

California State University, San Bernardino CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations

Office of Graduate Studies

5-2021

FROM SELF-SUFFICIENCY TO IMPORT DEPENDENCE IN THE REPUBLIC OF THE MARSHALL ISLANDS: DATA ISSUES AND CHALLENGES

Debra L. Claypool California State University, San Bernardino

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

Part of the Food Security Commons, Food Studies Commons, Growth and Development Commons, Health Economics Commons, Other International and Area Studies Commons, Political Economy Commons, and the Regional Economics Commons

Recommended Citation

Claypool, Debra L., "FROM SELF-SUFFICIENCY TO IMPORT DEPENDENCE IN THE REPUBLIC OF THE MARSHALL ISLANDS: DATA ISSUES AND CHALLENGES" (2021). *Electronic Theses, Projects, and Dissertations.* 1261. https://scholarworks.lib.csusb.edu/etd/1261

This Thesis is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

FROM SELF-SUFFICIENCY TO IMPORT DEPENDENCE IN THE REPUBLIC

OF THE MARSHALL ISLANDS:

DATA ISSUES AND CHALLENGES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Social Sciences and Globalization

by

Debra L. Claypool

May 2021

FROM SELF-SUFFICIENCY TO IMPORT DEPENDENCE IN THE REPUBLIC

OF THE MARSHALL ISLANDS:

DATA ISSUES AND CHALLENGES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Debra L. Claypool

May, 2021

Approved by:

Kevin Grisham, Committee Chair, Geology

© 2021 Debra L. Claypool

ABSTRACT

Although it appears likely that the profoundly asymmetrical political and economic relationship between the United States and the Republic of the Marshall Islands (RMI) has contributed to the abandonment of traditional agriculture, import-dependency, and a decrease in quality of life for the citizens of the RMI, limits in existing quantitative data make it impossible to model exactly how this occurred. Therefore, rather than seek to model this causal relationship, the researcher employed three existing ethnographic studies to establish a quantitative measure of the transformation itself. Using additional government documents to supplement the existing data, a measure of relative percentage of imports to exports was constructed. This allowed a simple quantitative analysis of the transformation from self-sufficiency to dependency on food imports that occurred in the years between 1949 and 2014 in the Republic of the Marshall Islands, which is consistent with the literature. Peculiarities in the data were also discussed in light of historical and contextual considerations, particularly the history of U.S. nuclear testing in the RMI. Further, the limitations in available data in Pacific Island region, and among Territories and former Territories of the United States were examined more closely. Using a data set comprising twenty governmental and international data banks, with twenty indicators for each of the twenty nations, the effect of nation size, population, and political affiliation were each examined in light of relative data availability. The conclusion of this preliminary analysis suggests that the limitations in available data for Pacific

iii

Island nations, as well as U.S. Territories and former Territories, is not due to the remoteness of their location, nor to small size, nor to low population. Rather, this research strongly suggest that it is the dependent relationship with the United States that effectively limits the data availability for any given nation. This is observed in data sourced through the United Nations, the World Health Organization, the World Bank, the International Monetary Fund, and others. It is concluded that further research into this topic is necessary to enable fair and thorough investigation of the economic and demographic impact of decisions made by developed nations, particularly on vulnerable nations such as the RMI.

ACKNOWLEDGEMENTS

My deepest thanks to the faculty of the Social Sciences and Globalization Department who inspired me to examine the world with a wide lens, and to the professors in the Mathematics Departments who shared the beauty of numbers.

DEDICATION

This humble work is dedicated to those who fill in the gaps.

TABLE OF CONTENTS

ABSTRACTiii
ACKNOWLEDGEMENTSv
LIST OF TABLES
LIST OF FIGURESix
CHAPTER ONE: THE TRANSITION FROM SELF-SUFFICIENCY TO IMPORT DEPENDENCE
Introduction1
Research Question2
A Model of Cause and Effect2
A Transformation of Focus
A Second Issue Emerges4
Significance of This Study5
Methodology6
Key Findings7
Road Map8
CHAPTER TWO: LITERATURE REVIEW
A Brief History of the Republic of the Marshall Islands
The Nuclear Legacy 12
The Change in Consumption Patterns15
The Impact of Import Consumption16
The Role of Preferences17
The U.S. Role in Imports18
CHAPTER THREE: DATA AND METHODS

Overview of Data Sources	21
Food Consumption Data Sources	22
Spoehr, 1947	22
Naidu, Greenhouse, Knight, and Craighead, 1980	24
Ahlgren, Yamada, and Wong, 2014	27
Variables	
Theoretical Significance	30
Why Do This	30
CHAPTER FOUR: FINDINGS	31
The Question	31
The Data	31
The Spoehr Data	31
The Naidu Data	
Estimating Imports from Consumption of Domestic Foods .	
The Ahlgren Data	40
Summary of Findings	45
Discussion	47
The Importance of Location	47
Special Considerations in the Naidu Data	
CHAPTER FIVE: LIMITATIONS OF DATA	52
The Question	52
Data	53
Nations Included	54
Data Sources	56

Methods5	7
Relative Maximum Versus Absolute Maximum	8
Data Availability for the Republic of the Marshall Islands59	9
37% Versus 43%59	9
The Pacific Island Nations62	2
The Size Effect6	3
The Population Effect6	5
Lingering Political Relationships68	8
The Commonwealth of the Northern Mariana Islands	8
The Republic of Palau6	8
The Republic of the Marshall Islands68	8
The Federated States of Micronesia69	9
Summary of Findings72	2
CONCLUSION7	3
APPENDIX A NUTRITION DATA SOURCE MATERIAL	4
APPENDIX B DATA AVAILABILITY IN THE PACIFIC ISLAND NATIONS AND U.S. TERRITORIES	1
REFERENCES	5

LIST OF TABLES

Table 1. Domestic Food Versus Imported Food Consumption, 1949 32
Table 2: Yearly Consumption of Domestic Foods, 1980
Table 3: Domestic Food Versus Imported Food Consumption, 1980 37
Table 4: Observed Dietary Practices in the Marshall Islands, 2009-2013 40
Table 5: Domestic Food Versus Imported Food Consumption, 2009-2013 43
Table 6: Changes in Food Consumption, 1949-2014 45
Table 7: Data Availability for the Republic of the Marshall Islands
Table 8: Data by Percentage of Total Maximum61
Table 9: Pacific Island Nations, Ranked by Percentage of Data Available 62
Table 10: Pacific Island Nations, Ranked by Size 63
Table 11: Pacific Island Nations, Ranked by Data Availability and Size64
Table 12: Pacific Island Nations, Ranked by Population Size
Table 13: Pacific Island Nations, Ranked by Data Availability and Population 66
Table 14: U.S. Affiliation and Data Availability
Table 15: Current and Previous U.S. Territories, excluding Cuba and Hawaii 70
Table 16: Data Availability for Current U.S. Territories 71

LIST OF FIGURES

Figure 1: Shot Able Test, Bikini Atoll, July 1, 1946.	13
Figure 2: Map of the Marshall Islands	26
Figure 3: Domestic Versus Imported Food Consumption, by Percentage	45
Figure 4: Change in Consumption Level of Domestic Foods	46
Figure 5: Change in Consumption Level of Imported Foods	47

CHAPTER ONE:

THE TRANSITION FROM SELF-SUFFICIENCY TO IMPORT DEPENDENCE

Introduction

For nearly 4000 years - from 2000 B.C. until the early twentieth century the Pacific Island nation now known as the Republic of the Marshall Islands (RMI) was entirely self-sufficient, supplying its population with a balanced, sustainable diet. Located above the equator, halfway between Hawaii and Australia, the RMI was relatively isolated from the rest of the world until the early 17th century, when traders and whalers began visiting the atolls, establishing trading posts and missions. Marshallese life remained mostly unchanged, however, until the early 20th century when the warring world took notice of the strategic location occupied by the tiny atoll nation. During World War I, the Marshall Islands were first occupied by Japan in 1915, then Germany until WWII, and then in 1946 the United States fought and claimed the islands, establishing a permanent military base on Majuro, eventually claiming the nation as a territory of the U.S.

Thus began the profound transformation of every aspect of life in the Marshall Islands, and in particular the loss of food self-sufficiency which is the subject of this paper. Despite the earlier Japanese influence, which emphasized trade and production of copra, as late as 1947 the nation was still self-sufficient in food production, and the bulk of land use was organized around traditional agriculture. However, in the period between 1946 and the end of the twentieth

century, the Marshall Islands steadily increased its dependence on imported foods and aid from the U.S., sacrificing self-sufficiency in the process.

As the use of traditional foods waned and dependence on imported foods increased, chronic and devastating health problems in the RMI were widely observed. Similar transformation of nutrition, with similar health outcomes, have been observed in other Pacific Island Nations, but in the Marshall Islands the relationship with the U.S. is particularly problematic. Following WWII, after the Marshall Islands had been declared a trust territory of the United States, the U.S. Department of Energy began a program of nuclear testing in the northern, centered around the northwestern, or Ratak Atoll, particularly Bikini and Enewetak atolls. The testing began in 1946 and ended in 1958. The devastation caused by the nuclear bombs, the effect of the radiation, and the subsequent studies of the effects of radiation on the Marshallese all complicate the question of nutrition, aid, and self-sufficiency. Throughout this research, the long shadow of the U.S. nuclear testing was continually present, and will be discussed throughout this paper as it may impact the issues that are addressed.

Research Question

<u>A Model of Cause and Effect</u>

My original intent was to examine this transformation, using demographic and economic data available through United Nations, World Health Organization, World Trade Organization databases, and other government and nongovernmental databases, in order to provide a model of cause and effect relationship between the U.S. intervention in the RMI and these fundamental changes that seem to be its consequences.

However, a deeper examination of these sources revealed a significant problem: sufficient quantitative economic and demographic data concerning the RMI prior to 1981 was not readily available in any of them. No causal model could be tested or even constructed using quantitative data accessible through public or academic channels. Due to the historical conditions dominant in 2020, travel to the RMI to gather additional data was ruled out as an option. As the research evolved, this effect became a true detriment to any kind of traditional quantitative analysis.

A Transformation of Focus

Thus, the focus of the project shifted to accommodate these limitations of data. Rather than attempt to model a causal relationship, the research presented here aims to provide a deeper understanding of the data sources which are indeed available, analyzing them more thoroughly in order to establish the groundwork for future research in this field.

This paper utilizes existing ethnographic data to model the extent of the transformation from self-sufficiency to import-dependence through an examination of consumption patterns. Although this transition is consistently referenced, along with two of the three data sets this study employs, no attempt to analyze this transformation has been previously undertaken. Given the dearth of data regarding the changing conditions in the RMI, and the dire circumstances

in which the nation currently finds itself, research which grounds the changes in data is deeply needed.

<u>A Second Issue Emerges</u>

During the course of researching this topic, the challenges faced in the search for data were so significant that the challenges themselves became a secondary research issue. Although the dietary transformation of the RMI and the dearth of economic and demographic data seem unrelated, when the lens is widened, it becomes possible to see how both these issues are indeed theoretically connected through ongoing political, historical, and economic relationships between the RMI and the U.S., complicated by geography and development, which in fact makes this an ideal subject for globalization research. The patterns of availability of data are not random; they have meaning, and the meaning is related to the processes of globalization.

Thus, under the heading of "Limitations of Data," this paper also points out the challenges which accompany research in the Pacific Island region, with territories and former territories of the U.S., and in regards to the Republic of the Marshall Islands in particular. Using a preliminary sampling of sources, across these regions, this section lays the groundwork for future research in availability of data by geographical, economic, and political variables. The concluding discussion section addresses the significance of this aspect of the research, particularly for globalization studies.

Significance of This Study

Although it is widely discussed in the literature, prior to this study, the transition from food self-sufficiency to dependence on imports in the RMI had not yet been quantitatively analyzed. Anecdotal evidence combined with ethnographic data from two widely-cited 1947 and 2014 data sources regarding nutritional intake are generally used to describe the transformation. However, no attempt had been made to quantify this data for the purpose of statistical analysis of the trend. In addition, the 1980 Department of Energy data set included in this study has not been previously used in conjunction with the other two. The addition of the 1980 data and the corresponding documentation provides an additional data point, as well as content which allows the 2014 data to be expanded and more fully analyzed. This use of the 1980 data to expand the 2014 data creates an important continuity in the data which allows for a simple statistical analysis of the trend of change which clearly supports the hypothesis that the transformation from food self-reliance to import dependency has indeed taken place.

Although only tangentially related to the research question itself, it the belief of this researcher that the deeper examination of the limitations of data is significant in the larger context of globalization studies and theory. Acknowledging and analyzing such significant gaps in data availability brings attention to the "elephant in the room": where is the data, and why isn't it available? Assumptions that data does not exist, due to remoteness of location,

small population size, or some other inconsequentiality of the community, need to be challenged. In this case, the research shows that none of these factors explain the lack of data; in fact, there is another factor which is definitely of interest to scholars of development and globalization.

Inconsistencies of data can have a substantial impact on the kinds of questions researchers ask, and how they are answered. Important causal relationships can be left unexplored and unexplained, and over time the same mistakes can be repeated. In an increasingly globalized world, one in which data continually expands, blank spots in that data need to be acknowledged and corrected for full understanding to take place.

Methodology

The primary section of this research project analyzes three existing ethnographic data sets in order to illustrate the changing pattern of food consumption in the Marshall Islands from 1949 through 2014. In addition to analyzing the data tables, content analysis is employed to further quantify the data. It does this by analyzing the entries which contain mixed-ingredient preparation using documentation of widely-used indigenous recipes and preparations contained within the text of the studies, and across the studies. Using simple statistical analysis of this data, it is possible to quantify more accurately the relative percentage of domestic versus imported foods consumed within each observation. This allowed for a statistical analysis which in turn quantified the trend away from traditional foods and toward imported foods. This

pattern is consistent with anecdotal and epidemiological data, examined in the literature section.

In the secondary research section, a sample of data sets which illustrate the limitations of existing data are quantified and analyzed. Employing a "metaanalysis" of data sets across Pacific Island nations and current and previous territories of the United States, the data in this section compares twenty existing data sets from the United Nations, World Bank, World Health Organization, U.S. Bureau of Economic Analysis, and several other international data-gathering organizations, across the Pacific Island nations and across U.S. island territories and former territories. Data availability is compared across nations, across groupings of nations, and across political standing vis-à-vis the U.S., and the findings are discussed.

Key Findings

The key findings in this study are the following. First, the analysis of the food consumption data shows that there has indeed been a profound shift in the food consumption patterns in the Marshall Islands, both in the rural areas and in the urban centers, consistent with the literature. Although the available quantitative data regarding food consumption patterns is based on qualitative observation, this trend is so striking that a quantitative change can certainly be affirmed.

Secondly, analysis of the set of data sets reveals a relative lack of quantitative data regarding imports, agricultural production, and other economic

indicators before 1991. The Republic of the Marshall Islands became an independent nation in 1979, and in 1986 signed the Compact of Free Association with the United States. Comparison with Pacific Island Nations of equal political standing vis-à-vis the U.S., similar remoteness, size and composition, and similar population reveals that the most significant factor in data availability is none of these variables, but rather the political relationship with the United States. Other similarly small, equally remote Pacific Island nations with very small populations nevertheless have relatively greater amounts of quantitative data available throughout the duration of many of the datasets. On the other hand, large, populous territories of the U.S. such as Puerto Rico, as well as smaller Pacific Island nations such as Guam, American Samoa, and the Northern Mariana Islands exhibit the same striking dearth of data. These results, although they must be seen as a preliminary finding due to the limitations in the sample size, point toward the need for greater research in this area.

Road Map

This paper begins with a brief history of the Republic of the Marshall Islands, and an examination of the legacy of nuclear testing by the United States military on the RMI. It continues with an overview of the literature regarding the dynamics of changes in the food consumption in the region. In Chapter Three, an overview of data sources is followed by an in-depth examination of the Spoehr 1947 data, the Naidu et al. 1980 data, and the Ahlgren et al. 2014 data sources. Chapter Four presents the question which will be examined, and then analyzes

the data sets, confronting the various questions that arise with each. The Summary of Findings included in this chapter summarizes the findings in a single table and two charts, which is followed by a discussion regarding the impact of data location on results, and special considerations involved in the data collected by the Brookhaven Laboratories researchers.

Following this, Chapter Five considers the secondary question of the limitations of data encountered in the course of this research. It discusses the need to examine this data availability, in light of the relevance to future research. The Data section enumerates the nations considered in this part of the study, and the data sets and questions included. The Methods sections discusses the statistical considerations involved in this preliminary analysis. Finally, the Data Availability for the Republic of the Marshall Islands section illustrates the motivation for this part of the project.

Finally, the data is examined in two groups. First, the Pacific Island nations data is ranked by size and then by population, and the data availability percentages rankings are compared to these. Then the Territories and Former Territories of the U.S. are considered, and the data is likewise ranked and discussed. Finally, the findings are discussed, and the rationale for further research is presented. The conclusion summarizes the findings of the paper.

CHAPTER TWO:

A Brief History of the Republic of the Marshall Islands The lands currently known as the Republic of the Marshall Islands were originally settled around 2,000 B.C. by Micronesian islanders, highly skilled navigators who are the ancestors of the current day Marshallese. The Marshall Islands are located north of the equator in the Pacific Ocean, approximately halfway between the Philippines and Hawaii, and are made up of two roughly parallel atoll chains, which surround two deep volcanic lagoons. The northwestern atoll chain, dubbed Ralik (Sunset), contains Kwajalein Atoll and associated islets around one deep volcanic lagoon, while the southeastern atoll chain, or Ratak (Sunrise), contains Majuro atoll, the capital and location of the U.S military presence, and like Kwajalein, also surrounds a deep volcanic lagoon. Although the atolls and outer islands that comprise the inhabited Marshall Islands contain limited vegetation, and only a shallow lens of fresh water, for nearly 4,000 years the Marshallese were self-sufficient and healthy, thanks to a perfectly balanced seasonal rotation of indigenous crops, the abundance of coconut, and plentiful sea life.

Europeans began visiting the islands in the 16th century. In 1561, Spanish explorers encountered the islands, and throughout the 17th and 18th centuries Spanish, German, British, and Japanese explorers, whalers, and traders passed

through the islands, stopping to evangelize or set up shop in trading posts and small homesteads. In general, the Marshallese people were welcoming and did not display the aggression of some of their Pacific neighbors. As a result, relationships with European traders and whalers were often long-standing (Hezel, 1995).

Despite this, it was not until the imperialist era of the 18th century that the islands became an object of interest to European powers. In 1788 the islands were officially mapped and "named" by the British captain Charles Marshall. In 1874 the European community recognized Spain's claim on the Marshall Islands, but in 1885 the German Empire signed a treaty with several island chiefs and assumed a protectorate relationship with the islands (Hezel, 1995). German missionaries evangelized the Marshallese to Christianity, which is the official religion of the Marshall Islands to this day.

German occupation continued until 1914, when the Japanese forces captured the islands during World War I. Following the Treaty of Versailles in 1919, Germany renounced its Pacific territories, and the Marshall Islands were ceded to Japan. Japan continued to occupy the islands until World War II.

In 1944, the United States invaded the Marshall Islands, landing first on Kwalajein atoll, driving out the Japanese forces occupying the islands in a series of bloody battles which involved Marshallese natives. Following their defeat in World War II, the Japanese were forced to yield rulership of the Marshall Islands to the United States as part of the 1947 Trust Territory of the Pacific Islands

agreement, which included also Micronesia, Palau and the Northern Mariana Islands. Thus, the Marshall Islands officially became a trust of the United States, and military bases were installed on Majuro and other islands.

The Nuclear Legacy

Following World War II, the U.S. began making plans to test nuclear weaponry in the Pacific. In 1946 the U.S. government met with the leaders of the Marshall Islands and convinced them to permit testing on the outer atolls. The inhabitants of Bikini Atoll were moved to Rongerik Atoll in order to begin the process of testing nuclear weapons. Shot Able, pictured below, was the first nuclear bomb test in 1946, detonated at Bikini Atoll, followed by Shot Baker a few weeks later. In 1948 Shot Yoke, a fission bomb, was detonated on Bikini Atoll. Testing continued through 1949 and 1950, then in 1951, the inhabitants of Enewetak Atoll were relocated by the U.S. Navy, and under Operation Greenhouse, nuclear tests at Enewetak Atoll, commenced. This was followed by Operation Ivy in 1952, which included the hydrogen bombs Shot Mike and King Shot, as well as others.

Two years later, in 1954, the infamous Castle Bravo nuclear bomb was detonated on Bikini Atoll. This was the first of six weapons in the Castle series. Fallout from Castle Bravo spread across the region, contaminating everything on Rongelap and Utirik atolls, which were inhabited at that time. Ashy snowflakes fell onto the inhabitants of the nearby islands to be consumed with the food and water, and through the skin. (Lessard, n.d.). Testing continued with Operation

Sandstone, and finally concluded with Operation Hardtack 1, a series of 35 total tests, in 1958 (AHF, 2019).

Figure 1: Shot Able Test, Bikini Atoll, July 1, 1946.

Source: Atomic Heritage Foundation, 2019.

The Marshallese were evacuated from Bikini and Enewetak Atolls before the testing. Immediately following the contamination of Rongelap and Utirik due to the 1954 Bravo detonation, those people were also evacuated. They were permitted to return to Rongelap in 1957, and at that time Brookhaven National Laboratory researchers began regular medical examinations of the inhabitants. Sponsored by the U.S. Atomic Energy Commission, this research has recently been seen as suspect in that it allowed the Marshallese to be exposed to continual radiation in order to study the effects (AHF, 2019). Certainly the undated government report does not hesitate in presenting detailed findings in this regard (Lessard, n.d.). Residents were permitted to return to Bikini Atoll in 1969, but were removed once again in 1978, due to high levels of contamination and the resultant health issues. In 1980 the people of Enewetak were permitted to return. Researchers from Brookhaven continued to monitor their exposure to radioactive materials, and one of the sources used in this paper is part of this research effort.

Much of this research was hidden from the public, along with the extent of the damage done to the Marshallese people. In the late 1970's, pressure to release the information began to build. In 1983, Marshallese activist Darlene Keju made an historical presentation at the World Council of Churches assembly in Canada, bringing the plight of the Marshall Islands to the world stage for the first time (Johnson, 2014). This led to pressure in the United Nations for greater accountability on the part of the United States, which granted the RMI political independence under a Compact of Free Association in 1986. A Marshall Islands Nuclear Claims Tribunal was established at the same time, to help compensate the survivors of the nuclear testing.

The relevance of this history between the United States and the Republic of the Marshall Islands shall be explored throughout the course of this paper. The abuse of the islands, the questionable motives of the U.S. research agenda, along with the legacy of hidden data and misinformation, casts a long shadow over any research into the RMI, informing the questions which need to be answered regarding every change that has occurred in the lives of the Marshall islanders.

Since this time, the Republic of the Marshall Islands has continued to struggle with health challenges resulting from the lingering contamination of the islands. The dislocation of communities has led to overcrowding in the capital, Majuro. In addition, the transition from native foods to imported foods has had severe health effects which have exacerbated these problems.

The Change in Consumption Patterns

Although it is widely discussed in the literature, prior to this study the transition from food self-sufficiency to dependence on imports in the RMI had not yet been quantitatively analyzed. Indeed, similar data availability obstacles have been observed throughout the Pacific Island region (Englberger et al., 2003; Hawkes et al., 2009; Johnson, 2017). Anecdotal evidence combined with ethnographic data from two widely-cited 1947 and 2014 data sources regarding nutritional intake are generally used to describe the transformation (B. Davis, 2008; Palafox et al., 2003; Yamada & Palafox, 2001). However, no attempt has been made to quantify this data for the purpose of statistical analysis of the trend.

In addition, the 1980 Department of Energy data set included in this study has not been previously used in conjunction with the other two. The addition of the 1980 data and the corresponding documentation provides an additional data point, as well as content which allows the 2014 data to be expanded and more fully analyzed. This use of the 1980 data to expand the 2014 data creates an important continuity in the data which allows for a simple statistical analysis of the trend of change which clearly supports the hypothesis that the transformation from food self-reliance to import dependency has indeed taken place.

The Impact of Import Consumption

As early as 1949, anthropologist Alexander Spoehr observed that the people were healthy when they consumed their native diet, but that their preference for imported foods, particularly white rice and sugar, would inevitably have a negative impact on their health (Spoehr, 1949, p. 152). And in fact, that is what occurred. In the years between 1946 and 2014, imported foods did indeed "supplant the native diet", as Spoehr predicted, and the health of the Marshallese plummeted, reaching crisis levels by 2014. The 2019 Global Nutrition Report profile of the Marshall Islands categorized the RMI as "off course to meet all all targets for maternal, infant, and young child nutrition" (Global Nutrition Report, 2019, p.1), a widely-shared assessment (Ahlgren et al., 2014; B. Davis, 2008; Johnson, 2017; Palafox et al., 2003).

The Role of Preferences

A notable trend in the literature is to suggest that a preference for imported foods over traditional foods, inherent to the Marshallese people, is largely responsible for this transition. This model focuses on Marshallese preference and choice, suggesting that when imported foods were made available, the traditional foods were willingly abandoned. Thus, Spoehr (1949) notes,

Since the war, circumstances have forced the villagers to rely more heavily again on their native foods. But the liking for store foods remains, and if they increase in quantity in the stores and the villagers can obtain enough cash income to procure them, the trend toward greater consumption of store food relative to locally produced food may well be resumed. (Spoehr 1949, p. 152).

This observation is repeated throughout the ethnographic literature, including Naidu et al, who observed, "There is a tendency for the islanders to prepare and cook less local foods as imported foods become more and more available.' (Naidu et al. 1980, p. 9) More recently, Ahlgren et al. observed,

Canned tuna and sardines (in oil or tomato sauce) are often preferred to their abundant fresh counterparts because of both convenience and prestige. (Ahlgren et al. 2014, p. 73)

A related theme is lack of understanding of nutrition on the part of the Marshallese. Introducing the Diabetes Wellness Program sponsored by

Canvasback Missions Inc and funded by Loma Linda University, Brenda Davis describes the urban diet of the Marshall Islands which is responsible for the chronic diabetes levels as being the result of lack of understanding. She writes,

Many locals believe that when it comes to nutrition, the only that matters is having a full stomach. The value of fresh fruits and vegetables is largely unappreciated. (Davis 2018, para. 7)

This recurring theme in the literature identifies the cause of import dependence as residing primarily in the Marshallese themselves. A more nuanced interpretation of this theme is offered by Thow and Snowdon in their examination of the impact of changing trade policies in the Pacific Island nation region: They note the introduction of imported foods had the following effect:

As this occurred, Western attitudes toward traditional Pacific foods – particularly a dislike of the 'uncivilized' staple crops, and concern over the lack of meals as defined by Western-educated nutritionists – conferred a high status to the consumption of imported foods. (Thow and Snowdon, 2019, p. 148)

This observation forms part of their model of the impact of trade policy on dietary change throughout the region. Although their focus is the region as a whole, their causal model lays significant groundwork for research into the RMI in particular.

The U.S. Role in Imports

A more critical and less prominent theory regarding the predominance of imported foods suggests that the U.S and other developed nations imported foods to the Pacific Islands region which damaged the recipient communities. In their exhaustive review of the literature concerning food and nutrition in the Federated States of Micronesia (FSM), Engleberger, Marks and Fitzgerald conclude that U.S. nutritional programs undertaken in the FSM were "often inappropriate for small island communities"(Englberger et al., 2003, p.6) These include the United States Department of Agriculture supplemental feeding programs, which provided surplus commodities to the FSM, and the Expanded Food and Nutrition Education Program, which promoted U.S. style foods and nutrition information, promoting the use of imported and non-native foods (Englberger et al., 2003).

This research forms a part of the literature regarding the relationship between food policy, trade, and health in vulnerable nations (Feeny, 2007; Firth, 2006; Henningham, 1995; Yamada & Palafox, 2001). An important contribution to the field is the compilation of articles presented at the Forum on Trade and Healthy Foods and Diets, which took place at McGill University in 2007. In partnership with the Department of Ethics, Equity, Trade and Human Rights of the World Health Organization, the contributors included Anne Marie Thow, and Wendy Snowdon, among others (Hawkes et al., 2009). Although the topics considered in this compilation cover the range of issues regarding the transformation of consumption patterns, only the Thow and Snowdon research specifically addressed the Pacific Island nations (Thow & Snowdon, 2009).

The Federated States of Micronesia are a close neighbor to the Republic of the Marshall Islands; like the RMI they were part of the initial Trust Territories of the Pacific, and like the RMI they gained independence in the 1970's, and became sovereign in 1986, with a Compact of Free Association with the U.S. However, they do not share the same history as the RMI with the United States. The nuclear testing that took place in the Bikini and Enewatak Atolls had an extensive impact on the production of native foods, and the provision of imported ones. The disruptions caused by relocation related to nuclear testing and subsequent fallout, overcrowding in the urban center of Majuro, and overtaxing of natural resources all impact the dependence on imported foods (Ahlgren et al., 2014; Johnson, 2006; Wairiu et al., 2012). Imported foods were widely provided in the wake of the testing, although the extent of this aid is not documented (Lessard, n.d.).

It is beyond the scope of this paper to examine the full extent of the impact of the U.S. nuclear testing program in the Republic of the Marshall Islands. Such a study has been undertaken elsewhere, and indeed is an ongoing project (AHF, 2019; Johnson, 2014) However, it is impossible to ignore it. The ongoing political relationship between the U.S. and the RMI always has this devastating history as a backdrop, and research into any aspect of life in the Marshall Islands brings this tragic history to the fore.

CHAPTER THREE:

DATA AND METHODS

Overview of Data Sources

This project contains two sections, which utilize two different types of data. The first section analyzes data collected from published source material. The final results, contained in Table 6:"Changes in Food Consumption, 1949-2014", were calculated using this material.

Data for the first section of this project was diligently sought over a wide range of governmental and non-governmental documents and data locations. Finally, three data sets based on qualitative ethnographic research conducted in the RMI were identified as source material for the Changes in Food Consumption data. These three data sets will be described below. Literature referencing two of these same data sets reinforced this researcher's observation that data regarding actual food consumption patterns in the RMI is indeed limited to these few sources. These original data sets are included in their entirety in Appendix A.

Quantitative data was sought regarding import levels and domestic food production levels from 1949 to the present in order to investigate the theory that these levels were negatively correlated. This data proved even more elusive. The dearth of available data was shocking to this researcher. Undoubtedly, data exists in some form in U.S. government or local RMI archives, but it is not available to the public via open access databases.

The second section utilizes data collected from databases openly accessible via governmental and non-governmental data sources. The final results, contained in Tables 7-11, in the Limitations of Data section, were calculated from these databases. This section samples twenty large-scale databases, in order to support a discussion of the issues faced by researchers of the RMI and other similar nations. These data sources will be described in more detail below, and the entire data set is included in Appendix B.

Food Consumption Data Sources

<u>Spoehr, 1947</u>

All studies of food consumption patterns in the RMI begin with Alexander Spoehr's exhaustive and detailed anthropological study of Majuro Island and the southern atolls of the then-Marshall Islands (Spoehr, 1949). His research, conducted in 1947 but published in 1949, meticulously documents physical and cultural conditions at the very beginning of the U.S. occupation following World War II, and provides an indispensable baseline for all subsequent research in this area. Spoehr's work contains maps of land use and ownership, U.S. militarybased aerial photographs of Majuro in 1947, along with detailed inventory of food production regions. Were other similar photographic and land use documents readily available, Spoehr's work could lay the foundation for a useful geographical record of changing land-use over time.

Although Spoehr's classic ethnographic study was published by the Chicago Natural History Museum on November 17, 1949, the preliminary

foundation upon this work was built began during WWII. While serving in the U.S. Navy, Spoehr had been stationed in Majuro, and after the war ended became interested in pursuing a formal ethnographic study of the region, as he writes, "as a civilian" (Spoehr, p. 3). Yet, although the field work was officially a Chicago Natural History Museum expedition, the project was funded and supported by the Pacific Science Board of the National Research Council, which, working with the resources of the U.S. Navy Department, comprised the Co-ordinated Investigation of Micronesian Anthropology (CIMA). This was a military undertaking, working through a Museum organization. The Navy supported Spoehr directly by transporting him to Marshall Islands, by funding his research, by housing him, and by providing support staff (Spoehr, pp. 3-4). Thus, although this work seems to be entirely academic, with no military overtones whatsoever, it reflects an early military interest in the Marshall Islands that will prove to be a recurring theme.

Seven Households. Spoehr was a diligent and meticulous researcher, and the first data set used in this paper is found on page 153 of the text, in the table "Total Food Consumption by Household (June 9-29, 1947)." Listed here are quantities of types of food consumed by seven households in the area of Majuro atoll during the ten days listed. The households observed by Spoehr include six "commoner" households and one "noble" household, in accordance with the observed class divisions within the Marshallese society at that time. It is significant that he observed there to be little difference in what was consumed in
the seven households. More significant differences are observed in the manner of collecting the food, rather than in its consumption (Spoehr, p 153-154).

The drawback of this data set is that it does not detail variations in preparation of foods, or precise quantities. In this, as in the other two data sets, the percentages must be seen as approximate rather than exact. A trend is observed, rather than an exact proportion. However, given that this data set forms the baseline for all subsequent discussion of this topic, it can be appropriately employed in this project.

Naidu, Greenhouse, Knight, and Craighead, 1980

The second data set was found in a government document published by the Brookhaven National Laboratory, under contract with the United States Department of Energy, July 1980. Titled "Marshall Islands: A study of diet and living patterns", with authors J.R. Naidu, N.A. Greenhouse, G. Knight and E.C. Craighead of the Safety and Environmental Protection Division, this ethnographic study of the Marshall Islands. Unlike Spoehr's wide-ranging account of every aspect of Marshallese life, this study focused exclusively on the preparation of food, the details of food consumption, caloric intake, and the allocation of work and free time observed in men, women and children.

The location of the study also varied from the 1949 observations. Whereas Spoehr's research took place primarily in the areas surrounding the most populated atoll, where the U.S. military base was located, the Naidu et al. study took place across the Republic of the Marshall Islands, in unspecified

communities selected not only from Majuro Atoll, but also from the islands nearest to the Bikini Island Atoll where atomic testing had taken place twenty years earlier. Although this scholarly and detailed work was clearly the result of the highest professional standards, it too was produced with U.S. government funding, and reflects certain military research interests that were predominant at that time. A discussion of a related document which sheds light on the motivation of the study will be discussed below.

<u>Communities A, B and C.</u> For the purposes of the research question, the "Results and Discussion" section of the paper was utilized, in particular Tables 1, Table 2 and Table 3 in which exact quantities of all local foods consumed were carefully tabulated, based on extensive interviews and participant observation. These observations were organized around three communities: A, B and C, in unspecified locations across the RMI. Community A is described as an outer island with extremely limited access to imported foods, relying almost exclusively on traditional means of food gathering and preparation, with a highly depressed economy; Community B, an overpopulated region with low availability of local foods, with the exception of fish, but with a good supply of imported foods which are purchased using the income from fishing and significant access to U.S. government employment; and Community C, which was described as urban, crowded, with limited access to domestic foods or fishing, but with a large government food program providing maximum access to subsidized aid and U.S. imports, and having the means to purchase them (Naidu et al., pp. 8-9).

Figure 2: Map of the Marshall Islands

Source: (S. Davis, n.d.)

Although the location of Communities A, B and C are not specified, Naidu et al. gathered data across the entire stretch of the Marshall Islands, including communities in the southern and more populated regions of Majuro, and Kili, through Wotho, and up to the Bikini atoll and surrounding regions. Specifically, the areas include Rongelap in Rongelap Atoll, Utirik in Utirik Atoll, Mejit, Ailu, Wotho, Jabor in Jaliut Atoll, Killi Island, and Majuro. <u>A Notable Omission.</u> Significantly, Naidu et al.'s calculations of yearly consumption of foods did not include any imported foods. Instead, the text suggests that quantities of imported foods can be calculated using a "typical maximum diet" (Naidu et al., p. 10), which will be discussed in detail below. However, calculations based on this estimation do not match the estimations embedded in the text. The treatment of this inconsistency is discussed in the Findings section, below.

Another aspect of Naidu et al.'s data was an extremely detailed "List of Local Foods and Conversion Factors" (Naidu et al., p. 19), which described cooking methods and what could be considered recipes for domestic food preparation. For example, the varied and ubiquitous use of coconut in all its forms was detailed, which included many uses which were not immediately obvious. Coconut milk and coconut meat were included in virtually every mixedfood preparation. This provided a useful addition to the next data set in which far less detail was provided.

Ahlgren, Yamada, and Wong, 2014

The third set of data came from an ethnographic study conducted by Ingrid Ahlgren, and discussed by Ahlgren, Seiji Yamada, and Allen Wong in "Rising Oceans, Clmimate Change, Food Aid, and Human Rights in the Marshall Islands." In this oft-cited 2014 journal article, Ahlgren's observations are summarized in a single table, "Observed dietary practices in the Marshall Islands, per meal, per person," which contained the summation of data collected by

Ahlgren between 2007 and 2014 in nine unspecified atolls in the outer islands of the RMI (Ahlgren et al., p 73). This data set is by far the most problematic of the three, since it contains items such as "pancakes", "coffeebread" and "fried doughnuts", without specifying the contents of these home-baked items. A thorough discussion of the ways in which this data was adapted for use is included in the Data section, below.

Emergency Household Necessities. The Ahlgren et al. article also includes a second table, "Nutritional value of food aid supplied to Wotho during 2014 RMI drought", which in turn itemized quantities of imported foods that were provided by the RMI Emergency Operations Center to the Marshallese people living in Wotho in 2014. Further, the article describes additional items that were requested by the Emergency Operations Center but not provided by the international donors (Ahlgren et al., p. 75). This list provided an important supplemental insight into imported food items which were widely considered to be essential items for everyday food preparation and consumption. Items not considered necessary, but which are nevertheless included in the Marshallese diet, such as sugared soda and powdered drink mix, were not included in this list. Although the literature on contemporary Marshallese diet does document widespread use of these non-essential items, they were not included in Ahlgren's table (B. Davis, 2008; Palafox et al., 2003).

Using this itemized list of daily food necessities, along with the descriptions included in Naidu et al., it was possible to estimate constituent

elements of these products. Again, this data set was much less precise, and therefore presumably much less reliable than the previous two; however, with careful work, it did yield a proportional division between consumption of imported and domestic foods. It had the additional virtue of being the only contemporary accounting of food consumption available, which perhaps helps explain its importance as a reference document. Although it may seem limited in scope, this data set is widely cited and used as source material for many subsequent studies (e.g., Davis, 2008; Hawkes et al.., 2009; Johnson, 2017; Palafox et al.., 2003). Ahlgren's field research, collected in the RMI, comprises one of the few actual data sources available during this time period.

All three data sets in their entirety are included in Appendix A.

Variables

In each of the data sets, food items were sorted by the criteria, "Domestic" versus "Imports". Domestic foods include anything grown, gathered, fished or hunted on any of the islands or atolls in the RMI. "Imports" includes any foods not produced in the RMI. Anything canned was included in imports, as production of canned meats, fish or vegetables did not occur in the RMI during any of the documented periods. Salted fish, on the other hand, was produced in the RMI and was included in domestic foods, based on both Spoehr's and Naidu's description of the process.

Total food consumed was based on weight and quantity of foods. In some cases, conversions were performed to allow for more accurate comparisons. For

example, Spoehr's data includes numbers of individual limes and bananas; in order to approximate a pound unit, these were bundled into groups of six. It was not possible to calculate totals exactly, due to the imprecise measures of some of the imported foods, as well as the domestic foods (e.g., a "bag" of flour, a "tin" of biscuits). However, the standard basket of goods in the U.S. was used the standard weights and quantities as they appeared in contemporary grocery stores in each of the time periods referenced (TPH, 2020).

Theoretical Significance

Given all this, the resulting percentages obtained from analysis of this data should not be taken as statistically exact. Rather, they should be considered significant primarily as indicating trends which support what is documented in the literature regarding this topic. In addition, issues of location in data gathering impact the results. As will be discussed below, the actual trends are most likely <u>stronger</u> than this current research suggests. Thus, despite the shortcomings of the data, the results can be seen as theoretically significant.

Why Do This

The "Changes in Food Consumption" data is useful in substantiating the claims made throughout the literature, and widely observed by participants in the region. As mentioned above, it utilizes data sources that are widely referenced in a loose manner, and brings an increased precision to estimations of change in consumption patterns over time. Even with the data challenges inherent in this project, the results are strong enough to justify this additional attention.

CHAPTER FOUR:

FINDINGS

The Question

This section seeks to answer the primary research question, which is to determine whether there was in fact a decrease in the relative proportion of domestically sourced foods, in relation to imported foods in the years following WWII until 2014, and if so, of what magnitude was the percentage change. The sections below examine the relative proportions of domestic to imported foods consumed at each of the three data points represented by the source data, and the summary section examines the change over time.

The Data

The Spoehr Data

Alexander Spoehr's meticulous accounting of food consumption and type over a variety of households on Majuro atoll is summarized in a single table, "Total Food Consumption by Household, (June 9-29, 1949) The original table can be found in Appendix A.

In adapting Spoehr's original data for current use, the entries were sorted into Domestic and Imported categories, based on the description of each type given in the text. After standardizing quantities in the manner described in the Data section, above, the total was calculated, and percentages given for each food type, and for the two primary research categories.

Imported Foods	Per Household			% of Total				
Fish, canned (lbs)	1	1	3	2	3	0	2	0.30%
Meat, canned (lbs)	16	10	16	10	24	0	0	1.88%
Rice (lbs)	20	19	32	5	18	7	18	2.95%
Flour (lbs)	16	7	24	1	2	1	4	1.36%
Sugar (lbs)	11	9	9	0	8	5	3	1.11%
Biscuits			-		_	-		
(1-lb. box)	1	0	1	3	0	0	1	0.15%
Теа								
(large pots)	14	3	17	0	4	7	9	1.34%
Coffee	-		-		-	_		
(large pots)	0	4	2	0	6	7	11	0.74%
Milk (6-oz. can)	0	17	0	0	0	0	0	0.42%
	2	0	0	0	0	0	0	0.050/
(canned) (ibs)	Z	0	0	0	0	0	0	0.05%
Total imported foods						10.31%		
Domestic Foods	Per household							
Breadfruit	206	85	86	130	152	81	85	20.44%
Coconuts (green)	195	61	198	97	145	46	179	22.82%
Coconuts								
(ripe)	11	24	24	13	10	11	69	4.14%
Chicken	0	1	0	0	0	0	0	0.03%
Fish (fresh)	67	17	60	153	62	55	66	11.89%
Fish (salted)	0	5	10	1	11	0	5	0.79%
Shellfish	0	20	300	0	0	0	200	12.88%
Jekaro (qts)	133	53	14	213	152		42	15.04%
Limes (bundle of 6)	0	3	6.33	0	11.5	0	1.83	0.56%
Bananas (bundle of 6)	10	0	0	8.33	2	0	0	0.50%
Pumpkin	3	0	0	0	0	0	0	0.07%
Taro (6" roots)	0	0	0	0	0	12	14	0.64%
				Т	otal do	mestic	foods	89.69%

Table 1. Domestic Food Versus Imported Food Consumption, 1949

Source: Spoehr, 1949, Food Consumption by Household, p. 153.

As can be clearly seen in the table above, approximately 90% of food consumed in Majuro atoll during the ten days of June 9-19, 1949, was domestically sourced. Only 10% of the food was imported. It is important to note the location of this study: even in 1949, Majuro was the most densely populated and most urbanized atoll in the Marshall Islands, with the greatest access to imported food items, due to the presence of the U.S. Naval Base there. The outer islands, and the northern atolls had less access to imported foods, and thus it can be realistically theorized that these communities would have consumed even less of them. Spoehr's study does not include the outer atolls, which to relied more heavily on traditional, domestic food production and consumption. This becomes significant when the next data set is considered, which comprises data collected in the northern atolls and outer islands.

The Naidu Data

Based on research undertaken in 1978, the 1980 Naidu et al. report, "Marshall Islands: Study of Diet and Living Patterns" painstakingly documented the details of domestic food preparation and usage. In the "List of Local Foods and Conversion Factors" (p. 19) detailed descriptions of, for example, the uses and applications of coconut through every stage of development, and every method of preparation are thoroughly described.

Thus, in the following table, adapted from the original data collected by Naidu et al., no alterations were made to the overall quantities, as every quantity was meticulously calculated. However, certain foods categories were consolidated into a single group. These categories include coconut, pandanus and breadfruit products, bananas, and papayas. In the original data, these foods were differentiated based on their use and preparation, but for the purposes of this research, these distinctions are not important. Thus, the following table

enumerates the total quantities of each type of domestic food consumed over the course of one year in communities A, B, and C, and compares these quantities to a "typical maximum diet", which will be discussed below.

	Communities				
Food type (grams)	A Rural	B Fishing	C Urban	Typical Maximum	
Coconut products	1517152	498324	366574	982207	
Pandanus products	113508	72384	47918	59680	
Breadfruit products	104228	15778	22180	76250	
Arrowroot	1946	0	0	7800	
Local vegetable foods	7182	0	0	0	
Pumpkin	2000	0	1700	5000	
Sweet potato	364	0	0	5200	
Bananas	15000	6800	6000	7000	
Papayas	24720	0	4200	5200	
Fish	160368	70928	30680	110000	
Poultry	500	1200	0	4375	
Wild bird	2037	3250	200	1750	
Pork	850	500	250	3500	
Turtle	1000	41	125	1750	
Lobster	500	50	150	7000	
Giant clams	750	4250	0	7000	
Snails	11400	4250	5325	8679	
Octopus	913	7125	1013	5250	
Coconut crab	4500	350	638	7000	
Clams	2150	1075	1950	0	
Total Consumption	1971068	686305	488903	1304641	
Percentage of Typical Maximum	151%	53%	37%	100%	

Table 2: Yearly Consumption of Domestic Foods, 1980.

Adapted from: Naidu et al., 1980.

<u>The "Typical Maximum Diet".</u> Perhaps the most intriguing element of the Naidu data is the construction of a "typical maximum diet." This is an estimation

based on the calculation of the "most conservative estimate on the total gram weights of the various local foods which could conceivably be consumed under the assumption of a <u>100% local diet</u>" (Naidu et al, 1980, p.10, original emphasis), which is summarized in Table 4B of the document (see Appendix B).

<u>More Than The Maximum.</u> However, this estimation is exceeded by the observed quantity of local food consumed by Community A. In fact, the data show that Community A consumed nearly 150% of the maximum. This rather confusing statistic is explained within the text:

The interview data does not provide the "typical average" of the local food consumed by the islanders of the various communities. Rather they provide estimates which <u>approach</u> the "typical average" of local food actually consumed. An interview of forty-four questions cannot provide a direct and straight forward "typical average" of local food actually consumed. The islanders provide better estimates on food they <u>prepare</u> rather than on food <u>actually eaten</u>. (Naidu et al, 1980, p. 7, original emphasis).

Thus, the inconsistency is due to the method of data collection used in the study, in which families reported the quantity of food prepared each night, rather than the exact quantity consumed. In actual practice, the food traditionally prepared exceeds the maximum consumption level by a significant amount. Nairu et al. suggest that the widespread practice of food sharing among

extended families, along with a significant amount of wasted food, accounts for this discrepancy (Naidu et al., 1980, p.7).

Estimating Imports from Consumption of Domestic Foods

Although the exact use of this "typical maximum" is unclear, the text suggests that this estimation can be used to calculate an estimation of imported foods consumed, in the following way. Begin by assuming the estimated typical maximum diet of local foods represents what would be consumed in a "100% local diet". Subtract from that estimate the total quantity of local foods consumed in any given community. The difference between the two measures a shortfall in the diet. By default, that shortfall would necessarily represent the amount of imports that have been added into the diet (Naidu et al., 1980, p. 9). Using this method, the results should be consistent with what is found in the final row of Table 2, above. However, when this method is employed, the results appear nonsensical; clearly, an intermediate step has been employed in the use of the typical maximum estimation. This intermediate step is not specified in the text.

Reported Consumption of Local Foods. Instead, in the body of the text, the following percentages are reported for consumption of imported foods: Community A, 100%; Community B 33%, and Community C 75% (Naidu et al., 1980, page 9). As seen above, an examination of the data in the context of the written text suggests that the estimated typical maximum diet could not in fact have been used directly to generate these estimates. Instead, it appears from the conclusions cited above, that Community A may have been used as the baseline

quantity of domestic foods. If Community A consumes 100% domestic foods, then the estimates for Community B and Community C may be based on that total. However, as seen below, the percentages generated in this way are not exactly as reported in the text, either.

It is most likely that a more complex means was used to generate the abovementioned relative quantities. The document does not include that information. Thus, given what is provided in this source document, the following relative percentages have been calculated:

Domestic	Import				
	import	Domestic	Import	Domestic	Import
151%	0%	100%	0%	125.5%	0%
53%	47%	35%	65%	44%	56%
37%	63%	25%	75%	31%	69%
80%	37%	53%	47%	67%	42%
	151% 53% 37% 80%	Domestic Import 151% 0% 53% 47% 37% 63% 80% 37%	Domestic Import Domestic 151% 0% 100% 53% 47% 35% 37% 63% 25% 80% 37% 53%	Domestic Import Domestic Import 151% 0% 100% 0% 53% 47% 35% 65% 37% 63% 25% 75% 80% 37% 53% 47%	Domestic Import Domestic Import Domestic 151% 0% 100% 0% 125.5% 53% 47% 35% 65% 44% 37% 63% 25% 75% 31% 80% 37% 53% 47% 67%

Table 3: Domestic Food Versus Imported Food Consumption, 1980

Adapted from Naidu et al., 1980.

Splitting the Difference. Since there is no clear indication of the way in which the original data was analyzed, it seemed appropriate to take an average value between the rates derived from the typical maximum diet estimations, and the Community A baseline created by this researcher. Taking the average value across all three communities, and over both methods of estimation, the final percentages of 67% domestic to 42% imported foods is obtained. Seasoned statisticians will note that these two percentages do not add up to 100%. This

presents problems in the context of this research, in which percentage of total consumption is the object of consideration.

Thus, due to the peculiarities of this data set, for use in this project, only the Community A baseline estimations will be used. This is also consistent with the data embedded in the Nairu text. Thus it will be concluded that average estimated percentage of domestic food consumed in 1980 was 53%, while imported foods comprised 47% of the Marshallese diet.

Taking an Average. A second question arises in regards to this data set: is it appropriate to take an average value across the three communities, A, B and C? The variation between the most isolated and least isolated communities' rate of consumption of domestic food is 75%. The most isolated island with almost no access to imports was observed to consume more than 100% domestic foods (since there was waste and sharing), while the least isolated community with abundant access to imported foods, and agricultural aid, consumed only 25% domestic foods. The description of Community C seems to match the description of Majuro; while the description of Community A seems to match the outer islands, and the community in which all domestic food is difficult to find, but U.S. government employment is plentiful, may be in the northern atolls where there is heavy government involvement. Although, as mentioned above, the communities are not specified in this document, this would seem to reflect a representative sample of the Marshall Islands domestic economies of the time. Yet this range of percentage is still unusually large.

This points to an issue that is somewhat buried in this data but nevertheless highly relevant. In 1978, when Naidu et al. were collecting data in the northern islands surrounding Bikini Atoll, much of the land was completely contaminated with radioactive waste. Although the particular data collection sites are not mentioned by name, the U.S. government, through the Atomic Energy Commission, was actively collecting data in the Bikini Atoll and Rongelap region on the effects of radioactive fallout from the extensive nuclear testing in the RMI. Only fourteen years after the 1954 Castle Bravo bombing of Bikini Island, in 1968, Marshallese had returned to resettle Bikini Island. Only three years after the same bombing - in1957 - the residents of nearby Rongelap had also returned. In 1978, around the time of the Naidu research, the inhabitants of Bikini Island were once again evacuated; in 1986, the inhabitants of Rongelap were also removed, due to excessive levels of radiation. As was mentioned above, these highly radioactive areas were among the areas included in this study. Undoubtedly, the involvement of AEC impacted the provision of imported foods, but it is not possible to quantify by what extent.

For this reason, it is the conclusion of this researcher that it is, indeed, appropriate to take an average across the three communities represented in this study, and to presume that Naidu et al. were indeed seeking a fairly representative sample of the range of Marshallese life at that time and under those conditions.

The Ahlgren Data

The journal article which contains the third data set utilized in this study differs from the Spoehr and Naidu in several important respects. First, there is no U.S. military or government involvement or sponsorship in this project. The article, co-authored by Ingrid Ahlgren, Seiji Yamada and Allen Wong, using data collected by Ingrid Ahlgren, was published in the journal "Health and Human Rights". Although, like Spoehr and Naidu et al., Ahlgren also undertook ethnographic research, her work did not focus on identifying precise quantities of food, but instead provided a more qualitative overview of living conditions in the RMI, with the express intent of garnering support for aid reform and greater attention to health policy intervention. Nevertheless, this small data set is often cited by researchers in this topic. In this Ahlgren also included important data gathered from the RMI Emergency Operations Center during the years 2009-2014, which have been used to supplement the consumption data, as was described above.

The Ahlgren data is nowhere near as detailed as either Spoehr's or Naidu's. The original table summarizing her observations regarding a typical weekly menu for Marshallese residents, both in Majuro and on the outer islands, between the years of 2009-2013 is reproduced below.

Day	Meal 1	Meals 2 and 3 (1 serving each)
1	Pancakes (eggless)	Rice* + canned tuna**
2	Fried dougnuts	Rice + Spam** + pandanus

Table 4: Observed Dietary Practices in the Marshall Islands, 2009-2013.

3	Ichiban ramen	Rice + ½ a local lobster or crab
4	Pancakes (eggless)	Rice + local fish + pandanus
5	Coffeebread (eggless)	Rice + canned tuna
6	Coffeebread (eggless)	Salted fish + 1/3 breadfruit
7	Rice + Spam	Coffeebread + local fish

* serving of rice observed per person (per meal) is 3-4 scoops of cooked rice. ** servings of tuna or Spam (and occasionally corned beef) is one 8-oz. can (in oil) shared between 4-6 people, equaling 1.5 to 2 oz, per person.

Source: Alhgren et al., 2014.

The level of precision is illustrated by the unspecified preparation of foods, and the indeterminate quantities. However, what makes this data important is that it can be more deeply analyzed, using information found in the Naidu text, as well as the additional information included in the RMI Emergency Operations list of requested items, found in this document in Appendix A.

Clearly, the data collected by Ahlgren serves a different purpose than that collected by Naidu et al.. The absence of consistent measurement or description of constituent parts of food items defies any attempt to calculate caloric intake or grams of protein. Instead, a general impression of relative quantities of domestic to imported, natural to processed foods is given. Elsewhere in the text additional information is given regarding "serving size" of rice (3 cups), and supplemental foods consumed in an informal manner (additional Ramen, coffee and tea). Finally, the lists of foods requested by RMI Emergency Services suggest the most commonly used household items, as shall be examined below. Given all this, it was possible to derive a more concretely itemized list of foods consumed. The report includes the following observation:

In addition to these regular meals, Marshallese commonly snack on uncooked ramen noodles throughout the day, and drink tea and coffee throughout the day and night. A typical serving of coffee (one 16-20 ounce cup) includes one to two tablespoons of instant coffee, one to three tablespoons of instant creamer, and four to six tablespoons of sugar. (Ahlgren et al., 2014, p. 73)

Additional protein sources mentioned in the text but not included in the table include chicken, which was reportedly eaten approximately twice monthly, along with pig, dog, and turtle which were prepared every few months, for special occasions. In addition, Ahlgren, Yamada and Wong report that islanders show a marked preference for canned fish to fresh. The observation that canned goods are perceived as more desirable than their fresh counterparts, even in the rural areas, is substantiated by other researchers (B. Davis, 2008; Johnson, 2017, 2017; Naidu et al.., 1980; Palafox et al.., 2003). This trend holds over all categories of food, including vegetables, due to perceived value and prestige associated with imported and canned foods (Ahlgren et al., p. 73).

For the sake of comparison, the Ahlgren et al. table has been modified to more clearly illustrate the percentage of domestically produced versus imported foods consumed on a weekly basis, by serving. Foods which are produced using imported ingredients have been roughly broken down into their constituent ingredients, in order to more closely evaluate the consumption of basic imported goods. These constituent ingredients are consistent with the minimum

consumption basket identified by the RMI Ministry of Health (See Appendix B, Table 2). Each food category has been evaluated as part of the total percentage, thus allowing us, in a broad way, to compare data from Spoehr and Naidu.

<u>The Problem of Units.</u> The units employed have been by far the most troubling issue in converting this data. The original data employed the concept of "serving". In this qualitative way, a "serving" of pancakes might be the replacement for a "serving" of pandanus or breadfruit. However, when breaking down a serving of pancakes, for example, the constituent ingredients are a "serving" of sugar, of flour, of baking soda, oil, and possibly canned or dried milk. Clearly, the "serving" of sugar contained within a "serving" of pancakes is not an equivalent-sized serving. Thus, every effort has been made to estimate the total quantities in cups for these ingredients. This estimation yields the following:

Imported Foods	Servings	Constituent ingredients, estimated quantity	Servings	% of total servings consumed
Pancakes (eggless) (flour, oil, sugar, baking soda)	2	Sugar (cups)	3.5	5.04
Fried donuts (flour, oil, sugar)	2	Flour (cups)	3.5	5.04
Ichiban ramen	11	Baking powder (cups)	0.25	0.36
Rice (3-cup serving)	6	Oil (cups)	0.5	0.72
Biscuits	7	Powdered milk (cups)	0.25	0.36
Coffeebread (eggless): (flour, oil, sugar, baking soda)	3	Ramen	11	15.83
Canned meat (Spam)	2	Rice (cups)	6	8.63
Canned fish/tuna	1	Canned meat (serving)	2	2.88
Coffee (instant coffee, creamer, sugar)	14	Canned fish (serving)	1	1.44
Tea (tea, sugar)	14	Biscuits	7	10.07
		Coffee (cups)	14	20.14

 Table 5: Domestic Food Versus Imported Food Consumption, 2009-2013

		Tea (cups)	14	20.14
		Total imported foods		90.65%
Domestic Foods				
Pandanus	2	Pandanus	2	2.88
Shellfish, local	1	Shellfish	1	1.44
Fish, fresh	1	Fish, fresh	1	1.44
Fish, salted	1	Fish, salted	1	1.44
Breadfruit	1	Breadfruit	1	1.44
Other protein	0.5	Other protein	0.5	0.72
		Total domestic foods		9.35%

Adapted from Ahlgren et al., 2014.

Thus, from this data it becomes clear that the composition of foods consumed in 2014 is roughly 9% domestic, and 91% imported.

The Missing Ingredient. Most notable in this chart is the absence of coconut, which traditionally formed a large percentage of the Marshallese diet, both as a foodstuff and as a beverage. In 2014 a substantial drought in the RMI wreaked devastating damage to the coconut groves and other indigenous plants, moving consumption patterns even further toward imported foods and beverages, as aid flooded into the RMI (B. Davis, 2008). This chart does not include soft drinks, which have elsewhere been documented as comprising a large percentage of sugar and liquid intake (Johnson, 2017). Given the predominance of both coconut products, and sweetened soft drinks observed by others, it is difficult to determine whether this is an oversight in Ahlgren's data, or in fact the foundational transformation it would appear to be. The lack of more thorough accounting is a flaw in this data set. Nevertheless, the trend toward

imports and away from local foods is unmistakable. By 2014, over 90% of food consumed was imported, while less than 10% was domestically sourced. Indeed, this is the root of the crisis that is so widely observed in the RMI.

Summary of Findings

Taking these data together, the overall findings are as follows:

 Table 6: Changes in Food Consumption, 1949-2014

Year	% Domestic	% Imports
1949	90%	10%
1980	53%	47%
2014	9%	91%

Considering this data in graph form emphasizes the magnitude of the transition.

Figure 3: Domestic Versus Imported Food Consumption, by Percentage

Separating out the consumption rate of domestic food clearly illustrates

the downward trend in the consumption of domestically sourced foods:

Figure 4: Change in Consumption Level of Domestic Foods

Likewise, examining the upward trend of the imported foods consumed illustrates the steadily increasing consumption of these foods:

Figure 5: Change in Consumption Level of Imported Foods

Thus, it is clear from this data that the transformation to a primarily domestically sourced diet to a primarily imported diet has indeed taken place in the Republic of the Marshall Islands.

Discussion

The Importance of Location

It must be mentioned that location of data collection impacts the results of all three of these data sets. As universally observed, the more remote the island or atoll, the less access to imported foods, and thus the more likely to consume domestically sourced foods. As we have seen particularly in the Naidu data, which, there is a wide range of food consumption patterns across the outer islands to the urban centers. Majuro is the most densely populated and the U.S. government center of the Marshall Islands. Even in 1949, Spoehr observed that the consumption of imported foods is highest there, and lowest in the outer islands (Spoehr, p. 152). The Spoehr data was collected in Majuro; thus, the consumption of imported foods can be presumed to be on the high end of the current range. In contrast, Ahlgren collected data on the outer islands, which traditionally rely most heavily on traditional foods. Thus the Ahlgren data can be presumed to be on the low end of the current range. Only the Naidu data samples across diverse regions.

What this means for the results is that the overall national percentage of domestic foods consumed is most likely higher than what appears in the Spoehr data, and most likely lower in the Ahlgren data. This means that the transformation from domestic food to import dependence is likely more pronounced than this data suggests.

Special Considerations in the Naidu Data

If it is taken as merely an ethnographic study of the diet and living conditions of the Marshallese people in 1980, the Naidu et al. document is quite puzzling in that while it focuses obsessively on the preparation and consumption of domestic foods, at the same time it ignores the use of imported foods, and quite loosely estimating the rate of import consumption. Presumably, such a detailed report could easily have accounted for the quantity of imports consumed at the same time as it measured the quantity of domestic foods and the way in which they were prepared. Further, the consumption of imported foods would necessarily be mixed in with the consumption of domestic foods, since most meals which contain imported foods also contain at least some domestic foods

with them (such as rice and fish, or breadfruit and sugar). However, no imports are included on any of the food preparation lists or the estimation of caloric value. The meticulously quantified barrage of food details is perplexing when contrasted with the cavalier estimation of imports.

It is important, then, to step back and consider that the Naidu et al. study, undertaken by the Safety and Environmental Protection Division (SEP) of the Brookhaven National Laboratory, as part of the Northern Marshall Islands Radiological Survey (NMIRS) of 1978, was funded by the United States Department of Energy (Naidu et al., p. 1), and the stated objective is as follows:

The goal of this study is the evaluation of dietary and living patterns among the inhabitants of the Northern Marshall Islands. These data will be used as input to the dose estimation models (external and internal) that are being developed for the Marshallese who continue to inhabit or will inhabit areas previously contaminated by radioactive fallout from U.S. Pacific Nuclear tests (Naidu et al., p. 1)

A "dose estimation model" is an estimate of the amount of radiation a person will receive, either externally through the skin, or internally, through the consumption of irradiated food, water, or air (Mori et al., 2019). At the time of this study, an ongoing U.S. Department of Energy research effort known as Project 4.1 was actively gathering data on the effects of radiation on Marshellese islanders who had been exposed to the fallout from the extensive nuclear testing

in the northern islands surrounding Bikini Atoll (AHF, 2019). When considered in the context of this purpose, the minutely quantified details of living habits and consumption patterns were significant in the context of dose estimation. Naidu et al.'s meticulous research allowed the researchers at Brookhaven to correlate observed radiation levels in the food and environment with outcomes of thyroid cancer and other results of radiation exposure and ingestion.

Examination of an undated Brookhaven National Laboratories slide report No. 403041, entitled "Review of Marshall Islands Fallout Studies," apparently from this same era, references food consumption and preparation data to estimate the amount of radioactive ash that was ingested directly following the first tests, and in the subsequent years (Lessard, n.d.). Estimated quantities of ingested radioactive ash are carefully calculated using data that could only have been gathered by experienced anthropologists such as G. Knight and J.R. Naidu, who remained in the RMI for several years during this time (Naidu et al., p. 1). The undated Brookhaven reports contains a chillingly scientific account of radiation levels measured from urine and bodily samples, combined with photographs of Marshallese people employing the very methods of food preparation and consumption so carefully described in the Naidu report. For example,

During the 1970's diet and living patterns for the Marshallese were studied. The data was derived from literature, answers to questionnaires, direct observation by us while living with the Marshallese for periods

extending from months to years, and from direct participation in their activities. Complex interactions, such as, the gathering of local foods, the receipt of food aid through programs, like school-lunch, and typoon-relief, and in recent times, the availability of cash for the purchase of imported foods were observed. The data provided us with necessary information for input into models that were used to assess the radiological impacts attributable to fallout ((Lessard, n.d., p. 53).

At the time this study was being conducted, activists within the RMI and internationally were beginning to pressure the U.S. for recognition and reparations regarding the damage done by the nuclear testing in the RMI (AHF, 2019; Henningham, 1995). This begs the question whether the Brookings findings had some impact on the vast increases in imported foods that subsequently arrived in the RMI as aid had any correlation with the findings of these studies. This question is, however, beyond the reach of this study and will remain for future researchers to consider.

CHAPTER FIVE:

LIMITATIONS OF DATA

The Question

The original intent of this research project was to attempt to model the exact relationship between levels of U.S. agricultural aid provided to the Marshall Islands and dependence on that aid. As shown above, the transformation from food self-sufficiency to import dependency has been established; however, in order to create a model of causality, data regarding the actual levels of aid provided was required.

As mentioned in the Introduction, this data was not forthcoming in the large-scale data sets which are necessarily employed for economic and demographic analysis. It is an understatement to say that this was an obstacle to research. But in and of itself, this was an interesting research outcome. The question presented itself: what patterns could be seen in data availability, or lack thereof, and what might that imply for future research?

The following section presents a preliminary analysis of this research question based on the data sources used in the course of this project. It should be noted here that a more thorough examination of this topic is required, and the observations contained below represent trends observed within this limited data set rather than statistical certainties. Additional research on this topic is clearly called for; a future project would necessarily include a scientifically random and representative sampling of available data sets, which would then permit a deeper

data analysis. Because there is no claim that the current data set is scientifically sampled, no regression analysis has been performed. The following data simply represents the results found in the course of research on this topic. No data points have been eliminated or added; in that sense, it is an organically if not scientifically sampled set.

Nevertheless, given these limitations, the findings in this section are striking enough to warrant further examination of this topic.

Data

Searching for those indicators which would support the hypothetical relationship between aid received, or levels of imports, or agricultural production, and consumption of imported foods, the researcher turned to large-scale quantitative data sets such as those published by the World Bank, the United Nations, the International Monetary Fund, the World Health Organization, and others. Meeting an absolute dead end in finding data on the RMI during the years of interest, the researcher began compiling a secondary data set, entitled "Availability of Data". Working now on the level of nations rather than on individuals, the "Availability of Data" data set includes the first year in which data was recorded, and the total years of recorded data for each nation, in each of the twenty data sets, across chosen variables. This data set in its entirety is included in Appendix B.

Nations Included

The nations included as cases in this data set were chosen in two groups. The first group comprises the Pacific Island Nations, including the regions of Micronesia and Melanesia, but excluding Australia and New Zealand. These nations were chosen on the basis of location and size. The second group comprises Territories and former Territories of the U.S., excluding those Territories which later became states. These nations were chosen on the basis of common relationship to the U.S.

The twenty nations in total are included in this part of the study are: American Samoa, the Northern Mariana Islands, the Federated States of Micronesia (FSM), Fiji, French Polynesia, Guam, Kiribati, The Republic of the Marshall Islands (RMI), Nauru, New Caledonia, Palau, the Philippines, Puerto Rico, Samoa, the U.S. Virgin Islands, Solomon Islands, Tonga, Tuvalu, and Vanuatu. Several nations belong to both the Pacific Island Nations group and also the Territories or former Territories groups.

Of these, the nations included in the Pacific Island nation group are:

- American Samoa
- The Commonwealth of the Northern Mariana Islands,
- The Federated States of Micronesia (FSM)
- The Republic of the Marshall Islands (RMI)
- Fiji
- French Polynesia

- Guam
- Kiribati
- Nauru
- New Caledonia
- Palau
- Papua New Guinea
- Samoa
- Solomon Islands
- Tonga
- Tuvalu
- Vanuatu

The nations included in the Territories or Former Territories are:

- American Samoa (U.S.Territory)
- Guam (U.S. Territory)
- The Northern Mariana Islands (U.S. Territory)
- FSM (Independent 1979, Compact of Free Association 1986)
- RMI (Independent 1979, Compact of Free Association 1986)
- Palau (Independent 1981, Compact of Free Association 1994)
- Philippines (Independent, 1946)
- Puerto Rico (U.S. Territory)
- U.S. Virgin Islands (U.S. Territory)

Those former territories which are now states are excluded from the list. Also excluded is Cuba, due to the added complications implied by political organization during the Cold War era.

Data Sources

The data sources, along with the variables chosen as test variables, which were sampled include the following:

- World Health Organization, "Global Health Expenditure Database" (WHO, n.d.-a)
- World Health Organization, "Global Health Observatory(WHO, n.d.-b)"
- World Health Organization, "Covid-19 Situation in Western Pacific"(WHO, 2021)
- U.S. Bureau of Economic Analysis (BEA, 2020)
- U.S Bureau of Labor Statistics (BLS, n.d.)
- Pan American Health Organization (PAHO, 2020)
- United Nations, "Commodity Trade Statistics Database Trade of Goods (UNData, n.d.)"
- International Monetary Fund, "International Financial Statistics Balance of Payments" (IMF, n.d.)
- World Health Organization, "Population."
- U.N. Data Bank, World Development Indicators (WB, n.d.). This Index was created using a variety of data sources to create the most complete data set for each variable:

- "Adjusted net income per capita" (current \$US)
- "Agricultural land" (% of land area)
- "Food Imports" (% of merchandise imports)
- "Gross Domestic Product" (current \$US)
- "Net bilateral aid, United States" (current \$US)
- "Net official development assistance and official aid received" (current \$US)
- "Diabetes prevalence" (% of population, ages 20-79)

As can be seen by the above list, the search was not limited only to those economic and demographic indicators which would support the initial research question. When nothing else was available, demographic data regarding simple variables such as population size were also sought. Admittedly, this makes the data set less consistent; however, as the purpose is to illustrate limitations of data rather than to present a statistically reliable source, it serves the purpose required. A systematic and more extensive study of this topic may certainly be undertaken in the future.

Methods

For each data set examined, data concerning the variable was sought for each nation in the subject list. For each nation, the first year that data appeared in the data set, for that one variable, was noted. This was repeated for each nation, and for each variable. A "maximum data available" value was created based on the first year data for the variable was observed for any nation in the subject list. This was used to calculate a percentage value for each nation on each variable.

The percentage of available data was calculated by dividing to maximum possible years of data availability by the years of data availability recorded for each nation.

Relative Maximum Versus Absolute Maximum

It will be noted that this maximum data available value was based on the set of subject nations included in each group, rather than on all nations included in the global data set. This resulted in a relative maximum rather than the absolute maximum for any data set. Every nation in the subject group shared at least one characteristic vis-à-vis the global set of nations as a whole; either inclusion in the Pacific Island region, or dependent political relationship with the United States.

Thus, the level of data availability is ranked within similar nation groups, rather than across all global nation groups. This was done to simplify the data and to isolate the effect of these variables *within the groups*, rather than globally. Of interest was variation within the group, rather than between, say, the Pacific Island nations and the rest of the world. Differences between Pacific Island nations and the rest of the world were not the subject of this study. The variables implied by inclusion in the group – relative geographic isolation, small size, small population –relative to the rest of the world were thus effectively controlled for by

selection. Within the narrower range of values provided by this simplification, smaller group-wide distinctions were more easily discerned.

Data Availability for the Republic of the Marshall Islands

Below can be seen the initial data that motivated this section of the project. The first column identifies the list of data questions and data sets examined for the group of Pacific Island Nations and the U.S. Island territories (excluding Hawaii and Cuba). The second column lists sample variables in each data set, the third column lists the first year in which data for this or any other variable appears in each data set; and the fourth column identifies the first year in which data appears for the Republic of the Marshall Islands. At the bottom is calculated the percentage of the relative total maximum data years observed for the Republic of the Marshall Islands.

37% Versus 43%

The reader will observe that the total percentage of 37% data availability seen in Table 7 differs from the 43% that is used in Tables 8-15, below. This is due to the inclusion of several U.S. data sets that were only relevant to the RMI and territories. These are included here but disregarded in the overall total in the tables below. The reader may thus recall that the ranking of the RMI in data availability is actually lower than what will be represented in the Pacific Island nations analysis, a result which further strengthens the conclusion ultimately drawn by this data.
		First year of data in	First year of RMI
Organization	Variable	group	data
Commodity Trade Statistics (UN Data base)	Food Imports (% of merchandise imports);	1996	No data
International Financial Statistics (IMF data base)	GDP (current \$US);	1972	No data
World Health Organization Data	Population	1990	1990
Global Health Expenditure Database (WHO)	Population	2000	2000
U.S. Bureau of Economic Analysis	Food Imports (% of merchandise imports);	1976	No data
U.S. Bureau of Labor Statistics**	Income per capita	2002	No data
U.S. Census Bureau**	Income per capita	2017	No data
Covid-19 Situation in WHO (WHO Data base)	Current Covid rates	2020	2020
Pan American Health Organization (PAHO)***	Population	1965	No data
World Development Index (UN Data bank)*	Income per capita	1971	No data
ibid*	Agricultural land (% of land area);	1961	1991
ibid*	Food Imports (% of merchandise imports);	1962	-No data
ibid*	GDP (current \$US);	1960	1981
ibid*	Net bilateral aid from DAC donors, U.S. (current \$U.S.)	1960	1993
ibid*	Net official development assistance and official aid received (current \$US)	1960	1991
ibid*	Diabetes prevalance (% of pop, ages 20-79)	2010	2010
The World Bank Data	GDP	1960	1981
World Health Organization Data	Population	1960	1960
Food and Agriculture Organization of the United Nations (FAOSTAT)	Agricultural land (% of land area);	1961	No data
Total years of data in group		747	274
RMI perc	entage of total data		37%

Table 7: Data Availability for the Republic of the Marshall Islands

As can be seen in this table, even when data was available for decades throughout the Pacific Island nations and the U.S. Territories, many data sets do not include any data regarding the RMI. Further, only one data point is available for the RMI before 1979 when the RMI became an independent nation. Even after 1979, data on the RMI is quite scarce: The RMI entered the United Nations in 1991. Taken altogether, the RMI included only 37% of the total data observed within this group.

When the data for the RMI is compared with the other nations within the Pacific Island nations plus U.S. Territories group, the following overall range of percentage values can be seen:

	% of
	Max.
Nations considered in data set	Data
American Samoa	23.63%
Northern Mariana Islands	11.89%
Micronesia, FS	60.67%
Fiji	94.21%
French Polynesia	39.33%
Guam	23.78%
Kiribati	85.82%
Marshall Islands, Republic of	43.14%
Nauru	35.82%
New Caledonia	63.72%
Palau	44.05%
Papua New Guinea	82.01%
Philippines	99.39%
Puerto Rico	37.96%

Table 8: Data by Percentage of Total Maximum

Samoa	77.90%
Solomon Islands	91.77%
Tonga	80.49%
Tuvalu	55.03%
Vanuatu (New Hebrides)	82.93%

In the sections below, this set is divided by characteristic and region, in

order to discern a preliminary pattern regarding the availability of data.

The Pacific Island Nations

The first group to be considered are the Pacific Island nations. When

these are ranked by percentage of relative maximum data available, the following

is obtained:

Available Data Rank (most to least)	Nation	% of Relative Maximum Data
1	Fiji	94.21%
2	Solomon Islands	91.77%
3	Kiribati	85.82%
4	Vanuatu (New Hebrides)	82.93%
5	Papua New Guinea	82.01%
6	Tonga	80.49%
7	Samoa	77.90%
8	New Caledonia	63.72%
9	Micronesia, FS	60.67%
10	Tuvalu	55.03%
11	Palau	44.05%
12	Marshall Islands, Republic of	43.14%
13	French Polynesia	39.33%
14	Nauru	35.82%

Table 9: Pacific Island Nations, Ranked by Percentage of Data Available

15	Guam	23.78%
16	American Samoa	23.63%
17	Northern Mariana Islands	11.89%

By this table, it is possible to see that of all the Pacific Island Nations, the RMI ranks 12th, with a total of 43% of maximum data available. The least data available is the Northern Mariana Islands, with approximately 12% maximum data available, and the most is Fiji, with approximately 94% data available. The following sections examines possible patterns in this data.

The Size Effect

It may be tempting to attribute the lack of data regarding the Republic of the Marshall Islands, or any other Pacific Island nation, to the relatively small size of land mass they contain. In the case of the RMI, there is no doubt that, at 181 square kilometers, the RMI is not a large nation. Among the Pacific Island nations, it ranks as the 15rd out of 17 nations in terms of size. Only Tuvalu and Nauru are smaller.

Size rank (largest to smallest)	Nation	Size (km^2)
1	Papua New Guinea	462,840
2	Solomon Islands	28,896
3	New Caledonia	18,575
4	Fiji	18,274
5	Vanuatu	12,189
6	French Polynesia	4,167
7	Samoa	2,831
8	Kiribati	811
9	Tonga	747

Table 10: F	Pacific Is	sland I	Nations,	Ranked I	by Size

10	Micronesia, FS	702
11	Guam	544
12	Northern Mariana Islands	464
13	Palau	459
14	American Samoa	224
15	Marshall Islands, Republic of	181
16	Tuvalu	26
17	Nauru	21

However, if these same nations are ranked by percentage of maximum data, it is clear that size does not determine data availability among the Pacific Island nations.

Data Rank (Most to least)	Size rank	Nation	% of Maximum Data
1	4	Fiji	94.21%
2	2	Solomon Islands	91.77%
3	8	Kiribati	85.82%
4	5	Vanuatu	82.93%
5	1	Papua New Guinea	82.01%
6	9	Tonga	80.49%
7	7	Samoa	77.90%
8	3	New Caledonia	63.72%
9	10	Micronesia, FS	60.67%
10	16	Tuvalu	55.03%
11	13	Palau	44.05%
12	15	Marshall Islands, Republic of	43.14%
13	6	French Polynesia	39.33%
14	17	Nauru	35.82%
15	11	Guam	23.78%
16	14	American Samoa	23.63%
17	12	Northern Mariana Islands	11.89%

Table 11: Pacific Island Nations, Ranked by Data Availability and Size

When the nations are ranked by data availability, it becomes clear that size is not the primary indicator of data. For example, the largest nation in the group, Papua New Guinea, ranks 5th in data availability, below the much smaller nation of Kiribati, which ranks 3rd. The tiny nation of Tuvalu ranks higher in data availability than the RMI, while French Polynesia, ranking 6th in size, ranks 13th in data availability. And while both Tonga and the Federated States of Micronesia are very close in size to the Kiribati, differing from each other in approximately 100 km², Kiribati has nearly 86% of maximum data availability, Tonga has approximately 80%, and FSM has only 61%. These variations suggest that the most important variable in determining data availability is not size.

The Population Effect

Due to size differences, employment possibilities and natural limitations, the Pacific Island nations vary in levels of population. It may be that population level is more consistently associated with data availability than mere size alone. Below, the Pacific Island Nations are ranked by population size.

Rank by Population (largest to smallest)	Nation	Population
1	Papua New Guinea	7,300,000
2	Fiji	935,970
3	Solomon Islands	685,100
4	Vanuatu	303,009
5	French Polynesia	295,120
6	New Caledonia	293,608

Table 12: Pacific Island Nations, Ranked by Population Size

7	Samoa	203,770
8	Guam	168,801
9	Kiribati	111,800
10	Tonga	106,100
11	Micronesia, FS	102,440
12	Marshall Islands, Republic of	77,920
13	Northern Mariana Islands	51,660
14	American Samoa	46,360
15	Palau	21,690
16	Tuvalu	11,340
17	Nauru	9,770

When the list is ranked according to data availability, it becomes clear that

population size may in fact be a slightly better predictor of data availability, in

most cases, as can be seen below.

Data Rank (most to least)	Rank by Population	Nation	% of Relative Maximum data
1	2	Fiji	94.21%
2	3	Solomon Islands	91.77%
3	9	Kiribati	85.82%
4	4	Vanuatu	82.93%
5	1	Papua New Guinea	82.01%
6	10	Tonga	80.49%
7	7	Samoa	77.90%
8	6	New Caledonia	63.72%
9	11	Micronesia, FS	60.67%
10	16	Tuvalu	55.03%
11	15	Palau	44.05%
12	12	Marshall Islands, Republic of	43.14%
13	5	French Polynesia	39.33%
14	17	Nauru	35.82%
15	8	Guam	23.78%
16	14	American Samoa	23.63%
17	13	Northern Mariana Islands	11.89%

Although there is not a perfect correlation, this preliminary examination suggests that population appears to be more closely correlated with data availability than mere size. The RMI ranks 12th in population, and 12th in data availability; Samoa and Vanuatu are also consistent across variables. Other nations are close to the same in both rankings, such as American Samoa, Fiji and the Solomon Islands.

However, there are a few outstanding exceptions. Some nations have large populations, but little data availability. For example, Guam is the 8th most populous nation, yet ranks 15th in data availability. French Polynesia is the 5th most populous, yet ranks 13th in data. The nation with the least amount of data availability, the New Mariana Islands, nevertheless ranks 13th in population. For these nations, having a larger population does not guarantee data visibility.

Other nations have small populations but greater data availability. For example, Tonga ranks 10th in population size, but 6th in data availability. Kiribati ranks 9th in size but 3rd in data availability. Palau and Tuvalu are among the least populous nations, ranking 15th and 16th, respectively, but ranking 11th and 10th in data availability. These nations have small populations, but more data collected on their behalf.

Thus, there appears to be another factor acting in this region, affecting data availability.

67

Lingering Political Relationships

Another way to consider these nations is in light of their relationship with the United States. Of the seventeen nations in the Pacific Islands nation region, six either are currently or have been territories of the United States. Four of these nations were established as members of the Trust Territories of the Pacific, following World War II. Established by the United Nations, they were given to the United States to administer and protect. Of these four nations, three are currently sovereign nations in Compact of Free Association with the U.S., and one is still a territory. They are as follows:

The Commonwealth of the Northern Mariana Islands

Originally one of the four members of the Trust Territories of the Pacific (TTP), it is currently an unincorporated, organized Commonwealth and territory of the United States.

The Republic of Palau

A second member of the TTP, Palau gained independence in 1994 under a Compact of Free Association with the United States, and is now a presidential republic in free association with the U.S.

The Republic of the Marshall Islands

The Marshall Islands were also members of the TTP, became an independent nation in 1979, with a Compact of Free Association with the United States, and in 1986 gained full sovereignty, becoming an associated state of the U.S. In 1991, the RMI joined the United Nations.

The Federated States of Micronesia

Also members of the TTP, the Federated States of Micronesia became independent in 1979, and then sovereign with a Compact of Free Association in 1986.

All four nations were at one time considered territories of the United States. In addition, the island nations of Guam and American Samoa still remain U.S. territories. American Samoa was claimed by the U.S. as a territory in 1900, and Guam was claimed in 1899.

It is of interest to separate the Pacific Island nations which have once or are currently territories of the United States, from those which have never been territories of the U.S. To this end, the average data availability percentage was calculated for: (1) the entire Pacific Island nation group; (2) the territories and former territories of the U.S., and (3) those nations which have never been territories of the U.S. The results are visible below:

	% of Relative	Territories and former	Never territories of
Nation	Maximum Data	territories	the U.S.
American Samoa	23.63%	23.63%	
Fiji	94.21%		94.21%
French Polynesia	39.33%		39.33%
Guam	23.78%	23.78%	
Kiribati	85.82%		85.82%
Marshall Islands, Republic of	43.14%	43.14%	
Micronesia, FS	60.67%	60.67%	
Nauru	35.82%		35.82%
New Caledonia	63.72%		63.72%

Table 14: U.S. Affiliation and Data Availability

Northern Mariana Islands	11.89%	11.89%	
Palau	44.05%	44.05%	
Papua New Guinea	82.01%		82.01%
Samoa	77.90%		77.90%
Solomon Islands	91.77%		91.77%
Tonga	80.49%		80.49%
Tuvalu	55.03%		55.03%
Vanuatu (New Hebrides)	82.93%		82.93%
Average % of Available Data	58.59%	34.50%	71.73%

Of all the variables that have been examined, this seems to yield the most promising results. Considering only the Pacific Island nation territories and former territories yields an average of approximately 35% data availability, whereas the Pacific Island nations which have never had U.S. territory status have an average of approximately 72% data availability.

When other current and former trust territory nations are considered, the average goes slightly up, because the addition of Philippines, which gained full independence in 1947, raises the total considerably:

	Status viz.			Total years of data	% of Maximum
Nation	U.S.	Size (km^2)	Population	collected	data
Marshall Islands, Republic of	1986, CFA	181	77,920	283	43.14%
American Samoa	Territory	224	46,360	155	23.63%
Palau	1994, CFA	459	21,690	289	44.05%
Northern Mariana Islands	Territory	464	51,660	78	11.89%
Guam	Territory	544	168,801	156	23.78%
Micronesia, FS	1986, CFA	702	102,440	398	60.67%

Table 15: Current and Previous U.S. Territories, excluding Cuba and Hawaii

Puerto Rico	Territory	9,104	3,142,779	249	37.96%
Philipines	1946, Ind.	300,000	109,200,000	652	99.39%
					43.06
			Grou	p average %	%

As can be seen, the average rate of data availability for nations which have been or currently are U.S. territories is 43%. Even with the Philippines' 99.39% added into the average, this is still below the Pacific Island nations group total of 59%.

However, the very worst rate of data availability is seen in the current U.S. territories of American Samoa, the Northern Mariana Islands, Guam, and Puerto Rico. The result is seen below.

Nation	Status viz. U.S.	Total years of data collected	Percentage of Maximum data
American Samoa	Territory	155	23.63%
Northern Mariana Islands	Territory	78	11.89%
Guam	Territory	156	23.78%
U.S. Virgin Islands	Territory	143	21.80%
Puerto Rico	Territory	249	37.96%
	G	roup average %	23.81%

Table 16: Data Availability for Current U.S. Territories

A shocking 24% of data is available for these nations, especially considering that they are not the most remote, nor the smallest, nor the least populated nations in the region. Indeed, Puerto Rico, with only 38% data availability, has a population of over three million people. What they do have in common is that they are in a particular political relationship with the United States. These data suggest that relationship with the U.S. has had the effect of limiting the availability of data regarding nations that are or have once been under a dependent relationship.

Summary of Findings

To bring this back to the original research issues, combining the complex and tragic issues inherent in the U.S./ RMI relationship, it is possible that even without the legacy of the nuclear testing in the Marshall Islands, data regarding the nutritional transition that was observed may have been difficult to obtain simply because of the dependent relationship between the two nations. There was no nuclear testing in the other territories, yet the data above suggest that problems of data availability persist there as well.

CONCLUSION

In conclusion, although it has been clearly shown that there a transformation of consumption patterns has indeed taken place in the Republic of the Marshall Islands, given the current limitations of data it is not possible to model the causal factors behind this transformation. Thus researchers must rely on ethnographic studies and anecdotal accounts, until further data is uncovered or compiled.

The "Limitations of Data" data set brings attention to the difficulties inherent in researching the dynamics of change in both the Pacific Island region, and more particularly, in Territories and dependent regions of the U.S. The variables of size, location, population, and lack of economic development appear to matter less than the political relationship with the U.S. in affecting access to demographic and economic data. In the case of the Republic of the Marshall Island, a complicated military and political history potentially creates an additional obstacle to full disclosure. Compiling data on the data itself is necessary to see this pattern in data visibility. Without visible data, there can be no true understanding of the dynamics of change.

73

APPENDIX A

NUTRITION DATA SOURCE MATERIAL

Table S1: Original Spoehr Consumption Data

Households	I	II		IV	V	VI	VII
No. of persons per							
household	11	8	8	12	8	6	5
Food items							
Breadfruit	206	85	86	130	152	81	85
Coconuts (green)	195	61	198	97	145	46	179
Coconuts (ripe)	11	24	24	13	10	11	69
Chicken	0	1	0	0	0	0	0
Fish (fresh)	67	17	60	153	62	55	66
Fish (salted)	0	5	10	1	11	0	5
Shellfish	0	20	300	0	0	0	200
Jekaro (coconut sap),							
(qts)	133	53	14	213	152	0	42
Limes	0	18	38	0	69	0	11
Bananas	60	0	0	50	10	0	0
Pumpkin	3	0	0	0	0	0	0
Taro (6" roots)	0	0	0	0	0	12	14
Fish, canned (lbs)	1	1	3	2	3	0	2
Meat, canned (lbs)	16	10	16	10	24	0	0
Rice (lbs)	20	19	32	5	18	7	18
Flour (lbs)	16	7	24	1	2	1	4
Sugar (lbs)	11	9	9	0	8	5	3
Biscuits (1-lb. box)	1	0	1	3	0	0	1
Tea (large pots)	14	3	17	0	4	7	9
Coffee (large pots)	0	4	2	0	6	7	11
Milk (6-oz. can)	0	17	0	0	0	0	0
Pineapple (canned) (lbs)	2	0	0	0	0	0	0

Total Food Consumption by Household (June 9-29,1947)

Source: Spoehr, 1949

Table A1 : Ahlgren Minimum Food Consumption Data

RMI Ministry of Resource and Development, 30-day Recommended Food basket per Household

MRD Recommendation	Estimated total
Rice – 4 bags (est. 2 lb. per bag)	8 lbs
Flour – 2 bags (est. 5 lb. per bag)	10 lbs
Sugar – 4 bags (2 kg. per bag)	17.64 lbs
Baking powder – 4 cans	16 oz.
Tuna (can) (8 oz) – 10 cans	5 lbs
Milk powder – 2 cartons	2 lbs
Vegetable oil (quarts) (2 qt per bottle) – 2 bottles	1 gallon
Mixed veg (can) – 10 cans	5 lbs
Canned fruit (can) – 10 cans	5 lbs
Biscuits (1 tin)	16 oz

Adapted from Ahlgren et al., 2014

No. No. <th>Interview</th> <th>or and /</th> <th>No. of</th> <th>or amo /</th> <th>Marshallese name for</th> <th>English</th>	Interview	or and /	No. of	or amo /	Marshallese name for	English
1 18 2 946 0 1 160 52 3000 51 000001 510 510	Mo.	verity.	weeks	Stans/	101 101	equivalent
1 12 984 61 Control Fight (Fe control for a control for a control for control for a c		6-134.	a contra	-	1000	
2 400 52 5000 641 60 65 1100 52 5700 641 60 65 1100 52 5700 641 60 661 1100 52 5400 641 600 661 1100 52 5400 641 600 661 660 1100 52 14344 641 600 661 660 661 661 660 661 660 661 660 661 <	1	192	52	7866	el	coconut grated for cocomut mall
1 106 2 6405 6401 </td <td>**</td> <td>087</td> <td>52</td> <td>24960</td> <td>Waini</td> <td>coconst ripe for copra-</td>	**	087	52	24960	Waini	coconst ripe for copra-
1 100 23 3740 Gain Constrained Constrained 1 100 23 9400 641 Constrained Constrained 1 100 23 9400 641 Constrained Constrained 1 100 23 11333 Gain Constrained Constrained 1 100 23 11300 Constrained Constrained Constrained 1 100 23 11300 Constrained Constrained Constrained 1 130 23 11300 Constrained Constrained Constrained 1 230 23 11300 Constrained Constrained Constrained 1 200 11 2000 Constrained Constrained Constrained 230 11 11 2000 Constrained Constrained Constrained 2000 11 2000 11 2000 Constraine Constrained Cons	5	1248	52	96899	Waini	cocosut ripe for copra
5 119 52 9.434 Centin of Concort water contrants 7 100 52 9.440 641 Concort water contrants 10 52 1330 641 Concort water contrants Concort water contrants 11 10 52 1330 641 Concort water contrants Concort water contrants 11 10 52 1130 11 Concort water contrants Concort water contrants 11 110 52 1130 Concort water contrants Concort water contrants Concort water contrants Concort water contrants Concort water contrants Concort water contrants 11 11 110 11 Concort water contrants Concort water contrants Concort water contrants 11 11 11 11 Concort water contrants	3	1104	52	57408	Waini	coconut ripe for copra
6 130 32 3440 661 constraint constraint 10 23 11344 661 constraint constraint constraint 11 100 22 11344 661 constraint constraint <td>*1</td> <td>6612</td> <td>52</td> <td>374348</td> <td>drenin ni</td> <td>cocomut water</td>	*1	6612	52	374348	drenin ni	cocomut water
7 7000 52 33480 Create of the constructs 7 200 22 3340 Create of the constructs Constructor writely-ran be extent 11 130 22 1310 10 22 1310 Constructor writely-ran be extent 11 130 22 1310 Constructor writely-ran be extent Constructor writely-ran be extent 11 130 22 1310 11 Constructor writely-ran be extent 11 130 22 1310 11 Constructor writely-ran be extent 11 110 20 111 Constructor writely Constructor writely 11 210 11 210 11 Constructor writely 11 210 11 210 Constructor writely 1200 11 2100 Constructor writely	9	1820	52	94540	Medi	tender coconut meat
8 237 33 11.244 Media Conduct conclust writery-can be eaten to the contract of the	~	6440	52	334880	drenin ni	coconut water
9 160 32 8.300 Remote Econout voriety-run to enter n 11 1300 32 11900 Kenoue Econout voriety-run to enter n 12 1340 32 11930 Econout voriety-run to enter n 13 1340 32 11300 Econout voriety-run to enter n 14 2555 32 11300 Econout voriety 15 2333 12 2464 Econout voriety 16 2333 12 2464 Econout voriety 17 2333 12 2464 Econout voriety 18 2333 12 2464 Econout voriety 233 13 26 330 Econout voriety 233 13 13 Econout voriety Econout voriety 233 14 23 13000 Econout voriety 233 14 13 Econout voriety Econout voriety 233 14 14 Econout voriety Econout voriety	*	2197	52	114244	Medi	tender coconst meat
0 230 23 1190 Knowe constant variety-run be eften r 1 130 22 1360 14 constant variety 1 230 22 1360 14 constant variety 1 233 23 1360 14 constant variety 1 243 12 1393 constant variety constant variety 1 230 11 2303 146 constant variety 1 230 11 1393 constant variety constant variety 1 1300 11 1393 constant variety constant variety 1 1300 11 1300 flattent variety constant variety 1 1300	ø	160	52	\$320	Kenave	coconut variety-can be eaten th
11 1300 32 11100 130 14 00000 14 000000 14 000000 14 000000 14 000000 14 000000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 14 00000 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 000000 14 <td< td=""><td>10</td><td>230</td><td>52</td><td>11960</td><td>Kenave</td><td>cocodut variety-can be enten r</td></td<>	10	230	52	11960	Kenave	cocodut variety-can be enten r
12 7.300 52 121600 ia cocomer *spile" 13 7.30 52 12160 ia cocomer *spile" 13 7.33 7.3 7.3 7.3 7.3 14 7.33 7.3 7.33 7.4 cocomer *spile" 15 4.33 1.3 7.3 7.3 7.3 7.3 15 7.35 1.3 7.3 7.3 7.3 7.3 16 7.35 1.1 1.3 7.3 7.4 7.4 1500 11 1.3 7.3 7.4 7.4 7.4 1500 11 1.3 1.3 7.4 7.4 7.4 1500 11 1.3 1.3 7.4 7.4 7.4 1500 11 1.3 1.3 7.4 7.4 7.4 1500 1.4 1.4 1.4 7.4 7.4 7.4 7.4 12 1.3 1.4	11	1380	52	71760	iu .	coconst 'apple'
11 17.0 5.2 0.040 i.u consent "aple" 1 213 22 11792 Jankoon pardmus upip 1 213 12 2496 000 jankoon pardmus upip 1 2300 11 2190 Makeon pardmus upip 2000 12 2190 Makeon pardmus upip 21 700 1000 Makeon pardmus upip 21 700 1000 Makeon pardmus upip 22 133 0 1300 Makeon pardmus upip 23 130 0 1300 Makeon pardmus upip 23 240 Makeon Paradfruit different variety 23 23 1 1300 Makeon paradfruit	12	2340	52	121680	iu i	coconut 'apple'
1 2446 32 11370 50 Ambuen performed frame 1 4138 12 11700 anhoun performed frame performed frame 1 4138 12 11700 anhoun performed frame performed frame 1 2000 11 2000 00 performed frame performed frame 1 2000 11 2000 (fastern) performed frame performed frame 1 1000 11 1000 (fastern) performed frame performed frame 1 1000 11 1000 (fastern) performed frame performed frame 1 1000 11 1000 (fastern) performed frame performed frame 1 1000 11 11 performed frame	13	1740	52	90480	iu	cocosut 'apple'
1 225 1100 Jahteen perdanu pub 1 4338 12 400 pendanu pub 1 4336 12 5912 b00 pendanu 1 5300 11 5300 11 5110 pendanus 1 500 11 100 (memoril) pendanus pendanus 1 200 11 100 (memoril) pendanus pendanus 1 200 11 100 10 pendanus pendanus 1 100 11 100 11 pendanus pendanus 1 100 10 100 (memoril) pendanus pendanus 1 100 10 100 10 pendanus pendanus 1 100 10 100 10 pendanus pendanus 1 100 10 100 10 pendanus pendanus 100 10 10	14	2646	52	137592	Jekaru	nectar free coconut bud
- 6 4130 12 6985 bob pandanus 11 3336 11 23912 bob pandanus 13 3336 11 23900 (Marcol) Marcol pandanus 14 1300 11 23900 (Marcol) pandanus pandanus 1500 11 2790 13 14 pandanus pandanus 16 1300 11 2790 Marcol pandanus pandanus 16 1300 14 10 2700 14 pandanus pandanus 14 12 1000 14 10	15	225	52	11700	Jankwon	perdanua pulp
17 4336 12 5913 66 pandamic 18 1300 11 2700 Makatak or breadfruit different variety 19 1000 11 15700 Makatak or breadfruit different variety 10 100 11 15700 Makatak or breadfruit different variety 11 100 12 1000 (Bakrol) breadfruit different variety 11 100 13 0 1330 Wown breadfruit different variety 11 10 10 100 10 100 breadfruit different variety 11 10 10 100 10 100 breadfruit different variety 11 10 10 100 100 breadfruit different variety 10 10 10 100 100 breadfruit different variety 10 10 10 100 breadfruit different variety breadfruit different variety 10 10 100 100 <	- 16	4158	12	49896	Rob	pandanue
1 2300 11 2730 Network Semafrait different variety 16000 Mercel 1000 Mercel 10000 Mercel 1000 Mercel	13	4326	21	51912	Pop	pandanus
1500 11 16500 164rcl breadfruit different variety 12 12000 13 10500 14570 breadfruit different variety 12 720 6 4370 Neuron breadfruit different variety 1496 12 1993 Neuron breadfruit different variety 1496 0 1993 Neuron breadfruit different variety 153 0 0 1000 (64rcl) breadfruit different variety 153 0 1000 1378 Neuron breadfruit different variety 154 1 1000 1580 Neuron breadfruit different variety 155 1000 1580 Neuron breadfruit different variety 155 1000 1580 breadfruit different variety breadfruit different variety 150 150 150 150 breadfruit different variety breadfruit 150 150 150 150 breadfruit breadfruit breadfruit 150	-	2500	=	27500	Referencet or	breadfruit different variety
19 2000 13 3000 14 bit with seeds 21 720 6 1933 Negean Dreadfruit with seeds 21 720 6 1933 Negean Dreadfruit with seeds 22 315 6 1933 Negean Dreadfruit with seeds 23 315 6 1948 Kole Nut Dreadfruit with seeds 24 253 6 1948 Kole Nut Dreadfruit with seeds 24 25 268 148 Kole Nut Dreadfruit with seeds 25 268 17 1946 28 Dreadfruit Dreadfruit 26 1364 52 16036 1 Dreadfruit Dreadfruit 27 28 6 138 Kole Nut Dreadfruit Dreadfruit 27 1064 52 16036 1 Dreadfruit Dreadfruit 28 068 1 Negeable 7300 Dreadfruit Dreadfruit	1	1500	-	16500	(Bukral)	breadfruit different variety
0 1496 12 11933 Nejwan breadfruit with seeds 22 720 6 4300 Nejwan breadfruit with seeds 23 315 6 1980 Nejwan breadfruit with seeds 24 235 6 1980 Nejwan breadfruit with seeds 25 248 6 1980 Nejwan breadfruit with seeds 26 1084 9 1046 800 Nejwan breadfruit with seeds 27 200 10 1046 mobuly breadfruit with seeds 28 203 0 1046 mobuly breadfruit 29 200 1084 12 1040 breadfruit 21 1084 9 148 Kole Nut breadfruit 23 usekly consumption not possible 7500 binama breadfruit 23 usekly consumption not possible 7500 binama breadfruit 24 usekly consumption not possible 7500 binama breadfruit 25 determine as such only annual 13120 kanpu possible 7500 25 figures given. 13120 kanpu possible 7500	19	2000	51	30000	(Bukrol)	breadfruit different variety
21 720 6 4300 Nejwan breadfruit with seeds 22 313 6 1890 Nejwan breadfruit with seeds 23 300 10 3000 Keis breadfruit with seeds 24 5 148 Kole Mut breadfruit with seeds 25 248 5 148 Kole Mut breadfruit with seeds 26 248 5 148 Kole Mut breadfruit with seeds 27 3084 3 160366 18 breadfruit 28 3 9 160366 18 breadfruit 29 3084 52 160366 18 breadfruit 29 0084 32 160366 18 breadfruit 30 wekky consumption not possible 7000 binama breadfruit 31 udstruct possible 7000 binama breadfruit 32 td datermine as such only annaal 1320 binama breadfruit 33 td datermine as such only annaal 1320 binama breadfruit 34 figures given. 1360 binama breadfruit 350 binama binama binama	2	1496	2	17952	Me juan	breadfruit with seeds
22 315 6 1890 Mejwan breadfruit with seeds 23 300 10 300 Mejwan breadfruit with seeds 24 238 7 1946 Kole Mut seeds of breadfruit 25 233 6 1578 Kole Mut seeds of breadfruit 26 238 7 1946 Sie Mut seeds of breadfruit 27 3084 5 1946 Main breadfruit 28 278 7 1946 Main breadfruit 29 ueekly consumption of possible 7500 pinana breadfruit 29 ueekly consumption 1260 binana breadfruit 21 12600 pinana breadfruit breadfruit 23 ueekly consumption 1260 binana breadfruit 24 1300 binana breadfruit breadfruit 25 1000 binana binana binana 26 1300 binana binana binana 27 1300 binana binana binana 28 figures given. 128 binana binana 29 figures given.	21	720	-10	4320	Me ivan	breadfruit with seeds
23 300 10 300 10 500 10 24 248 6 1348 Kole Nut seeds of breadfruit 25 233 6 1348 Kole Nut seeds of breadfruit 26 238 6 1946 solook seeds of breadfruit 27 3064 32 160368 ix fish seeds of breadfruit 27 3064 32 160368 ix fish seeds of breadfruit 28 3064 32 160368 ix fish seeds of breadfruit 29 weekly consumption 900 sink fish seeds of breadfruit 30 weekly consumption 916 solo seeds of breadfruit 31 to determine as such only annual 13120 binama banna 32 to determine as such only annual 13120 banna banna 33 to determine as such only annual 13120 banna banna 34 figures given. 13120 banna banna 35 figures given. 13120 banna banna 36 figures 1300 bao lai banna banna	22	315	4	1890	Me juan	breadfruit with seeds
24 248 6 1488 Kole Nut seeds of breadfruit 25 233 0 1948 Kole Nut seeds of breadfruit 26 278 7 1946 monok streadfruit 27 3084 52 160366 ik streadfruit 28 3084 52 160366 ik streadfruit 29 3084 52 160366 ik streadfruit 29 3000 punki parpkin streadfruit 29 0000 punki parpkin parpkin 30 usekly consumption not possible 7500 binama binama 31 to determine as such only annual 1320 kanpu parpsin 32 tfgures given. 13120 kanpu possible foods 33 tfgures given. 13120 kanpu possible foods 34 ffgures given. 13120 kanpu possible foods 35 ffgures given. 1300 bool lin possible foods 36 ffgures given. 1300 bool lin possife foods 37 ffgures given. 1300 bool l	23	200	01	3000	Mejwan	breadfruit with seeds
25 263 6 1578 Kole Nut seeds of breadfruit 27 3084 52 16,046 asmock arrowroot 28 3084 52 16,046 asmock arrowroot 29 16,046 asmock arrowroot arrowroot 29 0064 by consumption not possible 7500 binama benana 30 weekly consumption not possible 1320 binama benana 31 to datermine as such only annual 12200 kampu paspin 32 to datermine as such only annual 12500 kampu possis 33 to datermine as such only annual 12600 kampu possis 34 figures given. 7182 local vegetable feeds local vegetable feeds 35 figures given. 700 beno lin postic out out to	24	248	9	1488	Kole Nuc	seeds of breadfruit
26 278 7 1946 moments arreveror 27 1084 52 160368 1k fish 28 308 52 160368 1k fish 29 weekly consumption not possible 7500 binama banana 30 weekly consumption not possible 7500 binama banana 31 weekly consumption not possible 7700 binama banana 32 to determine as such only annual 12600 kanapu possys 33 tfgurea given. 7182 local vegetable foods local vegetable foods 34 figurea given. 7182 local vegetable foods local vegetable foods 35 figurea given. 700 bull poil poiltry 36 0100 won 1000 won local vegetable foods 37 000 won 1010 poiltry word 38 poiltry poiltry word poiltry 39 000 won into tottace poiltry 30 bull poiltry poiltry poiltry 39 000 won poiltry poiltry 3	52	263	9	1578	Kole Nut	seeds of breadfruit
27 1064 52 16,036 1k fish 28 7000 punkti pampin 29 9000 binama banaa 30 weekly consumption not possible 7500 binama banaa 31 to determine as such only annual 13120 kanpu pagaya 32 to determine as such only annual 1320 kanpu pagaya 33 to determine as such only annual 13120 kanpu pagaya 34 13120 kanpu possis pagaya 35 figures given. 112 local vegetable foods local vegetable foods 36 13120 bao loi local vegetable foods local vegetable foods 36 1312 bao loi local vegetable foods local veite 37 1000 bao loi local veite local veite 39 1000 bao loi local veite local veite 300 bao loi local veite local veite local veite 300 bao loi local veite local veite local veite 300 bao loi veite local veite local veite 300 veit local veit	26	278	-	9761	mokmok	arrowroot
28 2000 punki pempkin 29 weekly consumption not possible 7000 binama pempkin 30 weekly consumption not possible 7000 binama benama 31 to determine as such only annual 1250 kanapu pempkin 32 to determine as such only annual 1250 kanapu penpkin 33 tigures given. 13120 kanapu possible 34 figures given. 162 local vegetable foods local vegetable foods 35 figures given. 7102 local vegetable foods local vegetable foods 36 figures given. 7103 boo lin poiltry poiltry 37 000 boo lin poiltry poiltry poiltry 38 000 voi tortile init cims 39 poiltry poiltry poiltry poiltry 400 void door lobor lobor lobor 43 913 keid cocopus copus	22	3064	52	160368	<u>úk</u>	fish
29 veskiy consumption not possible 7500 binama banama 31 ueskiy consumption not possible 7200 binama banama 32 to determine as such only annual 12500 kanapu possys 33 tigures given. 12600 kanapu possys 34 figures given. 161 potesto sweet potesto 35 figures given. 1782 potesto sweet potesto 36 potesto sweet potesto sweet potesto 37 possi potesto sweet potesto 38 possi possi possi 39 possi possi posti 30 possi posti posti 31 posti posti posti 32 posti posti posti 33 posti posti posti 34 posti posti posti 41 posti posti posti 42 posti posti posti 43 posti posti posti 43 posti posti posti 43 posti posti posti <t< td=""><td>28</td><td></td><td></td><td>2000</td><td>punki</td><td>pumpkin</td></t<>	28			2000	punki	pumpkin
30 usekly consumption not possible 7300 binama bananca 31 to determine as such only annual 12120 kampu penays 32 to determine as such only annual 1210 kampu penays 33 to determine as such only annual 1200 kampu penays 34 figures given. 100 totato penays 35 figures given. 100 ben lei point; 36 point 100 ben lei point; 37 1000 point point; point; 38 point 100 point point; 39 point point; point; point; 39 point; point; point; point; 30 point; point; point; point; 30 point; point; point; point; 31 point; point; point; point; 32 point; point; point; point; 33 point; point; point; point; 34 point; point; point; point; 32 point; point;	29			7500	binana	banana
11 1220 Mampu 12120 Mampu 12 to determine as such only annual 1560 Mampu papaya 13 tfgures given. 164 ptcato papaya 14 164 ptcato papaya 15 162 local vegetable foods sweet pointoe 16 162 local vegetable foods sweet pointoe 17 103 bao loi pool lin pool lin 16 1000 won totta i 17 1000 won totta 18 1000 won totta 19 1000 won totta 19 1000 won totta 19 1000 won totta 1000 won totta totta 1000 won t	30	bekly consumption	not possible	7500	binama	banana
32 to determine as such only annual 1360 kampu pagaya 33 figures given. 364 potato svert potato 34 figures given. 364 potato svert potato 35 figures given. 361 potato svert potato 36 1001 bao loi svert potato svert potato 36 1001 bao loi potato potato 36 1001 bao loi polity polity 37 000 bao loi polity polity 38 000 polity polity polity 39 000 voi turtle polity 39 000 voi turtle polity 30 voi 1000 voi turtle 30 voi polity polity voil bolte 40 1100 jerol sain compare 41 11400 jerol sain conpire 43 450 barolab cocoult crab	31			12120	kanspu	papaya
33 964 poteto swet potatoe 34 figures given. 7102 potato swet potatoe 35 figures given. 7103 boo lai local vegetable foods 36 30 boo lai poultry poultry 37 30 boo lai poultry poultry 38 90 poil poultry poultry 39 2000 won tot to the 39 2000 won tot tot to 30 1000 won tot tot to 30 1000 won tot tot to 30 1000 won tot tot to 31 kid tot to state 41 11400 ketol state 43 4500 berola tototh	32 6	o determine as suc	h only annual	12600	kenspu	popoya
36 figures given. 7182 local vegetable foods local vegetable food 35 56 bas lol poultry poultry 37 700 bas lol poultry poultry 38 700 pik poultry poultry 39 700 pik poultry poirk 39 500 pik poultry poirk 39 500 won turkits pork 39 500 won turkits pork 40 90 won turkits sork 41 11400 jerol soris soris 43 4500 berid octopus soris	33			364	potato	svest potatoe
35 500 base loi poultry 36 303 bas lin puilt 37 803 bas lin puilt 38 800 pilt port 38 800 wild pirt 39 800 wild port 39 900 wor turtle 40 750 wor lobster 41 11000 jerol smails 43 4500 barolab occount crab	34 f	fgures given.		7182	local vegetable foods	local vegetable foods
36 303 base lin wild bird 37 800 pik pork 38 1000 won turtle 39 500 won turtle 39 500 won turtle 40 750 kabor lobster 41 11400 jerol smails 43 450 barolab octopus	35			200	bac lol	poultry
37 90 pik pork 38 1000 won turtle 39 500 won turtle 40 750 wabor lobster 41 11400 jerol snaits 43 913 kwid octopus 43 913 kwid octopus	36			2037	bao lin	wild bird
38 1000 won turtle 39 300 wor 10biter 40 750 whor 10biter 41 11400 yerol smails 42 913 kuto smails 43 450 barolab cocout crab	32			850	pik	pork
39 500 wor lobater 40 750 kabor giant class 41 11400 jerol smails smails 42 913 kufot octopus octopus 43 4500 barolab coconut crab	38			1000	non	turtle
40 750 kabor giant clams 41 11400 jerol sanais 42 913 ku(d octopus 43 4500 barolab coconut crab	66			200	wor	lobster
41 11400 jerol snails 42 41 844 0ctopus 43 4500 barolab coconut crab	40			750	kabor	giant clams
42 41 413 kwid octopus 43 4500 baroleb coconut crab	41			11400	jerol	ensils
43 4300 barolab coconut crab	42			616	kwi d	octopus
	43			0220	hann's h	

"N" Tables – Original data from Naidu et al., 1980

Table N1: Consumption table for Community A

Source: Nadu et al., 1980, p. 11

terview			10000	Marshallese	A CONTRACTOR OF
tstien gr	ans/	No. of	Erans/	name for	2061160
No. 10	eks	weeks	- AF	food	equivalent
-	4.6	52	2569	EI C	eccent grated for cocout milk
2	264	52	13728	Watmi	coconut ripe for copra
3	216	25	11232	Waint	coconut ripe for copra
4	144	52	74.88	Watmi	coconut ripe for copra
~	611	52	197772	drenin nj	coconut water .
	202	52	10596	Medi	tender coconut meat
-	300	52	19600	drenin ni	coconut water
	416	52	21632	Medi	tender coconat meat
	0.25	25	61	Kenave	coconut variety-can be eaten raw
0	0.5	52	26	Kenater	coconut variety-can be exten raw
-	350	52	18200	iu	coconut 'apple'
21	200	2	36400	iu	coconut 'apple'
1	830	52	43160	ia .	coconut 'apple'
4	,	ł	•	jakaru	nectar from coconut bud
13	200	n	15600	Makom (jankuon)	pendanus sulp
91	2688	1	34944	Bob	pendamus
11	0890	2	21840	Bob	pandanus
8	450	11	2400	Bukrol or	breadfruit different variety
6		•	1750	Batakatak	breadfruit different variety
20	245	12	2940	Hejwan	breadfruit with need
12	180	80	3040	Mejwan	breadfruit with need
2	272	•	2176	Mejuan	breadfruit with seed
			1	Mejwan	breadfruit with seed
47	8.3		14	kole nut	seeds of breadfruit
2	8.0	80	326	kole mut	teeds of breadfruit
56				mokeok	ALFONTOOL
	1364	25	82.604	th.	fish
12			•	punki	puerph im
6			2800	hinone	benana
yo weekly cons	umptien jot	scalble	0009	bimene	banana
10				kanspu	pupaya
32 to determin	10 () 10 B B B B B B B B B B B B B B B B B B	aly annual	•	kanapu	papaya
50				potato	Aveet polatoe
figures giv	ken.			local vegetable force	local vegetable foods
			1200	ban lol	poultry
8			3250	bao lin	wild birds
37			00	pik	pork
*			15	NON	turtle
39			20	wor	lobster
5			4250	kabor	giant clam
11			6250	jerol	smails
52			7125	hwid	octopus
61			350	barolab	cocomut crab

Source: Naidu et al., 1980, p. 12.

Table N3: Consumption Table for Community C

Source: Naidu et al., 1980, p. 13

Question	Grams/	No.	Grams/	Marshallese	English
Pi0 1	HUCH	BCCKS	1641		
1	266	52	13832	EL	coconut graated for coconut mill
2		1000	2222	Waini	coconut ripe for copra
3	1610	52	83720	Waini	coconut ripe for copra
ž.	1010			Waini	coconut ripe for copra
4	64.60	36	231840	drenin ni	coconut water
2	10440	16	167640	drenin ni	coconut water
2	10403	26	22250	Medi	tender coconut meat
0	910	27	414.95	Medi	tender coconut meat
0	2213	21	01423	dranin ni	coconut, water
7	-	- C		Madi	tender coconut meat
10	02.20		10400	Personal	corneut variety-can be eaten ray
9	300	52	12600	Kenawe	coconut variety-can be estan rat
10				Kenave	coconut 'apple'
11				i.u	coconut 'apple'
12	2000	-	8000	10	cococut 'apple'
12	2500	20	50000	10	cocoput 'apple'
13	-		-	1.0	nector from coconut hud
14	6300	52	327600	Jekeru	nectar from coconer and
15	900	8	7200	Makon (Jankwon/	pandanus porp
16	3280	16	52480	Sob	pandanos
17	-	-		Bob	breadfruit different usricty
18	2350	12	28200	Bukrol or	breadfruit different variaty
19	450	25	6750	Ratekstak	breadtruit utilerent valuesy
20	3500	.9	31500	Mejwan	breadfruit with seed
21	700	5	3500	Mejwan	breadtruit with seed
22	400	7	2800	Mejwan	hreadfruit with cood
23	-	-		Mejwan	breadfruit with seed
24	700	5	3500	kole nut	seeds of breadfruit
25	-	-	-	kale nut	seeds of breadiruit
26	560	14	7800	mokmok	arrowroot
27	2200	50	110000	iw	fich
28	1250	4	5000	punki	pumpkin
29	875	4	3500	binana	banana
30	875	4	3500	binana	banana
31	100	52	5200	kanapu	papaya
32		-	-	kanapu	papaya
22	100	52	5200	potato	sweet potatoe
30	100	100	-	local vegetable foods	local vegetable foods
34	unably control	motion not	4375	bao lol	poultry
32	weekly consu	aperen nee	1750	bao lin	wild bird
36	secolate to	determine	3500	pik	pork
37	bossiore co	beceraine	1750	900	turtle
36	and such sector	annual	2000	WOT	lobster
39	as such only	annear	1000	kabor	giant clam
40	40		RATO	ieral	snails
41	LIGULES BIAM	u .	6750	harid	octopus
42			3290	havolah	cocoput crab
43			1000	oarotav	Continue of No.

Table 4B: Summary of Maximum Diet (Annual Consumption)

Source: Naidu et al., 1980, p. 16.

APPENDIX B

DATA AVAILABILITY IN THE PACIFIC ISLAND NATIONS AND U.S.

TERRITORIES

			CTSD			WHO
Full Data set	size (km^2)	population	(1)	IMF (2)	WHO (3)	(4)
American Samoa	224	46,360	0	0	0	0
Northern Mariana Islands	464	51,660	0	0	0	0
Micronesia, FS	702	102,440	2011	0	1990	2000
Fiji	18,274	935,970	2000	1979	1990	2000
French Polynesia	4,167	295,120	1996	0	0	0
Guam	544	168,801	0	0	0	0
Kiribati	811	111,800	2005	1979	1990	2000
Marshall Islands, Republic of	181	77,920	0	0	1990	2000
Nauru	21	9,770	0	0	1990	2000
New Caledonia	18,575	293,608	1999	0	0	0
Palau	459	21,690	2017	0	1990	2000
Papua New Guinea	462,840	7,300,000	1998	1976	1990	2000
Philipines	300,000	109,200,000	1996	1977	1990	2000
Puerto Rico	9,104	3,142,779	0	0	0	0
Samoa	2,831	203,770	2012	1977	1990	2000
Solomon Ilsands	28,896	685,100	2011	1975	1990	2000
Tonga	747	106,100	2008	1972	1990	2000
Tuvalu	26	11,340	1997	0	1990	2000
Vanuatu (New Hebrides)	12,189	303,009	2006	1982	1990	2000

This data set is continued on the next page

BEA(5)	BLS (6)	USCen(7)	Cov(8)	PAHO(10)	WDI(11)	WDI(12)	WDI(13)	WDI(14)
2002	0	2017	2020	n/a	0	1961	0	2002
2002	n/a	n/a	2020	n/a	0	0	0	0
n/a	n/a	n/a	2020	n/a	2014	1991	2003	1956
n/a	n/a	n/a	2020	n/a	1980	1961	1967	1960
n/a	n/a	n/a	2020	n/a	0	1961	0	0
2002	2016	2017	2020	n/a	0	1961	0	2002
n/a	n/a	n/a	2020	n/a	1980	1961	1973	1970
0	0	0	2020	n/a	0	1991	0	1981
n/a	n/a	n/a	2020	n/a	0	1961	0	2010
n/a	n/a	n/a	2020	n/a	0	1961	1975	1965
n/a	n/a	n/a	2020	n/a	0	1961	2007	2000
n/a	n/a	n/a	0	n/a	1980	1991	1971	1960
n/a	n/a	n/a	2020	n/a	1971	1961	1962	1960
0	1976	2017	2020	not inc.	0	1961	0	1960
n/a	n/a	n/a	2020	n/a	1982	1961	1962	1982
n/a	n/a	n/a	2020	n/a	1980	1961	1970	1967
n/a	n/a	n/a	2020	n/a	1981	1961	1975	1975
n/a	n/a	n/a	2020	n/a	0	1961	1977	1990
n/a	n/a	n/a	2020	n/a	1980	1961	1970	1979

WDI (15)	WDI (16)	WDI (17)	WB (18)	WB (19)	FAO (20)
0	0	0	2002	1960	0
0	0	0	2002	1960	0
1992	1991	2010	1983	1960	1961
1965	1960	2019	1960	1960	1961
0	0	2019	1965	1960	1961
0	0	2019	2002	1960	0
1998	1960	2010	1970	1960	1961
1993	1991	2010	1981	1960	0
0	1975	2019	2010	1960	0
0	1966	2010	1965	1960	1961
1994	1992	2010	2000	1960	0
1966	1960	2010	1960	1960	0
1960	1960	2010	1960	1960	1961
0	0	2010	1960	1960	0
1967	1964	2010	1982	1960	0
1965	1961	2010	1967	1960	1961
1965	1960	2010	1975	1960	0
2009	1975	2010	1990	1960	0
1998	1960	2010	1979	1960	1961

Additional Data for Territories

Additional Data for			BEA		USCen	РАНО
Territories			(5)	BLS (6)	(7)	(10)
American Samoa	197.00	46,336.00	2002	0	2017	n/a
Guam	544.00	168,801.00	2002	2016	2017	n/a
Commonwealth of the						
Northern Mariana						
Islands	464.00	51,660.00	2002	0	2017	n/a
						not
Puerto Rico	9,104.00	3,142,779.00	0	1976	2017	included
						not
U.S. Virgin Islands	346.00	105,870.00	2002	1990	2017	included
RMI	181	77,920	0	0	0	

REFERENCES

AHF. (2019). Marshall Islands [National Museum of Nuclear Science and History]. Atomic Heritage Foundation.

https://www.atomicheritage.org/location/marshall-islands

Ahlgren, I., Yamada, S., & Wong, A. (2014). Rising oceans, climate change, food aid, and human rights in the Marshall Islands. *Health and Human Rights*, *16*(1), 69–80. JSTOR.

- BEA. (2020, December 11). GDP for American Samoa | U.S. Bureau of Economic Analysis (BEA). https://www.bea.gov/data/gdp/gdp-americansamoa
- BLS. (n.d.). Bureau of Labor Statistics Data. Retrieved March 31, 2021, from https://data.bls.gov/timeseries/SMS7800000000000001?amp%253bdata _tool=XGtable&output_view=data&include_graphs=true
- Davis, B. (2008). Defeating diabetes: Lessons from the Marshall Islands. *Today's Dietician.*, *10*(8), 24.
- Davis, S. (n.d.). Figure 1: Map of the Marshall Islands. The names of atolls and islands. ResearchGate. Retrieved April 8, 2021, from https://www.researchgate.net/figure/Map-of-the-Marshall-Islands-Thenames-of-atolls-and-islands-discussed-in-the-article-are_fig1_227531761
- Englberger, L., Marks, G. C., & Fitzgerald, M. H. (2003). Insights on food and nutrition in the Federated States of Micronesia: A review of the literature. *Public Health Nutrition*, *6*(1), 5–17. https://doi.org/10.1079/PHN2002364

- Feeny, S. (2007). Impacts of foreign aid to Melanesia. *Journal of the Asia Pacific Economy*, *12*(1), 34–61. https://doi.org/10.1080/13547860601083603
- Firth, S. (2006). Globalisation and governance in the Pacific islands: State, society and governance in Melanesia. ANU E Press. https://www.jstor.org/stable/10.2307/j.ctt2jbj6w
- Global Nutrition Report. (2019). 2018 Nutrition country profile: Marshall Islands. globalnutritionreport.org. https://globalnutritionreport.org/nutritionprofiles/oceania/micronesia/marshall-islands/
- Hawkes, C., Blouin, C., Henson, S., Drager, N., & Dubé, L. (2009). *Trade, food, diet and health: Perspectives and policy options*. John Wiley & Sons.
- Henningham, S. (1995). The Pacific island states: Security and sovereignty in the post-Cold War world. St. Martin's Press, Macmillan Press; St. Martin's Press.
- Hezel, F. X. (1995). Strangers in their own land: A century of colonial rule in the Caroline and Marshall Islands. Center for Pacific Island Studies, School of Hawaiian, Asian & Pacific Studies, University of Hawai'i : University of Hawai'i Press, University of Hawai'i Press.
- IMF. (n.d.). International Monetary Fund: International financial statistics. Retrieved April 8, 2021, from https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b&sId=-1

Johnson, G. (2006). Exposing the US nuclear test legacy in the Marshall Islands. *Pacific Journalism Review*, *12*(2), 188–191.

https://doi.org/10.24135/pjr.v12i2.871

- Johnson, G. (2014). *Don't ever whisper* (One edition). CreateSpace Independent Publishing Platform.
- Johnson, G. (2017, November 10). *Child nutrition crisis in Marshall Islands* sparks intervention plan. Radio New Zealand.

https://www.radionz.co.nz/international/pacific-news/343519/child-

nutrition-crisis-in-marshall-islands-sparks-intervention-plan

- Lessard, E. T. (n.d.). *Review of Marshall Islands fallout studies* (No. 403041; p. 86). Brookhaven National Laboratory.
- Mori, A., Takahara, S., Yoshida, H., Sanada, Y., & Munakata, M. (2019).
 Development of an external radiation dose estimation model for children returning to their homes in areas affected by the Fukushima Nuclear Accident. *Health Physics*, *117*(6), 606–617.
 https://doi.org/10.1097/HP.00000000001100
- Naidu, J. R., Greenhouse, N. A., Knight, G., & Craighead, E. C. (1980). Marshall Islands: A study of diet and living patterns (BNL 51313; p. 79).
 Brookhaven National Laboratory, Safety and Environmental Protection Division.
- PAHO. (2020, October 1). PAHO/WHO Data Mortality by cause of death: Level by country | PAHO/WHO. Pan American Health Organization / World

Health Organization. https://www.paho.org/data/index.php/en/indicatorsmortality/mortality-by-cause-of-death-level-by-country.html

- Palafox, N. A., Gamble, M. V., Dancheck, B., Ricks, M. O., Briand, K., & Semba,
 R. D. (2003). Vitamin A deficiency, iron deficiency, and anemia among
 preschool children in the Republic of the Marshall Islands. *Nutrition*, *19*(5),
 405–408. https://doi.org/10.1016/S0899-9007(02)01104-8
- Spoehr, A. (1949). *Majuro, a village in the Marshall Islands.* Chicago Natural History Museum.
- Thow, A. M., & Snowdon, W. (2009). The effect of trade and trade policy on diet and health in the Pacific Islands. In *Trade, Food, Diet and Health: Perspectives and Policy Options*. Trade, Food, Diet and Health:
 Perspectives and Policy Options.
- TPH. (2020). *Our current price basket of goods, services and cost of living*. The People History. http://www.thepeoplehistory.com/pricebasket.html
- UNData. (n.d.). UN Comtrade | International trade statistics database. Retrieved April 8, 2021, from https://comtrade.un.org/pb/

Wairiu, M., Lal, M., & Iese, V. (2012). Climate change implications for crop production in Pacific Islands region. In A. Aladadjiyan (Ed.), *Food production—approaches, challenges and tasks*. InTech.
http://www.intechopen.com/books/food-production-approacheschallenges-and-tasks/climate-change-implications-for-crop-production-in-pacific-islands-region

- WB. (n.d.). *World development indicators | DataBank*. Retrieved April 8, 2021, from https://databank.worldbank.org/source/world-development-indicators
- WHO. (n.d.-a). *Global health expenditure database*. Retrieved March 31, 2021, from https://apps.who.int/nha/database/Select/Indicators/en
- WHO. (n.d.-b). *Global health observatory*. Retrieved March 31, 2021, from https://www.who.int/data/gho

WHO. (2021, March 31). WPRO COVID-19 dashboard. World Health
 Organization, Western Pacific Region.
 https://who.maps.arcgis.com/apps/opsdashboard/index.html#/345dfdc82b

5c4f6a815f1d54a05d18ec

Yamada, S., & Palafox, N. (2001). On the biopsychosocial model: The example of political economic causes of diabetes in the Marshall Islands. *Family Medicine*, *33*, 702–704.