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ABSTRACT
 

The primary objective ofthis project is to demonstrate that a certain field ofoptimization
 

can be effectively unified by afew geometric principles ofcomplete normed linear space
 

theory.By employing these principles,important and complex finite - dimensional
 

problems can be interpreted and solved by methods springingfrom geometric insight.
 

Concepts such as distance, orthogonality, and convexity play afundamental and
 

indispensable role in this development. Viewed in these terms,seemingly diverse problems
 

and techniques often arefound to be closely related.
 

Ill
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Chapter 1
 

PRELIMINARIES
 

It is the purpose ofthis section to explain certain notations, definitions and
 

theoremsthat shall be used throughoutthis project. This section does not pretend to be
 

complete,it goesjustfar enough to establish the connection between the application in
 

question and the basic ideas offimctional analysis. This section,therefore,leaves
 

important issues untreated.
 

Vector Spaces
 

Definition:A nonempty set V is said to be a vector space over a field F,ifV is an abelian
 

group under an operation, denoted +,and for every a6F,a:e Vthere is an element,
 

written aa:,in V subject to the following
 

1. a{x+y)=ax ay
 

2. {a+(3)x=ax+(Sx
 

3. a{(3x)={a(3)x
 

4. Ix — X
 

for all a,f3 e F, x, y eVand 1 represents the unit element ofF under multiplication.
 

Linear dependence
 

A set S ofvectors is said to be linearly dependentifto each finite subset
 

{a:.}"^ithere is corresponding a set ofscalars notallzero such that
 
n
 

Ylax.=0.
 
i=l
 

A set which is not linearly dependent is said to be linearly independent.
 



 

Dimensionality ofa Vector Space
 

A vector space is said to be n-dimension^ ifit contains n-linearly independent
 

vectors and every set with more than nvectors is linearly dependent.A vector space is
 

called infinite-dimensional ifthere exists an arbitrarily large linearly independent set in the
 

space.In this project we will consider only those vectors spaces with countable dimension.
 

Ifan arbitrary vector x in V can be represented as a linear combination vofa set
 

{x.} in V and scalar {a.} as
 
n
 

X = y^ax.
%
.
 

t
 

2=1
 

then{xjis said to span the vector space V.A linearly independent set ofvectors{xj
 

that spans a vector space V is called a basis for V.
 

Subspaces and Linear Varieties
 

Definition. A nonempty subset Aofa vector spaceX is called asnbspace ofX ifevery
 

vector oftheform ax+/3y E A whenever xany y are both in A and a,/3 are any scalars.
 

Since a subspace is assumed to be nonempty it must contain at least one element.
 

By definition it must contain the zero element. So we can say quite unequivocally that
 

every subspace must contain the null vector. The simplest subspace is the space with the
 

sole element{0}.
 

Theorem: LetA andB be subspaces ofa vector space X.Then the intersection,AnB,
 

of A andB is also a subspace ofX.
 

Proof: Since A andB are subspaces of A and B,it follows that0e A and0e B.
 

Therefore A nB is nonempty.Let x,y e AnB,then x,y E A and x,y € B.For any
 

scalars a,/3the vector ax+l3y E A and ax+/3y € B since A andB are both subspaces.
 

Therefore ax-t-/3y6 AflB.
 



In general this theorem can be extended to any arbitrary number ofvectors spaces.
 

We state the extension ofthis theorem.
 

Theorem: LetBa,a Elbe subspaces ofa vector spaceX Then theirarbitrary
 
PiD
 

intersection nBa? is also subspace ofX.
 
ael
 

Definition: The sum oftwo subsets A andB in a vector space,denoted A+B,consists
 

ofall vectors oftheform a+bwhere a E Aand h E B.\n other words
 

A-fB= E Afb E By.
 

In some literature the word joint is used instead ofsum and it is sometimes denoted by the
 

lattice symbol V- In this notational parlance,we write
 

= sum(joints)ofthe B^'s
 

Thejoint\/Ba ofafamily ofsubsets is the smallest vector space containing all ofthem.
 

Theorem: LetA andB be subspaces ofa vector space X.Then their sum A+B is a
 

subspace and is equalto theirjoint.
 

Proof: Since A andB are subspaces of A and B,itfollows that0 E A and0E B.
 

This implies that A+B is nonempty. Suppose x,y are vectors in A+B.There are
 

vectors in A and vectors b^,b^ inB such that x= + b^ and y= + 62• Given
 

any scalars a,(3we can write ax+(By as a(a^ + 6^)+ /3(a^ + 62)
 

=(aa^ +f3a^)+(ab^ +^b^). This showsthat ax+jSy can be expressed as sum of
 

vectors in the subspace A and in the subspace B.
 

□ 

Definition: Suppose S is a subset of a vector space X. The set [S] called the subspace 

generated by S, consist of all vectors in X, which are linear combinations of vectors in S. 



Definition: A translation ofa subspace,M by afixed vector is said to be alinear
 

variety or affine subspace. A subspace is a linear variety ifit is the sum ofa subspace
 

and a vector.
 

Alinear variety V is usually written as V= +M whereMis a subspace.In this
 

representation Mis unique,but any vector in V can serve as .This is illustrated below.
 

0
 

Alinear variety
 

Ifwe are given a subset S,we can easily construct the smallest linear variety containing S.
 

Definition: LetS be a nonempty subset ofa vector space X.Thelinear variety
 

generated by S, denoted u(S)is defined as the intersection ofall linear varieties in Xthat
 

contain S.
 

Convexity and Cones
 

There is no topic that is responsible for more results in this project than convexity
 

and generalizes many ofthe useful property ofsubspaces and linear varieties.
 

Definition: A setK in a linear subspace is said to be convex ifgiven x. and x. inK,all
 

points oftheform ax.+(1 — a)x. is also inK if0< a < 1.
 

This definition merely says that given two points in a convex set,K,the line segment
 

betweenthem is wholly in K.
 



Here are some important relations regarding convex sets. As elementary asthey
 

may be,they play an important role in proofsinvolving convex sets.
 

Theorem: LetK and Gbe convex sets in a vector space. Then the following are true
 

a) aK —{x:x=ak,k e K}is convex for any scalar a.
 

b) K+G is convex - the sum oftwo convex sets is convex.
 

Theorem:LetC be an arbitrary collection ofconvex sets. Then D is convex.
 

Proof:LetC= C) IfCis empty,then the theorem is true since by
 

definition0is convex. Assume x., x. EC and pick a so that0< a < 1. Then x^,
 

x.^ E K,yK eC,and becauseKis convex ax.+(1 — a)x. E K for all K EC.Thus
 

ax.+(1 — a)Xj eCand Cis convex.
 

□ 

We now consider an interesting aspect ofnorm interms of convex set, the notion 

that any sphere is convex. 

Theorem: Any sphere is convex. 

Proof: Without loss of generality we consider the unit sphere, 

y = {xe A: llx|| < 1} 

1 and 112/^11 !• Now if a ^ 0 and /? > 0, where 
a+ /3 = 1, then ||aXo+^yj| < HaXgll + ||/3yJ| =0:11x31| +/5||yoll <o:+^ = land 
thus aXg + E Y 

□ 



Cones
 

Definition: A set Cin a linear vector space is said to be a cone with vertex atthe origin
 

ifxECimplies thatax E Cfor all a> 0. A convex cone is a set which is both convex
 

and a cone.
 

Metric and Normed Linear Spaces
 

Metric Spaces
 

Definition: A metric is a setX and a real valued function d(,)onX x X which satisfies;
 

i) d{x,y)>0 and d(x,y)=0 x= y. (positive definiteness)
 

ii) d(x,y) — d{y,x) (symmetry)
 

Hi) d{x,z)< d(x,y)+d{y,z)(triangle law)
 

Since a metric space is a setX together with a metric function <i(,),in general a given set
 

M can be made into a metric space in several different ways by using different metric
 

functions. One'such metric onR"is the so-called'usual metric'which is defined as
 

d{x,y)= \x — y|.In this case,the above three properties simply reflect familiar features
 

ofthe absolute value or the length fixnction onR"
 

Normed Linear Spaces
 

A vector space that is ofparticular interest in functional analysis and its application
 

is the normed linear space. Such a space come equipped with the topological concepts of
 

openness,closure,convergence and completeness upon introducing the concept of
 

distance on it.
 

Definition:A normed linear space is a vector spaceX on which there is defined a real
 

valued function which maps each element x in X into a real number ||x||, called the norm
 

ofx.The norm respects thefollowing axioms:
 



a) ||xll >0 for all X e X, ll rcll =0ifand only ifx is a null vector(positive
 

defmiteness)
 

b) +y\\ < Ikll + lly|l for eaohx,y eX(symmetry)
 

c) IIaxil = lai nx|l for all scalars a and for each x E X.(positive homogeneity)
 

This isjust an abstraction ofthe usual concept ofa metric or length.In a normed linear
 

space,the formula d(x,y)=||x-y||is a metric. We shall prove this statement by
 

examining the properties(i)to(Hi)ofa metric space stated above:
 

i) d(x,x)— ||x — x||=||0 • x||=|0|||x|| =0,IfX^ y,then x — y^0,so that
 

d(x,y)=\\x-y\\>0.
 

ii) d(x,y)=||x-y||=||(-l)(y-x)||=|-l|||y-x||=|ly-a;||= d(y,x).
 

Hi) d(x,y)=||x-y||=||x-z+z- y\\ < \\x-z\\ +\\z-y\\
 

= d(x,z)+ d{z,y).
 

Thus all normed linear spaces are metric spaces
 

Asa direct consequence ofthe triangular inequality, we state and prove the
 

following result:
 

Theorem: In a normed linear space X,\||x|| — ||y|||<||x — y||for any x,y E X.
 

Proof: ||x||-||y|| =||x-y+y||-||y|| < ||x-y||+||y||-||y|| =||x-y||
 

and similarly for ||y|| — ||x||.
 

□ 



Open and Closed Sets
 

Definition:Let A be a subset ofa normed space X.A point a G A is an interior point
 

ofA ifthere is an e > 0 such that all vectors x satisfying ||a;-a|| < e are also members
 
O
 

ofA.The collection ofall interior points ofA is the interior ofA which we denote A.
 

Notation: S{x,e)={y:||a:-y\\ < e is the open sphere centered at x with radius e.
 

O
 

Definition: A set S is open if-S" =5.
 

Definition: A pointxeX is a closure point ofa set A if Ve > 0,there is a point o G A
 

such that ||x — a|| < e.The collection ofall closure points ofA is the closure ofA
 

denoted A. It is clear that A G A.
 

Definition: A set A is closed if A=A.
 

Convergence
 

Definition: In a normed linear space an infinite sequence ofvectors{a;„}is said to
 

converge to a vector X ifthe sequence,{||x-x„||} ofreal numbers convergesto zero.
 

We write this as x„ x.
 

Ifx„-»x, then ||a;n||-^|kll since we have ||xn||-||x|| < ||x„ — x|| 0asn-»oo.
 

Ifa sequence converges this limit is unique,since if x„-*x,and x^ y,then
 

||x-y||=||x-x„+x„-y|| < ||x-x„||+||xn-y||-^0.
 

This can only happen ifx= y.
 

Definition:A sequence{x„}in a normed space is said to be a Cauchy sequence if
 

asn,m-»oo;that is given any e > 0, there is an integerN such that
 

W^n — XmW <0 for all n,m > N.
 

In a normed space,every convergent sequence is a Cauchy sequence since, if x„-^x, then
 

W^n ^m\\ ~ W^n A X—X„j||^ \\Xn a:|| A ||x Xm\\
 



We recall from analysis however that a Cauchy sequence may not be convergent. We
 

should also take note ofthe fact that all Cauchy sequences are bounded. Normed spaces
 

in which every Cauchy sequence has a limit and hence convergent is said to be complete.
 

Definition; A normed linear vector spaceX is complete ifevery Cauchy sequencefrom X
 

has a limit in X.A complete normed linear vector space is called aBanach space.
 

We recall the following fact from analysis:
 

Theorem:A setF is closed ifand only ifevery convergent sequence with elements inF
 

has its limit in F.
 

Wenote that in a finite dimensional linear space,every subspace is automatically
 

closed. This is however,not true for any infinite dimensional space,the proofofwhich
 

requires the Axiom ofChoice.
 

Transformations and Continuity
 

Definition: LetX and Y be linear spaces and letD be a subset ofX.A rule which
 

associates with every element x E D and element y eY is said to be a transformation
 

from Xto Y with domainD.Ify corresponds to x under T,we write y=Tx.
 

Definition: A transformation from a vector space Xinto the space ofreal or complex
 

scalars is said to be afunctional on X.
 

In this projectI shall use mostly real-valued flmctionals, since optimization consists
 

ofselecting a vector to minimize or maximize a given functional.
 

Definition: A transformation T mapping a vector spaceXinto a vector spaceY with
 

domainD is said to be linear iffor every xi,X2 ED and all scalars ai, we have
 

T(aiXi+a2X2)=aiT(xi)4- a2T(x2)
 

We recallfrom analysis that
 



Definition:A transformation T mapping a normed linear space Xinto a normed space Y
 

is continuous at Xo € Xiffor every e >0 there is a6>0such that \x — Xo\ <6 implies
 

that \T{x)— T(xo)\ < e
 

Linear Functionals and Normed Dual
 

We recall thatafunctionalfon a vector space X is linear iffor anytwo vectors x,
 

y e X,and anytwo scalars a,/? the following always hold;
 

f{ax +(3y)=af{x)+(3f{y).
 

Theorem:Ifa linear functional on a normed linear spaceX is continuous at a single point,
 

then it is continuousthroughout X.
 

Proof: Assume that/ is linear and continuous at Xo e X. Let{xn} be a
 

sequencefrom Xconverging to an element x € X.Bythe linearity of/we
 

have|/(x„)-/(x)|=|/(x„-x+x^)-/(x^)[
 

Observe that Xn — x+Xo -* Xo and since/is continuous at Xo we have
 

f(xn — X+Xo)-*f(xo).Because ofthis we have
 

\fM-fix)]=|/(X„-X+Xo)-/(Xo)|-»|/(Xo)-/(xo)|-»0 

Thus \fixn)—fix)\ -*0. This establishes continuity at all points. □ 

Definition: A linear fimctional / on a normed space is bounded if there is a constant M 

such that \fix)\ < M\\x\\ for all x e X. The smallest such constant Mis called the norm 

of X and is dpnoted by ||/|| = inf{M: |/(a;)| < M||x||, for all x e X}. 

A word on notation; The norm of a functional Can be expressed in several alternative 

ways. We list some of them below 

11/11 = inf{M: |/(x)| < M||x||, for all x 6 X} 

10 



sup |/(x)|
 
||x||
 

= w|l 1/(^)10'

= N=i l/(^)l
 

Theorem:A linear functional on a normed linear space is bounded ifand only ifit is
 

continuous.
 

Proof: Suppose first that a linear functional/is bounded.LetM be such that
 

|/(a;)| < M||a:|| for all x G X. Then if then ||a:„||-»0 and we have
 

\f(xn)\<M\\xJ^O
 

Thus/is continuous at x=0, From the proceeding theorem,itfollows that / is
 

continuous everywhere.
 

Now,assume that /is continuous at a:=0. Then there is a5> 0, such that
 

|/(a;)| <M=1 for ||a:„|| < 6. Since for anyx^O in X, 6x/||a;„|| has norm equal to
 

6, wehavethefollowing|/(a;)|=|/(|^)| x
 
and M serves as a bound for/.
 

Norm Dual
 

Definition:LetX be a normed linear vector space. The space ofall bounded linear
 

functionals onXis called the normed dual ofX denoted X*.The norm ofan element
 

/ex*is
 

11/11 = w<M/(^)l
 

The value ofthe linear functional x*6X* atthe point a: G X is denoted by x*{x)or by
 

the more symmetric notation <x,x*>.
 

11
 



There are several duality principles in optimization theory that relate a problem
 

expressed in terms ofvectors to a problem expressed in terms ofhyperplanes in the space.
 

Many ofthe duality principles are based on familiar geometric principles. The shortest
 

distancefrom a point to a convex set is equal to the maximum ofthe distances from a
 

point to a hyperplanes separating the pointfrom the convex set. Thusthe original
 

minimization over vectors can be converted to maximization over hyperplanes. This is the
 

power afforded by the duality principle - the ability to work in a different space.
 

12
 



 

Chapter2
 

HILBERTSPACES
 

InnerProduct Spaces
 

Definition; LetX be a a complex vector space. A mapping
 

XxX-»C
 

is called an inner product in X iffor any x,y,z E X and a,(3 E C the following
 

conditions are satisfied.
 

a)(x,y)—(y,x) (conjugate symmetry)
 

b)(ax+Py,z)=a{x,z)+/3(y,z) (linearity in first part)
 

c) {x,x)> 0,(x,x)=0implies x=0.(positive definiteness)
 

A vector space with an inner product is called an inner product space.
 

Norm in an inner product Space
 

An inner productspace is a vector space with an inner product. It turns outthat
 

every inner product space is also a normed space with the norm defined by
 

j|a;|| ={x,xy
 

Thisfunction is always non-negative. Condition(c)above implies that ||a;|| =0 ifand
 

only ifx=0.Moreover
 
1 h i
 

llaxll =(ax,ax)^ —(aa )^(x,x)'^ =|a|||a;||.
 

For this function to be a norm we need to also prove the triangle inequality. This calls for
 

an intermediate result,the so called Schwarz's inequality.I will state this result without
 

proof.
 

Lemma:(Schwarz's Inequality)For any two elements xand y ofan inner product
 

space we have
 

|(a;,y)|<lk||
 

13
 



The equality|(x,y)\ =||x||||y||holds ifand only if x and y are linearly dependent.
 

Triangle Inequality and Parallelogram Law
 

The Triangle Ineqnality: For any two elements x and y ofan inner product space we
 

have
 

lk+y|| <||x||+||y||
 

Proof: l|x+y\f =(x+y,x+y)=(x,x)+(x,y)+(y,x)+(y,y)
 

=(x,x)+2i?e(x,y)+(y,y)
 

<(x,x)+2|(x,y)|-t-(y,y)
 

<|rf+2|fej,)|+||rf
 

<IWl'+2Wlll!/il +ll!/|P 

<(IWI+IM)'. 

Taking the square root ofboth sides gives the result. □ 

Though every inner product space is a normed space the converse is not always 

true. A norm is an inner product space if and only if it satisfies the parallelogram law. This 

law states that the sum of the squares of the lengths of the diagonals of a parallelogram is 

equal to twice the sum of the squares of two adjacent sides. This fact is illustrated below. 

y 

The parallelogram law 

14 



 

TheParallelogram Law:For anytwo elements x and y ofan inner product space we
 

have
 

Ik+y|l^ +Ik-y|l^ = 2(lkll^+IklH
 

Proof: We have
 

Ik+yf={x+y,x+y)={x,x)+(x,y)+(y,x)+(y,y)
 

and hence
 

lk+y|l^= \\xf+(x,y)+{y,x)+\\yf (1)
 

Now replace y by — y in the above relation we have
 

\\^-yf= \\xf-{x,y)-{y,x)+\\yf (2)
 

Adding(1)and(2)we have
 

lk+rf+lk-rf=2rf+2rf
 

Definition; A complete inner product space is called a Hilbert space.
 

Example: Consider the space C[o,i] ofall continuousfunctions on the interval [O,j] with
 

x{t) — cos(t)and y{t)= sin(t). This space is not a Hilbert space.
 

Solution: All we have to do is check ifit satisfies the parallelogram law.
 

Ikll = lly|l =1
 

and
 

Ik+y|l = o<Sf +sin(f)|= ^/2
 
and
 

Ik-y|l = o<S|l^o^k)~ sink)I =1
 

Therefore ||x+y||^ +|k~ 2/11^ ̂ 2||x||^ +2||y||^ since 1+\/2^4
 

15
 



 

 

Itfollows that C[o,i] cannot be generated by any inner product,that is Cjo,f] to be
 

Hilbert.
 

One ofthe mostimportant consequences of having the inner product space is the
 

possibility ofdefining orthogonality ofvectors. This makes the theory ofHilbert spaces so
 

different fi-om the other norm spaces.
 

Definition: Two vectors x and y are said to be orthogonal (denoted x±y)if
 

(x,y)=0.
 

ThePythagorean Formula: For any pair oforthogonal vectors x and y we have
 

W^+yf +\\yf
 

Examples ofHilbert Spaces
 

Some well known examples of Hilbert spaces are R",C",L^(R), L^(R"), and7^.We
 

prove that the latter is a Hilbert space.
 

Example:f'is a complete inner product space and hence a Hilbert space.
 

Solution:We recall thatf is a vector space with the algebraic operations defined
 

as usual in connection with sequences,that is,
 

+ %,■ ■ ■) = (^1 +v,, 

• • •) = • • •)
 

The inner product here is defined by
 
QO 

(a^,y) = , 

and the norm defined by 

|x|| = {x,xy = (EkJ
\i=i 

16 



 

In fact,ifx= G any y= f,then by the Minkowskiinequality for sums
 

we have
 

2\

2=1 2=1 2=1 ?
 

Since the right hand side is finite,so is the left hand side and;implies that x+y e . Also
 

ax E y. c
 

Bythe Cauchy-Schwarzinequality we have
 

00 2 ^ ^
 

= X
 

2=1 \2=1 2=1
 

j<(Ek, EkI
 

The sequence is bounded by ||ic||||y||and hence converges.
 

To complete the proof, we need to show completeness.
 

LetXm = be a Cauchy sequence in the spacef.Then for every e > 0,there is an
 

N such that ifm,n> iV, we have
 

>m An
 
< e
(1) \Xm-XnW - d{XmyXn)=(E
S' S'
 

It follows thatfor every = 1, 2, 3,... we have
 

(2) < e (m.n > N),
 

For any fixed j, we see from(2)that •.•) is a Cauchy sequence ofnumbers.
 

It converges sinceR orC is complete.Let as m -» oo. Using these limits we
 

define x= ,^3,...)and show that x efi and Xm-^x.
 

From(1)we havefor all m,n> Nandfor any k < 00,
 
k , 2
 

<
 

i=l ''
 

Letting n-»00 we obtain for m > AT
 

E C-C < e" \fk
 

i=i
 

17
 



 

 

We may now let fc-+oo, then for m > iV
 
OO 2
 

(3) E
 
J=1
 

This shows that Xm — x= —i) ■ Since 6 it follows by means of the 
J J
 

Minkowski inequality that
 

X=Xm+{x-Xm)ef
 

The inequality in(3)also says that, given e > 0,3iV such thatfor m > iV,
 

< e,
 

that is Xm -*x. Since Xm = wasan arbitrary Cauchy sequence in this proves
 

completeness of .
 

Continuity oftheInnerProduct
 

The inner product enjoys the following continuity property which is used
 

extensively in this project.
 

Theorem:(Continuity ofthe inner product). Suppose that Xn-*x and y„ y, in an inner
 

product space,then(x„,y„)-»(x,y).
 

Proof: Since the sequence{xn} is convergent,it is bounded by some number say
 

M.So we can write ||x„|| < M.Now we have
 

\(.Xn,yn)-i^yy)\= K^n,^n)"K,y)+(a?n,y)"ix,y)\< |(x„,y„-y)|+|(rr„ -a;,y)|
 

Applying the Cauchy-Schwarzinequality, we obtain
 

\{Xn,yn)-(a^>y)l < \K\\\\yn-y\\ +Ikn -x||||y||
 

Since ||a:n|| < M, we have
 

Ka^n,yn)-(a;»y)l < M||y„-y||+||x„-x||||y|| 0
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and hence (x„,y„) (x,y)positive definiteness ofabsolute value
 

Orthogonal and Orthonormal Systems
 

Definition: LetX be any inner product space. Afamily ofS ofnonzero vectors in X is
 

called an orthogonalsystem ifx i.y for anytwo arbitrary distinct elements x,y e S.If
 

in addition, ||x|| =1 Vx e 5,S is called an orthonormal system.
 

Every orthogonal set ofnon-zero vectors can be normalized.IfS is an orthogonal system,
 

then the family
 

is an orthonormal system.Both systems span the same subspace . We recall that
 

othonormal systems are linearly independent.
 

OrthonormalBases
 

The Hilbert space G"is a finite dimensional vector space. Therefore any element of
 

C° can be written uniquely as a finite linear combination ofa given sets ofbasis vectors. It
 

follows that the inner product oftwo elements ofC"can be computed ifweknow the
 

expression ofeach element as such a linear combination. Conversely,the inner product
 

makes possible a very convenient way ofexpressing a given vector as a linear combination
 

ofbasis vectors. We recall that ifx„ e C"is the n-tupe
 

x„=(0,0,...,0,l,0,...,0),
 

where 1 sits in the n-th place. Then{xi,X2, Xn} is a basis for C".Moreover it is clear
 

that
 

(xn,x^)=1 if n=m, (x„,x^)=0 ifn^m (a)
 

IfX=(ai,0:2, Qn)€ C"then the expression for x as a linear combination ofthe basis
 

vector Xn is
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N
 

X=J2anXn
 
n=l
 

Because ofthe preceding statement (a)we have(x,x^)= q:„. This quantity is called the
 

Fourier coeflicient. Thus we can write the proceeding expression for x as
 

N N
 

X= (x> ^n)Xr, (b)
 
n=l n=l
 

It natural to ask ifthe series(b) will converges ifnis madeto approach infinity. We can
 

answer this question by doing the following problem.
 

Problem:Let I^be an inner product space and let be an orthonormal set. Prove
 
N
 

that X — y]c X is minimized by choosing — {x^,x)

Z—J n n
 

n—\
 

N
 

Solution:Weknow that minimizing a; — y^c X is the same as minimizing

it—^ n n
 

n=l
 
2


N
 

X — y^^c
n 
X
n
^
 

n=l
 
JV 2 N ,
 

X —y^cx =(x —y^cx.x —y^cx)

n n \ n n' n n/
 

71=1 n=l n=l
 

N / N N
 

=(x,x)-2(^c^x„,x)+ I x; ,x;c„x„
 
71=1 \n=l n=l
 

\n=l / 71=1
 

=rf-2(Ec.K,x))+(Ec!

\n=l / \7i=l >
 

At this point, observe that((a — hf=c? — 2ab+b^) — 2ab+b^ =(a — b)^ — a?
 
so we can write,
 

/ N \ / N \ N ^ N
 

-2 + Ecf =E -(x„x)f-E(^..^)'
 
\7l=l / \71=1 / 71=1 71—1
 

and so our inner product becomes
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N
 

X — yzc X = IkiP +E(c„- • *
^^ n n
 

n=l n—1 n=l
 

The quantity(*)will be minimized if(c^ — {x^,x))=0 and in this case ={x^,x).
 
The minimum value is
 

II i|2
Ikll •
 
n=l
 

N N
 

Moreover,since X 
Z_—^ n 

X
n 
=(||x|| — )>0 itfollows that
 

n=l n=l
 

N
 

||x|| for every n.
 
n=l
 

Hence the series
 
oo
 

E(a^n'^)
 
1=1
 

is convergent.
 

Definition; An orthonormal basis for a Hilbert spaceH is an orthonormal set S C i?
 

such that the span ofS is dense in H.This meansthatfor any x e Hand any e > 0,there
 

is a y, which is a linear combination ofelements ofS,such that||a; — y|| < e.
 

Definition:A Hilbert space is said to be separable ifthere is a sequence CH
 

which is dense in H.This meansthatfor any x £Hand any e > 0,there is an nsuch that
 

||a;-a;n|| < e.
 

Theorem:His a separable Hilbert space ifand only ifH has an orthonormal basis S,
 

which is finite or countable. Two orthonormal basis in a separable Hilbert space must have
 

the same number ofelements.
 

Proof: Suppose{un}^ is a dense subset ofH.Then by the Gram-Schmidt
 

orthonomalization process there is a finite or countable orthonormal set S={xi}^such
 

that each u^is a linear combination ofelements ofS.ThusS is an orthonormal basis. This
 

provesthe first part.
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Onthe other hand,suppose S is a finite or countable orthonormal basisforH.
 

Consider the subspace T ofall vectors u oftheform
 

N
 

u= Y,aiXi
 
i=l
 

whereN is a rational number,the Xi are in S,and the are rational scalars. It is clear that
 

T is countable so the elements ofT may be arranged in a sequence of {u„}~. If x e H,
 
°° 1
then X= rational with|/3— ^ then
 
i=i ^
 

N 2 / oo \ 2
 

X-Y^OiiXi <( E E2-=") < |(2-«'+')Thelast
 
i=l i=N+l / \i=N+l
 

quantity approacheszero asN approaches infinity. Hencefor every e> 0,3element ofT
 

within e of x.
 

□ 

Orthogonal Complement and the Projection Theorem 

A subspace S of aHilbert spaceHis an inner product space with the inner product 

it inherits fromH. If we additionally assume that S is a closed subspace ofH, then S is a 

Hilbert space itself, because a closed subspace of an inner product space is complete. 

Definition: Let S be a nonempty subset of aHilbert space H. An element a; G His said to 

be orthogonal to S, denoted x _L S, if (rc, y) = 0 for every y E S. The set of all elements 

ofHorthogonal to S, denoted S-*-, is called the orthogonal complement of S. In 

symbols: 

= {xeH:x ±S} ; 

The orthogonal complement of S"*" is denoted by S-*- = (S"'")''" 
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Wecan easily observe thatfor any subset S ofa Hilbert space H,the set S"*- is a closed
 

subspace ofH.It is a subspace because a linear combination ofvectors orthogonal to a set
 

is also orthogonal to the set. It is closed since if{xn}is a convergent sequence from S-*-,
 

say Xn-^x,continuity ofthe inner product implies that(xn,y)-*{x,y)for all y e5and
 

so a; € S^.
 

Projection Mapping
 

Definition:For any closed convex subset S ofa Hilbert space H,we can define a mapping
 

HintoHby assigning to each element x the element closest to x in S,called the
 

Orthogonal projection ofa;into S.IfP{x)denotes this mapping,P(a;)is not necessary
 

linear but is always continuous and convex.
 

Theorem: Any othogonal projection is continuous.
 

Proof: SinceP is a projection,each 2:in the inner product spaceHcan be uniquely
 

represented by 2:= a:+y where x eSand y E S^. By definition oforthogonality we
 

have X± y.Itfollows by the Pythagorean Theorem that =||x||^ +||y||^, so
 

Thisfunction is bounded and hence continuous.
 

□ 

We now turn our attention to a classical optimization problem and the projection 

theorem which characterizes its solution. There are two slightly different versions of this 

theorem; one holds in arbitrary inner product space and the other with a much stronger 

conclusion, is valid inHilbert space. The optimization problem that gives rise to this 

theorem can be stated as follows: 
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Given a vector a:in an inner product spaceX and a subspaceM ofX,find a vector
 

m E M that is closest to x in the sense that it minimizes ||x — m||. Obviously ifx 6M,
 

then the solution reverts to find the shortest distance between two points. There are three
 

situations we need to consider:
 

{i) Does such an mexist?
 

(ii)Ifit exists is it unique?
 

{in)Whatis the solution and how can the solution he characterized?
 

The three dimensional version ofthe projection is shown below.
 

m
 

M
 

The Projection Theorem
 

The Projection Theorem(inner product space version)
 

LetX he an inner product space,M a subspace ofXand x and arbitrary vector in
 

X.Ifthere is a vector rrio 6M such that ||a: — rrioW < ||a: — m\\Vm e M,then rrio is
 

unique. A necessary and sufficient condition that m,,6Mbethe unique minimizing vector
 

in Mis that the error vector a;— mo be orthogonal to M.
 

Proof:Wefirst prove that ifmo is aminimizing vector then then the error vector
 

X — rrio is othogonal to M.Suppose there is mm e M which is not perpendicular to
 

x — mo-To simplify calculations we assume that ||x|| =1 and set(x — mo,m)= A 0.
 

Define mi E M as mi=mo+Am. Then
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||x — mi11^ = ||a; — rrio — Am||^ =||a: — mo||^ —(x — mo,Am)—(Am,x — mo)
 

+|Ap.
 

^ \\x-mo\\^- iXf'< \\x-mo\\^
 

This last statement showsthat ifa: — mo is not orthogonal to M,then mo cannot be a
 

minimizing vector. Finally we need to show that ifx — mo is orthogonal to M,then mo is
 

the unique minimizing vector. For any m e Mand x E X,thePythagorean theorem
 

gives
 

||x — m||^ =||x — mo+mo — m\f'=||x — mo\f+||mo — m\f > ||x — mo||^
 

The above implies that \\x — m||> ||x — mo||ifand only ifm 7^ mo.
 

In the discussion above,we have shown that ifthe minimizing vector exists it must be
 

unique and that x — mo is orthogonal to the subspace M.By making the hypotheses a
 

little stronger, we can guarantee the existence ofthe ofthe minimizing vector. This can be
 

achieved by making the subspaceM a closed space. This is shown in the following more
 

powerful version.
 

Projection Theorem (Hilbert space version);
 

LetHbe Hilbert space,M a closed subspace ofH.Corresponding to any vector x
 

in H,there is a unique vector mo6M such that ||x — mo|| < ||x — m|| Vm6M. A
 

necessary and sufficient condition that mo6Mbe the
 

unique minimizing vector in M is that x — mo be orthogonal to M.
 

Proof: The uniqueness and orthogonality is established above in the inner product
 

version ofthis theorem. All that is needed is the existence ofthe minimizing vector.
 

IfX e M,then mo=x and we are done.Let assume that x ^Mand define
 

d — inf ||x — m||. Our goal is to produce mo E Mwith||x — mo||= d. For this
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purpose,let{mj}be a sequence ofvectors in M such that l|a; — mi\\-*d. Bythe
 

parallelogram law,we have the following
 

||(mj-x)+(a;-mi)\f'+\\(rnj-x)-{x-mi)\f =2\\mj-x\f+2\\x-rrii
 

Rearranging we get.
 
mi+rrij
I l|2 oil l|2 I oil l|2
m,-— mj =2 m,-— X +2 x —mJ 4 X
 

rrii+mi
Since Mis a linear subspace,the vector ^ is in M since mi,mj6MVi,j.
 
rrii+m.


By the way we define d, X > d and we have
 

\\mj — rriilf < 2\\mj — x|p+2||x — mi\f — Ad^
 

Asi-4CO both \\mj — x\f and ||x — niilf approaches d^ and hence
 

\\mj — mi\f < 2d^+1d^ — =0
 

Wecan now conclude that||mj — 0 as i,j-* oo.Therefore the{mi}is a Cauchy
 

sequence,and since M is a closed subspace ofa Hilbert space,the sequence{m^}hasa
 

limit mo 6M.Since the norm respects the continuity property,it follows that
 

\\x-mo\\=d.
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Chapter 3
 

APPLICATIONS
 

The main purpose ofthis section is to examine a variety ofproblems that can be
 

formulated as optimization problems in the Hilbert space by examining certain specific
 

examples. We shall look at instances ofApproximation Theory,Game Theory(where we
 

prove the min-max theorem), Control-typeProblems and Minimum Distance to a convex
 

set.
 

Approximation Theory
 

The motivation behind all approximation problems is the desire to approximate a
 

general mathematical situation by a simpler, more specificform.In this section we shall
 

look attwo different situations, viz,the normal equation and the Gram Matrices,and the
 

Fourier Series method ofapproximation.
 

NormalEquation and the Gram Matrices
 

Suppose a given decision maker wantsto investigate the following situation: We
 

are given that yi,2/2)^3)•••> l/n belong to some Hilbert spaceH, generating a subspace
 

M C H.Given an arbitrary vector x & Hwe seek a vector y G Mwhich is closest to x.
 

Now y can be expressed as a linear combination ofthe y^ say
 

y= aiy-i -f a2y2+•••+Q!„y„,whereai G R,i=1,2, n. The problem now is
 

equivalent to find the ai such that the quantity
 

Ik-y|| = Ik-(«i2/i+«2y2+-+«nyn )ll
 

is minimized. The projection theorem can easily be used to solve this problem. According
 

to the projection theorem,the minimizing vector yis the orthogonal projection ofa:on M.
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Another way ofputting it is that the difference vector x — y must be orthogonal to each
 

oftheyj. Therefore we can write
 

{x-Qiyi-a^y-...-a^y,yj=0
 

for i=1,2,3,...,n.Writing this in expanded form and recalling that(y^,yj= jwe
 

have,
 

(yi.2/i)ai+(y2.yi)«2+••• +(yn,yi)Q:„ =(a;,yi)
 

(y2>y2)«i+(y2ry2)«2+••• +(yn.y2)«n =(x,y2)
 

(yi,yjai+(y2> yn)"n+-+(yn> yn)«n =(x,Vn)
 

These nequations are called the the normal equations for the minimization problem.
 

Corresponding to the vectors yi,y2,ys,•••, yn> square n x nmatrix G is
 

(yi>yi) (yi.y2) - (yi.yn)
 
(yi>yi)
 

G=G(yi,y2,y3,...,yJ =
 

.(yn.yj (yn.Vn)
 

We recall from Linear Algebra that G(yi,y2,y^,...,y„)is the Gram matrix of
 

{yi,y2, ys,..., y„}.It is the transpose ofthe coefficient matrix ofthe normal equations.
 

The approximation problem will be solved once the normal equations are solved.In order
 

for the normal equations to be solvable the Gram determinant must be nonzero. That is, it
 

must be invertible. This can only happen ifthe vectors{yi,y2,ys,—,yn} linearly
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independent. Once this fact is established the finding ofthe minimum distancefrom x to
 

the subspaceM can befound by Cramer's rule. Cramer's rule, which until several years
 

ago was oflittle practical importance because ofthe difficulties ofevaluating large
 

determinants has now found a new audience because ofcomputers and high speed
 

calculators. With the availability ofhigh speed digital computers it is also easy to find the
 

inverse ofthe invertible matrix and hence the solution. This method was also avoided in
 

the past because ofthe difficulty and cumbersomness offinding inverses oflarge matrices.
 

We now return our attention to the evaluation ofthe minimum distance between x
 

and the subspaceM by applying the following theorem from Linear Algebra.
 

Theorem: Letthe yi,2/2 > 2/3> • • • > be linearly independent.Let d be the minimum
 

distance fi"om a vector x to the subspaceM generated by the y/s, that is
 

d= min||x-a-^y^-022/2"•••"<^n2/nll
 

Then
 

j2 _ det(G(i/i,v,,...,y„,a;))
 
det(G(j/i,j/2,...,j/„)) •
 

Proof:If2/ 6 Misa minimizing vectorfor the distance then
 

=||x-y\f =(x — y,X-y)={x-y,x)-(x — y,y). Bythe projection theorem,
 

X — y is orthogonal to M and as a result (x-y,y)=0. Therefore,
 

=(x-y,x)=(x,x)-Q;i(yi,x)- -...-Q!„(y„,x)
 

Rearranging, ai(yi,x) 2,x) x)+d^ =(x,x)
 

The above equation along with the normal equations, yields n+1linear equationsfor the
 

n+1 unknowns,a\, 02,• • • 1. <^n ,d'^ which is solvable by Cramer rule. The value of
 

d^ is
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(2/1-yi) (ya.yi) (yn.yi) (a;,yi)
 

(yi,y2)
 

det
 

{yi,yn) (yn.yn) (^,yn) 

= 
(yr,x) 
(yi.yi) (y2>yi) 

(y„.,x). (j.j) 

- (yn.yi) 0 

det(G(yi ,y^,,...,y„,x)) 

det(G(2/i,3/2 yn)) 

(yi.yz) 

det
 

(yi.yn) (yn.yn) 0
 

(yi.^) (yn,^) 1
 

□ 

Fourier Series Approximation 

Finding the best approximation to x in the subspace M, where Mis generated by 

orthonormal vectors xi,X2,. . ., a:„ is a special case of the general approximation 

problemIdiscussed above. In this special case, we see immediately that the general 

approximation problem is trivial because the Gram matrix of the Xi's is simply the identity 

matrix giving the best approximation to be 
n n 

y = J2{x,Xi)xi = Y,<^iXi 
i=l i=l 

Our goal in this section is to extended this special approximation problem slightly 

by considering approximation in a closed subspace generated by an infinite orthonormal 

system. Before we do that we must recall from analysis the following definition of 

convergence of an infinite series. 
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Definition: An infinite series oftheform^a;,is said to converge to an element x in a
 
i=l
 

normed space ifthe sequence ofpartial sums = Ylxi converges to x; then we write
 
i=\
 

X= Y^Xi.
 
i—\
 

The nexttheorem establishes the necessary and sufficient condition for an infinite series of
 

orthonormal vectors to converge in a Hilbert space.
 

Theorem: Let{x^} be an orthonormal sequence in a HilbertH.A series oftheform
 
00 °° 2
 
Y^OLi Xi convergesto an element x e H ^ < oo. and in this case =(x,x^).
 
i=l i=l
 

00
 

Proof: Suppose that < oo and let =^a^Xi,then
 
i—1 i=l
 

I — E <^i^i =E I asm,n-*oo.
 
=m+l
 

This implies that{s„} is a Cauchy sequence and becauseHis complete there is an
 

element x E H such that -»x.
 
m ^
 

Onthe other hand,ifs„ converges,then it is a Cauchy sequence soE \'^i \ 0• Thus
 
i=n-\-l
 

OO OO
 

Y Wi \ -+O andEl^^j| < OO.
 
=n+l 2=1
 

To show the last part we observe that(s„,Xj) = ai as soon asn > «, which by the
 

continuity ofinner product implies(x,Xj)= .
 

□ 

We recall fi"om analysis that(x,Xi)=ai is called the Fourier coefficient ofx
 

with respect to the orthonormal basis{x^}. The Fourier coefficients and vectors are
 

related by the following
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oo
 

Ei(^,^i)r<iNr
 
1—1
 

^ ^ 2

This relation is called Bessel's inequality and guarantees that EI(^> ^i)I < o<d. The
 

i=i
 
00^
 

above theorem also guarantees the fact that E(^> convergesto some element.We
 
i=i
 

characterize this element in the nexttheorem.
 

Theorem: Let x be an element in a Hilbert spaceHand suppose{xi} is an orthonormal
 

sequence in H.Then the series
 
OO
 

^(x,Xi)Xi
 
i=l
 

converges to an element y in the closed subspaceM generated by the x^'s. The "error"
 

vector x — y is orthogonal to M.
 

Proof: Convergence is guaranteed by the last theorem and by Bessel's inequality.
 
n
 

SinceM is closed y E M.The sequence ofpartial sums Sn — Y^{x,Xi)xi -»y E M.For
 
i—l '
 

eachjand n >jwe have
 

(x Syi,Xj)= Xi^X.,Xj^ (x,Xj) (x,Xj^ 0.
 

Therefore by the continuity ofthe inner product lim(x — xj)=(x — y,Xj) — 0 for
 
n—>oo
 

each j. Thus x — y is orthogonal to the subspace generated by the x^'s. Again using the
 

continuity ofthe inner product we can conclude that x — y is orthogonal to the closed
 

subspace generated by the x/s.
 

□ 

It is now clear that if a closed subspace generated by the orthonormal set of {x^} is 

the whole space, then any vector in the Hilbert space H, can be expanded as a series of the 

Xj's with coefficients equal to the Fourier coefficients (x, Xj). In fact to express every
00. 

X E Has the limit of an infinite sequence of the form E<^i it is necessary that the 
i=l 

closed subspace generated by x^'s be the whole space. 
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Suppose again that we are given independent,but not necessarily orthonormal
 

vectors yi,y2,ys,■■■,yn generating a subspace MofHilbert space Hand we wish to find 

the vector y e M C Hwhich minimizes Ha: - y||. This time rather than seeking to obtain 

y directly as a linear combination of the y^ 's by solving the normal equations, we can 

simply employ the Glram-Schmidt othogonalization procedure and then the Fourier series 

approximation as above. First we apply the Gram-Schmidt othogonalization procedure to 

{yi)1/2' 2/3' •••' yn}) obtain the orthonormal set {rri, 0:2, . ..,Xn} generatingM. The 
vector y can then be written in terms of the Fourier coefficients as 

n 

y = J2{x,Xi)xi 
i=l 

and (x — y) _L M. Thus Our original optimization problem can now be solved with 

relative ease since we have orthonomalized the independent vectors. Since the solution to 

the approximation problem is equivalent to the solution of the normal equations, we can 

conclude that the Gram-Schmidt procedure can be interpreted as an algorithm for 

inverting the Gram matrix. In fact the Gram-Schmidt procedure consists of solving a series 

ofminimum norm approximation problems by the use of the projection theorem. So we 

can solve the minimum norm approximation on the subspace generated by 

{yi,y2, ys, y„} by applying the Gram-Schmidt procedure to the sequence 

{yi,y2, yg, y„,x}. The optimal error x — y is found at the last step of the process. 

Minimum Distance to a Convex Set 
(Closest Point Property) 

The closest point to a convex set is of fundamental importance to many 

approximation problems. The following theorem, concerning the minimization of the 

norm, is illustrated below and is a direct extension of the proof of the projection theorem. 
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M
 

m mo
 
m
 

x-mo
 

Minimum distance to a convex set
 

Theorem:Let xbe a vector in a Hilbert spaceH and letM be a closed convex subset of
 

H.Then there is a unique vector e Msuch that
 

ll^r — m^ll < j|a: — m||
 

for all m6M.Furthermore,a necessary and sufficient condition that be a unique
 

minimizing vector is that{x — m^,m — )<0for all m G M.
 

Proof: To show existence,let{m^}be a sequencefromM such that
 

Wenow apply the parallelogram law to get
 
mi+rrij
 

X —
\\mi-rrijW^ — 2\\mi-x\i 2\\mj-x\^-4
 
mj-f-m. rrii+m
 

—
BecauseMis convex, ^ is in M;and hence X must be at least d,and so
 

we have
 

rrii+mi
 
X — > d
 

and therefore
 

\\mi — mj\\^ < 2\\mi —x\\'+2||mj— a;||^ —AS-*Ad^^Ad^=0.
 

Therefore the sequence{mi}is Gauchy and hence convergentto an element m^ G M.
 

Using the continuity property ofinner product, \\x — || =d.
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To prove uniqueness,suppose rrij 6M with ||a: — m,|| = d. The sequence {rrij} has
 

||a; — rriiW -+ d so bythe above argument, {rrii} is Cauchy and convergent. Then we
 

claim that ^][f convexity)is closer to x than d.For
 

X 
m+m^

^ = i(||(x-m)+(a;-mo)l|)
 

and this equals|[|a; — mj|+^\\x — mj|=d only ifx — is a multiple ofa; — .
 

Now d= l|rr — || = Hx — mj|,so ifa; — is a multiple: x — =a(x — mj,then
 

|q!|=1. Ifa= 1,X — =x — =>
 

ifa= — 1, X — -X^X= e M, a contradiction.
 

ThusifX — is not a multiple,the original quantity(*)is less than d, which say that
 

e M is closer than a contradiction. Hence =m^.
 

Wenow show that if is the unique minimizing vector in M,then
 

(x-m^.m^-mj<0
 

for all m € M.Suppose to the contrary that there is a vector E M such that
 

(x — mg, — rrig) =e > 0.Pick any vectorrria € M,such that
 

rria =(1 — oi)m^+am^;0<a < 1. Since M is convex,each rria G M. Also
 

\\x-rriaf = Wil-a)(x-m^)+a(x-m^)f
 

=(1-af\\x-mjf+2a{l-a)(x-m^,x-m)+a^\\x-m^\f
 

The quantity ||x — ma\f is a dififerentiable function ofa with derivative ata=0 given by
 

ii2
All--niai™ = — 2||x —rUg 11^ +2(x — m^jX — rrij)
— \\x 

da
 

a=0
 

= — 2(x — ,TTij — m,,)= — 2e < 0.
 

Thiisfor some positive ct, ||x —mall^ ll^""^oll- This contradicts the minimality ofm,,.
 

Thusno such exist.
 

Conversely,suppose that m„ € Mis such that(x — ,m — )<0for
 

m G M. Thenfor any m G M,with m^,we have
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\\x — rn\\^ = \\x- -rn\f
 

= -m)+ \\\mj-mf > ||a:-mj|
 

showing that is a minimizing vector.
 

□ 

Problem: As an application of the minimum norm problem, we consider an approximation 

problem with restriction on the coefficients. Let {yi,2/2' 2/3) •••) 2/n} linearly 

independent vectors in aHilbert space H. Griven x E H, we seek to minimize 

\\x — aipi — 0:22/2 — ••• — ^nVnll where we require o^ > 0 for each i. 

Solution: We can reformulate this problem abstractly as that of finding the 

minimum distance from a point x to the convex cone 

M= {y:y = oij/i + 022/2 + ••• + ocnVn^ cti>0 for eachi} 

Mis a closed convex cone and hence, there is a unique minimizing vector. The minimizing 

vector $ = oiyj + 022/2 + ••• + ^nVn "^^st satisfy 

(a: — x,m — x) < 0, for all m 6 M 

Setting m = X +yj leads to 

(x — X, yj) > 0 if Oi > 0 

and setting m — x +aiy^ leads to 

(x— X, yj)<0 fori= 1,2,3,. ..,n 

with equality o^ > 0. 

Letting Gbe the Gram matrix of {yi, y2> ys) • • •) yn) letting bi — (x,yj, we obtain the 

matrix equation: 

(i ) Go — b = z 

for some vector 2 with component Zi > 0. We recall from linear algebra that o and b are 

vectorswith component represented by a\ and bi respectively. Furthermore, aiZi = 0. 
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Condition(i)above is analog ofthe normal equation.
 

ControlProblems
 

Problems ofcontrol are associated with dynamical systems evolving in time. These
 

types ofproblems usually refer to directed influence on a djmamic system to achieve a
 

desired result. The system itselfmay be physical such a Sojourner rocket heading for Mars
 

with a rover or a chemical plant processing milk or it may be operational such as a
 

warehouse receiving and filling orders.
 

Often we seek afeedback in which a decision ofcurrent control actions are made
 

continuously in time based on periodic observations ofsystem behavior. One mayimagine
 

himselfas a controller sitting in a control panel watching meters and turning knobs or in a
 

warehouse ordering new stock based on inventory and predicted demand.
 

Any control problem might beformulated in a vector space consisting ofan
 

optimal control function u{t) defined on an interval[0,T]. For the motion ofthe rocket
 

being propelled vertically the governing equation may be
 

&= u{t)-g
 
where y is the vertical displacement, u is the accelerating force,and gis the gravitational
 

force. The optimal controlfunction u is the one which forces y(T)= h while minimizing
 
" T
the fuel expenditure, which we represent in this case by Jq \dt.
 

Minimizing a Quadratic Objective
 

Let us consider an optimal control problem which seek to minimize the quadratic
 

objective given by
 

where x and u are related by the differential equation
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(1) and the initial condition a;(0) is given.
 

We wantto reduce x to zero quickly by a suitable application ofthe controlfunction u(t).
 

The quadratic objective represents a conunon compromise between a desire to make x
 

small while at the same time maintaining control over u{t). We can begin by replacing
 

equation(1)bythe equivalent constraint
 

(2) x{t)=a;(0)+Jou(r)dr.
 

We are now in a position to formulate the above problem in the Hilbert space
 

H=L2[0,T] X L2[0,T]
 

consisting ofthe ordered pairs(x,u)ofsquare — integrable functions on[0,T]
 

with the inner natural inner product defined by
 

((a;i,ui),ix2,U2))= Jo
T
[xi{t)x2{t)+u-i(t)u2(t)]dt;
 

and the corresponding norm is
 

II(x,u)f= Jq [x2(t)+V?(t)]dt.
 

We have now defined the norm in the Hilbert space and we recall that the set ofelements
 

(x,u)E H satisfying the constraint(2) is a linear variety V E H.The control problem is
 

now one offinding the element(x,u)eV having a minimum norm.
 

IfV is closed we have a unique solution in V.To prove that V is closed, let
 

{(xn,Un)} be a sequence ofelements from V converging to an element(x,u). For V to
 

be closed(x,u)must lie in V. Letting y(t) — x(0)+ we mustshow that
 

X= y. Thus by the Cauchy-Schwarzinequality, applied to the functions(1)and
 

u(t) — Un(t), and integrating from0toTwe obtain
 

\y{t)-X,n{t)f < tjl\u{T)-Un{T)fdT < T\\u-U„||^
 

and hence ||y — a^n(^)|| <^||^^ — '"nil- It follows that
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l|y-a^ll < lly-x^ll + Ila:„-x|| < T||u-Unll + lla:„-a;||
 

Thetwo terms on The right tend to zero asn-*(x> => x= y.
 

Game Theory
 

Many problems that involve a competitive element can be regarded as games.In
 

the usual formulation involving two players, ortwo antagonists,there is an objective
 

function whose value dependsjointly on the action employ by both players. One player
 

attemptsto maximize this objective, and the other attempts to minimize it. Often several
 

problems from almost any area ofmathematics can be intermixed to produce a game.
 

Some game theoretic problems are ofthe pursuer-evader type such as a fighter plane
 

chasing a bomber.Each player has a system he controls but one is trying to maximize the
 

objective(lime to interceptfor instance)while the other is trying to minimize that
 

objective.
 

As another example,we consider a problem ofadvertising or campaigning bytwo
 

students ofCalifornia State University, San Bernardino running for StudentBody
 

President. Two opposing students,A andB are running and must plan how to allocate
 

advertising resources(A andB dollars respectively) among n distinct departments and
 
)
 

groups. Wecan let Xi and represent, respectively,the resources allocated to department
 

i by candidate A and B. We assume that there are currently a total ofu undecided votes
 

in the whole university and Ui representing the number ofundecided in departmenti.
 

According to some determined mathematical model,the number ofvotes a given
 

candidate received in each department is
 

(Amountofmoney spent by a candidate in a department)(Number ofundecided in that department)
 
(Total amountspent by the candidates in the department)
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Using this modelthe number ofvotes going to candidates A andB from departmenti will
 

be
 

XjUj VjUj
 

respectively. The total difference in votes between the number ofvotes received by A and
 

B will then be
 
n . ' '
 

i=l ''
 

Candidate A will seek to maximize this quantity while CandidateB will seek to minimize
 

it.
 

Min-Max Theorem ofGame Theory
 

Before we present and prove the min-max theorem we need some background
 

facts.LetX be a normed space and X* its normed dual space.Let A be a fixed subset of
 

X andB a fixed subset ofX*. In this game player A selects a vector from the strategy set
 

A while his opponent playerB selects a vector from his strategy set B.When both players
 

have selected their respective vectors the quantity < x,x*> is computed and player A
 

paysthe amountto player B.Thus A seeks to make his selection so asto minimize
 

< a;,a;* > whileB seeksto maximize < a;,a:* > . Assumefor the time being the
 

existence ofthe quantities
 

Qo minmin maxmax ^ ^
 

Q max min ^ ^
 
o= xeA <^,^*>
 

Consider first the viewpoint ofA in this game. By selecting x e A,he looses no more
 

max
than "Tb ,hence by proper choice ofx, say Xg, he can be assured ofloosing
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no more than Q°. On the other hand playerB by selecting x*^ B,wins at least a
 

< X,X*> so by ajudicious choice ofx*, say x^* he can be garantee a win ofat least Qo.
 

Itfollows that Q„ < < x,x*> < Q°. IfQ° = we have a draw and there is a well-


determined pay-offvalue for optimal play by both players. The min-max theorem simply
 

states thatfor approrpriate sets A and B, Q°=Q^.
 

Wenow present the proofofthe min-max theorem based on duality.For simplicity
 

this version ofthe proofis for reflexive spaces that is in spaces where(X*)*=X. This
 

proofofthe min-max theorem make extensive use ofthe following Fenchel Duality
 

Theorem which we state without proof. Before we state the Theorem we give the
 

following definition.
 

Definition:In correspondence to a convex functional/ defined on a convex set Cin a
 

vector space X,we define the convex set[/,C]in i? x X as
 

[/,C]={(r,x)e Rx X:X eC,f(x)< r}
 

Theorem:(Fenchel Duality Theorem). Assume that/and g are, respectively,convex and
 

concave functionals on the convex setsC andD in a normed space X.Assume thatC PiD
 

contains points in the relative interior ofC andD and that either[/,C]or[g,D]has
 

nonempty interior. Suppose further that[j,= 
inF 

{/(^)~9{^)} is finite. Then
 

9'
 

where the maximum on the right is achieved by some x^ e C*D D*.Ifthe infimum on
 

the left is achieved by some Xg E CDD,then
 

xeC 
< X,X*g> -f(x)]= < Xo,xl > -f{Xo)
 

and
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< x,xl> -g(x)]= <Xo,xl> -g{xo)
 

Theorem(min-max):LetX be a reflective normed space and let A andB be compact
 
) ■ 

convex sets ofX and X*,respectively. Then 
■ ■ ■ 

min max ^^ ^ max min ^ 
xgA x^eB ' x^^B xeA ' 

Proof:Define afunctionalfonX by
 

m=:::B<x,x.>
 

The maximum exists for each x e X sinceB is compact, fis also continuous and convex
 

on X.We seek an expression for
 

which exists because ofthe compactness of A and the continuity of/.We now apply the
 

Fenchel duality theorem with the associations:f-*f,C-*X,g-* 0, andD -+ A.
 

We haveimmediately the following associations
 

(1) ^ D*^X*
 

(2) g*{x*)= <x,x*>
 

Wefurther claim that ,
 

(3) C*=B
 

(4) /•(!•)=0
 

To prove(3)and(4),let x\^Band by using the separating hyperplane theorem,let
 

x\^X and a be such that < a:i, > — <xi,x* > > a>0for all x* € B.Then
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< xi,x* > — < x,x* > can be made arbitrarily large by taking x= kx\ with
 

> 0. Thus
 

> -/(a;)]=oo
 

andor^^C".
 

Conversely, if x^ e B, then < x,x*i > — < x,x* > attain a maximum value of
 

0at X =0.This establishes(3)and(4).
 

Since
 

xeAf(^) x,gBnx* 9[^)— x*€B xeA < >
 

the theorem is proved.
 

□ 

In the previous section we considered in some detail the problem of approximating an 

arbitrary vector in aHilbert space by a vector in a given finite-dimensional subspace. The 

projection theorem led to the normal equations which could be solved for the best 

approximation. A major assumption in such problems was the finite dimensionality of the 

subspace fi"om which the approximation was chosen. Finite dimensionality not only 

guarantees closure (and hence existence of a solution) but leads to a feasible computation 

procedure for obtaining the solution. 

Inmany important and interesting practical problems the subspace in which the 

solution must lie is not finite dimensional. In such problems it is generally not possible to 

reduce the problem to a finite set of linear equations. However, there is an important class 

of such problems that can be reduced by the projection theorem to a finite set of linear 

equations similar to the normal equations. In this section we study these problems and 

their relation to the earlier approximation problem. We begin by pointing out a trivial 

modification of the projection theorem applicable to linear varieties. 
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Theorem:(Restatement ofthe Projection Theorem)LetM be a closed subspace ofa
 

Hilbert space H.Let a:be a fixed element inHand let V be the linear variety x+M.
 

Then there is a unique vector in V ofminimum norm.Furthermore, is orthogonalto
 

M.
 

Proof: This is proved by translating V by — a: so that it become a closed subspace
 

and then applying the projection theorem. This is shown below.
 

V=x-l-]Vt
 

X
 

x
 

Minimum norm to a linear variety
 

Atthis point we should note that the minimum norm solution x^ is not orthogonal
 

to the linear variety V butto the subspaceMfrom which V is obtained.
 

A special kind oflinear variety is ofparticular interest in optimization because it
 

alwaysleads to a finite-dimensional problems. This is the n-dimensionallinear
 
n
 

varietyconsisting ofpoints oftheform x H- where{x^,x^,x^,.. .,x^}is a linearly
 

independent set in H,and a; is a fixed vector in H.Problems which seek minimum norm
 

vectors in an n-dimensional variety can be reduced to the solution ofn - dimensional set of
 

normal equations.
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Chapter4
 

OPTIMIZATIONIN THEBANACHSPACE
 

Mathematicianstake great care to formulate problems arising in applications as
 

equivalent problems in Banach spaces rather than problems in other incomplete norm
 

spaces. The principal advantage ofaBanach space in optimization problems is that when
 

seeking an optimal vector maximizing a given objective, it is possible to construct a
 

sequence ofvectors with each member superior to the preceding member,the desired
 

optimal vector is then the limit ofthe sequence.In order that the scheme be effective and
 

complete,the limit must be in the space, which is always true since a Banach space is
 

complete.
 

In a Hilbert space,we can introduce the notion oforthogonal coordinates through
 

an orthogonal base,and these coordinates are the values ofbounded linear functionals
 

defined by vectors ofthe base. The projection theorem which we used extensively to study
 

optimization in the Hilbert space can be extended to aBanach space by the Hahn-Banach
 

theorem. TheHahn-Banach Theorem,the mostimportanttheorem for the study of
 

optimization in linear spaces,can be stated in several equivalent ways each having its own
 

particular conceptual advantage. One oftheforms called the'extension form* serves as an
 

appropriate generalization,ofthe projection theorem from Hilbert space to normed spaces
 

and thus provides a mean ofgeneralizing many ofthe results ofminimum norm problems.
 

In a nutshell, this version extends the projection theorem to optimization problems having
 

nonquadratic objectives.In this manner,the simpler geometric interpretation is preserved
 

for the more complex problems. Another version, not discussed in this project, states in
 

simplerform that given a sphere and a point not on the sphere there is a hyperplane
 

separating the point and the sphere. This version together with the associated notions of
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hyperplanes and duality principlesform a basis for many optimization problems in Banach
 

Spaces. ,
 

Hahn-Banach Theorem
 

Before proving the extension version ofHahn-Banach theorein,we need the following
 

definitions.
 

Definition:Let/be a linear fianctional defined on a subspaceM ofa vector space X.A
 

linear functionalF is said to be an extension of/ifF is defined on a subspaceN which
 

property contains M,and if, on M,F is identical with /.In this case we sayF is an
 

extension of/fromMto N.
 

In simple terms,the Hahn-Banach Theorem states that a bounded linear functional
 

/defined on a subspaceM ofa normed linear space can be extended to a bounded linear
 

functionalF defined on the entire space and with norm equal to the norm of/on M,that
 

is
 

Wl= ll/ll« =„7„
 

Definition: A real valued fimction p defined on a real vector space X is said to be a
 

snblinearfunctional on Xif
 

1. p(x+ y)< p(x)+p{y) for all X,yeX
 

2.p(ax)=ap(x) for a >0 and x E X.
 

Theorem:(Hahn-Banach Theorem,Extension Version)LetX be a real linear normed
 

space and p a continuous sublinear functional on X.Let/be a a linear functional defined
 

on a spaceM ofX satisfying/(m)< p{m)for all m E M. Then there is an extensionF
 

of/from Mto Xsuch that F{x)< p{x)on X.
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Proof: Thistheorem is true in any arbitrary normed linear space,but this version
 

ofthe proofassumsthatX is separable. The general idea here is to extend/ one
 

dimension at a time and apply induction. .
 

Suppose y is a vector in X but not in M.Consider all elements ofthe subspace
 

[M+y]=M V{y}. Such an element x has a unique representation oftheform
 

X=m+ay, where m e Mand aa real scalar. An extension yof/fromMto M V{y}
 

hastheform
 

y(x)=/(m)+oy(y)
 

and,hence,the extension is specified by prescribing the constant y(y).We must show that
 

this constant can be chosen so that y(x)< p(x)onM V{y}.
 

For anytwo elements and in M,we have
 

=/("^I +mj < p(m^+m,)< p(m,-y)+p{m^+y)
 

or
 

/(mj-p(mj-y)< p(m,+y)-/(mj
 

and hence
 

m€M -yy^ ̂ mtu +2/)-/("^2)]
 

Therefore there is a constant k such that
 

-y)\ <k< b("^2+y)-/("^2)]
 

For any vector x=m+ay E M y{y}, define y(x)=/(m)+ak. We need to show
 

that g{m+ay)< p(m+ay).
 

Ifais positive,then
 

gi^rn+ay)=ak+f{rn)=a[k+f{^)]<a[p(f+y)-f(r^)+f\^)]
 

= +y)= +®y)
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Ifais some negative number,say a= —b <0,then
 

g{m-ay)= -bk+f(m)=b[-k+f{f)] < b[p{f-y)-/(f)+/(f)] 

=bp{j-y)=p{m-by) 

Thusg(m+ay)< p(rn+ay)for all aand gis an extension of/from Mto M V{y} 

Now let ...,x^,...}be a countable dense set in X.From this set of 

vectors select, one at atime,a subset ofvectors,{y^-,y^, ■ ■ -.y^, • ••}which is 

independent and independent ofthe subspaceM.The set{y^,y^,...,y^, ...}together 

with the subspaceM generate a subspace S dense in X.
 

Thefunctional/can be extended inductively to a functional g on the subspace S
 

by extending /from M to M V{yi},then to[[M V {yi}]V {y^}], and so on.
 

Finally the resulting g,which is continuous since p is, can be extended by
 

continuity from the dense subspace S to the space X.Suppose x ^X,then there exists a
 

sequence {a;}ofvectors in S converging to x.Define — lim y(a;^).Fis obviously

" n—>00
 

linear and f{x)*- g{x^)< p{x^)-*p{x)so F{x)< p{x) on X. □ 

Corollary 1: Let / be a bounded linear functional defined on a subspace Mof a real 

normed vector space X. Then there is a bounded linear functionalF defined on X which is 

an extension ofFand which has norm equal equal to the norm of / on M. 

Proof: Setp(x) = ||/||^||tc|| in the Hahn-Banach Theorem. Then yis a continuous 

sublinear functional dominating /. 

□ 
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Minimum Norm ProblemsIn General Norm Spaces
 

Weend this section by considering the question ofdetermining a vector in a
 

subspace ofa Normed space which best approximates a given vector x in the sense of
 

minimum norm.
 

We recall that if M is a closed subspace in a Hilbert space,there is always a
 

unique solution to the minimum norm problem and the solution satisfies the othorgonality
 

condition. Forthermore the projection theorem leads to a linear equation for determining
 

the unknown optimizing vector.In an arbitrary normed space,the optimizing vector,ifit
 

exist, may not be unique and the equationsfor the optimal vector will generally be
 

nonlinear.
 

As an example that ofthe difficulties encountered in ah arbitrary normed space,we
 

consider a simple two dimensional minimum norm problem that does not have a single
 

unique solution
 

Example;LetX be the space ofpairs ofreal numbers x= with ||x|| = |^J.
 

Then a convex set can have a minimum which is not unique.
 

Solution:LetMbe a subspace ofX consisting ofall those vectors having their
 

second componentszero, that is M={m=(a,0)}and consider the fixed point
 

X=(2,1).The minimum distancefrom x to M is 1 since ||a;-m||=1 Va6M.
 

This situation is shown below.
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Minimizing vectors
 

1 2 3
 

The minimum norm theorem ofthis kind in general normed spaces, contain all the
 

conclusions ofthe projection theorem except the uniqueness ofthe solution. When
 

uniqueness holds it is fairly easy to show the set must be convex and closed. Uniqueness
 

may be recovered ifthe normed space, satisfies the condition of uniform convexity,
 

namely,ifgiven anytwo elements x,y in a unit disc(that is each elements is ofunit norm)
 

such that
 

y||> e >0
 

there exist a6greater than zero,depending only on e, such that
 

||2±2||<l-6
 

Hille,E.and Phillips,R.have shown(5)that many ofthe properties ofthe minimum norm
 

problems hold more generally in any Banach space with uniform convexity property. We
 

note that any Hilbert space is trivially uniformly convex.
 

Furthermore,the solution to the minimum norm problem introduces a duality
 

principle stating the equivalent oftwo extremization problems: oneformulated in a
 

normed space and the other in its dual. Often the transition from one problem to its dual,
 

results in significant simplification or enhances physical and mathematical insight. Some
 

infinite-dimensional problems can be converted to equivalent finite-dimensional problems
 

by consideration ofthe dual problem.In a dual space there are two equivalent version of
 

optimization problems. One in X called the primal problem and the other in X* called the
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dual problem. The problems are related through both the optimal values oftheir
 

respective objective fimctionals and an alignment condition on their solution vectors.
 

Since in many spaces alignment can be explicitly characterized,the solution ofeither
 

problem often lead directly to the solution ofthe other. Duality relations such as this are
 

therefore often ofextreme practical as well as theoretical significance in optimization
 

problems. This is simply due to the fact that the Hahn-Banach theorem establishes the
 

existence ofcertain linear functionals rather than vectors and establishes the general rule,
 

that minimum norm problems must beformulated in a dual space ifa solution existence is
 

to be guaranteed.
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