California State University, San Bernardino

CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1997

Design and implemetation of internet mail servers with embedded
data compression

Alka Nand

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

6‘ Part of the Computer and Systems Architecture Commons

Recommended Citation

Nand, Alka, "Design and implemetation of internet mail servers with embedded data compression" (1997).
Theses Digitization Project. 1482.

https://scholarworks.lib.csusb.edu/etd-project/1482

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1482?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DESIGN AND IMPLEMENTATION OF INTERNET MAIL SERVERS WITH

" EMBEDDED DATA COMPRESSION

A‘ Thesis
Presentcd to tﬁe
i Faculty of
- | Califomia State University,

“San Bernardino

In Partial Fulfillment
of the 'Requirements., for the >De gree
Master of Sciénce
| in

Computer Science

by
Alka Nand

March 1997

DESIGN AND IMPLEMENTATION OF INTERNET MAIL SERVERS WITH

EMBEDDED DATA COMPRESSION

A Thesis
Presented to the -
Faculty of
California State Univefsity,

San Bernardino

by
Alka Nand

March 1997

Approved by: ’

| 2/1/37

Date’

Georie M. Georiiou ‘
Kerstin Voigt '

ABSTRACT

The Internet is used to transmit massive amounts of information every
second. The vast volume of network traffic may cause congestion resulting in
delays. The motivation for this thesis rose from the need for Internet servers that
perform data compreésion within the server. On many netw_{é-)fks, electronic mail
(e-mail) is the most extensively used application. In this theéis, an internct mail
server with data compreséion is pre‘sented.v Different compression mechanisms,
such as Huffman coding, arithlﬁetic coding, and dictionary techniques, are
evaluated. The LZ77 cOmpression scheme provides good speed and compression
ratios. The e-mail systém was désigned using Object Oriented methodology. The
POP3 server retrieves mail for indi\}idual users; SMTP clients and servers send
and receive mail across the Internet. The LZ77‘compression scheme is
incorporated within the SMTP clients and servers. The SMTP protocol was
extended to allow for the mail client and Sewer to negotiate compression
transparently. Experimental results based on the implementé?d e-mail system show
that the system is able to transmit mail data across the Internet at enhanced
trénsrhiséion speeds. Embeddin‘g the task of dafa compressior‘l. within thc maﬂ
server achieves the goal of increasing effective bandwidth and reducing network

tfaffic.

iii

ACKNOWLEDGMENTS

I sincerely thank California State University, San Bernardino, and the

Computer Science department for supporting me in finishing my thesis.

I would like to express my special appreciation to Dr. Tong Yu, my
advisor, who guided me from the very begmniﬁg of this research, and who was
always available whenever I neédéd. I would also like to thank my committee
members Dr. Georgiou and Dr. Voigt, andvmy graduate coordinator Dr.

Concepcion for their valuable suggestions and comments.

I also extend my gratitude to WaterNet for sponsorin'g a PPP Internet

access account from an early stage of the thesis.

My special gratitude to my family, particularly my son Pulkit who showed

great understanding all along.

v

TABLE OF CONTENTS

ABSTRACT................... e s ssnssssssons T
ACKNOWLEDGMENTS.....ocourreeemmammssesssssessessssssssssssssssassessis revermessennessssesss 1V
LIST OF TABLEScoceccesernssersssssesssssesessssssssssssee ST vii
LIST OF ILLUSTRATIONS.....cccccrnvvvvrrsssesresssssnsssssssssssomssssssssssssessssssssesnss vii
CHAPTER 1. INTRODUCTIONccooocoorrivrrrorrrie eeveeeseesssnossseessenen |
1.1 Motivation.......cccceeeruerncee reeeereeeees eotissusssnrssessesesosnsssssnesnnssssses)

1.2 Organization of Chapters................ varens ,.' sevserstustsatnstsatnstsssastaeas 4
CHAPTER 2. INTERNET SERVERS rreeesrebrre e sbbaassssssabraaasee ceerenana ceeerenanes 6
2.1 Network CommunNiCationsceceeereerveereerseerecsressessaessvesns ceeteeaeennne veeees O
2.1.1 The Network Layers and Protocols................... reeeesstenaees creeereeesneens 7

2.1.2 The Client-Server Model.........cc.ceveenee. ctereuaeenresenaeeratsennessnnasssnans 15

2.2 B-Mail SEIVEIS evvveeeveeeeeermmensssssessesssessen veenas reerreeae e sasebesssaesnes oo 18
2.2.1 Simple Mail Transfer Protocol (SMTP)..........ceeueeeereeeeemeeesssessen 20
22.2POP3ciiiiienreieerrenieceerensesnesnsenseseessenes veseresaesnesaessasssensossassnassese 24
CHAPTER 3. DATA COMPRESSIONcoovmmrrerrrerirnreesessesrenn. coreeemsenisesens 29
3.1 Compression Techniquesccoceevvereenrerveerreerennne. reeesrtesatsssaas s raassarassaes 30
'3.1.1 Huffman Coding........cccceevevverrueriueneesuenseerseernenns creeesetesssesssnesssnassssans I 1

3.1.2 Arithmetic COding.......ooovrrrrsrrooee.. eeeeeesseesen g sssssssiessessmnassessoee 32

3.1.3 Dictionary Techniques..........cccecvievnnenns rbeeeeeaeens eeeereeeeeeeasenens veveeenee 33
CHAPTER 4. E-MAIL SYSTEM WITH DATA COMPRESSION.................... 37
4.1 Preliminary InVeStZationS...........ec.e.seeeeeeeseereessseessesseeeeens OO 1 -
4.2 Mail Server ArChiteCture.cc.ouevuerienierrvnnecruerrensuenuessvesuessuessaesseesssens e 39
4.2.1 The Mailbox Database sresrrssressressneesasanes reveeerosstessaresstasenranans 40

4.2.2 Outgoing QUEUEcccceuereererrerrerereeruene croreeresneeneenes OO . J |

4.2.3 SMTP Server............ rerertere st e snesaesasranne rerveraeeerteaesnaaenns RRRRR” ¥ |

4.2.4 SMTP Client crereeseesrssraesesnes reereereteteesnanes veetetenteraeeenanaeees 42

4.2.5 POP3 SEIVErccevvieerirenrirrrrerianreraraeersesensesennns et eneeaaes cvesraen 43

4.3 Data Compression Handling in The Mail Server..........ccccocveveiveerenenne.)

4.4 SMTP Protocol Extens1on......................‘...... eererrrenbrtatasasanastenesaes rereeeeeeens 45

4.5 Implemcntatlon DEtails ..c..covveieimueeeniesivnenineeiennens creesrereneesaeesstessaeentanne 50
CHAPTER 5.

. PERFORMANCE EVALUATION reerresneeeesseesaesnasnees 59
5.1 Comparing TransmiSsion SPEEdS........cceeeruererrererverueseeurseesusseeueseeseseess 99
5.2 Tasks ACCOMPLISNEcccevrerriierunreivierencneiseneessennennesvessssssesseessossesseens 02

CHAPTER 6. FUTURE ENHANCEMENTS AND CONCLUSION................. 64
6.1 Enhancements to Designed SEIVET c.veuvevieriorenrenseesrenransaersessassesssessessaassasss O4

6.1.1 Allowing Multiple Compression Schemes.............c.cu... verernereenenes. 64
6.1.2 Automatic Selection............c..ec.....

6.2 E ding The Desi Other S 66

.2 Extending The Design to Other Servers.................. eerrerreenes

6.3 Conclusi ' 66
3 CONCIUSION .uuivvnirrnerieeerennertrosersnescrrsorseesesions eeerreenernes

. APPENDIX A MAJOR CLASSES ceeesesssestsssesrecersssssssrsrrereiizrrcereresssccsescesesstsireres 68
ACRONYMS......................... tesssrsssessesnnane vesses reerertrrrreaeeiseisesosssssssransersrsererenees 1O

REFERENCES......N..,,.;N ©0ese0000ssessersessesscesecssres DR R T T TR TR T PP PP PP PP PP P PR PP PP PP PP LS 78

'Vi L

LIST OF TABLES

Table 4-1: File Size and Compression Ratios for Different Kinds of Files

Table 5-1: Comparison of Transmission Timeccccceeevvevrrerrreneeeneennen.

vii

..........

..........

LIST OF ILLUSTRATIONS

Figure 2.1: Network Layers in ISO/OSI Network Model................ cereeresrnsniennsens 8
Figure 2.2: The Layers of the TCP/IP Protocol Siteceervuerreerreeersrennens 11
'Figure 2.3: Basic Elements of a Network E-Mail SYSEM ..coveervercrvrrvenruensuensenns 18
Figure 2.4: Basic Elements of an Internet E-Mail System
- Figure 2.5: Sample Matil TEANSACHON ..vviere e criesesressssnmeesressesseseneessresesssssessoe 21
Figure 2.6: POP Client/Server Conflguratlon....;...... ceersssssnsssssessssssssssssenss 25
Figure 2.7: Sample POP3 Transaction....,...........;..'1......'..‘_..»... veenieneenne 27
F1gure 4.1: Internet Mail Server reeeteseeeteenaenas vreerveeaes 40
Figure 4.2: Outgoing Mail Use Case Dlagram......................;o»: veeeeessaenenenss 47
Figure 4.3: Incoming Mail Use Case Diagram..........cocovcuveuevviveccnncvvinsieinenncnne 49
Figure 4.4: Sample Transaction With SMTP ConipresSiori Service Extension..... 50
Figure 4.5: Main Class Diagramccooewsiveessesssrssseivrinss ceevseesensenenes 31
Figure 4.6: MailboxDB Class DIAZIAM. ...eevrrererreseeerrsseessessscreessssesresssseens 52

- Figure 4.7: Mailbox Database Design‘_.‘....,......-._.... vreeesrereneesoressrsesssnassrseessssess D3

Flgure 4.8: TCP Class Diagramccervene

©9000000000000000000000000060000000000000000

revereens 54

viii

CHAPTER 1. INTRODUCTION

The Internet is becoming' an eVer—inCreasing soufcé of iﬁformation. Internett
~servers provide specific services that are bcnéficial'to all network users or at least a
group of ne'twork users. Typically, a ﬁser request inyol_ving access to an Internet
Server is transmitted by the client application across the network. The client process
‘requests for a connection to a server and once the connection is established, requests
the service from the server. The Internet has gained widespread popularity and is
used to transmit massive amounts of information every second. As the amount of
information that is needed, desired and available, increases, the need for compressing
this informaﬁoﬁ efficieﬁtly inéreases as well. As society becomes more advanced and
complex, we need to be able to communicate ever more rapid’;;. The vast volume of
network traffic may cause congestion, resulting in delays and other problems. The
more bytes sent across the Internét, the more the traffic, the higher the costs and the
more the &elays. Network traffic can often be reduced by compressing the data before
sending it. Data compression allows transmission of data at speeds many times faster

than otherwise possible.

The goal of data compression is to develop techniques that can represent the
given information in the most efficient way. Data compression is related intimately

with data representation. Latest data compression techniques exploit the different

kinds of structures that may be present in different kinds of data like textual data,

speech data, image data etc.

1.1 MOTIVATION

The motivation for this thesis rose from the need for Internet servers that
perform data compression within the servers. Data compression allows speedy
transmission of data. Currently, existing servers do not incorpaiate data compression
techniques. It is left to the user or user level application programs to perform any
compression of data before transmitting it across large distances on the Internet. This
implies that large amounts of data that could potentially be compressed, is being

transmitted as such, incurring loss of both time and money.

On most networks, electronic mail (e-mail) is the most extensively used
application. As a matter of fact, about one-half of all Internet connections
established by Internet users are for transmission and receipt of e-mail messages [1].
In view of the popularity of electronic mail, this thesis will concentrate on Internet
Mail Servers. Initially Internet mail was intended specifically for the exchange of text
messages. As such the message format specified for mail transfer limited the contents
of electronic mail messages to relatively short lines of seven-bit ASCII. With
increase in use of electronic mail for transport of non-text messages, such as
multimedia messages that might include audio or images, this format and its

limitations proved increasingly restrictive for the user community. Users were forced

to convert any non-textual data that they might wish to send into seven-bit bytes
reprgsentable as printable ASCII characters before invoking a local mail program to
send the mail. Some examples of such encdding currently 'empiﬁ;oyed in the Internet
are pure hexadecimal, uuéncode, the 3-in-4 base 64 scheme, the Andrew Toolkit
Répresentation and many others [1]. These problemsb have sinpe been solved with the
help of several mechanisms that combinc to overcome most of these limitations. The
introduction of Multipurpdse Internet Mail Extensions (MIME) made it possible to
include, in a standardized way, arbitrary types of data objects [2]. However there is
still no provision for mail data to be cdmpressed before transmission. The main
thrust of this thesis is, thcrefore., to desi‘gn and implement‘ an Internet mail server that
éutomatically.vand efficiefnrtly cbfnpfesses mail data 1n maﬁnér thai: is transparent to
the user. In érder to incorporate thc mail compression algorithm within the mail
server it became necessary to develop an indigenous mail deli\;;ery system. This
Internet e-mail system éffectively speeds up transmission Andi helps in reducing
hctwork traffic. The combression cap_abilities of the mail servér_ allow transmission

of data many times faster than otherwise possible.

The system has been developed in the Windows environment. It is a 32-bit
application that can run on 32-bit Windows operating systems like Windows 95 or
Windows NT. It can also be executed on Windows 3.1x 16-bit Windows operating
systems using Win32s. Win32sis a subsystem created by Microsoft for the Windows

operating systems 3.1x and Windows for Workgroups (WFW) 3.1x 16-bit Windows

dperating systems. The Win32s libraries allow Win3.1x users to run Win32 (32-bit)
applications (that run on Windows 95 and Windows NT) on their 16-bit operating
systems. Sockets have been used for communication on the TCP/IP networks. The
Windows Socket Interface is based on the socket paradigm and has been derived

from the Berkeley socket interface that was designed for UNIX systems.

1.2 ORGANIZATION OF CHAPTERS

Chapter 2 introduces Internet Servers in general and Mail servers in
particular. Preliminaries of network communication are diséussed with a brief
overview of the different ISO/OSI layers and the associated protocols. Since network
server architectures are based on the Client-Server model, it seems appropriate to
review concepts of the Client-Server methodology. The socket paradigm for TCP
communications and the basics of the Windows Socket Interface are described.
Lastly, the deSign of E-Mail systems and the essential components are also explained

in this chapter.

Data compression is an integral part of this thesis and Chapter 3 introduces
the various different data compression mechanisms. Compressi:;)n techniques may be
lossless in which no information is lost, or lossy in which higher compression is
achieved at the cost of loss of information. For the purpose of compression within the

mail server lossless techniques have been studied. Emphasis has been given to some

of the more popular mechanisﬁié iike Huffrnaﬁ‘Coding, Aﬁthﬁletic Coding and
Dictionary techniques. | o

Chapter 4 describes the whole brécess of implemehﬁng the Internet E-Mail i '
server with embedded comprcssipn. To begin with an invest_igation»vof the effects of
incorporating data compression Before tranSmission was carried out. A brief
evaluation of the different compression tec'hniqlvles‘ Was done to determine the one -
most appropriate for use in th§ E-Mail server. The architecture of fhe new E-Mail
system is described in gréat detail, elaborating on the mailbox database, the POP3
server and the SMTP client and server modules. This chapter also elucidates how
data compreésipn»qug implemented within t‘he‘server.‘The SMTP protocol had to be
extended to support compression. The extension to the protoco}_ provides é means
whcrcby an SMTP client and server that support éompression r;lay recognize each
other. The SMTP protocol eitcnsions and its implications have béen discussed at
lengthintvl‘lviéchaﬁtelv".v o | R R

In Chapter 5 several performance evaluation results are prcsénted and the
spe¢dups achieved are illustrated. Future enhancements like more sophisticated data
analys_is for more optimal selection compression algorithm, are considered in Chapter
6. Suggestions for extending the désign to other Internet servers and the final

conclusions, are also included in this final chapter of the thesis.

' CHAPTER 2. INTERNET SERVERS

The Intei'net is a collection of communication networks that are connected
togetiler by gateways. Gateways are dévices that connect two subnetworks and aliow
com_m.unication between them even though they may or may not be similar. The
Internet is thc largest and most widely knowﬁ internetwork in the world. It connects
 well over 20,00 computer networks in around 130 countries [1]. The key
interﬁetwt)rking concepts, necessary fora discussion of the E—Maiisystem designed

as part of this thesis, are presented in this chapter.

2.1 NETWORK COMMUNICATIONS

A cOmputer_network may be defined as two or more interconnécted
computers, capable of commuhicatiﬁg with each other. The communication network
is the facility that provides a datattransfer service among C(irtlputcrs attached to the
network. Conceptually , a network may be divided into 2 fundatmental components:
network apblications and a network communication subsytitem [1] The network
communication systcm is thc delivery system used to transmit netwoik applications
data across the network. - | |

For tW(i entities _’in different.systems to sUccessftilly communicate they must

“speak the same language”. Entities refers to the user application programs, file

transfer software packages, electronic mail facilities or any other agents that are

~

capable of sending or receiving data. Communication between the two entities must
conform to some mutually acceptable set of conventions. The set of conventions and

rules that govern the exchange of data is known as protocol.

The Reference Model of Open Systems Intérconnection, also referred to as
the ISO/OSI model, useS layers to organize a network into well-defined, functional
modules. All communication functions are partitioned into a vertical set of layers [3].
Each layer is responsible for a related subset of th¢ functions required to
communicate with another syétem. it provides a speéiﬁc functionality to the next
higher layer, shielding it from lower-level implementation details and in turn relies
on the adjacent lower laycr ‘tbo, perform more primitivé ‘functions. The task of

communication is thus decomposed into a number of manageable subtasks.

2.1.1 The Network Layers and Protocols

Figure 2.1 shows the network layers in the ISO/OSI network model. The

ISO/OSI model and the different layers and protocols are briefly reviewed.

Application Layer

. Presentation Layer

Session Layer

Transport Layer

.. Network Layer.

- Data Link Layer

... Physical Layer

Figure 2.1 ::Netwqu:LayerSjin ISO/OSI Network Model

The physical layer actually transmits the unstructured bit stream through the
network’s communication channels. This layer includes the hardware needed to
accomplish the transmission and deals with the mechanical, electrical, functional and

procedural characteristics to access the physical medium.

The data link layer primariiy prevents data corruption within the physical
layer. It provides for reliable transfer of information by sendimg blocks of data frames

with the ncccsSary synchronization, error control and flow control.

The Network layer may be termed as the delivery system within the network
that is responsible for establishing, maintaining and terminating connections. This
layér provides the upper layers independence from the data transmission and

switching technologies used to connect systems.

The Transport layer provides reliablé,, transparent tr_an‘s;'fer of data between
communication end points. While the hétworklayér delivers data packets across the -
network, the transport layer transports data within the host computer making sure thc

data reaches the correct application.

The Session layer is the users interface to the network and establishes,
manages, and terminates connections (sessions) between cooperating applications.
As such it provides the control structure for communication between applications and

handles details such as account names, password, and user authorization.

The Presentation layer provides independence to the application processes
from differences in data representation (syntax). It handles,'all:&étails related to the

network’s interface to printers, video displays, and file formats.

The Application layer provides access to the OSI environment for users and
contains details about network-wide applications like E-Mail and distributed

databases.

For communication between two systems, the same set of layered functions
must exist on both the systems. Communication is achieved when the corresponding
(peer) entities in the same layer in two different systems talk to each other via a
protocol. Each of the ISO/OSI layers is associated with a corresponding protocol that
it uses tqqommu#icate._Wiﬂﬁn the ISO/OSI model, the iaycr n;;il‘mc‘ is used to identify
the layer’s protocol. For example, thé transport layer protocols are refeﬁed, as the

transport protocols. Conceptually when two host computers talk to each other, the

corresponding layers within each host also carry on a conversation. Communication
between peer processes is virtual communication, with no direct “int'er'change excgpt
at the physical layer. In other words, above the physical layer, each protocol sends
data down to the next lower layer to enable the data to get across to the target

- machine.

The OSI approach is specially useful since it allows communication between
heterogeneous computers as long as they implement the same set of communication
functions that are organized into the same set of layers, and peer layers share a

common protocol.

- The TCP/IP protocol suite is based on the ISO/OSI model. Both deal with
communications between heterogeneous computers and both are based on the
concept of protocol. However an historical difference between the two is the
importance laid on internetworking by TCP/IP. Internetworking refers to the
communication between two systems that are not attached to ﬂsame network. This
involves passage of data across at least two networks. Furthermorg, these networks
may be quite different from each other. Another difference betwecn the ISO/OST
‘model and the TCP/IP model is that the lattér places equal importance on
connectionless and connection-oriented services whereas the former is based solely
bn connection-oriented service. A conne<;ti0n-orientcd service must establish

connection with another system before any communication can occur, as opposed to

10

a connectionless service in which data is transferred from one entity to another

without prior construction-of a connection.

The TCP/IP protocol architecture is organized into layérs. TCP is an acronym
for Traﬁsport Control Protocol while IP Stands for Internet Protocpl. The Internet
“consists of thousands of networks that ﬁsc the TCP/IP protoéol sﬁite. The TCP/IP
protocol suite is a collection of complementary and c(jdperative protocols that work -
togetﬁer to communicate informatiqn across the Inteme;. TCP/IP is geﬁerally

considered to be a 4-layer systcm as indicated in Figure 2.2 [18].

Application Layer | SMTP, Telnet, FTP

Trénépoﬁ Layer V‘Tcp’ UDP

Network Layer | |p, |CMP, IGMP

Link Layer Device Driver

Figure 2.2: The Layers of the TCP/IP Protocol Suite

The link layer or netWork access layer qorr-e‘sponds to the data link layer of
the ISO/OSI model and nbormballly includes the device driver in the operating system
and thé corresponding network interface in the computer. Togﬁher they handle all
‘hardware détails of physi_c:iII_y interfacing with the u'ansmissjdn media in a manner
transparent to all other 1ayer§ abqye_ it. »Thﬂel network layer (also called the Internet

layer) handles movement of data allowing it to traverse multiple networks between

11

hosts. It is responsible f01f data routing. IP (mtcmet Protocol)? ICMP (Internet
Control Message Pfotocol) and IGMP'('I.nt'C_I'IvlCt GrOuﬁ Ménagerhent Prétocol) are the
' network layer protocols that are usually implemented within ﬁosts and gateways; The
transport layer delivers data l?.etWeén two processes on différent hosts. Two vastly
different tfansport pfotocbls prOVid¢ this funcﬁonaﬁty: TCP»(;E%:‘&nsfﬁission Control
Protocol) and UDP (User Daiag'réné Pl;rotocpl). 'I.‘CP.ié a iéliablg bprotocol‘that
guarantécs ‘delivery,. of data th_rough .the use of éhccksums; aClmowledgmcrif messages
e‘tcv.,Converscly, UDP 1s an unvreli‘abl.e‘ pfotocol ;that\ \proyides a much simpler service,
thﬁs'cutting costs in terms of <_:.(.)_1‘n”p1c.xity and het&drk baﬁd;vidth; Any desired

» re]iabiiity is the responsibility of the applicationll'ayef. The Appiication la_yer céhtains
various protpcbls for sharing of rcsop:cés (e g. between c‘omputcrs) and remote
access (e.g. tetmihal-toQCOmpﬁter). The mbst common TCP/[P épplicétions that are
implemented on almost every épplicatibn are SMTP, the Simple Mail Transfer
Protocol, FTP, the File TransfervProtocbl, and TELNET for réinote, login. A_ critical
difference betwéen the appli_cation layer and the loWer layers i;Y:fhat it coﬁcems itsélf
with the details of thc,: applicatioh without being bothere(i ébout ’_the'movefnent of
data acrbés tﬁe ‘netwofk: In ;:ontrésf ihe léwéf layers know nothmgabout the R

application but handle all the communication details.

As is clear from the above explanation, the TCP/IP protocol suite refers to a

collection of protocols that’i‘nclude the Transport Control Protocol and the Internet

12

~ Protocol, but is not limited to these two alone.“ The commonly uscd TCP/IP protocols
“and their a brief description of t‘heir,fﬁncti‘onélity'is "g'i\}e‘h below.”
° TCP

The Transmission Control Protocol is a transport layer protocol that

provides reliable movement of data between applications.
J UDP

The User Datagram Protocol is another transport layer protocol that
sends and receives datagrams for applications. Datagrams are units of information
that travel from sender to receiver. UDP is unreliable and does not guarantee that a
datagram will ever get to its final destination.

. P
The Internet Protocol is the main protocol of the network layer, It is |

used by both TCP and UDP for the movement of data between host computers.
o ICMP
The Internet Control Message Protocol is used by the IP layer to

exchange error messages and other critical information with the IP layer in another

host.

. GMP

13

The Internet Group Management Protocol is another network layer |

- protocol that is used with multicasting: sending a UDP datagram to multiple hosts.

In order to transfer data from one computer to anbther computer on the
network, there must be some way to uniquely identify the destiﬁ;__aition computer. For |
this, each computer -r_nusf be associated with a uhique idehtiﬁer or address.
Compufers on the Internet contain one or more network interface cards, which
connect the cor‘npute‘rs to the Internet. Each network interface. card that is attached to
the Internet must possess a unique Internet addreés‘. An Internét address is known as
an IP address. However, a single host computer on the Internet may have several
network interface cards, 1n which case it would have several valid IP ac_ldresses. An
iP address is 32 bits or 4 bytes wide and is represented in‘dotted decimal notation.
For example, 134.24.32.66 represents an IP address. In addition to IP addresses,
TCP/IP associates a port with a protocol. The transport layer routcs packets to and
from application programs and hence requires a way to identif); éach application.
Each network applicaﬁon has a unique port number that is aSsigned'to it every time it
creates a session. From the perspective of the Internet, a bort is the ‘addrcss of the
applicaﬁon or process. Transport layer protocols store source’and dgstination port
numbers. As discussed previously, the Internet includes application protocéls for the
more cdmm‘only used a_pplica;ions‘lik‘e FTP, TELNET, and E-M_ﬁil etc. These

applications use well-known port assignments that are commonly used for that

14

http:134.24.32.66

| ’particular application. For example, the well-known port assignment for the Simple }

" Mail Transfer Protocol or SMTP is 25 and that for TELNET is 23,

2.1.2 The Client-Server Model

The ISO/OSI and the TCP model allows network designers to partition design

issues. The applications layer w.ithin~-:theSe models resolves design issues related to

- specific applications. Most software for ‘ne‘twork applications is based on another

model--the Client-Server.ModeI; Network communication requires anetwork

connection between two 'en_tities that"talk“ to each Other. A network connection

_ cons1sts of both ends of the commumcatron process, as well as the path between

them The Chent-server model d1v1des the network apphcat1on 1nto two 31des the |
chent 31de and the server 31de lee the ISO/OSI reference model and the TCP/IP
model the Client-Server model separates network software design issues into
specific, well defined modules namely the client issues and the server issues. The
mail server designed as part of this thesis,v is based on the client-server rnodeL_

Ina typical ‘client-ser\rer scenario the server appircation performs all its
initializations and then goes to sileep, spendrng rnost of its time waiting for a request

from a client application. Server applications provide certain specific services that

~may be beneficial to all network users or at least a group of network users. For
' example, a company’s e-mail server would provide e-mail services that maybe

accessed from any computer within the company’s network. Every time a network-

user requests to send a mail message to another user, an e-mail client application like

15

Eudora would transmit a request across the network for a connection to an e-mail
‘server application. The e-mail client would then request the server to send the mail.
The e-mail server receives and processes the request and perfOfms all .the necessary
tasks to eﬁsure proper délivery,of the mail mesSage. Likewise;.fﬁghenever. a user
requests a file transfer from one qomputer to another, a client application like FTP
sets up a TCP connection to thev FTP server applicatioh residing on the target
machine. The user request is tranémitted td the FTP server which then receives the

file and does all associated processing required to achieve the transfer.

The socket parddigm facilitatcs creation of sophisticated server operétions
and the development of robust client programs. The socket interface is an API for
TCP/IP networks. The socket interface alloWs creation of communication endpoints
called sockets and transferring of data between them. A socket represents one end of
a communication link and has access to all the information assdciated with the link.
However, before a socket can be accessed across the netwdrk, 1t zmust be bound to an
address. Binding makes the socket accessible to other solcl‘q_etspn the pctwork by

establishing its address.

In a typical client-server application, the client process requests a‘conne(::tion
and the server process accepts it. The server process creates a socket and then
configures it using the local IP addrpss and protocol port to associate a local address
with the socket. The sdckét is then bound to the host’s IP address and the

application’s protocol port. The server then listens for the transport layer to deliver

16

client requests at the sbeéiﬁ'cd pfotocol portThe chent pfbéé’ss créaﬁés a socket but
bdoes not need to bind it to its own local IP address. In most cases, oﬁ a TCP/IP
network, the socket implementation Selc‘ct:s‘the ﬁrotoéol pt;rt fof the client program
and notifies the client ‘when dat'é arrives at th¢ port. However, the IP address of the |

remote host and the protocol port of thf; remote server application needs to be
speéificd tb configure fhe created socket for communication with the remote host:
Whenever the client process requests a éonnection to the server process, the server
accepts the client’s request and establishes a connection. Thenceforth, a direct full-
duplex connection exists between the client and the server proéégses. The two
processes can send and recgive data through their re§pective connected sqckets for
the duration of the comnection.

The Windows Socket Interface is an API for TCP/IP networks in the

Windows environment and iS called Winsock. Internet applications can be written
using the library functions provided by the Winsock, WINSOCK.DLL. It has been
d¢rived from the Berkeley-socket interface for UNIX systems. Winsock takes
advantage of the Windowsvmessagc-drivcn environment and is implemented as a
dynamic link library (DLL) as opposed to the Berkeley socket-interface that is built
into the UNIX operating system. The library of ksupport functions exist as an

executable module that the Windows operating system can load at execution time.

17

2.2 E-MAIL SERVERS
Electronic Mail (e-mail) is most définit’ely one of the most popular Internet
‘applications. Figure 2.3 shows the basic componénts thata net?fz,prk e-mail syétem

comprises of.

- E-mail | Outgoing | Background
F > Transfer
Program Queue | Tronster

E-mail | ‘ . User . B
Program - Mailboxes T Mail Server

Network E-mail System

Receiver

Figure 2.3: Basic Elements of a Network E-Mail Syster‘n

A uscr—intérfat:e on the sehdér émd fécéi\'}er maéhines pfovidgs e-mail aécesé
to network users. | The network e-mail System consists of the outgoing queue-i:hat,
maintains a queue of all messages to bé transmitted, a client process and a server
"process and a collecﬁon of individual mail boxés for each uscfs incofning rﬁail. The
N USer-intérface or the c—irriéiul-‘pfogram}may or may not bc -‘a'rbl integral part of th¢
network e-mail system, 'i.c.v fhc ﬁserﬁntcff@qe may Ver_y well Bc a separaté ciicnt

program that uses a client-server model to interact with the e-mail system. The

mailbox may be a user address of a single user, consisting of the username and
hostname (e.g. jane @orion.csusb.edu) or it may be a database that maintains e-mail

data. This database physically stores the incoming messages for individual users.

Figure 2.4 illustrates an overview of e-mail exchange using TCP/IP. The

actual components that the Internet e-mail system uses are shown in Figure 2.4.

. T ‘ . o Message
User Agent &— ‘O(ngeoul:g — Transfer
: Agent

TCP| Connection

Port 25
f ‘ Message
: User
—¢ UserAgent. ———9 \1aibox . Transfer
L R e 2 o Mailboxes - Agent

Receiver

Figure 2.4: Basic Elements of an Internet E-Mail System

The user agent is the e-mail program of Figure 2.3 that users deal with, e.g.

- Elm and Pine on UNIX systems and Eudora on Windows-based systems. Likewise
the.message transfer agent (MTA) replaces the client and server processes of Figure
2.3 and performs the exchange of mail using TCP. While the task of the user agent is
to provide the Internet user with a fﬁ@ndly front-end to thc Internet’s e-mail system,
the message .transfcr agént is mainly concemed with e-m;il related services, such as

sending or receiving mail for a host computer. The MTA program shields the host

19

mailto:jane@orion.csusb.edu

from a wide variety of user agents or other MTAs. To the host computer, the message
transfer agent represents the e;rnail system. It plays a crucial part in all e-mail
transmissions and their role 1n the Internet’s e-mail system cannot be undermined.
‘Once the user agent_sends the {e"—r.nail message to trle'outgeing dueue, it is the
responsir)ility ef the message tranSfer agent to retr‘ieve_the message and transmit it to
another MTA. This process of passidg the message from ene MTA to another
continues dntil the rnessage finally reacﬁes rhe destination host. Message transfer
agents are client and server pregrarns that.'eStablish‘ TCP conrlections to communicate -

with other MTAs typically using the Simple Mail Transfer Protocol (SMTP).

2.2.1 Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP) is the backbone of the Internet E-
Mail system and provides for two way communication 'betweerr the client (local) and
server (remote) MTAs. The objective of SMTP is te transfer mail reliably and
efficiently, RFC 821 [4] specifies the SMTP protocol. REC 822 [5] specifies the.
format of the electronic mail message that is transmitted usirrg SMTP between two
MTAs. Communication between two MTAs uses Network Virtual Terminal (NVT)
ASCIL NVT uses standard, 7-bit ASCH encoding for all data, including letters,
digits, and punctuation marks and hides computer differences related to line-feeds,
form-feeds, carriage-returns, end-of-line markers etc. RFC 854 [6] describes the

NVT format in detail. SMTP commands are sent by the client to the server. The

20

server in turn replies back with numeric reply codes and optional human-readable

strings.

In response to user ma1l request the sender—SMTP (chent) estabhshes a two-
way transmlsswn channel toa recelver-SMTP (server) on TCP port 25. The client
then awaits’a greeting message (reply ‘vconde '2_20)' from the server SMTP. A typical
mail transaction is shown in Figure 2.5.

220 BBN UNIX.ARPA Simple Mail Transfer Serv1ce Ready
HELO USC-ISIF.ARPA R
250 BBN-UNIX.ARPA

W 0w

MAIL FROM: <jane@USC ISIF. ARPA>
250 OK

A0

RCPT TO: <J0nes@BBN UNIX ARPA>
250 OK-

W n

. RCPT TO:<Green@BEN-UNIX.ARPA>
550 No such user here

W

RCPT TO:<Brown@BBN-UNIX.ARPA>
250 OK

W N

DATA :
354 Start mail input; end with <CRLF>.<CRLF>
mail data sént here ‘ .)

.etc. etc. etc. :

W nWn

250 OK

QUIT
221 BBN-UNIX.ARPA Service closing transmission channel

o 0

Flgure 2.5: Sample Mail Transaction
As soon as the SMTP server receives a request for a connection it forks a
child precess to deal with this new connection. Thebchild‘ prOCess now acts as the
receiver (server) SMTP. The server responds with a 220 teply code and the fully

qualified domain name of the server’s host, such as silicon.csci.csusb.edu. Once the

21

http:silicon.csci.csusb.edu
mailto:TO:<Brown@BBN-UNIX.ARPA
mailto:TO:<Green@BBN-UNIX.ARPA
mailto:FROM:<jane@USC-ISIF.ARPA

transmission channel is established, the vsender-SMTP sends the ’HELO'commanxd to’
identify itself to the receiver (server). The argument to the HELO cornmand must he |
the fully qualified domain name of the client host e.g. www.sanbernar'dino.'net. Next
.the Sender-’SMTP sends the MAIL comma‘nd indicating the ‘sender of the mail. If the
receiver-SMTPv is ready to accept mail it replies back with an OK (250 reply code)
reply. The sender-SMTP then sends the RCPT command iden'tifying the recipient»o'f .
the mail. If the SMTP server can accept mail for that recipient it vres_ponds with an

OK reply; otherwise it rejects that recipient but not:the whole mail transaction. If
there are multiple recipients to the mail message, the client may send multiple RCPT
commands Once all the recrp1ents have been negot1ated the client SMTP sends the
DATA command followed by the mail data, terrnlnatlng w1th a spe01a1
'<CRLF.CRLF> sequence. If the SMTP server is able to successfully process the mail
data it responds w1th an OK reply The communlcation is purposely ach1eved ina
lock-step, one- -at-a-time manner. SMTP specrﬁes the MAIL- RCPT-DATA sequence |
of commands as a mail transaction or a mail procedure. Thus, there are three steps to
SMTP mail transactions. The transaction begins with the sender sending the MAIL

‘ command which provides sender identification, A series of one or more RCPT
commands follows, providing information about the recipient.b' The DATA command :
delivers the mail data. Finally the end of rnail indicator (the <CRLF.C‘RLF>‘

scquence confirms the transaction and marks fthe end of the ’procedure. There may be
multiple mail_procedure_sihetweena c‘lient; andv:a server SMTP viiri;.the‘duration ofa

‘connection.

o

http:www.sanbemardino.net

The argument to the MAIL command is a reverse path specifying the mail
originator. This informs the server MTA how to send error messages back to the e-
mail sender. The reverse path includes the mailbox address of the sender, like
anand @csci.csusb.edu. Similarly, the argument to the RCPT command is a forward-
- path, which specifies the receivef of the mail. The forward-path is a source route and
includes the mailbox address of the recipient. In case the mail recipient is not
acceptable the SMTP server responds with a 550 reply cg\)de. An SMTP 550 reply
code impliés that the SMTP éervelf could not fulfill the client’,s‘ fequest since the
mailbox wés not available..While the SCl‘VCl" is obligated to notify fhe» client of the
ndnexistence of a recipient, it is nbt inéufnbent upon tﬁe client to act on this
information in any particuiar way. SMTP commands and replies have a rigid syntax.
They are not case sensitive, however this is not true for user names. The case of user
names must be preserved. Replies must have a numeric codé. Commands are
character string$ terminated by <CRLF>. The command codes afe alphabetic

characters terminated by <SP> if followed by parameters and <CRLF> otherwise.

In additioh to HELO, MAIL, RCPT, and DATA there are three more
commands that are required in the minimum implementation 0% SMTP These are
RSET, NOOP and QUIT.’RSET speéifies that the current mail transaction is to be
aborted. Whenever the SMTP client sends a RSET command thé SMTP server must
discard any stored sender, recipients, and mail data and send an OK reply back to the

client. The NOOP command has no effect on any parameters or any previously sent

23

mailto:anand@csci.csusb.edu

commands. It specifies no action except that the receiver send an OK reply back to
the sender. Lastly the QUIT command dictates that the receive_g fnust send an OK
reply and then end the transmission channel. The server SMTP must not close the
transmission channel unﬁl it receives a QUIT command and replies back to it.
Likewise, the SMTP client must not close the transmission channel till it sends the
QUIT command and receives a reply back from the server. In any case, if a
connection is closed prematurely the SMTP server must behave as if it had just
received a RSET command and cancel any pénding transaction. All completed
transactions still hold good. Tﬁe client SMTP behaves as if the transaction in

progress received an error in reply.

There are addifional, optional commands like VRFY, EXPN, HELP, TURN,
SEND, SOML, and SAML that are briefly explained for the salu«‘a of completeness.
The VRFY command requests the server to validate the address of a recipient. EXPN
expands a mailing list. The HELP command allows the client SMTP to get useful
information from the server SMTP, TURN allows the client and server to switch
roles. The SEND, SOML and SAML commands allow combinations of the mail

being delivered directly to the users terminal.

2.2.2 POP3

Post Office Protocol (POP) is used to retrieve e-mail from an Internet
mailbox. POP looks and works very much like SMTP. Figure 2.6 shows a typical

POP setup.

24

‘ SMTP___
. User Agent . POP POP server

1

mail client

v User
Mailboxes

Figure 2.6: POP Client/Server Configuration

The POP server acts as an interface to the mailboxes for the user agent. There
are two versions of POP currently in use: POP2 and POP3. POP3 is specifically
related to retrieving rhail from PC-based remote systems. Most commonly, e-mail
systems deliver méil to mailboxcs_ located on e-mail server systems. The practice of
delivering mail to individual destination workstations, is becoming less and less
popular. It may not be practically possible to permit a SMTP server aﬁd associated
mail delivéfy system to be continuously operational on a workéfatioﬁ. Similarly,
| Internet connectivity is-expensive - keeping a personal computer interconnected to
the Internet for long lengths of time may not be easily feasible. To solve this
problem, many e-mail systems support a node that has a mail server running and

offers a mailbox service to the less endowed nodes. Post Office Protocol -version 3

25

(POP3) is designed to allow a workstation to retrieve mail by accessing a mailbox on -
a server that is holding the mail for it 7.

The basic operation 1s very similar to SMTP and consists of a server host

starting the POP3 service by listening on TCP port 110. A client wishing to retrieve
‘mail, establishes a TCP connection with the POP3 server. Once the connection is
established, the POP3 server responds with a greeting message. The client and server
can then exchange ccmmands that consist of a keyword, possibly followed by one or
more arguments. Like SMTP ail ccrnmandsand responses are terminated with a
 <CRLF> and keywords and arguments consist of printable ASCiI characters, |

- separated hy a singlevSPACE) (<SP>) character. Responses consist of a status

vindicator and a keyword that may be followed by additional infcnnaﬁon. Currently, v
~ the two status 1nd1cators that POP3 recognizes are posmve (“+OK”) and negative (“-

ERR”). Mult111ne response must be termmated w1th (“CRLF CRLF”) termmat1on

sequence.

| - A typical POP3 ‘sc'enario is described in Figure 2.8. POP3 sessions progress
| through threevstates or stage‘s. The first is the authorization statein which the client
identiﬁesitself to the server using the USER <username> and PASS <password>
command combination. The server then determines whether to allow the client
access to the speciﬁed rnailborc. Atﬂ‘tersnccessfnl authorization the server acquires an
exclusive-access to the maﬂbox and the ses31on enters the tramactzon state. In the

transactlon state the client may 1ssue the STAT LIST RETR, DELE, NOOP and

RSET commands. STAT returns the number of messages plus the total size of the

messages in the mailbox, back to the client.

se »

" USER mrose

<wait for connection on TCP port 110>
<open connection> :

+0OK POP3 server ready <WWW . sanbernardlno net>
+0OK password requlred for mrose ne
PASS abcdef ‘

+OK mrose’ 'S malldrop has 2 messages (320 octets)

STAT f

+OK 2 320

LIST

+OK 2 messages (320 octets)
1 120

2 200

RETR 1
+0K 120 octets
<the POP3 server sends message 1>

DELE 1

+OK message 1 deleted

RETR 2 p

+OK 200 octets

<the POP3 server sends message 2>

’DELE 2
+0OK message 2 deleted

QUIT
+OK POP3 server 51gn1ng off (malldror empty)

<close’ connect10n>)
<wait for next connectlon>

Figure 2.7 Sample POP3 Transactlon

The LIST command has tan optional message humber argument. If specified

the server issues a positive response with a line containing information for that

message. If no message number was specified the server sends back a multiline

response with each line containing the message number of the message and the exact

27

http:www.sanbernardino.net

size of the message in octets (8 bit unit). RETR requires a mesénge number as
argument etnd retrieves the message from the mailbox. DELE nlso requii‘es a message
number argument and ma_rks a}m:essvélge for deletion. The message is not physically
removed from the maﬂlsox till POP3 enters the next stege. RSET unmarks all
messages marked for'deleti(‘)‘n.bNOvOP "requires,no action on part of the server except
to respond With a positive response. Finally tne POP3 session enters the update state
whenever the client issues a QUIT comm;tnd fromthe transaction state. However, if
the QUIT command is issued ftom the ‘authorization state , the POP3 session
terminates without entering the update state; The POPS server removes all messages
marked as deleted and releases any exclu‘sive-lo‘ck on the maill;fifo. The TCP
‘c.onnerction 1s then cl(‘)se(ni:.:If the session terminates for some reason -other than the
client issuing a QUIT eommand, the POP3 server does not enter the update state and
no messages are removed from the mailbox. These are tne commands required in a
minimal implementation of POP3. The 0pti0na1 commands that may be implemented
are TOP, UIDL, and APOP._ TOP requires a message number followed by a number
of lines argument. POP3 sends the headers of the message and then the number of
lines indicated, from the message’s body. UIDL returns the “unique-id” for each
message. This unique-id of a message is an arbitrary server determined string that
uniquely identifies a mail message within a mailbox. APOP is a alternate method of

authentication,

28

'CHAPTER 3. DATA COMPRESSION

Compression may bé defmed‘as “thé arf or science of representing
information in a compact form” [8] Theblcompavct representatiqn may be created by
identifying andvusing‘regularitic.s that exist mdata Data comp;é;Sion involves the
con.\.iersion Qf data with the purpose of réducing its size. A compression technique or
algorithm actually consists of two algorithms. One is the compression algorithm that
takes the data and generates a representation that is smaller in size, and the other is
the reconstruction algorithm that operates on the compressed representation and
generates the reconstruction. There»are two kinds of compression mechanisms:
lossless compression technidﬁes in §vhich the reconstruction is identical to the

| original, and lossy compression techniques in which the reconstruction is not
identical to the original but that achieve higher compression. In other words, no
information is lost in lossless techniques as opposed to lossy tevf;fhniques which
provide much better compression at the cost of loss of infom‘lati(.)n.‘ Lossless
compression is more commonly used for discrete data likc text, cémputer-generated
daté and some kinds of image and video infoinnation. Lossless compression preserves
data integrity and does not allow any difference to appear as a result of the
compression process. In this thesis we shall only be considering lossless mechanisms
of dafa compression. Compression algorithms can be evaluated in many different

ways. One very logical way of measuring the performance of an algorithm is to

29

calculate the ratio of the number of bits required to represent data before
‘compression to the number of bits required to represent the compressed data. This is.
called the compression ratio. Performance could also be evaluated by measuring the

time taken to compress data.

3.1 COMPRESSION TECHNIQUES

: | The different data compression aigorithms that can be used for compressing
Amail within the Intemet Mail server need to be reviewed. Compression techniques
can be classified 1nto statistical methods and dictionary methods The statistical
methods can be d1v1ded 1nto two parts, namely modelhng and codrng, the model
reads 1n”the characters and .g:e‘nerates statistics (probabihties of character occurrence)
to the coding-part to code the characters The modehng methods try to extract o
1nformatron about any redundancy that ex1sts in the data and describe the redundancy
in the form of a model. These models may then he used to obtain compression. The
c‘ommon modelin_g.methods are Physical Models, Probability rnodels and Markov
» Models; Knowledgeahout the physics of data generationis used to construct the |
Physical model. A good example of this is speech-related applications, in which the
1nformation about the physrcs of speech production may be used to create a
‘mathematical model. Statistical models assrgn a probabrhty of occurrence to each |
letter m'the*alphabet. ’Markoy' models ..“are the most'p0pular and provide models for

representing the dependence of elemen_tSvof the‘data‘seque,nce‘ on each other:

Arithmetic coding and Huffman coding are coding tec'hniques that employ a
modeling method to actually code the characters. While both Huffman and arithmetic
coding exploit Ithe statistical structure present in the data to obtain compressiOn,_ the
dictionary-based coding techniqnes make use of the existence of repetitive patterns

by building a‘d.ictionary of such patterns. -

3.1.1 Huffman Codi_ng

Huffman cod1ng 1s a Very popnlar codlng algonthm Codlng refers to the
process of assigning binary sequences to symbols orelements of an alphabet.
Huffman compressmn isa stat1st1cal data compress1on technrque Wthh gives a
~ reduction in the average COde length,usedto represent the Symbols" of an alphabet.
The set consisting of the bi’nary’ seqnences 1s ‘,Called acode and the elements of the set

are termed as codewords The collect10n of symbols is called an alphabet. Symbols

are called letters. The ASCII code for the letter ‘a’ is 1000011. A uniquely decodable ‘

code can be decoded in one, and only one, way. If none of the codewords ina

- particular coders ‘a;preflx of any other codeword the code is called a prefix code. A
preﬁx code will always be uniqnely‘deCOdable.‘The Huffman procedure is based on
two important observations. First, in an optimum code more frequently occurring
symbols will have shorter codewords than less frequently occurring symbols, and
sec_()nd,:in an optimum c_ode‘the. two least frequen_tlyj occnrring_ symbols will have the
samelength. Inaddition»,' the_anfman procedure adds one simple requlrement to

these observations. The Huffman procedure requires that the two least frequently

31

occurring symbols have codewords that differ only in the last bit. Huffman coding is
not practical in cases where the size of the alphabet is very large. Huffman coding is
‘very suitable for text compreSsion-. It is‘ alsolused for image compression. Huffman
compression also leads to some reduction 1n the ‘capacity of audio data. One of the
main advantages of Huffman coding is its simplicity. HoWévcr, it has its limitations
inbterms of the compression ratios ‘that it can achieve and some of the other

compression techniques score better results.

3.1.2 Arithmetic Coding

Another method of generating variablev léngth codes foi; c;ompression
purposes is called arithmetic coding. Asithmetic coding is particularly useful when
dealing with sources with small aiphabets, such és b1nary édurces and alphabets in
which the probability of occurrence of the elements ranges widely. It is more
efficient to generate codewords for groups or sequences of symbols rather than
generating a separate codeword for every symbol in a sequence. The Huffman
procedure is not very practical for long sequences of symbols since it requires
codewords for all possible sequences of that length. Thié causes the number of
codewords to grow unmanageabiy large. The arithmetic coding technique provides a
way of assigning codewords to particular sequences without ha’f’v‘i‘ng to generate codes

for all sequences of that length.

Arithmetic coding generates a unique identifier called a rag for the sequence

to be encoded. This tag is then assigned a unique binary code. A unique binary

32

(arithmetic) code can bégencrated for a chuerjce of a particﬁlar length ! without

| being compelled to generate c_odcwollrd»s for all séqﬁcnées Qf length /. ‘This is the big
advantage of arithmetié 'codihé ';)vér Huffman coding. Genératibn of a Huffman code
fora particulér sequence of leriv'gthwl réquireé the vgénervation' éf g%?edcwords for all

- sequences of length /.

l Arithmetic coding is mdfe complex than Huffman coding. In cases where the
‘alphabet is relatively large and‘the probabilities do not vary:a great deal, Huffman
cdding might be a better solution. However, there are a numbqr of sources, such as |
facsimile, in which the alphabet size is not very large and the probabilities vary
greatly. In su.ch‘ cases, aﬁthmqﬁc coding would produce better results. Arithmetic
coding has been recommended by the Joint Bi-Level Ifnage Pfocessiﬁg Group (JBIG)

[8] as part of the standard for coding binary images.

>3.1‘.3 DiCtionﬁry Techniques
' Dictionary techniques incorporate the structure inhéferit in the data to achieve
| higher levels of comp.l“ésv'sio‘n'.‘ A dlctlonary of the n;os;t:'fféQuéhﬂy dééurfing patterns
is created and the code actually consists of the index of the pattern in the generated
dictionary. For sources containing a relatively small number of recurring pattcms, |
such as text‘data and computer_commands, this method works extremely well.
Diétiénary técﬁniqliés may be divided into two main bateg’orie‘s: static and

adaptive techniques. Static techniqués make use of a known data dictionary, which is

33

some statistical distribution of the source data, to accomplish compression. An initial
pass over the data may be used to build the data dictionary which is used to encode
the data in the second pass. Adaptive techniques, as the name suggests, adapt to the
source data and construct the data dictionary on-the-fly. The adaptive dictionary
techniques are of interest to us, in the context of this thesis. Most of the adaptive-
dictionary-based techniques are derivations of the algorithms proposed by two Israeli
researchers, Abraham Lempel and Jacob Ziv in their landmark papers in 1977 [9] and
1978 [10]. The Lempel-Ziv 77 algorithm (based on the 1977 pgper) makes use of
adaptive compression. The Lempel- Ziv method of compressioﬁ :is described in [12]
as follows:
“[The Lempel-Ziv 77 algorithm] makes use of adaptive compression -
a kind of dynamic coding where the input is compressed relative to a model
that is constructed from the data that has just been coded. By basing the
model on what has been seen so far, the algorithm is able not only to encode
in a single pass through the input file, but is also able to compress a wide
variety of inputs effectively rather than being fine-tuned for one particular

type of data such as English text.”

The Lempel-Ziv 77 algorithm is also referred to as LZ77. In the LZ77
approach the dictionary entries are simply previously encoded sequences. Symbols
are examined one at a time. Compréssioh is perfdrme‘d symbolwise. The encoding

consists of a length and an offset for a sequence of one or more symbols. The length

34

denotes the count of matching symbols in the sequence, and offset is the distance of
the sequence being examined from a previous matching sequence. The dictionary
itself is the source output. LZ77 assumes that the recurrence of a sequence is a local

phenomenon.

The LZ77 algorithm is fairly fast in compression and deéompression and the
amount of memory used is moderate. It is a also a simple algorithh_l to implement.
Both text and image data can be compressed easily and ‘quickly. Popular compression.

packages like PKZip and Zip and Lharc all use .an’LZ77 based algorithm.

The Lempél-Ziil 78 appr()ach. (beis'e.d’onv the 1978 paper) makes use of an
explicit dictionary. The dictionary has to be _generated by both the encoder and the
decoder. The inputs are encoded as a pair. The first element is the index into the
dictionary entry i:hat was the longest match to the input. The second element is the
code for the character in the input following the matched portiq_g of the input. Each
new entry intQ the dictionary is one new symbol concatenated §vith a previously
existing dictionary entry. Tlus has the drawback that thg dictionary keeps growing
without bound. To implement the IF_,Z78ﬁ approach fhe growtﬁ of the dictionary has to
be stopped at some point. Several modifications to the LZ78 approach have been
suggested and of these the LZW ﬁlgo,rithm is the most well-known [13]. Terry Welch
suggeéted this modification to the LZ78. Welch proposed an encoding method that
does not require the eﬁcdding té contain the second element, i.e. the code for the

character immediately following the matched sequence. The enéoding consists only

35

- of an index into the dictionary. To begin witﬁ the dictionary is mitialized with all the
letters of the input alphabet. From then on the dictionary is dynamically cbnstructed
from patterns observed 1n the source bufpﬁt.'The LZW éllg:()riihm is a popular variant
of the Lempel-Ziv algorithm. Thc algorithms used in both UNIX COMPRESS and
GIF use the LZW algofithn;. The LZW algorithm provides good results for text
compression as well as computerégénerated graphical images. Thé presence of
repetitive patterns in such data make them gdod candidates for compression using the

- LZW algorithm.

36

CHAPTER 4. E-MAIL SYSTEM WITH DATA COMPRESSION

This thesis aims ro r:ompress E-mail data near the top némork layér, thus
: reducing the amount of data.‘that the nétwbrk mrlsf_transp(rrt. As such, efficient riata
compression can :sighifiéa-ntly boost o_vérall inctW‘ork- performance. Network -
bandwidth (or throughput) refers to the amount of dat_ar that‘ can flow through a
communication chzrnrrel in a given unit of time. One obvious way of increasing
bandwidth is to widen the communication channel by adding rrlore network
connections for a single transport. 'Anothcr rrncthod to increase effective network
barldWidth, and the one explored in this thesis, is to reduce the size of data that the
hethrk rriusf trarlsp-ort.‘ For éxarmpie, if an e_ffectch data compreSsion' technique
allow's‘ three maii messages to be reduced to 'srzc of one, three mail messages can be
trahsportcd-for the price of bne. This would increase throughplft‘zby a fzrctdr of three.
It is the gdal of thrs thésis fo achieve ‘such' an irlcreaée in effér:tive Berrldwidth for an
Intemér E—mé;ll"system. o ! R

This chapter dcséribes rhe design of the Internet E-mail system. The
algorirhm ﬁsed to incorporate compression within ,th'e mail server is présented. The
modification to the SMTP prqtocol necessary for negoriation of ‘comprcssion'

between two Internet Mail systems is also described.

37

4,1 PRELIMINARY INVESTIGATIONS

The study of the vaﬁous lossless data compression techniques provided an
insight into their strchgths and weaknesses. In this thesis, the data compression
mechanism will be employed to compress inail data prior to transmission. Since mail
data may be in the form of text data or image data or speech data, fhe technique of
choice, must be capable of compressing all these types of data efficiently. The file
compression ratios for a variety of files, using the different corl}pression schemes is
shown in Table 4.1. Based on these results the LZ77 data comﬁréssion scheme has
béen chosen for effective compression of mail data. The mail server has’no prior
knowledge of datg ancﬂi}th_e LZ77 scheme does not fequire any either. Since its a
simple adaptive scheme, that does not make any assumptions about data
characteristics, it is suitable in that respect. It also has the advantage that it does not
require large amounts of memory and demonstrates good speed and compression

ratio for both small and large files. Mail data may vary greatly in size and this

property makes it a good candidate for use in the Internet mail server.

38

Original Huffman LZ77 LZW13 LZW15

Name Size Size | Ratio Size | Ratio Size Ratio Size | Ratio

mbox.cpp |45k |30k |66% |9k |20% |18k |40% |14k |31%

msrvr.exe | 449k | 324k | 72% 151k | 34% 453k | 101% | 266k | 69%

thesis.doc | 288k | 226k | 78% 111k | 39% 252k |87% | 179k 62%

rfc.txt 76k 47k 61% 10k | 14% .29k 38% 30k |39%

excite.htm | 13k 9k 71% 3k 25% 7k 52% Sk 37%

alska.htm | 6k 4k 69% | 1.5k 20% 3k | 50% 2k 40%

ftr.dll 4256k 206k | 80% 110k | 43% 213k | 83% 137k | 63%

res.001 317k [224k |70.8% |67k |21% 311k | 98% 106k | 33%

back.pcx | 65k 37k 56% 27k | 42% 38k 58% 33k |51%

tt25.res 1085k | 1010k | 93% 778k | 2% 1512. 139% | 968k | 89%

Table 4-1: File Size and Compression Ratios for Different Kinds of Files

4,2 MAIL SERVER ARCHITECTURE

The block diagram of the designed Internet e-mail system with embedded

compression is shown Figure 4.1.

39

POP3 1 Mailbox | | Outgoing | SMTP
sever [€° "1 Database __ Queue | > Glient

L] 1] . . R P +
...... I . | —]
~ .Incoming Mail . VISR I o _
e Tttt o > - sMmTP
o © ' Outgoing Ma_il co T _ o . Server
~ User) o . - :

Figure 4.1: Tnternet Mail Server

Following is a brief description of the components of this e-mail system:

4.2.1 The Mailbox Database v

‘The mailbox datab?xée céntajns a set of mailboxes, Onc per user (client) of the -
system. The incoming mﬁil for the users are stored in their réSpeptive maﬂboxeS. |
| This_mail could be sent by another user on the same mail syStegl, or could be
’ fbrwarded by anoth¢r mail server oﬁ the Internet. Each mailboﬁ can sforc aﬁy nurribcr
of inessagcs. These messages are Stored in individual files - invﬁncompressed format.
- The mailbox database providcs the following set of operations: |

¢ Add a mailbox user '»

‘¢ Delete a mailbox user

40

* Authenticate a user A

¢ Open a mailbox after propér authéntication
* List the number of messages in the mailbox
¢ Add amessage

¢ Retrieve a message |

e Mark a message deleted

* Purge a message

¢ Peep into message

* Reset the mailbox

* Get UID for a message

¢ (Close mailbox and unlock resources

4.2.2 Outgoing Queue

-The outgoing queue contains all the Internet bound messages. These
messages could be sent by the mail clients, or may be forwarded by another mail
server on Internet. There is only one outbound queué in the mail system. The
messages in this queue are stored‘ in individual files. These files store uncompressed

data. The outgoing queué provides the following set of operations:

* Put message in Queue
* Getmessage from Queue

* List number of messages in Queue

4.2.3 SMTP Server

The SMTP server communicates and receives the mail from either a mail)
client on the same host system, or from another mail system on the Internet. If the

mail is bound to a mail user on the same host system, it is stored in the user’s

41

mailbox., Otherwise, the mail is forwarded to the outgoing queue. If the same mail
-data is to be sent to multiple usefs on different hosts, the SMTP server replicates the

- mail message for each user in the outgoing queue.

Mail data is stored as a disk’ﬁle“and is ultimately sent to the address specified
~inthe forward path. _In‘cas'cf of any error in delivery, an undeliverable mail
notification is sent back to the_ Qrigihator of the mail messagé using the reverse path

stored in reverse path buffer. -

tis the responsibility of the SMTP server to determine if the mail data
coming from another mail server is compressed. If so, the SMTP server
| decompresses the data before sending it to either the outgbing' queue or to the user’s
mailbox.

- The operations provided by the SMTP server are:

e Accept connection from client SMTP

. Process MAIL command and store forward path ,

* Process RCPT command:‘check- seqﬁence and store reverse path
'« Process DATA command: accept data and store or queue mail

* Process other SMTP commands like HELO, RSETetc

4.2.4 SMTP Client
The SMTP client keeps checking the outgoing queue at regular intervals.
Messages on the outgoi‘né qﬁeﬁc' are picked up by the SMTPclient and sent to the
appropriate mail server acfoss the Internet. Before sending the niéssages, the SMTP

client negotiates with the remote mail spffVe_r to determine if the server supports

42 -

compression. If so, the SMTP clieht. compresses-the mail data. However, if the
- compressed data file size is larger than the original file size, the SMTP client sends
the originél data. The oper‘ations provided by the SMTP client are:

o Estabhsh connectlon w1th server

¢ Send ma11 data by complllng and sendmg SMTP commands

42.5 POP3 Server
The POP3 server is the primary interface bétwcen the mail user and his/her

mailbox. In effect, the POP3 seryef interfaces with both the mail client and the
mailbox database. It ‘al‘lows the mail clier'its‘to_ check the ‘i;ser"s mailbox and
d:ownload. mail. It provides s_eyefalopc;ati‘gns Qﬁ the mailbox. These operations
~ include:
e Accept conncctlon from client
¢ Authenticate ma11 user’s name and password
. Open and lock mailbox for authentlpated user
e Getstatus of user’s mailbox from the mailbox database
* List mailbox messages
* Retrieve messages form mailbox database using message numbers.

. Delete messaggs from mailb'ox database :
_* Process all other POP3 commands like TOP, UIDL, RSET etc.

43

4.3 DATA COMPRESSION HANDLING IN THE MAIL SERVER

The designed mail server implérﬁents dém compréSsibn transparently. The
mail client sends _mail datahin .any. way it wants to the' SMTP sefver. The SMTP
server forwards this data to the outgoing 'queue. The SMTP élient picks up this r‘nail_v
data from the outgoing queue and prepar,‘e,sﬂj‘to sérid it to the remote mail server across

the Internet. It is at this stage that data compression takes place. "

Similarly, the SMTP server receives (compressed) data from the Internet, and

before sending it to another component, decompresses it.

As the above approach showS, éll the data compressi0n handling is
encapsulated within the SMTP client / server components. There is no guaranteé that
the incoming (Internet) data is compressed data, or that the remote mail server could
handle compressed data. Hence, the SMTP client and the server should be able to
handle both compressed and uncompressed data. The SMTP client needs to know
whether the remote mail server can handle cbnipressed data. Only then can it send
compressed data across the Internet. The SMTP server needs t¢ publish its
compression abilitiés. Even then, the incoming data could be uncompressed and it
needs to know about it. To accomplish thé above, an SMTP protocol extension is

proposed and implemented.

4.4 SMTP PROTOCOL EXTENSION

SMTP Service extensions (REC 1869) [14] provide a framework for
extending the SMTP service by defining a means whereby a server may inform an
SMTP client as to the service cXtenéibns it supports. Rather than describing the
extension to the‘ SMTP protocol required for ihcorporating data compression as a
separate and haphazard entity, this framework was used to provide the enhancements
in a straightforward fashion, consistent with all other extensions. In particular, this
extension to the SMTP service allows compression of mail data prior to transmission

using a commonly used compression technique.

RFC 1869 [14] introduces the EHLO SMTP command to be used instead of
the HELO command by any SMTP client that supports the SMTP service extensions.
A successful response by the SMTP server tclls/thc clicpt that it is able to perform
the EHLO command. In case the server does not support the SMTP service
extensions it will generate an error response. Normally, a successful response is a
multiline reply, each line containing a keyword and optionally one or more

parameters. These keywords denote the SMTP extensions that the server supports.

Consistent with RFC 1869 the definition of the compression extension is as

follows:
1. the name of the SMTP service extension defined here is compression;

2. the EHLO keyword value associated with the extension is XCOMP;

45

3. the parameters used with the XCOMP EHLO keyword define the
types of compression schemes supported by the server. At present only one scheme -
LZT7 - is supported. Hence, there is only one keyword - LZ77. The syntax of the

ehlo-line [14] using ABNF notation is as follows:
ehlo-line ::= “XCOMP” *(SP ehlo-param)
ehlo-param ::= “LZ77”

4, one optidnal parameter using the keyword XCOMP is added to the
MAIL FROM command. The value associated with this parameter is a keyword
indicating the compression scheme being used for compressing the mail data that is
being ‘sent. At present’only bne compression scheme is supported by the system. The

syntax of the optional esmtp parameter using ABNF notation is:
esmtp-parameter ::; “XCOMP=" xcomp-value
xcomp-value ::= “LZ77”
5. no additional vcrbs are defined for this extensioi; and,

6. the next section specifies how support for the extension affects the

behavior of a server and client SMTP. '

The client SMTP that wishes to send compressed mail data should start an
SMTP session with the ekxter“lded SMTP service command EHLO. If the SMTP
server responds with code 250 to the EHLO command and the reply includes the

 EHLO keyword value XCOMP followéd By th_é pérameter value LZ77, then the

46

server is indicating that it supports the extended MAIL command and supports the

LZ77 compression scheme. At this point, the SMTP client is authorized to send

LZ77 compressed data.
) SMTP Server: . * OutGoingMsg: OutGoingQueus ~ SMTP Client : - Lo
: Mail Client SMTPconn MailData : OutQueue .~ SMTPdi + Remote Mai
.) » o ; . ver
I HELO B) .‘,"‘» N . ‘
MAIL FROM L ‘) ’ ‘
HOK L ’ o ‘ '
RCPTTO ‘
© DATA o4) ' '
T : +OK —1!‘1 —)
L Put(OutGoingMsg) i
l - ‘ " Addio Gueue ! ‘
T :) | 4
_ l ‘ . } . g - Get l ‘
. - T -
ITr Ouléoinngg
| | | T e |
| : ' l X +OK XCOMP LZ77—I'|"
I : ' l ‘ MAIL FROM XCOMP=L277
} +OK
T .
. o Compre'ss Data using LZ77 :
I ’ } I RCPT TO ‘ i
I l } l — —]T'
» T Compressed Data

Figure 4.2: Outgoing Mail Use Case Diagram

47

If the client wishes to transmit LZ77 compressed data, it issues the extended |
MAIL command. The syntax for this command s identical to :the SMTP MAIL
‘command deﬁned‘ in [4] except that a XCvOMP parameter must appear after the mail |
originator’s address. Only one XCOMP parameter may be used in a single MAIL
command. The value associated With the XC»OMPl parameter i{;@icates that the mail
data will be compressed using this-¢Z77) algorithm. Althougﬁ.this information may
seem redundant in the pfcsent e—méiﬁl system since it suppofts a single compression
scheme, this design allows for multipie_ compression‘ schemes in the future. The
SMTP client compresses the data onl?r éfter receiving a successful response from the
server. The ciient then issues a DATA command to the server and promptly after
receiving ﬁ suecéésful vfe‘sllv)oli;se, sends the compressed maﬁl data, tcriniﬁating it with
the usual <CRLF.CRLF> sequence.,‘If a server SMTP does noi support the SMTP
compression extension (either by not responding with code 250 to the EHLO
command, or by not including the EHLO keyword value XCOMP in its response),

then the client SMTP does not compress the mail data but rather sends it as is.

The extended SMTP server accepts both HELO and EHLO commands. When
it receives an EHLO command, it replies back indicating the cqmpression schemes it
supports. If it receives a XCOMP parameter in the MAIL FROM command, it
understands thatb the SMTP client is sending compressed data. The SMTP server

accepts the compressed data, and then decompresses it on the ﬂy; If the SMTP server

48

~

does not support the compression Scheme iﬁdicated in the MAIL FROM command, it

returns an error.

A T o X

SMTP Server : Incoming Message ' Mailbox DataBase Add Message To : Message POP3 Server : + Mail Client
SMTPconn :MailData : MailboxDB List : Mailbox POP3conn :

| EHLO | : ‘

| +OK XCOMP LZ77 Ll

MAIL FROM XCOMP=LZ77

Compressed Data

O

|
|
|
|
|
|
|

|
|
|
i
|
|
|
|
|

Store (Incoming Mess: 1)
I Create (Incoming Message)
Add Message to List ;

—

\ ‘ VityUser (usemame)| USER <username>
U oK
+0K
L
| | IPASS <password>|
\IlrlyPass (password)l
o o |
u ' | | =
RETR <msg#>
| Retr l [:]

Retr (msg#) v
Retr
|~ Message I]J ‘
Message
U

|
T -
‘“

-

U
»
|
|
|
|
|
|
|
|
|
|
|
|
|
N

ﬂ
H

Figure 4.3: Incoming Mail Use Case Diagram

49

The following dialogue illustrates the use of the compi‘ession service

extension:

o™ wn ™

"N Wh HIW

w0

S:
R:

Wnnnon

220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready

: EHLO USC-ISIF.ARPA

250-BBN-UNIX.ARPA »
250 XCOMP LZ77 e

: MAIL FROM:<jane@USC-ISIF.ARPA> XCOMP=LZ77

250 OK -

RCPT TO:<Jones@BBN-UNIX.ARPA>
250 OK

RCPT TO:<Green@BBN-UNIX.ARPA>
550 No such user here

RCPT TO:<Brown@BBN-UNIX.ARPA> |
250 OK

: DATA

354 start mail input; end with <CRLF>.<CRLF>
LZ77 compressed mail data sent here
.etc. etc. etec.

: 250 OK

QUIT
221 BBN-UNIX.ARPA Service closing transmission channel

Figure 4.4: Sample Transaction with SMTP Compression Service Extension

4.5 IMPLEMENTATION DETAILS

An Object Oriented approach was used to design the e-mail system. The

various components of this system were treated like loosely coupled objects. Every

component was designed keeping in mind the n‘eved to preserve data integrity and

consistency. No loss of mail is allowed by the server. The e-mail system consists of

three major threads, namely the SMTP server, the SMTP client and the POP3 server.

Threads are light weight proccsSebs'[l]r. The Mailbox Database and the Outgoing

50

mailto:TO:<Brown@BBN-UNIX.ARPA
mailto:TO:<Green@BBN-UNIX.ARPA
mailto:TO:<Jones@BBN-UNIX.ARPA

Queue' are the two other major classes. The following figure shows the major classes

and their relationships.

: Message OutQueue

1

MailData

SMTPCli

- OutGoingMsg

Figure 4.5: Main Class Diagram

The Mailbox Database is of particular importance in the e-mail system. It
serves as a repository for mail data. Figure 4.1 provides a block diagram of the
Mailbox Database_dg:sign. The MailboxDB class proVides the interface to the

mailbox' database.

51

Figure 4.6: MailboxDB Class Diagram

There is a single global instance of the MailboxDB class. MailboxDB
contains a list of Mailbox class objects. Each time a new mai1ng user is added, a
new Mailbox class object would be created and added to the‘lis?f. Each Mailbox class
object maintains a list of Méssage class objects. An instance o f the Message class is
created and added to the list every time a new message is storebd in the mailbox. The
message data is stored as maildata objects. The maildata class .manages the rﬂail
data, allowing reading and writing of mail data in segments. Storing mail data in a
disk file saves the overhead of excessive memory usage. Also, this imposes no limits
on the length of mail data. The mailbox database is also Stored on disk and every

time the system is rebooted, all database files are uploaded. Every time the mailbox

52

database changes state the new state is stored on disk. This has the advantage that no

data is lost even if the system is shut down temporarily. -

message 1 H message 2 H message‘a H message 4 H message 5
message 1 H message 2 H message 3
message 1 H message 2 H message 3 H message 4 i
message 1 H message 2 H message 3 H message 4 H message 5

Mallbox Database

Mailbox 1

Mailbox 2

Mailbox 3

Mailbox 4

Figure 4.7: Mailbox Database Design |

MailboxDB maintains exclusive access to the mailboxes. Mutexes [20] are
used to synchronize data access to the mailbox database across the multiple

processes/threads.

The SMTP server is implemented as a thread that is started at system startup.
The server process creates a socket and then conﬁgures it using the local IP address
and the SMTP protocol port The SMTP server then waits for c11ent requests

Whenever the server receives a new connection from an SMTP client, it starts a child

53

thread that creates an instance of the SMTPconn class. The SMTPconn class has been
derived from the TCP connection class TCPconn. TCPconn manages all the TCP-
connection functions such as read and write to socket. The SM f‘Pconn class contains

methods to process all the SMTP commands received from the client.

POP3conn

MailData

Figure 4.8: TCP Class Diagram

Once a connection has been accepted the mail server reads in a command at a
time and invokes the appropriate SMTPconn method to process the command. Since
a mail transaction involves multiple stcps, the commands are parsed and arguments
are treated as data objects to be used in future processiﬁg. The argument to the MAIL

command is the reverse-path which needs to be held pending not only for insertion at

54

| the beginning of the mail data as the return path line (in case of final delivery of
data), but also forsending an “undeliVerable mail” "notification to the originator in
case the mail could not. be delivered. Similarly, in case of multiple recipients for the
same mail data, both the forward path and teverse path need to be preserved till the
end of the mail transaction The SMTP supports the extended SMTP service
extens1ons command EHLO and the SMTP compressmn serv1ce extension. If the
client be gms a transaction w1th the HELO command the server treats the mail data

: rece1ved with the DATA command as normal uncompressed data However if the

| chent sends the EHLO'comrnand at the‘ onset of the mail transaction ‘the SMTP
server responds by sendmg 250 reply code along w1th the compress1on keyword

- XCOMP Only in such cases does the seruer expect the ma11 data to be in 'a B
compressed format. The argument to the MAIL command is also checked to make

- sure the compression scheme specified is supported by the serve_r; The data following
the DATA command is then decompressed using this same scheme. In any case the‘
server processes the stored mail transaction information. If the mail is for a local
recipient, the SMTP serve'r just puts it in the users mailbox using the Mailbox
database interface. Incase of a remote client, the.mailneeds to 'be sent across the -
Internet. In such case.s, itis the responsibility of the .SMTP ser\;er to put the rnail‘

~ message along with the stored. mail transaction information in an outgoing queue.
The outgoing queue is a global osjéétfaf the class OutQueie. The OutQueue

class maintains a queue of messages that need to sent to remote users. New messages

55

are added at the tail of the quene, while messages are retrieved from the head of the
queue. All OutQueue data is saved te disk every time it cnanges state. Fer example
every time a nenv message is added to the Queue,’the ‘eopy of tHe‘queue on disk is
updated. This ensures no loss of data even if the system goes down. The SMTP client
thread checks the 0thueue~periodicaliy for pending messagee to be transmitted on
the Internet. Whenever it detects a new message in the queue, the SMTP gets it and
prepares to set up a TCP connection with the SMTP server of the remote machine.

Once a message has been retrieved from the OutQueue, it is removed from the queue.

The SMTP client thread is another independent procesé that is created at
startup. Just ljlge theSMTP server »keep’s listening for a TCP connection, the SMTP
client keeps waiting for outbound messages to appear in the queue. Each message
waiting to be sent to a remote mailbox is processed in the ordef; it was put into the
queue. An SMTP client object belonging to the class SMTPcli is created. This
handles all SMTP connection details right from establishing a connection with the
remote server to sending the mail data and terminating the connection. The forward
path specified in the mail message is used to get the hostname of the recipient. If the
SMTP client is unable to set up a direct connection with the host, it tries to connect
to one or other of a set default hosts. Upon successful connection, the client begins
the mail transaction with the extended SMTP EHLO command. If the SMTP server
at the other end supports the SMTP service extensions it will give a positive response

aleng with the extensions it supports. The client then parses the reply to determine if

56

the server will accept a compressed file. SMTP commands are compiled by
extracting arguments from the mail messagé, _‘an_d sent tlo‘the server in the proper
sequence. The compression scheme to be used is conveyed to the server as an
argument of the DATA cbmmand énd if acceptable, the mail data is compressed

before transmission. Finally, the QUIT command terminates the connection.

The POP3 server process also begins at system startup and analogous to the
SMTP server spends most of its time listening for a new POP3§‘conncction from a
client. It begins a new thread for each new connection. The POP3 connection thread
creates an instance of the class POP3conn. POP3conn is also derived from the class
TCPconn and inherits all TCP connection attributes and functioriality from it. For
eéch POP3 command POP3conn contains a function that does all the processing
- associated with it. POP3conn class interfaces with the Mailbox Database to access
mailboxeé and mail messages. POP3conn provides a function whose sole purpose is
to accept client commands, parse thcrri and accordingly invoké the appropriate
function. The POP3 connection progresses through three states in the duration of a
transaction. Initially it is in the authorization state in which it sn‘y accepts the USER,
PASS and QUIT command. The arguments to the USER and the PASS command are
used to authenticate the user. The POP3 connectioﬂ then acquires exclusive access to
| i:he mailbox, assigns a message number to each message and enters the transaction
state. The commands STAT, LIST, RETR, DELE, RSET, TOP, UIDL and NOOP are

accepted in this state. For each of these commands the POP3 connection interfaces

57

with the mailbox database to acquire the requlred mformatlon to pess back to the
POP3 chent Finally it enters the update state when the client POP3 issues a QUIT
~command. Messages marked deleted are purged and the status of the mailbox at the
. time of closing is returned to the client. The POP3 connectlorl releases any excluswe

lock on the mailbox.

58

CHAPTER 5. PERFORMANCE EVALUATION

5.1 COMPARING TRANSMISSION SPEEDS

Different kinds of mail data was used 0 test the E¥mailv~;system. Textual data,
binary data, and graphlcal data was transported across the Internet using the de31gned
E-Mail system. Several Windows NT hosts were identified for thlS experiment. o
These hosts were cennected with ,Internet.‘ On each Qf .the hosts, two E-Mail systerns
were installed - the im'plemented.E-MailA system W1th embedded compression, and a
standard E-Mail system. Mail data Was sent from one host to another. First the mail
data was transferred from one host to another using the standard E—Mail system on
 the receiving end, and the designed E-Mail system on the transmitting end. The
uncompressed mail data was.transmitted in this case. The designed E-Mail system
dlsplays the time taken to transmit the mail data usmg ‘time’ system call. This t1rne
was noted. Then the de31gned E-Maﬂ system with embedded data compression was
started at both the hosts and the same mail data was transported between the same
hosts. The compressed mail data was transmltted this time. The time taken in the
transfer was again noted. This time included the time to compress data. This exercise
was repeated ten times for each file and each pair of connected mail hosts. Again, the

same test was repeated at different times in the day. Finally, an average transmission

59

- time was computed for each file for transmission with compression, and for

transmission without compression.

In all cases the time taken to E-Mail a file using the designed server was

considérably less than the time taken 'toij‘-Mail;‘the same file over the standard E-

Mail system. This reduction in time is attributed to the data compression employed

~ by the designed mail sefvef. ﬁe table below 'shows the size of the file and the time

taken on both the standard E—Maileysttcm‘ and the designed E-Mail system. The ratio

between these two times demonstrates the spéed up.

| rfe.txt

File Name File Type | Size | Average Average | Average
Time on Timeon = | Transmission
Standard E- | Designed E- | Time Ratio
Mail System | Mail System
Imboxcpp | TextFile |45k 63 sec | 41 sec 65%
msrvr.exe | Binary 449k | 527 sec 379 sec 72%
Executable
thesisdoc | MS-Word | 288k | 317 sec 190sec | 60%
Document
| TextFile | 76k 81 sec 38sec | 47%

60

File Name File Type | Size' | Avei'ééé | Avérage Average
| B i v'i‘in;e,on Tlme on,_" : | Transmission
Standard E- | Designed E- | Time Rétio
‘, Mall SyStem ' Mai’iigystem
excitehtm | ‘HTM‘L‘. Text | 13k | 45 sec 25sc | 55%
alskahtm | HTML Text ‘2>6k 160 sec 91 sec 57%
 fer.dll Binary DLL | 256k | 276 sec 220 sec 80%
res.001 Binary ‘317k 332 sec 235 sec 71%
"ba‘ck.pc‘)v:.‘. Bmary |65k 6_8vvsec 38 se'c S |56%
| Graphics :
t25.0es Binavry- 1,085k |1345sec | 672 sec 50%
| Resource :
Average 260k | 309sec 185 sec

59%

Table 5-1: Comparison of Transmission Time

As illustrated by the table, the compressed mail data took considerably less

time to_reach its destination. The reduction in time has to be attributed to the

, cgmpfe_Ssion of data being performed by the mail server. Although network factors

“may affect transmission speeds, the consistent reduction in transmission time

61

indicates the superiority in performance achieved by the mail server with embedded

data compression.

5.2 TASKS ACCOMPLISHED

The specific tasks that were achieved during the thesis are listed.: .

1. The effect of incorporating data compression before transmission was
studied. Mail data was compressed at the user level prior to transmission. The
reduction in transmission time of a compressed file indicated the advantage of
incorporating data compression within the mail server.

2. Differént data compression algorithms were studied and evaluated. LZ77
was considered the most suitable for use in the Internet Mail server.

3. The E-Mail system was designed using Object-Oriented methodology.

Each component of the system was treated as an object and the functionality and

relationships were identified.

4. The Post Office Protocol Version 3 (POP3) clients and servers were
designed and implemented using Object-Oriented methodology. POP3 is used to

retrieve mail.

5. The Simple Mail Transfer Protocol ,(SMTP) clients ands servers were

deSigned and‘irr‘lplerhen.ted.

62

6. Based on previous evaluations, the LZ77 compression scheme was
incorporated within the SMTP clients and servers. The SMTP protocol was extended
to allow both a mail client and server that support compression to recognize each

other as such and to negotiate compression between the two.

7. The various components were integrated and the fully operationai E-Mail

system was tested using a number of different kinds of mail data files.

8. A simple User Agent (UA) that allows addition of mailbox users was

designed and implemented.

9. The performance of the designed system was evaluated by comparing it
with the existing E-Mail systems. As expected the implemented mail server

demonstrated enhanced transmission speeds.

10. Future enhancements were identified. The E-Mail system may be further
improved to support more than one compression scheme. The SMTP protocol

extensions necessary for such a system were designed.

63

CHAPTER 6. FUTURE ENHANCEMENTS AND CONCLUSION

The E-Mail system may be further enhanced by incorporating certain:

extensions. These enhancements are described in this chapter.

6.1 ENHANCEMENTS TO DESIGNED SERVER

6.1.1 Allowing Multiple Compressioh Schemes

The SMTP service extensions for compression cou]d be further enhanced by
including other compressiotl»schcmes such as Huffman coding, LZ77 and arithmetic
“coding. In -such a casctheEHLOkeyword '“v»éluevaysvso;:viAatéckly Wi;ch tﬁé compression
extension would still be XCOMP, but the parameters associated with this could have
multiple keyword values. The éyntax of the value using ABNF notation 'wouid then
be: |

xcomp-value ::= (“LZ77”) * (SP “LZ77”) * (SP “HUFF”)

* (SP “ARITH”)

For instaﬁce, an EHLO line such as, 250 XCOMP LZW LZ77 HUFF, would
imply that the server supports the compression service ext_ensiori and is capable of o
dealing with data that has been cgmpres_scd using either t_hc’LZW compfeSsidn
scheme or the LZ77 scheme or the Huffman coding scheme. The client would then

have a choice of compression schemes to choose from. For each mail transaction, the

64

particular scheme being used to cbmpress' the ehSuihg mail data would be specified

in the extended MAIL command.

In particﬁlaf,.one optional parameter using the: kéywofci% XCOMP may .be
added to the MAIL. FROM command. The,vglue associated with this parameter
would then be a keyword indicating_t_he schiﬁt; cpbmprevssion‘ sche‘rrie (ﬁ'om the ones
supported by the server) being used to compress the fnail data‘ being sent with the

DATA command. The syntax of the value using ABNF would then be:
xcomp-value ::= “LZW” / “LZ77” | “HUFF” / “ARITH”

The SMTP server would then expect mail data compressed using the

specified scheme. The server would decompress the data before storing.

i

6.1.2 Autofnatic Selecﬁon

Another useful feature would be autorﬁatic ‘selection of the most bptimal
algorithrh. This would require.the system to analyzc, thc data and according to the
structure of the mail data, determin;: which coinﬁréssion scheme would produce the
best results.]jepending upon the type of mail data being transferred, a sﬁitable
scheme would be selected. In ‘such. a scenario, text mail data could be compressed
using the LZW scheme aﬁd Bi-levd_image data could be coded very effectively using

arithmetic coding.

65

6.2 EXTENDING THE DESIGN TO OTHER SERVERS

The concept of embedding data compression within the mail server could be
extended to other servers such as the FTP server to compress file data before
transrﬂission. The FTP protocol wéuld need to be extended to incorpdrate
compression. The FTP server would check the file being transferred and if it is not
already in compressed format, the server compress it before sending it across the

Internet.

6.3 CONCLUSION

In conclusion, incorporating the task of data compression within the E-Mail
system achieves the goal of increasjng effective transmission bandwidth and
reducing network traffic. By embedding an efficient data compression scheme within
the mail server, the time for transmitting mail data across the Internet, is significantly
reduced. If all mail servers wefe designed to handle data compression, it would result
in a substantial boost in overall network performance. Network bandwidth refers to
the amount of data that can flow through a communication channel within a given
period of time. Since the designed Internet mail server with embedded data
compression reduces the size of data that the network must transport, it helps in
increasing the effective‘ bandwidth. Mail data compréssion also helps in reducing

network traffic congestion. An Object Oriented approach is effective in designing:

66

such a system. Contemporary Windows features like multi-threading and DLL’s

enhance the flexibility and stability of the system.

67

APPENDIX A: MAJOR CLASSES

The C++ code for the thesis may be obtained from the author or from
Dr. Tong Yu. The author may bexcont‘ac‘t.ed”at alka_nand @ftw.paging.mot.com. Dr.

Tong Yu may be contacted at tongyu@csci.csusb.edu.

//******************************Message Clas's khkkkhkhkkhkhkhhkhhkhkhrhhkhhkhkkhrhkhkkhk

i

class Message //Manages messages stored for each mailbox
{
friend class Mailbox;
private:
//Data ,
~enum status //message marked as deleted or notdeleted
{ .
deleted =1,
notdeleted = 0
}: :

int msgnumber ; //number of message in mailbox

status stflag: //status of message: deleted/notdeleted

char *username; //mailbox user owning message

char *msgfile; //name of disk data file

MailData maildata; //mail data object

char msguid [MAXLENOFUID] ; //The Unique Id for the message
//functions '

int retrmsg(MailData & md);

//compiles response to RETR cmd

int delemsg()://mark as deleted current message

char *retrmsgid(char *) const; //gets the unique Id for this msg
public:

//Constructors

Message() ;

Message(char *usrnam, int msgno, MailData maildata);
Message({ const Message &message); //copy constructor -
Message(char *usrnam, int msgno); // for loading from file

//Destructor
~Message ():

/ /Operators
const Message &operator=(const Message &message):;
BOOL operator=={ const Message &message) const;

int listmsg (MSGLIST *msglist) const ;
int rsetmsg() ;. //unmark message if marked deleted
int vrfymsgno(int msgno) const;

//verify if msgno matches msgnumber
//compiles response to list POP3 command

int retrmsgnumber () const { return msgnumber:;}
//retrieves message no.
int isdeleted() const { return stflag; }

//returns status of message
// (deleted/notdeleted)

v

68

mailto:TongYumaybecontactedattongyu@csci.csusb.edu
mailto:alka_nand@ftw.paging.mot.com

long
int
int
void
int
int
int

}:

retrsize (void); //retrlves ‘size of message
modifymsgnum(int msgno);
//changes msgnumber to mi pedo)
rmfile() ; . ’ //Removes data file if msg marked deleted

pfintmsg(void) const,

‘savemsg (void); _ //Saves messzage data in file

loadmsg (const char *filnam, int fdread);
retruid(MSGUID *uidstruct) const; //get uid of msg

//******************************Mailbox cl‘ass kkkkkkhkkkhkhhhkhhhhhkhkhkhkkhkdhkkk

class Mailbox

// Manages the mailbox for a partlcular user

{
frlend class MailboxDB;
private:
//Data
enum state //state of mailbox
{ //[autorization or //transaction or update]
authorization, //still verifying mailbox user
transaction, //mailbox user identified and mailbox openend
update //this state entered when user issues quit
//when in update mode
}i . .
char *username; //name of mailbox user
char *password; //password of mailbox user
state currstate; . //current state of mailbox
long size; '~ 7" '//size of mailbox in octets
int noofmsgs; = //no. of messages in mailbox
char *mbfilename; //Name of Mailbox data file(=usesname.mbx)
BOOL storeflg; //==1 => message can be stored in mailbox

//even if it is not in transaction state
//Reqgd to allow smtp server to store msgs

TLlstImp < Message > msngst //need to instantiate a list container

‘//called msglist to maintain‘list ‘of

/ /messages
//Functions
int loadmb (const char *fllename), //Load Mailbox data from file
int savemb (void) const; //Save Mailbox data into file
int storemb(MailData maildata);
int listmb (MBLIST *mblist) ;//returns listing of mailbox
int listmbmsg (int msgno, MSGLIST *msglist) const;
int statmb (MBSTAT *mbstat) const;//return status of messages
//return listing of msgno
int retrmb (int msgno, MailData & maildata) const;
//retreive the massage for msgno
int delemb (int msgno) ;

. //mark as deleted the specified msgno
int rsetmb() ; //unmark all messages marked deleted
int quitmb(MBSTAT *mbstat);//if in transaction state removes msgs

//marked as deleted from mailbox
int retrnoofmsgs() const { return noofmsgs; }
void changetotxstate() { currstate = transaction; }
: //change to transaction state
int assignmsgnomb();. //Assign a msgno to each msg in mbx
char *getfllename(char *filename) const; //Returns name of data
. //file in filename
int uldmsg(1nt msgno, MSGUID *uidstruct) const;
) //get uid for specified mzg nummber
int uidlist(MBUID *uidlist) const;
//get uid for all msgs in mb
void setstoreflgon() { storeflg = TRUE; }
. //Set store flag on for storing
void

setstoreflgoff() { storeflg = FALSE; }

69

//Set store flag OFF

public:
. //Functions

//Constructors : .
Mailbox ();: . //Default constructor
Mailbox (const char *usr, const char *passwd);
//type conversion constructor
‘Mailbox (const char *filename); -
' //type conversion constructor that
//loads data from file :
Mallbox (.const Mailbox &mb); //Copy constructor

//Destructor
~Mailbox ():

void printmb(void) const;

//Operators v

const Mailbox &operator—(const Mailbox &mb),

BOOL operator==(const Mailbox &mb) const;

BOOL vrfyusrmb(const char *usr) coﬁst; //verify user =

BOOL vrfyusrmb (- const char *usr, const char *passwd) const.;
//verify user with this passwd

//******************************MailboxDB clasé khkKhkhkhkhkhkkkkhhkhdhkkhhhhdkhhhkhkk

class MailboxDB

{
private:
//Data
int noofmailboxes; . . . //no of mailboxes in database
char *dbfile; //name of database file;

TListImp < Mailbox > mbList; //need to instantiate list container
- //called mbList to maintain list of
//Mailboxes

'/ /Functions _
public: . ‘ . Lo

//Constructor
MailboxDB() :
MallboxDB(lnt dummy),_

//Destructor . s
~Ma11boxDB() { free(dbflle) }

int createMB (const char *usrname, const char. *passwd),
* .. //creates a new mailbox
int deleteMB(const char *usrname, const char *passwd);
)) //deletes a mailbox
int saveMBDB(); . //saves Mailbox database onto disk
int loadMBDB(): ;' r//loads Mailbox database from disk
void printMBDB(void); :)

BOOL vrfyuser (const char *usrname)const //verify username
Mailbox *vrfypass(: const’ char” *ustrname, const char *passwd);
. //verify name and- pass
_int store(Mallbox *currmb, MailbData maildata) ;"
//store message for mailbox currently

70

int

int

~int

int

int

int

int

int

int

int

int

//being usedfor transactlon
store(const char *usrname, MailData maildata);
//store message in mbx
stat(const Mailbox *currmb, MBSTAT *status);
//get status of mailbox currently
//being used for transaction
list(Mailbox *currmb, MBLIST *listing);
) //list of messages in mailbox
//currently being used for transaction
listmsgno(const Mailbox *currmb, int msgno, MSGLIST *1listing):
: //1list of mess msgno in mailbox
//currently being used for transaction
retr(const Mailbox *currmb, int msgno, MBRETR *retrmsg) ;
//retreive message msgno from mailbox
. //currently being used for transaction
dele(Mailbox ‘*currmb, int msgno);
: //mark as deleted msgno from mailbox
//currently being used for transaction

rset(Mailbox *currmb); .)
: //unmark deleted messages in mailbox
//currently being used for transaction-
quit(Mailbox *currmb, MBSTAT *mbstat);
//if in transaction state removes msgs
//marked as deleted from mailbox
//currently being used for transaction
quit(): //Not in transaction state- just
//send quitting message to user
uidmsg(const Mailbox *currmb, int msgno, MSGUID *uidstruct) const;
//get uid for specified msg nummber
uidlist(const Mallbox *currmb, MBUID *uidlist) const;
//get uid for all msgs in specified mb

/***

This is the superclass for the TCP connection classes e.g. POP3

and SMTP. This is an abstract class.
‘*,**v*****************/

class TCPconn

{ .
protected: //allow subclasses to inherit data
//Data
char inbuf [MAXBUF+1] ; // Buffer to store incoming data
char outbuf [MAXBUF + 1]; // Buffer to send outgoing data
int- sockhnd; // socket descriptor for connection
int bytecount; // Keeps cournt of bytes read from sock
//functions
void init(void) ; . // Does all the initializations
int read_data(void) ; // reads data from socket
int write_data(int n); // writes data to socket

public:

TCPconn(void) { init():; }:
TCPconn(int sock);
~TCPconn (void) { -}

int

connEstbGreetlng(v01d), // Send a greeting messagz ‘to client

JrREEE I x I Ik kkhkkhkhkhhhhhkkhhhkdhhrkhrkhrkk

71

The class definitionsifor the POP3CONN. (POP3 connectibn) are contained
herein. All data and functions pertaining to a new POP3 connection recd.
by the server are handled by this class.

‘k*********************************/

class POP3conn - -+ // New POP3 connection
{ ‘ o
private:
//Data

}:

static const CMDTBL cmdtbl[] ;-
const int MAXNUMCMDS;

static const char sepstr[]; -~ // chars used to separate words

‘enum state . '//state of POP3 connection -

{ //authorization or transaction or update]
authorization, //still verifying mailbox usmi
transaction, //user identified and mailbox’ cpenend
update : o //this state entered when quit command recd.

}i

state currstate; - //current state of mailbox

char inbuf [MAXBUF+1] ; // Buffer to store incoming data

char outbuf [MAXBUF + 1];// Buffer to send outgoing data

int cmdno ; // command no. of cmd being processed

int sockhnd; // socket descriptor for connection

Mailbox *currmb; // mailbox being accessed currently

int bytecount; // Keeps count of bytes read from sock

char *username; // mailbox user currently being accessed

char *password; // passwd of user currently being accessed

//functions

void init (void); // Does all the initializations

int read_data(void); // reads data from socket :

int write_data(int n); // writes data to socket

int usercmd (void) ; // processes USER command

int passcmd (void) ; // processes PASS cmd

int quitcemd (void) ;

int statemd (void) ;

int listemd(void) ;

int retremd (void) ;

int delecmd (void) ;

int noopemd (void) ;

int rsetcemd (void) ;

int topemd (void) ;

int uidlemd (void) ;

int notOK (void) ;

public:

POP3conn (void) ;

POP3conn(int sock):

~POP3conn (void) { }: .

int connEstbGreeting (void) ; // Send a greeting message to client
int getemd (void) ; // recv cmd from socket and parse it

/***

The class definitions for the SMTPcli (SMTP client) are contained
herein. All data and functions pertaining to a SMTP client are

are handled by this class. A new SMIP client object is created by
the SMTP client process everytime it discovers that a message has

to be sent to a remote recipient. The SMTPcli object then takes care
of communicating with the receiver SMTP server and transmits the
message.

**/

72

class SMTPcli :public TCPconn

{
private:
//Data
bool isLz77comp; . © /1 LzZTT compre551on supported
static const SMTPCMDS smtpcmds[],
const int MAXNUMCMDS; :
char hostname [MAXHOSTNAMELEN] ;
//func?ions
int Call_socket(const char *');_ //Tries to connect to server
public:
//functions
SMTRcli(); ‘
int sendmail (const char *, const char *, MailData &);
}:

//;\'************************,***********************‘******************.**********
// The class definitions for the OutGoingMsg are contained

// herein. All data and functions pertaining to a new outgoing message that

// 1is to be transmitted to a remote site are handled by this class.
//********************,**

class Qutgoinngg’vb _// A new outgoing message to be added to' outgoing Q
o IR S b
private:
//Data
char *revéréepath}”v‘, //- Path to be’ used ‘For’ replylng to sender
char *© *forwardpath; // path of mail recievers
MailData maildata; // mail data
int msgnumber; // message number
//fﬁnctiéns
int savemsg (void) ; //Saves messzage data in file
int loadmsg (const char *, int); //load msg data
public:
//functions

void putrevpath(const char *revpath)

~void putfwdpath(const char *);

char *getfwdpath(char *);

long getsizeofmsg() {return- malldata GetSizeofMailData(); }

int getmsg(char *, char *, MailData &); //Returns msg data
BOOL operator==(const OutGoingMsg) const;

const OutGoingMsg &operator=(const OutGoingMsg &);

int getfilename(char *filename);
~ //Constructors
outGoingMsg{);)
outGoingMsg(int msgno); //This loads file from disk

_OutGoingMsg(const char *, const char *, const MailData &, int):

. . //takes fwdpath, rev path, & data as input
‘OutGoingMsg: :OutGoingMsg(const OutGoingMsg &msg); //copy constructor
//Destructor ' :
~OutGoingMsg () ;

73

/***~
The class definitions for the SMTPCONN (SMTP connection) are contained
herein. All data and functions pertaining to a new SMTP connection recd.

by the server are handled by this class.
**/

class SMTPconn :public TCPconn // New SMTP connection
{ . .) . '
private:
//Data

static const CMDTBL =~ cmdtbl[];
const int MAXNUMCMDS;) . .
static const char sepstrl[]: // chars used to separate words

int cmdno ; // command no. of cmd being processed
char *sendersSmtp; // name of SMTP-sender (Parameter to HELO)
char *reversepath; // Path to be used For replying to sender
. char *forwardpath; // paths of mail recievers

bool isLZ77comp; // LZ77 compression supported

bool data_is_compressed; // incoming data compressed

MailData maildata; // mail data

int prevemdno; // Prev cmd reqd to check proper sequence

- // of cmds (Mail-RCPT-DATA)

int nooflclrepts; . // # of local recipients for this mail data
int noofremrcpts; // # of remote recipients for thls mail
char *myhostname; // My domain name

LPSTR myIPAddAr; // My IP address

FWDREVPATH rempaths[MAXRCPTS] //Array of structs containing fwd path and

//rev path for remote recipients-

//functions

void Anit () ’ . // Does all the initializations

int helocmd(); ‘ // processes USER command

int ehloemd(); - // processes USER command

int mailemd(); // processes PASS cmd

int reptemd() ;

int datacmd()

int rsetemd()

int = noopcmd();

int quitemd();

public:

SMTPconn() ;-

SMTPconn(int sock K

~SMTPconn() { };

int connEstbGreetlng(v01d), // Send a greeting message to cliernt
int getcmd(), C // recv cmd from socket: and 'parse it

/***

// The Othueue class manages the. outmsgQ object. Whenever a new message is

// put in the Q it saves it in a disk file and then -adds it to the outmsgQ.
//***

class OutQueue
{
private:

short noofmsg51nQ,
TQueueAsDoubleLlst < OutG01nngg > outmng //Queue of outg01ng messages

//Functions
- int loadQ (const char’*filename); //Load outmsgQ messages from file

74

int saveQ(void) const; . //Save outmsgQ data into file
public:

//Constructor .)

OutQueue (void): //default constr loads outmsgQ from disk
//Destructor o

~OutQueue (void);

int put(const char *; const char *, const MailData &);//creates
) //an outGoingMsg and puts it in
. //the outmsgQ
int get(char *, char *, MailData &); //Gets OutGoingMsg from Q and
) . //returns the fwd & rev paths & data
int isEmpty(): : : //Returns True/False

75

'DLL

~ FTP

GIF

ICMP

IGMP

1SO

JBIG

1z77

LZW

MIME
MTA
ost
POP
P6P3
R

SMTP

 ACRONYMS
Dynamic Lmk Library .
File Tran'sfer‘<Prot‘o'c01- o

Graphic Interchange F(_)r,mat'

' Internet Corvlt‘rol__ Message Protocol

Internet Group Mahagemeﬁt,'Protocol
Internet Protocol
International Standards Organization

Joint Bi-Level Image Processing Group

- Lempel Ziv’s algorithm based on 1977 paper

Lempel Ziv algorithm with modifications by Terry Welch

Multipurpose Internet Mail Extensions

‘Message Transfer Agent

Open Systems Interconnection

Post Office Protocol
Post Office Protocol Ver. 3
Request For Comments

Simple Mail TranSfer Protocol

'76 :

TCP Traﬁsmission Control Protocol
UA User Agent

UDP User Datagram Protocol

77

(i

12
31
[4]
[5]
[6]
7]
18]
[9]

[10]

[11]
[12]
[13]

[14]

REFERENCES

Jamsa, Kris and Ken Cope, “Internet Programming”, Las Vegas: Jamsa
Press, 1995. ‘

vBorenstem N and N Freed, “Mu1t1purpose Internet Ma11 Extens1ons” RFC
1521, Bellcore, Innosoft, September 1993. >

Stallings, William, “Data and Computer Communications”, 4th ed.,
Macmillan Publishing. Company, New York, NY, 1994,

- Postel, J., “Simple Mail Trahsfer Protocol”, STD 10, RFC 821,

USC/Information Sciences Institute, August 1982.

Crocker, D., “Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982.

Postel, J., and J. K. Reynolds, “Telnet Protocol Specification”, RFC 854,

~ May 1983.

Myers, J., Rose, M., “Post Offlce Protocol - Version 3”, RFC 1725,
November 1994

Sayood, Khalid, “Introduction to Data Compression”, San Francisco, Morgan
Kaufmann Publishers, 1996.

Ziv, J and A. Lempel, “A Universal Algorithm for Da?;afCompression”, IEEE
Transactions on Information Theory, IT-23(3):337-343, May 1977.

- Ziv, T and A. Lempel, “Compressioh of Individual Sequences via Variable-

Rate Coding”, IEEE Transactions on Infornmtzon Theory, IT-24(5):530-536,
September 1978. :

Cheung, Ada Ying Dee, “Data Trﬁnsfcr Using Controlled Compression”,
Masters Thesis, Waterloo, Ontario, Canada, 1996.

Witten, I. H., A. Moffat, and T Bell, “Mana'ging Gigabits: COmpressing and
Indexing Documents and Images”, Van Nostrand Reinhold, 1994.

Welch, T. A “A Technlque for High- Performance Data Compression”, IEEE

- Computer, 8-19, June 1984

Klensin, J., N. Freed, M. Rose,: E. Stefférﬁd', and D. Crocker, “SMTP Service
Extensions”, REC 1869, MCI, Innosoft, Dover Beach Consulting, Inc.,

78

[15]

[16]

[17]

[18]

191

[20]

Network Management Associates, Inc., Silicon Graph1cs Inc N ovember
1995. ‘

- Yu, Tong Lai, “Data Compression for PC Software Distribution”, Software

Practice and Experience, Vol 26(11), 1181-1 195 (November 1996)

Booch Grady, “ObJect Onented Analy31s and De31gn With Applications”,
2nd Ed., The Ben_]amm/Cumrmngs Pubhshmg Company, Inc., Redwood City,
California, 1994. '

Rumbaugh, J., M. Blaha, W. Pi'emerlani F. Eddy and W. Lorensen “Object
Oriented Modeling and Des1gn” Englewood Cliffs, New Jersey: Prentice

Hall 1991

Stevens, W. Richard, “TCP/IP Illustrated Volume 17, Add1son—Wesley
Publishing Company, Readmg, Massachusetts 1994.

Wright, Gary R. and W. Rlchard Stevens “TCP/IP Illustrated, Volume 27,
Addison-Wesley Publ1sh1ng Company, Reading, Massachusetts, 1995.

Richter, Jeffrey, “Advanced W1ndows The Developers Guide to the WIN32
API for Windows NT 3.5 and W1ndows 957, M1crosoft Press, Redmond,
Washington, 1995.

79

	Design and implemetation of internet mail servers with embedded data compression
	Recommended Citation

