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f'' 'ABSTRAGT;v:':i ■ 

In. thi$ thesis, .new artificiai neural. net^ork\ ^̂ ^ ^ , : 

methods, that computh ail.eigenpairs of; a matrix with .real . 

eigenvalues: are..introdu.ced .and evaluated.: The basic^ ^ 

.leairning...,rule: presented.,.is: u to'.f.ind ..eigenpairs t
 

associated.with both: positive and negative eigenvalues.
 

The above rule:is extended,to finding all.eigenpairs :
 

.employing . as' much parallelism as ..pdssible : The algorit.hms .
 

presented are: Serial: Deflation, ; Se.rial.-pipelined deflation
 

■and 	Patailel-pipeiinei vThe.. three ^algorithms extract all . . . 

eigenpairs in order', and Parallel pipeline p.erfotnis bettef 

than' the other two.;; It . computes tesults faster aad has the 

'highest degree of parallelism. 
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CHAPTER ONE Introduction
 

Computing the eigenvalues and associated eigenvectors
 

of a given real matrix is necessary in many scientific
 

disciplines. This computation is important for scientific
 

and engineering problems such as signal processing, control
 

theory, and geophysics [21]. The general solutions of
 

differential equation systems often require knowledge of
 

the spectral quantities, i.e. the eigenvectors and
 

eigenvalues. Also, the meaning of the covariance matrix in
 

statistics is most clear when the eigenpaira are known.
 

Besides the standard methods for computing eigenvalues and
 

their eigenvectors, there is a great,interest;in computing
 

eigenpairs using neural techniques [9]-[10],, [17]-[21].
 

The word eigenvalue derives from the. German, word
 

eigenwert; eigen meahs peculiar, characteristic and wert
 

means value. An eigenvalue is one of those special values
 

of a parameter .in.a particular equation for which.the
 

equation has a solution. Specifically, the nontrivial
 

solutions of the equation Ax = A.x .were introduced by.
 

Lagrance in 1762 to solve systems of differential, equations
 

with constant coefficients. . The nonzero solutions are. the,
 

eigenvalues, and the.term was introduced by Hilbert in 1904
 



to denote a property of integral equations. Later on,
 

eigenvalues became attached to matrices [11]. In the case
 

of a differential equation, a single-valued, finite, and
 

continuous solution is found only for particular values of
 

a parameter and these are the proper-values or eigenvalues
 

of the differential equation. Detailed mathematical
 

definitions are given in section 1.1.
 

1.1 Computing eigenpairs: background,
 

Finding the eigenvalues of a square matrix is a
 

difficult problem that arises in a wide variety of
 

scientific applications. The solution of many physical
 

problems requires the calculation, or at least estimation
 

of the eigenvalues and corresponding eigenvectors of a
 

matrix associated with a linear system of equations. A few
 

definitions are necessary to better understand the problem.
 

Definition 1 A nonzero vector x e 91" is an eigenvector
 

(or characteristic vector) of a square matrix A e 91" ̂ " if
 

there exists a scalar X such that Ax = A,x. Then A, is an
 

eigenvalue (or characteristic value) of A [1]. .
 

In other words, a number X is an eigenvalue of the
 

n X n matrix A if and only,if the homogeneous system
 



(A - Al)x = 0
 

has nontrivial-solutions. Furthermore^ the nontrivial
 

solutions of the above equation are the eigenvectors of A
 

associated with eigenvalue A,. So, in order to compute the
 

eigenvalues and eigenvectors of a given n x n matrix A, we
 

must solve the system Ax - Xx = 0. The matrix form of this
 

equation is in Definition 1. .
 

Definition 2 If A is a real n x n matrix, the
 

polynomial defined by
 

p(A) = det(A - Al)
 

is called the characteristic polynomial of A [8].
 

Definition 3 If A is a real n x n matrix, the equation
 

defined by
 

det,(2l - A) = 0
 

is called the characteristic equation of A [3].
 

It is known that p is an nth-degree polynomial with
 

real coefficients and, consequently,.has at most h distinct
 

roots; some of these roots may be complex [8].
 



Definition 4 An eigenvalue Xiand the associated non
 

zero eigenvector Vi = [vn, vn, . . vin]'^ are referred to as
 

an eigenpair.
 

Definition 5 The magnitude of a vector
 

V = [Vi, V2, Vn] is ||v|| = Vv • V = ̂|{vl + Vg + . . . + V^ .
 

It is also called the norm or length of a vector, where •
 

•denotes the inner product operator.
 

Definition 6 The distance between vectors u and v is
 

defined to be
 

d(u, v) = ||u - v|| = -^{u^ - v^)^ + (U2 - + . . . + (u„ - v„)^
 

The distance will be. used as an error.measure between
 

the Computed eigenvector and the ideal eigenvector.
 

Definition 7 The largest in magnitude eigenvalue of a
 

matrix A .is called the dominant eigenvalue . [.8].. .
 

Definition 8 For two vectors x and y, the cosine of the
 

angle between them is defined as
 

cos(0)=
 
* y 

P'lP'
 



 

  

 

 

 

 

If cos(0) is close to 1, then x and y are close to having
 

^^oYO^ _1 ^h«n ^ ■! <=the same direction. If cos(0) is cl X is
 
re: • ::::i;:,::g|S
 ./• ;.':i V:i :.>v 

approximately -y. 

;;" ■ J ■•' it '' i"'- ■■ ' ■ . ',/■■ ■ - ''ii-", 's t .' ' i.'i.i ; :"i. 't;;
■ •■ivo v'i- ' ■ ■'■"■ ■'""ti- 'wt;,"<■;■; tttS'K'V^itW;f t i'-'i'" ii-i■' • i.>.i 't:. iii •■ ■ ' -if .:i'i- ,.-' ' ■ i':' : ' i ' . ■ ' ■-!; ■ :■ i,: 

v- :v-tVt i'e•t-i'-:/■" ,:t' 'i: t ;■ ;■/ / ■'1 Find the eigenvalues and eigenvectors 
■ ■•■, ;■ ' 't,.­

^ = 1 3 
_ 

• 
L- -■ 

i "■;: ■; ■, 'V:i'-' V ■ •■ 'C1 '; ' • t':' ; ■ ' ' ■■■ ' ' ■:; -■' '•.- ;•' " ' ,'• ■ ' , Til' ■'■1-'.'' ' f'- •■/ i-- ■ I'- 'v I .:vi1; ;^ ^ v-"- ■ "' 'i " ■"i '■ ■ ' -i-' t '-tV ' ' ! ' 

r, 11 n «n p.i i -]'3. :1' 
= i 

0 A = 1 3-A 

and det{A-Xl)-{3-X) (3-X)-l. Setting det(A-Xl)=0 and solving 
*! 

for X gives X = 4 and X = 2. To find the eigenvalue for X = 4 

: find a nonzero solution to ' , 

(3 - 4)x + y = 0 

X + (3 - 4)y = 0 
. 

■ -• ■ '■■ ■■■■■-,--. ■.' ■ ■■„ • i--: c-.- ■ i.3 / 

, 

This system just demands that y = x. So an eigenvector for 
i tytyi-y , ' i, - t ;;i: Co;-;' - .1 : ■ ^v: -ihAhytiVy^ p ., 1, y_ ■ytiit/V'.t/t-/ ■'■ -i";­

the eigenvalue 4 is the vector [1 1] T or any nonzero 

multiple of it. 

. . • . . y ■ -'o 

■;i_i ;.;y ' . '"■ :,\i' , ■ "/Jr-.-v 



  

 

^ 	x + y - 0: ■ , ■ 

x' +' y = 0' ­

This gives the relation y = -x which in turn shows that
 

[1 	-1] is an,eigenvector for X = 2. .
 

We 	can summarize our findings hy writing that A = CDC
 

"4 O'
 
D = c =
 

0 2 1 1
 

where the diagonal entries of D are the eigenvalues of A,
 

and the column vectors of C are their corresponding
 

eigenvectors. This example was taken.from [8].
 

The three types of matrices are mentioned or used in
 

this thesis are symmetric, positive-definite, and positive
 

semidefinite..
 

Definition 9: A sguare matrix is said.to be symmetric
 

if its elements are symmetric about the diagonal. That is
 

to say Aij - Aji for all i and j.
 

, , Definition 10:; A matrix A is positive definite if ,
 

■ (Av)•,V > 0' ■ 

for all vectors v^ 0. All Eigenvalues of a positive
 

definite matrix .are. positive. .
 

Definition 11: A matrix A is positive.semidefinite if
 



(Av)•V > 0
 

for all V ̂  0.
 

The eigenvalues from these three kinds of matrices are
 

real numbers.
 

1.2 Using neural networks to compute eigenpairs
 

Artificial neural networks (ANN) are a growing part of
 

the study of artificial intelligence and are intended to be
 

a link to true biological machines [16]. In order to build
 

intelligent machines, the naturally occurring model is the
 

human brain. For that purpose, one of ..the first things
 

that.comes to mind is simulating the function of the brain
 

directly on a computer. Computers today have remarkable
 

abilities including the ability to store vast quantities of
 

information and perform extensive arithmetic calculations
 

without error. Their circuits operate very fast, and
 

humans cannot approach such capabilities [16]. On the other
 

hand, computers cannot efficiently perform simple everyday
 

tasks like walking, talking, natural language processing,
 

and common.sense reasoning. . Current artificial
 

intelligence systems cannot do any of these tasks, better
 

than humans. .
 



The need for a processor that has the functionality of
 

the human brain and the speed of a computer attracted and
 

still attracts many researchers to ANNs [19]. An artificial
 

neural network is a machine or algorithm modeled after the
 

design and function of the brain. For the most part, neural
 

network architectures are not meant to duplicate the
 

operation of the human brain, but to receive inspiration
 

from known facts about how the brain works [16].
 

Figure 1. Simple feedforward neural network
 

Output layer
 

weights
 

Optional
 
Hidden Layers
 

Input Layer
 

t t
 



In general, a network consists of many simple
 

processors, also known as nodes or neurons, that are linked
 

together in layers. There are input and output layers, each
 

containing any number of nodes. As illustrated in Figure 1,
 

there can be a number of hidden layers separating the input
 

from the output, also containing an arbitrary number of .
 

nodes. Each node' contains some small amount of.data and
 

each link between,the nodes has a yalue. (weight) assbciated
 

with it, as shown :in Figure 1. The concept of the
 

biological JTi3.chine stems from the idea that the input nodes
 

are equivalent to neurons, and the links are equivalent to
 

the synapses plus axons.
 

The network is trained,in a way that the weights are
 

modified until the ANN, for a. given input, produces the
 

correct or most,correct output. This training can be done
 

using either supervised or unsupervised learning. An ANN
 

■undergoes 	supervised learning when the input vectors and 

the corresponding: , output vectors are used. In a way, there 

is a teacher to guide the.network to the correct output. . 

Learning in supervised networks is often times 

achieved by a method called back.propagation. The 

difference between the desired and actual network outputs 

is observed, then the network is modified, and the. 



procedure repeats until correct results are obtained. So,
 

the neural network minimizes an error function of the
 

output. Unfortunately, back propagation has problems.
 

First it is slow, secondly it is difficult to analyze the
 

actions of the hidden layers, and finally results are not
 

always produced due to weaknesses of the gradient descent
 

method, (i.e. local minima can distract from gradient
 

descent) [10].
 

In unsupervised learning there is no teacher; rather,
 

the neural network incorporates local information and
 

internal rules to associate the different inputs with the
 

different outputs. This makes it more similar to the
 

workings of the brain, which does not have an internal
 

teacher. Unsupervised learning is best suited for
 

situations where there is a great deal of redundancy in the
 

input. By repetition, the network organizes itself to
 

distinguish patterns or features in the data [20].
 

It is interesting to research and study how parallel
 

structures, like neural networks, can solve problems like
 

the computation of eigenvalues and their corresponding
 

eigenvectors. According to many researchers, neural
 

computing defined by dynamic systems is a very promising
 

10
 



 

approach for solving.real.time .computational problems [9]­

'.[2i:],. ■ ■ '■

1.3 Review of previous work
 

In unsupervised learning^ a neural network must,„
 

discover for itself patterns/ regularities, features,
 

correlations, or categories of the input data and code for
 

them in the output [10,]. While discovering these, the,
 

network changes its.parameters, a process called self-


organization [10].
 

Assuming we have an input vector with components ^.i, and
 

each component has a weight wi. associated with it. If we
 

consider the simplest case of a single linear unit, its
 

scalar output V is
 

• • ■■ ■ . ■ ^ ■ ■ ' 

where w is the weight vector. The network; architecture is
 

shown in Figure 2. Hebbia.n lesbnlng, a fundamental learning
 

mechanism [10], is represented by this learning rule: ,
 

Aw^ = (2)
 

11
 



 

 

where 77 is. the . learning' rate, a amall pbsitive constant.; .
 

The.product is the standard Hebb rule and is present one
 

form or, anbther \in":.ffl learning'rules,i;inGluding the one 

presented:in .this .thesis (section 2.1). 

:Figure .2. Arc,hitecture for simp1p. hebbian ,1earning 

V .'"I ■ ■■ V^ ' 

Wh
Wi
 

W2
 

In
51 ■ 

1 T problem here'::.is tha.t :the weights keep;on growing
 

without,abound and .learning,never:stops. [10]. To . avoi'd:this,
 

dja [13] .added 'weight decay proportional to;the pquare;© .,
 

the output to the;piain'Hebbian rule :' ' '
 

Aw. - TjV{^^ - Vw^). (3)
 

)Oja 's.'Xule■ above causes its.;weight,;vectbr to .converge to ^ 

the . eigenvedtor 'that .(correspohds' to . the; largest .. eigenvalue^ 

A^ax of; covariance matrix of the data set [13} 

12 



 

Several researchers have extended Oja's rule to
 

raultineuron networks that extract all eigenvectors of the
 

covariance matrix C of a given input set of vectors
 

[10],[18]-[19]. Banger's rule [18], for example, projects
 

the dutputs of an input vector ^ onto the space of the first
 

M principal components. The updated rule is
 

t ,
 

(M
 

This rule is most often used in applications since it
 

is robust and also extracts the principal components
 

individually in order [10].
 

Georgiou and Tsai approached the problem of finding
 

the eigehvectors of a symmetric positive definite matrix
 

(with neural networks) in a novel way [9]. Data having
 

approximately a specific covariance matrix (the given
 

matrix) is randomly generated, and then the APEX [12]
 

neural architecture and algorithm is used to extract the
 

eigenvectors [20].
 

In the above studies, learning rules are applied to
 

the covariance matrix of the data (input) vectors, and the
 

eigenvalues and eigenvectors extracted are those of the
 

13
 



 

covariance matrix. In this thesis, the direct problem is
 

investigated: given a matrix A, find, all eigenvalues and
 

associated eigenvectors of A.,
 

In [17], a dynamical method that produces estimates of
 

real eigenvectors and eigenvalues was presented. The
 

technique proposed is applied to estimate eigens.pectra of
 

real n-dimensional k-forms. Their approach was based on a
 

spectral splicing property of the line manifolds often
 

found in solutions of polynomial differential equations,
 

[17].
 

In [21], a dynamical system for computing the ,
 

eigenvectors associated with the Amax of a positive definite
 

matrix A is described. They used the rule: ,
 

dx ,^,
 
—- = Ax - f(x)x (5)
 
dt
 

where x = (x^^, x^,...,x^)^ e 91" and function ^(x) satisfies
 

certain assumptions [21]. As it is mentioned in the same
 

paper, the first term on the right-hand side in equation 5
 

can be considered as the standard,Hebb rule term,(equation
 

1), and the second term acts to bound the length of vector
 

X [21]. ,
 

14
 



 

Also, in [21] is mentioned,that researchers hay'e' . ■ 

looked at the cases . where tf(x) = x'^Ax and -f(x) = x^x, using 

positive definite matrices as input. 

Samardizija and Waterland in [17] propose, sign, 

reversal to obtain negative eigenvalues: use , ; 

c?x ' 
— = Ax -(x'^x)x for positive eigehvalues and 
dt ■ "i- ^ ■ ,v ■ 'i 

dx ■ , . , , 
^ = -Ax -(x x)x for, negative.; ,. 
dt . 	 ;■ -1' ̂ ■ / -i 

In this thesis, we find negative eigenvalues andtheir 

associated eigenvectors without sign reversal, 

S'tatement: of the problem: Use a new neural network 

algorithm to compute all eigenpairs^:of a symmetric: matrix 

(i.e., with,real eigenvalues) . 

1. 	Introduce a new learning rule to find eigenpairs 

associated with both positi.ye and ,negative. , 

eigenvalues. 

2. 	Introduce algorithms that extend.the new rule above 

to be able to find all eigenpairs.employing as much 

parallelism as possible. The aigdrithms to be 

explored are:, 

a. 	Serial Deflation 

b. 	Serial-pipelined deflation. 

15 
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c. Parallel-pipeline
 

1.4 Thesis preview
 

Chapter Two of the thesis presents the theory of the
 

,	 new.rules , and,,the new neural, algorithms,that solve the
 

eigenvalue^eigenvector ..problem given a ■matrix,, A. , The
 

mathematieal foundationsv . theorems,- .and proofs are .
 

; -pre.sehted and discussed. 

To be more specific, equation (5) is used in [21] to 

compute the eigenvector corresponding to the largest 

. e a positive definite matrix^.A, . i". e> all: 

, 1 are positive. In this thesis, equation (5) 

; is m^^^ eigenpairs of a real symmetric 

.matrix. 	The: only limitation now . is that matrix, A should 

have real eigenvalues. Also, besides computing the 

eigenvector, corresponding to the largest eigenvaTue,, . the, , 

modified rule can extract the eigenvector associated with 

the smallest negative eigenvalue of A. Depending on the 

initial value of eigenvector x, convergence can be directed 

to find the eigenpair, that belongs, to: the largest positive 

or smallest negative eigenvalue. In addition, a serial 

deflation technique is used to extract the remaining 

eigenpairs [4], [6] . A serial-pipelined deflation algorithm' 

16 



is introduced to extract all eigenpairs in parallel-like
 

fashion. Lastly, a third, even more efficient algorithm
 

(Parallel-pipeline) is used to extract all eigenpairs in
 

parallel fashion.
 

In Chapter Three the specifics of the implementation
 

method and the software simulation aspects are presented.
 

In Chapter Four the computer simulation results are
 

presented and discussed. In Chapter Five conclusions are
 

drawn, and in Chapter Six future studies possibilities are
 

outlined.
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CHAPTER TWO The new learning rules and algorithms
 

This chapter contains the new learning rules and , ,
 

algorithms of this thesis. The proposed learning rule and
 

its derivation are presented.in section 2.1. In the
 

derivation, Lagrange multipliers are used [2]. This method,
 

is suitable, for solving optimization problems like the one
 

in section 2.1.
 

Next, in section 2.2, the three new methods (Serial
 

Deflation, Serial-Pipelined deflation, and Parallel-


Pipeline) for extracting all eigenpairs and their
 

derivations are presented and discussed. The deflation^
 

theorem from numerical analysis in 2.2.1 was taken from ;
 

[6].
 

In the Parallel-pipenine. pipeline section (2.2.3),, we
 

extend Ax = //(Ax -(x''Ax)x) to a rule that extracts all
 

eigenpairs. Sanger [18] extended Oja's rule (equation 4) :
 

to extract all eigenpairs of the covariance matrix (which
 

is always positive semi-definite) of the given data
 

vectors, whereas we extend Ax = //(Ax -(x''Ax)x) to compute all,
 

eigenpairs of a symmetric matrix.
 

Sanger's rule (equation 5) uses the Gram-Schmidt
 

ortho.gonalization procedure (well known in linear algebra
 

18
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[1]/[3]) to expand Oja's rule. It is important in that it
 

uses.only local computations, a characteristic that makes
 

it 'Attractive for neural networks applications. Also, it
 

computes all eigenvectors at the same time: during each
 

iteratioh a , correction to> the.eigenvectors is made,.until . .
 

all converge to their true values.
 

Sahgef's rule although related to the deflation 

technigue [6] of find successive eigenvectors in that 

each eigenvector; depends on the previous■one, it differs in 

that computatipn is not done in the serial manner of 

deflation, but in a more parallel•one. 

2.1 The modified learning rule 

A square matrix A is the input to the new learning 

rule. The only restriction on A for this rule is that A is 

a square matrix with real eigenvalues. The new rule 

computes the largest positive or-the smallest negative 

eigenvAlue and associated eigenvector according to the 

initial .value of the product x'^Ax.­

.. Let A,e iRf^ square matrix with real eigenvalues. 

The scalars A,minneg and. Xmaxpos denote the smallest negative and 

the largest positive eigenvalue of A, respectively (if such 
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values exist). In the case that A does not have any
 

negative^ eigenvalues then X,minneg does not exist since it is 

defined.as the smallest' hegative eigenvalue. Conversely, ■ 

when A has only.negative ■ eigenvalues, Xmaxpos does ..not .exist.. 

Define the product
 

= x^Ax^ (6) ■ 

and the. learning rule
 

■ that ca.n .alsd^ ^ as.. 

Ax = //(x'^Ax)(Ax -(x''Ax)x) (7b)
 

where r] is the learning rate (in this case, rj is a. small
 

pbsit.ive real number) and x = (xi,..., Xn)'^ e 91". As the
 

square of the magnitude of x (||xlp) converges to 1, k
 

converges, to;eigenvalue Xmaxpos of A if Kq is positive or to
 

Vinneg if Kg is negative. At the same time, x converges to 

the eigenvector associated with the eigenvalue that 

Kconverges to (either .'T^maxpos O.r ^■minneg). • ■ : 

2.1.1 Derivation 

Let A 6 91" ^ be a square matrix with real eigenvalues, 

e.g. A can be symmetric. Then the field of values of A is 
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the set {x'^Ax: x e 91", ||x|l =1}. which is an interval on the
 

real line whose endpoints are eigenvalues. The endpoint
 

furthest from the origin maximizes the expression (x^Ax)^
 

under the constraint llx|l = 1. Hence we can obtain an
 

extreme eigenvalue by solving the constraint optimization
 

problem ,
 

max(x'^Ax)^, x'^x = 1.
 

We can solve such optimization problems using the Lagrange
 

multiplier method. Let X be a Lagrange multiplier. Then the-


problem is equivalent to maximizing E(x):
 

E(x) = —(x^Ax)^ - ACx'^x - 1)
 
2
 

We can use gradient descent to minimize -E(x). The gradient
 

of E(x) with respect to x is
 

Vjj E = -2(x''Ax)Ax + 2/lx.
 

At equilibrium, E = 0, so
 

— (x''Ax)Ax + Ax. = 0.
 

Right multiplying by x'^,
 

-(x'^AxXx'^Ax) + .^''x = 0
 

or
 

A = (x^Ax)^
 

hence, we write
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E = -2k'^Ax (Ax - Ax)
 

The gradient above can be written in'dynamical system form
 

as:
 

V(.x = x^'Ax(Ax — (x^Ax),x)
 

or as the learning rule:
 

Ax\=. 7(x''Ax)(Ax - (x'^Ax) x).
 

2.2 Finding all eigenpairs
 

An n x n matrix A has precisely n, not necessarily
 

distinct, eigenvalues that are roots of the polynomial
 

p(A,) = det(A - .A,I). In theory the eigenvalues are obtained
 

by finding the n roots of. the characteristic polynomial
 

p(A,). . After this, the associated linear,system must be
 

solved to; find the corresponding eigenvectors. In
 

practice, finding eigenpairs is not that simple. The
 

characteristic polynomial is difficult to obtain, and
 

finding the roots of an nth-degree polynomial can be
 

difficult unless we deal with small values of n. , This
 

leads to the necessity of constructing approximation
 

techniques and -algorithms to .find eigenvalues and the
 

associated with them eigehvectors. Many such matrix
 

algebra iterative methods exist. One of the approximation
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techniques that will be used here is the deflation
 

technique.
 

2.2.1 Serial deflation
 

In general, deflation techniques involve forming a
 

new matrix B from the original matrix A whose eigenvalues
 

are the same as those of A with the exception that the
 

dominant eigenvalue of A is replaced by the eigenvalue 0 in
 

matrix B.
 

Deflation theorem from nximerical analysis: Suppose
 

that Xi, X2, ... / are eigenvalues of A with associated
 

eigenvectors vi, V2, ... , Vn, and that A,i has multiplicity
 

one. If X is any vector with the property that , then
 

B = A - (12)
 

is the matrix with eigenvalues 0, Xzt X3, ... ■, A-n and 

associated eigenvectors vi, W2, W3, ... , Wn where vi and wi, 

are related by the equation, 

Vi = Ui - /li)Wi + ./li(x^Wi)Vi (13) 
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for each i = 2, 3, ..., n.
 

The idea is to first find A,i and its associated
 

eigenvector vi using the learning rule of equation 7. Then,
 

deflate matrix A using equation 12 store the result back to
 

A, and iterate the rule again to find the X2 - V2 eigenpair
 

and continue.like that until we extract all eigenpairs. If
 

the matrix has negative eigenvalues (^minneg exists), we can
 

also work backwards starting from A.n = A,minneg and by deflating
 

A and iterating the rule extract the eigenpairs in reverse
 

order, from A,n to Xi.
 

2.2.2 Serial-pipelined deflation
 

Next step of this research is to cast the serial .
 

deflation process as a neural network. To do that, we need
 

to construct an algorithm,that extracts all eigenpairs in
 

parallel fashion.
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Table 1. The Serial-pipelined defla'tion algoribhia
 

Declare
 

Ao,Ai,... ,An : n X n matrices
 
xo,xi,... ,Xn : n size vectors randomly initialized
 

fJorVi' • • r Vn • real learning ratss
 

While not all have converge
 

■ Begin 

^A„ ~ 7o(*Ao'^0*Ap)(■^0*A|, ~ (*Ao;®^0*Ap.)*Ao ) . 
■^1 ~ '^0. ~ (*Ao^O*Ap ) *Ao*i■■An 

^*A, = (a,X^/- (x^^A,x^^ )x^^ )

A2 = A, - (x^^A.x^J x^^xi; '
 

AXa„_, = - (x^^_^A,^,x^^_^)x^^_J 
•An , = 

Ax^^ = ;7„(x^^A,x^;)(a,x^; - (x^_^A,x^;)x^J 
End , --..c 

To introduce parallelism to serial deflation, instead 

of deflating matrix A when one of,the.eigenpairs has been 

completely computed, we deflate by a small,quantity after 

each iteration. We need to iterate as many learning rules 

as the number of eigenpairs (n) that we are extracting. 
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For each iteration: after a rule has been updated,
 

"partial" deflation takes place. Table 1 contains the
 

algorithm needed to implement serial-pipelined deflation in
 

pseudo code. According to the size Of the matrix used, the
 

corresponding number of learning.rules is used to extract
 

the eigenvalues and eigenvectors.. ,
 

2.2.3 Parallel-pipeline rule
 

In this section we propose a new rule that extends the
 

basic rule:
 

Ax .= //(Ax -(x^Ax)x) (13),..
 

that is used for extraction of only one, the dominant,
 

eigenpair.
 

The new rule is: ,
 

i
 

Ax. = //(Ax. -^(XiAx^^)Xj^) (14)
 
■ . ■ ■ ■ , k=0 

where, // > 0 .is the learning.rate (a small positive
 

constant), A is a .given n x n positive semi-definite matrix,
 

and x_j, 1 < i < n, are the eigenvectors,;, as column vectors,
 

ordered by decreasing importance...Notice that for i = 1 the
 

new rule collapses to the. basic rule of equation .(13).
 

26
 



 

. The parallel pipeline rule uses only local,;
 

GQinputations, a charaGteristic that makes.,it attractive for
 

neural hetwprks .applications. Another characteristic isi
 

that computes:all eigenvectors:at roughly the.same time., .
 

A correction .. to the., eigenyectors is made at each iteration,
 

until;all conyerge to. their true values.
 

, Still each.eigenvector depends on the previous - one,, :
 

but:;n.ow: the computation is .done -.in a way more . parallel than
 

serial-pipelined deflation..,
 

2.2.3.1 Derivatibn of parallel-pipeline^
 

. The new rule ■ is deriyed.: usihg^ L multipliers and 

mathematical inductidnr This:, fnie ^̂ ^^a the idea.to. use ^ 

:Lagr.ange multipliers in the .deriyation .are . due to Dri
 

Georgiou. Supposed that the,.first i-l (most dominant) ;. . .
 

eigenyectors of A .haye been obtained and are rtbrmalized:
 

■ x.^, 1^2' • • •'^1-1 • problem now is to find the next 

ndrmali;Zed eigenyector. x^)..i; < h .• . ;We cast the problem.; as an
 

bptimization one and solve it with the. of Lagrange;.
 

multipliers. The objective function we. would...like
 

maximize, is. .
 

, i;.:- k:. .^-.;xJax^ (15) ;
 

27
 



and the constraints are:
 

x^x. =1 (16)
 

x,"x^ = 0, 1 < k<i (17)
 

Equation (16) ensures that x is normalized and equation
 

(17) that X is,orthogonal to all previous eigenvectors.
 

.Using Lagrange multipliers 1 < k < i for the
 

constraints, we form a new function that we
 

would like to maximize:
 

G{x.,li, ^2/ • • • .^i) = xIAx^ + 2^ + X,{xlx. - 1) (18)
 
k=l
 

The gradient of function G with respect to all variables
 

must equal zero at the extremum:
 

i-l
 

= Ax^ + 2]4x^ + X,x. = 0 (19)
 
k=l
 

Left multiplying Equation (19) with x^, and using
 

constrains (16) and (17), we obtain
 

= -xl^x. (20)
 

Left multiplying Equation (19) successively by
 

X2,'X2,. . ., , and again using constraints (16), (17) the
 

following results:,
 

X, = -xlAx,, 1 < k < i (21)
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Substituting the X,'s back to equation (19),.the gradient now
 

becomes:
 

i-1
 

= Axr+^(x^Ax.)Xj^ -(x^Ax.)x.t .(22)
 

Which can be written more compactly; as
 

= Ax. +
 

.k=l - .t. ■■ ■ .; ■ . : . ■ 

Thus, using gradient ascent^ we write the new learning
 

rule:
 

i
 

Ax. = //(Ax. - ^{xIAx^)x^), . (24)
 
■k =l , ■ ■ ■ ■ ■ ■/■ 

which the same as Equation (14) , . , 

We note that for 1=1 equation (24) reduces to the basic 

rule of equation (13) , which will converge to, the most 

significant eigenvector, and thus the mathematical 

induction is complete. 

Since less significant eigenvectors depend on the more 

significant ones, it is expected that the more significant 

ones will converge faster. In practice we. noticed that the 

more significant ones converge almost at the same time for 

square symmetric matrices of dimension three and four and 

faster for higher dimension matrices. 
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2.2.3.2 Relating parallel-pipeline and Sanger's rules
 

The new rule is analogous the one proposed by Sanger:
 

Sanger's rule works with data vectors, whereas the new rule
 

works with a given symmetric matrix.
 

By applying the expectation operator on Sanger's rule
 

its relationship to the new rule is illustrated:
 

(25)
"kj
 
k=l \PQ
 

or
 

(Ax.) = ;7(Ax, - ^(x^Ax,)xJ (26)
 
k=l
 

It can be seen from the above equation, the right hand side 

is identical to Equation (24). Although this is not a 

rigorous argument, since one left hand side has the 

expectation operator and the other does not, still the 

similarity of the two equations is striking, and the two 

rules can be considered analogous. Sanger's ruTe can be 

used for finding the eigenvectors of the covariance matrix 

of given data vectors and the new rule for■finding the 

eigenvectors of a given symmetric matrix. 
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CHAPTER THREE Implementation
 

Testing the proposed learning rule under different
 

conditions was very important during the first stages of
 

the research. The simulation programs use a C++ class
 

library developed by Laurent Deniau in CERN, Switzerland.
 

It was downloaded from http://wwwinfo.cern.ch/'-ldeniau/,
 

and the library was build with g++ compiler version 2.7.2
 

under the UNIX (System V Release 4.0) operating system.
 

The matrix class of the library offers the member function
 

eig0 which is used to calculate the eigenpairs of
 

symmetric matrices. This function was used in the program
 

to compare the computed results with ideal ones. The Maple
 

mathematical package was used to compare results also. To
 

generate the graphs associated with the simulation results,
 

gnuplot was used. It should be noted that implementations
 

of neural algorithms do have many free variables that
 

usually are. randomly initialized.. When I (via email).asked :
 

Dr. Terry Sanger why a particular implementation of
 

Sanger's rule did not converge, he replied "if it's not
 

converging, the usual problem is a rate that is too high-


i.. try using the rule with just 1 output-eigenvector, find
 

the fastest rate that gives good convergence."
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 , Depending on the variables used, initial conditions :
 

should be adjusted so the algorithm used produces results.
 

In that fashion, the learning rate that performs best for
 

the three algorithms used in this thesis was chosen. The
 

matrices of which the eigenpairs should be computed are
 

random symmetric to avoid cases of matrices with complex
 

eigenvalues.
 

3.1 Finding extreme eigenvalues and eigenvectors
 

To find the extreme eigenvalues Xninneg ^nd Xmaxposr the
 

initial value for Kq is checked and when the desired for our
 

computation Kq is obtained (section 2.1), the learning rule
 

is applied to the matrix. Since the matrix is constant,
 

what makes Kq = XqAXq positive or negative is the
 

initialization value of vector xq. If we want to find Amaxpos
 

then Ko = XqAXq should be positive. The value of
 

Ko = XqAXq must be negative if we want the rule to converge
 

to ?Lminneg. If Vinneg does not exist, then the rule
 

automatically finds Xmaxpos- Also, if Xmaxpos does not exist
 

then we find Xminneg instead.
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The implementation has three steps. First the
 

declaration of all needed variables and constants (vectors,
 

matrices, learning rate), second the initialization of;the
 

variables, and third, the iteration of the learning rule
 

until convergence is achieved^ i.e., until it converges to
 

vector X with the square of its length ||x|p« 1. For step
 

two the random number generator that comes with C language
 

was used to initialize A and xq. The learning rate was set
 

to 0.01. After a certain number of iterations, the
 

learning rate is divided by a constant; the default is 500
 

iterations, and that way the learning rate becomes smaller
 

and smaller but not less than 0.001. This technique.is
 

often.used in Neural Networks to make similar rules
 

converge faster [10]. When iteration of the rules starts,
 

division on predefined intervals gradually decreases;the
 

relatively large learning rate (0.01), i.e., the rate is
 

divided by 1.01 after every 500 iterations. The rate
 

should not be decreased too much because learning is slowed
 

down proportionally to the decrease of the learning ratev
 

For that reason, the smallest rate used is very close to,
 

0.001.
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When trying to find Xmaxpos/ *o must be initialized to a
 

value that makes Kqpositive. Function getposinitval() was
 

implemehted for that reason. On the other hand, xq has to
 

be initialized to a value that results to a negative Kq for
 

convergence to Vinneg- Function getneginitval() was
 

impiemented to do that. Both functions initialize xo with
 

random values and then compute Kq. If the result is the,
 

desired one, the xq is returned. Otherwise, Kq is computed
 

again by trying a new random initialization of xq.^ If there
 

is no Xq that makes Kq positive then A does not have a
 

positive eigenvalue. Likewise, if there is no xq that makes
 

Kq negative then A does not have a negative eigenvalue.
 

Accordingly, both functions have a limit to how many times
 

they initialize xq. If the appropriate value has not been
 

found after a hundred iterations, then the current value of
 

,Xo 'is returned;
 

3.2 Serial deflation implementation
 

Again, to obtain a value for xq that will converge to
 

either Vaxpos or A^innegf function getposinitval() or
 

getneginitval() must be used during initialization. As
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mentioned earlier, if Ko-is negative then the learning rule
 

converges to the eigenvectOir associated with the smallest
 

negative eigenvalue, whereas.if Kq is positive it finds
 

^axpos- It should be noted at this point that Imaxpos and
 

A-minneg do not have t.o be a dominant eigenvalue to make serial
 

deflation work.
 

The actual eigenpairs are calculated using the
 

included with the c++ library member function eigO of the
 

matrix class. Because this function works only with
 

symmetric matrices. Maple was used to compute the ideal
 

eigenpairs in some early experiments (Appendix A).
 

The segment of the program that implements serial
 

deflation extracts the n eigenpairs of an n X n matrix
 

serially and in,order..
 

We can either start from Xmaxpos and continue deflating A
 

and iterating equation (7) until we find A;min and its
 

associated eigenvector, or we can start from Xminneg and
 

continue until all eigenpairs are found (in reverse order).
 

If no A,maxpos oxists then we find Xminneg first and vice-versa.
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3.3 Serial-pipelined deflation implementation
 

Since the eigenpairs in this case are computed after
 

each iteration, we have to initialize all.eigenvalue and
 

eigenvector variables before the iterations of the rules
 

start. For example, if we choose A to be a 4 x 4, matrix,
 

four eigenpairs should be extracted,. For each eigehpair to
 

be computed, iterating rule (7) is used. The four rules
 

Will be iterated, each is depending on the previous one,
 

until all,converge. Thus, all Kis . (ki.= xJax_j) must be
 

initialized before we start iterating.
 

As.it was mentioned earlier, if the eigenvalue, of an.
 

eigenpair to be computed is positive, the initial value for
 

that eigenvalue (ki) before we start iterating should also
 

be positive. Conversely, when the eigenvalue of the ,
 

eigenpair to be extracted is negative, its starting value
 

should also be negative. If a random symmetric matrix; is
 

used,, it is impossible to know beforehand how many '
 

eigenvalues.will be negative and how many will be positive,
 

in order to initialize them accordingly. To overcome this ..
 

initialization problem, matrices with, positive eigenvalues
 

are used for the serial-pipelined deflation algorithm. ,For
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the rest of the implementation, the serial-pipelined
 

deflation algorithm of table 1 (section 2.2.2) is used.
 

The pipeline nature of the,algorithm is illustrated in
 

figure 3. At each stage, we deflate the matrix and pass it
 

to the next stage. For example, in the second pipeline
 

stage matrix Ai is needed, so we deflate Ao using xq
 

(equation 12 in ,2.2.1) and then we iterate the learning
 

rule.
 

Figure 3. Simplified hardware implementation of serial-


pipelined deflation
 

Xi *2
xo
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3.4 Parallel-pipeline implementation
 

For the same reason as with the serial-pipelined
 

deflation algorithm, xis are initialized to values that make
 

KiS positive, i.e. the symmetric matrices used have positive
 

eigenvalues.
 

For an n X n size matrix, n learning rules are used, to'
 

compute n eigenpairs. The rules are iterated until they all
 

converge. Equation (14) on section 2.2.3 is used to compute
 

each eigenvector. The first rule extracts the largest
 

eigenvector, the second computes the second, largest, and so
 

on. Thus, the eigenpairs are extracted in parallel and in
 

order.
 

Figure 4 illustrates what we get if we view the
 

parallel-pipeline algorithm as a pipeline. Matrix A is the
 

same for all stages since no deflation takes place. Each
 

stage is an iterating rule. So, all preceding vectors (xi to
 

Xi-i) are needed to update the rule that computes xi. For
 

example, in the third stage we need Xi and X2 to iterate the
 

rule associated with X3.
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4". Simplified hardware implementation of parallel­

.Vpipelined method
 

:Xi Xl Xl Xl 
•••► 

*2 X2 X2 

X3 X3 X3 

X4 
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CHAPTER FOUR Compu'ter simula.'bion results and discussion
 

Symmetric matrices of different dimensions were used
 

as input to the simulation programs. When testing the
 

proposed rule and the three different algorithms,
 

eigenpairs from.2x2 to 10 x 10 . size symmetric matrices were
 

successfully computed. For the results presented in this
 

chapter, symmetric and symmetric positive-definite matrices
 

of size 3x3 and 4 x 4 were used.. To calculate the actual
 

eigenvalues and eigenvectors,, the build-in to the C++
 

library mefnber function eigO is used since all matrices
 

are symmetric,(function eig() works only with symmetric
 

matrices using the Jacobi, algorithm,to find eigenpairs).
 

The computed eigenpairs are almost equal to the actual
 

eigenpairs (calculated by function eig()) within a . , ,
 

tolerance of 0.0000001. , There exist,cases where the
 

eigenvector with opposite sign is computed. This is,
 

acceptable since a vector with opposite sign is simply an
 

eigenvector in the opposite direction.,
 

4.1 Sample runs
 

Graph 1 shows how the rule converges for matrix
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Graph 1. The square of the norm of x vs. epochs
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For this particular run, the .computed Xmaxpos was 7.10624
 

with associated eigenvector = [-0.139299-0.353633
 

0.924954]. The value ,of .kq was positive, so the learning rule
 

converged to Xmaxpos- The number Of Iterations needed for
 

convergence was 3616. .
 

The computed X was equal to the actual (Xa) returned from
 

function eig() within a tolerance of 0.0000001.
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 ■ Graph 2 ::,depicts^^^ the rule ,coh"terged "for same matrix 

A but with differeht uniti'ai x., / ; .
 

2. The square of the norm of x vs. epochs
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S000 10000 15000 £0000 ;25000 30000 35000 40000
 

The learning!rate is ■ the same ibr.both,fuhs:.- The!only v t! 

parameter that'changed was the ihitial xo.. . The result of,, 

this was tO' heed 289 Iterations to.converge^ almost ten 

times more .thah the.huiTibef required' duringothe first^run. ;; 

Also,. Xo - -Xa which;is.the eigenvector,with opposite
 

.direction.
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^ Graphs 3 and 4 show how the rule converged when
 

finding XmiimegS^^ associated eigenvector first.
 

Graph 3. The- square: of the norm of x vs. epochs:
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> . epochs
 

The same A and learning rate were used for graphs 3 and 4:.
 

As before/ the number of iterations required for the rule
 

to.converge is different. This indicates that the rule is
 

sensitive to initra conditions even if the only variable
 

thdt changes in this case is the initial value of x.
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Graph 4. The square of the norm of x vs. epochs
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4.2 Comparing results
 

When the ||x|p converges to 1, that does not necessarily
 

imply that x converged to an eigenvector. The Euclidean
 

distanGeiof two vectors is a measure of how close they are
 

in space. The distance between the computed x and the
 

actual ideal) Xa provides a good measure of the quality
 

of the result,
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; As Mentioned earlier, the learning rule sometimes
 

converges to Xa and other. times to -Xa.. In the, first, case
 

the distance goes to zero, and in the second case it goes
 

to .2 since
 

.. t- -^dCx,;;^ X) 

:: = l|x •(-x)lf = 

= t(Xj.-(-X2)) ■ +:..>. + (x„ -(-x„)) = 

= ■ •^2"x? +'2^X2 t t *2^Xn';^: ■ i'4 

X^'+ X:2 + • • ? ■ ^ ■ . . ■ ■■■■r 
. - V4:; - ||x|l ■ 

Another way to evaluate results is to look at the 

cosine of the angle between the computed eigenvector :and: 

the actual. . The value. of cos(0) isy used as a measure of how 

close the two vectors are. 

4.2 - 0.4 8.6 

For,matrix . A = -0.4 2.2 14 9.4 , the learning 

8.6 -9.4 5.4' 

rule converged to Amaxpbs = 16.8988 and its associated 

eigenvector x4i= [0. 4867,9.7 0,,.,46i64 9 -0.741555] . The . actual 

.eigenvector . in this case is ■ 

= [-0.486797 -0.461649 0.741555] = -x^. 

Thus, the distance .converges . to 2. .Graph 5, demonstrates; 

exactly that. 
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Graph 5. Distance between x and Xg vs. epochs
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On the other hand, graph 6 shows how the square, of the norm
 

of X converges to ,1.
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Graph 6. The square of the norm of x vs. epochs
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For the same A as above when the program found the
 

extreme negative eigenvalue and associated eigenvector.
 

The results were, .?^minneg= -8.37147,
 

= [0.444881 -0.585649 -0.677566]
 

where the corresponding actual eigenpair was k - -8.37147
 

and
 

x^ = [0.444881 -0.585649 -0.677566] =.
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since we have sign agreement between the actual and
 

computed eigenvectors, this time the distance converged to
 

zero. Graph 7 demonstrates exactly that.
 

Graph 7. Distance between x and Xg vs. epochs
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Graph 8 again shows how the||x||^ converges to 1, in the
 

same experiment as above. .
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Sv The square of -the norm x vs. epochs
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4.3 Simula-tibn runs of the three (3 X 3 matrix)
 

colTaction, oft
The,next run provides;attepresentatrve
 

graphs that shows, hcDw thetthree/'algorit :perform. The
 

symmetric matrix used for the. a11 was
 

3.3,51098/ ^ 0,2,8p94 0,-.;74615,7
 

A = 0.288294> 303,77987 ,, 0,.356264^ , and graphs 9, 10,
 

■ 0.746157 ' 0.356264 ■ ' , 4;:. 911105
 

11 show how the squares of the norms of , the eigehvectprh^^^^
 

49'
 



converged for the Parallel-pipeline, Serial-pipelined
 

deflation, and Serial Deflation algorithms, respectively.
 

Graph 9 shows how the square of the norms of the
 

three rules, converged, when the Parallel-pipeline algorithm
 

was used.
 

Graph 9. The square of the norm of x vs... epochs
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As it can be seen from the graph the rule associated with
 

the largest eigenvalue converged first (curve N 0), the.
 

rule computing the eigenpair of second the second largest
 

eigenvalue converged second (curve N 1), the rule
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^associated^;with/1he^^amal1e;s11 eigenvalue,;converged:,'thind;;
 

\(curve ,.N; 2J.v' ; d ^ - . . ■v / ^ ' 
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Graph 10 shows the convergence of ||x|p of the 

6a1culated ei : wheh;h Serial-pipeliried def1ation 

algorithm was used. 

:,Wp: can readily see tha^^ in this case, serial^pip^lined : 

deflation was 5,000 iterations slower than Parallel-

pipeline. Also, vthe: rules associated with the; largest and 
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second largest eigenvalues (curves N 0 and N 1) converged
 

during the first one thousand iterations, but it took
 

another 6,000 iterations for the rule associated with the
 

smallest eigenvalue (curve N 2) to converge.
 

, corresponds to . the same rriatrix with;
 

serial deflatipn calculating bhe eigenpairs. 1
 

11. The square of the horm df\
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0.0 ­
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; This algorithm is 'serial, so first it extracts the
 

dominant eigenpair and -deflates the matrix. Then the
 

deflated matrix is used to get the :secQhd dominant
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eigenpair, and the matrix is deflated again to extract the
 

last eigenpair. The number of iterations for this method
 

for this particular run approximately was 12,000,, i.e
 

4,000 more than serial-pipelined deflation and 9,000 more
 

than parallel-pipeline.
 

The next 3 graphs show,the cosin.e of angle theta
 

between the ideal and computed, eigenvec.tbrs converges to 1
 

or -1.
 

Graph 12. , The cos(0.) vs. epochs
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If COS(0) approaches 1, x has the same sign as the ideal
 

eigenvector,;,: on the, other, hand, when cos(9) converges, to -1
 

then the sign of the computed x is opposite to -the sign of
 

the ideal.
 

As it is shown from the graph 12 (Parallel Pipeline
 

algdrithm), the cosine associated with the largest
 

eigenvalue converged to -1. The cosines of the other two
 

rules.converged to T. Also,' since we,have convergence of
 

the ,cosihe tQ: 1 implies that the computed
 

eigenvectdrs are correct.
 

Graph 13. cos(0) vs. epochs
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Graph 13^ shows how cosine theta for the 3 rules
 

converged to 1 when serial-pipelined deflation was used.
 

Again, the cosines for the first and second rule (Cos 0,
 

Cos 1) converged much earlier than the number of iterations
 

the lastvr to produce results.
 

Graph 14. cos(0) vs. epochs
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: ; G 14 is displays how the three cosines converged when
 

the Serial Deflation algorithm was used. It is interesting
 

to note that in this case the cosine of the second rule
 

)S 1) was the one that required the most iterations to
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converge. This happens because the proposed rule that is
 

used the Serial Deflation algorithm is very sensitive to
 

initial conditions. The next three graphs show the
 

calculation of the- distance between computed and ideal
 

eigenvectors for the- three -algorithms tested.
 

Graph 15 shows how the distance converged to 0. or 2
 

depending on which eigenvector is calculated. In the same
 

order as before, graph 15 shows the distance between X:and
 

Xa when parallel-pipeline was used.
 

Graph 15. Distances between x and Xg vs. epochs . . ^
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It is interesting .in . this .case'tonote to ;thatt.a
 

rules start to .converge,to 0 or .2 roughly . the saitie,, tinie,
 

The same.was witnessed in most, runs with the Parallel-


pipeline rule. On the other hand, in Parallel and Serial
 

Deflation the first two rules converge faster, and they
 

have to "wait" for the,last dn.e ,tp converge; Graph 16, .
 

iliustrates: just that;. . :Se.r.ial-pipelihed: deflation was
 

used, and rules, one and two. (D 0 and D ll/...respectively)
 

converged much.:sooner, thah. rule. 3. (D 2). v .
 

Gfaph i:6..: Distances, between . X and Xa vs - epochs.: .
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In the next graph, 17, Serial Deflation is used and again 7^
 

one of, the rules, (the...second one, D l)- look longer than ; the
 

other 2 rules. Overall, this algorithm takes the biggest
 

number ;of7iteratiQhs. . 1 1
 

: Graph 17. Distances between x and Xa vs. epochs
 
T
 

D 0
 

D 1
 

D 2
 

1-5 ­

cd
 

K
 

0.5
 

8000 6000 8000 L0000 12000
4000
 

epochs
 

The distance calculation for the three learning rules when
 

serial deflation was used converged to 0 or 2 in the same
 

way the cos(0) converged to 1 and -1.
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4.4 Simula'bion iruns of the three algorithms (4 x 4 matrix)
 

The algorithms perform the same way for higher
 

dimension itiatriGes, but it takes longer, to produce results.
 

.There .dxist cases Wherp. .t closer to zero take
 

more iterations to converge because the learning rate
 

favors the convergence of the larger eigenvalues.
 

, The ..next example run^usea a 4 x^4, m and as before
 

six graphs are used to demonstrate how the three algorithms
 

carried,.oiit the computatioh this time,f
 

Graph 18. The square of the norm of x vs. epochs
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The symmetric matrix used was
 

'3.23268 -0.293662 -0.411963 -0.480726 

A = 

-0.293662 

-0.411963 

2.4143 

-0.0757437 

-0.0757437 

4.56274 

-0.380533: 

1.59223 

-0.480726 -0.380533 1.59223 3.29027 

Besides using the same matrix for all three algorithms, the
 

same initial xq = [ 0.005 -0.002 -0.039 0.011 ] was used for
 

all also.
 

Starting from the Parallel-pipeline algorithm, graph
 

18 presents how ||x|p (one for each of the four rules)
 

converges to 1. The graph shows that the eigenvector
 

associated with the largest eigenvalue (line N 0),took less
 

number of iterations to converge, and then the eigenvector
 

of the second largest eigenvalue, and so on.
 

Graph 19 shows |lx||^ of the four eigenvectors when the
 

Serial-pipelined deflation algorithm was used with the same
 

A and xq. The four learning rules start to converge
 

approximately at the same time at about 1700 iterations.
 

The squared norm of x for the rule extracting the smallest
 

eigenvalue and associated eigenvector (curve N 3) remained
 

below 0.4 for almost 5500 iterations (out of 6500), and
 

then started to converge faster.
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Graph 19; The square of the norm of :x vs. epochs
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Serial-pipelined-deflation in graph 19 produced
 

.results similar to .Parallel-pipeline,.but .with almost twice
 

as many iterations needed for convergence.
 

■Graph 20 draws the norms of the computed eigenvectors 

when serial deflation was used. We can easily see the four 

different serial computations taking place. 
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Graph 20. The square of the norm of x vs. epochs
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Similar'.to the reault we got when, the. .,3 x .3 matrix vwas used
 

with serial., deflation,; one of the rules (in this case ;the;
 

last) took longer to compute its corresponding eigenvector.
 

The third rule (line N 2) took close to 5,000 iterations to
 

produce results whereas the last took almost 40,000
 

iterations.
 

. ;For the same three runs, now we take a look at how the
 

computation of the eigenvectors,progresses when observing
 

the cosine theta between the calculated eigenvector and the
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ideal one. Graph.21 is the cosine calculation for, parallel-


pipeline.
 

Graph 21. The cos{0) vs. epochs
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It is noted that all rules converge at almost the same
 

time,, three out of the four converged to -1 or one
 

approximately after two thousand iterations (lines Cos 0,
 

Cos 1, Cos 2).
 

Graph 22 shows how serial-pipelined deflation behaves.
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Graph 22. The cos(0) vs. epochs
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Again,, the computation takes a little longer, but still it
 

performs better.than the serial deflation algorithm cos(0) .
 

computation that follows (Graph 23). As expected, serial
 

deflation took longer (more than five times longer),
 

approximately 7000 Iterations for serial-pipelined , .
 

deflation compared to the 40.000 Iterations of serial
 

deflation In graph 23.
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Group results in the next section portray the
 

characteristics or the three algorithms using a sample of
 

250 different matrices.
 

Graph 23. The cos(0) vs. epochs
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4.5 Simulation results using 250 different matrices
 

To better understand how the three algorithms behave^
 

250 different random synnmetric positive definite matrices
 

(dimensions 3x3 and 4x4) were used, and table 2 :
 

summarizes the results:
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Table 2. Results A
 

SD SPD PP 

1st 0 52 198 

2nd 16 185 49 . 

. 3rd 234 13 3 

Rows and columns, horizontally and vertically add up
 

to our sample size, i.e. 250.' Each entry shows how,many .
 

times the corresponding algorithm converged: first (first
 

row), second (second row), or third (third row). "First"
 

means the algorithm needed the least number of iterations
 

for convergence (section 3.1), "second" is used for the
 

second smaller and third for the algorithm that, takes the
 

most iterations to converge and produce results. For
 

example after a certain run, serial deflation requires 2000
 

iterations to produce results when for the same run Serial-


pipelined defl.ation takes 1000 and Parallel-pipeline
 

requires 500 to produce results. In this case, we say that
 

Parallel-pipeline is first for this particular run. Serial-


pipelined deflation second, and Serial Deflation third.
 

The column number indicates which algorithm was used.
 

The first column is for serial deflation (SO), the second
 

for serial-pipelined deflation (SPD) and the third for the
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Parallel-pipeline: algorithm;^ :(PP),.: Matrix .R1 below
 

the resialts qn matrix instead of tabular fbrmat
 

/. O:; 52: 19B
 

Ri :iB ;185^ ,49
 

25:4-13 .3
 

As .we can see , from . above:. Parallel-pipeline: ;(PP) came fitst:::
 

(:too.k;,the :leas,t iterations::to qonverge) 198 out of 250
 

times.whereas- serial deflation .never ;came,.first, ,.3s . .
 

: If each number:in Rl; is^^^ ^ ^ t to: a. percehtage:
 

then,we obtain a doubly .stbchastic matrix:[5]
 

0 20.8 79.2
 

R2 6.4 74 19.6 and. table 3 below;
 

93.6 5.2 1.2
 

Table 3. Results B
 

■SD SPD PP 

1st 0 20.8 79.2 

2nd 6.4 74 19.6 

3rd 93.6 5.2 1.2 

Serial Deflation gets its highest percentage on the third 

place, ■ i.e.: it came last (took the most iterations to 

converge) 93.6 % of the times. Serial-pipelined deflation 

reGeiveS its ^highest percentage. (7 4%.) in .second place,; and 
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Parallel-pipeline gets its highest percentage (79.2%) in
 

first place. We also note that for the 250 matrices used
 

in this experiment, serial deflation never came first.
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CHAPTER FIVE Conclusions
 

dx , , 
The original — = Ax - f{x)x was extended to a new one 

at 

Ax = tj(x'^Ax)(Ax -(x''Ax)x) that finds eigenpairs associated
 

with both positive and negative eigenvalues.
 

As mentioned in chapter three, the learning rate was
 

originally set to 0.01 and division on predefined intervals
 

gradually decreased it to a number not lower than 0.001.
 

The exit condition was that we iterate the rule until the
 

square of the length of the extracted eigenvector x
 

converges to one (||xf « 1). The computer simulation showed
 

that the new rule computed the desired eigenpairs.
 

The original rule was extended to find all eigenpairs.
 

The first algorithm explored was a linear, serial deflation
 

algorithm. Using the same learning rate and exit condition
 

as above, the simulations showed that the algorithm
 

successfully extracted all. The algorithm was equally
 

successful in first.computing the smallest negative
 

eigenvalue and associated eigenvector or in computing first
 

the largest positive eigenvalue and associated eigenvector.
 

The first attempt to introduce parallelism via
 

extension of serial deflation was successful. A new
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serial-pipelihed deflation algorithm was introduced to 

extract all eigenpairs.; With serial deflation, in order to 

extract an eigenpair we needed the previous one. Serial-

pipelined deflation deflates the matrix and calculates 

partial results ■after each iteration of the rules. The 

simulation results showed an improvement over serial 

deflation. With serial-pipelined deflation the rules 

converged much faster, due to the pipelined nature of the 

algorithm (Figure 3 shows the.. 'hardware implementation) . 

Even though this algorithm converged faster, it was . . . 

still ■taking more time to extract, the smaller eigenvalues 

and associated eigenvectors,, than the time needed to 

extract the eigehpairs associated with the larger 

eigenvalues.. ■ V-'. ■ .■! ; .. 

A new Parallel,-Pipelined .rule was derived' using 

gradient descent and the Lagrance..multipiiers. method. , : ,That 

was the final attempt to achreye a higher level of 

paralleTism, and as the results show this method was the 

best .of the.. three presehte'^ in.this thesiis. Figure 4 shows, 

a simplified figure of the Parallel-Pipelined method. 

As we conclude from .all.results and especiaily.fpom 

table 3 .of the .previous section,. :Parallel-pipel.ine : rule 

performs the best .. The feason;;for tha:y . :i^^^^ 



structure and the way each term is updated. Just as
 

pipelining is the key. technique used to make faster CPUs
 

[15], pipelining the iterating rules of the Parallel-


pipeline algorithm speeded up the computation considerably..
 

In this case, partial results for a rule extracting a
 

specific eigenpair are computed by using partial results of
 

all previous eigenpairs. Another advantage of the
 

Parallel-Pipelined method is that the eigenvectors
 

converged almost at the same time. In other words, during
 

each iteration a correction to the eigenvectors is made
 

until all converge to their true values. In this case, we
 

did not witness what happened with the serial-deflation
 

algorithm, i.e. the last eigenvector requiring a larger
 

number of iterations,to converge witch slowed down the
 

whole process.
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CHAPTER SIX Future work
 

The derivation in Section,2.i - sta,te,s that matrix,A
 

must, bo symmetric .for the proposed learhing rule (equation , 

7:) . to . work; .Some early experiments; showVcaseS:-where ; the.': 

rule worked even when.nd:: re were imposed to A., 

For Table 5 in -iEppehdix- A;,: ten rando.m 4 x 4 matrices were, ,■ 

used for A,, and xq was ahso .random. ' :Xn, other words, there, 

were no restrictions to the value of kq. If Kq was negative 

but A did not haire :any negative eigenvalues then - the .rule . , 

diverged. Also, if A.fninneg Xmaxpos were complex, the rule also 

diverged.. To, avoid infinite, lobps, a limit to the:,number of 

iterations was, imposed. If..after, that; numher of .iterations, 

we still.dp not have convergence of; the square of .the nofm: . 

of X to 1, within 0.000001, then the program initialized 

the variables again to values that produce ;a Ko with an 

opposite to the initial sign. After initializing, iteration 

of the rule started again. When convergence was not 

achieved, the extreme eigenvalues of A were complex. Table 

5 in Appendix 1 contains some runs that computed an extreme 

eigenvalue of the given A successfully. Again, the number 

of iterations needed for convergence varied in each case. 

The problem here as mentioned above is the unpredictability 
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of the existence;of complex eigenvalues for matrix A
 

because no resirictions are imposed when initializing A.
 

The actual eigenpairs in this case are computed using the
 

Maple mathematical package.
 

Since there,exist cases where the basic rule worked
 

even if the matrix was not symmetric, maybe there exists'
 

ahother. class of matrices that we ,can appiy the ■ 

algorithms presented here to compute eigenpairs.
 

Researchers in future studies,^shbu.ldvibpk in
 

Parallel'-pipeline. can. be .expanded,to wprk:with^ d^^
 

kinds of matrices,, and in,the cpmplex ddmain.' ■ 

Also, researchers in the .future sh6-u.id looklhow .t
 

can overcome the initialization problem. When this is
 

solved, matrices w.ith. hegative eigenvalues can be. used .a- .
 

^input for Serial-pipelined deflatipn ;ahd IParalieiTpipelin
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APPENDIX A The First experiments
 

Table 4. Explanation of symbols for table 5
 

A: 	 The matrix of which we try to compute particular
 
eigenpairs using equation (7)
 

xq: The random initial value for vector x
 

Kos: The initial sign of Kq
 

The eigenvalue of A that was computed by the
 
iteration of equation (7)
 

The 	corresponding to k actual eigenvalue of A
 
X,: 	 computed with the build-in functions of the matrix
 

library or with the Maple mathematical software
 
package
 

x: 	 The computed by our dynamic system eigenvector of
 
A corresponding to eigenvalue k
 

The corresponding to x actual eigenvector of A
 
Xa: computed with the build-in functions of the matrix
 

library or with the Maple mathematical software
 
package
 

i: The number of time the rule was iterated In order
 

to converge. .
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Table 5. Early results 

A *0 ^os: tc X '' * i - • 
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APPENDIX B Convergence data for 250 matrices
 

The first iteration CQluitin for each algorithm shows,
 

the number of iterations serial deflation took to converge,
 

the second the number vserial-pipelined deflation reguire.d,
 

and the third the, number that parallel-pipelined took; The
 

rank column demonstrates the same as above, but according
 

to the number of iterations a number is assigned. So, for
 

the method that takes the most iterations a "3" is
 

assigned, the one that takes the least is assigned a "1",
 

and the middle one is assigned a "2".
 

Table 6. Convergence data
 

sorted by
 
parallei-pipeline, ;serial-pipelined deflation, serial deflation
 

iterations rank iterations rank iterations rank
 

27178 2300 866 .3 2 1 16155. 1310 1763 3 12 3416 ,2511 1840 3 2 1
 

30869 3048 929 3 2 1- 29248 1320'1363 3 12 3815 2846 1982 ■3 2 1 

15646 3654 944 3 2 1 8097 1428 1716 3 12 4059 2552, 4213 2 1.3 

13834 1564 951 3 2 1 18132 1429 7912. - 3 12 4068 1996 1619 3 2 1. 

5098 2303 986 3 2 1 857 9 ' 1,47 0 ,1884 3 12 4068 19.96 1619 3 2 1. 

8632 17718. 994 ' 2 3 1 17895 1521 1577 3 12 4550-3781 1259 3 2 1 

23680 2637 1017 3 2 1 ' 21191 1533 1495' 3 2 1 4821 3960 1028 3 2 1 

37394 2202 1027 , 3 2 1 . 11971 ,1543 2086 ' 3 12 4866 4394 3716 3 2 1 

4821 3960 1028 3 2 1 13834 1564 951 3 2 1 5098 2303 986 3 2 1 

10838 6889 1060 3 2 1 23340 1567 1601 . 3 12 5362 1830 1752 3 2 1 

7333 4351 1073 3 2 1 17856 1598 1555 3 2 1 5516 2265 1421 3 2 1 

11335 10010 1084 3 2.1 13045 1655 1476 3 2 1 ' 5875 3862 2138 3 2 1 

15986 1736- 1127 3 2 1 9297 1655 5481 3 12 5963 2501 2083 3 2 1 

8528 2338 1134 3 2 1 14422 1702 1699 3 2 1 5990 3163 1793 3 2 1 

8352 2412 1145 3 2 1 15986 1736 1127 3 2 1 6165 5169 5377 3 12 

8352 2413 1145 3 2 1 37450 1767 1942 3 1. 2 6334 5294 4808 3 2 1 

17564 9858 1146 3 2 1 16442 1772 1573 . 3 2 1 . 6417 1993 1341 3 2 1 

16265 1857 1196 3 2 1 . 16754 1811 2891 3 .1 2 6503 4141 4763 3 12 

6572 1947 1240 3 2 1' 30547 1823 1607 3 2 1 6547 2681 3199 3 12' 

4550 3781,1259 3 2 1 5362 1830 1752 3 2 1 6572 1947 1240 3. 2 1 
22415 3001 1282 3 2 1 9664 1845 1544 3 2 1. 6688 2871 2458 , 3 2 1 

6417 1993 1341 3 2 1 16265 1857 1196. 3 2 1 6767 5447 1745 3 2 1 

52397 3276 1346 3 2 1 8366 1894 1512 ' 3 2 1 6949 5694 2664 3 2 1 , 

27412 3828 1346 3 2 1 11978 .1.933- 1380 3 2 1 7209 3016 2533 3 2 1 

2454 3117 3 12 

7538 2775 1358 3 2 1 6572 1947 1240 ,3 2 1 7278 3252 1699 3 2 1 

29248 1320 1363 3 12 11316 1950 2812 3 12 72,96 6035 1493 3 2 1 

11978 1933 1380 3 2 1 20228 1991 11678 . 3 1 2 7333 4351 1073 3 2 1 . 

17598 3153 1382 3 2 1 6417 1993 1341 3 1 .7505 3250 1461 3 2 1 

10782 3789 1387 3 2 1 4068 1996 1619 3 2 1 7538 2775 1358 

33949 8587 1357 3 2 1 33850 1947 3 12 7210 3514 

3 2 1 

33898 9525 1393 3 2 1 ■ 4068 1996 1619 3 2 1 7561 2724 2216 3 2 1 

7 6 



 

 

 

 

 

 

 

29426 7188 1413 3 2 1 8725 2014 1793 3 2 1 7575 10992 1715	 2 3 1
 

5516 2265 1421 3 2 1 20782 2023 6688 3 12 7925 4674 3885	 3 2 1
 

23496 21894 1430 3 2 1- 16853 2092 1906 3 2 1 7954 5076 2381	 3 2 1
 

45311 7497 1439 3 2 1 31539 2131 2701 3 12 8097 1428 1716	 3 12
 

7505 3250 1461 3 2 1 19928 2176 2084 3 2 1 , 8216 2842 9654	 2 13
 

13045 1655 1476 3 2 1 37394 2202 1027 3 2 1 8352 2412 1145	 3 2 1
 

19006 23320 1479 2 3 1 16440 2223 2461 ■ 3 1 2- 8352 2413 1145	 3 2 1 

10249 4508 1484 ' 3 2 1 22501 2245 2265 3 12 8366 .1894 1512	 3 2 1
 

10287 14184 1485 2 3 1 5516 2265 1421 3 21 8409 5870 2052 3 2 1 ' 

7296 6035 1493 3 2 1 27178 2300 866 3 2 1 8511 3266 3187 3 2 1 

21191 1533 1495 3 2 1 5098 2303 986 3 2 1 ■ . 8528 2338 1134 3 2 1. 

32672 5957 1502 ' 3 2 1 18813 2307 2072 3 21 8579 1470,1884 3 12 

8366 1894 1512 3 2 1 8528 2338 1134 3 2 1 8580 12158 3196 2 3 1 

9664 1845 1544 ■ 3 2 1 20783 2364 2687 3 ■ 1 '2 863217718 994	 2 3 1 

304963260 1549 3 2 1 20783 2368 2687 3 12 8646 4900 2000	 3 2 1
 

17856 1598 1555 . 321 28048 2394 2063 3 2 1 . 8725 2014 1793	 3 2 1
 

16442 1772 15.73 3 2 1 8352 2412 1145 . 321 8764 5344 2476 .
3 2 1 


17895 1521 1577 3 12 8352 2413 1145 3 2 1 8798 13818 1748 2 .3 1
 

23340 1567 1601 3 12 29979 2424 2047 3 2 1 8820 15727 2813 . 231
 

30547 1823 1607 3 2 1 14461 2445 3602 3 12 9297 .1655 5481
 3 12.­

4068 1996 1619 3 2 1 11192 2464 2785 • 3 12 . 9656 24015 3366. 2 3 1
 

4068 1996'1619. 3,2 1 3 2 1 ■
3 2 1
11798 2479 1763	 9664 1845 1544
 

25695 2907 1643 3 2 1 14809 2483 1850 3 2 1 9699 4607 3480	 3 2 1
 

20124 6824 ,1693 3 2 1 31710 2499 2273 3 2 1 9749 3513 18967	 2 13
 

7278 3252 1699 3 2 1 5963 2501 2083 • 3 2 1 9749 7802 3522	 3 2 1
 

14422 1702 1699 ■ 3 2 1 ,3416 2511 1840 3 2 1, 9830 5957 2204 .3 2 1
 

4059 2552 4213	 9858 27219 3588 2 3 1 ­

7575 10992 1715 2 3 1 ■ 9904 3355 4353	 3 1'2 
19435 8070 1700 3 2 1	 2 13
 

•
12634 2617 2813 3 12
 

8097 1428 1716 3 12 ' 14199 2620 3500' 3 12 - 9982 5776 4622	 3 2 1
 

37315 4173 1731 3 2 1	 3 2 1
23680 2637 1017 10158 4608 3300 3 2 1 '
 

6767 5447 1745 ' 3 2 1 6547 2681 3199 ,3 12 10175 5227 2027 3 2 1
 

8798 13818 1748 2 3 1 7561 2724 2216 ' 3 2 1 ' , ,10249 4508 1484
 3 2 1
 

5362 1830 1752 3 2 1 31773 2735 1982 3 2 1 10287 14184 1485 , 2 3 1
 

37738 3485 1757 3 2 1 15403 2745 2073 3 2 1 10499 7128 5226 3 2 1
 

20296 3759 1758 3 2 1 7538 2775 1358 3 2, 1 10640 3107 2147
 3 2 1­

16155 1310 1763 3 12 15995 2786 2149 3 2 1 10740 4031 6215 3 1' 2.
 

11798.2479 1763 3 2 1 8216 2842 9654 2 13 10782 3789 1387
 3 2 1
 

8725 2014 1793 3 2 1 14677 2842 3787 • 3 12 10838 6889 1060 3 2 1
 

5990 3163 1793 3 2 1 3815 2846 1982 ,'3 2 1 11136 4568 2924 3 2 1
 

27565 3931 1839 3 2 1 17568 2851 1910 ■ 321 . 11192 2464 2785 3 1, 2
 

3416 2511 1840 3 2 1 14027 2854 2613 3 2 1 11247 3913 3590	 3 2 1
 

12061 8706 1849 3 2 1 6688 2871 2458 . 321 11316 1950 2812
 3 12
 

14809 2483 1850 3 2 1 29797 2874 2285 3 2 1 11335 10010 1084 3 2 1
 

8579 1470 1884 3 12 25695- 2907 1643 ' ■ 321 , 11798 2479 1763 3 2 1
 

14038 4186 1890 3 2 1 17156 2913 3427 3 12 11971 1543 20.86	 3 12
 

16853 2092 1906 3 2 1 1-2613 2999 3532 3 12 11978 1933 1380 3 2 1
 

,17568 2851 1910 3 2 1 22415 3001 1282
 3 2 1 11984 5122 2536 3 2 1
 

12032 5832 2239 3 2 1
 

37450 1767 ■ 1942 3 12 7209 3016 2533 3 2 1 12061 8706 1849	 3 2 1 

13429 3635 1972 3 2 1 30869 3048 929
 

12370 4091 1915 3 2 1 16001 3009 2592 3 2 1
 

3 2 1 12205 15667, 8628 2 3 1
 

22112 6827 1976 . 3 2 1 24813 3061 2050 3 2 1 12370 4091 1915
 3 2 1 

22634 5949 1976 3 2 1 41980 3080 2244 .3 2 1 12567 3422 2967 , ■ 3 2 1^ 

3815 2846 1982 3 2 1 10640 3107 2147 '321 12613 2999 3532 3 12 

31773 2735 1982 . 321 7210 3117 3514 ■ 3 1 ,2 12634 2617 2813 3 12 

8646 4900 2000 3 2 1 17598 3153 1382 ', 3 2 1 12921 10136 3326	 3 2 1 ,
 

20974 9971 2018 3 2 1 ■ 5990 3163 1793 3 2 1 13045 1655 1476 3 2 1
 

10175 5227 2027 3 2 1 7505 3250 1461 ■ '3 2 1 13140 3365 2206
 3 2 1
 

3 2 1 7278 3252 1699 3 2 .1 13429 3635 1972 3 2 1
29979 2424.2047
 

3 2 1 13761 7250 3299 . 321 ■
 

8409 5870 2052 3 2 1 8511 3266 3187 3 2 1 13834 1564 951
 

24813 3061 2050 3 2 1 30496 3260 1549
 

3 2 l'
 

3 2 1 52397 3276 1346 3 2 1 • 13922 10663 2395 ■ 3 2 128048 2394 2063
 

3 1. 2' 14027 2854 2673 3 2 .1
 

15403 2745 2073 3 2 1' 37065 3357 3491 3 12 14038 4186 1890 ■ 3 2 1
 

30080 7964 2079 3 2 1 13140 3365 2206' 3 2.1 . 14199 2620 3500.
 

18813 2307 2072 3 2 1 9904 3355 4353
 

3 1, 2
 

5963 2501' 2083 3 2 1 29594 3376 2646 3 2 1 14422 1702 1699	 3 2 1
 

3 12
3 2 1 40070 3399 4140 3 12 14461 2445 3602
 

11971 1543 2086 3 12 12567 3422.2967 3 2 1 14677 2842 3787 3 12
 

25406 5001 2099 3 2 1 37738 3485 1757 3 2 1 14809 2483 1850
 

19928 2176 2084
 

3 2 1
 

3 12 14905 5635 2876 3 2 1 •
 

5875 3862 2138 3 2 1 9749 3513 18967 2 13 14991 6201 3384
 
15908 8647 2111 3 2 1 35002 3492 5517
 

•3 2 1
 

3 2 1 32551 3554 2502 3 2 1 15403 2745 2073 3 2 1
 

15995 2786 2149 3 2 1 30748 3569 22466 3 12 15631 6206 3396 ■ 3 2 1,
 

25349 5647 2161 3 2 1 18247 3595 3039 32 1' 15646 3654 944
 

10640 3107 2147
 

3 2 1
 

3 2 1 28281 3613 5321 3 12 . 15908 8647 2111 3 2 1 ,
 

13140 3365 2206 3 2 1 13429 3635 1972 3 2 1 15986 1736 1127	 3 2 1
 

7561 2724 2216 3 2 1	 3 2 1.
 

9830 5957 2204
 

17825 3647 3390 15995 2786 2149 3 2 1
 

56339 5086 2233 3 2 1 15646 3654 944 3 2 1 16001 3009 2592 3 2 1
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12032 5832; 2239 . . . . .;3 2 1 17825"3660 3390,.' 3 2 1 16049 5999,.2332 ■ .. .3-2 T, .. 

41980 30.80 2244 ' . 3 '2- 1 .„ 20894 ^lO'S, 2537-; 3 2 1 ■1-6155 1310' 17 63, . .;::d;^' : ■ ;3■■i;2. 
22501 2245 22^5- 3 l' 2 • .. .■2.0'2,96 .3759 1758 3 2 1 ■ 16265 .1857- 1196,;. V - - '- ■ ■ ■3- 'B I-;. 
31710 2499 2273 .3 2 li. - . . ■4:550' .,3;78l. Vl259' ■'.■ .... 3 2 1 - .16440 2223. ■2461 ' . :.3 - ■i ' 2 ' 7^ 
29797 2874 2285v ■ 3. '2-'l; 10782.:37.8:9 ■13;87... . 3 2 1 16442 177.2. ,1573 - . B' 2 ,:i:'^/: ■ 
35602 4498 :23p6, . ■; • 3 2 11 ■ ', 17181' 3'7 91..■ '2,676,: ■ 3 2 1 16612 7714 ■'■239.1 : ■^.3, ^2.-1,;..: .." 

. 18128 4625 2306 . .3 2. .1 .-. '^ 27 412 '3828: 134'6'., - ' 3 2 1 16655 27.'8'72;. -3'8'50' .■ ■■4■ ■ - 2 Bdl-' ' -:r 1 , 
17656 5508 2320 ■ 3 2:;i- ■ ' 23731 3838,.: 24 99: . -3 ■.2:1 :. 16754 18ir -28-91 . ^ .' ' 3' .i. ' .2 
24243 3928 ,Z330 ■ ■3 2ll' ■ ■:■ . '.,5875- .38-62i- 2138.1.' ■ ■-.3 2 1 ■ 16808 .3937. -34,77 ' ' 3 did 
16049 5999 2332 . . 3: 2';i - . 1124'7,- 3913. 3590 3 2 1 16808- 3921 34-77. ', ■ 3-2-1. 

.	 33224 4221.2358 . . 3'2 1- . ^ , 36652 '3919 .7243 ' ■3.1-2. 1 16853 .2092: 1,906 ' .3 2 l', -'- , , 
7954 5076, 2381 3 2 1 .■ 16808 '3821,'3,4'7 7 ■ 3 :2 1 ■ 16947 19154,,2817 ■.^, '■ ' '2,3 I':- .- ;■ ■ ; 
16612 7714 2391 ■ 3 ■ 2 ■ 1 ■ ■ ■24243 3928''- ,2330 3 2 1 ..17156 2 91,3,:,.34 27 , • ' ":3 1 2 ; 

.	 13922 .10663 ,2395 3 2 1 ■ 27565,3931 1839 3 2 1 17181 3791' 2 67,6" . ■.,;3.-.2- 1'' -I' ' ; 
33850 1947.2454 ■ ■ 312 1680.8. .'3.'937. , 347 7 3 2 1 17416 6316;294 8 ;',,■• 3 2 1. 

6688 2871 2458 ' 3 2 1 ■ 4 821 3960: 1028- 3 2 1 ■17564 9858 1146 ' . , :■ 3-2 ,1■ ; ­
16440 2223 2461 3 12 . /256.47 '3988 -,2550 .. 3 2 1, ■175.68 . 285-1 i.9l'0. \ .' : '3. 2., 'i 

■ 87 64 534.4, 24 7 6 3 2 1 - ■ 10740 4031 .6215 ■ •' • ■ 3 .'1" 2 ■ .. 17598 3153 1382 .: . 3- 2;.-l :, ■ 
■ 23731 3838 .24 99 .3 2 1 ' . . . 12370 ,-40'91•.-1915 3 2 1 17656-5508 2320 . ; ■ , 3 .2 1 ■ 

. 32551. 355.4 2502 ■ 3 2,1 ■ ■ ■ 6503' '4-141 4763 ■ 3 12 .17825 3647 3390■ ■ 3 2 ,1; . ■ 

.. . 7209 3016 :2533, ; ; . 3 2 1 ■ 37315 -■4173.. 1731 3 2 1 17 825 36.60.,..,3390 - - '3 2, 1" ­
11984 5122■2536 . ■'■3 2 -1 ■■ ■,14038 '4'fee'18.90 . - 3 2 1 17856 1598 '■:.l-555. , , .' ■ : ' 3 .2. 1 , : 
20894 3703 2'537 ■ 3. ,2 1 . , ■26298'' 4216.. 5624 3 12 17895 152;i 1577': .- ■3, 'i":2 
25647 3988 2550 . "■ 3, -2' -l ' ■ ' , 3322.4, 4'2:21 ,2358 3 2 1 18128 4625.2306 • 3:;2 ; i,' - -;­
16001 3009 2592 ' 3'. 2 1 7333-,4'35.l''"l073 3 2,1 18132 142:9-7912. . .■3--■l.■■■2■ :.■ •' ■ 
29594 3376 2646 ■ 3,-. 2 .'.-l ■ • 4-8 6,6 4394 . 3716 3 2 1 • 181.4 4. 11543' 27 98 .. . ■■- ■'3' 2 1-7d 
6949 5694 ,2664 ■ 3 2 1 35602- 4,.498 ,2306. 3 2 1 18216 135,28 5779 -,; ■■ 3 '.z i-- ■■- . ■ 

,140,27 2854 ,267.3 , , '. 3 .2 1. .10.24,9 .4308, .1484,. ■ . • 3 2. 1. ■ 18247 3595 3039 . , : , 3-.2'.,i; ;:. - ■ • 
17181 -37 91 '267 6 : 3 -2 1-. ■ ■ 1,1136 456.8 .. 2 924 3 2 1 ..18.687 .1.0750 4872. •. ■ •■3 "2'. 'id"- ; 
20783 ,2368 2687 ' . ■•■ '3. 1. 2 • 96'99' .4 607' 3.4,80 ■ ■ •3 2-1- ■ 18806 .16617 ' 2871' • ' '■.'3;;2,'i'; ', 
20783 2364. 2687 .1 ,'■■■,■, ■.3 .1' ,2 ■ ■ ■ 10158 ,4'6„08„ 33,00.-- ■ ■ , ; 3 2.1 ■- .; ■ ■ 188-1,3 2.307 2072 3. '2 't: ;■ " 
20024 4749 2690' , .■3 ' 2. 1.' ■ ...18128 .4 625 2306 ■ •3 2' 1 ' .•190,06-2.3.320 1479 ,. . 2 3 1' . ' 
31539 2131 2701 ' ■'3'1 2':. - '' "7925 -4674 3885,V . ' 3 -2: 1 ■ ... 1,9055. '9690, 4171 : , - .3 2 1, ^ ,' 
43836 8163 2760 V 3 21■ 2002,4- .4149, 269.0 ■ ■ . ^3 ■2; ;.:r.:.. :.; . ;' ',19212,.;58i;9 -5'251. ;■ ;', • 3 21 

31522. 11141 2770. - ■■■ - 3.2:1 38546- 4800 ;2'86l" . ■ ■ - .3 'p: 1 ,: ' . ■ 1.929.8 :114"98 '1285'8. ' ■d-.3 .id-z;;;:,, 
■25309 5860 ■■2778 ■.1:3 -2 1' ■ 8 64 6'4900 . '2000- ' . 1 :.:v3 :2''"i:,: ;^' - ' .i9435,B670.vl700;, . ;'. '' 3 ' 2 

.11192 2464 2785. . . ' . ^..l 2 . . -25406 . ^O'Ol 2099 ■. " - ■ ■.-:3;';d, '.i-";:..- ',' 1992d^"217;d.208;4. -d.;.: ; ■ ' ■37 2-,1'ddd' : 
18.1,44, 11543 2798 ' ■■ ,.■,■3 2. 1 . , 7■9.54 507 6 2381 3 ̂ 2' id;- "' ;;'26.024 ,,4.749,.,2690.. - '■3:>2;i ■ ''...7 

, ,11316 1950. 2812 . . ". 3, ,1- 2' ■ 5 6339 50.86 2233:3- ■i' .d," 2;,1^ ■'■ ';; ;20i24 75^'24;1693"^ ,.; •. 2 1 

■ 	 12634 .2617;2813 ■ ' 3' 1 2 ■ 40063 :5102..305'T - ■ .-3 .'2-- "l, .: ■,•••■;, ■■2022.8 1991 11678 . 3 1. 2.-. 

8820 15727 2813 ■2'- 3 ■ 1•. - , ■ •11984 >5'122 i;- ■ ■3 2'^3: :.; ,2029,'6 3'7'59:'17;58■ 3 2 1 

16947' 19154 2817 . . 2''3 1' 3.3307. ,'515"2.v3,5,14 ' ■ ., ' ■"• .. . . :3- 2' !■ ■; ; .: ■'2.07.82 20.23 ■6688 . . ■ 3 12 

38546 4800 2861 ' . 3 2'1 ■ ■ 6I6.5- ■■51'6'9' ■5337 .' 3^ 1...2: 20-78,3 ,236"4, 2687 , ■ ■31. 2 ■ ■ ■■ 

18806 16617 2871 ,3 2 1- 1Q175 5227 ■2P2'7' ' 321' . 20783 2368-. 2687 -■■ ■" 3-I.B:- - :..;-■ ■ 
14905 ,5635 2876 ; ■: 3 1 ; , 6334 , 5294■■4-808 3 2 1 ■ .20894 :3703 25,37 , . "■ '3.'.:2;i ■;.-: .7; . 
16754 18il.' 2891 3 1^2 . ..■87 64 ' ,5344- 2,476 ■' ■'■ '■ 3'^ 2 i;:'- .20974 9971 20id '■ , -3, - 2 " 1­
11136 4568',2 924 . • ■ 3 2' - l" ■ 3,3033'53'70 '3401-;- ■ ■ ■ . .211.91 ■1533 -1495 2 1 ■ 

17416- 6316 2948 ■ 3 i'l - ■ 6767 5447. .1.7,45 . ' 3 2 1^ 214-39. 8988 7058, . - - 3 - 2 1 .. 

. 12567. 3422 2967 ■ 3 2. 1. . ■ ■ ■1763-6 .5508;:,2320 - . . 3 2 1 21538 22156 ,5,213 2 3 1 ■ '
 

^ 18247.3595 3039, ■ 3 2 ',1 : , , . 1490.5 -5635 287 6' ■ 3 2 1 21662 10004 ■.37-81 ■ , 3 - 2 1 ,
 

21998 13019 .3048 , ■ 3: 2, l' ■; ., ,: 2534.9 ,-"5 64'7.'. ,"2 -161- 3 2 1 21998 13019 3,048 3 2 1
 

; . 2 9955 757.9 ■3056;; , : . : ;3 ■ 2' 1■■ . ■ . ■ ■ 694'-9. :.5,6.94; 2 6-64: ■ 3 2 1 22112 6827 1976 3 2 1
 

35888 7 64 6 .3106' . - . ■■ 3'I-1 . ■ ■ ■ '.9,982' 57 7 6: 4 6-22 ' ' 3 2 1 22415 3001 12..8.2;.' 3 2 1
 

■	 23197 5.9,65 . 3141. ^ ■ 3 .21 .: '4'92.1-2-,:--:5'819 .5'28;iv,. ■ ■- 3 2 l.\: 22501 2245 2265. ■3 12.- ; 

8511 32 66 3187. ■ ■■ ■■ 3 - -2 M , ■" ■ ■ - 12032 5832' 223'9,;-, 3 2 1 ■' -2.2634 ■..-594 9 197 6 . 3 -2 1' 

8580 12158- 319-6- :' 2 '3 1 ■ . ;-25309,. 586d,;27 7 8'; '3 2 1 23035 6181 363,4 ; . 3 2 1 

6547 2681 3199 ■ ■ ' ■3 1. '2. . ' . 8409. . 5870 .265'2'.-.: ' ; ■ 3 2 1 23197 5965 3141 . . '32 "l..- ■. ■ ■ 

35421 6,8.36 3249 3,2 1 . ■ . 22634 5949 197 6 ' ■ ■ ■.■3 2; 1 ■:■ ■ 23340. 1567. - .16.01 -- . , : • 3 ■ 1-2 ■. . . 

137 61 7,250.32 99 • 321 ■ 32672 ■5957. 1502 • ' ■ 3 2 1 .234-9'6 2-1894 1430 . : ■ . 3 ■2 1 ,-

10158 4608 3300 . 3 -2 1 .. .983Q- ■5957- 2234 ■ 3 2 .. 1- . •. .•23&80 2 637..1017- . ; .': . ■' ■ 3'z-. i,.- - . ■■ 
12921 10136 ,3326 - .3 2 1 .- . .23197 ,59633141^ . . 321. . . . . . . 23731-: 3838 ^2.499' .;-7- .;, -■.3. -3■; ,■l■,' ■ ' • ■ 

.965-6 24015 3366 , . 2 3 1 • , 1604'9 ..■5.999- 2332■ 3 2 1 ■"24243. 3928 2330.,, ■ - " . - •' ,3' ,21 . 
14991' 6201 338.4 ' 3 2 1 ■ . ., -7296 -.'-6d35:',.14d3 -. ' 3 2 1 24813 3061 2050 :-.,7 '■' '3 ■-2'i 7.; ■ 
17825 3660 3390 .3 ■:2-l,.-; :/-v;.4''l4:p4'^30.38d595''6;' , ■ 3 2 1 24895..-10594. ■7335,' ', ' • 3 z 1 • : , ■ - , 
17825 3,647 3390- ■...3 I'M.' ■: •' •::23.b'35^ '■6,1,81., ̂ 3.63'4^- 3 2 1 25309 5860 2778 ■ 3 • 2;'i 7.; , 

. 15631 6206.3396- ^. - ■•3 . ,2 1. ■ . ■..•■'-'14 99i: '-6'201; ■3384' - ,: 3 2 1 25349 5647 2161 : 372; 1., ' 
33033 53,70. ,3401 : ■3 2" 1. - .15631 6206" 3396 .' 3 2 1 25354 22519 4916 

17156 2913 .3427, . 3- 1 2 . . "43 938 62.30'.43.9.4:1 3 2 1 25406 5001 2099 ' : • ■ '3,;..-2 id.^ , 
. 16808. 3921 3.477 ; 3 2 1 . . ■ ,,320.9'9 '62599994' ■ 3 12 ■ 25509-'20130^ 3718' -. 7;-.3 ' :2dl ■ ■ :: ■ 

■ 16808 3.937 . 3477 .3 2 ,1 : ••17416 6316' 294 8 3 2 1 ^ ;■ 25647 3988 -2550 - , ■ • .3 Z 'l ■ 

. 9699 4 607 3.480 , 3" 2 1 ' : ■29055;; :6437^ :26511- 312 ' 25695 2907 1643 ■ ■' ■-3'.-2 ,1' . 
, 37.065' 3357' ,3491 ..,3 1; i: - 7 / '.328,i3' -672;9.V,-5944.- ■ : .\ 3 2;.-'l; - - - :262.98 4216- 5624 . ' 3 1. 2 

, 1419,9 3500 ■ ■ , .3- 1,2 - ■20124- ..68,24. 1'693 ' . ;■ ■ ■• 3' ,2,'i ■ ■ ■ ■; ■ ..2.7134. T537 6681 ,■ . ; ■ ■'3- 2"-1" 
7210 '3117. ■3514 • . ' • 3-l"2" . 22112 6827 197 8: ' . . ■>■3 '2,.; '1 ■ ' '■■ 2717'8 '-2300 -866' "3'271 - . ' 

'	 33307.5152 3514 ; 3 21. . ,- . 35421 .6836 .3249- . ■■ : '3- '^2':'l 27324 10874 3.997" 3. 2 '.I ' '■■ - ■ ■ 
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9858 27219 3588.. 2 3 1 29426'7188 .1413 . '. 3.-,2 1 ■ ' 28048.2394 2063 3 2 1 

11247 3913 3590 3 2 1 34715 7191 5593'' . ■ 3'2 1... ■28195.9152 7067. ■ 3 2 I". „• 
14461 2445 3602 3 12- .. 13761 7250 '3299 3 2 1 . ■ 28281.3,613.5321 . ■ 31 2. 

2303,5 6181 3634 3 .2 1. . .45311.'7497 1439- . . ■3 '2 1 ■ , .2'9d55 6.437 2 6511 ■■■ ': 3 -l '2 ■ • 
4866 4394 3716 ■3 2 .1' ^'27134;;7537: 6681- - ■ 3 2 1 7.29105-; 14916.,-9458, ' . • 3 2 ;.i;^ , 

.25-509 ;20130 37,18 - . 3, 21 . , ,2 9955 ■. 757 9. 30,5 6 . ■, .3 ''2,^1• '. .:,:2 924 8,: '13.20 ,1.363 . ■ . '3' 'l' .2 ' ' ■ 
58324 7734 3724 , , 3 2 1', ■ .. •.358.8.8. .: •7,64.6"3106 .."3..2''l' . ■: '2.9,'4 2:6 7188 .1413 . . 3 2' l" 
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