(x) = |x| − 2. Figure 1.4 shows that this function is continuous on the closed interval,

[−2, 2] and f(−2) = f(2), however it is not differentiable on the open interval (−2, 2).

When we derive this function, we get f ′(x) = x
|x| and with this rational equation, there

doesn’t exist a point c ∈ (−2, 2) where f ′(c) = 0.

Figure 1.4: Rolle’s Theorem’s counterexample 3: Absolute Value Function

Together with Rolle’s theorem, the following simple lemma will be crux in Dr.

Fejzić’s proofs of the error terms ET , EM and ES .

Lemma 1.16. If g is continuous on [a, b] and
∫ b
a g(x) dx = 0, then there exists a point

c, with a < c < b such that g(c) = 0.

Proof. Suppose that the statement of Lemma 1.16 is false; that is suppose that for all

a < x < b, g(x) 6= 0. Since g is continuous, then by the Intermediate Value Property:

(1) g(x) > 0 for all a < x < b or

(2) g(x) < 0 for all a < x < b.

Let p = a + b−a
3 , and q = b − b−a

3 . Then the interval [p, q] is the middle third of the

interval [a, b]. Since g is continuous on the closed interval [p, q], it attains the minimum

m and maximum M on [p, q]. Thus for all x ∈ [p, q] we have g(x) ≥ m and g(x) ≤ M .
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Now consider the case that g(x) > 0 for all a < x < b. It follows that m > 0 and hence∫ b

a
g(x) dx =

∫ p

a
g(x) dx+

∫ q

p
g(x) dx+

∫ b

q
g(x) dx ≥

∫ p

a
0 dx+

∫ q

p
m dx+

∫ b

q
0 dx = m(q − p) > 0

contradicting the assumption that
∫ b
a g(x) dx = 0.

It remains to show that g(x) < 0 for all a < x < b also leads to a contradiction.

In this case, M < 0 and hence,∫ b

a
g(x) dx =

∫ p

a
g(x) dx+

∫ q

p
g(x) dx+

∫ b

q
g(x) dx ≤

∫ p

a
0 dx+

∫ q

p
M dx+

∫ b

q
0 dx = M(q − p) < 0

contradicting the assumption that
∫ b
a g(x) dx = 0.

Therefore, if g is continuous on [a, b] and
∫ b
a g(x) dx = 0, then there exists a point c, with

a < c < b such that g(c) = 0.
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Chapter 2

Error Term for the Trapezoid

Rule

The first rule we will analyze is the error term for the Trapezoid Rule. We will

provide two different proofs from [CK13] and [Gor02] respectively. We will finish this

section with Dr. Fejzić’s original proof.

2.1 Kincaid and Cheney proof for Trapezoid Rule

The first proof is from [CK13]. The version in [CK13] is called Composite

Trapezoid Rule. I will comment on the part of the proof that is in bold afterwords.

Theorem 2.1. If f ′′ exists and is continuous on the interval [a, b] and if the composite

trapezoid rule T with uniform spacing h is used to estimate the integral I =
∫ b
a f(x) dx,

then for some ζ in (a, b),

I − T = − 1

12
(b− a)h2f ′′(ζ) = O(h2)

Proof. Prove when a = 0, b = 1, and h = 1.∫ 1

0
f(x) dx− 1

2
[f(0) + f(1)] = − 1

12
f ′′(ζ) (2.1.1)

We will need the error formula for polynomial interpolation. Let p be the polynomial of

degree 1 that interpolates f at 0 and 1. Then p is given by:

p(x) = f(0) + [f(1)− f(0)]x
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Hence we have ∫ 1

0
p(x) dx =

1

2
[f(0) + f(1)]

By the error formula that governs polynomial interpolation, we have (here, of course,

n = 1, x0 = 0, and x1 = 1)

f(x)− p(x) =
1

2
f ′′[ξ(x)]x(x− 1) (2.1.2)

where ξ(x) depends on x in (0, 1). It follows that:∫ 1

0
f(x) dx−

∫ 1

0
p(x) dx =

1

2

∫ 1

0
f ′′[ξ(x)]x(x− 1) dx

That f ′′[ξ(x)] is continuous can be proved by solving Equation (2.1.2) for f ′′[ξ(x)]

and verifying continuity. Notice that x(x − 1) does not change sign in the interval

[0, 1]. Hence, by the Mean-Value Theorem for Integrals, there is a point x = s for which

ξ = ξ(s) and

∫ 1

0
f ′′[ξ(x)]x(x− 1) dx = f ′′[ξ(s)]

∫ 1

0
x(x− 1) dx

= −1

6
f ′′(ζ)

By putting all these equations together, we obtain Equation (2.1.1). Then, by making a

change in variable, we obtain the basic trapezoid rule with its error term:

∫ b

a
f(x) dx =

b− a
2

[f(a)− f(b)]− 1

12
(b− a)3f ′′(ξ) (2.1.3)

The details of this are as follows: Let g(t) = f(a+ t(b−a)) and x = a+ (b−a)t.

Thus, as t traverses the interval [0, 1], x traverses the interval [a, b]. Also, dx = (b− a)dt,

g′(t) = f ′[a + t(b − a)](b − a) and g′′(t) = f ′′[a + t(b − a)](b − a)2. Hence, by Equation

(2.1.1), we have ∫ b

a
f(x) dx = (b− a)

∫ 1

0
f [a+ t(b− a)] dt

= (b− a)

∫ 1

0
g(t) dt

= (b− a)

{
1

2
[g(0) + g(1)]− 1

12
g′′(ζ)

}
=
b− a

2
[f(a)− f(b)]− (b− a)3

12
f ′′(ξ)
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This is the trapezoid rule and error term for the interval [a, b] with only one

subinterval, which is the entire interval. Thus, the error term is O(h)3, where h = b− a.

Here ξ is in (a, b).

Now let the interval [a, b] be divided into n equal subintervals by points x0, x1, ..., xn with

spacing h. Applying Equation (2.1.3) to subinterval [xi, xi+1], we have∫ xi+1

xi

f(x) dx =
h

2
[f(xi) + f(xi+1)]−

1

12
h3f ′′(ξi) (2.1.4)

where xi < ξi < xi+1. We use this result over the interval [a, b], obtaining the composite

trapezoid rule: ∫ b

a
f(x) dx =

n−1∑
i=0

∫ xi+1

xi

f(x) dx

=
h

2

n−1∑
i=0

[f(xi)− f(xi+1)−
h3

12

n−1∑
i=0

f ′′(ξi) (2.1.5)

The final term in Equation (2.1.5) is the error term, and it can be simplified in the

following way: since h = (b−a)
n , the error term for the composite trapezoid rule is

−h
3

12

n−1∑
i=0

f ′′(ξi) = −(b− a)

12
h2

[
1

n

n−1∑
i=0

f ′′(ξi)

]

= −(b− a)

12
h2f ′′(ζ)

= O(h2)

Here, we have reasoned that the average
[
1
n

]∑n−1
i=0 f

′′(ξi) lies between the least and

greatest values of f ′′ on the interval (a, b). Hence, by the Intermediate Value Theorem

for derivatives, it is f ′′(ζ) for some point ζ in (a, b). This completes Kincaid’s proof of

the error formula.

As promised we will comment on the part of the proof in bold letters. Here,

Kincaid and Cheney state that we can find that f ′′[ξ(x)] is continuous by solving for it

in Equation (2.1.2). However, when one does this, it results in the equation:

f ′′[ξ(x)] =
2(f(x)− p(x))

x(x− 1)

This function does not exist at x = 0 and x = 1. We could use L’Hopital’s rule to show

that this function is indeed continuous at 0 and at 1, which of course would add to the

complexity of their proof.
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2.2 Gordon’s proof for Trapezoid Rule

In this section we will reproduce the proof in [Gor02]. The proof starts with a

lemma that has a specialized single interval where it is symmetric, before applying it to

a more general case.

Lemma 2.2. If g is twice differentiable on an interval [−r, r] for some positive constant

r, Then there exists a point z in the interval (−r, r) such that∫ r

−r
g − r(g(r) + g(−r)) = −(2r)3

12
g′′(z).

Proof. Let k be the constant that satisfies the equation∫ r

−r
g − r(g(r) + g(−r)) = k(2r)3

(In other words, the number k is the left side of the displayed equation divided by 8r3.)

We must show that k = −g′′(z)
12 for some point z ∈ (−r, r). Define function G : [0, r]→ R

by

G(x) =

∫ x

−x
g − x(g(x) + g(−x))− k(2x)3

Since G(0) = 0 = G(r), Rolle’s Theorem guarantees the existence of a point c ∈ (0, r)

such that G′(c) = 0.

Using the Fundamental Theorem of Calculus to find G′, we obtain

G′(x) =
d

dx

∫ x

−x
g +

d

dx
− x(g(x) + g(−x))− d

dx
k(2x)3

= −x(g′(x)− g(−x) + 24kx)

Since G′(c) = 0 and c 6= 0, it follows that g′(c)− g′(−c) + 24kc = 0. Applying the Mean

Value Theorem for derivatives to the function g′ on the interval [−c, c] yields

k = − 1

12
· g
′(c)− g′(−c)

2c
= − 1

12
g′′(z)

where z ∈ (−c, c) ⊆ (−r, r). This completes the proof.

Next, Gordon proves Lemma 2.2 where the symmetric interval [−r, r] is replaced

by an arbitrary interval [c, d].
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Lemma 2.3. If f is twice differentiable on an interval [c, d], then there exists a point v

in the interval (c, d) such that∫ d

c
f − d− c

2
(f(d) + f(c)) = −(d− c)3

12
f ′′(v)

Proof. Let m = (d + c)/2, let r = (d − c)/2, and define a function g on [−r, r] by

g(x) = f(x+m). Notice that∫ d

c
f − d− c

2
(f(d) + f(c)) =

∫ r

−r
g − r(g(r) + g(−r))

By the previous lemma, there exists a point z ∈ (−r, r) such that∫ d

c
f − d− c

2
(f(d) + f(c)) = −(2r)3

12
g′′(z) = −(d− c)3

12
f ′′(v),

where v = z +m is a point in the interval (c, d).

Now the Composite Trapezoid Rule follows easily from Lemma 2.3.

Theorem 2.4. If f is twice differentiable on an interval [a, b] and n is a positive integer,

then there exists a point v in the interval (a, b) such that∫ b

a
f − Tn = −(b− a)3

12n2
f ′′(v),

where Tn is the nth trapezoidal estimate to the integral.

Proof. Fix a positive integer n and let xi = a+ i (b−a)n for 0 ≤ i ≤ n. Using the previous

lemma, we obtain∫ b

a
f − Tn =

n∑
i=1

(∫ xi

xi−1

f − xi − xi−1
2

(f(xi) + f(xi−1))

)

=
n∑
i=1

−(xi − xi−1)3

12
f ′′(vi)

= −(b− a)3

12n3

n∑
i=1

f ′′(vi)

where vi ∈ (xi−1, xi) for each i.

By the Intermediate Value Theorem for derivatives, the function f ′′ has the intermediate

value property on the interval [v1, vn]. Since the average

f ′′(v1) + f ′′(v2) + ...+ f ′′(vn)

n
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is between min {f ′′(vi) : 1 ≤ i ≤ n} and max {f ′′(vi) : 1 ≤ i ≤ n}, there exists a point

v ∈ (v1, vn) ⊆ (a, b) such that∫ b

a
f − Tn = −(b− a)3

12n2
· 1

n

n∑
i=1

f ′′(vi) = −(b− a)3

12n2
f ′′(v).

2.3 Dr. Fejzić’s proof of the Trapezoid Rule

Theorem 2.5. Let f be twice differentiable on an open interval (a, b) and continuous on

[a, b]. Then
∫ b
a f(x) dx = f(a)+f(b)

2 (b− a) +ET , where the error ET = −f ′′(ψ)
12 (b− a)3 for

some ψ ∈ (a, b) .

Proof. Let

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)− ET∫ b

a (x− a)(x− b) dx
(x− a)(x− b).

It is straight-forward to check that g(a) = 0, g(b) = 0,
∫ b
a g(x) dx = 0 and that

g is twice differentiable. Here are the details: First, let’s check to see if g(a) = 0.

Let

g(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a)− ET∫ b

a (a− a)(a− b) dx
(a− a)(a− b)

When simplified,we get:

g(a) = f(a)− f(a)− 0− 0

Thus, g(a) = 0

Next, let’s check to see if g(b) = 0.

Let

g(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a)− ET∫ b

a (b− a)(b− b) dx
(b− a)(b− b)

When simplified, we get:

g(b) = f(b)− f(a)− (f(b)− f(a))− 0

Thus, g(b) = 0.

We will now check to see if
∫ b
a g(x) dx = 0. We will use that

∫ b
a f(a)+ f(b)−f(a)

b−a (x−a) dx =
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f(a)+f(b)
2 (b − a), which can be derived directly or using the formula for the area of a

trapezoid.∫ b

a
g(x) dx =

∫ b

a

(
f(x)−f(a)− f(b)− f(a)

b− a
(x−a)− ET∫ b

a (x− a)(x− b) dx
(x−a)(x−b)

)
dx

Using the additive properties for integrals we get∫ b

a
g(x) dx =

∫ b

a
f(x) dx−

∫ b

a
f(a)− f(b)− f(a)

b− a
(x− a) dx−

ET
∫ b
a (x− a)(x− b) dx∫ b

a (x− a)(x− b) dx
=

∫ b

a
f(x) dx− f(a) + f(b)

2
(b− a)− ET = ET − ET = 0.

For the last preliminary part, we will check to see if g(x) is twice differentiable.

First derivative:

g′(x) = f ′(x)− 0− f(b)− f(a)

b− a
− ET∫ b

a (x− a)(x− b) dx
(2x− a− b)

Second derivative:

g′′(x) = f ′′(x)− 0− 2
ET∫ b

a (x− a)(x− b) dx

It can be stated that g(x) is twice differentiable.

From Fundamental Lemma 1.16 that a < c < b such that g(c) = 0. With this infor-

mation, we will show that there is ψ such that g′′(ψ) = 0. To do this, we will prove the

following lemma:

Lemma 2.6. If g is continuous on [a, b], where a < c < b and g(a) = g(c) = g(b) = 0,

and if g is twice differentiable on (a, b), then there is ψ ∈ (a, b) such that g′′(ψ) = 0.

Proof. Since g is continuous on the interval [a, b] and differentiable at every point in (a, b),

where a < c < b and g(a) = g(c) = g(b), then g is continuous on the intervals [a, c] and

[c, b], and differentiable at every point in (a, c) and (c, b).

By Rolle’s Theorem, since g is continuous on the interval [a, c] and differentiable at every

point in (a, c) such that g(a) = g(c) then

g′(d1) = 0
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for some d1 with a ≤ d1 ≤ c.
Similarly, since g is continuous on the interval [c, b] and differentiable at every point in

(c, b) such that g(c) = g(b) then

g′(d2) = 0

for some d2 with c ≤ d2 ≤ b.
Thus, we get g′(d1) = g′(d2) = 0.

Let h(x) = g′(x). h(x) is differentiable on (a, b) (by the given) and if a function is

differentiable on (a, b), then the function must also be continuous on the interval [a, b].

Since d1, d2 ∈ [a, b], then h(x) is differentiable on (d1, d2) and continuous on [d1, d2]. It

has also been found above that h(d1) = h(d2) and by the Rolle’s Theorem, h′(ψ) = 0 for

some ψ with d1 ≤ ψ ≤ d2.
Thus, if g is continuous on [a, b], where a < c < b and g(a) = g(c) = g(b) = 0, and if g is

twice differentiable on (a, b), then there is ψ ∈ (a, b) such that g′′(ψ) = 0.

Now we have the following result: g(a) = 0, g(b) = 0,
∫ b
a g(x) dx = 0 and g is

twice differentiable. We also found that there is a c with a < c < b such that g(c) = 0

and finally, that there is ψ with ψ ∈ (a, b) such that g′′(ψ) = 0.

We will now combine all of this to find the error term:

g′′(x) = f ′′(x)− ET∫ b
a (x− a)(x− b) dx

· 2

Substituting x with ψ gives us:

g′′(ψ) = f ′′(ψ)− 2ET∫ b
a (x− a)(x− b) dx

0 = f ′′(ψ)− 2ET∫ b
a (x− a)(x− b) dx

Solving for the error term results in:

ET =
f ′′(ψ)

2
·
∫ b

a
(x− a)(x− b) dx

=
f ′′(ψ)

2
· −(b− a)3

6

= −f
′′(ψ)

12
(b− a)3

This concludes Dr. Fejzic’s proof on the error term for the Trapezoid Rule.
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The error for Composite Trapezoid Rule uses the same standard argument as in

[Gor02].

2.4 Comparison of the three proofs

The proof given in [CK13] requires that f is continuously twice differentiable

on [a, b]. The conditions in [Gor02] are relaxed by requiring that f is twice differentiable

on [a, b], and finally in Dr. Fejzić’s proof the conditions are further relaxed to f is twice

differentiable on (a, b) and continuous on [a, b]. Hence Dr. Fejzić’s proof is the most

general and in my opinion the simplest of the three.
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Chapter 3

Error Term for the Midpoint Rule

The second error term we will analyze is for the Midpoint Rule. We will follow

the outline given by Gordon in [Gor02]. Next we will present two original proofs due to

Dr.Fejzić.

3.1 Gordon’s proof for Midpoint Rule

Similar to the Trapezoid Rule, Gordon starts with a lemma that has a specialized

single interval where it is symmetric.

Lemma 3.1. If g is twice differentiable on an interval [−r, r] for some positive constant

r, then there exists a point z in the interval (−r, r) such that∫ r

−r
g − 2rg(0) =

(2r)3

24
g′′(z).

Proof. Let k be the constant that satisfies the equation:∫ r

−r
g − 2rg(0) = k(2r)3

We must show that k = g′′(z)
24 for some point z ∈ (−r, r). Define function G : [0, r] → R

by

G(x) =

∫ x

−x
g − 2xg(0)− k(2x)3
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To do this, we will show that G(0) = 0 and G(r) = 0.

G(0) =

∫ 0

0
g − 2(0)g(0)− k(2(0))3

= 0− 0− 0

= 0

G(r) =

∫ r

−r
g − 2(r)g(0)− k(2(r))3

= k(2r)3 − k(2r)3

= 0

Since G(0) = G(r) = 0, Rolle’s Theorem guarantees the existence of a point d ∈ (0, r)

such that G′(d) = 0. This has been demonstrated in earlier proofs for the trapezoid rule.

The derivative of G is

G′(x) = g(x) + g(−x)− 2g(0)− 24kx2

Substituting 0 for x, we have

G′(0) = g(0)− g(0)− 2g(0)− 24k(0)2

= 2g(0)− 2g(0)− 0

= 0

Since G′(d) = G′(0) = 0, Rolle’s Theorem guarantees the existence of a point c ∈ (0, d)

such that G′′(c) = 0. Using the Fundamental Theorem of Calculus to find G′′, we obtain:

G′′(x) = g′(x)− g′(−x)− 48kx

And since we know from Rolle’s Theorem that G′′(c) = 0, we can rewrite the equation

as:

0 = g′(c)− g′(−c)− 48kc

Solving for k, we get:

k =
g′(c)− g′(−c)

2c
· 1

24
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We see that we can apply the Mean Value Theorem to the function g′ on the interval

[−c, c]. By the Mean Value Theorem, there exists a point z ∈ (−c, c) ⊆ (−r, r) such that

g′′(z) = g′(c)−g′(−c)
2c and this yields:

k =
g′(c)− g′(−c)

2c
· 1

24

=
g′(c)− g′(−c)
c− (−c)

· 1

24

= g′′(z) · 1

24

=
g′′(z)

24

Now the general case is obtained in a similar way as in Gordon’s proof for

Trapezoid Rule.

3.2 Dr. Fejzić’s first proof of the Midpoint Rule

This proof is similar to Dr. Fejzić’s proof of Trapezoid Rule.

Theorem 3.2. Let f be twice differentiable on an open interval (a, b) and continuous on

[a, b]. Let c = a+b
2 . Then

∫ b
a f(x) dx = f(c)(b−a) +E, where the error E = f ′′(ψ)

24 (b−a)3

for some ψ ∈ (a, b).

Proof. Let

g(x) = f(x)− f(c)− k(x− c)− E∫ b
a x(x− c) dx

x(x− c)

with E =
∫ b
a f(x) dx− f(c)(b− a).

We will first show g(c) = 0.

g(c) = f(c)− f(c)− k(c− c)− E∫ b
a x(x− c) dx

c(c− c) = 0.

We will now show that g is twice differentiable:

g′(x) = f ′(x)− k − 2xE∫ b
a x(x− c) dx
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g′′(x) = f ′′(x)− 2E∫ b
a x(x− c) dx

Next, we will show that
∫ b
a g(x) dx = 0.∫ b

a
g(x) dx =

∫ b

a
f(x) dx− f(c)(b− a)− 0− E∫ b

a x(x− c) dx

∫ b

a
x(x− c) dx = 0.

Since
∫ b
a g(x) dx =

∫ c
a g(x) dx +

∫ b
c g(x) dx and

∫ b
a g(x) dx = 0, then we will find the k

values that makes
∫ c
a g(x) dx = 0 and

∫ b
c g(x) dx = 0. We will first find the k value that

makes
∫ c
a g(x) dx = 0.

∫ c

a
g(x) dx =

∫ c

a
f(x) dx−

∫ c

a
f(c)(b− a) dx−

∫ c

a
k(x− c) dx−

E
∫ c
a x(x− c) dx∫ b
a x(x− c) dx

=

∫ c

a
f(x) dx− f(c)(b− a)(c− a) + k

(b− a)2

8
+

E∫ b
a x(x− c) dx

· (5a+ b)(b− a)2

48

We will now solve for k that makes
∫ c
a g(x) dx = 0 true. To do so, We will make

R1 =

∫ c

a
f(x) dx− f(c)(b− a)(c− a) +

E∫ b
a x(x− c) dx

· (5a+ b)(b− a)2

48

Thus, we get ∫ c

a
g(x) dx = R1 +

k(b− a)2

8

0 = R1 +
k(b− a)2

8

Solving for k results in:

k = − 8R1

(b− a)2

This means that in order for
∫ c
a g(x) dx = 0, k = − 8R1

(b−a)2 . Now we will find the k value

that makes
∫ b
c g(x) dx = 0.

∫ b

c
g(x) dx =

∫ b

c
f(x) dx−

∫ b

c
f(c)(b− a) dx−

∫ b

c
k(x− c) dx−

E
∫ b
c x(x− c) dx∫ b
a x(x− c) dx

=

∫ b

c
f(x) dx− f(c)(b− a)(b− c)− k (b− a)2

8
− E∫ b

a x(x− c) dx
· (a+ 5b)(b− a)2

48
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We will now solve for k that makes
∫ b
c g(x) dx = 0 true. To do so, We will make

R2 =

∫ b

c
f(x) dx− f(c)(b− a)(b− c)− E∫ b

a x(x− c) dx
· (a+ 5b)(b− a)2

48

Thus, we get ∫ b

c
g(x) dx = R2 −

k(b− a)2

8

0 = R2 −
k(b− a)2

8

Solving for k results in:

k =
8R2

(b− a)2

This means that in order for
∫ b
c g(x) dx = 0 to be true, k = 8R2

(b−a)2 .

Since
∫ b
a g(x) dx = 0 for all possible values of k, then let k = − 8R1

(b−a)2 . Applying the basic

property of definite integrals we can rewrite
∫ b
a g(x) dx as the following:∫ b

a
g(x) dx =

∫ c

a
g(x) dx+

∫ b

c
g(x) dx

And when k = − 8R1
(b−a)2 , we have:

0 = 0 +

∫ b

c
g(x) dx

Which could only mean that
∫ b
c g(x) dx = 0 when k = − 8R1

(b−a)2 also. This results with

the conclusion that:

R1 = −R2

Thus,
∫ c
a g(x) dx = 0 and

∫ b
c g(x) dx = 0 when k = − 8R1

(b−a)2 .

From Lemma 1.16, we know that there is a d1 with a < d1 < c such that g(d1) = 0

and a d2 with c < d2 < b such that g(d2) = 0. With this, we will now show that there is

a ψ with ψ ∈ (a, b) such that g′′(ψ) = 0. To do this, we will prove the following lemma:

Lemma 3.3. If g is continuous on [a, b], where a < d1 < c < d2 < b and g(d1) = g(c) =

g(d2) = 0, and if g is twice differentiable on (a, b), then there is a a ψ with ψ ∈ (a, b)

such that g′′(ψ) = 0
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Proof. Since g is continuous on the interval [a, b] and differentiable at every point in (a, b),

where a < d1 < c < d2 < b and g(d1) = g(c) = g(d2), then g is continuous on the intervals

[d1, c] and [c, d2], and differentiable at every point in (d1, c) and (c, d2).

By Rolle’s Theorem, since g is continuous on the interval [d1, c] and differentiable at every

point in (d1, c) such that g(d1) = g(c) then

g′(ξ1) = 0

for some ξ1 with d1 ≤ ξ1 ≤ c.

Similarly, using Rolle’s Theorem, we also find that g′(ξ2) = 0 for some ξ2 with d1 ≤ ξ2 ≤ c.
Thus, we get g′(ξ1) = g′(ξ2) = 0.

Let h(x) = g′(x). We know from the given that h(x) is differentiable on (a, b) and if

a function is differentiable on (a, b), then the function must also be continuous on the

interval [a, b]. Since ξ1, ξ2 ∈ [a, b], then h(x) is differentiable on (ξ1, ξ2) and continuous on

[ξ1, ξ2]. It has also been found above that h(ξ1) = h(ξ2) = 0 and by the Rolle’s Theorem,

h′(ψ) = 0 for some ψ with ξ1 ≤ ψ ≤ ξ2.

Thus, if g is continuous on [a, b], where a < d1 < c < d2 < b and g(d1) = g(c) = g(d2) = 0,

and if g is twice differntiable on (a, b), then there is a ψ with ψ ∈ (a, b) such that

g′′(ψ) = 0.

Now we have the following result: g(c) = 0, g is twice differentiable,
∫ b
a g(x) dx =

0,
∫ c
a g(x) dx = 0, and

∫ b
c g(x) dx = 0. We also found that there is a ψ with ψ ∈ (a, b)

such that g′′(ψ) = 0.

We will now combine all of this to find the error term:

g′′(x) = f ′′(x)− 0− 0− E∫ b
a x(x− c) dx

· 2

Substituting x with ψ gives us:

g′′(ψ) = f ′′(ψ)− 2E∫ b
a x(x− c) dx

0 = f ′′(ψ)− 2E∫ b
a x(x− c) dx
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Solving for the error term results in:

E =
f ′′(ψ)

2
·
∫ b

a
x(x− c) dx

=
f ′′(ψ)

2
· (b− a)3

12

=
f ′′(ψ)

24
(b− a)3

3.3 Dr. Fejzić’s second proof for Midpoint Rule

Here we present a different proof for Midpoint Rule.

Theorem 3.4. Let f be twice differentiable on an open interval (a, b) and continuous on

[a, b]. Let c = a+b
2 . Then

∫ b
a f(x) dx = f(c)(b−a) +E, where the error E = f ′′(ψ)

24 (b−a)3

for some ψ ∈ (a, b).

Proof. Let

g(x) = f(x)− f(c)− k(x− c)− E(x− 2)2∫ b
a (x− c)2 dx

where E =
∫ b
a

(
f(x)− f(c)

)
dx and c = a+b

2 .

We will first need to show that g(c) = 0,
∫ b
a g(x) dx = 0, and that g is twice differentiable.

Substituting c into g(c) gives us the following:

g(c) = f(c)− f(c)− k(c− c)− E(c− c)2∫ b
a (x− c)2 dx

= 0− 0− 0

= 0
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Thus, as we can see above, g(c) = 0. Now we will integrate g(x) on the interval [a, b]:∫ b

a
g(x) dx =

∫ b

a

(
f(x)− f(c)− k(x− c)− E(x− c)2∫ b

a (x− c)2 dx

)
dx

=

∫ b

a

(
f(x)− f(c)

)
dx−

∫ b

a
k(x− c) dx−

E
∫ b
a (x− c)2 dx∫ b
a (x− c)2 dx

=

∫ b

a

(
f(x)− f(c)

)
dx− 0− E

=

∫ b

a

(
f(x)− f(c)

)
dx−

∫ b

a

(
f(x)− f(c)

)
dx

= 0

And upon integrating, we have
∫ b
a g(x) = 0. Lastly, we will differentiate g twice to show

that it is twice differentiable:

g′(x) = f ′(x)− 0− k − 2E(x− c)∫ b
a (x− c)2 dx

= f ′(x)− k − 2E(x− c)∫ b
a (x− c)2 dx

g′′(x) = f ′′(x)− 0− 2E∫ b
a (x− c)2 dx

= f ′′(x)− 2E∫ b
a (x− c)2 dx

As demonstrated above, we can state that g is twice differentiable.

Now we will pick k such that g′(c) = 0.

g′(x) = f ′(x)− k − 2E(x− c)∫ b
a (x− c)2 dx

g′(c) = f ′(c)− k − 2E(c− c)∫ b
a (x− c)2 dx

0 = f ′(c)− k − 0
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k = f ′(c)

Rewriting g(x) with k = f ′(c) gives us the following function:

g(x) = f(x)− f(c)− f ′(c)(x− c)− E(x− c)2∫ b
a (x− c)2 dx

We will let this be our g(x) for the remainder of this proof.

Since
∫ b
a g(x) dx = 0, then there must exist at least one point that makes g(x) = 0,

besides g(a), g(b), and g(c). This is because we know that g′(c) = 0, which indicates that

c is a critical point, a relative minimum or maximum, thus the function doesn’t cross the

x-axis at c. We consider the following three cases.

Case 1: g′′(c) = 0. We will explore the case when g′′(c) = 0, which makes c an inflection

point, where the function changes from concave up/down or vice versa. If g′′(c) = 0, then

we can solve for E:

g′′(c) = f ′′(c)− 2E∫ b
a (x− c)2 dx

0 = f ′′(c)− 2E∫ b
a (x− c)2 dx

E =
f ′′(c)

2

∫ b

a
(x− c)2 dx

E =
f ′′(c)

2
· (b− a)3

12

E =
f ′′(c)

24
(b− a)3

Case 2: g′′(c) > 0. We will explore the case when g′′(c) > 0, which makes c a relative

minimum and the function doesn’t cross the x-axis at c. Since
∫ b
a g(x) dx = 0, this means

that there must be another point, d such that g(d) = 0. Point d can either exist within

the interval (a, c) or in (c, b).

Suppose d < c. Since g(d) = g(c) = 0 and g is continuous on the interval [a, b] and

differentiable at every point in (a, b), where a < d < c < b, then by Rolle’s Theorem,
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there exists a point, ξ ∈ (d, c) such that g′(ξ) = 0. And since g′(ξ) = g′(c) = 0, then by

Rolle’s Theorem again, there exists a point ψ ∈ (ξ, c) such that g′′(ψ) = 0. If g′′(ψ) = 0,

then we can solve for E:

g′′(ψ) = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

0 = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

E =
f ′′(ψ)

2

∫ b

a
(x− c)2 dx

E =
f ′′(ψ)

2
· (b− a)3

12

E =
f ′′(ψ)

24
(b− a)3

Suppose d > c. Since g(d) = g(c) = 0 and g is continuous on the interval [a, b] and

differentiable at every point in (a, b), where a < c < d < b, then by Rolle’s Theorem,

there exists a point, ξ ∈ (c, d) such that g′(ξ) = 0. And since g′(ξ) = g′(c) = 0, then by

Rolle’s Theorem again, there exists a point ψ ∈ (c, ξ) such that g′′(ψ) = 0. If g′′(ψ) = 0,

then we can solve for E:

g′′(ψ) = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

0 = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

E =
f ′′(ψ)

2

∫ b

a
(x− c)2 dx

E =
f ′′(ψ)

2
· (b− a)3

12

E =
f ′′(ψ)

24
(b− a)3



29

Case 3: g′′(c) < 0. We will explore the case when g′′(c) < 0, which makes c a relative

maximum and the function doesn’t cross the x-axis at c. Since
∫ b
a g(x) dx = 0, this

means that there must be another point, d such that g(d) = 0. Point d can either exist

within the interval (a, c) or in (c, b).

Suppose d < c. Since g(d) = g(c) = 0 and g is continuous on the interval [a, b] and

differentiable at every point in (a, b), where a < d < c < b, then by Rolle’s Theorem,

there exists a point, ξ ∈ (d, c) such that g′(ξ) = 0. And since g′(ξ) = g′(c) = 0, then by

Rolle’s Theorem again, there exists a point ψ ∈ (ξ, c) such that g′′(ψ) = 0. If g′′(ψ) = 0,

then we can solve for E:

g′′(ψ) = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

0 = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

E =
f ′′(ψ)

2

∫ b

a
(x− c)2 dx

E =
f ′′(ψ)

2
· (b− a)3

12

E =
f ′′(ψ)

24
(b− a)3

Suppose d > c. Since g(d) = g(c) = 0 and g is continuous on the interval [a, b] and

differentiable at every point in (a, b), where a < c < d < b, then by Rolle’s Theorem,

there exists a point, ξ ∈ (c, d) such that g′(ξ) = 0. And since g′(ξ) = g′(c) = 0, then by

Rolle’s Theorem again, there exists a point ψ ∈ (c, ξ) such that g′′(ψ) = 0. If g′′(ψ) = 0,

then we can solve for E:

g′′(ψ) = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

0 = f ′′(ψ)− 2E∫ b
a (x− c)2 dx

E =
f ′′(ψ)

2

∫ b

a
(x− c)2 dx

E =
f ′′(ψ)

2
· (b− a)3

12
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E =
f ′′(ψ)

24
(b− a)3

From these three possible cases, we can see that no matter if g′′(c) = 0, g′′(c) > 0 or

g′′(c) < 0, the error term came out the same way: E = f ′′(ψ)
24 (b− a)3. This concludes the

proof.

3.4 Some remarks on the three proofs of Midpoint Rule

For this paper, we explored three proofs on the error term for the Midpoint Rule.

The first proof was Gordon’s where similar to his approach on the Trapezoid Rule’s error

term, he began by proving a symmetric domain. I did find that his proof was easy to

follow, but I didn’t like that his proof was a specialized case and not a generalized case.

Unlike the Trapezoid Rule’s error term, Gordon did not provide a generalized case. The

second proof we followed was Dr. Fejzić’s first method. Dr. Fejzić’s first method is

similar to how the proof of Trapezoid Rule’s error term went. The main difference came

from the inclusion of the k value that we had to find in order to make
∫ c
a g(x) dx = 0

and
∫ b
c g(x) dx = 0. Nonetheless, the skills needed to understand and complete this proof

are the basics of analysis, relying on algebra, basic differentiation rules, basic integration

rules, Riemann integral theorems, Lemma 1.16, and Rolle’s Theorem. This was a very

straightforward proof that an entry-level analysis student would have little to no problems

understanding and following. The last proof was Dr. Fejzić’s second method. This proof

relied on the same ideas as the first method with the addition of the First and Second

Derivative Tests while exploring three cases. I found Dr. Fejzić’s second method to be

eloquent and effortless, the most ideal for students in an entry-level analysis course.
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Chapter 4

Error Term for the Simpson’s

Rule

The third rule we will analyze is for the Simpson’s Rule.

4.1 Gordon’s proof of Simpson’s Rule

Similar to the Trapezoid Rule, Gordon starts with a lemma that has a specialized

single interval where it is symmetric and then he applies that to the general case, making

the final theorem.

Lemma 4.1. If g has a fourth derivative on an interval [−r, r] for some positive constant

r, then there exists a point z in the interval (−r, r) such that∫ r

−r
g − r

3

(
g(−r) + 4g(0) + g(r)

)
= − r

5

90
g′′′′(z).

Proof. Let k be the constant that satisfies the equation∫ r

−r
g − r

3

(
g(−r) + 4g(0) + g(r)

)
= kr5.

Define a function G on the interval [0, r] by

G(x) =

∫ x

−x
g − x

3

(
g(−x) + 4g(0) + g(x)

)
− kx5.
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In order to make Gordon’s next statement in his proof, we will need to show and find

several things. The first thing that we need to show is that G(0) = 0 and G(r) = 0.

G(0) =

∫ 0

0
g − 0

g

(
g(0) + 4g(0) + g(0)

)
− k(0)5

= 0− 0− 0

= 0

G(r) =

∫ r

−r
g − r

3

(
g(−r) + 4g(0) + g(r)

)
− k(r)5

= kr5 − kr5

= 0

Next, we will need to find G′′′(x) and show that G is fourth differentiable.

G′(x) = g(x) + g(−x) +
x

3
g′(−x)− 1

3
g(−x)− 4

3
g(0)− x

3
g′(x)− 1

3
g(x)− 5kx4

=
2

3
g(x) +

2

3
g(−x) +

x

3
g′(−x)− x

3
g′(x)− 4

3
g(0)− 5kx4

G′′(x) =
2

3
g′(x)− 2

3
g′(−x)− x

3
g′′(−x) +

1

3
g′(−x)− x

3
g′′(x)− 1

3
g′(x)− 20kx3

=
1

3
g′(x)− 1

3
g′(−x)− x

3
g′′(−x)− x

3
g′′(x)− 20kx3

G′′′(x) =
1

3
g′′(x) +

1

3
g′′(−x) +

x

3
g′′′(−x)− 1

3
g′′(−x)− x

3
g′′′(x)− 1

3
g′′(x)− 60kx2

=
x

3
g′′′(−x)− x

3
g′′′(x)− 60kx2

= −x
3

(
g′′′(x)− g′′′(−x) + 180kx

)

G′′′′(x) = −x
3
g′′′′(−x) +

1

3
g′′′(−x)− x

3
g′′′′(x)− 1

3
g′′′(x)− 120kx

With the equations we found above, we will show that G′(0) = 0 and G′′(0) = 0.

G′(0) =
2

3
g(0) +

2

3
g(0) +

x

3
g′(0)− x

3
g′(0)− 4

3
g(0)− 5k(0)4

= 0
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G′′(0) =
1

3
g′(0)− 1

3
g′(0)− 0

3
g′′(0)− 0

3
g′′(0)− 20k(0)3

= 0

Since G is continuous on [0, r] and differentiable on (0, r) and G(0) = G(r) = 0, then by

Rolle’s Theorem, there exists a point e ∈ (0, r) such that G′(e) = 0. Likewise, since G′

is continuous on [0, r] and differentiable on (0, r) and G′(0) = G′(e) = 0, then by Rolle’s

Theorem, there exists a point d ∈ (0, e) such that G′′(d) = 0. Once again, since G′′ is

continuous on [0, r] and differentiable on (0, r) and G′′(0) = G′′(d) = 0, then by Rolle’s

Theorem, there exists a point c ∈ (0, d) such that G′′′(c) = 0. Now that we have this

information, we can continue where Gordon left off in his proof:

Then G′′′(x) = −x
3

(
g′′′(x)− g′′′(−x) + 180kx

)
and it can be shown that there is a point

c ∈ (0, r) for which G′′′(c) = 0.

Gordon then points out that since c 6= 0, it follows that

k =
g′′′(c)− g′′′(−c)

−180c
= −g

′′′′(z)

90

for some z ∈ (−c, c). Gordon obtained this from the substituting in c into G′′′(x) and

then solving for k.

G′′′(x) = −x
3

(
g′′′(x)− g′′′(−x) + 180kx

)
G′′′(c) = − c

3

(
g′′′(c)− g′′′(−c) + 180kc

)
0 = − c

3

(
g′′′(c)− g′′′(−c) + 180kc

)

k =
g′′′(c)− g′′′(−c)

−180c

=
g′′′(c)− g′′′(−c)

2c
· − 1

90

=
g′′′(c)− g′′′(−c)

c− (−c)
· − 1

90

Applying the Mean Value Theorem, we draw the same conclusion as Gordon with

k = −g
′′′(z)

90

where the existence of the point z ∈ (−c, c) ⊆ (−r, r) is guaranteed by the Mean Value

Theorem. And this concludes Gordon’s specialized case.
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We will now explore Gordon’s general case for the Simpson’s Rule Error Term.

Lemma 4.2. If f has a fourth derivative on an interval [c, d], then there exists a point

v in the interval (c, d) such that∫ d

c
f − d− c

6

(
f(c) + 4f(m) + f(d)

)
= −(d− c)5

32 · 90
f ′′′′(v)

where m = (c+d)
2 is the midpoint of the interval [c, d].

Theorem 4.3. If f has a fourth derivative on an interval [a, b] and n is an even positive

integer, then there exists a point v in the interval (a, b) such that∫ b

a
f − Sn = −(b− a)5

180n4
f ′′′′(v),

where Sn is the nth Simpson’s rule estimate to the integral.

Proof. For this theorem, Gordon starts by letting m = d+c
2 and r = d−c

2 and define a

function g on [−r, r] by g(x) = f(x+m). He then points out that∫ d

c
f − d− c

6

(
f(c) + 4f(m) + f(d)

)
=

∫ r

−r
g − r

3

(
g(−r) + 4g(0) + g(r)

)
Now this may not be immediately apparent or obvious. To help clarify this, I will show

the following:

g(−r) = f(−r +m) = f(
−d+ c

2
+
d+ c

2
) = f(c)

g(r) = f(r +m) = f(
d− c

2
+
d+ c

2
) = f(d)

g(0) = f(0 +m) = f(m)

r

3
=
d− c
2 · 3

=
d− c

6

Gordon finishes his proof by stating that by the previous lemma (for the specialized case),

there exists a point z ∈ (−r, r) such that∫ d

c
f − d− c

6

(
f(c) + 4f(m) + f(d)

)
= − r

5

90
g′′′′(z) = −(d− c)5

32 · 90
g′′′′(z)
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4.2 Dr. Fejzić’s first proof of Simpson’s Rule

The following proof we will follow is the Simpson’s Rule for the error term using

one of Dr. Fejzic’s proofs and methods. Similar to the Midpoint Rule above, we will

compose the function, g(x) with Langrange’s Interpolation Error Formula and introduce

an unknown, k. The more concise version is posted on https://arxiv.org/abs/1708.07727.

Theorem 4.4. Let f be fourth differentiable on an open interval (a, b) and continuous

on [a, b]. Then
∫ b
a f(x) dx = (b−a)

6

(
f(a) + 4f(c) + f(b)

)
+ E, where the error E =

−f (iv)(ψ)
2880 (b− a)5 for some ψ ∈ (a, b).

Proof. Let

g(x) = f(x)− p(x)− k(x− a)(x− b)(x− c)− E(x− a)(x− b)(x− c)x∫ b
a (x− a)(x− b)(x− c)x dx

with E =
∫ b
a

(
f(x)− p(x)

)
dx and

p(x) = f(a)
(x− b)(x− c)
(a− b)(a− c)

+ f(b)
(x− a)(x− c)
(b− a)(b− c)

+ f(c)
(x− a)(x− b)
(c− a)(c− b)

For this proof, we will begin by checking that g(a) = 0, g(b) = 0, g(c) = 0, g is fourth

differentiable,
∫ b
a g(x) dx = 0,

∫ c
a g(x) dx = 0, and

∫ b
c g(x) dx = 0.

First, let’s check to see if g(a) = 0.

Let

g(a) = f(a)− f(a)
(a− b)(a− c)
(a− b)(a− c)

− f(b)
(a− a)(a− c)
(b− a)(b− c)

− f(c)
(a− a)(a− b)
(c− a)(c− b)

−k(a− a)(a− b)(a− c)− E(a− a)(a− b)(a− c)a∫ b
a (x− a)(x− b)(x− c)x dx

When simplified, we get:

g(a) = f(a)− f(a)− 0− 0− 0− 0

Thus, g(a) = 0. Next, let’s check to see if g(b) = 0.

g(b) = f(b)− f(a)
(b− b)(b− c)
(a− b)(a− c)

− f(b)
(b− a)(b− c)
(b− a)(b− c)

− f(c)
(b− a)(b− b)
(c− a)(c− b)

−k(b− a)(b− b)(b− c)− E(b− a)(b− b)(b− c)b∫ b
a (x− a)(x− b)(x− c)x dx
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When simplified, we get:

g(b) = f(b)− 0− f(b)− 0− 0− 0

Thus, g(b) = 0. We will next check to see if g(c) = 0.

g(c) = f(c)− f(a)
(c− b)(c− c)
(a− b)(a− c)

− f(b)
(c− a)(c− c)
(b− a)(b− c)

− f(c)
(c− a)(c− b)
(c− a)(c− b)

−k(c− a)(c− b)(c− c)− E(c− a)(c− b)(c− c)c∫ b
a (x− a)(x− b)(x− c)x dx

When simplified, we get:

g(c) = f(c)− 0− 0− f(c)− 0− 0

Thus, g(c) = 0. We will now check to see if g is fourth differentiable.

g(iv)(x) = f (iv)(x)− 0− 0− 0− 0− 24E∫ b
a (x− a)(x− b)(x− c)x dx

Thus, g is fourth differentiable. Next, we will check if
∫ b
a g(x) dx = 0.∫ b

a
g(x) dx =

∫ b

a

(
f(x)−p(x)−k(x−a)(x− b)(x− c)− E(x− a)(x− b)(x− c)x∫ b

a (x− a)(x− b)(x− c)x dx

)
dx

Using the additive properties for integrals we get∫ b

a
g(x) dx =

∫ b

a
f(x) dx−

∫ b

a
p(x) dx− k

∫ b

a
(x− a)(x− b)(x− c) dx

− E∫ b
a (x− a)(x− b)(x− c)x dx

∫ b

a
(x− a)(x− b)(x− c)x dx

Integrating yields the following:∫ b

a
g(x) dx =

∫ b

a
f(x)− (b− a)

6

(
f(a) + 4f(c) + f(b)

)
−
∫ b

a
f(x) dx

−0 +
(b− a)

6

(
f(a) + 4f(c) + f(b)

)
Thus resulting with

∫ b
a g(x) dx = 0 for any k ∈ R.

Now we will show that there is k such that
∫ c
a g(x) dx = 0 and

∫ b
c g(x) dx = 0.∫ c

a
g(x) dx =

∫ c

a

(
f(x)−p(x)−k(x−a)(x− b)(x− c)− E(x− a)(x− b)(x− c)x∫ b

a (x− a)(x− b)(x− c)x dx

)
dx
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Integrating this function gives us the following result:∫ c

a
g(x) dx =

∫ c

a
f(x) dx− (b− a)

24

(
5f(a) + 8f(c)− f(b)

)
− k (b− a)4

64
− E (23a+ 7b)

16(b− a)

Let

R1 =

∫ c

a
f(x) dx− (b− a)

24

(
5f(a) + 8f(c)− f(b)

)
− E (23a+ 7b)

16(b− a)

Then we have: ∫ c

a
g(x) dx = R1 − k

(b− a)4

64

This means that in order for
∫ c
a g(x) dx = 0 to be true, k = 64R1

(b−a)4 . Now let’s check the

other interval:∫ b

c
g(x) dx =

∫ b

c

(
f(x)−p(x)−k(x−a)(x− b)(x− c)− E(x− a)(x− b)(x− c)x∫ b

a (x− a)(x− b)(x− c)x dx

)
dx

Integrating this function gives us the following result:∫ b

c
g(x) dx =

∫ b

c
f(x) dx− (b− a)

24

(
− f(a) + 8f(c) + 5f(b)

)
+ k

(b− a)4

64
+E

(7a+ 23b)

16(b− a)

Let

R2 =

∫ b

c
f(x) dx− (b− a)

24

(
− f(a) + 8f(c) + 5f(b)

)
+ E

(7a+ 23b)

16(b− a)

Then we have: ∫ b

c
g(x) dx = R2 + k

(b− a)4

64

This means that in order for
∫ b
c g(x) dx = 0 to be true, k = − 64R2

(b−a)4 .

Since
∫ b
a g(x) dx = 0 for all possible values of k, then let k = 64R1

(b−a)4 . Applying the basic

property of definite integrals we can rewrite
∫ b
a g(x) dx as the following:∫ b

a
g(x) dx =

∫ c

a
g(x) dx+

∫ b

c
g(x) dx

And when k = 64R1
(b−a)4 , we have:

0 = 0 +

∫ b

c
g(x) dx

Which could only mean that
∫ b
c g(x) dx = 0 when k = 64R1

(b−a)4 also. This results with the

conclusion that:

R1 = −R2
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Thus,
∫ c
a g(x) dx = 0 and

∫ b
c g(x) dx = 0 when k = 64R1

(b−a)4 . From Lemma 1.16, we know

that there is a d1 with a < d1 < c such that g(d1) = 0 and there is a d2 with c < d2 < b

such that g(d2) = 0.

We will now show that there is a ψ with ψ ∈ (a, b) such that g(iv)(ψ) = 0. To do this, we

will prove the following lemma:

Lemma 4.5. If g is continuous on [a, b], where a < d1 < c < d2 < b and g(a) = g(d1) =

g(c) = g(d2) = g(b) = 0, and if g is fourth differentiable on (a, b), then there is a ψ with

ψ ∈ (a, b) such that g(iv)(ψ) = 0

Proof. Since g is continuous on the interval [a, b] and differentiable at every point in

(a, b), where a < d1 < c < d2 < b and g(a) = g(d1) = g(c) = g(d2) = g(b), then g is

continuous on the intervals [a, d1], [d1, c], [c, d2], and [d2, b], and differentiable at every

point in (a, d1), (d1, c), (c, d2), and (d2, b).

By Rolle’s Theorem, since g is continuous on the interval [a, d1] and differentiable at every

point in (a, d1) such that g(a) = g(d1) then

g′(ξ1) = 0

for some ξ1 with a ≤ ξ1 ≤ d1.

Similarly, using Rolle’s Theorem, we also find that g′(ξ2) = 0, g′(ξ3) = 0, and g′(ξ4) = 0

for some ξ2 with d1 ≤ ξ2 ≤ c, ξ3 with c ≤ ξ3 ≤ d2, and ξ4 with d2 ≤ ξ4 ≤ b. Thus, we get

g′(ξ1) = g′(ξ2) = g′(ξ3) = g′(ξ4) = 0.

Let h(x) = g′(x). We know from the given that h(x) is differentiable on (a, b) and if

a function is differentiable on (a, b), then the function must also be continuous on the

interval [a, b]. Since ξ1, ξ2, ξ3, ξ4 ∈ [a, b], then h(x) is differentiable on (ξ1, ξ2), (ξ2, ξ3), and

(ξ3, ξ4) and continuous on [ξ1, ξ2], [ξ2, ξ3], and [ξ3, ξ4]. It has also been found above that

h(ξ1) = h(ξ2) = h(ξ3) = h(ξ4) and by the Rolle’s Theorem, h′(ρ1) = h′(ρ2) = h′(ρ3) = 0

for some ρ1 with ξ1 ≤ ρ1 ≤ ξ2, a ρ2 with ξ2 ≤ ρ2 ≤ ξ3, and a ρ3 with ξ3 ≤ ρ3 ≤ ξ4. Thus,

we have h′(ρ1) = h′(ρ2) = h′(ρ3) = 0.

Let j(x) = h′(x) = g′′(x). We know from the given that j(x) is differentiable on (a, b)

and if a function is differentiable on (a, b), then the function must also be continuous
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on the interval [a, b]. Since ρ1, ρ2, ρ3 ∈ [a, b], then j(x) is differentiable on (ρ1, ρ2) and

(ρ2, ρ3) as well as being continuous on [ρ1, ρ2] and [ρ2, ρ3]. It has also been found above

that j(ρ1) = j(ρ2) = j(ρ3) and by the Rolle’s Theorem, j′(ζ1) = j′(ζ2) = 0 for some ζ1

with ρ1 ≤ ζ1 ≤ ρ2 and a ζ2 with ρ2 ≤ ζ2 ≤ ρ3. Thus, we have j′(ζ1) = j′(ζ2) = 0.

Now let k(x) = j′(x) = h′′(x) = g′′′(x). We know from the given that k(x) is differ-

entiable on (a, b) and if a function is differentiable on (a, b), then the function must also

be continuous on the interval [a, b]. Since ζ1, ζ2 ∈ [a, b], then k(x) is differentiable on

(ζ1, ζ2) and continuous on [ζ1, ζ2]. It has also been found above that k(ζ1) = k(ζ2) and

by the Rolle’s Theorem, k′(ψ) = 0 for some ψ with ζ1 ≤ ψ ≤ ζ2.

Thus, if g is continuous on [a, b], where a < d1 < c < d2 < b and g(a) = g(d1) =

g(c) = g(d2) = g(b) = 0, and if g is fourth differntiable on (a, b), then there is a ψ with

ψ ∈ (a, b) such that g(iv)(ψ) = 0.

Now we have the following result: g(a) = 0, g(b) = 0, g(c) = 0, g is fourth

differentiable,
∫ b
a g(x) dx = 0,

∫ c
a g(x) dx = 0, and

∫ b
c g(x) dx = 0. We also found that

there is a ψ with ψ ∈ (a, b) such that g(iv)(ψ) = 0.

We will now combine all of this to find the error term:

g(iv)(x) = f (iv)(x)− 0− E∫ b
a (x− a)(x− b)(x− c)x dx

· 24− 0

Substituting x with ψ gives us:

g(iv)(ψ) = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)x dx

0 = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)x dx

Solving for the error term results in:

E =
f (iv)(ψ)

24
·
∫ b

a
(x− a)(x− b)(x− c)x dx

=
f (iv)(ψ)

24
· −(b− a)5

120

= −f
(iv)(ψ)

2880
(b− a)5
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4.3 Dr. Fejzić’s second proof of Simpson’s Rule

The second proof of Simpson’s Rule is similar to the Dr. Fejzić’s second proof

of the Midpoint Rule.

Theorem 4.6. Let f be fourth differentiable on an open interval (a, b) and continuous

on [a, b]. Then
∫ b
a f(x) dx = (b−a)

6

(
f(a) + 4f(c) + f(b)

)
+ E, where the error E =

−f (iv)(ψ)
2880 (b− a)5 for some ψ ∈ (a, b).

Proof. Let

g(x) = f(x)− l(x)− kp(x)− E∫ b
a q(x) dx

q(x)

where

E =

∫ b

a

(
f(x)− l(x)

)
dx,

and we define l(x), p(x), and q(x) as:

l(x) = f(a)
(x− b)(x− c)
(a− b)(a− c)

+ f(c)
(x− a)(x− b)
(c− a)(c− b)

+ f(b)
(x− a)(x− c)
(b− a)(b− c)

,

p(x) = (x− a)(x− b)(x− c), and q(x) = (x− a)(x− b)(x− c)2 with c = a+b
2 .

We will first show g(a) = 0, g(b) = 0 and g(c) = 0. Starting with g(a), we have:

g(a) = f(a)− l(a)− kp(a)− E∫ b
a q(x) dx

q(a)

= f(a)− f(a)− k · 0− E∫ b
a q(x) dx

· 0

= f(a)− f(a)− 0− 0

= 0

Thus, g(a) = 0. Now for g(b):

g(b) = f(b)− l(b)− kp(b)− E∫ b
a q(x) dx

q(b)

= f(b)− f(b)− k · 0− E∫ b
a q(x) dx

· 0

= f(b)− f(b)− 0− 0

= 0
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Thus, g(b) = 0. Finally for g(c) = 0:

g(c) = f(c)− l(c)− kp(c)− E∫ b
a q(x) dx

q(c)

= f(c)− f(c)− k · 0− E∫ b
a q(x) dx

· 0

= f(c)− f(c)− 0− 0

= 0

Thus, g(c) = 0.

We will also show that g is fourth differentiable and
∫ b
a g(x) dx = 0. We will start with

showing that g is fourth differentiable:

g′(x) = f ′(x)− f(a)
(−c+ 2x− b)
(a− b)(a− c)

− f(b)
(−c+ 2x− a)

(b− a)(b− c)
− f(c)

(−b+ 2x− a)

(c− a)(c− b)

−k(3x2−2cx−2bx−2ax+bc+ac+ab)−E(x− c)(−4x2 − 2ab− ac+ 3ax− bc+ 3bx+ 2cx)∫ b
a (x− a)(x− b)(x− c)2 dx

g′′(x) = f ′′(x)− 2f(a)

(a− b)(a− c)
− 2f(b)

(b− a)(b− c)
− 2f(c)

(c− a)(c− b)

+2k(a+ b+ c− 3x)− 2E(c2 + 6x2 + ab+ 2ac− 3ax+ 2bc− 3bx− 6cx)∫ b
a (x− a)(x− b)(x− c)2 dx

g′′′(x) = f ′′′(x)− 6k − E(24x− 6a− 6b− 12c)∫ b
a (x− a)(x− b)(x− c)2 dx

g(iv)(x) = f (iv)(x)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx
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Now we will show
∫ b
a g(x) dx = 0.∫ b

a
g(x) dx =

∫ b

a

(
f(x)− l(x)− kp(x)− E∫ b

a q(x) dx
q(x)

)
dx

=

∫ b

a

(
f(x)− l(x)

)
dx− k(0)− E∫ b

a q(x) dx

∫ b

a
q(x) dx

=

∫ b

a

(
f(x)− l(x)

)
dx− E

=

∫ b

a

(
f(x)− l(x)

)
dx−

∫ b

a

(
f(x)− l(x)

)
dx

= 0

We will then pick a k such that g′(c) = 0, ensuring that c is a critical point.

g′(c) = f ′(c)− f(a)
(c− b)

(a− b)(a− c)
− f(b)

(c− a)

(b− a)(b− c)
−

f(c)
(−b+ 2c− a)

(c− a)(c− b)

−k(c2 − bc− ac+ ab)− E(c− c)(−2c2 − 2ab+ 2ac+ 2bc)∫ b
a (x− a)(x− b)(x− c)2 dx

= f ′(c)− f(b)− f(a)

(b− a)
+ k

(b− a)2

4

k = −
4
(
f ′(c)(b− a)− f(b) + f(a)

)
(b− a)3

Rewriting g(x) with the k value we found gives us the following function:

g(x) = f(x)− l(x) +
4
(
f ′(c)(b− a)− f(b) + f(a)

)
(b− a)3

p(x)− E∫ b
a q(x) dx

q(x).

We will let this be our g(x) for the remainder of this proof.

Since
∫ b
a g(x) dx = 0, we will show that there must exist at least one point that makes

g(x) = 0, besides g(a), g(b), and g(c). To that end we will explore three cases.
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Case 1: g′′(c) = 0. We will explore the case when g′′(c) = 0, which makes c an inflection

point, where the function changes from concave up/down or vice versa. Since g(a) =

g(c) = g(b) = 0 and g is continuous on the interval [a, b] and differentiable at every point

in (a, b), where a < c < b, then by Rolle’s Theorem, there exists points ζ1 ∈ (a, c) and

ζ2 ∈ (c, b) such that g′(ζ1) = 0 and g′(ζ2) = 0. And since g′(ζ1) = g′(c) = 0 = g′(ζ2) = 0,

then by Rolle’s Theorem again, there exists points ρ1 ∈ (ζ1, c) and ρ ∈ (c, ζ2) such that

g′′(ρ1) = 0 and g′′(ρ2) = 0. But since g′′(ρ1) = g′′(c) = g′′(ρ2) = 0, then by Rolle’s

Theorem, there exists points ξ1 ∈ (ρ1, c) and ξ2 ∈ (c, ρ2) such that g′′′(ξ1) = 0 and

g′′′(ξ2) = 0. Since g′′′(ξ1) == g′′′(ξ2) = 0, then by Rolle’s Theorem one last time, we

know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0, then

we can solve for E:

g(iv)(ψ) = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

0 = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24

∫ b

a
(x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24
· −(b− a)5

120

E = −f
(iv)(ψ)

2880
(b− a)5

Case 2: g′′(c) > 0. We will explore the case when g′′(c) > 0, which makes c a minimum

and the function doesn’t cross the x-axis at c. The function g has to take on negative

values on (a, c) or on (c, b) for otherwise if g ≥ 0 on (a, b), the integral
∫ b
a g(x) dx, can’t

be equal to zero. Hence by Intermediate Value Theorem for g, there must be another

point, d such that g(d) = 0. Point d can either exist within the interval (a, c) or in (c, b).

Suppose d < c. Since g(a) = g(d) = g(c) = g(b) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < d < c < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, d), ζ2 ∈ (d, c), and ζ3 ∈ (c, b) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(ζ2) = g′(c) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, ζ2), ρ2 ∈ (ζ2, c), and ρ3 ∈ (c, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that
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g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E:

g(iv)(ψ) = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

0 = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24

∫ b

a
(x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24
· −(b− a)5

120

E = −f
(iv)(ψ)

2880
(b− a)5

Suppose d > c. Since g(a) = g(c) = g(d) = g(b) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < c < d < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, c), ζ2 ∈ (c, d), and ζ3 ∈ (d, b) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(c) = g′(ζ2) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, c), ρ2 ∈ (c, ζ2), and ρ3 ∈ (ζ2, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that

g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E:

g(iv)(ψ) = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

0 = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24

∫ b

a
(x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24
· −(b− a)5

120

E = −f
(iv)(ψ)

2880
(b− a)5
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Case 3: g′′(c) < 0. We will explore the case when g′′(c) < 0, which makes c a maximum

and the function doesn’t cross the x-axis at c. Since
∫ b
a g(x) dx = 0, then as in the proof

of the case g′′(c) > 0, by the Intermediate Value Theorem, there must be another point,

d such that g(d) = 0. Point d can either exist within the interval (a, c) or in (c, b).

Suppose d < c. Since g(a) = g(d) = g(c) = g(b) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < d < c < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, d), ζ2 ∈ (d, c), and ζ3 ∈ (c, b) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(ζ2) = g′(c) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, ζ2), ρ2 ∈ (ζ2, c), and ρ3 ∈ (c, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that

g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E:

g(iv)(ψ) = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

0 = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24

∫ b

a
(x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24
· −(b− a)5

120

E = −f
(iv)(ψ)

2880
(b− a)5

Suppose d > c. Since g(a) = g(c) = g(d) = g(b) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < c < d < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, c), ζ2 ∈ (c, d), and ζ3 ∈ (d, b) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(c) = g′(ζ2) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, c), ρ2 ∈ (c, ζ2), and ρ3 ∈ (ζ2, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that

g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last
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time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E:

g(iv)(ψ) = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

0 = f (iv)(ψ)− 24E∫ b
a (x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24

∫ b

a
(x− a)(x− b)(x− c)2 dx

E =
f (iv)(ψ)

24
· −(b− a)5

120

E = −f
(iv)(ψ)

2880
(b− a)5

From these three possible cases, we can see that no matter if g′′(c) = 0, g′′(c) > 0 or

g′′(c) < 0, the error term came out the same way: E = −f (iv)(ψ)
2880 (b − a)5. And this

concludes the proof.

4.4 Remarks on the three proofs of Simpson’s Rule

We explored three proofs on the error term for the Simpson’s Rule. The first

proof was Gordon’s which was similar to his approach on the Trapezoid Rule’s error term,

he began by proving a symmetric domain. It is important to note that in this paper I did

provide thorough explanations and steps that was not explicitly provided in his proof.

I did find that his proof was easy to follow, but just like with his other proofs, I didn’t

like that his proof relied on a specific situation, being symmetric, in order to formulate

the proof for the generalized case. The second proof we followed was Dr. Fejzić’s first

method. Dr. Fejzić’s first method is similar to how the proof of the Midpoint Rule’s

error term went with the inclusion of the k value that we had to find in order to make∫ c
a g(x) dx = 0 and

∫ b
c g(x) dx = 0. Unlike the Midpoint Rule’s proof, we had to apply

the Rolle’s Theorem multiple times in order to get our necessary result, g(iv)(ψ) = 0.

Nonetheless, the skills needed to understand and complete this proof are the basics of

analysis, relying on algebra, basic differentiation rules, basic integration rules, Riemann

integral theorems, Lemma 1.16, and Rolle’s Theorem. This was a very straightforward

proof that an entry-level analysis student would have little to no problems understanding



47

and following. The last proof was Dr. Fejzić’s second method. This proof follows the exact

same methods as the second method for his Midpoint Rule’s error term. I appreciated

the consistency the second method provided when comparing it to the Midpoint Rule’s

proof. It was the most simple and direct method that is ideal for undergraduate students.
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Chapter 5

Error Term for the Simpson’s 3
8

Rule

The last rule we will analyze is the Simpson’s 3
8 Rule. We will follow two proofs

by Dr. Fejzić and analyze each method.

5.1 Dr. Fejzić’s first proof of Simpson’s 3
8 Rule

Theorem 5.1. Let f be fourth differentiable on an open interval (a, b) and continuous

on [a, b]. Then
∫ b
a f(x) dx = 3(b−a)

8 (f(a) + 3f(c) + 3f(d) + f(b)) + E, where the error

E = −f (iv)(ψ)
6480 (b− a)5 for some ψ ∈ (a, b).

Proof. Since this rule involves four points, we will first split the function into two separate

pieces. For this rule, points a and b are the x-values for the endpoints of this function’s

interval. We will set c = 2a+b
3 and d = 2b+a

3 .

The first interval we will evaluate is [a, d]. Let

g(x) = f(x)− p(x)− k(x− a)(x− c)(x− d)−

E1(x− a)(x− c)(x− d)(x− b)∫ d
a (x− a)(x− c)(x− d)(x− b) dx

with

p(x) = f(a)
(x− b)(x− c)(x− d)

(a− b)(a− c)(a− d)
+ f(b)

(x− a)(x− c)(x− d)

(b− a)(b− c)(b− d)

+f(c)
(x− a)(x− b)(x− d)

(c− a)(c− b)(c− d)
+ f(d)

(x− a)(x− b)(x− c)
(d− a)(d− b)(d− c)
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and

E1 =

∫ d

a

(
f(x)− p(x)

)
dx

We will show that g(a) = 0, g(c) = 0 and g(d) = 0.

g(a) = f(a)− p(a)− k(a− a)(a− c)(a− d)− E1(a− a)(a− c)(a− d)(a− b)∫ d
a (x− a)(x− c)(x− d)(x− b) dx

= f(a)− f(a)− 0− 0

= 0

g(c) = f(c)− p(c)− k(c− a)(c− c)(c− d)− E1(c− a)(c− c)(c− d)(c− b)∫ d
a (x− a)(x− c)(x− d)(x− b) dx

= f(c)− f(c)− 0− 0

= 0

g(d) = f(d)− p(d)− k(d− a)(d− c)(d− d)− E1(d− a)(d− c)(d− d)(d− b)∫ d
a (x− a)(x− c)(x− d)(x− b) dx

= f(d)− f(d)− 0− 0

= 0

Next, we will show that g is fourth differentiable. Indeed

g(iv)(x) = f (iv)(x)− 0− 0− 24E1∫ d
a (x− a)(x− c)(x− d)(x− b) dx

Thus, g is fourth differentiable. We will also show that
∫ d
a g(x) dx = 0.∫ d

a
g(x) dx =

∫ d

a

(
f(x)− p(x)

)
dx− 0− E1

∫ d
a (x− a)(x− c)(x− d)(x− b) dx∫ d
a (x− a)(x− c)(x− d)(x− b) dx

=

∫ d

a

(
f(x)− p(x)

)
dx− 0− E1

=

∫ d

a

(
f(x)− p(x)

)
dx−

∫ d

a

(
f(x)− p(x)

)
dx

= 0

Using the additive properties for integrals we get∫ d

a
g(x) dx =

∫ c

a
g(x) dx+

∫ d

c
g(x) dx
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and we will find k such that
∫ c
a g(x) dx = 0 and

∫ d
c g(x) dx = 0.∫ c

a
g(x) dx =

∫ c

a

(
f(x)− p(x)− E1(x− a)(x− c)(x− d)(x− b)∫ d

a (x− a)(x− c)(x− d)(x− b) dx
−

k(x− a)(x− c)(x− d)
)
dx

Integrating this function gives us the following result:∫ c

a
g(x) dx =

∫ c

a
f(x) dx− (b− a)

72

(
9f(a) + 19f(c)− 5f(d) + f(b)

)
+

E1
(38a+ 7b)

16(b− a)
− k (b− a)4

324

Let

R1 =

∫ c

a
f(x) dx− (b− a)

72

(
9f(a) + 19f(c)− 5f(d) + f(b)

)
+ E1

(38a+ 7b)

16(b− a)

Then we have: ∫ c

a
g(x) dx = R1 − k

(b− a)4

324

This means that in order for
∫ c
a g(x) dx = 0 to be true, k = 324R1

(b−a)4 . Now let’s check the

other interval:∫ d

c
g(x) dx =

∫ d

c

(
f(x)− p(x)− E1(x− a)(x− c)(x− d)(x− b)∫ d

a (x− a)(x− c)(x− d)(x− b) dx
−

k(x− a)(x− c)(x− d)
)
dx

Integrating this function gives us the following result:∫ d

c
g(x) dx =

∫ d

c
f(x) dx− (b− a)

72

(
− f(a) + 13f(c) + 13f(d)− f(b)

)
−

E1
(22a+ 23b)

16(b− a)
+ k

(b− a)4

324

Let

R2 =

∫ d

c
f(x) dx− (b− a)

72

(
− f(a) + 13f(c) + 13f(d)− f(b)

)
− E1

(22a+ 23b)

16(b− a)

Then we have: ∫ d

c
g(x) dx = R2 + k

(b− a)4

324
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This means that in order for
∫ b
c g(x) dx = 0 to be true, k = − 324R2

(b−a)4 .

Since
∫ d
a g(x) dx = 0 for all possible values of k, then let k = 324R1

(b−a)4 . Applying the basic

property of definite integrals we can rewrite
∫ d
a g(x) dx as the following:∫ d

a
g(x) dx =

∫ c

a
g(x) dx+

∫ d

c
g(x) dx

And when k = 324R1
(b−a)4 , we have:

0 = 0 +

∫ d

c
g(x) dx

Which could only mean that
∫ d
c g(x) dx = 0 when k = 324R1

(b−a)4 also. This results with the

conclusion that:

R1 = −R2

Thus,
∫ c
a g(x) dx = 0 and

∫ d
c g(x) dx = 0 when k = 324R1

(b−a)4 . From Lemma 1.16, we know

that there is an e1 with a < e1 < c such that g(e1) = 0 and there is a e2 with c < e2 < d

such that g(e2) = 0. That leaves us with showing that there is a ψ with ψ ∈ (a, b) such

that g(iv)(ψ) = 0. To do this, we will prove the following lemma:

Lemma 5.2. If g is continuous on [a, b], where a < e1 < c < e2 < d < b and g(a) =

g(e1) = g(c) = g(e2) = g(d) = 0, and if g is fourth differentiable on (a, b), then there is a

ψ with ψ ∈ (a, b) such that g(iv)(ψ) = 0

Proof. Since g is continuous on the interval [a, b] and differentiable at every point in

(a, b), where a < e1 < c < e2 < d < b and g(a) = g(e1) = g(c) = g(e2) = g(d), then g

is continuous on the intervals [a, e1], [e1, c], [c, e2], and [e2, d], and differentiable at every

point in (a, e1), (e1, c), (c, e2), and (e2, d).

By Rolle’s Theorem, since g is continuous on the interval [a, e1] and differentiable at every

point in (a, e1) such that g(a) = g(e1) then

g′(ξ1) = 0

for some ξ1 with a ≤ ξ1 ≤ e1.

Similarly, using Rolle’s Theorem, we also find that g′(ξ2) = 0, g′(ξ3) = 0, and g′(ξ4) = 0

for some ξ2 with e1 ≤ ξ2 ≤ c, ξ3 with c ≤ ξ3 ≤ e2, and ξ4 with e2 ≤ ξ4 ≤ d. Thus, we get
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g′(ξ1) = g′(ξ2) = g′(ξ3) = g′(ξ4) = 0.

Let h(x) = g′(x). We know from the given that h(x) is differentiable on (a, b) and if

a function is differentiable on (a, b), then the function must also be continuous on the

interval [a, b]. Since ξ1, ξ2, ξ3, ξ4 ∈ [a, b], then h(x) is differentiable on (ξ1, ξ2), (ξ2, ξ3), and

(ξ3, ξ4) and continuous on [ξ1, ξ2], [ξ2, ξ3], and [ξ3, ξ4]. It has also been found above that

h(ξ1) = h(ξ2) = h(ξ3) = h(ξ4) and by the Rolle’s Theorem, h′(ρ1) = h′(ρ2) = h′(ρ3) = 0

for some ρ1 with ξ1 ≤ ρ1 ≤ ξ2, a ρ2 with ξ2 ≤ ρ2 ≤ ξ3, and a ρ3 with ξ3 ≤ ρ3 ≤ ξ4. Thus,

we have h′(ρ1) = h′(ρ2) = h′(ρ3) = 0.

Let j(x) = h′(x) = g′′(x). We know from the given that j(x) is differentiable on (a, b)

and if a function is differentiable on (a, b), then the function must also be continuous

on the interval [a, b]. Since ρ1, ρ2, ρ3 ∈ [a, b], then j(x) is differentiable on (ρ1, ρ2) and

(ρ2, ρ3) as well as being continuous on [ρ1, ρ2] and [ρ2, ρ3]. It has also been found above

that j(ρ1) = j(ρ2) = j(ρ3) and by the Rolle’s Theorem, j′(ζ1) = j′(ζ2) = 0 for some ζ1

with ρ1 ≤ ζ1 ≤ ρ2 and a ζ2 with ρ2 ≤ ζ2 ≤ ρ3. Thus, we have j′(ζ1) = j′(ζ2) = 0.

Now let k(x) = j′(x) = h′′(x) = g′′′(x). We know from the given that k(x) is differ-

entiable on (a, b) and if a function is differentiable on (a, b), then the function must also

be continuous on the interval [a, b]. Since ζ1, ζ2 ∈ [a, b], then k(x) is differentiable on

(ζ1, ζ2) and continuous on [ζ1, ζ2]. It has also been found above that k(ζ1) = k(ζ2) and

by the Rolle’s Theorem, k′(ψ) = 0 for some ψ with ζ1 ≤ ψ ≤ ζ2.

Thus, if g is continuous on [a, b], where a < e1 < c < e2 < d < b and g(a) = g(e1) =

g(c) = g(e2) = g(d) = 0, and if g is fourth differntiable on (a, b), then there is a ψ with

ψ ∈ (a, b) such that g(iv)(ψ) = 0.

Now we have the following result: g(a) = 0, g(c) = 0, g(d) = 0, g is fourth

differentiable,
∫ d
a g(x) dx = 0,

∫ c
a g(x) dx = 0, and

∫ d
c g(x) dx = 0. We also found that

there is a ψ with ψ ∈ (a, d) such that g(iv)(ψ) = 0.

We will now combine all of this to find the first section’s error term:

g(iv)(x) = f (iv)(x)− 0− 0− E1∫ d
a (x− a)(x− c)(x− d)(x− b) dx

· 24
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Substituting x with ψ gives us:

g(iv)(ψ) = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− c)(x− d)(x− b) dx

0 = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− c)(x− d)(x− b) dx

Solving for the first section’s error term results in:

E1 =
f (iv)(ψ)

24
·
∫ d

a
(x− a)(x− c)(x− d)(x− b) dx

=
f (iv)(ψ)

24
· −4(b− a)5

3645

= −f
(iv)(ψ)

21870
(b− a)5

Now we will evaluate the second interval [d, b]. Let

g(x) = f(x)− p(x)− E2(x− a)(x− c)(x− d)(x− b)∫ b
d (x− a)(x− c)(x− d)(x− b) dx

with

E2 =

∫ b

d

(
f(x)− p(x)

)
dx

We will first show that g(a) = 0, g(c) = 0, g(d) = 0, and g(b) = 0.

g(a) = f(a)− p(a)− E2(a− a)(a− c)(a− d)(a− b)∫ b
d (x− a)(x− c)(x− d)(x− b) dx

= f(a)− f(a)− 0

= 0

g(c) = f(c)− p(c)− E2(c− a)(c− c)(c− d)(c− b)∫ b
d (x− a)(x− c)(x− d)(x− b) dx

= f(c)− f(c)− 0

= 0

g(d) = f(d)− p(d)− E2(d− a)(d− c)(d− d)(d− b)∫ b
d (x− a)(x− c)(x− d)(x− b) dx

= f(d)− f(d)− 0

= 0
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g(b) = f(b)− p(b)− E2(b− a)(b− c)(b− d)(b− b)∫ b
d (x− a)(x− c)(x− d)(x− b) dx

= f(b)− f(b)− 0

= 0

Next, we will show that g is fourth differentiable.

g(iv) = f (iv)(x)− 0− 24E2∫ b
d (x− a)(x− c)(x− d)(x− b) dx

Thus, g is fourth differentiable. We will also show that
∫ b
d g(x) dx = 0.∫ b

d
g(x) dx =

∫ b

d

(
f(x)− p(x)

)
− E2

∫ b
d (x− a)(x− c)(x− d)(x− b) dx∫ b
d (x− a)(x− c)(x− d)(x− b) dx

=

∫ b

d

(
f(x)− p(x)

)
− E2

=

∫ b

d

(
f(x)− p(x)

)
−
∫ b

d

(
f(x)− p(x)

)
= 0

We know from Lemma 1.16 that there is a e with d < e < b such that g(e) = 0. We will

now show that there is a ψ with ψ ∈ (a, b) such that g(iv)(ψ) = 0. To do this, we will

prove the following lemma:

Lemma 5.3. If g is continuous on [a, b], where a < c < d < e < b and g(a) = g(c) =

g(d) = g(e) = g(b) = 0, and if g is fourth differentiable on (a, b), then there is a ψ with

ψ ∈ (a, b) such that g(iv)(ψ) = 0

Proof. Since g is continuous on the interval [a, b] and differentiable at every point in (a, b),

where a < c < d < e < b and g(a) = g(c) = g(d) = g(e) = g(b) = 0, then g is continuous

on the intervals [a, c], [c, d], [d, e], and [e, b], and differentiable at every point in (a, c),

(c, d), (d, e), and (e, b).

By Rolle’s Theorem, since g is continuous on the interval [a, c] and differentiable at every

point in (a, c) such that g(a) = g(c) then

g′(ξ1) = 0

for some ξ1 with a ≤ ξ1 ≤ c.
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Similarly, using Rolle’s Theorem, we also find that g′(ξ2) = 0, g′(ξ3) = 0, and g′(ξ4) = 0

for some ξ2 with c ≤ ξ2 ≤ d, ξ3 with d ≤ ξ3 ≤ e, and ξ4 with e ≤ ξ4 ≤ b. Thus, we get

g′(ξ1) = g′(ξ2) = g′(ξ3) = g′(ξ4) = 0.

Let h(x) = g′(x). We know from the given that h(x) is differentiable on (a, b) and if

a function is differentiable on (a, b), then the function must also be continuous on the

interval [a, b]. Since ξ1, ξ2, ξ3, ξ4 ∈ [a, b], then h(x) is differentiable on (ξ1, ξ2), (ξ2, ξ3), and

(ξ3, ξ4) and continuous on [ξ1, ξ2], [ξ2, ξ3], and [ξ3, ξ4]. It has also been found above that

h(ξ1) = h(ξ2) = h(ξ3) = h(ξ4) and by the Rolle’s Theorem, h′(ρ1) = h′(ρ2) = h′(ρ3) = 0

for some ρ1 with ξ1 ≤ ρ1 ≤ ξ2, a ρ2 with ξ2 ≤ ρ2 ≤ ξ3, and a ρ3 with ξ3 ≤ ρ3 ≤ ξ4. Thus,

we have h′(ρ1) = h′(ρ2) = h′(ρ3) = 0.

Let j(x) = h′(x) = g′′(x). We know from the given that j(x) is differentiable on (a, b)

and if a function is differentiable on (a, b), then the function must also be continuous

on the interval [a, b]. Since ρ1, ρ2, ρ3 ∈ [a, b], then j(x) is differentiable on (ρ1, ρ2) and

(ρ2, ρ3) as well as being continuous on [ρ1, ρ2] and [ρ2, ρ3]. It has also been found above

that j(ρ1) = j(ρ2) = j(ρ3) and by the Rolle’s Theorem, j′(ζ1) = j′(ζ2) = 0 for some ζ1

with ρ1 ≤ ζ1 ≤ ρ2 and a ζ2 with ρ2 ≤ ζ2 ≤ ρ3. Thus, we have j′(ζ1) = j′(ζ2) = 0.

Now let k(x) = j′(x) = h′′(x) = g′′′(x). We know from the given that k(x) is differ-

entiable on (a, b) and if a function is differentiable on (a, d), then the function must also

be continuous on the interval [a, d]. Since ζ1, ζ2 ∈ [a, b], then k(x) is differentiable on

(ζ1, ζ2) and continuous on [ζ1, ζ2]. It has also been found above that k(ζ1) = k(ζ2) and

by the Rolle’s Theorem, k′(ψ) = 0 for some ψ with ζ1 ≤ ψ ≤ ζ2.

Thus, if g is continuous on [a, b], where a < c < d < e < b and g(a) = g(c) = g(d) =

g(e) = g(b) = 0, and if g is fourth differntiable on (a, b), then there is a ψ with ψ ∈ (a, b)

such that g(iv)(ψ) = 0.

Now we have the following result: g(a) = 0, g(c) = 0, g(d) = 0, g(b) = 0, g is

fourth differentiable, and
∫ b
d g(x) dx = 0. We also found that there is a ψ with ψ ∈ (a, b)

such that g(iv)(ψ) = 0.
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We will now combine all of this to find the second section’s error term:

g(iv)(x) = f (iv)(x)− 0− E2∫ b
d (x− a)(x− c)(x− d)(x− b) dx

· 24

Substituting x with ψ gives us:

g(iv)(ψ) = f (iv)(ψ)− 24E2∫ b
d (x− a)(x− c)(x− d)(x− b) dx

0 = f (iv)(ψ)− 24E2∫ b
d (x− a)(x− c)(x− d)(x− b) dx

Solving for the second section’s error term results in:

E2 =
f (iv)(ψ)

24
·
∫ b

d
(x− a)(x− c)(x− d)(x− b) dx

=
f (iv)(ψ)

24
· −19(b− a)5

7290

= −19f (iv)(ψ)

174960
(b− a)5

Combining the error terms from the two sections gives us the following:

E = E1 + E2

= −f
(iv)(ψ)

21870
(b− a)5 − 19f (iv)(ψ)

174960
(b− a)5

= −f
(iv)(ψ)

6480
(b− a)5

This concludes the first proof.

5.2 Dr. Fejzić’s second proof of Simpson’s 3
8 Rule

Theorem 5.4. Let f be fourth differentiable on an open interval (a, b) and continuous

on [a, b]. Then
∫ b
a f(x) dx = 3(b−a)

8 (f(a) + 3f(c) + 3f(d) + f(b)) + E, where the error

E = −f (iv)(ψ)
6480 (b− a)5 for some ψ ∈ (a, b).
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Proof. Similar to the first method, we will split the function apart into two pieces, [a, d]

and [d, b].

The first interval we will evaluate is [a, d]. Let

g(x) = f(x)− l(x)− kp(x)− E1∫ d
a q1(x) dx

q1(x)

where

E1 =

∫ d

a

(
f(x)− l(x)

)
dx

and we define l(x), p(x), and q1(x) as:

l(x) = f(a)
(x− b)(x− c)(x− d)

(a− b)(a− c)(a− d)
+ f(c)

(x− a)(x− b)(x− d)

(c− a)(c− b)(c− d)
+

f(d)
(x− a)(x− b)(x− c)
(d− a)(d− b)(d− c)

+ f(b)
(x− a)(x− c)(x− d)

(b− a)(b− c)(b− d)
,

p(x) = (x− a)(x− c)(x− d), and q1(x) = (x− a)(x− c)(x− d)(x− b) with c = 2a+b
3 and

d = 2b+a
3 .

We will show that g(a) = 0, g(c) = 0, and g(d) = 0.

g(a) = f(a)− l(a)− kp(a)− E1∫ d
a q1(x) dx

q1(a)

= f(a)− f(a)− k(0)− E1∫ d
a q1(x) dx

(0)

= f(a)− f(a)

= 0

g(c) = f(c)− l(c)− kp(c)− E1∫ d
a q1(x) dx

q1(c)

= f(c)− f(c)− k(0)− E1∫ d
a q1(x) dx

(0)

= f(c)− f(c)

= 0
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g(d) = f(d)− l(d)− kp(d)− E1∫ d
a q1(x) dx

q1(d)

= f(d)− f(d)− k(0)− E1∫ d
a q1(x) dx

(0)

= f(d)− f(d)

= 0

Next, we will show that g is fourth differentiable.

g(iv)(x) = f (iv)(x)− 0− k(0)− 24E1∫ d
a q1(x) dx

= f (iv)(x)− 24E1∫ d
a q1(x) dx

Thus, g is fourth differentiable. We will then show that
∫ d
a g(x) dx = 0.∫ d

a
g(x) dx =

∫ d

a

(
f(x)− l(x)− kp(x)− E1∫ d

a q1(x) dx
q1(x)

)
dx

=

∫ d

a

(
f(x)− l(x)

)
dx− k

∫ d

a
p(x) dx− E1∫ d

a q1(x) dx

∫ d

a
q1(x) dx

=

∫ d

a

(
f(x)− l(x)

)
dx− k(0)− E1

=

∫ d

a

(
f(x)− l(x)

)
dx−

∫ d

a

(
f(x)− l(x)

)
dx

= 0

Thus,
∫ d
a g(x) dx = 0. We will now pick k such that g′(c) = 0. Recall that g(x) =

f(x)− l(x)− kp(x)− E1∫ d
a q1(x) dx

q1(x) so that

g′(x) = f ′(x)− l′(x)− kp′(x)− E1∫ d
a q1(x) dx

q′1(x).

Since p′(c) 6= 0 we can solve the last equality for k to obtain

k =
g′(c)− f ′(c) + l′(c) + E1∫ d

a q1(x) dx
q′1(c)

p′(c)
.

For the rest of the paper we will work with this value of k; so that in addition

to the previous properties of g(x) that we have established and that were true for any

value of k, we also have that g′(c) = 0 for this value of k.
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Case 1: g′′(c) = 0. We will explore the case when g′′(c) = 0, which makes c an inflection

point, where the function changes from concave up/down or vice versa. Since g(a) =

g(c) = g(d) = 0 and g is continuous on the interval [a, b] and differentiable at every point

in (a, b), where a < c < d < b, then by Rolle’s Theorem, there exists points ζ1 ∈ (a, c) and

ζ2 ∈ (c, d) such that g′(ζ1) = 0 and g′(ζ2) = 0. And since g′(ζ1) = g′(c) = 0 = g′(ζ2) = 0,

then by Rolle’s Theorem again, there exists points ρ1 ∈ (ζ1, c) and ρ ∈ (c, ζ2) such that

g′′(ρ1) = 0 and g′′(ρ2) = 0. But since g′′(ρ1) = g′′(c) = g′′(ρ2) = 0, then by Rolle’s

Theorem, there exists points ξ1 ∈ (ρ1, c) and ξ2 ∈ (c, ρ2) such that g′′′(ξ1) = 0 and

g′′′(ξ2) = 0. Since g′′′(ξ1) == g′′′(ξ2) = 0, then by Rolle’s Theorem one last time, we

know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0, then

we can solve for E1:

g(iv)(ψ) = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

0 = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

E1 =
f (iv)(ψ)

24

∫ d

a
(x− a)(x− b)(x− c)2 dx

E1 =
f (iv)(ψ)

24
· −4(b− a)5

3645

E1 = −f
(iv)(ψ)

21870
(b− a)5

Case 2: g′′(c) > 0. We will explore the case when g′′(c) > 0, which makes c a minimum and

the function doesn’t cross the x-axis at c. Since
∫ d
a g(x) dx = 0 then by the Intermediate

Value Theorem, there must be another point, e such that g(e) = 0. Point e can either

exist within the interval (a, c) or in (c, d).

Suppose e < c. Since g(a) = g(d) = g(c) = g(e) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < e < c < d < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, e), ζ2 ∈ (e, c), and ζ3 ∈ (c, d) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(ζ2) = g′(c) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, ζ2), ρ2 ∈ (ζ2, c), and ρ3 ∈ (c, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we
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know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that

g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E1:

g(iv)(ψ) = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

0 = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

E1 =
f (iv)(ψ)

24

∫ d

a
(x− a)(x− b)(x− c)2 dx

E1 =
f (iv)(ψ)

24
· −4(b− a)5

3645

E1 = −f
(iv)(ψ)

21870
(b− a)5

Suppose e > c. Since g(a) = g(c) = g(d) = g(e) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < c < e < d < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, c), ζ2 ∈ (c, e), and ζ3 ∈ (e, d) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(c) = g′(ζ2) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, c), ρ2 ∈ (c, ζ2), and ρ3 ∈ (ζ2, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that

g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E1:

g(iv)(ψ) = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

0 = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

E1 =
f (iv)(ψ)

24

∫ d

a
(x− a)(x− b)(x− c)2 dx

E1 =
f (iv)(ψ)

24
· −4(b− a)5

3645

E1 = −f
(iv)(ψ)

21870
(b− a)5
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Case 3: g′′(c) < 0. We will explore the case when g′′(c) < 0, which makes c a maximum and

the function doesn’t cross the x-axis at c. Since
∫ d
a g(x) dx = 0, then by the Intermediate

Value Theorem there must be another point, e such that g(e) = 0. Point e can either

exist within the interval (a, c) or in (c, d).

Suppose e < c. Since g(a) = g(d) = g(c) = g(e) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < e < c < d < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, e), ζ2 ∈ (e, c), and ζ3 ∈ (c, d) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(ζ2) = g′(c) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, ζ2), ρ2 ∈ (ζ2, c), and ρ3 ∈ (c, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that

g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E1:

g(iv)(ψ) = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

0 = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

E1 =
f (iv)(ψ)

24

∫ d

a
(x− a)(x− b)(x− c)2 dx

E1 =
f (iv)(ψ)

24
· −4(b− a)5

3645

E1 = −f
(iv)(ψ)

21870
(b− a)5

Suppose e > c. Since g(a) = g(c) = g(d) = g(e) = 0 and g is continuous on the interval

[a, b] and differentiable at every point in (a, b), where a < c < e < d < b, then by Rolle’s

Theorem, there exists points, ζ1 ∈ (a, c), ζ2 ∈ (c, e), and ζ3 ∈ (e, d) such that g′(ζ1) = 0,

g′(ζ2) = 0, and g′(ζ3) = 0. And since g′(ζ1) = g′(c) = g′(ζ2) = g′(ζ3) = 0, then by Rolle’s

Theorem again, there exists points ρ1 ∈ (ζ1, c), ρ2 ∈ (c, ζ2), and ρ3 ∈ (ζ2, ζ3) such that

g′′(ρ1) = 0, g′′(ρ2) = 0, and g′′(ρ3) = 0. Since g′′(ρ1) = g′′(ρ2) = g′′(ρ3) = 0, then we

know from Rolle’s Theorem, there exists points ξ1 ∈ (ρ1, ρ2) and ξ2 ∈ (ρ2, ρ3) such that
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g′′′(ξ1) = 0 and g′′′(ξ2) = 0. Since g′′′(ξ1) = g′′′(ξ2) = 0, then by Rolle’s Theorem one last

time, we know that there exists a point ψ ∈ (ξ1, ξ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0,

then we can solve for E1:

g(iv)(ψ) = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

0 = f (iv)(ψ)− 24E1∫ d
a (x− a)(x− d)(x− c)2 dx

E1 =
f (iv)(ψ)

24

∫ d

a
(x− a)(x− b)(x− c)2 dx

E1 =
f (iv)(ψ)

24
· −4(b− a)5

3645

E1 = −f
(iv)(ψ)

21870
(b− a)5

From these three possible cases, we can see that no matter if g′′(c) = 0, g′′(c) > 0 or

g′′(c) < 0, the error term came out the same way: E1 = −f (iv)(ψ)
21870 (b− a)5 for the interval

[a, d].

We will now evaluate the interval [d, b]. For this interval, we will let

g(x) = f(x)− l(x)− E2q2(x)∫ b
d q2(x) dx

with E2 =
∫ b
d

(
f(x)− l(x)

)
dx and q2(x) = (x− a)(x− b)(x− c)(x− d).

We will begin by showing g(a) = 0, g(b) = 0, g(c) = 0, and g(d) = 0.

g(a) = f(a)− l(a)− E2q2(a)∫ b
d q2(x) dx

= f(a)− f(a)− 0

= 0

g(b) = f(b)− l(b)− E2q2(b)∫ b
d q2(x) dx

= f(b)− f(b)− 0

= 0
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g(c) = f(c)− l(c)− E2q2(c)∫ b
d q2(x) dx

= f(c)− f(c)− 0

= 0

g(d) = f(d)− l(d)− E2q2(d)∫ b
d q2(x) dx

= f(d)− f(d)− 0

= 0

Next, we will show that g is fourth time differentiable.

g(iv) = f (iv)(x)− 0− 24E2∫ b
d q2(x) dx

= f (iv)(x)− 24E2∫ b
d q2(x) dx

Thus, g is fourth differentiable. We will then show that
∫ b
d g(x) dx = 0.∫ b

d
g(x) dx =

∫ b

d

(
f(x)− l(x)− E2q2(x)∫ b

d q2(x) dx

)
dx

=

∫ b

d

(
f(x)− l(x)

)
dx− E2

∫ b
d q2(x) dx∫ b
d q2(x) dx

=

∫ b

d

(
f(x)− l(x)

)
dx− E2

=

∫ b

d

(
f(x)− l(x)

)
dx−

∫ b

d

(
f(x)− l(x)

)
dx

= 0

Since
∫ b
d g(x) dx = 0 and we know that g(d) = g(b) = 0, then by the Intermediate Value

Theorem, there exists a point e ∈ (d, b) such that g(e) = 0. This means that we have

g(a) = g(c) = g(d) = g(e) = g(b) = 0. Since g is continuous on the interval [a, b] and

differentiable at every point in (a, b), where a < c < d < e < b, then by Rolle’s Theorem,

there exists points ζ1 ∈ (a, c), ζ2 ∈ (c, d), ζ3 ∈ (d, e), and ζ4 ∈ (e, b) such that g′(ζ1) = 0,

g′(ζ2) = 0, g′(ζ3) = 0, and g′(ζ4) = 0. Since g′(ζ1) = g′(ζ2) = g′(ζ3) = g′(ζ4) = 0,

then by Rolle’s Theorem, there exists ξ1 ∈ (ζ1, ζ2), ξ2 ∈ (ζ2, ζ3), and ξ3 ∈ (ζ3, ζ4) such
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that g′′(ξ1) = 0, g′′(ξ2) = 0, and g′′(ξ3) = 0. Since g′′(ξ1) = g′′(ξ2) = g′′(ξ3) = 0, then

by Rolle’s Theorem, there exists ρ1 ∈ (ξ1, ξ2) and ρ2 ∈ (ξ2, ξ3) such that g′′′(ρ1) = 0

and g′′′(ρ2) = 0. Since g′′′(ρ1) = g′′′(ρ2) = 0, then by Rolle’s Theorem, there exists

ψ ∈ (ρ1, ρ2) such that g(iv)(ψ) = 0. If g(iv)(ψ) = 0, then we can find E2:

g(iv)(ψ) = f (iv)(ψ)− 24E2∫ b
d q2(x) dx

0 = f (iv)(ψ)− 24E2∫ b
d q2(x) dx

E2 = −19f (iv)(ψ)

174960
(b− a)5

Combining the error terms from the two sections gives us the following:

E = E1 + E2

= −f
(iv)(ψ)

21870
(b− a)5 − 19f (iv)(ψ)

174960
(b− a)5

= −f
(iv)(ψ)

6480
(b− a)5

5.3 Remarks on the two proofs of Simpson’s 3
8 Rule

We explored two proofs on the error term for the Simpson’s 3
8 Rule. Unfortu-

nately, Gordon and Kincaid did not provide a proof for the error term of Simpson’s 3
8

Rule. The first proof we followed was Dr. Fejzić’s first method. Dr. Fejzić’s first method

is similar to how the proofs of the Simpson’s Rule and Trapezoid Rule were conducted.

Since the Simpson’s 3
8 Rule requires an additional point, we had to split the domain’s

interval into two parts, [a, d] and [d, b]. This resulted with two error terms that needed

to be added together to get the final result. Nonetheless, the skills needed to understand

and complete this proof are the basics of analysis, relying on algebra, basic differentiation

rules, basic integration rules, Riemann integral theorems, Lemma 1.16, and Rolle’s The-

orem. This was a very straightforward proof that an entry-level analysis student would

have little to no problems understanding and following. The second proof was Dr. Fejzić’s
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second method. This proof follows the exact same methods as the second methods for

his Simpson’s Rule and Midpoint Rule’s error terms. Similar to the first method, we had

to split the domain interval into the two parts, [a, d] and [d, b]. Again, I appreciated the

consistency the second method provided when comparing it to the Midpoint Rule’s and

Simpson’s Rule’s proof of the error term. The repetitive, straightforward, and elementary

approach the second method provides for the proofs of the error terms for the Midpoint,

Simpson’s and Simpson’s 3
8 Rules makes it the most ideal candidate for being adopted

into elementary analysis books.
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Chapter 6

Conclusion

After replicating the available proofs of the Trapezoid Rule, Midpoint Rule,

Simpson’s Rule and Simpson’s 3
8 Rule provided by Kincaid and Cheney, Gordon and

Dr. Fejzić, one can see that there is an elementary proof for these rules that should be

published in introductory books on Numerical Integration. Dr. Fejzić’s proofs were the

most elementary and simple to follow, requiring only the basic properties of continuous,

differentiable and integrable functions. Not only that, he was able to produce a proof

for Simpson’s 3
8 Rule, which is uncommon. Hence, Dr. Fejzić’s proofs are the most ideal

candidates for finally introducing the proofs of the Midpoint and Simpson’s Rules into

introductory Numerical Analysis books.



67

Bibliography

[Axl20] Axler, S., Measure, Integration, & Real Analysis, Springer Open, Cham, Switzer-

land, 2020.

[CK13] Cheney, W., Kincaid, D., Numerical Mathematics and Computing, Brooks/Cole,

Boston, MA, 2013.

[CN03] Cruz-Uribe, D., Neugebauer, C.J., “An elementary proof of error estimates for

the trapezoidal rule,” Mathematics Magazine Vol. 76, pp. 303-306, 2003.

[DR84] Davis, P.J., Rabinowitz, P., Methods of Numerical Integration, Academic Press,

Inc., San Diego, CA, 1984.
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