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ABSTRACT

The primary objective of this projéct is to demonstrate that a certain field of optimization
can be effectively unified by a few geometric principles of complete normed linear space
theory. By employing these principles, important and complex finite - dimensional '
problems can be interpreted and solved by methods springing from geometric insight.
Concepts such as distance, orthogonality, and convexity play a fundamental and
indispensable role in this development. Viewed in these terms, seemingly diverse problems

and techniques often are found to be closely related.
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Chapter 1
PRELIMINARIES
Ttis the‘purpose‘of this section to explain certain notations, deﬁnitiqns and
theorems that shall be used throughout this project. This -section does not pretend to be
complete, it goes just‘far enough to establish the connection between the applicatioﬁ in
question and the basic ideas of functional analysis. This section, therefore, leaves

important issues untreated.

Vector Spaces
Definition: A nonempty set V is said to be a vector space over a field F, if V is an abelian
group under an operation, denoted +, and for every' a € F, ¢ € V there is an element,

written ax, in V subject to the following

1. a(z+y) =a:c.+ay
2. (a+pB)z=az+pz
3. o(fr) = (af)z

4, lz ==z '

foralla, B € F, z, y € V and 1 represents the unit element of F under multiplication.

Linear depehdence
A set S of vectors is said to be linearly dependent if to each finite subset

{z,}._ there is corresponding a set of S(;alars {a.}:_, notall zero such that
- Yoz, =0. '
i=1 ,

A set which is not linearly dependent is said to be linearly independent.



Dimensionality of a Vector Sp&ice

A vector space is said to be n-dimensional if it contains n-linearly independent
vectors and every set with more than n vectors is linearly dependent. A vector space is
called infinite-dimensional if there exists an arbitrarily lafge linearly independent set in the
space. In this project we will consider only those vectors spaces with countable dimension. ,

If an arbitrary vector x in V can be repreéented as a linear combination of a set
{z,} in V and scalar {c, } as |

X = 3 ai IL’i.
i=1

then {x,} is said to span the vector space V. A linearly independent set of vectors {,}

that spans a vector space V is called a basis for V.

Subspaces and Linear Varieties
Definition. A nonempty subset A of a vector space X is called a subspace of X if every
vector of the form ax + By € A whenever z any y are both in A and a, (3 are any scalars.
Since a subspace is‘assumed to be nonempty it must contain at least one element.
By definition it must contain the zero element. So we can say quite unequivocally that
every subspace must contain the null vector. The simplest subspace is the space with the
soie element {0}.
Theorem: Let A and B be subspaces of a vector space X. "I‘hen the intersection, ANB, A
of A and B is also a subspace of X. »
Proof: Since A and B are subspaces of A and B, it follows that 0 € A and 0 € B. |
Therefore A N B is nonempty. Let 2,y € ANB, then z, y € Aand z,y € B. For any
scalars o, the vector az + By € A and ax + By € B since A and B are both subspaces.
Therefore ax + fy € ANB. |



In general this theorem can be extended to any arbitrary number of vectors spaces.
We state the extension of this theorem.

Theorem: Let B,, o € I be subspaées of a vector space X. Then their arbitrary

NB,

e 18 also subspace of X.

intersection

Definition: The sum of two subsets A and B in a vector space, denoted A + B, consists

of all vectors of the form a + b where a € Aand b € B. In other words
A+B={a+blac Abe B}.

In some ]iteraturé the word joint is used instead of sum and it is sometimes denoted by the

lattice symbol \/. In this notational parlance, we write

\éf; = sum(joints) of the B,'s

The joint \/ B, of a family of subsets is the smallest vector space containing all of them.

Theorem: Let A and B be subspaces of a vector space X. Then their sum A +Bisa

subspace and is equal to their joint.

Proof: Since A and B are subspaces of A and B, it follows that 0 € A and 0 € B.

This 1mp11es that A4+ B is nonempty Suppose z, y are vectors in A + B. There are

vectors a , , in A and vectors b, b, in B such that = = - a, + b and y = a, + bg Given
any scalars a;, § we can write oz + fy asa(a + b,) + B(a, + b2)
= (aa +pa )+ (adb + Bb ). This shows that o + By can be expressed as sum of
vectors in the subspace A and in the subspace B.
O
Definition: Suppose S is a subset of a vector space X. The set [S] called the subspace

generated by S, consist of all vectors in X, which are linear combinations of vectors inS.



Definition: A translation of a subspace, M by a fixed vector z, is said to be‘a linear
variety or affine subspace. A subspace is a linear variety if it is the sum of a subspace
and a vector. |

A linear variety V is usually written as V = , + M where M is a subspace. In-this

representation M is unique, but any vector in V can serve as x,. This is illustrated below.

A linear variety

If we are given a subset S, we can easily construct the smallest linear variety containing S.
Definition: Let S be a nonempty subset of a vector space X. The linear variety
generated by S, denoted v(S) is defined as the intersection of all linear varieties in X that

contain S.

Convexity and Cones
There is no topic that is responsible for more results in this project than convexity

and generalizes many of the useful property of subspaces and linear varieties.

Definition: A set K in a linear subspace is said to be convex if given z; and z; in K, all
points of the form az; + (1 — a)z, isalsoin Kif 0 < a < 1.
This definition merely says that given two points in a convex set, K, the line segment

between them is wholly in K.



Here are some important relations regarding convex sets. As elementary as they
may be, they play an important role in proofs involving convex sets.
Theorem: Let K and G be convex sets in a vector space. ‘Then the following are true
a) aK = {z: z = ak, k € K}is convex for any scalar a.

b) K+ G is convex - the sum of two convex sets is convex.

Theorem: Let C be an arbitrary collection of convex sets. Then N xc K 18 convex.
Proof: Let C = N, _ K. If C is empty, then the theorem is true since by

definition @ is convex. Assume z,, ¢, € C and pick a so that 0 < o < 1. Then z,,

z, € K,V K € C, and because K is convex oz, + (1-a)z, € K forall K € C.Thus

az, + (1 — a)z, € C and C'is convex.

We now consider an interesting aspect of norm in terms of convex set, the notion

that any sphere is convex.

Theorem: Any sphere is convex.
Proof: Without loss of generality we consider the unit sphere,
Y={zeX:|z| <1}
Ifz,,y, €Y, then||z,|| <1 and ||y0|| < 1.Nowif a >0 and § > 0, where
a+ (=1, then ||az, —|—,3y0|| < ||z, || + ||,8y0” = af|z, || —l—,@”yoH <a+pf=1and
thus az, + By, €Y



~ Cones
Definition: A set C in a linear vector space is said to be a cone with vertex at the origin
if z € Cimplies that ax € C for all @ > 0. A convex cone is a set which is both convex

and a cone.

Metric and Normed Linear Spaces

Metric Spaces
Definition: A metric is a set X and a real valued function d (, )on X x X which satisfies:

i) d(z,y) > 0and d(z,y) =0 &z =y. (positive definiteness)

i) d(z,y) = d(y, ) (symmetry)

iii) d(z, z) < d(z,y) + d(y, 2) (triangle law)
Since a metric space is a set X together with a metric function d( ,‘ ), in general a given set
M can be made into a metric space in several different ways by using different metric
functions. Onesuch metric on R" is the so-called 'usual metric' which is defined as
d(z,y) = |z — y|. In this case, the above three properties simply reflect familiar features

of the absolute value or the length function on R"

Normed Linear Spaces

- A vector space that is of particular interest in functional analysis and its application
is the normed linear space. Such a space come equipped with the topological concepts of
openness, closure, convergence and completeness upon introducing the concept of
distance on it.
Definition: A normed linear space is a vector space X on which there is defined a réal
valued function which maps each element x in X into a real number ||z||, called the norm

of z. The norm respects the following axioms:



a) ||z]| >0 forallz € X, ||z|| = 0ifand iny if z is a null vector (positive
definiteness) - ’

b) llz+yll < l|=ll + llyll for each z,y € X (symmetry)

¢) |laz|| = |al||x|| for all scalars o and for each z € X. (positive homogeneity)
This is juSt an abstraction of the usual concept of a metric or length. In a normed linear
space, the formula d(z, y) = || — y|| is a metric. We shall prove this statement by
examining the properties (7) to (7iz) of a metric space stated above:

i) d(z,z) = ||z — z|| = ||0- z|| = |0]||z|| = 0, If z # y,then x — y # O, so that

d(z,y) = ||z — yll > 0.

i) d(z,y) = lz—yl = I(-= D —2)l = -1y -zl =y — 2| = d(y, 2).

iii) d(z,y) = llz — gl = e — 2+ 2 = yll < & — 2] + ]2 — gl

= d(z,2)+ d(z,y).
Thus all normed linear spaces are metric spaces

As a direct consequence of the triangular inequality, we state and prove the
following result: |

Theorem: In a normed linear space X, |||z|| — ||lyll| < ||z — yl| for any z,y € X.

Proof: ||zl — [lyll = lz =y +ull = llyll < llz —yll + Iyl = llyll = [l ~ v

and similarly for ||y|| — ||z||.



Open and Closed Sets
Definition: Let A be a subset of a normed space X. A point a € A is an interior point
of A if there is an € > 0 such that all vectors z satisfying ||z — a|| < € are also members
of A. The collection of all interior points of A is the interi(;'r of A which we denoté A.

Notation: S(z,¢) = {y: ||z — y|| < e is the open sphere centered at = with radius e.

Definition: A set S is openif S = g’ ;

Definition: A point z € X is a closure point of aset Aif Ve > 0, thereis a pointa € A
such that ||z — al]| < €. The collection of all closure points of A is the closure of A
denoted A . Itis clearthat A € A.

Definition: A set Aisclosedif A= A.

Convergence

Definition: Ina normed linear space an infinite séquence of vectors {z,} is said to
converge to a vector z if the sequéhce, {llz — z,||} of real numbers convérges to zero.
We write this as x, = . »
If 2, -z, then ||z, || since we have |||xn|| - ||:c||‘ < |l — z|| = 0 as n— oo.
If a sequence converges this limit is unique, since if z, =z, and z,—y, then |

lz = yll = llz = 2o + 20 — yll < [l = 2]l + [l2n — yl| =0
This can only happen ifz = y.
Deﬁnition: A seQuence {z,} in a normed space is said to be a Cauchy sequence if
lzn — xm|| —0 as n, m— oo; that is given any € > 0, there is an integer N such that
|lzn — zm|| < O forallm,m > N.
In a normed space, every convergent sequence is a Cauchy sequence since, if z,—z, then

“-’Bn - xm” = ||zn — T+ T~ || < ”wn —z|| + ”5’7 — || = 0.



We recall from analysis however that a Cauchy sequence may not be convergent. We
should also take note of the fact that all Cauchy sequences are bounded. Normed spaces
in which every Cauchy sequence has a limit and hence convergent is said to be complete.
Definition: A normed linear vector space X is complete if every Cauchy sequence from X
has a limit in X. A complete normed linear vector space is called a Banach space.
We recall the following fact from analysis:
Theorem: A set F is closed if and only if every convergent sequence with elements in F
has its limit in F.

We note that in a finite dimensional linear space, every subspace is automatically
closed. This is however, not true for any infinite dirhensional space, the proof of which

requires the Axiom of Choice.

Transformations and Continuity

Definition: Let X and Y be linear spaces and let D be a subset of X. A rule which
associates with every element x € D and element y € Y is said to be a transformation
from X to Y with domain D. If y corresponds to x under T, we write y = T'x.
Definition: A transformation from a vector space X into the space of real or complex
scalars is said to be a functional on X,

In this project I shall use mostly real-valued functionals, since optimization consists
of selecting a vector to minimize or maximize a given functional.
Definition: A transformation T mapping a vector space X into a vector space Y with
domain D is said to be linear if for every x1,z9 € D and all scalars o1, ag we have
T(onzitaszs ) = ayT(z1) + agT'(x9)

We recall from analysis that



Definition: A transformatlon T mapping a normed linear space Xin to a normed space Y
is continuous at r, € X if for every e > 0 thereisa 6 > 0 such that |a: — z,| < 6 implies

that |T'(z) — T'(z,)| < €

Linear Functionals and Normed Dual

We recall that a functional f on a vector space X is linear if for any two vectors z,
y € X, and any two scalars o, § the following always hold:
flaz + By) = af(z) + Bf(y).
Theorem: If a linear functional on a normed linear space X is continuous at a single point,
then it is continuous throughout X.

Proof: Assume that f is linear and continuous at z, € X. Let {z,} bea
sequence from X converging to an element =z € X. By the linearity of f we
have|f(zn) — ()| = |f(zn — & +2,) = f(z)| |
Obser\)e thatz, —x +z, - 7, and since fis continuous at z, we have
f (a:n —z +z,)~f(z,). Because of this we have .

|f(@n) = F(@)| = |f(2n — 2+ o) — f(:vo)l—'lf(wo) — f(zo)| =0
Thus |f(zn) — f(x)| = 0. This establishes continuity at all points. O

Definition: A linear functional f on a normed space is bounded if there is a constant M
such that | f(z)| < M||z| for all z € X. The smallest such constant M is called the norm
of X and is denoted by || f|| = inf{M : |f(z)| < M]|z||, forallz € X}.

A word on notation: The norm of a functional can be éxpressed in several alternative

ways. We list some of them below

Ifll = inf{M : |f(z)| < M||z]|, for all z € X}

10



_ sup (@) ,
= 240 o T

22 1f(@)] or

= 2P |f(@)

Theorem: A linear functional on a normed linear space is bounded if and only if it is
cohtinuous. |

Proof: Suppose first that a linear functional f is bounded. Let M be such that
|f(z)| < M||z|| forall z € X. Thenif z, =0 then ||z,||—0 and we have

|f (@) £ M|lzn|| - 0

Thus f is continuous at z = 0. From the proceeding theorem, it follows that fis
continuous everywhere. |

Now, assume that f is continuous at z = 0. Then there is a § > 0, such that
|f(x)| <M =1 for ||z,|| < 6. Since for any :1:‘75 0 inX, 6z/||z,| has norm équal to
6, we have the following] f(x)| = | £ (227 )| x Lk < 22l

and M = % serves as a bound for f.

Norm Dual
Definition: Let X be a normed linear vector space. The space of all bounded linear
functionals on X is called the normed dual of X denoted X*. The norm of an element
feX is

fl = 22 1)l
The value of the linear functional z* € X™ at the point z € X is denoted by z* () or byk

the more symmetric notation < z,z* > .

11



There are several duality principles in optimization theory that relate a problem
expressed in terms of vectors to a problem expressed in terms of hyperplanes in the space.
Many of the duality principles are based on familiar geometric principles. The shortest
" distance from a point to a convex set is equal to the maximum of the distances from a
point to a hyperplanes separating the point from the convex set. Thus the original
minimization over vectors can be converted to maximization over hyperplanes. This is the

power afforded by the duality principle - the ability to work in a different space.

12



Chapter 2
HILBERT SPACES
Inner Product Spaces
Definition: Let X be a a complex vector space. A mapping
(L): XxX->C
is called an inner product in X if for any z,y,2 € X and o, 8 € C the following

conditions are satisfied.

a) (z,y) = (y,) (conjugate symmetry)
b) (az + By, 2) = a(z, z) + B(y, z) (linearity in first part)
¢) (z,z) >0, (z,z) = 0 implies z = 0. (positive definiteness)

A vector space with an inner product is called an inner product space.

Norm in an inner product Space
An inner product space is a vector space with an inner product. It turns out that
every inner product space is also a normed space with the norm defined by
o] = (@, )?
This function is always non-negative. Condition (c) above implies that ||z|| = 0 if and
only if = 0. Moreover

= (a@ )i (z,2)? = |al|a|.

] Lo

la|| = (az, az)
- For this function to be a norm we need to also prove the triangle inequality. This calls for
an intermediate result, the so called Schwarz's inequality. I will state this result without
proof.
Lemma: (Schwarz's Inequality) For any two elements zand y of an inner product

space we have

| )| < llzlllyl

13



The equality |(z,y)| = ||z||[|y|| holds if and only if = and y are linearly dependent.

Triangle Inéquality and Parallelogram Law
The Triangle Inequality: For any two elements z and y ‘of an inner product space we
have |
| Iz +yll < =]l + [l
Proof: ||z +y|* = (¢ +y,¢+y) = (,2) + (z,9)+(,2) + (%)

= (z,7) + 2Re(z,y) + (v, v)

< (2, 2)+2|(z,9)| + (v, 9)

< lll* +21(2, )| + lyll®

< llell® + 2lillliyl + lyII*

< (ll=ll+llyl)* -

Taking the square root of both sides gives the result. O

Though every inner product space is a normed space the converse is not always
true. A norm is an inner product space if and only if it satisfies the parallelogram law. This
law states that the sum of the squares of the lengths of the diagonals of a parallelogram is

equal to twice the sum of the squares of two adjacent sides. This fact is illustrated below.

The parallelogram law

14



The Parallelogram Law: For any two elements = and y of an inner product space we

have
Iz +yl* + [l — 9l = 2(||=)|* + l|yll*)
Proof: We have
lz+yl* = (@ +y,2+y) = (2,2) + (z,9)+,2) + 1)
and hence

le+yll> = ||+ (2,9) + (v, ) + ||y|* (1)

Now replace y by — y in the above relation we have

lz—yl* = lell* - (2,9) — 2) + yll* 2)
Adding (1) and (2) we have
lz +ylI” + llz = il = 2llz]* +2ly)”

Definition: A complete inner product space is called a Hilbert space.

Example: Consider the space Cio z] of all continuous functions on the interval [0,%] with

z(t) = cos(t) and y(t) = sin(¢). This space is not a Hilbert space.
Solution: All we have to do is check if it satisfies the parallelogram law.
ll=ll = [lyl =1
and

lz+3ll = (Zi%; lcos(®) +sin(t)] = v/2

and
|z —yll = 02‘2‘;‘3 |cos(t) — sin(t)| =1

Therefore ||z + y|* + ||z — y||* # 2||=|* + 2||y||* since 1+ /2 # 4

15



It follows that C[O,%] cannot be generated by any inner product, that is C[o,v-g-] fails to be

Hilbert.

Oné of the most important consequencés of having the inner product space is the
possibility of defining orthogonality of vectors. This makes the theory of Hilbert spaces so
different from the other norm spaces.

Definition: Two vectors z and y are said to be orthogonal (denoted z L y)if
(z,y) = 0.
The Pythagorean Formula: For any pair of orthogonal vectors = and y we have

lz+yll* = ll2]* + IlgIl”

Examples of Hilbert Spaces
Some well known examples of Hilbert spaces are R", C", L? (R), L?(R™), and 2. We
prove that the latter is a Hiibert space.
Exémple: 12 is a complete inner product space and hence a Hilbert space.
Solution: We recall that I is a vector space with the algebraic operations defined
“as usual in connection with seqtiences, that is,
€,&.8,. . )+ Mm,n, n,...)=0¢ +n,& +n,,--.)
a(§,§,.¢6,...)=(a€,af,af,. . .)
The inner product here is defined by

(2,y) = i&ﬁi

and the norm defined by

L

ol = (220t = (e )

16



In fact,ifx = {£}7° € P anyy= {n}” € 12, then by the Minkowski inequality for sums

we have
. 00 TN 00 9.1 X gL

(alfi +1,])7 < (ZZIIQI )? + (;Igﬁl )?

Since the right hand side is finite , so is the left hand side and ELfimplies thatz +y € I%. Also

oz el?.

By the Cauchy-Schwarz inequality we have

HE (i":lgl) (im) — =l

The sequence is bounded by ||z||||y|| and hence converges.
To complete the proof, we need to show completeness.

Let z,, = {£"}] bea Cauchy sequence in the space I2. Then for every € > 0, there is an

N such that if m,n > N, we have

| | . N
(1) |Zm — 2ol = d(@m,zn) = Zl gjm - ‘f? <e€
It follows that for every j =1, 2, 3, ... we have :
(2) §r—¢'| <e | (m.n > N),

For any fixed j, we see from (2) that (5:”, &8 ) is-a Cauchy sequence of numbers.

It converges since R or C is complete. Let. §jm — £ as m— oo. Using these limits we
define z = (¢ ,&,,¢,, ...) and show that = € I* and z,, > z.

From (1) we have for all m,n > N and for any k£ < oo,

k 2
S lEm -t < €
j:1 J J
Letting n— oo we obtain form > N v
k 2
SO —¢] <é - Vk
j=1 J J

17



We may now let k— oo, then form > N )
: 00
§]m - §]’ <€ < oo

3) | >

=1

This shows that z,,, — = = (5}” — §j) e I2. Since z,, € I2, it follows by means of the

Minkowski inequality that
T=a,+@—2z,) €P

The inequality in (3) also says that, given € > 0, 3 N such that for m > N,

: 1
. o] 2 2
lzm — 2l = | X2|€ 1] <g
=1

>lem —¢

J J

that is z,,, - z. Since x,, = {£"}{° was an arbitrary Cauchy sequence in 12, this proves

completeness of 1.

Continuity of the Inner Product‘ |
The inner product enjoys the following continuity property which is used
extensively in this project.
Theorem: (Continuity of the inner product). Suppose that z,, = z and y,, =y, in an inner
product space, then (z,,y,) = (z,y).
Proof: Since the sequence {z,} is convergent, it is bounded by some number say

M. So we can write ||z,|| < M. Now we have

| |(@n s Yn) = (@ 9] = [(@n,Yn) = @n,¥) + (@0, 4) — (@ 9)] < (@0 Y — Y| + (@0 — 2,9)]

Applying the Cauchy-Schwarz inequality, we obtain

(@, y5) = (@ 9)| < l12allllyn = yll + llzn — 2ll]ly]

Since ||z, || < M, we have

(@n s 4n) = (@ 9)| < Mlly,, — 9l + l|lzn — zllllyll - O
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and hence (z,,y,)— (z,y) positive definiteness of absolute value

Orthogonal and Orthonormal Systems
Definition: Let X be any inner product space. A family of S of nonzero vectors in X is
called an orthogonal system. ifz J_ y for any two arbitrary distinct elements z,y € S. If
in addition, ||z|| = 1 Vz € S, S is called an orthonormal system. |
Every orthogonal set of non-zero vectors can be normalized. If S is an orthogonal system,
then the family

Sy = { ﬁ :x el }

is an orthonormal sysfem. Both systems span the same subspace . We recall that

othonormal systems are linearly»independént.

Orthonormal Bases | |

The Hilbert space C" is a finite dimensional vector Space. Therefore any element of
C" can be written uniquely as a finite linear combinatioﬁ of a given sets of basis vectors. It
follows that the inner product of two elements of C" can be computed if we know the
expression of each element as such a linear combination. Conversely, the inner product
makes possible a very convenient way of expressing a given vector as a linear combination
of basis vectors. We recall that if z, € C" is the n-tupe

z, = (0,0,...,0,1,0,...,0),

where 1 sits in the n-th place. Then {z1, 73, ..., T, } is a basis for C". Moreover it is clear
that

(xﬁ,xm) =1if n=m, (@n, ) =0 ifn#m : ‘(a)
Ifx = (e, a2, ..., &) € C" then the expressionv for x as a linear combination of the basis

vector x,, is

19



N
X =) 0nTy
' n=1 .

Because of the préceding statement (a) we have (X, z,,) = . This quantity is called the

Fourier coefficient. Thus we can write the proceeding expression for x as

N N o - :
X=Y 0T, =3 (X,%,)Tn ' (b)
n=1 n=1

It natural to ask if the series (b) will converges if nis made to approach infinity. We can

answer this question by doing the following problcm.

Problem: Let V be an inner product space and let {‘:::n}nN=1 be an orthonormal set. Prove

e
T—Y cx,
n=1

that is minimized by choosing ¢, = (z_, )

N

Solution: We know that minimizing ||z — > ¢z ||is the same as minimizing
B =
N =
z—Y ¢z,
n=1
N N N g
a:._zcnxn :(x_zcnxvﬂx_zcnmn)
n=1 n=1

n=1

. N N N i
= (.’E, .'1'7) - 2(2 cnxn ’x) + (chxn’ chxn\)
n=1 n=1 n=1
i 9 N N
= ol ~2( $e,(2,2) ) + E(a,.2)
n=1 n=1

0 N /' N
= lolf - 2( Ze,e00)) + (£)
: n=1 n=1
At this point, observe that ((a — b)® = a? — 2ab +b?) = — 2ab+b*> = (a — b)* — o
SO We can write,
: N N N . 0
-2 e a) + () =S, - (0,0 - Sa,0)
n=1 n=1 n=1 n—1

and so our inner product becomes
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2

u 7 X s X 9
-z | =z +X(c,~ (z,2) -2 (z,z)". =
n=1 - v n=1 ' n:].'

The quantity (*) will be minimized if (¢, — (z,,z)) = 0 and in this case ¢, = (z_, ).
The minimum value is

N
2 2
[zl = > (2, @)
n=1

12

N N
Moreover, since||z — Ycz | = (|lz|* = 2 (z,, z)%) > 0 it follows that
n=1 n=1

N 2 2
Y (z,,z)” < |z||” for every n.
n=1
Hence the series

- 2
Z (xn ’ x)
i=1
is convergent.

Definition: An orthonormal basis for a Hilbert épace H is an orthonormal set S C H
such that the span of S is dense in H. This means that for any z € H and any € > 0, there
is a y, which is a linear combination of elements of S, such that ||z — y|| < €.

Definition: A Hilbert space is said to be separable if there is a sequence {z,}{ CH
which is dense in H. This means that for any # € H and any € > 0, there is aﬁ n such that
lz — zn|| < e.

Theorem: H is a separable Hilbert space if and oﬁly if H has an orthonormal basis S,
which is finite or countable. Two orthonormal basis in a separable Hilbert space must have

the same number of elements. .

Proof: Suppose {u,} " is a dense subset of H. Then by the Gram-Schmidt

orthonomalization process there is a finite or countable orthonormal set S = {z;}" such

that each u,, is a linear combination of elements of S. Thus S is an orthonormal basis. This

proves the first part.
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On the other hand, suppose S is a finite or countable orthonormal basis for H.

Consider the subspace T of all vectors u of the form

N
u=>y o;z;
=1

where N is a rational number, the z; are in S, and the o; are rational scalars. It is clear that

T is countable so the elements of T may be arranged in a sequence of {u,}>™. If = € H,

o0

then z = 5 B,x;. For each 4, let c; be rational with |§; — a;| < % then
' =t L L
N 00 9 2 00 \ 2 ]
xr — 2aixi < Z I,@z — ail <e€ Z 2% < %(2_(N+1)The last
i=1 i=N+1 i=N+1

quantity approaches zero as N approaches infinity. Hence for every e > 0, 3 element of T

within € of x.

O

Orthogonal Complemenf and the Projection Theorem

A subspace S of a Hilbert space H is an inner product space with the inner product
it inherits from H. If we additionally assume that S is a closed subspace of H, then S is a
Hilbert space itself, because a closed subspace of an inner product space is complefe.
Definition: Let S be a nonempty subset of a Hilbert space H. An element « € H is said to
be orthogonal to S, denoted z L S, if (z,y) = 0 for every y € S. The set of all elements
of H orthogonal to S, denoted St is called the orthogonal complement of S. In
symbols:

St={zeH:z LS}

The orthogonal complement of S* is denoted by S+ Lo (Sl)L

22



We can easily observe fhat for any subset S of a Hilbert space H, the set St is a closed
subspace of H. It is a subspace because a linear combination of vectors orthogonal to a set
is also orthogonal to the set. It is closed since if {x,,} is a convergent sequence from St,
say z,, —  , continuity of the inner product implies that (z,,, y) - (z,y)forally € S and

sox € S*t.

Projection Mapping
Definition: For any closed convex subset S of a Hilbert space H, we can define a mapping
H into H by assigning to each element = the element closest to z in S, called the

orthogonal projection of z into S.IfP (z) denotes this mapping, P(z) is not necessary

linear but is always continuous and convex.

Theorem: Any othogonal projection is conﬁnuous.

Proof: Since P is a projection, each zin the inner product space H can be uniquely
represented by z = + y wherez € Sandy € S*. By definition of orthogonality we
have z L y. It follows by the Pythagorean Theorem that ||z||* = ||z||* + ||y||®, so

IP(z)||* = ||z||* < ||z||*. This function is bounded and hence continuous.

O
We now turn our attention to a classical optimization problem and the projection
theorem which characterizes its solution. There are two slightly different versions of this
theorem: one holds in arbitrary inner product space and the other with a much stronger
| conclusion, is valid in Hilbert space. The optimization problem that gives rise to this

theorem can be stated as follows:
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Given a vector zin an inner product space X and a subspace M of X, find a vector
m € M that is closéét to « in the sense that it minimizes ||z — m||. Obviously ifz € M,
then the solution reverts to find the shortest distance between two points. There are three
situations we need fo consider:

(¢) Does such an m exist ?

(4) If it exists is it unique ?

(iii) What is the solution and how can the solution bé characterized?

The three dimensional version of the projection is shown below.

The Projection Theorem

The Projection Theorem (inner product space version)

Let X be an inner product space, M a subspace of X and = and arbitrary vector in
X. If there is a vector m, € M such that ||z — m,|| < ||z — m||Vm € M, then m, is
unique. A necessary and sufficient condition that m, € M be the unique minimizing vector
in M is that the error vector  — m, be orthogonal to M.

Proof: We first prove that if m, is a minimizing vector then then the error vector
T —m, is othogonal to M. Suppose there is an m € M which is not perpendicular to |
x — m, . To simplify calculations we assume that llz|| = 1 and set (z — m,,m) = X # 0.

Define m; € M as my = m, + Am. Then
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lz = m|l* = & = m, = Am||* = ||z = m,||* = (z = mo, Am) — (Am, & —m,)
FIAP. -
= llz = mo|* = A < [lz = m,|*

This last statement shows that if z — m, is not orthogonal to M, then m, cannot be a
minimizing vector. Finally we need to show that if z — m, is orthogonal to M, then m, is
the unique minimizing vector. For any m € M and = € X, the Pythagorean theorem
gives |

lz = m|)* = llz = my +mo = m|* = ||z = m||* + [Im, — m||* > |l& — m,|
The above implies that ||z — m| > ||z — m,|| if and only if m # m,.
In the discussion above, we have shown that if the minimizing vector exists it must be
unique and that x — m,, is orthogonal to the subspace M. By making the hypotheses a
little stronger, we can guarantee the existence of the of the minimizing vector. This can be
achieved by making the subspace M a closed space. This is shown in the following more |

powerful version.

Projection Theorem (Hilbert space version):

Let H be Hilbert space, M a closed subspace of H. Corresponding to any vector =
in H, there is a unique vector m, € M such that ||z — m,|| < ||t —m| Vm e M. A
necessary and sufficient condition that m, € M be the
unique minimizing vector in M is that £ — m,, be orthogonal to M.

Proof: The uniqueness and orthogonality is established above in the inner product
version of this theorem. All that is needed is the existence of the minimizing vector.

If x € M,then m, = x and we are done. Let assume that ¢ M and define

d= m'gwﬂx — m/||. Our goal is to produce m, € M with ||z — m,|| = d. For this
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* purpose, let {mn;} be a sequence of vectors in M such that ||z — m;|| - d. By the
pérallelogfam law, we have the following

I(m; = 2) + (@ = ma)[[* + |(m; = 2) — (@ = m)|* = 2[lm; ~ 2l + 2|z — my”.
Rearranging we get, |

m;+m; 2
2

lm; — my||* = 2|jm; — || + 2||z — my||* - 4”3: -
Since M is a linear subspace, the vector ™™ is in M since m;, m; € MV, j.
mH—mj

By the way we define d, 5

-

> d and we have
llm; — mq||* < 2|jm; — || + 2|z — my||* — 4d®
Asi—oo both ||m; — z|* and ||z — m;]|? approaches d_2 and hence
Iy — my? < 2d* +2d% — 4d® = 0
We can now conclude that ||m; — mi||>~ 0 as 4, j — co. Therefore the {m;} is a Cauchy
sequence, and since M is a élosed subspace of a Hilbert space, the secjuence {m;} has a
limit m, € M. Since the norm respects the continuity property, it follows that

|z — m,l|| = d.
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Chapter 3
APPLICATIONS
The main purpose of this section is to examine a variety of problems that can be
formulated as optimization problems in the Hilbert space by examining certain specific
examples. We shall look at instances of Approximation Theory, Game Theory (where we
prove the min-max theorem), Control-type Problems and Minimum Distance to a convex

set.

Approximation Theory
The motivation behind all approximation problems is the desire to approximate a
general mathematical situation by a simpler, more specific form. In this section we shall
look at two different situations, viz, the normal equation and the G;'am Matrices, and the

Fourier Series method of approximation.

Normal Equation and the Gram Matrices

Suppose a given decision maker wants to invesﬁgate the following situation: We
are given that y;, ¥o, ¥s, ..., ¥, all belong to some Hilbert space H, generating a subspace
M C H.Given an arbitrary vector z € H we seek a vector y € M which is closest to z.
Now y can be expressed as a linear combination of the y; say
Yy = a1y; + agy, + ... + a,y, ,wherea; € R,i = 1,2, ...,n. The problem now is
equivalent to find the «; such that the quantity

|z = yll = llz — (c1yy + coys + ... + oy )l

is minimized. The projection theorem can easily be used to solve this problem. According

to the projection theorem, the minimizing vector y is the orthogonal projection of = on M.
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Another way of putting it is that the difference vector # — y must be orthogonal to each
of the y;. Therefore we can write

(- o1y — ey — ... — oy, y;) =0
for ¢ = 1,2,3, ...,n. Writing this in expanded form and recalling that (y;,y;) = 6; jwe
have,

(y1, v1)en + W, yp)as + oo + Wn, y1)an = (2, 1)

(Y2, Yo)o1 + (y2,,y2)a25—|— ot (Yo Y2 ) = (2, Y2)

(y1,9,) a1 + W2y Yn)tn + oo + WUy Yo = (2,7,
These n equations are called the the normal equations for the minimization problem.

Corresponding to the vectors yq, Yo, Y3, ..., Yn, the squére n X nmatrix G is

-(y17y1) (yl,yQ) (yhyn)_
(Y1, 1)
vG‘_‘G(yl’yQaySa---ayn) = ’.
| (Ynoy,) (¥ Yn) |

We recall from Linear Algebra that G(yy, ¥s, Y3, ---, Y,,) is the Gram matrix of
{Y1, Y9, Y3 -, Y } - It is the transpose of the coefficient matrix of the normal equations.
The approximation problem will be solved once the normal equations are solved. In order
for the normal equations to be solvable the Gram determinant must be nonzero. That is, it

must be invertible. This can only happen if the vectors {y;, s, ys3, ---, Y } are linearly
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independent. Once this fact is established the finding of the miniminm Ddistance from z to
the subspace M can be found by Cramer's rule. Cramer's rule, which until several years
ago was of little practical importance because of the difficulties of evaluating large
determinants has now found a new audience because of computers and high speed
calculators. With the availability of high speed digital computers it is also easy to find the
inverse of the invertible matrix and hence the solution. This method was also avoided in
| the past because of the difficulty and cumbersomness of finding inverses of large matrices.
We now return our attention to the evaluation of the minimum distance between x

and the subspace M by applying the following theorem from Linear Algebra.

Theorem: Let the yq,ys,Ys, .-, Y, be linearly independent. Let d be the minimum
distance from a vector z to the subspace M generated by the y,'s, that is
d = min ||z — a1y; — @Yy — ... — Yyl

Thén

d2 — det(G(quyQ,"ﬂyngz))
det(G(y19y2 aaaaa yn)) '

Proof: If y € Mis a minimizing vector for the distance then
&E=|z-y|*=@-y,z—-y) = (x—y,z)— (—y,vy). Bythe projection theorem,
x — y is orthogonal to M and as a result (z — y,y) = 0. Therefore,

d?> = (z—y,2) = (z,2) — a1 (yy, %) —'ozg(yQ,x) — e — (Y, T)
Rearranging, a1 (y;,z) + a2 (yq, z) + ... + dn(yn, z) +d? = (z, )
The above equation along with the normal equations, yields n + 1 linear equations for the
n+1 ﬁnknbwns, Qai, g, ..., Qp, d? which is solvable by Cramer rule. The value of

d? is
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[(y) (Wew) o Waw)  (z1) ]
(¥1,%2)
det )
('yl,yn) oo (ymyn) (z7yn) . .
d2 —_ y19m) . (124 (’ymx)' (:E,J} —_— det(G(yhyQ!"'synvz))
- wiv) W) o W) O] 7 detG(y1,9a,0n))
(91.%2) ‘
det .
(ylvyn) o (ynsyn) 0
L (yl 11:) (ymz) 1_

| Fouriér Series Approximation

Finding the best approximation to = in the subspace M, where M is generated by
orthonormal vectors z1, T, . . ., T, is a special case of the general approxiniation
problem I discussed above. In this special case, we see immediately that the general
approximation problem is trivial because the Gram matrix of ‘the x;'s is simply 'the identity
matrix giving the best approximation to be .

- y=> (z, )z =} 0w
v i=1 i=1

Our goal in this section is to extended this special approximation problem slightly
by considering approximation in a closed subspace generated by an infinite orthonormal
system. Before we do that we must recall frqm analysis the following definition of

convergence of an infinite series.
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' 00
Definition: An infinite series of the form ) _z; is said to converge to an element = in a
i=1
n

normed space if the sequence of partial sums s, = Y x; converges to z; then we write

=1
o0
T = Z x; .
i=1

The next theorem establishes the necessary and sufficient condition for an infinite series of

orthonormal vectors to converge in a Hilbert space.

Theorem Let {z;} be an orthonormal sequence in a Hilbert H. A series of the form

EaZ z; converges toanelementz € H & Zlazl < 00, and in this case o; = (z, ;).
=1 =1

o0 n
Proof: Suppose that 3 |o;|* < co and let s, = 3 a; z;, then
i=1 =1

2

n
=Y |a;i[*»0 asm, n—oo.
1=m-+1 .

n
Y ooz

i=m+1

lsn = smll* =

This implies that {s,} is a Cauchy sequence and because H is complete there is an

element z € H such that Sp—T.

On the other hand, if s, converges, then it is a Cauchy sequence so E loi; | = 0. Thus

i=n+1
[e.e]
> o P =0 and Z o |* < o0.
i=n+1 i=1

To show the last part we observe that (s,, ;) = o; as soon as n > ¢, which by the
continuity of inner product implies (z, z;) = «; .
O
We recall from analysis that (z, z;) = «; is called the Fourier coefficient of =
with respect to the orthonormal basis {z; }. The Fourier coefficients and vectors are

related by the following
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2!(% z)|” < ||
1=

This relation is called Bessel's inequality and guarantees that 3| (z, ;)|*> < 0o. The

=1
00’ ‘
above theorem also guarantees the fact that > (z, z;)z; converges to some element. We
) i=1

characterize this element in the next theorem.
Theorem: Let x be an element in a Hilbert space H and suppose {z;} is an orthonormal

sequence in H. Then the series

)
=1

converges to an element y in the closed subspace M generated by the z;'s. The "error"
vector z — y is orthogonal to M.

Proof: Convergence is guaranteed by the last theorem and by Bessel's inequality.

Since M is closed y € M. The sequence of partial sums s, = Y (z, z;)z; =y € M.For
Z:]. ’

each j and n > j we have |

n

(= 8y 25) = (:c - Y :ci)xz.,xj> = (z,2;) — (z,2;) = 0.

Therefore by the continuity of the inner product lim (z — s,, ;) = (z — y,z;) = 0 for |
. n—00

each j. Thus z — y is orthogonal to the subspace generated by the z;'s. Again using the
- continuity of the inner product we can conclude that = — y is orthogonal to the closed
subspace generated by the z;'s.
O
It is now clear that if a closed subspace generated by the orthonormal set of {z;} is
the whole space, then any vector in the Hilbert space H, éan be expanded as a series of the

z;'s with coefficients equal to the Fourier coefficients (z, z;). In fact to express every

[e.¢]
x € H as the limit of an infinite sequence of the form ) a; z; it is necessary that the
i=1

closed subspace generated by z;'s be the whole space.
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Suppose again that we are given indepéhdent, but not necessarily orthonormal
Vectors Yy, Ys, Ys, ---» Y, generating a subspace M of Hilbert space H and we wish to find
the vector y € M C H which minimizes ||z — y||. This time rather than seeking to obtain
y directly és a linear‘ combination of the y;'s by solving the normal equations, we can
simply employ the Gram-Schmidt othogonalization procedure and then the Fourier series
approximation as above. First we apply thé Gram-Schmidt othogonalization procedure to
{Y1, Y2, Y3, --» Yn}, and obtain the orthonormal set {x1, xy, ..., x, } generating M. The
vector y can then be written in terms of thg Fourier coefficients as

y =y (z,z)z;

i=1

and (z — y) L M. Thus our original optimization problem can now be solved with
relative ease since We have orthonomalized the inciependent vectors. Since the _solution to
the approximation problem is equivalent to the solution of the normal equations, we can
conclude that the Gram-Schmidt procedure can be interpreted as an algorithm for
inverting the Gram matrix. In fact the Gram-Schmidt procedure consists of solving a series
of minimum norm approximation problems by the use of the projection theorem. So we
can solve the minimum norm approximation on the subspace generated by
{Y1,Y2, Y3, -, Yn} BY applyinglthe Granﬁ-Schmidt procedure to the sequence

{Y1, Y, Y3, --r, Up, }: The optimal error = — y is found at the last step of the process.

Minimum Distance to a Convex Set
(Closest Point Property)

The closest point to a convex set is of fundamental importance to many
approximation problems. The following theorem, 'cdncerning the minimization of the

norm, is illustrated below and is a direct extension of the proof of the projection theorem.
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Cx-m
‘Minimum distance to a convex set‘
Theorem_: Let zbe a vector in a Hilbert space H and let M be a closed convex subset of
H. Then there is a uhiqﬁe vector m, € M such that
| | o —mll < llz —m|
for ali m € M. Furthermore, a necéssary and sufficient condition that m, be a unique
rriinimiziﬁg vector is. that (z — my,m — mo) <Oforallme M.

- Proof: To show existence, let {m;} be a sequence from M such that

o ,
| lz —mill»d =y lle—mll
We now apply the parall'elogfam law to get v
2 ’ 2 : ‘ mi+m;
s —ml1* = 2lim; = | +2lim; — all* - 4w — 4

. 5+ ; .. « ' 1...l_' . ] .
Because M is convex, == is in M; and hence ”:c — T “ must be at least d, and so

we have
' - =522

and therefore |
imi =myl* < 2lmi —2|* +2{m; - 2|* — 4d® +4d® ~ 44> = 0.
Therefore the sequence {m;} is Cauchy and hence convergent to an element m; € M.

Using the continuity pfoperty of inner product, ||z —m,|| = d.
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~ To prove uniqueness, suppose m, € M with ||z — m, || = d. The sequence {m;} has
|z — m;|| = d so by the above argument, {m;} is Cauchy and convergent. Then we
claim that ﬁ% € M (by cohv‘exity) is closer to o than d. For -

. =252 = 3@ - m + @ = m i)

and this equals -21—||:c —m, ||+ 3z —m,| =d only if z — m, is a multiple of z — m, .
Now d = ||z — m,|| = ||x — m, ||, soif z — m, is a multiple: = — m, = a(z — m,), then
la|=1. fa=1,z—m =z—m, =>m =m,

m, +m, : o e
S € M, a contradiction. .

fa= -1, z—-m =m —z ==

Thus if z — m, is not a multiple, the original quanﬁty (*) is less than d, which say that

m +m,

€ M s closer than m, a contradiction. Hence m, = m,.

We now show that if m, is the unique minimizing vector in M, then
(a:— mo,m; — mo) <0

for all m € M. Suppose to the contrary that there is a vector m, 6 M such that
(z - mo, m — m,) = € > 0.Pick any vectorm, € M, such that
mge = (1 — a)m, +am . 0 < a < 1. Since M is convex, each m, € M. Also
Iz = mall® = (1 - @)(= —m,) + a(z —m, ||’
= (1 - )|z —m,]|* + 221 - a)(z - mo,d: —m) + a?||lz —m,|?
The quantity ||z — m,||* is a differentiable function of « with derivative at & = 0 given by

= _2||$_m0”2 +2(CL‘ _bmo’x—m1)

o=

2
'j_a“x - ma”

= —2(x—m,,m —m,) = —2<0.
Thus for some positive @, ||z — m,|| < ||z — m,||. This contradicts the minimality of m.
Thus no such m, exist. -
Conversely, suppose that m, € M is such that (z — m,,m —m,) < 0 for

m € M. Then for any m € M, with m # m,, we have
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lz —m|* = ||z — m, +m, —m|’

= llz = m,|* +2(e = my,m —m) + [Im| = m|* > ]z = m,||
showing that m, is a minimizing vector.

O
Problem: As an application 6f the minimum norm problem, we consider an approximation
problem with restriction on the coefficients. Let {y;, y9,¥s, --., ¥, } be linearly
independent vebtors in a Hilbert space H. Given z € H, we seék to minimize
lz — oqy; — agys — ... — any, || where we require a; > 0 for each 3.
" Solution: We can reformulate this problem abstractly as that of finding the
minimum distance from a point z to the convex cone
M ={y:y= a1y, + oy, + ... + any,, co; > 0 for each i}
M is a closed convex cone and hence, there is a unique minimizing vector. The minimizing
vector Z = a1y; + oYy + ... + oy, must satisfy
(z— 2Z,m—-2) <0, foralme M
Setting m = Z + y; leads to
(x— z,y;,) >0 if o; >0
_and setting m = T + o;y; leads to
(z— Z,y;) <0 fori=1,2,3,...,n

with equality o;; > 0. | | |
Letting G be the Gram matrix of {y;, y9,¥s, ..., ¥, } and letting b; = (z, y;), we obtain the
matrix equation:
(i) Ga—-b=z
for some vector z with component z; > 0. We recall from linear algebra that « and b are

vectors with component represented by o; and b; respectively. Furthermore, a;2; = 0.
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Condition () above is analog of the normal equation.

‘Control Problems
- Problems of control are associated with dynamical systems evolving in time. These
types of problems usually refer to directed inﬂuéﬁce on a dynamic system to achieve a
desired result. The system itself may be physical such a Sojourner rocket heading for Mars
with a rover or a chemical plant processing milk or it may be operational such as a
warehouse“receiving and filling orders.

Often we seek a feedback in which a decision of current control actions are made
continuously in time based on periodic observations of system behavior. One may imagine
himself as a controller sitting in a control panel watching meters and turning knobs or in a
warehouse ordering new stock based on inventory and predicted demand.

Any control problem might be formulated in a vector space consisting of an
optimal control function u(t) defined on an interval [0, T]. For the motion of the rocket
being propelled vertically the governing equation may be |

@ =ult)—g |
where y is the vertical displacement, u is the accelerating force, and gis the gravitational -
force. The optimal control function u is the one which forces y(T') = h Whilé minimizing

the fuel expenditure, which we represent in this case by fOT lu(t)|dt.

Minimizing a Quadratic Objective
Let us consider an optimal control problem which seek to minimize the quadratic
objective given by
G = [y {z*(t) +u*(t)}dt

where z and u are related by the differential equation
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(1) - d”fitt) = u(t); and the initial condition z(0) is given.
We want to reduce z to zero quickly by a suitéble application of the control function u(t).
The quadratic objective represents a common compromise between a desire to make x
small while at the same time maintaining control over u(t). We can begin by replacing
equatlon (1) by the equivalent constraint
(2) ’ z(t) = z(0) + fo (t)dr.
We are now in a position to formulate the above problem in the Hilbert space
| H = Ly[0,T] x Ls[0, T
consisting of the ordered pairs (z, u) of square — integrable functions on [0, T']
with the inner natural inner product defined by

(w1, u1), (22,0)) = fo [o1(D)z(t) + 1 (£)ua ()]t
and the corresponding norm is

@ Wl = fy [2*(¢) + w2 ()] dt.

We have now defined the norm in the Hilbert space and we recall that the set of elements
(z,u) € H satisfying the constraint (2) is a linear variety V' € H. The control problem is
now one of finding the element (z,u) € V having a minimum norm.

If V is closed we have a unique solution in V. To prove that V is closed, let
{(zn,un)} be a sequence of elements from V converging to an element (z, u) For V to
be closed (z, ) must lie in V. Letting y(t) = z(0) + fot u(T)dT, we must show that

= y. Thus by the Cauchy-Schwarz inequality, applied to the functions (1) and
u(t) — u,(t), and integrating from 0 to 7" we obtain
(¥ = 2@ < tfolu(r) = un(r)Pdr < Tlu = wl

and hence ||y — 2, (t)|| < T|lu — uy||. It follows that
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ly — 2l < lly = zoll + llzn = 2ll < Tllu — unll + llzn — 2l

The two terms on The right tend to zero asn—so00 = z =y.

Game Theory
Many problems that involve a competitive element can be regarded as games. In
the usual formulation involving two players, or two antagonists, there is an objective
function whose value depends jointly on the action employ by both players. One player
attempts to maximize this objective, and the other attempts to minimize it. Often several
problems from almost any area of mathematics can be intermixed to produce a game.
Some game theoretic problems are of the pursuer-evader type such as a fighter plane
chasing a bomber. Each player has a system he controls but one is trying to maximize the
objective (fime to intercept for instance) while the other is trying to minimize that
objective.
As another example, we consider é problem of advertising or campaigning by two
students of California State University, San Bernardino running for Student Body
- President. Two opposing students, A and B are running and must plan how to allocate
advertising resources (A and B dollars respectively) among n distinct departments and
groups. We can let z; and y; represent; respectively, the résourceis allocated to department
i by candidate A and B. We assume that there are currently a total of u undecided votes
in the whole university and u; representing thevn,umber of unde;:ided in department <.

According to some determined mathematical model, the number of votes a given

candidate received in each department is

(Amount of money spent by a candidate in a department)(Number of undecided in that department)
(Total amount spent by the candidates in the department)
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Using this model the number of votes going to candidates A and B from department 4 will

be

LTl Yili
2 29 2 2
Tty Ty

respectively. The total difference in votes between the number of votes received by A and

B will then be

n"
Ti—Y;
P QU'.

Candidate A will seek to maximize this quantity while Candidate B will seek to minimize

it.

Min-Max Theorem of Game Theory
Before we present and prove the min-max theorem we need some background

facts . Let X be a normed space and X* its normed dual space. Let A be a fixed subset of
X and B a fixed subset of X*. In this game player A selects a vector from the strategy set
A while his opponent player B selects a vector from his strategy set B. When both players
have selected their respective vectors the quantity < z,z* > is computed and player A
pays the amount to player B. Thus A seeks to make his selection so as to minimize

< aﬁ, x* > while B seeks to maximize < z,z* > . Assume for thé time being the

existence of the quantities

Qo __ min max

— ze€A zxcB <z, T* >

max min
QO ~ zxeB zcA < :\L’,SC* >

Consider first the viewpoint of A in this game. By selecting z € A, he looses no more

max

than +*€B

< z,z* >, hence by proper choice of z, say z,, he can be assured of loosing
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min

no more than Q°. On the other hand player B by selecting z+ € B, wins at least a zed

< z,z* > s0 by a judicious choice of z*, say z,* he can be garantee a win of at least Q,.
It follows that Q, < < z,zx > <Q°. IfQ° = Q, We have a draw and there is a well-
determined pay-off value for bptifnal play by bbth players. The nﬁﬁ-max theorﬂemy simply
states that for approrpriate sets A and B, Q° = Q,.

We now present fhe proof of the min-max theorem based on duality. For simplicity
this version of the proof is for reflexive spaces that is in spaces where (X*)" = X. This
proof of the min-max theorem make extensive usé of the following Fenchel Duality
Theorem which we state without proof. Before we state the Theorem we give the
following definition.

Definition: In correspondence to a convex functional f deﬁned‘ on aconvex set Cina

vector space X, we define the convex set [f,C] in R x X as |
[f,Cl={(rz)eRxX:zeC, f(z)<r}

Theorem: (Fenchel Duality Theorem). Assume that f and g are, respectively, convex and

concave functionals on the convex sets C and D in a normed space X. Assume that C N D

contains points in the relative interior of C and D and that either [f, C] or [g, D] has

nonempty interior. Suppose further that p = E'gfm p 1f(x) — g(x)} is finite. Then

b= eonp 1F@) = 9@} = . np {9°(@) — (")}

where the maximum on the right is achieved by some z; € C* N D*. If the infimum on

the left is achieved by some z, € C N D, then

max

ol <@y > = f@)] = <z,z)> — f(z,)

and
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min
zeD

(<35> - g(@)] = <) > —g(co)
Theorem (min-max): Let X be a reflective normed space and let A and B be compact
convex sets of X and X*, respectively. Then ‘

min  max max min

€A T*E ’ ~ T zxeB zcA < z, T* >

Proof: Define a functional f on X by
f(a:) = x':':’g <z, Tk >
| The maximum exists for each z € X since B is compact. fis also continuous and convex
on X. We seek an expression for
| o f(@)
which exists because of the compactness of A and the cont_inuity of f. We now apply the

Fenchel duality theorem with the associations: f - f, C -+X,g—0,and D - A.

We have immediately the following associations

(1) B _ D*—»X*{
(2) : @) = ;’;ﬁ <z, TH >

We further claim that
(3) v C*=B

(4) f @) =0

To prove (3) and (4), let 7 ¢ Band by using the separating hyperplane theorem, let

1 € X and abesuchthat < z,2] > — <z1,2" > > a > 0 forallz* € B.Then
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<zt > - 0 :’e";l < z,z* > can be made arbitrarily large by taking x = kx; with
k > 0. Thus |

Pl<za)> - f(z)] = o0
and z ¢ C". |

max

mep < T,x" > attain a maximum value of

Conversely, if 2] € B, then < z,z] > —
0 at z = 0. This establishes (3) and (4).

Since

i ax max min
w";‘; f(x) = x*:}];nx* g*(x*) = z+eB zcA <z, T* >

the theorem is proved.

In the previous section we considered in some detail the problem of approximating an
arbitrary vector in a Hilbert space by a vector in a given finite-dimensional subspace. The
projection theorem led to the normal equations which could be solved for the best
approximation. A major assumption in such problems was the finite dimensionality of the
subspace from which the approximation was chosen. Finite dimensionality not only
guarantees closure (and hence existence of a solution) but leads to a feasible computation
procedure for obtaining the solution.

In many important and interesting practical problems the subspace in which the
solution must lie is not finite dimensional. In such problems it is generally not possible to
reduce the problem to a finite set of linear equations. However, there is an important class
of such problems that can be reduced by the projection theorem to a finite set of linear
equations similar to the normal equations. In this section we study these problems and
their relation to the earlier approximation problem. We begin by pointing out a trivial

modification of the projection theorem applicable to linear varieties.
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Theorem: (Restatement of the Projection Theorem) Let M be a closed subspace of a
Hilbert space H. Let z be a fixed element in H and let V be the linear variety = 4+ M.

Then there is a unique vector z,in V of minimum norm. Furthermore, «, is orthogonal to
Proof: This is proved by translating V by — z so that it become a closed subspace

and then applying the projection theorem. This is shown below.

Minimum norm to a linear variety
At this point we should note that the minimum norm solution z, is not orthogonal
to the linear variety V but to the subspace M from which V is obtained.
A special kind of linear variety is of particular interest in optimization because it

always leads to a finite-dimensional problems. This is the n-dimensionallinear
n

varietyconsisting of points of the form = + ) a;z; where {z,, z,, z,, ..., z_} is a linearly
=1

independent set in H, and z is a fixed vector in H. Problems which seek minimum norm

vectors in an n-dimensional variety can be reduced to the solution of n - dimensional set of

normal equations.
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Chaptér 4
OPTIMIZATION IN THE BANACH SPACE

Mathematicians take great care to formulate problems arising in applications as
equivalent problems in Banach spaces rather than problems in other incomplete norm
spaces. The principal advantage of a Banach space in optimization problems is that when
seeking an optimal vector maximizing a given objective, it is possible to construct a
sequence of vectors with each member superior to the preceding member, the desired
optimal vector is then the limit of the éequence. In order that the scheme be effective and
complete, the limit must be in the space, which is always true since a Banach sﬁace is
complete.

In a Hilbert space, we can introduce the notion of orthogonal coordinates through
an orthogonal base, and these coordinates are the values of bounded linear functionals
defined by vectors of fhe base. The projection theorem which we used extensively to study
optimization in the Hilbert space can be extended to a Banach space by the Hahn-Banach
theorem. The Hahn-Banach Theorem, the most important theorem for the study of
optimization in linear spaces, can be stated in several equivalent ways each having its own
particular conceptual advantage. One of the forms called the 'extension form' serves as an
appropriate generalization of the projection theorem from Hilbert space to normed spaces
and thus provides a méan of generalizing many of the results of minimum norm problems;
In a nutshell, this version extends the projection theorem to optimization problems having
nonquadratic objectives. In this manner, the simpler geometric interpretation is preserved |
for the more complex problems. Another version, not discussed in this project, states in
simpler form that given a sphere and a point not on the sphere there is a hyperplane

separating the point and the sphere. This version together with the associated notions of
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hyperplanes and duality principles form a basis for many optimization problems in Banach

Spaces. ' - o ;

K Hah‘n-Banach Theofem
Before proving the extension version of Hahn-Banach theorem, we need the following
definitions. |
Definition: Let f be a linear functional defined on a subspace M of a vector space X. A
linear functional F is said to be an extension of f if F is defined on a subspace N which
property contains M, and i_f, on M, F is identical with f.In this case we say F is an
extension of f from M to N.
In simple terms, the Hahn-Banach Theorem states that a bounded linear functional
f defined on a subspace M of a normed linear space can be extended to a bounded linear
functional F defined on the entire space and with norm equal to the norni of f on M, that
is A
IEN =1 llyy = b, 40
Definition: A real valued function p defined on a real Véctor space X is said to be a
sublinear functional on X if
1. p(z +y) < p(z) + p(y) | forallz,y € X
2. p(az) = ap(x) fora>0andz € X.
Theorem:(Hahn-Banach Theorem, Extension Version) Let X be a relal linear normed
space and p a continuous sublinear functional on X. Let f be a a linear functional defined

on a space M of X satisfying f(m) < p(m) for all m € M. Then there is an extension F
of f from M to X such that F(z) < p(z) on X.
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Proof: This theorem is true in any arbitrary normed linear spéce, but this version o
of ‘the proof assums that X is separable. The general idea here is to extend f one -
dimension at a time andvapply induction. |

Suppose y is a vector in X but not in M. Consider all elements of the subspace

(M + ) - M V {y}. Such an element = has a unique representation of the form
z =m + ay, wherem € M and a a real scalar. An extension gof ffrom Mto M V {y}
has the form | |
9(z) = f(m) + ag(y)
and, hence, the extension is specified by prescribing the constant g(y). We must show that
this constant can be chosen so that g(z) < p(z)on M V {y}.

For any two elements ml and m, in M, we have

f(my) + f(m,) = f(m, +m,) <p(m, +m,) < p(m, —y)+p(m, +y)
or

f(m,) — p(m, —y) < p(m, +y) — f(m,)
and hence | \

men i [f(m,) = p(m, —y)l < 0, [p(m, +y) — f(m,)]
Therefore there is a constant k such that

o lf(my) = p(m, = )] <k < V0 [p(m, +y) = f(m,)]
For any vector z = m +ay € M V {y}, define g(z) = f(m) + ak. We need to show
that g(m + ay) < p(m + ay).
If ais positive, then

g(m+ay) = ak + f(m) = a[k + £(3)] < a[p(T +v) - F(T)+/(T)]

= ap(Z +y) = p(m + ay)
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If a is some negative number, say a = — b < 0, then

g(m —ay) = — bk + f(m) ?b[_k+f(%)] <blp( —v) - f(5) +f(3)]
= bp(% —y) = p(m — by) |
Thus g(m + ay) < p(m+ay) for all aand gis an extension of f from Mto M V {y}
Now let {z,,z,,...,z,, ...} be a countable dense set in X. From this set of
vectors select, one at a time , a subset of véctors, {v,,Y,5-- Y, ...} whichis
independent and independent of the subspace M. The set {y,,y,,..., ¥, ...} together
with the subspace M generaté ra subspace S dense in X.
| The functional f can be extended inductively to a functional g on the subspace S
by exfending ffrom M to M V {y,}, then to [[MV{y}]V {yz}] , and so on.
Finally the resulting g, which is continuous since p is, can be extended by
continuity from the dense subspace S to the space X. Suppose z € X, then there exists a

sequence {z, } of vectors in S converging to . Define F(z) = lim g(z_). F' is obviously

linear and f(z)+ g(z,) < p(z,) = p(z)so F(r) < p(z) onX. O

Corollary 1: Let f be a bounded linear functional defined on a subspace M of a real
normed vector space X. Then there is a bounded linear functional F' defined on X which is
an extension of F and which has norm equal equal to the norm of f on M.

Proof: Set p(x) = || f||, ||lz|| in the Hahn-Banach Theorem. Then pis a continuous

sublinear functional dominating f.
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Minimum Norm Problems In General Norm Spaces

We end this section by considering the question of determining a vector in a
subspace of a Normed space which best approximates a given vector = in the sense of
‘minimum norm.

We recall that if M is a closed subspace in a Hilbert space, there is always a
unique solution to the minimum norm problem and the solution satisfies the othorgonality
condition. Forthermore the projéction theorem leads to a linear equation for determining
the unknown optimizing vector. In an arbitrary normed space, the optimizing vector, if it
exist, may not be unique and the equations for the optimal vector will generally be
nonlinear.

‘Asan example that of the difficulties encountered in an arbitrary normed space, we
consider a simple two dimensional minimum norm problem thét does not have a single

unique solution

Example: Let X be the space of pairs of real numbers = = (£, £,) with ||z|| = ;"f; &
Then a convex set can have a minimum which is not unique.

Solution: Let M be a Subspace of X consisting of all those vectors having their
second components zero, thatis M = {m = (a,0) } and consider the fixed point
x = (2,1). The minimum distance from z to M is 1 since ||z — m|| = 1 Va € M.

This situation is shown below.

)
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Minimizing vectors

> > . N,
> > KR D W > &

| 2 3

The minimum norm theorem of this kind in general normed spaces, contain all the
conclusions of the projection theorem except the uniqueness of the solution. When
uniqueness yholds it is fairly easy to show the set must be convex and closed. Uniqueness
may be recovered if the normed space, satisfies the condition of uniform convexity,
namely, if given any two elements z, y in a unit disc (that is each elements is of unit norm)
such that | ‘

eyl 2 e>0
there exist a 6 greater than zero, depending only on ¢, such that

1%l < 1=
Hille, E. and Phillips, R. have shown (5) that many of the properties of the minimum norm
problems hold more generally in any Banach spacé with uniform convexity property. We
note that any Hilbert space is trivially uniformly convex.
| Furthermore, the solution to the minimum norm problem introduces a duality

principle stating the equivalent of two extremization problems: one formulated in a
nérmed space and the other in its dual. Often the transition from one problem to its dual,
results in significant simplification or enhances physical and mathematical insight. Some
infinite-dimensional problems can be converted to equivalent finite-dimensional problems
by consideration of the dual problem. In a dual'space there are two equivalent version of

- optimization problems. One in X called the primal problem and the other in X" called the
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dual‘problem. The problems are related through botﬁ the optimal values of their
respective objective ﬁlnctic)nals and an alignment condition on their solution vectors.
Since in many spaces alignment can be explicitly characterized, the solution of either
problem often lead directly to the solution of the other. Duality relations such as this are
therefore often of extreme practical as well as fheoreticai significance in optimization
problems. This is simply due to the fact that the Hahn-Banach theorem establishes the
existence of certain linear functionals rather than vectors and establishes the general rule,
that minimum norm problems must be formulated in a dual space if a solution existence is

. to be guaranteed.
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