California State University, San Bernardino CSUSB ScholarWorks

Theses Digitization Project

John M. Pfau Library

1996

Curriculum in mathematics for air conditioning and refrigeration

Darrow P. Soares

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

Part of the Science and Mathematics Education Commons, and the Vocational Education Commons

Recommended Citation

Soares, Darrow P., "Curriculum in mathematics for air conditioning and refrigeration" (1996). *Theses Digitization Project*. 1239. https://scholarworks.lib.csusb.edu/etd-project/1239

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

CURRICULUM IN MATHEMATICS FOR

AIR CONDITIONING AND REFRIGERATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Education: Vocational Option

by

Darrow P. Soares

June 1996

CURRICULUM IN MATHEMATICS FOR AIR CONDITIONING AND REFRIGERATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Darrow P. Soares

June 1996

Approved by:

Allen D Truell, Ph.D., First Reader

5/23/96 Date

Ronald K. Pentleton, Ph.D., Second Reader

Barbara Crane, M.S., Third Reader

Lawence Schock, M.A., Fourth Reader

ABSTRACT

In the last two decades the work environment and the proficiencies required to function in it have changed. Accumulated literature argues that our traditional, stratified educational system has not prepared the workforce for the changes that have occurred in the work-place. Both high school and college graduates require similar outcomes: the competencies to achieve employment and the educational foundation to continuously upgrade their knowledge and skills. Specific changes in curriculum must occur if the U.S. educational system is to meet this challenge. Specifically, academic dualism between the Applied Sciences and the Pure Sciences must end and the scientific and mathematical foundation of vocational students must improve. In addition, collaboration between school faculty members and business leaders must be established which results in relevant curriculum and work-sight learning.

The purpose of this project was to develop a curriculum taught in collaboration with the Math Department specific to the trade of air conditioning and refrigeration at Mount San Antonio College. In collaboration with community leaders and the Math Department faculty, this curriculum was developed to provide students with the skills needed to enter the trade of air conditioning and refrigeration and the foundation for continuos learning in any occupational specialty.

The curriculum for a Math Lab for Air Conditioning and Refrigeration was written and approved by the Air Conditioning and Refrigeration Advisory Committee and the Academic Senate Curriculum Committee at Mount San Antonio College. A team, however, of faculty members crossing academic and vocational education was never developed. The primary reason for this lack of collaboration was the culture of the academic environment that keeps departments specialized and separated.

The project writer strongly believes that the standards at which vocational courses are taught must increase. The project writer recommends that vocational instructors be made responsible for increasing their own knowledge of the humanities, mathes and sciences in order to infuse that knowledge into the vocational curriculum.

ACKNOWLEDGMENTS

The project writer would like to express his sincere gratitude to the following indivduals for their support and encouragement:

To Dr. Allen Truell for his unyielding commitment to quality. Dr. Truell's debut at CSUSB proved critical to the completion of this project. Without his presence this project would not have materialized.

To Dean Barbara Crane for her honesty, her support for instructional innovation, and her consistent commitment to educational reform.

To Dean Larry Schrock who always focuses on the true goal of education: the good and well being of the student. The spirit of this project is dedicated to Dean Schrock.

To my wife who introduced me to the importance of public education and the honor of serving in it. Her actions influenced me to set all aside and pursue teaching as a career.

V

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGMENTS	v
Chapter I. Introduction	1
Significance of the Project	5
Statement of the Project.	. 9
Purpose of the Project	10
Limitations and Delimitations.	10
Limitations.	10
Delimitations.	11
Definition of Terms.	11
Organization.	13
Chapter II. Review of Literature.	15
Roots of the Changes in the Nature and Structure of the Workplace.	15
Evidence of a New Technical Labor Force.	19
Evidence of a Rise in Skill Requirements.	20
Background of Ideas Leading to Educational Reform	23
Approaches to Integrating Academic and Vocational Education.	27
General Education Requirements.	28
Applied Academics.	30

vi

Multi-Disciplinary Courses	33
Cluster Courses	. 34
Chapter III. Methodology	. 36
Introduction	. 36
Rationale for Selecting a Team Teaching Approach to Applied Academics.	. 36
Population Served	. 37
Summary	. 38
Chapter IV. Project Design	39
Introduction.	. 39
Verification .	. 39
Design.	39
Summary	. 41
Chapter V. Conclusions and Recommendations.	42
Introdiction.	42
Conclusions.	. 42
Recommendations.	43
Summary.	. 44
APPENDIX A.	45
APPENDIX B.	127
REFERENCES	128

vii

Chapter I

Introduction

A separation between academic and vocational education has long existed in the United States. This division has resulted in different educational standards for those students planning to attend college, and for those students planning to enter a skilled trade. The justification for these academic and vocational divisions is based upon the assumption that industrial economies require a separation of mental and manual labor. The United States economy, however, has shifted from an industrial based economy, to an economy reliant on information (Berryman & Baily, 1992; Carnevale, 1991). The outcome of this issue becomes significant when considering the volumes of literature devoted to academic dualism and its effects on society and the economy.

Academic dualism in the United States can be traced back to the early colonies of New England. Willisten (1894) noted the early social differences caused by the status of students attending New England colleges and secondary schools established by the Puritans as compared to the social status of those involved in apprenticeship training. The Puritans recognized the relationship between literacy and the success of their religious faith. This ideal was a natural outcome of the importance the Puritans attached to the Bible and the religious truths it uncovered. The ability to read Biblical scriptures and then apply literacy to other forms of information enabled the Puritans to gain an early social lead in the Colonies (Williston, 1894).

In the 1750s, education in the Colonies was expanded when the New England academies were developed in Philadelphia by Benjamin Franklin. Franklin stressed that

additional subjects should be considered practical or utilitarian. These subjects included navigation, surveying, mathematics, and science. Although the academies did expand the range of subjects taught in the classroom and widened the scope of education in the Colonies, the academies were distinctly different from the New England colleges formed by the Puritans that focused on philosophy, literature, and Latin (Butts & Cremlin, 1953).

According to Edward Krug (1969), modern separation between academic and vocational education may be rooted in two events. The Morrill Act of 1862 granted land to the states for the creation of agriculture and mechanical schools. Although the law elevated the status of agriculture and the mechanical arts, it also served to physically separate high school students entering a vocation from high school students bound for college. In addition, the law called for specially trained instructors to teach a skilled trade. Krug (1969) concluded that this event began the process of focusing occupational related curriculum on job training rather than general education.

The second important event, according to Krug (1969), was the 1892 report by members of the National Education Association (NEA) that sought to define the relationship between secondary and higher education by focusing on the requirements for college admission. The final report of the committee identified nine curriculum areas as the modern academic subjects by which college admission would be based. The curriculum areas were identified as (a) Latin, (b) Greek, (c) English, (d) other modern languages including French and German, (e) mathematics, (f) physics including astronomy, and chemistry, (g) natural history including biology, zoology, botany, and physiology, (h) history including civil government and political economy, and (i) geography including

geology and meteorology (NEA, 1893). Although the nine curriculum areas identified by the NEA members expanded the curriculum by recognizing the equality of the subjects identified and widened the background of the college bound student, the NEA report isolated vocational curricula from the college bound student and reduced the importance of occupational related subjects (Krug, 1969).

Haney (1907) further separated academic and vocational education when he wrote that effective school systems should organize vocational courses for boys in the lower grades who are less academically talented. Although Haney (1907) was proposing vocational education as a solution to truancy problems, it was implied that vocational education was for the less academically talented.

Currently, the educational system in the United States continues to divide the student population into two groups: one group planning to earn a baccalaureate degree, and another group preparing to enter the workforce after high school. For the baccalaureate bound, the curriculum has traditionally been wide with emphasis on general education rather than application. According to Thomas Bailey (1991), college graduates from the United States tend to be highly disciplined, but lack the competencies to enter employment without additional basic training at the expense of the employer (Bailey, 1995).

The curriculum for those entering the work force after high school, has been the opposite of the curriculum for the college bound student. Students on a vocational tract had the option of occupational programs which offered tangible skills that resulted in job specific competencies. Ogden (1990) observed that vocational programs offering entry

level job skills have often been the solution to the drop-out problem in secondary schools. The notion that students who cannot work with their minds can work with their hands continues to be common (Ogden, 1990). The result, for vocational students, has been a narrow education that inhibits innovation and life-long learning (Cappelli, 1992; Berryman & Bailey, 1992).

In the last two decades the work environment and the proficiencies required to function in it have changed. These changes have resulted from corporate down-sizing, shrinking business cycles, intensified global competition, and new technologies. New responsibilities for non-managerial workers have emerged in the form of information management, increased scientific and technical knowledge, and continuos learning. According to Carnavale (1991), in the past these responsibilities were reserved for management since U.S. business was based on the 19th century notion that management and labor had separate tasks. As the ranks of U.S. businesses thin, however, these responsibilities have become less distinct. As a result, a career of working at a specific job consisting of specific tasks is becoming obsolete. Workers must be willing and able to learn new tasks and assume new responsibilities out of their traditional job descriptions if they are to remain valuable employees (Carnevale, 1991).

Accumulated literature argues that our traditional, stratified educational system has not prepared the workforce for the changes that are now occurring (Berryman & Bailey, 1992; Carnevale, 1991; Carnevale & Porro, 1994; Drucker, 1994). According to Berryman and Baily (1992), college graduates require more application and less theory and high school graduates lack breadth of education and life-long learning skills. Both high

school and college graduates require similar outcomes: the competencies to achieve employment and the educational foundation to continuously upgrade their knowledge and skills (Berryman & Bailey 1992; Carnevale 1991).

The community college offers the perfect niche to deliver employable skills and the educational foundation for life-long learning. However, specific changes in curriculum must occur if the community college system is to meet this challenge. Specifically, academic dualism between the Applied Sciences and the Pure Sciences must end and the scientific and mathematical foundation of vocational students must improve. In addition, collaboration between school faculty and business leaders must be established which results in relevant curriculum and work-sight learning. These reforms will serve purposes that are critical to the modernization of the workplace and to the new responsibilities of employees.

Significance of the Project

According to Carnevale and Porro (1994), reform of schools and the modernization of the workplace are inextricably linked. Carnevale and Porro (1994) argue that the competitiveness of U.S. business and industry depends on the ability of workers to use and build upon knowledge learned originally in school. In 1983, the National Commission on Excellence in Education (NCEE) was formed to evaluate the quality of education and learning in U.S. schools and colleges. The formation of the NCEE was requested at a time when our educational system was "seriously considered remiss" (NCEE, 1983, p.1). The U.S. public saw the state of education as a major factor in the deterioration of U.S. products and U.S. global competitiveness (Beck & Namuth, 1988). The writers of the NCEE (1983) report associated the mediocre educational performance of the nation with an act of war and an act of unthinking educational disarmament against the ability of the U.S. public to remain globally active. The NCEE (1983) members identified a strong correlation between the decline of quality education and the standard of living in the United States. In addition, the NCEE (1983) members predicted a decline in the U.S. standard of living unless all segments of our population focus on educational reform.

In a report to The National Assessment of Educational Progress, Venezky, Kaestle and Sum (1987), claimed that 30% of adolescents and young adults in the United States lacked the basic literacy skills required to collect information from different parts of a document in order to make sense of an unfamiliar task. Venezky et al. (1987) reported that only 56% of 17 year olds in the U.S. could compute with decimals, fractions, and percents or recognize geometric figures. Venezky et al. (1987) also stated that only 54% of 17 year olds in the U.S. could solve simple equations or use moderately complex reasoning and that only 43% of 17 year olds in the U.S. have enough scientific knowledge to evaluate the appropriateness of scientific procedures.

In a study of the garment industry, Baily (1988), indicated that poor literacy and mathematical skills reduce the ability of an employee to find and hold a job that pays enough to support a family. Bailey (1988) reported that textile companies often recruited machine operators to act as mechanics. These machine operators usually had little formal education, but they were able to make the transition into the garment business with informal on-the-job training since the mechanical technologies that the machinist were

used to were similar to the technologies faced in the garment industry. In recent years, business leaders have introduced various forms of automation based on microprocessors and electronic components. This new technology has allowed the garment workers to speed production and produce more customized products. Repairing this new equipment requires mechanics to follow detailed manuals and refer to updates from manufacturers. As a result, many of the former machine operators were unsuccessful in learning the digital and microprocessor components since they lacked the literacy skills to make the transition (Bailey, 1988).

Berryman and Bailey (1991) documented accounts of firm based training that taught employees basic science and math skills required in the textile industry. In 1987, Swift Textiles, the largest denim manufacturer in the world, carried out a major modernization program in its Columbus, Georgia plants. At the same time, the firm was investing in new forms of automation in order to anticipate market changes, and establish a system of quick response. One of the changes caused by the new upgrades was an immediate need for trained personnel to repair and maintain the new equipment. Swift designed a training course to teach students the use of a calculator to solve algebraic equations using formulas required in manufacturing that included basic electricity, the gas laws, and tolerances of machine parts. The course consisted of 15 three-hour classes. Of the 32 students who entered the first class, only six successfully completed the course. Berryman and Bailey (1991) concluded that most of the students who failed to complete the course did not have an adequate background in math. In the years since <u>A Nation at Risk</u>, policy makers have realized the need to bring the schools and the workplace closer together. In 1990, the Bush Administration developed the <u>America 2000 Educational Strategy</u> in order to develop a new generation of U.S. school administrators who emphasized higher standards, accountability, and access to a positive learning environment for all students attending school. <u>America 2000</u> was an ambitious nine-year strategy that included the construction of 535 new schools that would close the U.S. skills-and-knowledge gap. Although it advocated a strong back-to-basics philosophy, an important component of <u>America 2000</u> was the need for school and business to work together in developing curriculum and educational outcomes. In June of 1992, the U.S. Department of Labor released a report by The Secretary's Commission on Achieving Necessary Skills (SCANS). The writers of the SCANS report spelled out the skills required of young people to succeed in the workplace on a life-long basis. The emphasis the SCANS writers placed on life-long learning and personal responsibility reflected changes they perceived taking place in the workplace.

In 1994, U.S. President Bill Clinton developed a set of national goals and objectives for the states to achieve in meeting the reform called for in three documents: <u>A</u> <u>Nation at Risk</u>, <u>America 2000</u>, and SCANS. Clinton declared it time to abolish the outdated distinction between academic and skill learning. President Clinton noted that the United States had failed for too long to give young people the opportunity and tools to make the critical and challenging transition from school to a first job with a future (Weekly Compilation of Presidential Documents, 1994). The President enacted <u>Goals 2000</u>. <u>Educate America Act</u> and soon after, <u>The School to Work Opportunities Act of 1994 as</u>

the new blue print for schools in the U.S. Signed into law 12 days apart, the new laws emphasized the willingness of the Clinton Administration to follow up with the educational concerns of the Reagan and Bush Administrations (Sowell, 1994). The new laws included an emphasis on national skills standards, the end to academic dualism, strong collaboration between business and the school, and accountability on the part of educational providers.

With the Republican Congress taking control in 1995, legislation in both the House and the Senate was proposed to repeal the laws passed by previous administrations. Legislation has sought to consolidate the masses of job training and education programs offered by government and combine them into block grants administered by the states. The philosophy of the 38th Congress did not affect the theme of educational reform as much as the ideal of individual control by the state over accountability and funding (McCallum, 1995). The theme of educational reform and the basic philosophy of ending academic dualism, the formation of school and business partnerships, and accountability of education providers have transcended party lines. According to McCallum (1995), the basic direction of educational reform had not changed in three administrations.

Statement of the Project

A curriculum for air conditioning and refrigeration was developed to bridge the gap between applied learning and academic learning. The course was specifically designed for students enrolling in courses for air conditioning and refrigeration but have not taken high school algebra or who do not qualify for MATH 71-Intermediate Algebra at Mount San Antonio College. The curriculum for this project consists of a syllabus, 16 lessons, 38 lab projects, a midterm, and final project. Quiz development and scheduling will be the responsibility of the instructor based on the level and needs of the class. The design of the curriculum was be approved by the advisory committee of the Air Conditioning and Refrigeration Department at Mount San Antonio College and The Academic Senate Curriculum Committee.

Purpose of the Project

The purpose of this project was to develop a curriculum in collaboration with the Math Department faculty specific to the trade of air conditioning and refrigeration at Mount San Antonio College. Through the development of this curriculum, and collaboration with community leaders and the Math Department faculty, this curriculum was developed to provide students with the skills needed to enter the trade of air conditioning and refrigeration and the foundation for continuos learning in any occupational specialty. The goals of this project are to participate in educational reform by developing curriculum that blends academic and practical learning, and develops and maintains strong ties between Mount San Antonio College faculty and the community leaders involved in air conditioning and refrigeration.

Limitations and Delimitations

The limitations and delimitations of the project are presented in the next section. Limitations

1. This project was limited since the participation of curriculum integration at Mount San Antonio College was confined to faculty members committed to educational reform and innovation. Individually, faculty members from each department supported the philosophy of integration. When an

opportunity to participate in integration was available, almost all departments opposed it collectively. Therefore, resources to form partnerships were limited.

Delimitations

- The participants in this project were delimited to Math Department faculty, the Air Conditioning and Refrigeration Department faculty at Mount San Antonio College.
- 2. The content for the math lab in air conditioning and refrigeration was extrapolated from existing curriculum at Mount San Antonio College to include: (a) elementary algebra-MATH 51, (b) electrical fundamentals for air conditioning and refrigeration-AIRC24 (c) refrigeration fundamentals-AIRC20, and (d) mathematics for industrial technology-MFG 70. Additional material was extracted from elementary algebra text books, text books for air conditioning and refrigeration, and air conditioning and refrigeration trade journals.

Definition of Terms

The following terms are defined as they apply to this project:

<u>Academia</u>--those individuals employed within a school system or closely associated with school policy making.

<u>Academic Education</u>--a curriculum that focuses on subjects required to gain entry into a four year college or university.

<u>Academic Dualism</u>--a condition that refers to separate standards of education between academic and vocational education.

<u>Applied Science</u>--those courses offered that result in practical applications and work related knowledge.

<u>Curriculum</u>--a set of courses offered by an educational institution consisting an area of specialization.

<u>Curriculum Integration</u>--a method of combining general education curriculum with occupational curriculum to raise the educational standards of vocational students. <u>General Education</u>--those courses required for transfer to or graduation from a four year college or university not directly associated with the students major.

<u>Global Competition</u>-- refers to a condition where U.S. business and industry must compete with international business and industry for both domestic and foreign markets. <u>Global Economy</u>--refers to a condition where economic conditions are effected by international economies as well as domestic economies.

<u>Industry</u>-- those individuals and corporate entities with a stake hold in the private sector of the economy.

Integration--the process of blending general education curriculum with occupational curriculum to increase the academic standards of vocational students. Learning Styles--refers to a condition where students are motivated to learn under different conditions or circumstances outside of the traditional educational environment. Literacy Skills--refers to the competencies required to translate written information into useful concepts or tangible skills. <u>Multidisciplinary Courses</u>--those educational courses that infuse curriculum from different specializations to create one common course.

<u>Non-traditional Students</u>--those post secondary students not fitting the common image of baccalaureate bound students. Students falling into this category are those returning as older adults, pursuing an occupational skill, or are an ethnic minority.

<u>Production Flexibility</u>--a condition that allows business or industry to react to rapid economic change and quickly shift production strategies to meet unpredictable consumer demands.

<u>Situated Learning</u>--learning that focuses on making the educational environment resemble the work environment through structured work problems and technological solutions. <u>Skills Gap</u>--a condition that defines the contrast between the technological needs of business and industry and the level of education of the available workforce. <u>Technology</u>--refers to a method of achieving a practical purpose based on laws and principles taken from mathematics and science.

<u>Vocational Education</u>--a curriculum that focuses on the skills and knowledge required to gain entry level employment in a specific job or trade.

Organization

This project is divided in five chapters. Chapter 1 provides an introduction to the problem, significance of the project, statement of the project, purpose of the project, limitations and delimitations, the definition of terms. Chapter 1 ends with the organization of the project. Chapter 2 consists of a review of the literature, and the various approaches of integrating academic and vocational education. Chapter 3 outlines the methodology and

defines the population served and concludes with a summary. Chapter 4 contains the verification of the project, the project design and a summary of the chapter. Chapter 5 presents the conclusions of the project, offers recommendations and concludes with a

summary.

Chapter II

Review of Literature

The contents of this chapter include the changes that have occurred in business and the work-place that have resulted in high levels of critical thinking skills for employees in manufacturing and the skilled trades. As a result of these changes, documentation is offered to illustrate a rise in technical labor requirements needed to meet the challenges of a global economy. Further, it contains a discussion of how the traditional educational system in the United States is inadequate to meet the demands of a global economy and discusses the efforts being made at educational reform.

Roots of the Changes in the Nature and Structure of the Workplace

In 1983, the publication of <u>A Nation At Risk</u> launched a wave of debate over the effectiveness of the U.S. educational system. Business and industry argued that the academic community had become disconnected from the needs of the business community because it had lost tract of the demands placed on the schools by the new global Economy (Carnevale, 1991; Hoyt, 1991; Pajak, 1993). Members of the academic community, on the other hand, warned against blind reliance on business cycles and market like mechanisms to define public good and educational goals (Giroux; 1989, 1991; Helm, 1995; Pew Higher Education Roundtable [PHER], 1994). With this difference in opinion, it appeared that communication was required to find a common ground between the academic community and the business community.

The conflict between academia and industry began to surface by the late 1970s (Berryman, 1992; Carnevale, 1991). Business and industry were being squeezed by the

advent of new technologies and new sources of competition from abroad. These new forces pushed U.S. business out of a comfort zone created by the domestic post-World War II boom. As a result, businesses in the United States were forced to compete with new, flexible industries emerging in Asia and Europe after being rebuilt (Carnevale, 1991; Berryman & Bailey, 1992).

Research by Edwards (1979) and Hall, Johnson, and Turney (1990) indicated that businesses leaders in the United States relied on mass production and guaranteed consumer demand. Hall et al. (1990) stated that the success of the United States was measured by the ability of U.S. workers to produce higher volumes of goods and services with the same or fewer resources than the foreign competition. The demand for U.S. consumer goods following World War II, combined with a manufacturing base built for war production pushed U.S. productivity to unprecedented levels. Edwards (1979) stated that the U.S. postwar boom was based upon the ability of the U.S. to produce higher volumes of goods and services with the same or fewer resources. With guaranteed domestic demand, U.S. industry was able to reduce the costs of manufactured units simply by increasing the volume produced. This strategy worked during the 1940s and 1950s when the U.S. market was eight times the size of the next largest domestic market. The domestic manufacturing capacity could be fully absorbed without going offshore and competing abroad. According to Edwards (1979), as long as consumer demand remained high and resources were plentiful, U.S. manufacturers were able to operate profitably with the manufacturing infrastructure and production methods developed for the World War II effort, but only meeting the needs of domestic U.S. markets.

In a study of the automobile industry, Womack (1989) determined that Europe and Japan's domestic markets were never large enough to emphasize the high-volume production of automobiles for domestic sales alone. As a result, European and Japanese auto makers adjusted to the complexity of the international automobile market early on (Womack, 1989). German and Japanese automakers not only produced cars for their domestic markets, but also had to satisfy the styles and conditions found well beyond their boarders. According to Womack (1989), the fragmented markets in Europe and Asia forced the Europeans and Japanese to focus on flexibility to provide a variety of products tailored to diverse market segments.

In addition, to compensate for their inability to match U.S. productivity, the Europeans and Japanese focused on quality. Since decreasing costs per unit of output by increasing volume was not an option, European and Japanese auto makers achieved alternative savings by reducing the cost of reworking products by increasing quality in production. Additional savings were achieved by focusing on effective work processes, flexible organizational designs, and superior integration of human and machine capital (Womack, 1989). With an emphasis on production flexibility and active work processes, the demand on the European and Japanese workers to react to change and to innovation was greater than workers in the U.S. who were rewarded for reducing costs by increasing output (Womack, 1989). The constant innovation required to compete with the U.S. industrial giants encouraged the Europeans and Japanese to carefully utilize human capital and focus resources on learning at school and on the job (Womack, 1989; Dertouzos, Lester, & Solow, 1989). With the advent of new competition, U.S. business leaders were forced to react to rapidly changing markets, high quality foreign competition, and stock holders impatient for dividends. U.S. business leaders adjusted to the competition from abroad by investing in automation and technology and shedding skilled labor (Carnevale, 1991; Rosenberg & Birdsell, 1986). According to Murnane and Levy (1992), the logic of investing in automation was to increase production and quality while decreasing personnel costs. The Europeans and Japanese treated labor as a fixed cost of production and did not eliminate expensive labor by substituting machinery and unskilled labor. As a result, there were strong incentives for the Europeans and Japanese to use and develop personnel and labor when U.S. businesses leaders relied on specialty purpose machinery and unskilled labor to drive productivity (Murnane & Levy, 1992).

Japanese and European workers were well prepared for flexible work environments. Tan (1989) documented the emphasis on applied learning in Japan and Europe as more important than anywhere in the United States. Tan (1989) used examples of European apprenticeships and Japanese group processes in school and the strong emphasis on problem solving teams on the job in Japan and Europe as evidence of their applied focus. In contrast, according to Ogden (1990) it has been the U.S. practice to break down knowledge into theoretical disciplines, reduce disciplines into component pieces, and require students to commit fragmented knowledge to memory. Applied learning in the United States has been a matter of answering the questions at the end of a chapter and multiple choice tests (Ogden, 1990). In documenting U.S. educational history, Ogden (1990) stated that collaboration between disciplines has been rare, and applied learning to the work environment almost nonexistent. As a result, innovation in the work place was the responsibility of the managerial elite and creative processes began at the top and were delegated downward (Ogden, 1990).

Evidence of a New Technical Labor Force

The rapid growth of technology has brought about many changes in the Global Economy. Low skilled jobs are rapidly disappearing as society shifts from an industrial based economy to a technological and information based economy (Carnevale, 1991; Murnane & Levy 1992; Silvesrti & Lukasiewics, 1989). Drucker (1994), stated that as recently as the 1960s almost 50% of all workers in the industrialized countries were involved in some process of production. By the year 2000, no developed country will have more than one-sixth or one-eighth of its workforce in the traditional roles of making and moving manufactured products (Drucker, 1994). In 1950, 60% of the jobs in the United States could be performed by unskilled workers. By the year 2000, only 15% of the jobs in the U.S. will fall into the unskilled category. Based upon occupational employment records since 1900, and occupational projections until the year 2010 by Silvestri and Lukasiewics (1989), unskilled service occupations are growing at a slower rate than skilled and professional occupations. Service occupations showed a marginal growth of only 4% between 1900 and 1989. Growth in the clerical occupations made most of its gains before 1960 (Silvestri & Lukasiewics, 1989).

Since 1950, much of the growth in the labor force occurred among managerial, sales, technical, and professional occupations. Direct employment in the production of manufactured products peaked during the 1940s when 6 out of 10 workers in the U.S.

were employed either as craftspersons or as operatives and laborers. By 1988, the proportion craftpersons, operatives and laborers had fallen to 36% (Barley 1992).

Economic forecasts indicate that professional and technical occupations will continue to grow rapidly. By the turn of the century, professional and technical occupations should account for more employment than any other occupation (Silvestri & Lukasiewics, 1989). Between 1975 and 1990, the higher skill occupations grew two-anda-half times as fast as the lower skill occupations. During the 15 years between 1990 and 2005, higher skilled occupations are expected to grow just under twice as fast as low skill occupations (Silvestri & Lukasiewicz, 1991). Professional and technical occupations may account for 20% of the workforce by the year 2000 (Bishop and Carter 1991), while over 25% of all new jobs created between 1990 and 2000 are anticipated to be professional or technical in nature (Barley, 1992).

Evidence of a Rise in Skill Requirements

A major factor in the growth of professional and technical opportunities has been technological change (Barley, 1992; Cappelli, 1992; Carnevale 1991; Pritchett, 1994). Programmable machines have replaced human skill in many manufacturing processes in the textile and auto industries (Bailey, 1988; Womack, 1989). The skilled machinist is being replaced by programmable logic controllers because the new technology improves precision and quality. In addition, programmable logic controllers allow faster setup and reprogramming which in turn enhances variety and customization of products. Investment in automated technology does not necessarily replace the technician. According to Spenner (1985), substantial evidence shows a growing importance of high-skilled jobs in the economy and increasing skill requirements in existing jobs. Spenner (1985) writes that an increase in technology does not automatically result in a decrease in human contributions to the manufacturing process. When the complexity of work increases, an equal increase in the quality of technical and human resources is usually required (Spenner, 1985).

The concept of a skills gap is a concern for business and industry leaders trying to keep abreast with technology. This concept implies that there is an increase in skill requirements that cannot be met by the current supply of labor. Members of Workforce 2000 (U.S. Department of Labor, 1987) addressed the issue of this mismatch between the skill level of the present labor force and the current demands placed on labor by business and industry . Another study by members of the Secretary of Labor's Commission on Workforce Quality and Labor Market Efficiency (1989) documented complaints by employers in finding workers with adequate basic skills, in spite of a plentiful supply of applicants. A report by The Office of Technical Assessment personnel (1990) predicted a mismatch between the existing labor force and skill requirements as industry shifts to the flexible production techniques described by Carnevale (1991).

Another important reason for the rise in skill requirements has been the importance of science to modern society. Price (1986) indicated that scientific knowledge has expanded exponentially since the 17th century. Price estimated that by the 1960s, scientific output has doubled every 6 to 10 years. This rate of growth has been much faster than all of the nonscientific and nontechnical changes in the progress of civilization (Price, 1986). The continued emphasis on science can be credited to the realization that scientific and technical knowledge can generate profits (Barley, 1992). According to Barley, the commercialization of chemistry and physics in the last two decades has given rise to the industries on which our economy now depends: aerospace, automobiles, energy, pharmaceuticals, petrochemicals, and electronics. In addition, advances in the life sciences since World War II have largely underwritten the present health care industry. Recently, molecular biology has opened opportunities for new industries and have radically changed others (Barley, Freeman & Hybels, 1993).

The explosion of scientific knowledge brought a huge demand for applied scientific technicians and research scientists (Barley, 1990). The expansion of science not only enlarged the existing scientific fields, but also created new occupational levels. According to Barley (1990), two new technical occupational processes were created that have had a profound effect on the nature of the technical work force: specialization and subcontracting.

According to Barley (1992), breadth of knowledge is achieved at the expense of depth of knowledge, and vice versa. Barley (1992) argues that the amount of knowledge becomes more complex, scientists and other professionals find it increasingly difficult to remain generalists. Since specialists are more highly valued, most scientists and professionals have adopted a policy of specialization which results in an increased number of narrow subfields. This condition has resulted in an increased demand for professionals since few individuals can act alone on tasks that require both breadth and specialization. In technical and commercial occupations, Kurtz and Walker (1975) documented how overburdened professionals have sought to reduce their workloads by allocating routine duties to less-trained individuals. This concept is common in many technical fields where specific occupations like CAD operators, design technicians, and customer service representatives have developed around tasks that were discarded by higher level occupations.

Perhaps the most important force for the growth of the professional and technical workforce has been technological change (Cappelli, 1992). According to Silvestri and Lucasiewicz (1989), occupations related to computers continue to be among the fastest growing. By the turn of the century, computer related occupations are anticipated to provide employment for nearly two million people. Barley (1992) describes the effect of the computer on society as infrastructural. According to Barley (1992), infrastructure technologies are defined as the type of technologies that form the foundation of a society's system of production during a historical era. Barley (1992) credits the computer for having the same societal impact the combustion engine or electric power had during the industrial revolution. In the long run, the effects of computerization on existing occupations may be the most important stimulus for the mechanization of the workforce. Background of Ideas Leading to Educational Reform

During the past several years, educators have been researching new ways to structure the learning experiences of students. The ultimate goal of this structure has been to help students develop the skills and knowledge necessary to solve problems and become independent thinkers and life-long learners (The Cognition and Technology Group at Vanderbilt [CTGV], 1993). Like other researchers, members of CTGV has been

influenced by Whitehead's (1929) theory of inert knowledge (Brown, Bransford, Ferrara &, Campione, 1983; Porter, 1989; Scardamalia & Bereiter, 1985). Inert knowledge is knowledge that can usually be recalled when people are explicitly asked to do so, but is not used spontaneously in problem solving even though it is relevant (CTGV, 1993). Whitehead was instrumental in identifying inert knowledge and claimed that information conveyed in schools was most likely to be presented in ways that make it inert (Brown et al., 1983; CTGV, 1990).

Sherwood, Kinzer, Hasselbring, and Bransford (1987) illustrated inert knowledge when they surveyed college students on the application of logarithms. The students were asked (a) how logarithms make it easier to solve problems, (b) why logarithms were invented, and (c) to define an application for logarithms. According to Sherwood et al. (1987), most students surveyed had no idea of the uses for logarithms. The students remembered learning logarithms in school but thought of them only as math exercises performed to find answers to logarithm problems. The students treated them as difficult ends to be tolerated rather than as a tool that allowed a variety of problems to be solved (Sherwood et al., 1987).

John Dewey (1933) stressed the importance of viewing knowledge as a tool. Dewey (1933) argued that when people learn about a tool, they learn what it is and when and how it is used. Similarly, when students learn new information in the context of meaningful activities, learners are more likely to perceive the new information as a tool rather than as an arbitrary set of procedures or facts. Bransford, Sherwood, and Hasselbring (1988) have shown that one of the advantages of learning in problem solving

contexts is that students learn how to use information. When learning in context, students acquire information about the conditions under which it is useful to know concepts and facts. In addition, Bransford and Heldmeyer (1983) reported the learning successes of young children depend on opportunities to learn in meaningful, socially organized contexts. In support of the findings by Bansford and Heldmeyer (1983), laboratory studies of adolescent cognitive processes indicate that meaningful, problem-orientated approaches to learning are more likely than fact-oriented approaches to overcome inert knowledge problems (Adams, Kasserman, Yearwood, Perfetto, Bransford, & Franks, 1988).

Anchored instruction is a solution to the inert knowledge problem (CTGV, 1990, 1992, 1993). The concept of anchored learning has its roots in the theories of Dewey (1933) and Gragg (1940). Dewey (1933) reasoned in favor of theme based learning and later Gragg (1940) added to the theme of Dewey (1933). Gragg (1940) argued for the advantages of case-based learning. In this model, Gragg (1940) used a variety of minitopics or microcontexts that allowed the exploration of a specific subset of a larger subject called a macrocontext. Case-based learning allowed the exploration of a subject for extended periods of time from the perspective of many different disciplines (Gragg, 1940). The Cognition and Technology Group at Vanderbilt [CGTV] (1990) applied these principles to two programs based on anchored learning. The Young Sherlock Project and The Jasper Series were learning environments based upon characters in traditional and popular works of literature: Sherlock Holmes and Jasper Woodbury. In both cases, the project involved the development of applications that enabled sixth grade students to learn problem solving skills based on science, history, and literature based on the experiences of

the primary anchor characters. The objective was to provide students the opportunity for sustained thinking about specific problems over long periods of time (CGTV, 1990). Findings by Van Hanegan, Barron, Young, Williams, and Bransford (1991) on the Jasper Series experiment, showed students who were not normally good at math can become very good at complex problem solving after working with projects similar to Jasper and Holmes after four to five class sessions (Van Hanaghan et al., 1991).

Garafalo and LoPresti (1993), organized a form of anchored learning around the college freshman curriculum at Massachusetts College of Pharmacy in Boston. Freshman electing a major in chemistry were encouraged to participate in a cluster of classes that included math, biology, chemistry, and English. Chemistry served as the primary anchor, or what Gragg (1940) termed the macrocontext. Pure science courses tend to be linear in the presentation as instruction moves from atoms to molecules, to cells and beyond. As a result, the integration efforts of Gartafalo and LoPresti (1993) led directly to a restructuring of each course. The new curriculum introduced concepts like energy and matter through discussions of general subjects in familiar circumstances. Gartafalo and LoPresti (1993) found that engaging students with tangible common examples eased the students into college level courses and introduced problem solving activities earlier in the students' education. To assess the impact of the curriculum, Gartafalo and LoPresti (1993) shifted the testing style away from recognition, recall, and the ability to plug-in calculations. Rather, the success of a student was based upon the ability to master concepts and develop critical thinking skills (Gartafalo & LoPresti 1993).

Comparison of freshman chemistry student performance for academic year 1991-1992 with that of two years prior to the introduction of an integrated curriculum showed a positive correlation between anchored learning and student success (Gartafalo & LoPresti, 1993). Student performance in freshman chemistry tended to decline in the second quarter with two to four times as many students declining as improving. By the end of academic year 1991-1992 the trend had reversed with about twice as many students showing improved performance compared to declining performance. Gartafalo and LoPresti (1993), attributed the results to changes in student behavior encouraged by the integrated, active learning approach

Research by Raizen (1989) can be used to summarize the need for educational reform. According to Raizen (1989), the traditional separation between traditional academic learning and occupational learning only exacerbates the cognitive process rather than clarify it. Research on anchored learning and situated learning produce evidence that learning through work process and learning across disciplinary subjects is an effective method of acquiring work-related knowledge and the foundation for life long learning (Resnick, 1987).

Approaches to Integrating Academic and Vocational Education

Grubb and Kraskouskas (1992) surveyed faculty and administrators at 295 community colleges and technical institutions in the United States to explore the methods being used to integrate academic and vocational education. Of 168 respondents, 121 faculty members and administrators reported that integration between academic and vocational education was occurring on their campus in some form. Grubb and Kraskouskas (1992) contacted a sample of the campuses involved in integration and identified eight common methods used in community colleges and technical institutions in the United States to achieve the integration of academic and vocational education. Four alternative methods of integrating academic and vocational education are discussed based on the findings of Grubb and Kraskouskas (1992) and Grubb et al. (1996). These four methods are (a) general education requirements, (b) applied academics, (c) multidisciplinary courses, and (d) cluster courses.

General Education Requirements.

The most frequent form of integration is the requirement of general education for occupational students (Grubb & Kraskouskas, 1992; Horan, 1995). In this method students are required to take general education courses that are not modified to address the occupational interest of students. Within the institutions examined, communication skills, critical thinking and problem solving abilities, an understanding of civic responsibilities, and appreciation of the arts and humanities were common goals for general education requirements (Grubb & Kraskouskas, 1992).

According to Grubb and Kraskouskas (1992), links between general education and vocational programs are the most developed in schools that provide their students with guidance on the general education courses required for their occupational direction. A thorough effort to link these requirements occurred at the Pennsylvania College of Technology (PCT) in Williamsport. Faculty members at PCT decided that general education requirements should be based upon the skills required in the workplace and developed core competencies using the DACUM (Developing a Curriculum) Process
(Pennsylvania College of Technology, 1987). The DACUM process involves assembling practitioners from specific occupational areas and having them describe the skills required for entry level employment. Faculty then use these job descriptions to determine the core competencies students need to master to be successful in the work-place. According to Grubb and Kraskouskas (1992), the resulting competencies were not much different from those cited in the general education requirements outlined in many community college catalogs. However, the process by which they were developed and the goals of the general education requirements were more vocational (Grubb & Kraskouskas, 1992). Grubb and Kraskauskas (1992) agree that the PCT model is a positive effort to expose vocational students to core competencies. However, the model has not resulted in the integration of academic competencies and vocational education since the courses remain separate (Grubb & Kraskouskas, 1992).

Research by Patricia Cross (1976) indicate that non-traditional students in community colleges have difficulty linking academic competencies with vocational requirements. Research by Cross (1976) is based on studies in cognitive learning styles that indicate non-traditional students in community colleges are more likely to have fielddependent learning styles. The field dependent learner perceives information globally and relies on the integration of information from many sources to master concepts or tasks. Field-independent learners, however, are likely to deal with elements independent of their background and approach tasks in an analytical way, separating elements from background (Cross, 1976). According to Cross (1976), traditional methods of academic achievement

require the separation of information from background, giving field-independent learners the advantage in traditional school situations.

According to Lankard (1992), common profiles of vocational students often include weak academic performance, inconsistent attendance, and strong insecurities about academic coursework. As a result, general education requirements are often an incomplete approach to integrating vocational and academic education (Lankard, 1992). General education may bring into occupational programs the content and skills associated with academic disciplines, but it places the burden for integration on students themselves, and may not reach the vocational and non-traditional students most in need of these abilities. According to Grubb, Badway, Bell, and Krakouskas (1996), the most promising approaches to curriculum integration place the responsibility for integration squarely on instructors, and create new courses and groups of courses that are different from what may currently be offered.

Applied Academics.

A second common approach to integration is the development of applied academic courses which take conventional academic subjects and infuse them into vocational areas. Applied academic courses adapt the content of academic subjects and use practical applications from specific occupations to form a link between academic and vocational education. The best-known example is Writing Across the Curriculum (WAC), in which academic and vocational instructors are encouraged to incorporate more writing into their courses. Grubb et al. (1996) described how government administrators in Florida have required WAC in all of its community colleges. Initially, faculty were motivated to

participate in WAC through recruitment and outreach. Members of the WAC staff conducted seminars to show instructors how to incorporate writing exercises into their courses. Faculty members not volunteering to participate were forced to do so by state mandate. A successful, less coercive method of motivating WAC participants succeeded at Kapiolani Community College (Hawaii). In this example, WAC was introduced to faculty as a way of teaching their occupational subject while allowing the student to earn credit for writing-intensive English courses. Courses that counted as writing-intensive included occupational courses such as Business/Management Writing, Basic Nursing Concepts, Introduction to Physical Therapy, and Special Radiology Procedures (Grubb et al. 1996).

Grubb and Kraskouskas (1992) and Statz and Grubb (1991) referred to a common conflict when developing curriculum for applied academics. When attempting to infuse subject areas, faculty members were often at odds whether an applied academics course should stress the abstract, theoretical side of the subject, including discipline-based modes of thinking, or if the course should limit the attention to academic content and stress occupational examples. Grubb and Kraskouskas (1992) documented a case at Bunker Hill Community College (Boston) in which a business math course was initially taught by business instructors. However, the math department thought the course was inadequate and refused to assign the course a math department number. Finally, the business and math faculty collaborated in developing a course worthy of being included among the math offerings. Statz and Grubb (1991) reported a similar conflict when developing a class in Applied Math for Recording Technology at Cedar Valley Community College in Lancaster, Texas. These examples of conflict between academic and vocational

departments demonstrate existing tension and suggests that collaboration is crucial to successful infusion of academic and vocational education (Grubb & Kraskouskas, 1992; Statz & Grubb, 1991).

Apart from faculty rivalries, there may be another drawback to infusing academic courses into vocational programs. Occupational students tend to become segregated from others when enrolled in applied academics courses. Segregation could result in a form of tracking that could limit student ambitions (Grubb et. al., 1996; Grubb & Kraskouskas, 1992; Lankard, 1992; Statz & Grubb, 1991). In Grubb and Kraskouskas (1992), the dean at Bunker Hill Community College (Boston) explained the opposition to such courses by stating that occupational students need to have a broader exposure by associating with students from other disciplines. In addition, Bunker Hill faculty members found that applied English classes isolated students and focused them too much on their technical area (Grubb and Kraskouskas, 1992).

Bunker Hill Community College students also demonstrated dissatisfaction with applied academic courses. Grubb and Kraskouskas (1992) found that applied academic courses evolved into remedial instruction in areas where students were weak. As a result, the students perceived the courses as adult basic education and rejected the format. Grubb and Kraskouskas (1992) concluded the rejection was based on the notion that applied English classes were remedial, insulting to students, and segregating.

The literature is replete with empirical evidence that science and math students improve academic performance through applied learning (see Brown et al., 1983; CTGV, 1990, 1992; Dewey, 1933; Garafalo & LoPresti, 1993; Sherwood et al., 1987). With the exception of Cross (1976) most literature on applied learning at the vocational level tends to be hortatory rather than empirical. Research by Cross (1976) implied that applied academics may be more compatible with vocational education students since many occupational students displayed field dependent learning styles. As a result, there is little quantitative evidence that applied learning for vocational students has improved their academic performance or enhanced their occupational performance once they are employed.

Multi-Disciplinary Courses.

Another approach to integrating academic and occupational education has been to introduce units of material taken from academic disciplines into standard occupational courses. The results are courses that can be included in general education programs with subjects of special interest to occupational students. These courses emphasize general skills of critical thinking and writing, but do not necessarily reinforce academic competencies required for employment. Multi-disciplinary courses tend to focus on political and social aspects of work and enhance the general education of the student.

According to research by Grubb et al. (1996), multidisciplinary courses commonly fall into one of several groups: (a) working life as a theme of literature, (b) science and technology as themes of literature, (c) the influences of technology on society, and (d) the perspectives of history, philosophy, and art to explore the effects of technology and production. The common element of these courses is the application of academic subjects that are reasonably more interesting for occupational students.

Most successful multi-disciplinary courses at the community college have been funded by the National Endowment for the Humanities or other NEH supported projects (Koziol and Grubb, 1995). The reliance on special funding is evidence of the resources required to develop multidisciplinary courses and other innovative approaches to teaching. Koziol and Grubb (1995), stress the need for staff development, since faculty must have release time to develop new materials and most multidisciplinary required the collaboration of faculty from many disciplines.

Cluster Courses.

A fourth approach to integration has been to develop a series of courses taken from academic and occupational subjects that students take simultaneously. Each course is designed to complement the other course. Clustering differs from traditional general education requirements by providing tangible links between the courses offered. The most effective approaches to curriculum integration place the responsibility for integration squarely on the design of the curriculum and on how the course is implemented (Grubb et al., 1996; Grubb and Kraskouskas, 1992; Koziol and Grubb, 1995).

Interaction between courses that result in clustering can be accomplished at several different scales. Occupational and general education classes can be linked, creating tandem courses that focus on a common outcome. Faulty members at Waukesha County Technical College (Wisconsin) paired Workplace Psychology with Welding, to integrate academic and vocational education. The result taught occupational students how race and ethnicity, safety, health, and interpersonal relationships affect the work environmen (Grubb et al., 1996). Also in Grubb et al. (1996), Linn-Benton Community College (Oregon) faculty

integrated curriculum by pairing Business Quantitative Methods and Technical Report Writing.

At San Diego City College a cluster called History of Technology in the Workplace combines transfer level history, English, and computer information systems to focus on the theme of historical changes caused by technological advances. Also offered, Workplace Ethics and Communication Skills combine occupational perspectives with liberal arts studies in philosophy and with written and oral communications.

In all cases, students took courses simultaneously. Grubb and Kraskouskas (1992) reported that students within clusters were engaged deeper in the subjects than were most community college students. In addition, the students had stronger personal relationships, tended to work more collaboratively, and developed study groups and other support mechanisms that resulted in lower drop out rates. These opinions are consistent with the findings by Tinto (1987) that show dropout rates are lower among students whose social connections within postsecondary schools are strong.

Chapter 3

Methodology

Introduction

The contents of Chapter 3 describe how the project was developed. First, the rationale for selecting a team teaching approach is stated, second the population served and the course content is described. A mission statement specifying student outcomes are presented and the chapter will conclude with a summary.

Rationale for Selecting a Team Teaching Approach to Applied Academics

The applied academics model described in Grubb and Kraskouskas (1992), with a team teaching approach, was selected for two reasons. First, many secondary and post secondary school administrators and faculty have successfully utilized the model of applied academics in educational settings. In most cases where the model failed, failure was based on a lack of cooperation between the departments involved. Faculty members in the Math Department at Mount San Antonio College have expressed interest in educational reform and have contributed to the development of a math lab for air conditioning and refrigeration. Second, Barbara Crane, Dean of Instructional Services and Larry Schrock, Dean of Applied Sciences at Mount San Antonio College granted the project writer permission (see letter Appendix B) to develop curriculum for mathematics in air conditioning and refrigeration based upon an applied academics model with a team teach approach.

Population Served

The math lab for air conditioning and refrigeration-AIRC 10 was designed for students entering the trade of air conditioning and refrigeration with no prior experience in the industry. The course was specifically designed for students who have never had high school algebra or had deficiencies in first-year high school algebra, or who do not qualify for MATH 71-Intermediate Algebra at Mount San Antonio College.

The curriculum was extracted from courses at Mount San Antonio College to include MATH 51-Elementary Algebra, MFG 70- Technical Mathematics for Industrial Applications, AIRC 20-Fundamentals of Refrigeration, and AIRC 24-Electrical Fundamentals. The curriculum consists of formulas, operations with signed numbers, algebraic equations of the first degree, special products and factoring, algebraic fractions, ratio and proportion, and systems of linear equations as they apply to air conditioning and refrigeration. In conducting the project that led to the development of the AIRC 10 curriculum, the following resources at Mount San Antonio College were consulted: (a) Air Conditioning and Refrigeration Advisory Committee Members, (b) Math Department Faculty, (c) Barbara Crane, Dean of Instructional Services, and (d) Lawrence Schrock, Dean of Applied Sciences. Additional material was extracted from elementary algebra text books, text books for air conditioning and refrigeration, and air conditioning and refrigeration trade journals.

Summary

The contents of this chapter described how the project was developed. First, the rationale or the designed was described, followed by the population served, and a description of the course structure. The section concluded with a summary.

Chapter IV

Project Design

Introduction

The contents of Chapter 4 first describe how the project was verified. The design of the project is described and the chapter concludes with a summary. <u>Verification</u>

Verification of the need for a math lab for air conditioning and refrigeration was based upon an extensive review of the literature. A review of the literature revealed a relevant need to integrate academic and vocational education. A math class focusing on the specific trade of air conditioning and refrigeration fits this need.

Design

The purpose of developing this course was to use mathematical concepts and language to learn the operational consistencies of air conditioning and refrigeration equipment. Students used equations that demonstrated the operation of electrical and mechanical equipment based on a variety of primary and secondary sources of information to include text books, journal articles, collaborative learning, and personal research.

The essential mathematical concepts of air conditioning and refrigeration can be grouped into three areas: (a) the mechanical side of refrigeration and air conditioning, (b) the electrical side of refrigeration and air conditioning, and (c) the air side of air conditioning and refrigeration. Students gather qualitative and quantitative information

from existing mechanical and electrical equipment in order to make predictions about the operation of equipment and solve mechanical and electrical problems.

The fundamental assumption behind Math for Air Conditioning and Refrigeration is that the mechanical and electrical operation of air conditioning and refrigeration equipment is consistent and predictable through mathematical understanding. Students that connect mathematics with mechanical and electrical operation will have the foundation for life-long learning and the flexibility to adjust to new technologies.

Mathematics for Air Conditioning and Refrigeration was designed so that on a typical day, students observe the operation and effects of mechanical or electrical processes and then determine the mathematical reason for its operation. In order to reflect the nature of the workplace, students work in revolving groups and solve problems on a collaborative basis. Lab assignments are based on the manipulation of a mechanical and electrical processes that are initially observed by the student and later explained mathematically. Quizzes are taken individually. Upon completion of the quiz, students participate in work groups to determine collective solutions to the quiz questions. The average between the individual and the collective answers count as the overall quiz grade. Students are required to give one presentation on one process learned during the semester. All lab projects will be organized into a portfolio and submitted twice during the semester: at the midterm and at the final.

Summary

The contents of this chapter described the design of the project. The verification of need was described, followed by the course design and format. The section concluded with a summary.

Chapter V

Conclusions and Recommendations

Introduction

Chapter 5 presents the conclusions of the project and offers recommendations. The chapter concludes with a summary.

Conclusions

The curriculum for the Math Lab for Air Conditioning and Refrigeration was approved by the Air Conditioning and Refrigeration Advisory Committee and the Academic Senate Curriculum Committee. A team, however, of faculty members crossing academic and vocational education was never developed. The primary reason for this lack of willingness to team teach is a result of the culture of the academic environment at mount San Antonio College. Departments within an academic organization are established teams with a strong loyalty to the discipline. Faculty members work hard to be competent within the discipline and prestige is awarded faculty members who teach upper division classes in the subject area. Team teaching a subject outside of the normal discipline of the faculty would compete with the challenge and pursuit of remaining current in the primary field. The project writer was informed that a member of the Math Department team teaching a class in air conditioning and refrigeration would have to endure the cognitive process of learning the trade simply to teach a math class comparable to elementary algebra. A second important cultural difference between academic and vocational programs is the product of what is taught. Academic classes within the Math Department are offered for transfer to a four-year university rather than specific job training. As a result, student successes or failures are measured by standardized testing. In the Air Conditioning and Refrigeration Department, the end product is a useable and transferable skill. The structure of the learning environment reflects the importance of developing usable knowledge by slowing or speeding the pace of the lessons to match the ability of students. When the project writer discussed this format with members from other departments, many faculty members viewed it as a compromise of both academic and professional standards.

Recommendations

The standards at which vocational courses are taught must increase. Based upon the review of literature, business and industry leaders require higher learning skills than what technical program faculty are currently offering. The answer may not, however, mean bringing faculty members from other disciplines together to learn each others subjects. Rather, it is the recommendation of the project writer that vocational instructors increase their knowledge of the humanities, math, and sciences in order to infuse the knowledge into the vocational curriculum. In order to increase the knowledge out side the subject area of vocational instructors, release time from committee work and the shared governance procedure must be granted. This additional time will allow motivated instructors to enhance their vocational curriculum by infusing the subject learned directly into their subject area.

Summary

Chapter 5 presented the conclusions of the project and offered recommendations. The chapter concluded with a summary. 이 있는 가지 같은 것은 것

AIRC 10

MATHEMATICS FOR AIR CONDITIONING AND REFRIGERATION

SYLLABUS & OUTLINE

Developed by

Darrow Soares, MA (1996)

Studer	ut:
Term:	
Room:	
Instruc	ptor:
Class I	Hours:
Office	Hours:
Teleph	ione:
E-Mai	

Mount San Antonio College, Air Conditioning and Refrigeration Department

01.00 Class Session 1 AIRC 10

Mount San Antonio College

Course Syllabus and Outline

Mathematics for Air Conditioning and Refrigeration

Course Description: A mathematical foundation applied to the procedures used in the trade of air conditioning and refrigeration. The mechanical, electrical, and air side of refrigeration and air conditioning will be explored mathematically in a laboratory setting.

Prerequisite: None

Required Text: Basic Vocational-Technical Mathematics 5th edition by Olivo & Olivo.

Require Material: Eye protection, note book for lab manual, and 15 foot tape measure. Students will not be allowed to participate in the lab projects involving electricity, refrigerants, or operational equipment with eye protection.

	radino		
Grading	Item	Final Grade	
	Lab Assignments	30%	
	Lab Manual	5%	
	Quizzes	20%	
an a	Presentation	5%	
	Midterm	20%	
	Final	20%	

Lab Assignments. The purpose of the lab assignment is to reinforce the concepts discussed during the class session. Lab projects will be performed individually or collaboratively, depending on the type of assignment. Two or three lab assignments will be assigned each class session and are due at the beginning of each class session. Students requiring additional lab time beyond the normal class session, may attend open lab on Fridays from 1:00 pm to 4:00 pm. Lab assignments will be graded on

accuracy, clarity, and punctuality. Lab assignments account for 30% of the total class grade.

Lab Manual. The lab manual is a record of the student's work and the student's understanding of the math principles. The lab manual will be turned in at the midterm and at the final and graded for organization. The lab manual accounts for 5% of the total class grade.

Quizzes. There will be six quizzes. Each student will receive a quiz with written situations that reflect mathematical problems encountered in the air conditioning and refrigeration industry and covered in class. Each student will work individually and turn the quiz in when completed. When all quizzes are turned in, the students will break into groups to readdress the quiz and decide on group solutions. The students final quiz grade will be an average of the individual score and the group score. Quizzes account for 20% of the total class grade.

Presentation. The presentation requires the student to demonstrate a practical application for math applied to the trade. The student may choose to clarify a project already performed in class or she may demonstrate a new application. Students wishing to participate in a presentation will get prior approval of both the subject and the time from the instructor. Presentations are optional, but accept for 5% of the total class grade.

Midterm and Final. The midterm and final will consist of a project completed outside of class. The midterm and the final will resemble the format of the lab projects, but will require an understanding of the mathematical concepts covered up to the point each test is given and call for a higher degree of motivation and independence. The midterm and final will require seeking information from outside resources in the form of pricing, equipment performance, or equipment operation. The midterm and final will be issued a week before their due date. The midterm and the final each account for 20% of the total class grade.

MT. SAN ANTONIO COLLEGE AIR CONDITIONING AND REFRIGERATION

01.02 Name:____

Semester:____

AIRC 10 Technical Mathematics in Air conditioning and Refrigeration Instructor: <u>Darrow Soares</u> Office Hrs:

Project Sheet

Pro Nur	ject nher Project	Score	Date	Signature
		1	L	
1	Interpretation of Common Factions	T		
2	Reading Fractional Values	-		
3	Reduction of Fractions	-	1	
4	Addition of Common Fractions			
5	Addition of Common Fractions			
6	Addition of common Fractions and Mixed Numbers			
7	Multiplication of proper fractions, proper fractions and mixed numbers, and mixed numbers			
8	Multiplication of mixed numbers			
9	Division of mixed numbers, and the division or multiplication of fractions			
10	Multiplication and division of mixed numbers			
11	Expressing Fractions as Decimals			
12	Addition of Decimal Measurements			
13	Subtraction of Decimal Measurements			
14	Multiplication of Decimal Numbers			
15	Multiplication of Decimal Numbers			
16	Division of Decimal Numbers	1		
17	Surface Measure and Conversion to Equivalent Units			
18	Volume Measure			
19	Volume Measure of a Liquid Receiver			
20	Determining Percentage			
21	Determining Percentage			
22	Solve for Voltage and Current Imbalances			

01.03

MT. SAN ANTONIO COLLEGE AIR CONDITIONING AND REFRIGERATION

Name:_____ Semester:____

AIRC 10 Technical Mathematics in Air conditioning and Refrigeration Instructor: <u>Darrow Soares</u> Office Hrs:

Project Sheet

Pro Nur	ject nber	Project	Score	Date	Signature
24	Subtr	action of Negative and Positive Quantities			
25	Units	and Conversion			
26	Solvi	ng for Mass			
27	Solvi	ng for Absolute, Gage and Vacuum Pressures			
28	Solve	Equations by Addition and Subtraction			
29	Solve	Equations by Multiplication and Division			
30	Speci	fic Heat: The Sensible Heat Formula			
31	Later	tt Heat: The Latent Heat Formula			
32	Later	at Heat Formula Application			
33	Solvi	ng Algebraic Equations			
34	Repo assig	rt Comparison between the system assigned and a system ned to a different group			
35	Direc	t Proportion			
36	Direc	t Proportion			
37	Inver	se Proportion			
38	Solvi	ng for Air Volume and Motor Horse-power Requirements			

02.00 Class Session 2

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Understand the terms and functions of common fractions as they relate to the HVAC industry.
- 2. Transfer common fraction values to equivalent measurements on tape measures, rulers, and other measuring tools.
- 3. Reduce proper and improper fractions to their lowest terms.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 6.

Essential Concepts:

- 1. The denominator of a fraction indicates the equal number of parts into which the the unit is divided.
- 2. The numerator indicates the number of equal parts of the denominator that is taken.
- 3. The value of a fraction is not changed when both the numerator and the denominator multiplied or divided by the same number.

Structure:

The instructor will discuss the essential concepts based upon the assigned reading. When no further questions about the essential concepts are observed, the students will complete three in-class projects.

1. Interpretation of Common Fractions

Circles and squares are divided into 6, 8, 16, 32, or 64 parts. The student must identify, by shading the spaces, the part of the square or circle identified by the fractions. This project can be found at 2.01.

2. Reading Fractional Values

The student will determine the outside diameter of each sample refrigerant line and reduce the fractional measurment to the nearest 1/16 of an inch.. This project is located at 2.02.

3. Reduction of Fractions

The student will match each fraction with a sample refrigerant line from project and 2.02 and record it in the space provided. This project is located at 2.03.

Evaluation:

There are six points possible for this activity. Each student completing all three projects will receive full credit for this activity.

Interpretation of Common Fractions

Objective:

ve: This project will demonstrate the concept of common fractions

Procedure:

The circles and squares below are divided into 6, 8, 16, 32, or 64 parts. Identify, by shading the spaces, the part of the square or circle identified by the fractions

02.02 AIRC 10 Project 2

Name: Date:

Reading Fractional Values Reduction of Fractions to Lowest Terms

Objective:

This project will allow the student to determine common fractional values to equivalent measurements on steel tapes, rulers, or other measuring tools.

Procedure:

Using a tape measure and a sample of copper refrigerant lines and a sample of copper water lines, checked out from the tool crib, the student will record the diameter of each sample line to the nearest 1/16" and record in the space below. The student will reduce each measurement to lowest terms and record to the right of the original measurement.

Record the outside diameter for the refrigerant piping samples.

Record the inside Diameter for the water and plumbing piping samples.

	그는 것은 것을 가 된다.		문화 영향에 가는 것 못했다. 문화
02 03			
AIRC 10			Name
Drojoot 2			T vuinte
FIUJECI J			Date:
			그는 물건에 가지 않는 것을 가지?

Reduction of Fractions to Lowest Terms

Objective:	This project will allow the student to reduce fractions to their lowest
	terms and then apply the measurements to devices commonly used in
	the HVAC industry.
Procedure:	Reduce the following fractions to their lowest terms. Then match each
	fraction with a sample refrigerant line and record it in the space provided

22/16		28/32		9/12	
15/00		10/16		F 140	
15/20		18/10	1	5/40_	

Reduce the following fractions to their lowest terms. Match each fraction with the sample water piping line and record in the space provided.

6/8		5/	10		4/16	
	fa fugli per tinggi t teritori se antiggi					
8/8		12/3	8		6/16	
27.1			and the second second	a second a second s	: : : : : : : : : : : : : : : : : : :	

03.00 Class Session 3

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Reduce common fractions to lowest common denominators.
- 2. Add and subtract common fractions.
- 3. Add and subtract mixed numbers and common fractions.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 7&8.

Essential Concepts:

- 1. To add or subtract combinations of whole numbers and fractions, the denominators of each fraction must be the same.
- 2. The smallest number that can be divided by all the denominators is the lowest common denominator.

Structure:

In order to reinforce the essential concepts, the instructor will review the rule for reducing fractions to the lowest common denominator, the rule for adding and subtracting fractions, mixed numbers, and common fractions based on the assigned reading. When no further questions about the essential concepts or rules are observed, the students will complete three in-class projects.

1. Addition of Common Fractions

Each student will compute the total horsepower of the motors in shelves 3 through 8 in the electrical lab, building 21, room 8. The horsepower rating can be found on nameplate if each motor. This project is located at 3.01.

2. Addition of Common Fractions

Each lab group will review the rule for connecting capacitors in series and parallel circuits. With the approval of the instructor or T.A. the lab group will connect the capacitors to together to achieve the required microfarad rating based upon the addition of common fractions. This project is located at 3.02.

- Addition of Common Fractions and Mixed Numbers.
 Each student will check out a tape measure and a sample of copper refrigerant lines. The student will determine the total length of the samples and reduce the
 - answer to lowest terms. This project is located at 3.03.

Evaluation:

There are six points possible for this activity. Each student completing all three projects will receive full credit for this activity.

03.01 AIRC 10 Project 4

Name:	
Date:	

Addition of Common Fractions

Objective: The purpose of this project is to practice the addition of common ractions based on the addition of fractional horsepower motors.

Procedure:

Each student will record the nameplate data of the motors in shelves 3 through 8 in the electrical lab, building 21, room 8. Once the data has been collected and provided in the spaces below, illustrate the motors in a series circuit on a separate sheet of graph paper and show the total horsepower and amperage draw of the circuit.

Motor #1				
Frame:	Voltage:		RPM:	Hp:
Motor #2				
Frame:	Voltage:		RPM:	Hp:
Motor #3				
Frame:	Voltage:		RPM:	Hp:
Motor #4				
Frame:	Voltage:	_RLA:		Hp:
Motor #5				
Frame:	Voltage:	RLA:	RPM:	Hp:
Motor #6	n an ann an Airtean Ann an Airtean Airtean Airtean Airtean Airtean			
Frame:	Voltage:	RLA:	RPM:	Hp:

horspower

Name:_____ Date:

03.02 AIRC 10 Project 5

Addition of Common Fractions Capacitors

Objective: The purpose of this project is to practice the addition of common fractions for the purpose of determining the micro farad rating of capacitors electrically connected in series or parallel.

Information: Capacitors can be connected in series or parallel to provide the desired characteristics if the voltage and micro farad (MFD) rating are properly selected. When two capacitors having the same MFD rating are connected in series, the resulting total capacitance will be one half the rated capacitance of a one of the capacitors used alone. That is because the formula for determining capacitance (MFD) when capacitors are connected in series is as follows:

 $1/MFDt = 1/MFD_1 + 1/MFD_2$

The voltage rating of capacitors connected in series is equal to the sum of the voltage of the individual capacitors. When capacitors are connected in parallel, the MFD rating is equal to the sum of the individual capacitance. The voltage rating is equal to the lowest voltage rating of the individual capacitors.

Procedure: Each student will be assigned four refrigeration compressors. Based on the model number of each compressor, the student will reference the manufactures performance data to determine the micro farad rating and the voltage rating of the capacitor required for each compressor.

Based on the available capacitors, the student will determine the combination of capacitors-applied in series or parallel- required to achieve the micro farad rating and voltage rating required for the compressors assigned.

With the approval of the instructor, the student connect the capacitors together. When the appropriate connections have been made, the student will apply a capacitance meter to the project and measure the microfarad output of each circuit.

03.03 AIRC 10 Project 6

iname:	÷.	
100 March 100 March 100		
Date:		

A

B:

C:

D:

Addition of Common Fractions and Mixed Numbers Copper Piping and Illustrations

Objective: The purpose of this project is to practice the addition of common fractions and mixed numbers as they apply to illustrations and practical applications.

Procedure: Each student will check out a tape measure and a sample of copper refrigerant lines. The student will determine the total length of the samples and reduce the answer to lowest terms. When the student has completed the initial sample she will trade pipe samples with another student and determine the total length of the new sample set. The student will proceed until all five sample sets have been measured and quantified.

	the state of the s				
Sample:	#1	#2	#3	#4	#5
length A				an a	
length B					
length C					
length D					
length E					
length F					
Total Length					

Solve for A through E on the following illustration.

04.00 AIRC 10

Class Session 4

Objective: After satisfactorily completing this lesson, the student will be able to:

- 1. Solve practical problems requiring the multiplication of two or more fractions.
- 2. Multiply fractions, whole numbers, and mixed numbers.
- 3. Simplify the multiplication process by the cancellation method.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 9.

Essential Concept:

1. The multiplication of fractions, like the multiplication of whole numbers, is a simplified method of addition.

Structure:

The instructor will discuss the essential concept of the lesson. In order to reinforce the essential concept, the instructor will review the rule for multiplying common fractions, the rule for multiplying a common fraction by a mixed number, and the rule for multiplying fractions, whole numbers, and mixed numbers in any combination. When no further questions about the essential concept or rules are observed, the instructor will discuss the rule of canceling by evenly dividing numerator and denominator. When no further questions about canceling or the previous rules are observed, the students will be assigned one in-class project and one project completed outside of class.

- 1. Multiplication of proper fractions, proper fractions and mixed numbers, and mixed numbers. <u>Completed in class</u>
 - Each student will be given 20 fractions to solve based on the rules discussed. Students completing the assignment early are allowed to work collaboratively with other students requiring additional help. This assignment must be turned by the end of the class session. This project is located at 4.01.

2. Multiplication of mixed numbers.

Evaluation:

There are six points possible for these activities. Students completing both projects will receive full credit. Students who do not come prepared, do not participate, or fail to complete a project will lose three points for each assignment.

04.01 AIRC 10 Project 7

Nar	ne:	
Dat	e:	

Multiplication of Proper Fractions and Mixed Numbers

Objective: The purpose of this project is to practice the multiplication of common fractions and mixed numbers as they apply to written problems and practical applications.

Procedure:

Each student will refer to lab project 3.03. Based on the total length of each copper sample, the student will multiply the determined length of each sample by the value given below to solve for a new overall length.

Sample #1	X	12 1/2 =	Sample #1 X 7/16 =
Sample #2	X	5 1/4 =	Sample #2 X 11/32 =
Sample #3	X	7 3/4 =	Sample #3 X 1/16 =
Sample #4	X	11 2/3 =	Sample #4 X 21/7 =
Sample #5	X	3 1/3 =	Sample #5 X 22/8 =
Sample #1	X	2 1/8 =	Sample #1 X 12/8 =
Sample #2	X	4 1/3 =	Sample #2 X 4/16 =
Sample #3	X	3 1/3 =	Sample #3 X 6/17 =
Sample #4	X	3 1/8 =	Sample #4 X 7/16 =
Sample #5	X	4 2/4 =	Sample #5 X 2/18 =

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Solve practical problems requiring the division of fractions.
- 2. Solve practical problems requiring the division and multiplication of fractions.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 10.

Essential Concept:

1. Division of fractions is the process of determining how many time one number is contained in another.

Structure:

The instructor will discuss the essential concepts of the lesson. In order to reinforce the essential concepts, the instructor will review the rule for dividing fractions, the rule for dividing a fraction and a whole number, and the rule for dividing mixed numbers. When no further questions about the essential concepts or he rules for dividing fractions are observed, the instructor will discuss the rule for problems requiring the multiplication and division of fractions.

 Division of mixed numbers, and the division or multiplication of fractions. Each student will be given 30 fractions to solve based on the rules discussed. Students completing the assignment early are allowed to work collaboratively with other students requiring additional help. This assignment must be turned in by the end of the class session. This project is located at 5.01.

2. Multiplication and division of mixed numbers.

Each student will be assigned a package air conditioning unit located in building 21, room three and supplied with product data. From the product data the student will determine the weight of the air conditioning system assigned. By measuring the area the air conditioner occupies (the foot print), the student will determine the number of pounds per foot in the air conditioning system. This project is located at 5.02.

Evaluation:

There are six points possible for these activities. Students completing both projects will receive full credit. Students who do not come prepared, do not participate, or fail to complete a project will lose three points for each assignment.

05.01 AIRC 10 Project 9

Name: Date:

Multiplication and Division of Mixed Numbers

Objective: The purpose of this project is to allow the student to practice the multiplication and division of fractions as they apply to practical problems in the HVAC industry.

Procedure:

1.

2.

3.

4.

Each student will refer to the physical data for AC&R type M and L copper pipe at 5.01a-b. Based upon the physical data, the student will determine the weight of copper pipe based on the diameter and thickness of the type assigned.

When the physical data has been recorded, the student will apply the information to refrigeration installations #16, #17, #18, #19 in building 21, room 3, to address the following problems:

Determine the weight of copper used to supply the suction and the liquid line for installation #16.

Suction line:_____Liquid line:_____

Determine the weight of copper used to supply the suction and the liquid line for installation #18.

Suction line: Liquid line:

Determine the total weight of the copper pipe for units #16, #17, 18#, and #19 suspended from mechanical hangers (channel and all thread).

Total weight:

Based on the physical data at 5.01b, what is the weight limit for the hangers installed at installations #16 - #19.

Weight limit:

Nitrogenized[®] ACR Copper Tube

Mueller Brass Co.'s patented** cleaning, purging and pressurizing process assures the high level of tube cleanliness established by the conforming to the ASTM B 280 refrigeration industry standard. The tube is sealed with patented* plugs which maintain the standard of cleanliness from the factory to the job site.

05.01a

 ENUELLER BRASS CO.
 NTROGENIZED = ACRIMAT RE 2012A = MADE IN USA 1

Streamline[®] COPPER TUBE PRESSURIZED WITH NITROGEN provides maximum protection against the formation of harmful oxides normally formed during brazing operations. Reduction of these oxides greatly reduces system contamination.

Plugs are reusable. When less than a 20' length of tube is required for an installation the unused length of tube may be replugged to prevent atmospheric contamination during storage.

Streamline[®] Nitrogenized ACR seamless copper tube is available in sizes $\frac{3}{7}$ °DD thru $\frac{3}{4}$ °DD. Larger sizes from $\frac{3}{4}$ °DD thru $\frac{6}{4}$ are cleaned and capped.

Mfg. in Accordance with ASTM B88 aype, L. Cleaned in Accordance with ASTM B 280. 20-Ft. Lengths Hard Drawn — Cleaned and Capped — Color Coded — Marked "ACR."

Tube OD	Wall Thickness	Wt. Per Foot	Lengths Per Bundle	150°F PSI	200 °F PSI	300°F PSI	400 °F PSI
**	.030	.126	100	810	720	705	450
1/2	.035	.198	25	675	635	625	395
5%	.040	.285	25	625	590	580	3 65
3/4	.042	.362	10	545	515	505	325
7/8	.045	.455	10	495	470	455	290
1%	.0 50	.655	. 5	440	410	405	260
1%	.055	.884	5 .	38 5	365	355	230
15%	.060	1.14	5	355	340	330	210
21/8	.070	1.75	3	315	300	290	185
25/8	.080	2.48	2	295	275	275	175
31/8	.090	3.33	1	275	260	255	160
3%	.100	4.29	1	270	255	245	155
41%	.110	5.38	1	255	240	235	150
51%	.123	7.61	1 1	235	220	215	140
61/8	.140	10.20	1	215	210	200	125

Table gives computed allowable stress for annealed copper tube at indicated temperature SAFE WORKING INTERNAL PRESSURES — ANSI-B31.5-1974

*U.S. Patent 3,200,984

**U.S. Patent RE. 28124, Canadian Patents --- 723,463 and 751,099

Streamline.® Nitrogenized® ACR Copper Tube Is Your Best Investment Against System Contamination.

05.01b

Refrigeration Service Tube

Streamline dehydrated and nitrogen purged sealed copper tube is of a consistent july annealed temper, bright and thoroughly dried and packaged in individual cartons. Each carton is clearly labeled showing size and length.

A cleaning and drying process removes moisture and contaminants and the tube is manufactured in accordance with ASTM B 280 and ANSI B9.1 refrigeration industry standards. For special lengths and sizes not listed please consult your local Mueller Brass Co. representative.

Table gives computed allowable stress for annealed copper tube at indicated temperature SAFE WORKING INTERNAL PRESSURES - ANSI-B31.5

Tube	Wall	Wt.	150°F	250*F	350 °F	400*F
OD	Thickness	Per Foot	PSI	PSI	PSI	PSI
1∕8	.030	.0347	2660	2450	2080	1570
₹⁄16	.030	.0575	1690	1560	1320	1000
1⁄4	.030	.0804	1230	1130	970	720
5/16	.032	.109	1040	960	820	610
3%5	.032	.134	860	790	670	500
3/2	.032	.182	630	580	490	370
5/8	.035	.251	540	500	430	320
3/4	.035	.305	440	400	350	260
7/5	.045	.455	500	460	390	300
1 %	.050	.655	430	400	340	250
1 %	.055	.884	390	360	300	230
1 %	.060	1.140	370	340	280	220

Weights and Standard Packaging --Individually Cartoned In 50' Colls*

Tube	Wi. Per	Colls Per	Wt. Per	Coll	Ft. Per
OD	Coli	Master Ctn.	Master	Dia.	Master
1/8	1.74	10	17.4	16	500
2/16	2.88	10	28.6	143/4	500
1/6	4.02	10	40.2	143/4	500
2/16	5.45	10	54.5	161/2	500
2/16	6.70	10	67.0	161/2	500
2/16	9.10	5	45.5	20	250
% 3/4 7/8 11/6 13/6 13/6	12.55 15.25 22.75 32.75 44.20 57.00	<u>5</u> 3 —	62.75 45.75 22.75 32.75 44.20 57.00	22 25 271/2 341/2 391/2 391/2	250 150 50 50 50 50

· 100 Foot Coils Also Available

05.01c

CHANNEL NUTS & HARDWARE

Part No.	Threads Per Inch	*Recomme	nded Load kN	Weight Per 100	Ft. (3048.0 cm)
ATR 1/4"	20	240	(1.07)	12	(5.44)
ATR %16"	18	380	(1.69)	19	(8.62)
ATR %"	16	610	(2.71)	29	(13.15)
ATR 1/2"	13	1130	(5.02)	53	(24.04)
ATR %"	11	1810	(8.05)	89	(40.37)
ATR %"	10	. 2710	(12.05)	123	(55.79)
ATR %".	9	3770	(16.77)	170	(77.11)
ATR 1"	- 8	4960	(22.06)	225	(102.06)

With minimum Safety l[°]actor of 5. Available in 36° (91.4 cm), 72° (182.9 cm), 120° (304.8 cm), 144° (365.7 cm) lengths.

ATR - ALL THREADED ROD

Part No.	Size	- L	ength	Weigh Lbs.	Weight Per 100 Lbs.		
B655-¼	¥4*-20	74."	(22.2)	1.9	(.86)		
B655-%	\$/16"-18	7%*	(22.2)	1.8	(.81)		
B655-%	¾*-16	1%*	(28.6)	3.6	(1.63)		
B655-½	1⁄2″-13	1%"	(44.4)	11.3	(5.12)		
B655-%	%"-11	2%*	(54.0)	17.6	(7.98)		
B655-¾	¾"-10	21/4"	(57.1)	28.1	(12.74)		
B655-%	7∕8″-9	21/2"	(63.5)	57.2	(25. 94)		
B655-1	1″-8	2¼"	(69.8)	73.7	(33.43)		

Part No.	Size sta	Length	Weight Per 100 Lbs. 4 kg	
B656-% × ¼	%"-16 & %"-20	1" (25,4)	3.7 (1.68)	
B656-½×₩	1/2"-13 & 1/4"-16	11/4" (31.7)	6.6 (2.99)	
B656-% x 1/2	%*-11 & 1/2*-13	11/4" (31.7)	11.6 (5.26)	
B656-¼ × %	%"-10 & %"-11	11/2" (38,1)	20.6 (9.34)	
B656-1/4 × 1/4	1/6"-9 & 1/4"-10	1¾" (44.4)	39.4 (17.87)	

B656 REDUCER ROD COUPLING

B655 ROD COUPLING

STANDARD FINISH: Electro-Plated
05.02 AIRC 10 Project 10

Name	
Date:_	· · · ·

Multiplication and Division of Mixed Numbers

Objective: The purpose of this project is to allow the student to practice the multiplication and division of fractions as they apply to practical problems in the HVAC industry.

Procedure:

Each student will be assigned three package air conditioning units located in building 21, room three. Referring to the product data at 5.02a-c, the student will determine the weight of the air conditioning systems assigned. Based on the units weight and the area the system occupies (foot print), the student will determine the number of pounds per square foot of each air conditioning system.

Application:

Air conditioning and refrigeration equipment are often located on the roof of a building. Roof trusses and beams supporting this equipment are required to support weight in pounds per square foot.

Unit #1

Unit Weight:	,	-		
Unit Weight:				
		Unit Weight:	 	

Weight/foot:__

Unit Model:

Unit Model:

Unit #2

				 ,	
U	nit We	eight:	- -		

Weight/foot:_____

Unit #3

Unit Weight	•
Onit weight	•

Unit Model:

Weight/foot:_____

05.02a

67

05.02b

Dimensions

Large

Cabinet Unit

05.02c Base unit dimensions

AIRC 10

Objective: After Satisfactorily completing this lesson, each student should be able to:

- 1. Understand how fractional measurements are written in the decimal system.
- 2. Round off decimals
- 3. Add and subtract decimals in general applications and in practical measurement problems.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 12.

Essential Concepts:

- 1. A decimal number is a fraction with a denominator of 10, 100, 1000, or any multiple of 10.
- 2. To add or subtract fractions, the given numbers are written so the decimals are aligned in a vertical column and then added or subtracted the same as regular whole numbers

Structure:

The instructor will review the rule for expressing decimal values, the rule for rounding off decimals, and the rule for adding and subtracting decimals based on the assigned reading. When no further questions about the essential concepts or rules are observed, the students will complete three in-class projects.

- 1. Expressing Fractions as Decimals The student will determine the outside diameter of each sample and convert the answer to a decimal equivalent. This project is located at 6.01.
- 2. Addition of Decimal Measurements

Based on the refrigerant line samples, the student will determine the total length of samples combined and convert to a decimal equivalent. This project is located at 6.02.

3. Subtraction of Decimal Measurements

The wire diameter for wire gage sizes 10 through 16 is given in the National Electrical Code section 70-830. Based on the NEC, each student will determine the difference in diameter between given wire gage sizes. This project is located at 6.03

Evaluation:

There are five points possible for this activity. Each student completing all three projects will receive full credit for this activity.

06.01 AIRC 10 Project 11

Name: Date:

Expressing Fractions as Decimals

Objective: The purpose of this project is to practice converting fractional measurements into decimal measurements.

Procedure: Each student will check out a tape measure and a sample of copper refrigerant lines. The student will determine the outside diameter of each sample refrigerant line and convert the answer to a decimal equivalent. When the student has completed the initial sample she will trade pipe samples with another student and determine the decimal equivalent of the new sample set. The student will proceed until all five sample sets have been measured and quantified.

Sample:	#1	#2	#3	#4	#5
ODD: A.		··		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
O.D: B.	•	•	•		· · · · · · · · · · · · · · · · · · ·
O.D : C .			÷	•	·
O.D: D.	·			·•	
O.D: E.	;	·	·	· ·	
Sample:	#1	#2	#3	#4	#5
I.D: I.	•	: 			•
I.D: II.		·		· · · · · · · · · · · · · · · · · · · ·	
I.D: III.	<u> </u>			·	••
I.D: IV.	•			;	•
I.D: V.		$\overline{\mathbf{D}} = incide$	diameter of nine	, <u></u>	·

06.02 AIRC 10 Project 12

N	an	ie:		
_			1	19
D	ate	9:		

Expressing Fractions as Decimals

Objective: The purpose of this project is to practice converting fractional measurements into decimal measurements.

Procedure: Each student will check out a tape measure and a sample of copper refrigerant lines. The student will determine the total length of each sample set as a mixed number and convert the mixed number to a decimal equivalent.

Sample:	#1	#2	#3	#4	#5
length A.	<u></u>	<u> </u>		<u> </u>	<u> </u>
length B.	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>
length C.	<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>
length D.		<u></u>	<u> </u>		<u> </u>
length E.		<u> </u>		$\frac{1}{2}$	<u> </u>
length F.		<u> </u>	<u> </u>		<u></u>
Total Length		<u> </u>	<u> </u>		

06.03 AIRC 10 Project 13

Name: Date:

Subtraction of Decimal Measurements for Electrical Wire Gages

Objective: The purpose of this project is to practice the addition and subtraction of decimal numbers as they apply to electrical conductors used in the HVAC industry.

Information: Wire gages are based on the cross-sectional area of the wire and are measured in mils, circular mils (CM), or square mils (SM). The cross sectional area of a conductor is the area of the end of a conductor when cut at a right angle to its length. A circular mil of area is equal to the area of a circle one mil in diameter. A square mil of area is equal to the area of a square whose measurements are one mil on each side. A mil is a unit of wire measurement equal to one-thousandth of an inch.

Procedure:

Based upon the National Electrical Code (NEC) sample found at 6.03a-b, each student will determine the difference in diameter, Resistance in ohms per 1000 ft, and ampacity between the wire gage sizes given below.

Wire Size AWG	Diff. Dia, in.	Diff. Ohms/M	Diff/ Amp.		
10 & 14					
8 & 10					
10 & 12					
0 & 2					
6& 8					

06.03a

TABLE 4-2 (NEC TABLE 310-12) ALLOWABLE AMPACITIES OF INSULATED COPPER CONDUCTORS

Not More than Three Conductors in Raceway or Cable or Direct Burial (Based on Ambient Temperature of 30° C 86° F)

Size	· · · · · ·	12 5	Tempera	ture Rating of I	Conductor. See	Table 310-2a		
AWG MCM	60℃ (140°F)	75℃ (167℉)	85°C (185°F)	90°C (194°F)	110°C (230°F)	125°C (257°F)	200°C (392°F)	250°C (482°F)
	TYPES RUW (14-2), T, TW	TYPES RH, RHW, RUH (14-2), THW, THWN, XHHW	TYPES V, MI	TYPES TA, TBS, SA, AVB, SIS, FEP, RHH, THHN, XHHW*	TYPES AVA, AVL	TYPES Al (14-8), 'AlA	TYPES A (14-8), AA FEP+ FEB++	TYPE TFE (Nickel or nickel- coated copper only)
14 12 10 8 6 45 35 25 15 005 000 0000 250 300 350 400 500 600 750 800 900 1250	15 20 30 40 55 70 80 95 110 125 145 165 195 215 240 260 280 320 355 385 400 410 435 455 495	15 20 30 45 65 85 100 115 130 150 175 200 230 255 285 310 335 380 420 460 475 490 520 545 590	25 30 40 50 70 90 105 120 140 155 185 210 235 270 300 325 360 405 455 490 500 515 555 585 645	25‡ 30‡ 40‡ 50 70 90 105 120 140 155 185 210 235 270 300 325 360 405 455 490 500 515 555 585 645	30 35 45 60 80 105 120 135 160 190 215 245 275 315 345 390 420 470 525 560 580 600	30 40 50 65 85 115 130 145 170 200 230 265 310 335 380 420 450 500 545 600 620 640 730	30 40 55 70 95 120 145 165 190 225 250 285 340	40 55 75 95 120 145 170 195 220 250 280 315 370
2000 2000	545 560	625 650 665	735 775	735 775	785 840			

* For dry locations only. See Table 310-2a. These ampacities relate only to conductors described in Table 310-2(a).
† Special use only. See Table 310-2a.
‡ The ampacities for Types FEP, FEPB, RHH, THHN, and XHHW conductors for sizes AWG 14, 12, and 10 shall be the same as designated for 75℃ conductors in this Table. For ambient temperatures over 30℃, see Correction Factors, Note 13.
§ For three-wire, single-phase residential services, the allowable ampacity of RH, RHH, RHW, THW and XHHW copper conductors shall be for sizes No 4-100 Amp., No. 3-110 Amp., No. 2-125 Amp., No. 1-150 Amp., No. 1/0-175 Amp., and No. 2/0-200 Amp.

06.03b

				1	
Wire Size. AWG	Diam, in,	CM	SM	Ohms per M tt 68F	ft_per tb_
4/0	0.4600	211600	166200	0.04901	1.561
3/0	0.4096	167800	131800	0.06182	1.969
2/0	0.3648	133100	104500	0.07793	2.482
1/0	0.3249	105600	82910	0.09825	3.130
1	0.2893	83690	65730	0.1239	3.947
2	0.2576	66360	52120	0.1563	4.978
3	0.2294	52620	41330	0.1971	6.278
4	0.2043	41740	32780	0.2485	7.915
5	0.1819	33090	25990	0.3134	9.984
6	0.1620	26240	20610	0.3952	12.59
7	0.1443	20820	16350	0.4981	15.87
8	0.1285	16510	12960	0.6281	20.01
9	0.1144	13090	10280	0.7925	25.24
10	0.1019	10380	8155	0.9988	31.82-
11	0.0907	8230	6460	1.26	40.2
12	0.0808	6530	5130	1.59	50.6
13	0.0720	5180	4070	2.00	63.7
14	0.0641	4110	3230	2.52	80,4
15	0.0571	3260	2560	3.18	101
16	0.0508	2580	2030	4.02	128
17	0.0453	2050	1610	5.05	161
18	0.0403	1620	1280	6.39	203
19	0.0359	1290	1010	8.05	256
20	0.0320	1020	804	10.1	323
21	0.0285	812	638	12.8	407
22	0.0253	640	503	16.2	516
23	0.0226	511	401	20.3	647
24	0.0201	404	317	25.7	818
25	0.0179	320	252	32.4	1030
26	0.0159	253	199	41.0	1310
27	0.0142	202	158	51.4	1640
28	0.0126	159	125	65.3	2080
29	0.0113	128	100	81.2	2590
30	0.0100	100	78.5	104	3300
31	0.0089	79.2	62.2	131	4170
32	0.0080	64.0	50.3	162	5160
33	0.0071	50.4	39.6	206	6550
34	0.0063	39.7	31.2	261	8320
35	0.0056	31.4	24.6	331	10500
36	0.0050	25.0	19.6	415	13200
37	0.0045	20.2	15.9	512	16300
38	0.0040	16.0	12.6	648	20600
39	0.0035	12.2	9.62	847	27000

TABLE 4-1. DATA ON ROUND ANNEALED COPPER WIRE

07.00 Class Session 7

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Solve practical measurement problems involving the multiplication and division of decimals.
- 2. Express fractions and mixed numbers as decimals.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 15&16.

Essential Concepts:

- 1. The multiplication of decimals, like the multiplication of whole numbers, is a simplified method of addition.
- 2. Division of decimals is the process of determining how many times one number is contained in another.
- 3. Decimals are the result of dividing the numerator of a fraction by its denominator.

Structure

The instructor will discuss the essential concepts of the lesson. In order to reinforce the essential concepts, the instructor will review the rule for multiplying decimals, the rule for dividing decimals, the rule for expressing fractions as decimals, and the rule for changing decimal to percent. When no further questions about the essential concepts or rules are observed, the students will complete three in-class projects.

 Multiplication of decimal numbers. Based upon a list of material assigned by the instructor, the student will compute the total cost of the material including sales tax. This project is located at 7.01.

2. Multiplication of decimal numbers

Based upon the Dupont manual, <u>Thermodynamic Properties of Freon 22</u> the student will determine the density of R-22 refrigerant at a given sensible The student will determine the weight of refrigerant required to receivers with the various volumes. This project is located at 7.02.

Division of decimal numbers.

Each student will determine the capacity of refirgeration evaporators. This project is located at 7.03.

Evaluation:

3.

There are six points possible for this activity. Students who do not come prepared, or fail to complete a project will loose credit for each criteria they fail to meet.

07.01 AIRC 10 Project 14

Name: Date:

Multiplication of Decimal Numbers

Objective: The purpose of this project is to practice multiplying decimal numbers as they apply to the purchase of equipment and materials used in the HVAC industry.

Procedure: Each student will be assigned a catalogue from an air conditioning and refrigeration supplier common to the sample found at 07.01a. Based upon the list of material and equipment listed below, the student will compute the total cost of refrigeration material including sales tax.

Quantity	Unit	Description	Unit Price	Extension
12	ea	7/8 90 short radios ells C X C		
12	04.			
3	ea.	7/8 short radius street ells FTG X C		
5	ea.	1 1/8 90 short radius street ells FTG X C		
6	ea.	3/8 90 long radius ells		
6	ea.	3/8 90 short radius ells		
7	ea.	1 3/8 90 long radius ells		
2	ea.	2 1/8 90 long radius ells		
		Sub Total		
	· .	Sales Tax		
		Total		

07.01a

 WROT C	Dipe C Opper	x Fittin solder	gs Fittin	GS.	
NIBÇO	Due col	to rapidly fluctu ntact your local REFRIGERATION	ating market p Johnstone for : FITTINGS ME/	rices for co current pric	pper,- es.
\bigcirc	PLUMBIN OD Size	G/HYDRONIC FI	Order Stock #	URED BY M	Iler Price Lot
	90° CLOS	SE RUFF ELB	OWS C x C		
	5/8° 3/4° 7/8° 1-1/8°	1/2* 5/8* 3/4* 1*	R54-070 R54-071 R54-072 R54-073	\$.36 \$1.68 \$.66 \$1.53	\$.28/ 50 \$1.51/ 50 \$.59/ 25 \$1.38/ 10
	90° CLOS	SE RUFF STR	EET ELBO	NS FTG	x C
	5/8* 3/4*	1/2" 5/8"	R54-074 R54-075	\$.48 \$1.75	\$.39/ 50 \$1.58/ 50
	7/8* 1-1/8*	3/4- 1-	R54-076 R54-077	\$.96 \$2.32	\$.86/ 25 \$2.09/ 10
	90° SHOI	RT RADIUS I	ELBOWS C	x C	1. N. 1978
	1/4"	1/8-	R53-292 R53-294	\$.83 \$.83	\$.75/ 50 \$.75/ 50
	1/2"	3/8" 1/2"	R53-295 R53-289	\$.83 \$.84	\$.75/ 50 \$.76/100
	3/4" 7/8"	5/8" 3/4"	_R53-290 R53-606	\$ 1.68 \$ 1.49	\$1.51/ 50 \$1.34/ 50
	1-1/8" 1-3/8"	1* 1-1/4*	R53-689 R53-682	\$ 2.02 \$ 2.32	\$1.82/25 \$2.09/25
	1-5/8*	1-1/2*	R53-914 R53-915	\$ 3.63 \$ 6.61	\$3.27/ 10 \$5.95/ 5
	2·5/8* 3·1/8*	2-1/2* 3*	R54-395 R54-396	\$12.56 \$17.62	• -
	90° SHOI	RT RADIUS S	STREET ELI	BOWS F	TGxC
	1/4"	1/8-	R53-704	\$ 1.54 \$ 1.54	\$1.39/ 50
	3/8 1/2*	3/8° 1/27	R53-300 R53-296	\$.89 \$ 1.05	\$.80/ 50 \$.95/ 50
	3/4"	5/8" 3/4"	R53-297 853-608	\$ 1.75 \$ 1.72	\$1.58/ 25 \$1.55/ 25
	1-1/8"	1-		\$ 2.32 \$ 3.57	\$2.09/ 10 \$3.21/ 10
	1-5/8*	1-1/2-	R53-918 R53-919	\$ 4.63 \$10.09	\$4.17/ 5 \$9.08/ 5
	90° LON(G RADIUS EL	BOWS C x	C	
	3/16" 1/4"	1/8"	R53-291 R53-683	\$ 1.46 \$ 1.31	\$ 1.31/50 \$ 1.18/10
	5/16* 3/8*	1/4*	R53-293 R53-684	\$ 1.46 \$ 1.31	\$ 1.31/50 \$ 1.18/50
	1/2* 5/8*	3/8* 1/2*	R53-685 R53-686	\$ 1.59 \$ 1.40	\$ 1.43/50 \$ 1.26/50
	3/4* 7/8*	5/8" 3/4"	R53-687 - R53-688	\$ 1.52 \$ 1.92	\$ 1.37/50 \$ 1.73/25
r II	1-1/8 1-3/8	1- 1-1/4*	R53-668 R53-690	\$ 2.78 \$ 4.42	\$ 2.50/10 \$ 3.98/10
	1-5/8" 2-1/8"	1-1/2* 2*	.853-916-2 853-917	- \$ 5.94 \$14.02	\$ 5.35/ 5 \$12.62/ 5
	2-5/8" 3-1/8"	2-1/2" 3"	R54-397 R54-398	\$24.26 \$34.14	=
	90° LONO	G RADIUS ST		OWS FT	GxC
$\overline{1}$	3/8	1/4"	R53-964	\$ 1.52	\$ 1.37/ 50
	5/8"	3/8 1/2° 5/8*	R53-966	\$ 2.06	\$ 1.85/ 50
	3/4 7/8	3/4	R53-968	\$ 2.45	\$ 2.21/ 25
	1-3/8	1-1/4"	R53-970	\$ 5.88	\$ 5.29/ 10 \$ 7.19/ 5
	2-1/8"	2"	R53-972	\$13.05	\$11.75 / 5

07.02 AIRC 10 Project 15

Name:	
Date:	

Multiplication of Decimal Numbers

Objective:

The purpose of this project is to practice the multiplication of decimal numbers as the process applies to the physical characteristics of refrigerants used in the HVAC industry

Information:

On most refrigeration equipment, the condenser is not large enough to store the refrigerant charge during pump-down or low load conditions. As a result, a liquid receiver is installed between the condenser and the metering device to receive the refrigerant during these conditions. The receiver should be sized so that under any condition, it is never filled more than 80% of capacity. This is to allow room for expansion from sensible temperature changes.

Procedure:

Based upon the sample Dupont Manual, <u>Thermodynamic Properties of</u> <u>Freon 22</u> found at 7.02a-b, each student will determine the density of R-22 refrigerant at a given sensible temperature. From this information, the student will determine the weight of refrigerant required to fully charge a liquid receiver on a specified refrigeration system given the volume of the receiver.

Temp ⁰ F	PSIG	Density	Receiver Volume cu. ft.	Refrigerant Weight in
				1D.
40			0.70	
64			6.28	
68			0.70	
78			6.28	
68			0.32	
72			0.53	

R-22

PHYSICAL PROPERTIES

Chemical Formula:	CHCIF ₂	Viscosity, ,, in Centipoises:	
Molecular Weight:	86.476	en de la service de la serv	<u> </u>
Boiling Point at one atmosphere, °F	-41.36	Liquid	
Freezing Point, °F	-256	-40	0.349
Critical Temperature, °F	204.81	0	0.298
Critical Pressure, psia	721.906	40	0.261
Critical Density, lb/cu ft	32.76	120	0.211
Critical Volume, cu ft/lb	0.030525	Vapor (one atmosphere)	
Refractive Index (np), 70°F	and the second second	—40	0.0100
Liquid	1.259	0	0.0111
Vapor (one atmosphere)	1.00073	40	0.0121
Dielectric Constant:		120	0.0140
Liquid at 75°F	6.11	Surface Tension, γ in dynes/cm.	
Vapor (0.5 atmosphere) at 78°F	1.0035	1.4	Ŷ
Relative Dielectric Strength $(N_1 = 1)$	1.3		19.5
at 1 atmosphere with 0.1-inch gap		-10	10.5
and 0.75-inch-sphere-to-plane gap	1. 	40	11.4
at 77°F.		120	A Q
Thermal Conductivity, k, in		O-lab illing of Western is all a Theorem	
Btu/(hr)(ft)(°F)		Solubility of water in the Liquid:	
. • • •	2		ppm
· · · · · · · · · · · · · · · · · · ·		-100	19
Liquid		-40	120
-40	0.0792	100	1000
0	0.0698	100	1800
40	0.0605	Flammability:	
120	0.0417	Nonflammable and nonexplosive	at ordinary tem
Vapor (one atmosphere)		peratures. May form weakly com	bustible mixture
<u>40</u>	0.0050	with air at very high temperatur	es. .
0	0.0056	Toxicity:	and the second
40	0.0061	Very low toxicity—rated in Group	5a by the Under
120	0,0072	writers' Laboratories in their repo	ort MH No. 3134

UNITS AND FACTORS

i -temperature in °F T = temperature in °R = °F+459.69

- psia = pressure in lb/sq in absolute
- psig = pressure in lb/sq in gage
 - p = pressure of vapor in psia
- p_{sat} = pressure of saturated vapor in psia
- v_f = volume of the saturated liquid in cu ft/lb
- v_{g} = volume of the saturated vapor in cu ft/lb V = volume of the superheated vapor in cu ft/lb
- $d_f = 1/v_f$ =density of the saturated liquid in lb/cu ft
- $d_q = 1/v_q$ = density of the saturated vapor in lb/cu ft
- h_{f} =enthalpy of the saturated liquid in Btu/lb
- h_{ig} = enthalpy of vaporization in Btu/lb
- h_q =enthalpy of the saturated vapor in Btu/lb H =enthalpy of the superheated vapor in Btu/lb

- sy =entropy of the saturated liquid in Btu/(lb.)(°R) s_g =entropy of the saturated vapor in Btu/(lb)(°R)
- S =entropy of the superheated vapor in Btu/(lb)(°R)
- c_f = heat capacity of the saturated liquid in Btu/(lb)(°F)
- c_*° = heat capacity of the vapor at constant volume in
- Btu/(lb)(°F) at zero pressure c_p = heat capacity of the vapor at constant pressure in
- Btu/(lb)(°F)
- c. = heat capacity of the vapor at constant volume in Btu/(lb)(°F)
- k = thermal conductivity in Btu/(hr) (ft) (°F)
- η = viscosity in centipoises
- γ =surface tension in dynes/cm
- n_D = refractive index
- e = base of natural logarithms = 2.718281828

The gas constant, R = 10.7315 (psia) (cu ft)/(°R) (lb mol) Heat units (Btu/lb) = work units (psia) (cu ft/lb) ×0.185053 One atmosphere = 14.696 psia = 29.9212 inches of mercury

07.02c

TABLE I "FREON" 22 SATURATION PROPERTIES-TEMPERATURE TABLE

	PRES	SURE	VOL	UME	DEN Ib/c	SITY		ENTHALPY Blu/lb			ENTROPY Btu/(1b)("R)	
°F	PSIA	PSIG	LIQUID	VAPOR	LIQUID	VAPOR	LIQUID	LATENT	VAPOR	LIQUID	VAPOR	•F
			"/	•		•/**	1 / _	14		-	• •	+
	100 00		0.013136	0.43653	76 176	2,2903	28.638	81.432	110.070	0.06021	0.21541	65
65	125.93	111,23	0.013150	0.43003	75 496	2.3266	28.932	81.208	110.140	0.06076	0.21524	66
66	127.92	113.22	0.013133	0.42301	75 165	2.3635	29.228	80.982	110.209	0.06131	0.21507	67
67	129.94	115.24	0.013701	0.41652	75 717	2.4008	29.523	80.755	110.278	0.06186	0.21490	68
68	131.97	117.28	0.013204	0.41007	75.601	2.4386	29.819	80.527	110.346	0.06241	0.21473	69
69	134.04	119.54	0.013227	0.1.007		States and						
		171 43	0.013251	0.40373	75,469	2.4769	30.116	80.298	110.414	0.06296	0.21456	70
70	130.12	121.43	0.013274	0.39751	75.336	2.5157	30,413	80.068	110.480	0.06351	0.21439	1 1
71	138.23	125.54	0.013297	0.39139	75,202	2.5550	30,710	79.836	110.547	0.06406	0.21422	1 12
72	140.37	177 97	0.013321	0.38539	75.068	2.5948	31.008	79.604	110.612	0.06461	0.21405	13
- 73	142.52	120.01	0.013345	0.37949	74.934	2,6351	31.307	79.370	110.677	0.06516	0.21388	1
74	144./1	130.01	0.0.00									
76	145.91	137.22	0.013369	0.37369	74,799	2.6760	31.606	79.135	110.741	0.065/1	0.213/2	1
15	149.15	134.45	0.013393	0.36800	74.664	2.7174	31,906	78.899	110.805	0.06626	0,21355	/6
70. 77	151.40	136.71	0.013418	0.36241	74.528	2,7593	32,206	78,662	110.868	0.06681	0.21.332	1
11	157.60	138.99	0.013442	0.35691	74.391	2.8018	32.506	78.423	110.930	0.06736	0.21321	78
78	100.00	141 30	0.013467	0.35151	74.254	2.8449	32.808	78.184	110.991	0.06791	0.21305	79
14	132.33									0.05015	0.71700	
20	158 33	143.63	0.013492	0.34621	74.116	2.8885	33.109	17.943	111.052	0.06846	0.21288	o U
81	160.68	145.99	0.013518	0.34099	73.978	2.9326	33.412	77.701	111.112	0.06901	0212/1	81
87	163.07	148.37	0.013543	0.33587	73.839	2.9774	33.714	11.457	111.1/1	0.06956	0.21255	
87	165 48	150.78	0.013569	0.33083	73,700	3.0227	34.018	77,212	111.2.50	0.07011	0.21238	85
84	167 92	153.22	0.013594	0.32588	73.560	3.0686	34.322	76.966	111.288	0.07065	02122	1. 84
67								10.710		0.07120	6 21205	
85	170.38	155.68	0.013620	0.32101	73,420	3.1151	34.626	16./19	111.545	0.07120	0.21200	86
86	172.87	158.17	0.013647	0.31623	73.278	3.1622	34.931	76.470	111.401	0.07173	0.21100	
87	175.38	160.69	0.013673	0.31153	73.137	3,2100	35.257	76.220	111.457	0.07290	0 211/2	
88	177.93	163.23	0.013700	0.30690	72.994	3,2583	35.543	15.968	111.512	0.07220	0.71120	
89	180.50	165.80	0.013727	0.30236	72.851	3.3073	35.850	15./16	111.500	0.07339	021133	07
						2 2670	26.159	75 461	111 619	0.07394	0.21122	90
90	183.09	168.40	0.013754	0.29789	12,708	2.35/0	30.130	75.401	111 671	0.07449	0.21106	91
91	185.72	171.02	0.013781	0.29349	12.564	3.4073	30.400	74.040	111 777	0.07504	0 21089	97
92	188.37	173.67	0.013809	0.28917	72.419	3.4582	30.774	74.545	111 774	0.07559	0 71077	93
93	191.05	176.35	0.013836	0.28491	7,213	3.5098	37.004	74.030	111 874	0.07613	0.21056	94
94	193.76	179.06	0.013864	0.28073	72,127	3.56/1	37.394	14.430	111.024	0.01015		
			1	0.03000	71.000	16161	77.704	74 168	111.873	0.07668	0.21039	95
95	195.50	181.80	0.013893	0.27002	71,550	3 6688	38 016	73.905	111.921	0.07723	0.21023	96
96	199.26	184.56	0.013921	0.27257	71.686	3 7777	38 378	73.641	111.968	0.07778	0.21006	97
97	202 05	187.36	0.013320	0,26859	71.003	3 7783	38 640	73.375	112.015	0.07832	0.20989	98
98	204.87	190.18	0.0139/9	0.2046/	71.330	3 8241	19 951	73.107	112.060	0.07887	0.20973	99
99	207.72	193.03	0.014008	0.20081	/1.300	3071					1.	1. 1. 18
n de la Se Norma		106.01	0.014038	0.25702	71 736	18907	39.267	72.838	112.105	0.07942	0.20956	100
100	Z10.60	192.91	0.014068	0.25729	71 084	3.9481	39.582	72.567	112.149	0.07997	0.20939	101
101	213.51	198.82	0.014098	0 24962	70.923	4.0062	39.897	72.294	112.192	0.08052	0.20923	102
102	Z16.45	201.76	0.014128	0.24600	20 780	4.0651	40,213	72.020	112,233	0.08107	0.20906	103
103 -	219.42	204.72	0.014159	0.74744	70 626	4.1247	40.530	71.744	112.274	0.08161	0.20889	104
104	222.42	201.12	0.014135									
100	275.45	210 75	0.014190	0.23894	70.472	4.1852	40.847	71.467	112.314	0.08216	0.20872	105
105 -	223.43	210.75	0.014221	0.73549	70.317	4,2465	41.166	71.187	112.353	0.08271	0.20855	106
105	220.00	215.01	0.014253	0.23209	70.161	4.3086	41.485	70.906	112.391	0.08326	0.20838	107
107	231.35	210.00	0.014785	0 27875	70.005	4.3715	41.804	70.623	112.427	0.08381	0.20821	108
108	234./1	773 17	0.014317	0.27546	69.847	4.4354	42.125	70.338	112,463	0.08436	0.20804	109
103	231.80	223.11					1.22	12282		1		
110	241 04	226 35	0.014350	0.22222	69.689	4.5000	42.446	70.052	112.498	0.08491	0.20787	110
110	244.25	779 56	0.014382	0.21903	69.529	4.5656	42.768	69.763	112.531	0.08546	0.20770	1 111
111	247 50	217.80	0.014416	0.21589	69.369	4.6321	43.091	69.473	112.564	0.08601	0.20753	112
112	250.77	236.08	0.014449	0.21279	69.208	4.6994	43.415	69.180	112.595	0.08656	0.20736	113
113	250.00	770 28	0.014483	0.20974	69.046	4.7677	43.739	68.886	112.626	0.08711	0.20718	1 114
114	2.74.00		1					1	1	0.00700	0	S
115	257.42	242.72	0.014517	0.20674	68.833	4.8370	44.065	68.590	112.655	0.08/66	0.20/01	115
116	260.79	246.10	0.014552	0.20378	68.719	4.9072	44.391	68,291	112.682	0.08821	0.20064	110
	264.20	249 50	0.014587	0.20087	68.554	4.9784	44.718	67.991	112.709	0.08876	0.20000	1

07.02b

TABLE I "FREON" 22 SATURATION PROPERTIES-TEMPERATURE TABLE

PRESSURE		SURE	VOL		DEN	SITY :u ft	•	ENTHALPY Blu/lb			ENTROPY Btu/(lb)("R)	
IEMP.				VADOD	LIQUID	VAPOR	LIQUID	LATENT	VAPOR	LIQUID	VAPOR	•F
٩F	PSIA	PSIĠ	LIQUID "/	"r	1/4/	1/10	h ₁	h/s	hs	sj	5.5	
<u>en en e</u>			1			0 99571	13 104	97.338	105.442	0.02932	0.22592	10
10	47.464	32.768	0.012088	1.1290	82.724	0.00775	17 376	97 162	105.538	0.02990	0.22570	1.11:00
11	48.423	33.727	0.012105	1.10//	82.612	0.50275	13.648	91 986	105.633	0.03047	0.22548	12
12	49.396	34,700	0.012121	1.0869	82.501	0.92003	13.040	91 808	105.728	0.03104	0.22527	13
13	50.384	35.688	0.012138	1.0665	82.389	0.93701	14 193	91 630	105 823	0.03161	0.22505	1 14
14	51.387	36.691	0.012154	1.0466	82.276	0.53344						
10	52 405	17 709	0.012171	1.0272	82.164	0.97352	14.466	91.451	105.917	0.03218	0.22484	1 12
12	57 478	38 747	0.012188	1.0082	82.051	0.99188	14.739	91.272	106.011	0.03275	0.22453	10
10	54 497	39 791	0.012204	0.98961	81.938	1.0105	15.013	91.091	106.105	0.03332	0.22442	1
10	55 551	40.855	0.012221	0.97144	81.825	1.0294	15.288	90.910	106.198	0.03.389	0.22421	18
18	56.631	41,935	0.012238	0.95368	81.711	1.0486	15.562	90.728	106.290	0.0.3446	0.22400	13
			0.017755	0 93631	81 597	1.0680	15.837	90.545	106.383	0.03503	0.22379	20
20	57.727	43.031	0.012233	0.0001	81.483	1.0878	16.113	90.362	106.475	0.03560	0.22358	21
Z1	58.8.59	44.[43	0.012273	0.90270	E1.368	1.1078	16.389	90.178	106.566	0.03617	0.22338	22
22	59.96/	45.271	0.0122.50	0.88645	81.253	1.1281	16.665	89.993	106.657	0.03674	0.22318	23
23	67 772	40.413	0.012325	0.87055	81.138	1.1487	16.942	89.807	106.748	0.03730	0.22297	24
47				- 05500	01 077	1.1696	17 219	89.620	106.839	0.03787	0.22277	25
25	63.450	48.754	0.012342	0.85500	81.023	1 1908	17.496	89.433	106.928	0.03844	0.22257	26
26	64.641	49.948	0.012360	0.839/8	80.507	1 2123	17 774	89 744	107.018	0.03900	0.22237	27
27	65.855	51.159	0.0123/8	0.82488	80.751	1 7741	18 052	89.055	107.107	0.03958	0.22217	28
28	67.083	52,387	0.012395	0.01031	80.575	1 2562	18.330	88.865	107.196	0.04013	0.22198	29
29	68.328	53.63Z	0.012413	0.79004	00.330	1.1.200						
20	69 591	54.895	0.012431	0.78208	80.441	1.2786	18.609	88.674	107.284	0.04070	0.22178	30
30	70 871	56.175	0.012450	0.76842	80.324	1.3014	18.889	88.483	107.372	0.04126	0.22158	31
37	72 169	57.473	0.012468	0.75503	80.207	1.3244	19.169	88.290	107.459	0.04182	0.22139	32
77	73 485	58,789	0.012486	0.74194	80.089	1.3478	19.449	88.097	107.546	0.04239	0.22119	33
34	74.818	60.122	0.012505	0.72911	79.971	1.3715	19.729	87.903	107.632	0.04295	0.22100	, 4
		C1 474	0.017577	0.71655	79 852	1.3956	20.010	87.708	107.719	0.04351	0.22081	35
35	76.170	01.4/4	0.012525	0 20425	79 733	1.4199	20.292	87.512	107.804	0.04407	0.22062	36
.36	77,540	62.044	0.012542	0.69771	79.614	1.4447	20.574	87.316	107.889	0.04464	0.22043	37
3/	18.929	66 640	0.012501	0.68041	79.495	1.4697	20.856	87.118	107.974	0.04520	0.22024	38
38 79	81.761	67.065	0.012598	0.66885	79.375	1.4951	21.138	86.920	108.058	0.04576	0.22005	39`
					30 766	1 5208	21 477	86 720	108 142	0.04632	0 71986	40
40	83.206	68.510	0.012618	0.65/55	75.235	1.5469	21 705	86 520	108,225	0.04688	0.21968	41
9 4 0. j. 1	84.670	69.974	0.012637	0.04043	79.134	1.5724	71 989	86 319	108,308	0.04744	0.21949	42
42	86.153	71.45/	0.012656	0.03007	79 897	1.6007	77 773	86.117	108,390	0.04800	0.21931	43
43	87.655	72.959	0.012695	0.51448	78.770	1.6274	22.558	85.914	108.472	0.04855	0.21912	44
	03.177					1 65 40		95 710	109 557	110001	0.71804	
45	90.719	76.023	0.012715	0.60425	78.048	1,6920	22.043	85.506	108 634	0.04967	0 21876	16
46	92.280	77.584	0.012735	0.59422	78.526	1,0025	23.123	85 200	108 715	0.05023	0.21858	0
47	93.861	79.165	0.012/55	0.58440	78.403	1 7308	23 701	85.094	108 795	0.05079	0 21839	48
48	95.463	80.767	0.012//5	0.5/4/6	70.200	1.7530	73 988	84 886	108 874	0.05134	0.21821	49
49	97.085	82.389	0.012/95	0.30332	10.131		23.300					
50	98.727	84.031	0.012815	0.55606	78.033	1.7984	24.275	84.678	108.953	0.05190	0.21803	50
51	100.39	85.69	0.012836	0.54698	77.909	1.8282	24.563	84.468	109.031	0.05245	0.21/85	1 2
52	102.07	87.38	0.012856	0.53808	77.784	1.8585	74.851	84.758	109.109	0.05301	0.21768	57
53	103.78	89.08	0.012877	0.52934	77.659	1.8891	25.139	84.047	109.186	0.0535/	0.21/50	53
54	105.50	90.81	0.012898	0.52078	77.534	1.9202	25.429	83.834	109.263	0.05412	0.21/32	4
	107.75	97 55	0.017919	0.51238	77.408	1.9517	25.718	83. Q 1	109.339	0.05468	0.21714	55
 	100.23	94 77	0017940	0.50414	77.232	1.9836	26.008	83.407	109.415	0.05523	0.21697	56
20	110 91	96.11	0.012961	0.49606	77.155	2.0159	25.298	83.191	109.490	0.05579	0.21679	57
59	112.62	97 93	0.012987	0,48813	77.028	2.0486	26.589	82.975	109.564	0.05634	0.21662	58
59	114 46	99.76	0.013004	0.48035	76.900	2.0818	26.880	82.758	109.638	0.05689	0.21644	59

07.03 AIRC 10 Project 16

Na	am	e	<u> </u>	
Da	ate	:		

Division of Decimal Numbers Applied to the Capacity of Evaporator Coils

Objective: The purpose of this project is to practice the division of decimal numbers as the process applies to the application of evaporator coils used in the HVAC industry.

Procedure: Each student will be assigned sample evaporator coils taken from 07.03a. Referring to the information at 7.03b and based on the model number of the coil and the number of fins per inch on each coil, the student will solve for the missing information below

The student will assume 12,000 BTUs equals one ton of refrigeration.

Evaporator Coil	TD	Capacity in Tons	Capacity in BTUs
U.U1-118	10		
UAH1-365		2.3	
UAH3-648			97,200
UAH1-182	18		
UAM2-441	10		

Note: TD = the temperature difference between evaporator temperature and fixture temperature.

07.03a

WINWORD\33AIRC\33EVAP.DOC

Evaporator Temperature and Relative Humidity

Proper sizing of the evaporator coil determines the temperature and the humidity in the space to be conditioned.

To know the acceptable evaporator temperature on a system, one must know the required temperature difference between the fixture and the evaporator. In order to know this information, we must know the desired fixture temperature and the average relative humidity for the application. Pages 18 - 20 from the Russell Manual lists some of the common applications with the average fixture temperature and relative humidity.

The refrigerant or evaporator temperature is the temperature corresponding to the suction gage pressure, less line loss (if known). It is not the temperature of the coil or the air leaving the coil.

The wider the split between fixture and evaporator, or the colder the temperature of the refrigerant in relation to the temperature of the fixture, the higher the latent heat removal. An increase in latent heat removal will result in lower relative humidity within the fixture.

The lower the split between fixture and evaporator, the lower the latent heat removal and the higher the relative humidity of the fixture.

The relationship between evaporator capacity, T.D. and area of the evaporator is:

BTU/hr = U X T.D. X Area

Where: U is the heat transfer coefficient of the coil material

T.D. is the temperature difference between fixture and evaporator temperature. Area is the surface area of the coil exposed to circulating air in square feet.

Following, is the average T. D. between evaporator and fixture and the resulting relative humidity.

T.D. RH%	RH%
김 경우는 것은 것을 알았는 것을 많은 것이라. 것은 것을 것을 것이다.	
10 - 15 95 - 90% 25 - 30	75 - 65%
15 - 18 90 - 85% 30 - 35	65 - 55%
18 - 22 85 - 80% 35 - 40	55 - 50%
22 - 25 80 - 75% 40 - 45	50 - 45%

07.03b

UT ULTRA TEMP ULTRA HIGH POWERED UNIT COOLERS

Low Temperature Models

Model	8T	8TU/HR 10" TD 12" TD		Motor H.P.	w	н	D	W
4 Fins per in	ch -30° E	vap Temp	ensture	-Electi	1c or H	lot-Ga	s Delr	ost
U=U1-118	11,800	14,200	20	3/4	46%	25%	21%	19
U*U2-236	23.600	28,300	20	3/4	76%	25%	21%	370
U*U2-355	35,500	42,600	-20	. 3/4	76%	31%	21%	44
U+U3-474	47,400	56,900	20	3/4	106%	31%	21%	570
U+U4-711	71,100	85,300	20	3/4	136%	31%	214	66
U=U4-851	85,100	102,100	24	3/4	136%	49%	23%	875
U=U4-1080	108.000	129.600	24	3/4	136%	49%	23%	900
Fins per inc	:h -10° Ev	ap Tempe	rature	-Electr	c or H	ol-Ge	Dela	ost
U=L1-152	15,200	18,200	20	3/4	46%	25%	21%	200
U+L1-193	19,300	23,200	20	3/4	46%	25%	21%	220
U+L2-304	30,400	36,500	20	3/4	76%	25%	21%	400
U-L2-361	36,100	43,300	20	3/4	76%	31%	21%	æ
U+L2-408	40,800	49.000	20	3/4	76%	31%	21%	446
0-13-540	54,000	64,600	20	3/4	106%	31%	21%	585
U+L3-613	61,300	73,600	20	3/4	106%	31%	21%	620
U+L4-722	72.200	86,600	20	3/4	136%	31%	21%	675
1-14-817	81,700	98,000	20	3/4	136%	31%	21%	726
		122 000	24	3/4 1	136%	49%	23%	885
UPL4-1100.	110,000	132,000						

1.							16.0	1. A. A.
Model	8TU/HR 10" TD 15" TD		Fan Dia.	Motor H.P.		н	D	WL
6 Fins per in	ch +25° E	vep Temp	erature	Air D	efrost			
UAM1-164	16.400	24,600	20	1/3	46%	25%	214	200
UAM1-209	20,900	31.350	20	1/3	46%	25%	21%	220
UAM2-329	32,900	49,350	20	1/3	76%	31%	214	400
UAM2-390"	39.000	58,500	20	1/3	76%	31%	21%	125
UAM2-441	44,100	66,150	20	1/3	76%	31%	21%	445
LUAM3-683	58,300	87,450	20	1/3	106%	31%	21%	585
UAM3-662	66,200	99.300	20	1/3	106%	31%	21%	620
UAM4-780	78.000	117,000	20	1/3	136%	31%	21%	675
UAM4-882	88,200	132,300	20	1/3	136%	31%	21%	726
UAM4-1320	132,000	198,000	24	3/4	136%	49%	23%	885
UAM4-1656	165,600	248,400	24	3/4	136%	49%	23%	910
E Fins per inc	:h +25° E	ap Tempe	rature	-Alr De	etrost			
UAH1-182	18,200	27,300	20	1/3	46%	25%	21%	210
UAH1-232	23,200	34,800	20	1/3	46%	25%	21%	230
UAH2-365	36,500	54,750	20	1/3	76%	31%	21%	410
UAH2-433	43,300	64,950	20	1/3	76%	31%	21%	435
UAH2-490	49,000	73,500	20	1/3	76%	31%	21%	458
UAHS-648	64,800	97,200	20	.1/3	106%	31%	21%	600
UAH3-736	73,600	110,400	20	1/3	106%	31%	21%	635
UAH4-866	86,600	129,900	20	1/3	136%	31%	21%	690
UAH4-980	98,000	147,000	20	1/3	136%	31%	21%	746
UAH4 1452	445,200	217,800	24	3/4	136%	49%	23%	005.
114.11.1001		and seal			dia cu	1000	ننفخا	

Russell's new Ultra Temp unit cooler is exceptionally versatile, covering all temperature applications in a compact, slim profile design. The Ultra Temp is ideally suited for large walk-ins, storage and freezers. Air throw is upto 100 feet with optional metal air straighteners.

FL FLOW-TEMP LOW VELOCITY UNIT COOLERS

BTU/HR.		Fans Fan	Fan						
Model	10"	12"	No	Motor		Unmeri	sions		
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	TD	TD	Diam.	H.P.	D	. W	H ·	WL.	
FL26-67	6,700	8.040	2-10	9W	27.5	58%	8%	100	
FL36-100	10,000	12,000	3-10	we	27%	82%	9	160	
FL36-135	13,500	16.200	3-10	16W	27 %	82%	12	207	
FL46-180	18,000	21,600	4-10	16W	27 %	106%	12	291	
FL46-265	26,500	31.800	4-10	16W	27.5	106%	15	320	

The Russell Flow Temp Unit Cooler was first introduced to the refrigeration industry in 1964 to answer the many requests for reduced velocity applications. It is especially designed for high humidity applications where meat shrinkage in cutting and storage rooms is a factor. It has an extremely comfortable sound level. Thousands have been in use in meat cutting, holding and packaging rooms, fruit and vegetable storage rooms and florist boxes. Flow-Temps come with a white baked polyester coating on the housing.

All of the above Unit Coolers are UL listed and are made for standard air defrost as well as electric defrost.

TESTING:

Each Russ Pak system is assembled under strict quality control. The condensing unit is pressurized for leak detection, then fully evacuated to 200 microns pressure. The electrical circuit is given a full dielectric test prior to the unit being given a complete run test. The unit is prepared for shipment with a holding charge of dry nitrogen.

8.00 Class Session 8

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Understand the concept of surface and volume measure.
- 2. Solve practical problems relating to the volume of cubes, cylinders, and irregular forms.
- 3. Apply units of volume to solve problems related to liquid measure.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Units 20&21.

Essential Concepts:

- 1. Surface measure refers to the measurement of an object that has length and height.
- 2. Volume measure refers to the measurement of three linear dimensions: length, height, and depth.

Structure:

The instructor will discuss the essential concepts of the lesson. In order to reinforce the essential concepts, the instructor will review the rule for applying surface measure to cubes and circles, the rule for finding the area of a cube, and the rule for finding the volume of a cylinder. When no further questions about the essential concepts or rules are observed, the students will complete three in-class projects.

 Surface Measure and Conversion to Equivalent Units. Each student will measure the total area of window exposure for an assigned class room and express the units in square feet. The lab can be found at 8.01.

2. Volume Measure

The student will be assigned a reciprocating compressor. After removing the cylinder head and valve plates, the student will determine the total volume of the compressor cylinders and express the answer in cubic inches and cubic feet. The lab project can be found at 8.02.

3. Volume measure

The student will be assigned various walk-in freezers and refrigerators in order to determine the interior volume expressed in cubic feet. The lab project can be found at 8.03.

Evaluation:

There are six points possible for this activity. Each student completing all three projects will receive full credit for this activity. Students who do not come prepared, do not participate, or fail to complete a project will loose one point for each criteria they fail to meet.

08.01 AIRC 10 Project 17

Name:	
_	
Date:	

Surface Measure and Conversion to Equivalent Units

- Objective: The purpose of this project is to practice the measurement of surface area.
- Procedure: Each student will measure the surface area of the following structures and record the answers in square feet:
 - 1. Floor space of AIRC lab 21-8.
 - 2. Floor space of AIRC lab 21-1&3
 - Window surface area of AIRC lab 21 - 1&3
 - 4. Fenced yard space behind AIRC lab 21-1&3
 - 5. Window surface area of AIRC lab 21-8
 - 6. What is the total floor space allocated to the AIRC Department?

08.02 AIRC 10 Project 18

Name:____ Date:

Volume Measure of a Compressor Cylinder

Objective: The purpose of this project is to practice the measurement of volume for applications related the HVAC industry.

Procedure: The student will be assigned three reciprocating compressors. After removing the cylinder head and valve plates from the compressor, the student will determine the total volume of the compressor cylinders and express the answer in cubic feet and cubic inches. The student will refer the reference material at 8.02a-c for compressor disassembles.

Compressor	#1			
Model#		Piston Di	splacement:	
Compressor	#2			
Model#		Piston Di	splacement.	
Compressor	#3			
Model#		Piston Di	splacement:	

08.02a

COMPRESSOR PARTS

89

08.02b

08.02c

See Following Pages for Parts List

08.03 AIRC 10 Project 19

Name: Date:

Volume Measure of a Liquid Receiver

Objective: The purpose of this project is to practice the measurement of volume for applications related the HVAC industry and apply the information learned in a previous lab to convert volume to liquid measure.

Procedure: Each student will be assigned four refrigeration systems using a liquid receiver to store refrigerant. The student will determine the volume of the liquid receiver and then refer to lab 7.02 to determine the amount of refrigerant charge required by the refrigeration system. The receiver should be able to handle 80% of the entire refrigerant charge.

Refrigeration System #	Receiver Volume	Refrigerant Weight in lbs.
16		
19		
22		
35		

09.00 Class Session 9

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Determine base, rate, or percentage values in practical HVAC problems.
- 2. Compute the average of several quantities

Information: Basic vocational-technical mathematics by Olivo & Olivo, Units 24&25.

Essential Concepts:

- 1. Percent is a method of writing decimals as whole numbers.
- 2. The average of two or more quantities is found by simple addition and division.

Structure:

The instructor will discuss the essential concepts of the lesson. In order to reinforce the essential concepts, the instructor will review the rule for finding percentage when base and rate is given, the rule for finding base or rate when the percentage is given, and the rule for averaging quantities based on the assigned reading. When no further questions about the essential concepts or rules are observed, the students will complete three in-class projects.

1. Determining Percentage

Each student will be assigned one air conditioning system and one refrigeration system. Based on the name plate or the size of the receiver the student will determine the volume of the refrigerant charge of each system. The student will then determine the allowable annual loss based on the 15%-30% EPA rule. The lab project is located at 9.02.

2. Determining Percentage

Each lab group will determine the actual capacity of a refrigeration system based upon the system operational performance. The lab group will operate the system and then record its performance characteristics. The characteristics recorded will then be matched with capacity multipliers that will determine the systems actual capacity.

3. Determining Average

Each lab group will be assigned a refrigeration system operating on three phase electricity. The lab group will solve for voltage imbalance by averaging the current and voltage. The lab project is located at 9.03.

Evaluation:

There are six points possible for this activity. Students who do not come prepared, or fail to complete a project will loose credit for each project they fail to complete.

09.01 AIRC 10 Project 20

Name:	
Date:	

Determining Percentage of Allowable Refrigerant Loss

Objective: The purpose of this project is to find the allowable annual loss of refrigerant charge for an air conditioning or refrigeration system based upon Section 608 of the Clean Air Act.

Information: Effective July 13, 1993 any annualized leak rate of 35% or more in commercial refrigeration or industrial process equipment must be repaired. For appliances other than industrial process equipment and commercial refrigeration, an annual leak rate of 15% must be repaired.

Procedure:

Each student will be assigned a series of air conditioning and refrigeration systems. Based on the name plate refrigerant charge, or the size of the receiver found in lab 8.03, the student will determine the volume of the refrigerant charge in each system. The student will then determine the allowable annual loss based on the 15%-35% EPA rule.

Refrigeration System #	Refrigerant Charge in lbs.	Allowable Loss in lbs.	
16			
19			
22			
35			

09.03 AIRC 10 Project 22

7	V	21	n	e	٠ <u>;</u> .		
Ĵ				7	اب	- 2	÷
1	5				<u>_</u>	14	ŝ
1		a	e	2.2	÷Ф	8.1	. 1

Solve for Voltage and Current Imbalance by Averaging

- Objective: The purpose of this project is to use the process of averaging to determine if a voltage or current imbalance exists in a three phase electrical circuit.
- Information: Voltage imbalance is very important when working with three phase motors. A small unbalance in a phase-to phase voltage can result in a much greater current unbalance. With unbalanced current the heat generated in the motor will increase and may result in motor failure. For this reason, never run a motor where a greater than 2% voltage phase unbalance exists.
- Procedure: Each student will be assigned an air conditioning or refrigeration unit operating on three phase electricity. The student will open the disconnect switch supplying the refrigeration unit and check the incoming phase-to-phase voltage between conductors A-B, A-C, B-C. Percentage of voltage unbalance is found by dividing the maximum voltage deviation from the average by the average voltage, or:

% Voltage Unbalance = Max. E deviation from Avg. E / Avg. E

Determine Max. Deviation

	Voltage	Deviation
		from Avg.
(А-В)		
(A-C)		
()		
(B-C)		

11.00 Class Session 11

AIRC 10

Objective: After successfully completing this lesson, each student should be able to:

- 1. Relate signed numbers to appropriate values on line-graduated measuring instruments.
- 2. Solve practical problems of addition and of numbers with positive or negative values.
- 3. Solve practical problems of addition and subtraction of numbers with positive or negative values.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 47&48.

Essential Concepts:

- 1. Positive and negative numbers reflect a numerical direction from a fixed reference point, usually zero.
- 2. Any value less than zero is referred to as a negative quantity. Any value more than zero is a positive quality

Structure:

The instructor will discuss the essential concepts of the lesson. To reinforce the essential concepts, the instructor will review the rule for adding signed numbers with unlike signs, the rule for subtracting signed numbers, the rule for multiplying positive and negative signed numbers, and the rule dividing signed numbers with unlike signs based on the assigned reading. When no further questions about the essential concepts or rules are observed, the students will complete two in-class projects.

- 1. Each student will be complete a written assignment that reinforces the concepts of addition and subtraction of signed numbers, and the multiplication and division of signed numbers. This project is located at 11.01.
- 2. Subtraction of Negative and Positive Quantities.

Each student will determine the pressure drop through the vapor line of a refrigeration unit and compare the results to field standards. Pressure drop is determined by recording the actual evaporator temperature and converting to pressure, and then subtracting the actual suction pressure at the compressor. This project is located at 11.02

Evaluation:

There are six points possible for these activities. Each student completing both projects will receive full credit. Students who do not come prepared, do not participate, or fail to complete a project will loose two points for each activity they fail to complete.

11.01 AIRC 10 Project 24

Name:	•
1000	
Date:	

Subtraction of Negative and Positive Quantities

Objective:

The purpose of this project is to practice the subtraction of negative and positive quantities as the process applies to pressure drop in the refrigerant lines of an air conditioning or refrigeration system.

Information:

It is common practice in the refrigeration industry to express the recommended design pressure drops in refrigerant lines as an equivalent temperature change. The equivalent temperature change is defined as the corresponding change in saturation temperature that would occur for the pressure drop specified. The equivalent temperature change is a useful way of expressing pressure drop because the ratings of compressors are based on saturated suction and discharge temperatures.

Procedure:

Each lab group will be assigned a low temperature refrigeration system. The group will operate the assigned system for of minimum of 15 minutes to allow for stabilization. Once the unit has stabilized, The lab group will measure and record the actual evaporator temperature by applying an infrared or electronic thermometer to the evaporator coil. The lab group will apply refrigeration gages to the suction line service valve in order to measure and record the suction saturation temperature. From the saturation property tables located at 7.02a-b, the pressure drop can be found by

Psat at evap.
Psat at comp.
pressure drop in psig

Refrigeration System #	Psat at the evaporator	Psat at the compressor	Pressure drop in psig
16			
22			

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Convert from one set of units to another and properly round off all numbers.
- 2. Solve for basic units of measurement used in the HVAC industry including: density, specific volume, and specific gravity.

Information: <u>Basic vocational-technical mathematics</u> by Olivo & Olivo, Unit 39. <u>Refrigeration principles and systems</u> by Edward G. Pita Chapter 1 and Appendix 2.

Essential Concept:

1. There are different units of measurement for the same physical characteristics. These units have a fixed relationship called equivalents or conversion factors

Structure:

In order to reinforce the essential concepts, the instructor will demonstrate the process of converting unit equivalents taken from 12.01, solve for the basic units of measurement, and define the relationship between the three units of pressure. When no further questions about the essential concepts or processes are observed, the students will complete three in-class projects.

1. Units and Conversion

Each student will complete the written assignment at that reinforces the process of changing quantities from original units to new units. The assignment can be found at 12.02.

2. Solving for Mass.

Each student will be required to complete a lab project that solves for the mass of water and pressure exerted in cooling towers located in the AIRC mechanical lab. The lab can be located at 12.03

3. Solving for Absolute, Gage and Vacuum Pressures.

Each lab group will evacuate a refrigeration system with a vacuum pump. The group members will determine the pressure reduction using a mercury manometer, or a micrometer. The readings will be expressed in absolute pressure for the following units: Hg vac, psi, microns. The lab is located at 12.04.

Evaluation:

There are six points possible for these activities.. Students who do not come prepared, do not participate, or fail to complete a project will loose credit for each activity they fail to complete.

12.01 AIRC 10 Project 25

Name:	
Date:	

Units and Conversion

Objective: The purpose of this project is to apply conversion factors used in the HVAC industry in order to determine mechanical equivalencies.

Procedure:

Each student will refer to the conversion factors at 12.01a to solve for the equivalencies below. Include all arithmetic on a separate sheet of paper and reference the solutions to the specific problem.

1.	$85 \text{ psig} = \Ft. \text{ w.} $ 17.	$100 F = \C$
2.	$14.5 \text{ ft} 3/\text{sec} =gal/min.}$ 18.	$212 F = \C$
3.	$83,200 \text{ Btu/hr} = \tons.$ 19.	33 C = F
4.	$7.62 \text{ in Hg.} = \p \text{sig}$ 20.	65 C = F
5.	$12.6 \text{ hp} = \Btu/min \qquad 21.$	$750 \text{ gal} = _lbs H20$
6.	$24,000 \text{ Btu/hr} = \kW$ 22.	$35 \text{ lbs} = \gal \text{ H20}$
7.	$5 \text{ hp} = \underline{Kw}$ 23.	9.5 tons =Btu/hr
8.	10,000Btu/hr =hp 24.	$5 \text{ tons} = \B \text{tu/min}$
9.	$4 \text{ gal H20} = \lbs \qquad 25.$	$12 \text{ psig} = \ft.w$
10.	4 gal H20 =ft3 26.	$3 \text{ tons} = \kW$
11.	150,000Btu/hr =hp 27.	$3 \text{ tons} = \Hp$
12.	$12 \text{ psig} = \underline{\qquad} \text{ft. w} \qquad 28.$	$160 \text{ kW} = \hp.$
13.	$4 \text{ psig} = \underline{\qquad} \text{in. Hg} \qquad 29.$	$4.5 \text{ hp.} = \kW$
14.	$12,300 \text{ Btu/hr} = \kW$ 30.	22psig =in. Hg
15.	$7.5 \text{ hp} = \k W$ 31.	$22 \text{ gal H} 20 = \underline{\text{ft}} 3$
16.	$256 \text{ kW} = \hp$ 32.	2 hp = Btu/hr
6 T		

12.01a

Appendix 2 UNIT EQUIVALENTS (CONVERSION FACTORS)

To change from one set of units to another, multiply known quantity and unit by the ratio of unit equivalents that results in the desired units.

LENGTH

U.S.: 12 in. = 1 ft = 0.333 yd metric: 1 m = 100 cm = 1000 mm = 10^{-3} km = 10^{6} microns U.S.-metric: 1 ft = 0.30 m SI unit is the m

AREA

U.S.: 144 in.² = 1 ft² U.S.-metric: 1 ft² = 0.093 m² SI unit is the m²

VOLUME

U.S.: 1728 in.³ = 1 ft³ = 7.48 gal. U.S.-metric: 1 ft³ = 0.0283 m³ SI unit is the m³

MASS

U.S.: 1 lb = 16 oz metric: 1 kg = 1000 g U.S.-metric: 2.2 lb = 1 kg SI unit is the kg

FORCE

U.S.-metric: 1 lb = 4.45 NSI unit is the N

VELOCITY

U.S.: 1 ft/sec = 0.68 mi/hr SI unit is the m/sec

DENSITY

U.S.-metric: 1 lb/ft³ = 16.0 kg/m³ SI unit is the kg/m³

PRESSURE

U.S.: 1 psi = 2.3 ft w. = 2.04 in. Hg metric: 1 atm = 101,300 N/m³ 1 mm Hg = 133.3 Pa U.S.-metric: 14.7 psi = 1 atm SI unit is the N/m² (Pa)

TEMPERATURE U S = P = 460

U,S]: F = R - 460metric: °C = °K - 273 U,S|-metric: °F = (9/5)° C + 32; °C = 5/9 (°F - 32) SI unit is the °K

ENERGY

U.S.: 1 Btu = 778 ft-lb metric: 1 J = 1 W-sec = 0.239 cal U.S.-metric: 1 Btu = 1055 J = 252 cal SI unit is the J

POWER (RATE OF ENERGY) 2545 Btu/hr = 1 hp = 0.746 kW = 33,000 ft-lb/min 3410 Btu/hr = 1 kW 1 ton of refrigeration = 12,000 Btu/hr = 4.72 HP = 3.52 kW

SPECIFIC HEAT U.S - metric: 1 Btu/lb-F = 1 cal/gm-°C = 4.2 kJ/kg-°C

HEAT TRANSFER COEFFICIENT U U.S.-metric: 1 Btu/hr-ft²-°F = 5.68 W/m²-°C

VOLUME FLOW RATE U.S.-metric: 1 CFM = $1.70 \text{ m}^3/\text{hr}$

USEFUL EQUIVALENTS FOR WATER ONLY (AT 60°F) Density: 8.33 lb = 1 gal 62.4 lb = 1 ft³ Flow rate: 1 GPM = 500 lb/hr 12.02 AIRC 10 Project 26

Name	:		
Date:	7		

Solving for Mass in Cooling Towers

Objective:

The purpose of this project is to allow the student to apply units of conversion to practical applications of determining the mass of equipment found in the HVAC industry.

Procedure:

Each student is required to determine the mass and the density of water in the basins of two cooling towers located in the mechanical refrigeration lab. The mass of water in the basins are found from the equations below. The approximate density of water can be found at 12.02a.

$$d = m / \text{volume}$$

v = volume / m

Where d = density, v = specific volume , and m = mass

Cooling Tower #	Water Volume	Water Mass	Specific Volume
40			
43			

WATER: PROPERTIES OF LIQUID AND SATURATED VAPOR (U.S. UNITS)

		Specific Vo	lume, ft ³ /lb	Spec			
Temperature, °F	Pressure, psia	Liquid, v _r	Vapor, v _g	Liquid, h _r	Latent, h _{ig}	Vapor, h _g	Temperature °F
32	0.089	0.016	3305	0.02	1075.5	1075.5	32
35	0.099	0.016	2948	3.00	1073.8	1076.8	35
40	0.122	0.016	2446	8.03	1071.0	1079.0	40
45	0.147	0.016	2037.8	13.04	1068.1	1081.2	45
50	0.178	0.016	1704.8	18.05	1065.3	1083.4	50
60	0.256	0.016	1207.6	28.06	1059.7	1087.7	60
70	0.363	0.016	868.4	38.05	1054.0	1092.1	70
80	0.507	0.016	633.3	48.04	1048.4	1096.4	80
90	0.698	0.016	468.1	58.02	1042.7	1100.8	90
100	0.949	0.016	350.4	68.00	1037.1	1105.1	100
110	1.27	0.016	265.4	77.98	1031.4	1109.3	110
120	1.69	0.016	203.26	87.97	1025.6	1113.6	120
130	2.22	0.016	157.33	97.96	1019.8	1117.8	130
140	2.89	0.016	123.00	107.9	1014.0	1122.0	140
150	3.72	0.016	97.07	117.9	1008.2	1126.1	150
160	4 74	0.016	77.29	127.9	1002.2	1130.2	160
170	5.99	0.016	62.06	137.9	996.2	1134.2	170
180	7.51	0.016	50.22	148.0	990.2	1138.2	180
190	9.34	0.017	40.96	158.0	984.1	1142.1	190
200	11.52	0.017	33.64	168.0	977.9	1146.0	200
210	14.12	0.017	27.82	178.1	971.6	1149.7	210
212	14.7	0.017	26.80	180.1	970.3	1150.5	212
220	17.18	0.017	23.15	188.2	965.2	1153.4	220
230	20.8	0.017	19.38	198.3	958.7	1157.1	230
240	24.9	0.017	16.32	208.4	952.1	1160.6	240
250	29.8	0.017	13.81	218.5	945.4	1164.0	250
260	35.4	0.017	11.76	228.7	938.6	1167.4	260
270	41.8	0.017	10.06	238.9	931.7	1170.6	270
280	49.2	0.017	8.64	249.1	924.6	1173.8	280
290	57.5	0.017	7.46	259.4	917.4	1176.8	290
300	67.0	0.017	6.46	269.7	910.0	1179.7	300
310	77.6	0.017	5.62	280.0	902.5	1182.5	310
320	89.6	0.018	4.91	290.4	894.8	1185.2	320
340	118.0	0.018	3.78	311.3	878.8	1190.1	340
360	153.0	0.018	2.95	332.3	862.1	1194.4	360
380	195.7	0.018	2.33	353.6	844.5	1198.0	380
400	247.2	0.019	1.863	375.1	825.9	1201.0	400
420	308.7	0.019	1.499	396.9	806.2	1203.1	420
440	381.5	0.019	1.216	419.0	785.4	1204.4	440
460	466.9	0.019	0.994	441.5	763.2	1204.8	460
480	566.2	0.020	0.817	464.5	739.6	1204.1	480

12.02a

12.03 AIRC 10 Project 27

Name:	
Date:_	

Solving for Absolute, Gage and Vacuum Pressures

Objective: The purpose of this project is to allow the student to apply units of conversion to the practical application of converting from gage pressures to absolute pressures.

Procedure:

Each lab group will evacuate an assigned refrigeration or air conditioning system with a vacuum pump. During the process, the lab group will determine how much the pressure has been reduced using a mercury manometer or an electronic micrometer. These values will be converted to absolute pressure.

Evacuate a refrigeration system and record the vacuum at timed intervals.

Time	in Hg.	atm	mm Hg.	psig	psia
0 min					
3 min		•			
5 min					
10 min					
15 min			· ·	· ·	
20 min					

Where: Time=time period of vacuum pump operation, in Hg=inches of mecury vacuum,atm=atmospheric pressure, mm Hg.=millimeters of mercury vacuum, psig=pounds per square inch gage pressure, psia=pounds per square inch absolute pressure

AIRC 10

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Interpret parts of an equation and interpret the functions equations serve in mathematics
- 2. Balance and check equations
- 3. Remove common factors to simplify or reduce an expression to its lowest terms.
- 4. Transpose terms and solve equations and practical problems.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 54.

Essential Concepts:

- 1. An equation is a mechanical or scientific statement expressed in mathematical terms.
- 2. When both members of an equation are equal it is said to be balanced. To maintain balance, the equal members must be increased or decreased, multiplied or divided by equal amounts.

Structure

To reinforce the essential concepts, the instructor will demonstrate the process of collecting terms, the process of removing factors and the process of transposing terms to solve an equation. When no further questions about the essential concepts or processes are observed, the students will complete three projects

1. Solve equations by addition and subtraction Each student will complete a written assignment that requires solving for micro farad

rating of capacitors hooked in series or in parallel. This assignment is located at 13.01.

2. Solve Equations by Multiplication and Division

Each lab group will be assigned an air handler with resistance strip heaters. Based on the sensible heat formula, the group will determine the capacity in BTU/hr of the air handler with resistance heaters operating. This project is located at 13.02.

3. Developing Equations

Each student will complete a written assignment that requires the student to develop a series of equations that illustrate a mechanical or electrical process common to the HVAC industry from assignment 54 of the text book.

Evaluation:

There are six points possible for these activities. Students who do not come prepared, do not participate, or fail to complete a project will loose credit for each activity they fail to complete. 13.01 AIRC 10 Project 28

Name:_____ Date:

Solving Equations by Addition and Subtraction

Objective: The purpose of this project is to apply the rules for solving equations by addition or subtraction to practical problems in the HVAC industry.

- Procedure: Solve for the following HVAC problems. Include all arithmetic and equations developed on a separate sheet of paper and reference the solutions to the specific problem.
 - 1. Illustrate four capacitors applied in parallel. Their microfarad (uf) ratings are 7.5 mfd, 7.5 mfd 15 mfd, and 5 mfd. Determine the total micro farad rating of all four capacitors.
 - 2. Illustrate four capacitors applied in parallel. Their microfarad (*uf*) ratings are 2 mfd, 3 mfd, 12 mfd, and 20 mfd. Determine the total microfarad rating of all four capacitors.

3. Based on the capacitors available in problems 1 and 2, solve for the following problems:

	<i>u</i> f required	<i>u</i> f available	<i>u</i> f needed
1	20 <i>u</i> f	5 <i>u</i> f	
2	15 <i>u</i> f	7.5 <i>u</i> f	
3	12 <i>u</i> f	15 <i>u</i> f	
4	15 <i>u</i> f	0 <i>u</i> f	
5	12.5 uf	3 <i>u</i> f	
6	40 <i>u</i> f	10 <i>u</i> f	

13.02 AIRC 10 Project 29

1.

Name: _____ Date:

Solving Equations by Multiplication and Division

- Objective: The purpose of this project is to apply the rules for solving equations by multiplication and division to practical problems in the HVAC industry.
- Procedure: Each lab group will determine the capacity and the volume of air flow through an air handler that uses resistance heat as the heat source. The sensible heat formula is used to solve for the answer.

$$Btu/hr = 1.08 \times T \times CFM$$

Where: T = temperature difference between supply and return air duct, CFM = cubic feet per minute of air volume through the air handler

Operate the air handler with the resistance heat energized.

- 2. Measure the current draw and voltage applied to the strip heaters. Do not include the current draw to the blower motor.
- 3. From the voltage and amperage draw, determine the wattage consumed by the strip heaters
- 4. Using conversion factors found in project 12.01, convert wattage to Btu value.
- 5. Measure the temperature difference between the supply and return air at the air handler.
- 6. Solve for capacity and air volume based on the sensible heat formula.
- 7. Show all work on a separate sheet of paper and reference it to this specific project.

14.00 AIRC 10

Class Session 14

Objective: After satisfactorily completing this lesson, each student should be able to:

- 1. Apply algebraic equations to solve for latent and sensible heat processes in the refrigeration cycle.
- 2. Simplify equations used in the HVAC industry by applying the axioms of multiplication, and division.
- 3. Solve basic algebraic equations used in the HVAC industry using the four basic processes of addition, subtraction, multiplication, and division.

Information: <u>Basic vocational-technical mathematics</u> by Olivo & Olivo, Unit 56. <u>Refrigeration principles and systems</u> by Edward G. Pita Chapter 2...

Essential Concept:

1. Refrigeration neither creates or destroys energy. It only transfers energy. This law of thermal dynamics is explained algebraically and demonstrated throughout the refrigeration cycle.

Structure:

To reinforce the essential concepts, the instructor will illustrate the basic formulas for latent and sensible heat changes and simplify the equations based on the axioms of multiplication and division. When no further questions about the essential or processes are observed, the students will be assigned three projects

1. Specific Heat : The Sensible Heat Formula

Each lab group will be assigned an operating air conditioning system or water chiller. The group will determine the mass flow rate of the cooling medium and then apply the sensible heat formula to solve for sensible cooling capacity. The project is located at 14.01

2. Latent Heat: The Latent Heat Formula

Upon completion of project #1, the lab group will apply the mass flow rate of the system assigned in project #1 to the latent heat formula in order to solve for total cooling capacity. This project is located at 14.02.

3. Each student will submit a report comparing the difference between sensible heat changes and latent heat changes. The comparison should be based upon the formulas provided earlier.

14.01 AIRC 10 Project 31

Name:_____ Date:_____

Determine Specific Heat Changes Using the Sensible Heat Formula

Objective: The purpose of this project is to practice the application of the sensible heat formula to determine the mass flow rate of liquids used for primary and secondary heat transfer in HVAC equipment.

Procedure: Each lab group will be assigned an air conditioning system or water chiller. The group will determine the mass flow rate of the cooling medium and then apply the sensible heat formula to solve for sensible cooling capacity.

- 1. Determine the volume of water moving throughout the water chiller based on the pressure drop charts located at 14.01a.
- 2. From 12.01a, determine the mass flow rate of water through the chiller (m).
- 3. Solve for the system capacity using the sensible heat formula.

$$Q = m x c x TC$$

Where Q = net rate of heat added or removed, m = mass flow rate of a substance in lb/hr, TC = the temperature change of the medium cooled or heated, c = the specific heat of the substance heated or cooled. The specific heat of water is 1.

14.01a

Performance Data — English

						85			90							
LCWT	UNIT 30GB	Can	SDT		Coc	ler	Cap.	Cap. SDT		Cooler Elow Date		Cap.	SDT		Cooler	
		(Tons)	(F)	kW	Gom	PD	(Tons)	(F)	KVV	Gpm	PD	(Tons)	(F)	RVV	Gpm	PD
<u></u>	075	77.3	110.5	76.2	184.8	10.6	75.1	115.0	78.7	179.6	10.0	72.9	119.5	81.2	174.4	9.5
	090	91.6	110.5	90.0	219.0	14.6	89.0	114.9	92.7	212.6	13.8	86.3	119.3	95.3	206.2	13.0
	100	101.9	108.9	99.9	243.5	9.7	99.2	113.4	103.3	237.1	9.2	108.0	118.0	100.8	230.7	8.7
40	110	114.2	109.7	110.2	312.9	88	127.1	115.5	132.6	303.9	8.3	123.5	120.0	136.8	295.3	7.8
	125	160 1	110.4	153.9	382.6	8.3	155.4	114.9	159.2	371.4	7.9	150.8	119.4	164.3	360.5	7.4
	175	179.2	112.8	180.5	428.4	10.4	174.3	117.3	186.3	416.6	9.8	169.3	121.7	192.1	404 7	9.3
11	200	199.3	114.9	207.0	476.4	12.7	193.8	119.3	213.5	463.2	12.1	188.4	123.7	219.9	450.3	11_4
	075	78.8	111.1	77.0	188.5	11.0	76.6	115.6	79.5	183.3	10.4	74.4	120.0	82.1 96.4	178.0	9.8
	090	93.4	111.0	100.8	223.5	10.0	101.0	113.9	104.3	241.5	9.6	98.3	118.5	107.8	235.0	91
	1100	116.2	110.2	117.4	277.9	12.5	113.1	114.7	121.1	270.4	11.9	110.0	119.2	124.8	263.0	11.2
41	125	133.3	111.6	129.6	318.8	9.1	129.6	116.0	134.0	: 309.9	8.6	125.9	120.5	138.3	301.1	8.1
	150	163.1	110.9	155.5	390.1	8.6	158.4	115.4	160.8	425.0	10.2	172 6	122.3	194 1	367.8	7.7
	175	182.5	115.4	209.3	485.5	13.2	197.4	119.9	215.8	472.2	12.5	192.0	124.3	222.2	459.1	11.8
<u>-12 -75</u> 7	200	80.4	111.7	77.8	192.3	11.4	78.2	116.1	80.4	187.0	10.8	75.9	120.6	83.0	181.6	10.2
고감	075	95.3	111.6	91.9	227.9	15.8	92.6	116.1	94.7	221.5	15.0	89.8	120.4	.97.4	214.8	14.1
11 I. A	100	105.6	109.9	101.8	252.6	10.4	102.9	114.4	105.4	246.0	9.9	100.1	119.0	108.9	239.5	9.4
47	110	118.3	110.7	118.5	283.0	13.0	115.1	115.2	122.3	2/5.5	12.3	128.3	1210	120.1	267.9	11.7
	125	135.8	112.1	157.0	397.7	9.0	161.5	116.0	162.5	386.4	8.5	156.8	120.4	167.8	375.1	8.0
	175	185.9	113.9	184.2	444.8	11.1	181.0	118.4	190.3	433.0	10.6	175.9	122.9	196.3	420.9	10.0
1. A. M.	200	206.8	116.1	211.5	494.7	13.7	201.1	120.5	218.2	481.2	13.0	195.6	124.9	224.7	468.0	12.3
	075	81.9	112.2	78.6	196.1	11.3	79.7	116.7	81.3	190.7	11.2	77.4	121.2	83.9	185.3	10.6
	090	97.1	112.2	92.8	232.4	16.4	94.4	110.0	106.4	225.9	10.0	101.9	1195	109.5	219.1	14.7
	110	120 4	111.2	119.7	288.2	13.4	117.2	115.7	123.6	280.5	12.7	114.0	120.2	127.4	272.8	12.1
43	125	138.4	112.7	132.3	331.1	9.8	134.6	117.2	136.8	322.0	9.3	130.7	121.6	141.2	312.9	8.8
والديدية. التقارب أن منطقي	150	169.4	112.1	158.6	405.5	9.3	164.6	116.5	164.2	394.0	8.8	159.9	121.0	169.5	382.6	8.3
1. 1. 1. 1.	175	189.5	114.6	213.8	403.0	14.2	204.9	121.1	220.5	490.3	13.5	199.3	125.5	227.1	476.9	12.8
	200	210.0	112.8	79.4	199.9	123	81.3	117.3	82.1	194.5	11.7	79.0	121.7	84.8	189.0	11.0
	075	99.0	112.8	93.8	236.9	17.0	96.2	117.2	96.8	230.4	16.1	93.4	121.6	99.6	223.6	15.2
di ta se	100	109.4	111.0	103.8	261.9	11.2	106.6	115.5	107.4	255.2	10.6	103.8	120.0	111.0	248.4	10.1
44	110	122.5	111.8	120.8	293.3	13.9	119.3	116.3	124.8	285.6	13.2	110.1	120.8	128.7	277.9	12.5
n an ei Faise an	125	177 6	113.3	160.2	413.3	9.7	167.8	117.1	165.8	401.7	9.1	162.9	121.5	171.3	390.1	8.6
	175	193.0	1115.2	188.1	462.1	12.0	187.8	119.6	194.4	449.6	11.4	182.6	124.0	200.5	437.2	10.8
- 134 	200	214 4	117.4	216.1	513.4	14.7	208.7	121.8	222.9	499.5	14.0	203.0	126.2	229.6	486.0	13.2
1. 1. A. J.	075	85.1	113.4	80.2	203.8	12.8	82.8	117.9	83.0	1.198.3	12.1	80.5	122.3	85.7	192.8	11.5
	090	100.9	113.4	94.8	241.6	11.5	108.5	116.0	108.5	259.8	11.0	105.6	120.5	112.1	253.0	10.4
	110	124 7	112.3	122.0	298.5	14.4	121.4	116.8	126.0	290.7	13.7	118.1	121.3	129.9	282.9	13.0
45	125	143.6	113.9	135.1	343.8	10.6	139.7	118.3	139.6	334.4	10.0	135.7	122.7	144.1	325.0	9.5
	150	176.0	113.2	161.9	421.4	10.0	171.0	117.6	167.5	409.4	9.5	186.1	122.1	173.1	397.7	9.0
	200	218 3	1115.8	218.4	522.8	15.2	212.5	122.4	225.3	508.8	14.5	206.8	126.8	232.1	495.1	13.7
<u></u>	075	86.8	114.0	81.1	207.8	13.2	84.4	118.5	83.9	202.2	12.6	82.0	122.9	86.6	196.5	11.9
	090	102.8	114.0	95.8	246.2	18.3	100.0	118.4	98.9	239.5	17.4	97.1	122.8	101.8	232.6	16.4
	1.00	113.3	1112.0	105.7	271.3	11.9	110.4	116.5	109.5	264.4	11.4	107.5	121.0	113.2	257.6	10.8
46	110	126.8	112.8	123.2	303.8	14.9	142 2	117.3	141.1	340.7	10.4	138.3	121.8	145.7	331 2	9.8
	150	179.3	1 113.8	163.5	429.4	10.4	174.2	118.2	169.3	417.2	9.8	169.3	122.7	174.8	405.4	9.3
	175	200.2	1116.4	192.1	479.4	12.9	194.9	120.8	198.5	466.7	12.2	189.5	125.2	204.7	453.8	11.6
	200	222.2	1 118.7	220.6	1 532.1	15.8	216.4	123.0	221.1	518.2	15.0	210.0	127.4	234.6	504.4	14.2
	075	88.4	114.6	81.9	211.8	13.7	101 9	119.1	84.8	206.1	18.0	99.0	123.5	102 9	200.4	12.3
	100	115.2	112.5	106.7	276.0	12.4	112.3	117.0	110.5	269.2	11.8	109.4	121.5	114.3	262.2	11.2
	110	129.0	113.4	124.3	309.1	15.4	125.7	117.8	128.5	301.1	14.6	122.3	122.3	132.5	293.1	13.9
•/	125	148.8	115.1	1 137.8	356.6	11.4	144.8	119.5	142.5	347.0	10.8	140.8	123.9	147.2	337.4	10.2
	150	203 7	114.4	105.2	488.2	13.3	198.3	121.4	200.5	475.1	12.7	193.0	125.9	207.0	462.5	12.0
	200	226 1	119 3	223.0	541.8	16.3	220.2	123.7	230.1	527.5	15.5	214.4	128.1	237.1	513.7	14.7
	075	90.1	115.2	82.8	215.8	14.2	87.6	119.7	85.7	210.0	13.5	85.2	124.1	88.5	204.2	12.8
	090	106.7	115.2	97.8	255.6	19.7	103.8	119.6	101.0	248.8	1 18.7	100.9	124.0	104.0	241.7	17.7
	100	117.2	113.1	107.7	280.8	12.8	114.3	117.6	111.6	306 4	122	124.5	122.0	115.4	266.8	11.6
48	110	131.2	115.9	139.7	363.1	11.9	147.4	120.1	144.0	353.3	11.2	143.4	124.5	148.7	343.7	10.6
	150	186.0	115.0	166.8	445.7	11.2	180.8	119.4	172.7	433.2	10.6	175.7	123.8	178.5	421.0	10.0
	175	207.4	117.6	196.1	497.0	13.8	201.9	122.0	1 202.6	483.9	13.1	196.5	126.5	209.1	470.8	12.4
ang ni S	1 200	1 230:1	1 120.0	225.4	551.5	16.9	1 224 1	124.3	232.5	1.03/.1	6 10.1	ş. 218.2÷	1 128.7	1 239.6	522.9	1 15.2

Cap. — Capacity kW — Compressor Motor Power Input LCWT — Leaving Chilled Water Temperature

PD — Pressure Drop (ft of water) SDT — Saturated Discharge Temperature

14.02 AIRC 10 Project 31

Name:	
Date:	

Determine Latent Heat Changes Using the Latent Heat Formula

Purpose:

The purpose of this project is to practice the application of the latent heat formula to determine the effect of the mass flow rate of liquids used for primary and secondary heat transfer in HVAC equipment.

Procedure:

Each lab group will be assigned an air conditioning system or water chiller. The group will determine the mass flow rate of the cooling medium and then apply the latent heat formula to solve for total cooling capacity. Total cooling capacity can be found by the following formula:

$$Q = m(h_2 - h_1)$$

Where Q = net rate of heat added or removed, m = mass flow rate of the substance cooled in lb/hr, h_2 - h_1 = the specific enthalpy change of the substance cooled in Btu/hr.

The mass flow rate and the specific enthalpy of water volume can be reviewed by referring to 14.02a.

Solve the following problems

1.

3.

A refrigeration unit has a cooling capacity of 327, 000 Btu/hr. Express this capacity in tons of refrigeration and in kW.

2. A water chiller with a capacity of 150 tons of refrigeration cools 320 GPM entering the chiller at 52 degrees F. At what temperature should the water leave the chiller?

A water chiller cools 110 GPM of water from 55 degrees to 42 degrees. Find the cooling capacity of the chiller in Btu/hr, tons of refrigeration, and kW.

14.02a

REFERENCE TABLES

Table Based on Barometric Pressure of 29.92 Inches. Table 4-1 Properties of Mixtures of Air and Saturated Water Vapor*

1.100	2.230	367.44	17995	£9£8-	192	- 1	33.72	88.07	977.77	2.721		
				a/sa-	001	- 1	20.14	02.91	158.71	0.221	TETIO.	54
8-384						1			147.11	8-811	28910"	22
5.23.2	1.100	780.34	A MANUE	2922.	841	- 1						17
Series.	97069	238.04	8-9206	L287*	041	- 1	58'78	68°41	17.054	2.411		
							60776	12.71	919-91	6.011	19210.	04
0"\$77	1 2.204	119.05	.70ES	3988*	192							
		7/1-20		0667*	. og 1		52.25	49.91	945-91	0.701	92210.	עס
								40000		103.3	82710"	89
8.038	8.292	uru .	1 DINES	A182.	. 221						P7910*	/0
1 5°1/2	2.952	220.36		SZIZ"	091		20.12	EE.27	\$10.31	89.66		
				P0011			30.63	98"7"}	559"81	87.36	ATEIO.	99
-411	3 204		CPL1			. 1		e		78-76	92510"	62
1 1000	07771		77/01	PERL	071		10.01					
							1.0.07	76'21	745-81	09.68	09210	79
1 0.071	1 1.14			PUEL								60
6'551	2721	372.18	-184		120 1		72.92	PP-T1	18.134	57.70		
	1			VERC	971		· 59*22	30.21	E80'7)	72.20	16110.	29
1		11000					e 1 • / 7	08.11	(597)	67.00	67110"	19
28.911	04.00	114.82	-048	8180	130						-	00
				04/07	611		9772	30-23				
								18-11	7/1721	58'74	69010"	20
334.ETT	01-88	622.92		2970.								00
557011	57.20	811.82	*818	1710	211		· Z1*SZ	61.71	228-21	01-22	0.010	
				6120*			37.45	62.01	283.21	12.95	E\$600*	- 25
								45-01	762-61	80"4.9	*00e2e	95
9670)	1 MELL	· 783.78	.784	2420.	211						C74000	ce
1	1 1000	10000		8/90*	w1.1		22.22	10.01	114.21			L
1 15.503	1 10.74	1					÷		1/6-71	52.23	69900*	75
12.00	\$\$724	381.7E		2230.	211		212.22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
81.748	11-04	818-98	443		211		020.22	492'9	127.21		1.5000	
				7180*	1 111		959-12	578.8	16721	29°22	92900*	79 T
1		1						718-8	052"21	52-88	56400	15
75.28	10.85	111.01		7650	011		198-01					00
	1				401		106.05	142.3	010-21	29.88		~*
80.03	1 19.19	. 761.72			001			10.000	0//***	88"1C	45100	62
94.49	00-19	28.043	-10E	8550	801		127.01					
	CT-0E	51442	-946	0+50*	201		112-01	199"2	OCE.11	07.84	0.000	
							099-91	162-7	692"33	88.72	A8800.	L7
21.22	86-28	115-31						* 11.1.7	6300111	90.94	85900-	97
72"18	11.28	282.22	335	1080.	102	1	101.01					
							059*21	128.5	608.01	1		
18.97	26.58	188.72	9.636	11690	101				445101		160900"	**
1 15-14	65'25	18472	G.SEE	32730.	103			005.9				-
	1	0.0	*****	10010	Z01		· (29*91	82279	625-01	20.16	099500	
1 17 14	10.01						7/1191	78079	10.048	LYSE	969500*	27
13"82	82.85	OTIM	2.21E	0000	101					CA-ZE	127500"	17
E4.14	04.72	820 72	. 8'TOE .	81570"	001		783-#1					
			N. 7.				062.21	233.2	909.8	67.75	CI2500	07
26.85	11.35	694'EZ	T.282	28190-	66						7106007	
57.99	8979	378'82	A.E.B.E	87070	96		12271	EOM.8	832.0	No.		
				ozásor	/ .	1.1	61571	161-8	821'8	ET.EE	919HOD-	96
22.22	76.87							1.84.8	199-9	27.22	1004631	1 L E
28.33	38"17	690.23	7.835	Setto.	96		720 11					00
22.23	67.07	128-22	1-722	E73E0.	56		823.61	1647	1111			
							13-006	1097	. TOA.B	29.82	ETS100.	32
14.15	91'8E	T88.55	3.925	BREED.	. 76						101-001	~~~
67.00	04-48	978-77	- 8'0PZ	17750	62		12.565	8177	131.8	27.85	201100	P P C
							491-21	2727	758.T	19-75	1798E00"	33.
84.95	1 10 76	1 101.11						7/07		28-92	997500.	25
EE.78	27"BE :	399-12	9-222	EZZEO.	16	1						00
58'88	1 1576	529-12	- C.B.S.		06		816.01	\$07.E	BOLT	31.76	1	
L	1	1	L			1		110.0	971-9	50'77	TAIE00.	58
28.24	87.22	SPE-12	2.112	T1060.	69		201.01					
	1		6.002	61620	99	1	218.8	570.8	22.3	30.05	596200	36
1							1 10000	761.7	594.5	16.24	909200	34
E0.18	1 .20.18	1 108.05	1.791	ALDED.	18						a35200	zz
99'08	00008	20.663	2"161	18750.	98		. 020.7	968.5				
57.97	10-82	622702	4-7-01	27920	62		7.106	206.1	7087	30.21	281200	06
	1	1			L					10.00	FERIOR	P1
22.85	10.92	ESI OT	6.971	SESTO	. 79		513.3	890.5	7257			
	0	-	0.44	11		l I	SET.E	240"1	220.6	01-21	\$17100.	1 21
POLD -	1 01.72			11710		1.			COF C	72"11	309100	71
08'57	02.95	107.01	L.731	49520°	29	1.	920-8	114-1			PERIOD I	71
84.34	22.22	199-01	4-191	01820	19	1	2677	0581)	. 200-2			
1	1	1.77.41			6		1.003	101-1	204-5	12.4	216100.	01
	1. 1. 1.					ι.						
29.28	1 19.62	000-01	1.121	PSIZO	64	1	991 T	392-1	. 220.1	12.0		1. 1
		1				ł	F08-7	271"1	19971	28°L	AT0100.	9
1	1 12.11	047.87	1 10.00	1 101010	84	1				24.3	698000°	
12.04	10.11	667-93	1.166	91020	14	1	100.1	000.1				
48-88	1 1000	452-91	y'ses	97610"	94	1	809"1	0.926	0.440	1 21.20	12000	l é
1 1000					67		66870	658-0	000	15*8.	T87000.0	0
19.96	88.05		7-3E1	1 10.	<u>×4</u>	1	L			1		
018	1			1		ŀÈ.	nue	L i i i i i i i i i i i i i i i i i i i	1	1.		I
1 111	1 010	0.00	amirina	SONDO-	۱. ·	Ł		പം	UTB 243	SHIVES	BONNOS	1
3749014-				100	1 1	1	ATUMATE	- AVLOW	00	411	190	
OT BOAM	1031-1-1	1 34000		1004	A		OL BOUTA	103148	34084 914) ·	IN/104	
HAIM MIT	-0.1781	1 10 10		NO-4YA	TCHO.		HALING MIN	-0148)	110 10		AAFOR	1
1 100.00						1	ANO 40	40	11110	0311	19UTAB	
1 100 00						1	04110		CHANNEL I	ג סג ו	H 513/6	
11110	AN INTER		-	A THE BAR	· ·							I
OFT LB.	CO ENTHALPY	ENTHALPY .	104	MENEN	·	1	SHUTTH				TAR	
OF LE.	ENTHALPT	ENTHALPY	0	1748 1748 1939	•		MILLING			-0		
001100 00 00 00	Contractor	ENTHALPY	11 OF 0 - 11 OF	1140H 1748 1933W			SHUTTIN SP			-0	2)MUH 21748	
ENTHALPY OF MIXTURE OF LE	40 6414764	ENTHALPY	0- 11 04	ници 1748 Изази			ENTHALPT OF MIETURE			лтн - О	римин 1148	

AIRC 10

Objective:

- 1. Apply algebraic equations to solve for various mechanical processes in the refrigeration cycle.
- 2. Determine the performance of a refrigeration system based upon the
- thermodynamic cycle and the mathematical language associated with it.
- 3. Solve basic algebraic equations used in the HVAC industry using the four basic processes of addition, subtraction, multiplication, and division.

Information <u>Basic vocational-technical mathematics</u> by Olivo & Olivo, Unit 56. <u>Refrigeration principles and systems</u> by Edward G. Pita Chapter 4.

Essential Concepts:

- 1. The performance of a refrigeration system is determined by examining its thermodynamic cycle.
- 2. The language of thermodynamics is expressed mathematically.

Structure:

To reinforce the essential concepts, the instructor will illustrate the basic formulas for the refrigeration cycle. When no further questions about the essential concepts or processes are observed, the students will be assigned two projects.

1. Solving Algebraic Equations

Each lab group will be assigned an air conditioning or refrigeration system. After applying gages and thermometers and operating the system, the group will determine the following performance characteristics:

- Refrigeration effect, Btu/lb of refrigerant
- Mass flow rate of refrigerant, lb/min
- Theoretical compressor power, hp/ton of refrigeration
- Coefficient of Performance
- Energy Efficiency Ratio

This project is located at 15.01

2. Each student will submit a report comparing the difference in performance between the system assigned and the performance of a system assigned to a different group. The comparison should be based upon the data taken from the operating equipment..

15.01 AIRC 10 Project 33

Nam	e:	
-		la particip i Si se si
Date	·	

Solving Algebraic Equations for Refrigeration Performance

Purpose: The purpose of this project is to express the thermodynamic cycle of a refrigeration system mathematically.

Equipment: Refrigeration gages, electronic thermometer, insulation tape, saturation chart, pressure-enthalpy diagram.

Procedure: Each lab group will be assigned an air conditioning or refrigeration system. The lab group will operate the system and record the vital signs necessary to plot the refrigeration cycle on a pressure-enthalpy diagram located at 15.01a-c.

The vital signs necessary to plot the refrigeration cycle include:

- (a) Suction saturated pressure converted to temperature.
- (b) Condensing saturated pressure converted to temperature.
- (c) Sensible subcool temperature measured at the liquid line before the metering device.
- (d) Sensible superheat temperature measured at the vapor line entering the compressor.

Based upon the recorded vital signs and how the vital signs are applied to the pressure-enthalpy diagram, each student will solve for the following operating characteristics:

(a)	Refrigerating Effect in Btu/lb	$\mathbf{RE} = h_c - h_a$
(b)	Mass Flow Rate in lbs/min	m = Qe/RE
(c)	Theoretical Compressor Horsepower	$\mathbf{P} = \mathbf{W} \times \boldsymbol{m}$
(d)	Coefficient of Performance	COP = RE/HC
(e)	Energy Efficiency Ratio	$EER = Q_e/P$

See 15.01d for the explanation of symbols

FIGURE A.3 Pressure-enthalpy diagram for Refrigerant 22 (U.S. units). (Reprinted with permission from the 1981 Fundamentals ASHRAE Handbook & Product Directory)

5.01a

113

© 1955 and 1956, E. I. du Pont de Nemours & Company, Inc. (Used by permission.)

FIGURE A.2 Pressure-enthalpy diagram for Refrigerant 12 (U.S. units). (Reprinted with permission from the 1981 Fundamentals ASHRAE Handbook & Product Directory)

15.01c

AIRC 10

16.00 Class Session 16

Objective: After successfully completing this lesson, each student should be able to:

- 1. Express proportion from written and physical data about two equal value ratios.
- 2. Calculate a missing term in a direct proportion
- 3. Solve practical problems in the HVAC industry for direct proportion and inverse proportion ratios.

Information: <u>Basic vocational-technical mathematics</u> by Olivo & Olivo, Unit 59, Electricity for air conditioning and refrigeration By E.F. Mahoney, Unit 12.

Essential Concepts:

- 1. Two ratios representing equal quantities are expressed as a direct proportion.
- 2. A proportion is indirect when the ratio varies inversely.

Structure:

The instructor will discuss the essential concepts of the lesson. To reinforce the essential concepts, the instructor will illustrate proportions based on pulleys, transformers, and the gas laws. When no further questions about the essential concepts or processes are observed, the students will be assigned three projects.

1. Direct Proportion

Each lab group will be assigned a series of refrigerant cylinders. The group will record the temperature of each cylinder and the interior pressure and then predict the pressure when each cylinder is cooled to 32 degrees. The group submerged the cylinder in water and ice in order to check the answer. This project can be located at 16.01

2. Direct Proportion

Each student will determine the capacity of an evaporator coil using the rule of direct proportion applied to manufactures performance data at 16.02

3. Inverse Proportion

Each lab group will record the pulley size and name plate RPM of a belt drive blower assembly. Based on the data, the group will develop an inverse proportion to predict the RPM of the driven pulley. This lab is located at 16.03.

Evaluation:

There are six points possible for both projects. Students who do not come prepared, do not participate, or fail to complete a project will loose two points for each project they fail to complete. 16.01 AIRC 10 Project 35

INAILIE.	Iname.								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
D									
Date:	- 1								

Solving for Saturated Conditions by Direct Proportion

Purpose: The purpose of this project is to apply the principle of direct proportion to predict the temperature or pressure of saturated refrigerants.

Procedure: Each lab group will be assigned three refrigerant cylinders. The sensible temperature of each cylinder will be carefully recorded. Based upon the saturated tables at 16.01a-c, the lab group will predict the gage pressure within the cylinder.

Cylinder #	Temperature	Predicted	Actual
Α		psig	psig
В			
C			

After the predicted pressures have been recorded, the lab group will apply refrigeration gages to the cylinders and record the actual pressure.

Based upon the Perfect Gas law the lab group will predict the new gage pressure when the refrigerant cylinder temperature is reduced to 32 degrees F. The Perfect Gas law states the following:

$p_2/p_1 = T_2/T_1$

Where p=cylinder psia, T= absolute cylinder temperature

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Cylinder #	Temperature	Predicted	Actual
			psig	psig
	Α			an a
	В			
	С			

117

16.01a

TABLE 1 SATURATION PROPERTIES TEMPERATURE TABLE

TEMO	PRES	SURE	volt	UME /ib	DEN Ib/	SITY	E	NTHALP1 SIU/Ib	(ENTROPY Gla/(b)(*R)		TEMP.	
I Entr.		F S	1101110	VAPOR	LIQUID	VAPOR	LIQUID	LATENT	VAPOR	LIQUID	VAPOR	·F	
•F	PSIA	PSIG	V	Vg	1 / ٧/	1/2	hŗ	hje	he	Sſ	Sg		
		17 710	0.011227	1 2050	89.070	0.82986	11.771	67.090	78.861	0.026243	0.16758	15	
15	32.415	10.715	0.011241	1 1878	88.962	0.84544	11.989	66.977	78,966	0.026699	0.16750	16	
16	33.060	18.304	0.011241	1 1611	88 854	0 86125	12.207	66.864	79.071	0.027154	0.16742	17	
17	33.714	19.018	0.011254	1.1011	99 746	0 87779	12.426	66.750	79.176	0.027608	0.16734	18	
18	34.378	19.682	0.011268	1.1393	00 /40	0 89356	12 644	66.636	79,780	0.028062	0.16727	19	
19	35.052	20.356	0.011282	1.1191	88.03/	0.03335							
				1 0000	00 570	0.91006	12,863	66.522	79.385	0.028515	0.16719	20	
20	35.736	21.040	0.011296	1.0988	25.525	0.07679	13 081	66 407	79 488	0.028968	0.16712	21	
21	36.430	21.734	0.011310	1.0790	88.419	0.32073	13 300	66 793	. 79 593	0.029420	0.16704	22	
77	37,135	22.439	0.011324	1.05%	88.310	0.943//	13.500	66 177	70 607	0.029871	0 16697	23	
27	37.849	23.153	0.011338	1.0406	88,201	0.96098	13.320	66 061	73.037	0.020222	0 16690	24	
23	38 574	23.878	0.011352	1.0220	88.091	0.97843	13./39	60.001	19.600	u.u.su.szz	0.10050		
"			1914				12 069	55 015	70 004	0.030777	6 16583	1 25	
75	39 310	24.614	0.01:366	1.0039	87.981	0.33013	13.336	60.540	13.30	0.030772	0 16576	~	
75	40.056	25 360	0.011380	0.98612	87.870	1.0141	14.178	65.829	80.007	0.031221	0.10070	97	
20	40.813	26 117	0.011395	0.96874	87.760	1.0323	14.398	65./13	80.111	0.0316/0	0.10003		
	41.680	76 884	0.011409	0.95173	87.649	1.0507	14.618	65,596	80.214	0.032118	0.10002	20	
28	41.500	20.00	0.011474	0.93509	87.537	1.0694	14.838	65.478	80.316	0.032566	0.16655	Z9	
29	42.359	27.005	0.011424	0.35505				1				1 m	
_	47.149	28 452	0011438	0.91880	87.426	1.0884	15.058	65.361	\$0.419	0.033013	0.16648	30	
- 30	43.140	20.752	0.011453	0 90286	87 314	1.1076	15.279	65.243	80.522	6.033460	0.16642	31	
31	43.948	23.232	0.011468	0 88725	87 202	1.1271	15.500	65.124	80.624	0.033905	0.16635	32	
32	44,760	30.004	0.011400	0 97107	87.090	1 1468	15,720	65.006	80.726	0.034351	0.16629	33	
33	45.583	30.887	0.011482	0.6/13/	ec 077	1 1658	15 942	64.886	80.823	0.034796	0.16622	34	
34	46.417	31.721	0.011497	0.85702	60.3/1	1.1000		1	1.1.1.1.1.1				
		1.1.2.2.4.4.4.1		0.04777	00 965	1 1871	16 163	64,767	80,930	0.035240	0.16616	35	
35	47.263	32.567	0.011512	0.84237	00.003	1 2077	16 384	64 647	81.031	0.035683	0.16610	36	
36	48.120	33,424	0.011527	0.82803	86.751	1 2000	16.606	64 577	81 133	0.036126	0.16604	37	
37	48,989	34,293	0.011542	0.81399	86.6.38	1.2205	10.000	61 106	81 774	0.036569	0 16598	38	
38	49 870	35.174	0.011557	0.80023	86.524	1.2496	10.628	C1 200	1 225	0.037011	0 16597	20	
30	50 763	36.067	0.011573	0.78676	86.410	1,2710	11,020	04.200	بندره	0.031011	0.1032		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.2.2.2			64.167	01.126	0.037453	0.16586	10	
40	51 667	36.971	0.011588	0.77357	86.296	1.7927	11.213	64.103	01.430	0.037907	0.16580		
	57 584	37 888	0.011603	0.76064	86.181	1.3147	17.495	64.042	81.557	0.03/855	0.10500		
41	67 517	38 817	0.011619	0.74798	86.066	1 3369	17.718	63.919	81.637	0.036334	0.165/4	1 4	
42	33,313	30 758	0.011635	0.73557	85,951	1.3595	17.941	63.796	81.737	0.038/74	0.16568	43	
43	54,434	40 711	0.011650	0 72341	85,836	1.3823	18,164	63.673	81.837	0.039213	0.16562	44	
44	33.407	40.711	0.011050						1.4				
	1	41 577	0.011655	0 71149	85,720	1.4055	18.387	63.550	81.937	0.039652	0.1655/	45	
45	50.575	17 656	0.011582	0 69982	85,604	1.4289	18.611	63.426	82.037	0.040091	0.16551	40	
46	57.352	47.647	0.011698	0.68837	85 487	1.4527	18.835	63.301	82.136	0.040529	0.16546	4.	
47	58.343	43.047	0.011714	0.67715	85 371	1.4768	19.059	63.177	82.236	0.040966	0.15540	48	
48	59.347	44.651	0.011714	0.67715	85 254	1 5012	19,283	63.051	82.334	0.041403	0.16535	49	
49	60.364	45.668	0.011/30	0.00010	1 0127					1 . · · ·			
		10.000	0.011746	0 65577	85 136	1.5258	19.507	62.926	82.433	0.041839	0.16530	50	
50	61.394	46.698	0.011740	0.64490	05.018	1.5509	19,732	62.800	82.532	0.042276	0.16524	51	
51	62.437	47.741	0.011/62	0.04400	e. 000	1 5767	19 957	62.673	82.630	0.042711	0.16519	52	
52	63.494	48.798	0.011//9	0.03444	04.300	1 6019	20 187	62 546	82,728	0.043146	0.16514	53	
53	64,563	49.867	0.011/95	0.62428	84.782	1.0013	20 408	67 418	\$7 \$76	0.043581	0.16509	54	
54	65.646	50.950	0.011811	0.61431	84.003	1.0270	20.000				1 2 3 3		
					1 and	1 6642	20.634	67 790	82.924	0.044015	0.16504	- 55	
55	66.743	52.047	0.011828	0.60453	84.344	1.0002	20.000	67 167	83 071	0.044449	0.16499	56	
56	67.853	53,157	0.011845	0.59495	84.425	1.6808	20.055	62.027	82 119	0.044883	0 16494	57	
57	68 977	54,281	0.011862	0.58554	84.305	1./0/8	21.000	62.000	07 716	0.045216	0 16489	5.9	
58	70 115	55.419	0.011879	0.57632	84.185	1.7352	21.312	61,903	0.213	0.045310	0.16484		
50	71 767	56 571	0.011896	0.56727	84.065	1.7628	Z1.539	1 . 61.//3	عادية	0.043/48	0.10404	33	
צכ	11.201	1	1	1			1 Santas	1	01 100	0.045100	0 16470	6	
c n	77 432	57 737	0.011913	0.55839	83.944	1.7909	Z1.766	61.643	63.409	0.040180	0.104/9		
00	72 612	58 917	0 011930	0.54967	83.823	1.8193	21.993	61.512	83.505	0.046612	0.164/4	1 01	
61	13.013	60.111	0.011047	054112	83,701	1.8480	22.221	61.380	83.601	0.047044	0.16470	62	
62	/4.80/	61 220	0.011044	057777	87 580	1.8771	22.448	61.248	83.696	0.047475	0.16465	63	
63	76.016	01.320	0.011503	0 63460	81.457	1 9066	22.676	61.116	83.792	0.047905	0.16460	64	
64	77.239	62.543	0.011962	0.02430			1	1 2 6	1 ·	1	Page 1	Times	
		1	0.012000	051612	87 775	1,9364	22.905	60.982	83.887	0.048336	0.16456	65	
65	78,477	63.781	0.012000	0.50042	87 212	1 9665	23.133	60.849	83.982	0.048765	0.16451	66	
66	79.729	65.033	0.012017	0.00048	00.010	1 9977	23.362	60.715	84.077	0.049195	0.16447	67	
67	80.996	66.300	0.012035	0,000/0	03.003	2 0282	71 591	60.580	84.171	0.049624	0.16442	68	
68	82,279	67.583	0.012053	0.49305	82,305	2.0202	1		1	1	1	•••••	

118

16.01b

ABLE I "FREON" 502 SATURATION PROPERTIES __ TEMPERATURE TABLE

EMP.	PRES	SURE	VOL cu t	UME (/Ib	DEN Ib/	SITY cu ft		Btu/Ib	Y	ENTE Blu/(₹ ОРҮ (6)(*R)	TEMP.
•F	PSIA	PSIG	LIQUID	VAPOR	LIQUID	VAPOR	LIQUID	LATENT	VAPOR	LIQUID	VAPOR	
					04 202	1 6017	17.494	65,816	79.310	0.02997	0.16863	15
15	61.225	46.529	0.011792	0.66604	84./3/	1 5788	13 756	65.660	79.416	0.03052	0.16855	16
16	62.379	47.683	0.011810	0.65410	84.003	1.5200	14 018	65,503	79.521	0.03107	0.16848	11
17	63.548	48.852	0.011878	0.64241	84,540	1.0000	14 781	65 345	79.626	0.03161	0.16841	18
18	64.734	50.038	0.011846	0.63098	84.411	1.0040	14 545	65 186	79,731	0.03216	0.16833	19.
19	65,936	51.240	0.011864	0.619/9	84,282	1.0134						
			0.011993	0 60884	84 152	1.6424	14.809	65.026	79.836	0.03270	0.16826	20
20	67.155	52.459	0.011003	0.00004	84 022	1.6719	15.073	64.866	79.940	0.03325	0.16819	21
21	68.391	21.632	0.01190	0.53567	87.891	1,7017	15.339	64.704	80.043	0.03379	0.16812	22
22	69.643	54.947	0.011920	0.50702	83 760	1,7320	15.604	61.542	80.147	0.03434	0.16805	23
23	70.913	50.217	0.011957	0 56730	83.629	1.7627	15.871	64.379	80.250	0.03488	0.16799	24
24	72.199	57.503	0.011337							0.03643	0 16707	
	77 503	58,807	0.011976	0.55745	83.497	1.7938	16.138	64.215	80.33	0.03503	0 16795	×
23	74 874	60.128	0.011995	0.54781	83.365	1.8254	16.405	64.050	80,455	0.03557	0.16778	20
20	76 163	61.467	0.012014	0.53837	83.232	1.8574	16.673	63.864	80.557	0.03032	0.16777	78
78	77.520	62.824	0.012033	0.52912	83.059	1.8898	16.941	03./1/	80.035 en 200	0.03761	0.16765	29
79	78.894	64.198	0.012053	0.52007	82.966	1.9228	17,210	63.330	80.700	0.03701	0.10/00	
		· · · · · ·				1 0651	17,490	67 381	80,861	0.03715	0.16759	30
30	80.286	65.590	0.012072	0.51120	82.832	1.9301	17.100	63,212	80,962	0.03870	0.16752	31
31	81.697	67.001	0.012092	0.50251	82.698	1.9900	18.020	63 042	81.062	0.03924	0.16746	32
32	83.126	68.430	0.012111	0.49399	82.563	2.0242	18 291	67.871	81,162	0.03979	C.16739	33
33	84.573	69,877	0.012131	0.48565	82.428	2,0050	18 567	67 698	81.262	0.04033	0.16733	34
34	86.038	71.342	0.012151	0.47748	82.292	2.0343	10.200			Mg (Marka)		
		22.020	0.017121	0 45947	82 156	2.1300	18.835	62.526	81.361	0.04087	0.16727	35
35	87.522	12.820	0.012171	0.45162	82 020	2.1662	19.107	62.352	81.460	0.04142	0.16721	36
36	89.026	74.330	0.012132	0.40102	81 883	2,2029	19.381	62.177	81.558	0.04196	0.16715	37
37	90.548	13.032	0.012233	0.44638	81 746	2,2401	19.654	62.001	81.656	0.04250	0.16708	- 38
38	92.089	78 957	0.012253	0.43899	81.608	2,2779	19.928	61.825	81.754	0.04305	0.16702	39
23	33.043	10.333	0.012235							0.01760	A 10000	40
40	95,229	80.533	0.012274	0.43175	81.469	2.3161	20.203	61.64/	81.851	0.04355	0.10030	41
41	96.828	82.132	0.012295	0.42464	81.330	2.3549	20.478	61.409	01.540	0.04459	0.16684	17
42	98.447	83.751	0.012316	0.41767	81.191	2.3941	20.754	61.290	87.140	0.04400	0.16578	
43	100.08	85.38	0.012337	0.41084	81.051	Z.4339	21.000	61.110	87 735	0.04576	0.16673	4
- 44 1	101.74	87.04	0.012359	0.40414	80.911	Z.4/43	21.307	00.520				
(a_{2}, a_{3})			0.012200	0 20757	80 770	2 5152	21.584	60.746	82.331	0.04630	0.16667	45
- 45	103.42	88.72	0.012380	0.39/3/	90.670	2 5566	21.861	60.563	82.475	0.04685	0.16661	46
46	105.12	90.42	0.012402	0.39491	80.487	2 5986	22,140	60.380	82.520	0.04739	0.16655	47
47	106.84	92.14	0.012424	0.30401	80 345	2 6412	22.418	60.195	82.613	0.04793	0.16649	48
48	108.58	93.88	0.012440	0.37001	80 202	2.6843	22.697	60.009	82.707	0.04847	0.16644	49
49	110.34	93.04	0.012400	0.312.32					100 A.			1
່ເ	112 12	97.42	0.012490	0.36655	80.058	2.7280	22.977	59.822	82,800	0.04901	0.16638	50
51	113 97	99.22	0.012513	0.36070	79.914	2.7723	23.257	59.635	82,892	0.04955	0.10032	21
57	115.74	101.05	0.012536	0.35495	79.769	2.8172	23.538	59.446	82,984	0.05009	0.1662/	52
53	117.59	102.89	0.012558	0.34931	79.624	2.8627	23.819	59.25/	83076	0.05003	0.10021	4
54	119.45	104.75	0.012581	0.34377	79.479	2.9088	24,100	59.066	83.16/	0.05117	0.10010	
						-	74 797	58 875	\$1757	0.05171	0.16610	55
55	121.34	106.64	0.012605	0.33834	79.332	2.9555	74 555	58 687	83 347	0.05275	0.16605	56
56	123.25	108.55	0.012628	0.33301	/9.185	3.0020	24.005	58 489	83 437	0.05279	0.16599	57
S7 -	125.18	110.48	0.012652	0.32777	19.038	3.0004	24.30	51.74	83 576	0.05333	0.16594	58
58	127.13	112.43	0.012675	0.32263	/8.890	2 1400	25251	58 099	83.615	0.05387	0.16588	59
59	129.10	114.41	0.012699	0.31759	/8./41	3.1400	1 22.23			1	1.1.1.274	
		116.40	0.012722	0 31363	78 597	3,1985	25,799	57.903	83.703	0.05441	0.16583	60
60	131.10	110.40	0.012749	0 30777	78.441	3,2491	26.084	57.705	83.790	0.05495	0.16577	61
61	133.12	120.42	0.012772	0 30299	78.791	3.3004	26.370	57.507	83.877	0.05549	0.16572	62
. w	135.10	120.40	0.012707	0.29830	78.140	3.3523	26.656	57.308	83.964	0.05602	0.16566	63
<u>ಟ</u>	13/22	124.55	0.012822	0,29369	77.988	3.4049	26.942	57.107	84.050	0.05656	0.16561	64
•	123.31	124.01	1			I'm the	1.1	1		0.05710	0 16666	6
65	141.42	126.72	0.012847	0.28916	77.835	3.4582	27.229	56.906	64.155	0.05/10	0.10330	4
		1 120 00	0.017872	0 78471	1 77 682	3.5122	27.516	1 36.704	1 04.220	1 0.00104	1 0.10130	1

TABLE I SATURATION PROPERTIES - TEMPERATURE TABLE

TEMP	PRES	SURE	VOL		DEN	SITY at #	E	NTHALP	Y	ENTR Blu/(b)	OPY (* R)	TEMP.
•F	PSIA	PSIG	LIQUID	VAPOR	LIQUIO 1 / V/	VAPOR 1/Ve	210010 hj	LATENT h/s	VAPOR he	LIQUID Sf	VAPOR Se	•F
<u> </u>								62.000	79 961	0.076747	0 16759	15
15	32.415	17.719	0.011227	1.2050	89.070	0.82986	11.000	67.050	78.801	0.026599	0.16750	16
16	33.060	18.364	0.011241	1.1828	88.962	0.84344	12 207	65 864	79 071	0.027154	0 16742	17
17	33.714	19.018	0.011254	1.1611	88.854	0.80125	17 476	66.004	79.176	0.027608	0 16734	18
18	34.378	19.682	0.011268	1.1399	88./46	0.8//25	12.420	66.676	79 780	0.028062	0 16727	19
19	35.052	20.355	0.011282	1.1191	88.63/	0.89330	12.044	00.000	73200	0.020002	0.10721	
20	35 736	21.040	0.011296	1.0988	83.529	0.91006	12.863	66.522	79.385	0.028515	0.16719	20
20	35 430	21,734	0.011310	1.0790	88.419	0.92679	13.081	66.407	79.488	0.028968	0.16/12	21
21	37 135	22.439	0.011324	1.0596	88.310	0.94377	13.300	66.293	• 79.593	0.029420	0.16/04	22
22	77 849	23.153	0.011338	1.0406	88.201	0.96098	13.520	66.177	79.697	0.0298/1	0.1009/	23
24	38.574	23.878	0.011352	1.0220	88.091	0.97843	13.739	66.061	/9.800	0.030322	0.10030	4
			0.01.755	1 00 20	87 981	0.99613	13.958	65.946	79.904	0.030772	0.16683	25
25	39.310	24.614	0.01.300	0.09617	87 870	1 0141	14.178	65.829	\$0.007	0.031221	0.16676	26
26	40.056	25.300	0.011300	0.06974	87 760	1 0323	14.398	65,713	80,111	0.031670	0.16669	27
27	40.813	20.11/	0.011333	0.95177	87 649	1.0507	14.618	65.596	80.214	0.032118	0.16662	28
Z8	41.580	20.004	0.011424	0.93509	87.537	1.0694	14.838	65.478	80.316	0.032566	0.16655	29
23						1 0094	15 059	65 761	50 419	0 033017	0 16548	30
30	43.148	28.452	0.011438	0.91880	87.420	1 1076	15 970	65 247	80 577	6.032460	0.16642	31
31	43.948	29.252	0.011453	0.90286	87.314	1.1070	15.500	65 174	80.674	0.033905	0 16635	32
32	44,760	30.064	0.011468	0.88/25	87.202	1.12/1	15 720	65 006	81 776	0 034351	0 16629	1 7
. 33	45.583	30.887	0.011482	0.8/19/	87.090	1.1400	15 017	64 885	80 878	0.034796	0 16622	ũ
34	46.417	31.721	0.011497	0.85/02	86.9/1	1.1000	13.342					
-	47.767	77 567	0.011512	0.84737	86.865	1.1871	16.163	64.767	80.930	0.035240	0.16616	35
53	47.203	27 424	0.011527	0.87803	86,751	1,2077	16.384	64.647	81.031	0.035683	0.16610	36
50 17	40.120	24 202	0.011547	0.81399	85.638	1.2285	16.606	64.527	81.133	0.036126	0.16604	5 37 5
37	40.903	35 174 -	0.011557	0.80023	86.524	1.2496	16.828	64.406	81.234	0.036569	0.16598	38
38 79	50 763	36.067	0.011573	0.78676	86.410	1.2710	17.050	64,285	81.335	0.037011	0.16592	39
			1.1			1 7077	17 773	64 163	81 436	0.037453	0.16586	40
40	51.667	36.971	0.011588	0.//35/	86.290	1 2147	17 495	64 042	81 537	0.037893	0,16580	41
- 4	52.584	37.888	0.011603	0.76064	80.181	1,3147	17 718	61919	\$1.637	0.038334	0.16574	42
42	53.513	38.817	0.011619	0.74798	80.000	1 3505	17 941	63 796	81,737	0.038774	0.16568	43
43	54.454	39.758	0.011635	0./355/	85,936	1 3823	18.164	63.673	81.837	0.039213	0.16562	44.
44	55.407	40.711	0.011650	0.72341	01.010	1.0000						
45	56 777	41 677	0.011666	0.71149	85.720	1.4055	18.387	63.550	81.937	0.039652	0.16557	45
46	57 357	42.656	0.011682	0.69982	85.604	1.4289	18.611	63.426	82.037	0.040091	0.16551	46
47	58 343	43.647	0.011698	0.68837	85,487	1.4527	18.835	63.301	82.136	0.040529	0.16546	4/
19	59.347	44.651	0.011714	0.67715	85.371	1.4768	19.059	63.177	82.236	0.040966	0.16540	48
49	60.364	45.668	0.011730	0.66616	85.254	1.5012	19.283	63.051	82.334	0.041403	0.10335	43
		40 000	0.011746	0.65537	85 136	1.5258	19.507	62.926	82.433	0.041839	0.16530	50
SO	61.394	40.098	0.011767	0.64480	85.018	1 5509	19.732	62.800	82.532	0.042276	0.16524	51
51	62.43/	47.741	0.011702	0.63444	84 900	1.5762	19.957	62.673	82.630	0.042711	0.16519	52
52	63.494	40.750	0.011795	0 62478	84,782	1.6019	20.182	62.546	82,728	0.043146	0.16514	53
ม น	65 646	50,950	0.011811	0.61431	84.663	1.6278	20.408	62,418	82.826	0.043581	0.16509	54
				0.000		16542	20.624	67 790	82.974	0.044015	0.16504	55
55	66.743	52.047	0.011828	0.60453	04.044	1.0342	20.004	62 162	83 071	0.044449	0.16499	56
56	67.853	53.157	0.011845	0.55495	84.423	1 7079	20.005	62 033	83 119	0.044883	0.16494	57
57	68.977	54.281	0.011862	Accecn	84 100	1 7757	21 112	61 903	83.715	0.045316	0.16489	58
58	70.115	55.419	0.0118/9	0.5/032	84.065	1.7528	21.539	61.773	83_312	0.045748	0.16484	59
59	/1.267	36.5/1	0.011830	0.30121								
60	72.433	57.737	0.011913	0.55839	83.944	1.7909	21.766	61.643	83.409	0.046180	0.16479	60
61	73.613	58.917	0.011930	0.54967	83.823	1.8193	21.993	61.512	83.505	0.046612	0.164/4	01
67	74 807	60.111	0.011947	0.54112	83.701	1.8480	22.221	61.380	83.601	0.047044	0.164/0	N N
67	76 016	61.320	0.011965	0.53273	83.580	1.8771	22.448	61.248	83.656	0.04/4/5	0.16465	1 63
64	77.239	62.543	0.011982	0.52450	83.457	1.9066	22.676	61.116	83./92	0.04/905	0.10400	64
		cn 20-		0.000	92 276	1 9364	27.905	60,987	83.897	0.048336	0.16456	65
65	78.477	63,781	0.012000	0.50042	87.212	1 9665	23 133	60.849	83.982	0.048765	0.16451	66
66	79.729	65.033		0.50548	87 000	1 9977	23 362	60.715	84.077	0.049195	0.16447	67
67	80.996	66.500	0.012035	0.00/0	87 044	2 0787	23.591	60.580	84.171	0.049624	0.16442	68
68	82.2/9	68 880	0.012033	0.48555	82 841	2.0595	23.821	60.445	84,265	0.050053	0.16438	69
63	01.2/0	00.000	0.0120/1						84 360	0.050400	015474	70
70	84.888	70.192	0.012089	0.47818	82.717	2.0913	Z4.050	6009	84.339	0.050482	0.10434	1 10

16.01c

120

16.02 AIRC 10 Project 36

Name:_	
Date:	

Solving for Evaporator Capacity by Direct Proportion

Purpose:

The purpose of this project is to apply the principle of direct proportion in order to predict the capacity of an evaporator coil used in medium temperature applications.

Procedure: Each student will refer to the performance data for evaporators at 16.02a-b. Based upon the performance data and the information at 07.03b, each student will determine the capacity of the evaporator given the new temperature difference between suction saturation temperature and fixture temperature.

The capacity of an evaporator coil and condensing coil is based on the following consistency:

$Q_e = U \ge A \ge TD$

Where Qe=capacity of the evaporator coil, U=heat transfer coefficient of the coil, A=area of the coil, and TD= temperature difference between the evaporator coil and the fixture temperature.

The student will predict the new evaporator capacity based upon the following proportional consistency:

$Q_{e2}/TD_2 = Q_{e1}/TD_1$

Where: Qe=capacity of the evaporator coil, TD= temperature difference between the evaporator coil and the fixture temperature

Evaporator coil	TD Coil & Fixture	Capacity in Btu/hr	Capacity in tons
UAH1 - 232	15		
UAH3 - 648	20	and the second	
UAH2 - 365	12		
UAH4 - 980		147,000	
UAH2 - 433		60,200	
UAH! - 232		46,400	
UAH4 - 1100		132,000	

SELECTION AND APPLICATION TABLES FOR RUSSELL RUSS PAK SYSTEMS

Tables on the following pages contain capacity and balance data for the Russ Pak systems. They are intended to cover the normal range of conditions with various system selections of recommended equipment.

When special applications arise which are not covered by the Russ Pak system listed here, consult factory for prices.

All system capacities are based on 90° F Ambient. Increase (decrease) capacity by 6% for each 10° F lower (higher) ambient temperatures.

MODEL NUMBER NOMENCLATURE

Designation

55° Cutting Room

	· · · · · ·			
HP.	Rel.	втин	Evap. T.D.	System Model #
3	12	32.000	18	RPH31-FL46-180
5	22	55 000	20	RPH52-FL46-265
7.4	22	78.000	21	RPH82-FL46-180(2)
10	22	109.500	20	RPH102-FL46-265(2)
15	22	147.000	18	RPH152-FL46-265(3)
20	22	182,500	17	RPH202-FL46-265(4)

55° Storage Room - AL Evaporators

HP	Rel.	BTUH	Evap. T.D.	System Model #
3	12	31,000	19	RPH31-AL38-156
- 5 ⁻¹	22	55.000	21	RPH52-AL58-260
5	22	57 000	18	RPH52-AL38-156(2)
7%	22	81.000	20	RPH82-AL48-208(2)

55° Storage Room-UA Evaporators

HP	Ret.	втин	Evap. T.D.	System Model #
7.	22	82.500	19	RPH82-UAH2-433
10	22	109.500	22	RPH102-UAH2-490
10	22	115,000	18	RPH102-UAM2-329(2)
15	22	144,500	20	RPH152-UAH3-736
15	22	144.000	20	RPH152-UAH2-365(2)
20	22	167.000	- 22	RPH202-UAH4-980
20	22	173.000	2C	RPH202-UAH2-433(2)

50° Storage Room - Low Velocity - FL Evap

Ref.	втин	Evap. T.D.	System Model #
.12	29.000	16	RPH31-FL46-180
22	51,000	19	RPH52-FL46-265
22	71.000	20	RPH82-FL46-180(2)
22	103.000	19	RPH102-FL46-265(2)
22	140.000	17	RPH152-FL46-265(3)
22	172.000	16	RPH202-FL46-265(4)
	Re1. 12 22 22 22 22 22 22 22 22	Ref. BTUH 12 29,600 22 51,000 22 71,000 22 103,000 22 140,000 22 172,000	Ref. BTUH Evap. T.D. 12 29:000 .16 22 51:000 19 22 71:000 20 22 103:000 19 22 140:000 17 22 172:000 16

JSS PAK COMPLETE REFRIGERATION WITH LIST PRICES MAY 1983

UT **ULTRA TEMP** ULTRA HIGH POWERED UNIT COOLERS

16.02b

Low Temperature Models With Electric Delrost

(A) 10 (19)	1								
Model	8TU	/HR 12° TD	Fan Dia	Motor H.P.	w	н	D	WL	
4 Fins per inc	h -30° Ev	ip Tempe	rature	—Electri	c or He	ot-Gas	Defro	st	
140111-118	11 800	14,200	20	3/4	46%	25%	214	190	
110112-236	23 600	28,300	20	3/4	76%	25%	21%	370	
110112-355	35 500	42.600	-20	3/4	76%	31%	21%	440	
140112_474	47 400	56.900	20	3/4	106%	31%	21%	570	
110114-711	71,100	85,300	20	3/4	136%	31%	21%	665	
110114-851	85,100	102,100	24	3/4	136%	49%	23*	875	
U*U4-1080	108.000	129,600	24	3/4	136%	49%	23%	900	
6 Fins per inc	h -10° Ev	sp Tempe	rature	-Electri	c or He	ol-Gas	Deiro	st	
1101 1-152	15 200	18.200	20	3/4	46%	25%	21%	200	
110(1-193	19,300	23,200	20	3/4	46%	25%	21%	220	
U=12-304	30,400	36,500	20	3/4	76%	25%	21%	400	
U*L2-361	36,100	43,300	20	3/4	76%	31%	21%	25	
EU+12-408	.40,800	49,000	20	3/4	76%	81%	21%	446 .	
-U=L3-540	54,000	64,800	20	3/4	106%	31%	21%	585	
U+L3-613	61,300	73,600	20	3/4	106%	31%	21%	620	
U=L4-722	72,200	86.600	20	3/4	136%	31%	21%	675	
U+L4-817	81,700	98.000	20	3/4	136%	31%	21%	726	
· U=L4-1100.	110,000	132,000	24	3/4 .	136%	49%	23%	885	
U*L4-1380	138.000	165,600	24	3/4	136%	49%	23%	910	
Air Defrost Models									
	· · · · · · · · · · · · · · · · · · ·	- 1	1 2 4 1 4 3						
Model	8TU	/HR 15" TD	Fan Dia.	Motor H.P.	W	н	D	WL	
Model 6 Fins per Inc	BTU 10" TD h +25" Ev	/HR 15° TD ep Tempe	Fan Dia. rature	Motor H.P. —Air De	W	н	D	WL	
Model 6 Fins per inc UAM1-164	BTU 10" TD h +25" Ev 16,400	/HR 15" TD ap Tempe 24,600	Fan Dia. rature 20	Motor H.P. —Air De	W 1rost 46%	H 25%	D 21%	WL	
Model 6 Fins per Inc UAM1-164 UAM1-209	BTU 10° TD h +25° Ev 16,400 20,900	/HR 15" TD p Tempe 24,600 31,350	Fan Dia. rature 20 20	Motor H.P. —Air De 1/3 1/3	W 1rost 46% 46%	H 25% 25%	D 21% 21%	WL 200 220	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329	BTU 10" TD h +25" Ev 16,400 20,900 32,900	/HR 15* TD p Tempe 24,600 31,350 49,350	Fan Dia. rature 20 20 20	Motor H.P. —Air De 1/3 1/3 1/3	W 1rost 46% 46% 76%	H 25% 25% 31%	D 21% 21% 21%	WL 200 220 400	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390]	BTU 10" TD h +25" Ev 16,400 20,900 32,900 39,000	/HR 15" TD 24,600 31,350 49,350 "58,500	Fan Dia. 20 20 20 20	Motor H,P. -Air De 1/3 1/3 1/3 1/3	W 46% 46% 76% 76%	H 25% 25% 31% 31%	D 21% 21% 21% 21%	WL 200 220 400 425	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390 : UAM2-441	BTU 10" TD h +25" Ev 16,400 20,900 32,900 39,000 44,100	/HR 15" TD 24,600 31,350 49,350 58,500 66,150	Fan Dia. 20 20 20 20 20 20	Motor H.P. -Air De 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76%	H 25% 25% 31% 31% 31%	D 214 214 214 214 214 214	WL 200 220 400 425 446	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390 UAM2-41 -UAM3-583	BTU 10" TD h +25" Ev 16,400 20,900 32,900 39,000 44,100 58,300	/HR 15" TD 24,600 31,350 49,350 58,500 66,150 -87,450	Fen Dia. 70 20 20 20 20 20 20 20 20	Motor H,P. -Air De 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76%	H 25% 25% 31% 31% 31%	D 21% 21% 21% 21% 21% 21%	₩L 200 220 400 425 446 585	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 UAM2-390 UAM2-411 SUAM3-683 UAM3-662	BTU 10* TD h +25* Ev 16,400 20,900 32,900 39,000 44,100 58,300 66,200	/HR 15" TD 24,600 31,350 49,350 58,500 66,150 587,450 99,300	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Air De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 106%	H 25% 31% 31% 31% 31% 31%	D 21% 21% 21% 21% 21% 21%	₩L 200 220 400 425 446 585 620	
Model 6 Fine per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-300 ;UAM2-411 SUAM3-682 UAM3-682 UAM4-780	BTU 10* TD 16,400 20,900 32,900 39,000 44,100 58,300 66,200 78,000	/HR 15" TD 24,600 31,350 49,350 58,500 66,150 587,450 99,300 117,000	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Air De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 106% 106% 136%	H 25% 31% 31% 31% 31% 31% 31%	D 21% 21% 21% 21% 21% 21% 21%	WL 200 220 400 425 446 585 620 675	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-329 [UAM2-330 UAM2-441 SUAM3-683 UAM3-683 UAM3-682 UAM4-780 UAM4-882	810 10° TD h +25° Ev 16,400 20,900 32,900 39,000 44,100 58,300 66,200 78,000 88,200	/HR 15" TD 24,600 31,350 49,350 58,500 66,150 587,450 99,300 117,000 132,300	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Alr: De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 76% 106% 106% 136%	H 25% 31% 31% 31% 31% 31% 31% 31%	D 214 214 214 214 214 214 214 214 214 214	WL 200 220 400 425 446 585 620 675 726	
Model 6 Fina per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-330 UAM2-441 SUAM3-683 UAM3-682 UAM3-682 UAM4-780 UAM4-782 UAM4-782	800 10° TD 10° TD 16,400 20,900 32,900 32,900 44,100 58,300 66,200 78,000 88,200 78,000 88,200 78,000	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 587,450 99,300 117,000 132,300 198,000	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Alr.De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 3/4	W 46% 46% 76% 76% 76% 106% 106% 136% 136%	H 25% 31% 31% 31% 31% 31% 31% 31% 31%	D 21% 21% 21% 21% 21% 21% 21% 21% 21% 21%	₩L 200 220 400 425 446 585 675 726 535	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-329 [UAM2-329 [UAM2-329 [UAM3-583 UAM3-682 UAM3-682 [UAM4-1320 [JAM4-1656	810 10° TD 16.400 20.900 32.900 39.000 44.100 58.300 66.200 78.000 88.200 78.000 88.200 78.2000 79.2000 79.2000 79.2000 79.2000 79.2000 79.2000 79.2000 79.2000 70.2000 7	/HR 15° TD 24,600 31,350 49,350 58,500 66,150 58,500 99,300 117,000 132,300 198,000 248,400	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 106% 136% 136% 136%	H 25% 25% 31% 31% 31% 31% 31% 31% 31% 49%	D 214 214 214 214 214 214 214 214 214 214	₩L 200 220 400 425 446 585 620 675 726 675 726	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390" UAM2-411 SUAM3-682 UAM3-682 UAM4-780 UAM4-882 [JAM4-1320 [JAM4-1656] 8 Fins per Inc	810 10° TD 16 400 20,900 32,900 33,000 44,100 58,300 66,200 78,000 88,200 732,000 745,600 165,600 165,600	/HR 15° TD 24,600 31,350 49,350 58,500 66,150 99,300 117,000 132,300 132,300 246,400 246,400	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Air. De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 106% 136% 136% 136% 136%	H 25% 31% 31% 31% 31% 31% 31% 31% 31% 31% 49%	D 214 214 214 214 214 214 214 214 214 214	₩L 200 220 400 425 446 585 620 675 726 535 910	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-229 [UAM2-390 UAM2-411 SUAM3-683 UAM3-683 UAM3-683 UAM3-682 UAM4-780 UAM4-780 UAM4-780 UAM4-780 UAM4-7856 8 Fins per Inc UAH1-182	800 10° TD 14° 425° Ev. 16,400 20,900 32,900 39,000 44,100 58,300 66,200 58,300 66,200 58,200 59,200 59,200 59,200 50,	/HR 15° TD 24.600 31,350 49,350 58,500 66,150 99,300 117,000 132,300 132,300 248,400 248,400 27,300	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Air. De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 106% 136% 136% 136% 136% 136%	H 25% 31% 31% 31% 31% 31% 31% 31% 31% 31% 31	D 2114 2114 2114 2114 2114 2114 2114 211	WL 200 220 400 425 446 585 620 675 726 885 10 10	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390' UAM2-390' UAM2-390' UAM3-683 UAM3-683 UAM3-683 UAM3-683 UAM4-780 UAM4-780 [JAM4-1520 [JAM4-1520 UAH1-182 UAH1-232	810 10° TD 14° 425° Ev 16,400 20,900 32,900 32,900 44,100 68,300 66,200 78,000 88,200 78,000 78,000 78,000 78,000 10° 78,000 10° 78,0	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 587,450 99,300 117,000 132,300 198,000 248,400, 39,7000 248,400, 34,800	Fan Dia. 20 20 20 20 20 20 20 20 20 20	Motor H.P. 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 106% 136% 136% 136% 136% 136% 136% 136% 13	H 25% 31% 31% 31% 31% 31% 31% 31% 31% 31% 25% 25%	D 214 214 214 214 214 214 214 214 214 214	WL 200 220 402 446 585 520 675 72655 520 675 72655 520 210 230	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-330" UAM3-682 UAM3-682 UAM4-882 UAM4-882 UAM4-1820 UAM4-1856 8 Fins per Inc UAH1-182 UAH1-232 UAH2-365	BTU 10° TD 14° TD 16,400 20,900 32,900 32,900 32,900 32,900 58,300 66,200 78,000 88,200 74,200 7	/HR 15° TD 24,600 31,350 58,500 66,150 58,500 117,000 132,300 117,000 132,300 117,000 132,300 248,400, ep Temper 27,300 34,800 54,750	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W frost 46% 76% 76% 76% 106% 106% 136% 136% 136% 136% 136% 136% 136% 13	H 25% 25% 31% 31% 31% 31% 31% 31% 31% 25% 25% 25% 31%	D 214 214 214 214 214 214 214 214 214 214	WL 200 220 425 446 675 726 675 726 101 210 210 210 210 210 410	
Model 6 Fins per Inc UAM1-164 UAM1-164 UAM1-209 UAM2-329 [UAM2-390" UAM2-411 2UAM3-682 UAM4-780 UAM4-882 UAM4-780 UAM4-882 UAM4-1320 UAM4-1656 8 Fins per Inc UAH1-82 UAH1-235 [UAH2-343]	800 10° TD 10° TD 14° 425° Ev. 16,400 20,900 32,900 33,000 44,100 58,300 66,200 78,000 88,200 78,000 88,200 78,000 78,000 88,200 78,000 78,	/HR 15* TD 24,600 31,350 58,500 58,500 58,500 66,150 *87,450 99,300 117,000 132,300 132,300 132,300 246,400 27,300 34,650 54,750 54,650	Fan Dia. 20 20 20 20 20 20 20 20 20 20	Motor H.P. 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 76% 76% 106% 136% 136% 136% 136% 46% 46% 76% 76% 76% 76% 76% 76% 76% 136%	H 25% 25% 31% 31% 31% 31% 31% 31% 31% 49% 25% 25% 31% 51%	D 2114 2114 2114 2114 2114 2114 2114 211	WL 200 220 425 446 675 726 675 726 675 726 10 210 210 210 210 210 210 210	
Model 6 Fins per Inc UAM1-164 UAM1-164 UAM1-209 UAM2-329 [UAM2-390 UAM2-411 2UAM3-682 UAM2-411 2UAM4-780 UAM4-882 [JAM4-1320 UAM4-1656 8 Fins per Inc UAH1-182 UAH1-232 UAH1-243 [JAH2-433] [UAH2-433]	810 10° TD 14° 425' Ev 16,400 20,900 32,900 33,000 44,100 66,200 44,100 66,200 88,200 88,200 88,200 88,200 88,200 88,200 16,5	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 58,500 66,150 137,450 99,300 132,300 132,300 132,300 1248,400, 24,800 54,750 54,750 54,750	Fan Dia. 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. Air De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W 46% 46% 76% 76% 106% 106% 106% 136% 136% 136% 46% 76% 76% 76% 76% 136%	H 25% 25% 31% 31% 31% 31% 31% 31% 40% 40% 25% 25% 31% 25% 31% 25%	D 2114 2114 2114 2114 2114 2114 2114 211	WL 200 25 46 55 67 72 55 67	
Model 6 Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-329 [UAM2-329 [UAM2-329 [UAM2-329 [UAM2-329 UAM3-682 UAM3-682 [UAM4-1656 8 Fins per Inc UAH1-182 UAH1-232 UAH2-365 [UAH2-365 [UAH2-368 [800 10° TD 14° TD 16,400 20,900 32,900 39,000 44,100 58,300 66,200 44,100 58,300 66,200 78,000 83,200 78,000 83,200 78,200 7	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 58,500 66,150 17,000 132,300 132,300 132,300 132,300 132,300 248,400, 248,400, 248,400, 34,800 54,750 54,550 253,550 253,7200	Fan Dia. 20 20 20 20 20 20 20 20 20 20	Motor H.P. Alr.De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W front 46% 46% 76% 106% 106% 106% 106% 136% 136% 46% 46% 46% 46% 76% 106% 136% 106%	H 25% 25% 31% 31% 31% 31% 31% 31% 31% 31% 31% 31	D 214 214 214 214 214 214 214 214 214 214	¥ 28 8 8 9 4 4 5 8 8 5 5 5 15 10 10 2 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
Model G Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390 UAM2-390 UAM3-652 UAM3-652 UAM3-652 UAM4-780 UAM4-780 UAM4-780 UAM4-780 UAM4-780 UAM4-780 UAM4-782 UAM4-782 UAM1-182 UAM1-182 UAM1-232 UAM1-235 UAM3-736	870 10° TD 14° TD 16,400 20,900 32,900 34,100 32,200 34,200 36,500 37,500 3	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 787,450 99,300 117,000 248,400 248,400 248,400 248,400 34,800 54,750	Fan Dia 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. -Air.De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W fort 46% 46% 76% 76% 76% 106% 106% 136% 16	H 25% 25% 31% 31% 31% 31% 31% 31% 31% 31% 25% 25% 25% 31% 51% 31% 31% 31%	D 214 214 214 214 214 214 214 214 214 214	NI NI<	
Model G Fins per Inc UAM1-164 UAM1-209 UAM2-329 [UAM2-390" UAM2-390" UAM2-383 UAM3-662 UAM4-780 UAM4-882 UAM4-780 UAM4-882 UAM4-1656 B Fins per Inc UAM1-162 UAM1-265 SIAH2-365 SIAH2-365 UAM3-736 UAM3-736 UAM4-666	800 10° TD 14° TD 16,400 20,900 32,900 39,000 44,100 58,300 64,200 78,000 88,200 78,000 78,000 88,200 74,500 12,200 132,000 14,100 14,000	/HR 15* TD 24,600 31,350 58,500 58,500 58,500 58,500 58,500 58,500 117,000 132,300 117,000 132,300 117,000 34,800 54,750 54,550 54,550 257,3500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,500 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,5000 250,50000 250,50000000000	Fan Dia 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. Air De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 3/4 3/4 3/4 3/4 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W frost 46% 46% 76% 76% 76% 76% 106% 136% 136% 136% 46% 46% 46% 136%	H 25% 25% 31% 31% 31% 31% 31% 31% 25% 25% 25% 31% 25% 31% 31% 31% 31% 31%	D 214 214 214 214 214 214 214 214 214 214	wL 200 20 40,445 50 655 725 1000 201 20 40,445 50 655 725 1000 210 200 41 147 10000 210 200 41 147 10000 210 200 41 147 10000	
Model 6 Fins per Inc UAM1-164 UAM1-164 UAM1-209 UAM2-329 [UAM2-390" UAM2-411 2UAM2-390" UAM2-411 2UAM3-682 UAM4-780 UAM4-882 UAM4-1820 UAM4-1820 UAM4-1820 UAM1-235 UAM1-2433 STAH2-365 UAH3-736 UAH3-736 UAH3-736 UAH3-7888 UAH3-7888 UAH3-7888 UAH3-7888	800 10° TD 10° TD 11° TD 11° TD 11° TD 11° TD 11° TD 12° TD 1	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 58,500 66,150 58,760 117,000 132,300 124,640 27,300 34,800 54,750 54,650 54,750 54,650 54,750 54,650 54,750 54,650 54,750 54,650 54,750 54,750 54,650 54,750 54,750 54,750 54,650 54,750 50,750 54,750 50	Fan Dia 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. Air De 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 3/4 3/4 3/4 3/4 3/4 3/4 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W frost 46% 46% 76% 76% 76% 76% 136% 136% 136% 46% 46% 46% 136%	H 25% 25% 31% 31% 31% 31% 31% 31% 31% 40% 40% 31% 31% 31% 31% 31% 31% 31% 31	D 214 214 214 214 214 214 214 214 214 214	WL 200 20, 20, 40, 20, 44, 55, 56, 56, 56, 56, 56, 56, 56, 56, 56	
Model G Fins per Inc UAM1-164 UAM1-164 UAM1-209 UAM2-329 [UAM2-390 UAM2-390 UAM2-411 2UAM3-682 UAM4-780 UAM4-882 [JAM4-1850 JAM4-1656 B Fins per Inc UAH1-182 UAH1-232 UAH1-232 UAH1-2433 [JAH4-1650 UAH3-736 UAH3-736 UAH3-800 [JAH4-1652	800 10° TD 11° TD 11° TD 11° TD 11° TD 11° TD 12° TD 1	/HR 15* TD 24,600 31,350 49,350 58,500 66,150 58,500 66,150 17,000 122,300 122,300 1248,400, 249,350, 248,400, 248,400, 249,350, 249,350, 249,350, 249,350, 249,400,400,400,400,400,400,400,400,400,4	Fan Dia 20 20 20 20 20 20 20 20 20 20 20 20 20	Motor H.P. 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	W frost 464 464 764 764 764 764 764 764	H 25% 25% 31% 31% 31% 31% 31% 31% 49% 49% 49% 49% 31% 31% 31% 31% 31% 31% 31% 31	D 214 214 214 214 214 214 214 214 214 214	WL 20 20 25:45 50 25 72 18 1001 21 20 20 19 19 100 20 10 10 10 10 10 10 10 10 10 10 10 10 10	

Russell's new Ultra Temp unit cooler is exceptionally versatile, covering all temperature applications in a compact, slim profile design. The Ultra Temp is ideally suited for large walk-ins, storage and freezers. Air throw is upto 100 feet with optional metal air straighteners.

FL FLOW-TEMP LOW VELOCITY UNIT COOLERS

	BTU	/HR.	Fens No. — Diam.	Fan Motor H.P.	Dimensions				
Model	10" TD	12* TD			Ó	W	H	₩1.	
FL26-67	6,700	8,040	2-10	9W	27%	58%	8%	100	
FL36-100	10.000	12,000	3-10	9W	27%	82%	9	160	
FL36-135	13,500	16,200	3-10	16W	27%	82%	12	207	
FL46-180	18,000	21,600	4-10	16W	27%	106%	12	291	
FL46-265	26,500	31,800	4-10	16W	27%	106%	15	320	

The Russell Flow Temp Unit Cooler was first introduced to the refrigeration industry in 1964 to answer the many requests for reduced velocity applications. It is especially designed for high humidity applications where meat shrinkage in cutting and storage rooms is a factor. It has an extremely comfortable sound level. Thousands have been in use in meat cutting, holding and packaging rooms, fruit and vegetable storage rooms and florist boxes. Flow-Temps come with a white baked polyester coating on the housing.

All of the above Unit Coolers are UL listed and are made for standard air defrost as well as electric defrost.

TESTING:

Each Russ Pak system is assembled under strict quality control. The condensing unit is pressurized for leak detection, then fully evacuated to 200 microns pressure. The electrical circuit is given a full dielectric test prior to the unit being given a complete run test. The unit is prepared for shipment with a holding charge of dry nitrogen.

16.03 AIRC 10 Project 37

N	am	e:		97 	,
-			201		Å
D	ate				7

Solving for Blower RPM Based on Inverse Proportion

Purpose: The purpose of this project is to apply the principle of inverse proportion in order to predict the RPM of a blower fan in an air distribution system.

Procedure: Each lab group will record the pulley sizes and name plate rotations per minute (RPM) of the motor on a belt drive blower assembly. Based on the data, the group will determine the RPM of the driven pulley from the inverse proportion:

$D_b/D_a = RPM_a/RPM_b$

Where Da=the diameter of pulley A, Db=the diameter of pulley B, RPMa= the Rotations per minute of pulley A, and RPMb= the rotations per minute of pulley B

Name plate RPM	Diameter Pulley A	Diameter Pulley B	Predicted RPM Pulley B	Actual RPM Pulley B	
1725	5"	10"			
1725	7"	10"			
1725	3"	10"			
3450	5"	10"	2	an an an an an an a' tha an	
3450	5"	8"			

17.00 Class Session 17

AIRC 10

Objective: After successfully completing this lesson, each student should be able to:

- 1. Apply proportions to solutions for air distribution problems
- 2. Interpret the functions of exponents
- 3. Solve air side HVAC problems that require the multiplication of numbers in exponential form.

Information: Basic vocational-technical mathematics by Olivo & Olivo, Unit 64

Essential Concepts:

- 1. Blower RPM and air volume vary directly
- 2. Horse-power requirements for an electric motor increase exponentially per unit increase of blower RPM.

3. A simplified method of stating that a quantity is to be multiplied by itself many times is to write the number in exponential form.

Structure:

The instructor will discuss the essential concepts of the lesson. To reinforce the essential concepts, the instructor will illustrate proportions based on the fan laws. When no further questions about the essential concepts or processes are observed, the students will be assigned two projects

1. Solving for Air Volume and Motor Horse-power Requirements

Each lab group will be assigned an air handling unit with a belt drive blower. The group will check out the necessary instrumentation and measure the air volume traveling through the duct work. Once the volume is determined the group will be asked to increase or decrease the volume by a percentage. The solution will require determining new pulley diameters and proving the horse-power capacity is sufficient to meet the new air volume. This project is located at 17.01

Evaluation:

There are six points possible for both projects. Each student completing the projects will receive full credit. Students who do not come prepared, do not participate, or fail to complete a project will loose two points for each project they fail to complete.

17.01 AIRC 10 Project 38

Name: _____ Date:

Solving for Air Volume and Motor Horse-Power

Purpose: The purpose of this project is to apply the principle of inverse proportion in order to solve for RPM of a blower fan in an air distribution system and predict horse-power requirements

Procedure:

Each lab group will be assigned an air handling unit with a belt drive blower assembly. The group will check out the necessary instrumentation and measure the air volume traveling through the duct work.

Once the volume of air flow is determined, the group will be asked to increase or decrease the volume by a percentage. The rule for adjusting air volume through a duct is as follows:

$RPM_{B1}/RPM_{B2} = CFM_1/CFM_2$

Where: RPMB1=original RPM of pulley B, RPMB2=required RPM of pulley B, CFM1=original air volume, and CFM2=desired air volume

Referring to project 38, the diameter of pulley A can be adjusted to achieve the new RPM of pulley B.

$D_b/D_a = RPM_a/RPM_b$

Where: Da=the diameter of pulley A, Db=the diameter of pulley B, RPMa= the Rotations per minute of pulley A, and RPMb= the rotations per minute of pulley B

Horse-power requirements (hp) must me checked any time the RPM of blower is adjusted. The relationship between RPM and hp requirements is:

$hp_2 = hp_1 x (RPM_{B2}/RPM_{B1})$

Where: hp1=original horse-power, hp2=new horse-power requirements, RPMB1=original RPM of pulley B, RPMB2=required RPM of pulley B

	RPM _a	RPMb	Diaa	Diab	CFM	hp
Existing						
New						

APPENDIX B

1100 NORTH GRAND AVENUE WALNUT, CA 91789-1399

MT. SAN ANTONIO COLLEGE

January 15, 1996

Dr. Allen D. Truell M.A. Program Coordinator Department of Secondary and Vocational Education California State University San Bernardino 5500 University Parkway San Bernardino, CA.

Dear Dr. Truell,

The Office of Instructional Services at Mount San Antonio College solidly supports Mr. Darrow Soares in developing his masters project to integrate mathematics with air conditioning and refrigeration.

In discussing the project with Mr. Soares, it is clear that the curriculum he proposes will enhance the relevance of his program to the workplace. The instructional strategies he offers will improve critical thinking, problem solving, and academic skill attainment.

The College goal for 1996-1997 is to have the curriculum for targeted programs include the integration of academic and career education as well as the inclusion of program strategies that reflect workforce needs. Since Mr. Soares' department falls into the targeted category of Engineering and Related Technologies, his project will be very relevant to the goals of the college and our community.

I look foreword to working with Mr. Soares on this project

Sincerely,

Ms. Barbara Crane Dean of Instructional Services Mount San Antonio College

(909) 594-5611 • FAX (909) 594-7661

127

REFERENCES

- Adams, L., Kasserman, J., Yearwood, A., Perfetto, G., Bransford, J., & Franks, J. (1988). The effects of fact versus problem-oriented acquisition. <u>Memory & Cognition, 16</u>, 167-175.
- Barley, S. R. (1990). The alignment of technology and structure through roles and networks. Administative Science Quarterly, 35, 61-103.
- Barley, S. R. (1992). <u>The new crafts: The rise of the technical labor force and its</u> <u>implication for the organization of work</u> (Catalog No. WPO5). National Center for the Educational Quality of the Workforce.
- Barley, S. R., Freeman, J., & Hybels, R. (1993). Strategic alliances in commercial biotechnology. In Eccles, R., & Norhia, N.(Eds.), <u>Networks and Organization</u>. Boston: Harvard Business School Press.
- Bailey, T. (1988). <u>Education and the transformation of markets and technology in the</u> <u>textile industry</u> (Technical Paper 2). Columbia University: Conservation of Human Resources.
- Bailey, T. (1991). Jobs of the future and the skills they will require: Evidence from occupational forecasts. Educational Researcher, 20, (2), 11-20.
- Beck, M. & Namuth, T. (1988, May, 2). A nation still at risk. Newsweek, 167, 54-60.
- Berryman, S. E. & Bailey, T.R. (1992). <u>The Double Helix of Education and the</u> <u>Economy.</u> New York: Columbia Teachers College.
- Bransford, J. D., & Heldmeyer, K. (1983). Learning from children learning. In Bisanz, J., Bisanz, G., & Kail, R. (Eds.), <u>Learning in children: Progress in cognitive</u> <u>development research</u> (pp. 171-190). New York: Springer-Verlag.
- Bransford, J., Sherwood, R., & Hasselbring, T. (1988). The video revolution and its effect on development: Some initial thoughts. In Foreman, E., & Pufall, P. (Eds.), <u>Constructivism in the computer age</u> (pp. 173-201). Hillsdale, NJ: Erlbaum.
- Brown, A. L., Bransford, J. D., Ferrara, R. A., & Campione, J. C. (1983). Learning, remembering and understanding. In Flavell, J.H., & Markman, E.M. (Eds.), <u>Carmichael's Manual of Child Psychology</u> (Vol. 1, pp. 77-166). New York: Wiley.

Cappelli, P. (1992). <u>Are skill requirements rising? Evidence from production and clerical</u> jobs. (Catalog No. WP03). National Center on the Educational Quality of the Workforce.

Carnevale, A. P. (1991). America and the New Economy. San Fransisco: Jossey-Bass.

- Carnevale, A. P., & Porro, J. D. (1994). <u>Quality Education: School Reform for the New</u> <u>American Economy</u> (Contract No. 433JAJ301013). U.S. Department of Education Office of Educational Research and Improvement.
- Cognition and Technology Group at Vanderbilt. (1993). Toward integrated curricula: Possibilities from anchored instruction. In Rabinowitz, M. (Ed.), <u>Cognitive</u> <u>Science Foundations of Instruction</u> (pp. 33-55). Hillsdale, NJ: Lawrence Erlbaum.
- Cognition and Technology Group at Vanderbilt. (1992). Anchored instruction in science and mathematics: Theoretical basis, developmental projects, and initial research findings. In Duschl, R.A. & Hamilton, R.J. (Eds.), <u>Philosophy of Science, Cognitive Psychology, and Educational theory and Practice</u> (pp.244-276). Albany: State University.
- Cognition and Technology Group at Vanderbilt. (1990). Anchored instruction and its relationship to situated cognition. <u>Educational Researcher</u>, 19 (5), 2-10.

Cross, P. K. (1976). Accent on learning. San Francisco: Jossey-Bass.

Dertouzos, M., Lester, R., & Solow, R. (1989). <u>Made in America</u>. Cambridge: MIT Press.

Dewey, J. (1933). How we think (rev. ed.). Boston: Heath.

- Drucker, P. F. (1994, November). The age of social transformation. <u>The Atlantic</u> <u>Monthly.</u> pp.53-80.
- Edwards, R. (1979). <u>The transformation of the workplace in the twentieth century</u>. New York: Basic Books.
- Garafalo, F., & LoPresti, V. (1993). Evolution of a integrated college freshman curriculum: Using educational research findings as a guide. <u>Journal of</u> <u>ChemicalEducation, 70,</u> 352-359.

Giroux, H. A. (1989). Rethinking education reform in the age of George Bush. <u>Phi Delta</u> <u>Kappan, 68</u>, 728-730.

- Giroux, H. A. (1991). <u>Postmodernism, Feminism, and Cultural Politics: Redefining</u> <u>Educational Boundaries</u>. Albany: State University of New York Press.
- Gragg, C. I. (1940). Because wisdom can't be told. <u>Harvard Alumni Bulletin, 3</u> (3), 78-84.
- Gray, K. (1991). Vocational Education in high school: A modern phoenix? <u>Phi Delta</u> <u>Kappan, 72</u>, 437-445.
- Grubb, W. N., Badway, N., Bell, D., & Kraskouskas, E. (1996). <u>Community college</u> <u>innovations in workforce preparation: Curriculum integration and tech prep.</u> Unpublished manuscript, National Center for Research in Vocational Education, the University of California, Berkeley.
- Grubb, W. N., & Kraskouskas, E. (1991). <u>A time to every purpose: Integrating occupational and academic education in community colleges and technical intitutes</u> (Report No. MDS 251). Berkely, CA: National Center for Research in Vocational Education.
- Hall, R., Johnson, T., & Turney, P. (1990). <u>Measuring up: Charting pathways to</u> <u>manufacturing excellence</u>. Homewood, Ill.: Business One Irwin.
- Horan, M. J. (1995). <u>Community college reform and tech prep: Leading, following,</u> or business as usual. (ERIC Document Reproduction Service No. ED 377 914)
- Koziol, K., and Grubb, W. N. (1995). Paths not taken: Curriculum integration and the political and moral purpose of schooling. In W.N. Grubb (ed.), <u>Education</u> through occupations in American high schools: The challenges of implementing <u>curriculum integration</u> (pp. 308-332). New York: Teachers College Press.
- Lankard, B. A. (1992). <u>Integrating academic and vocational eduction: Strategies for</u> <u>implementation</u> (Report No. EDO-CE-92-120). Washinton DC: Clearing House on Adult, Career, and Vocational Education. (ERIC Document Reproduction Service No. ED 346 317)
- McCallum, P. (1995). Feerless changes. <u>The Journal of the Faculty Association of</u> <u>California Community Colleges, 2</u> (1), 6-7.
- Mullis, I. V. S. (1991, November). <u>Trends in Academic Progress</u>. Department of Education

- Murnane, R. J., & Levy, F. Education and training. In Aaron, H. J., & Schultze, C.
 L. (Eds.). Setting domestic priorities: What can government do? (pp. 185-222).
 Washington DC: The Brookings Institute.
- National Commision on Excellence in Education. (1983). <u>A Nation at risk: The</u> <u>imperative for educational reform</u>. Washington DC: US Department of Education.
- Office of Technical Assessment. (1990). <u>Worker Training</u>. U.S. Congress: Government Printing Office.
- Ogden, W. R. (1990). Vocational education: A historical perspective. <u>The High School</u> Journal, 18, 245-251.
- Pew Higher Education Round Table. (1994). To dance with change. <u>Policy Perspectives</u>, 5 (3), 1-12.
- Piore, M. J., & Sabel, C.F. (1984). <u>The Second industrial divide</u>. New York: Basic Books.
- Porter, A. (1989). A curriculum out of balance. The case of elementary school mathematics. Educational Researcher, 18 (5), 9-15.
- Price, D. J. (1986). <u>Little science, big science...and beyond.</u> New York: Columbia University Press.
- Pritchett, P. (1994). <u>The Employee hand book of new work habits for a radically</u> <u>changing world</u>. Dallas: Pritchett & Associates.
- Raizen, S. A. (1989). <u>Reforming education for work: A cognitive science perspective</u> (Report No. MDS-024). Berkely, CA: National Center for Research in Vocational Education.
- Robinson, P. (1995, June 5). Interview: Paul Romer. Forbes ASAP, pp. 66-75.
- Rosenberg, N. & Birdsell, L. (1986). <u>How the west grew rich: The economic</u> <u>transformation of the industrial world</u>. New York: Basic Books.
- Scardamalia, M., & Bereiter, C. (1985). Fostering the development of self-regulation in children's knowledge processing. In Chipman, S.F., Segal, J.W., & Glaser, R. (Eds). <u>Thinking and learning skills: Research and open questions</u> (Vol. 2, pp. 654-80). Hillsdale, NJ: Erlbaum.

- Secretary's Commision on Workforce Quality and Labor Market Efficiency. (1989). Washington DC: U.S. Department of Labor.
- Sherwood, R., Kinzer, C., Hasselbring, T., & Bransford, J. D. (1987). Macro-Contexts for learning: Initial findings and issues. <u>Journal of Applied Cognition</u>, <u>1</u>, (8), 93-108.
- Silvestri, G. T., & Lukasiewics, J. M. (1989). Occupational employment projections. Monthly Labor Review, 114 (1), 64-94.
- Sowell, T. R. (1994, July, 8). Our common cause: Our youth. <u>The Riverside</u> <u>Press Enterprise</u>, p. A18.
- Spenner, K. (1985). The upgrading and downgrading of occupations: Issues, evidence, and implications for education. <u>Review of Educatonal Research</u>, 55, (2), 125-154.
- Statz, C. & Grubb, N. W. (1991). <u>Integrating academic and vocational education</u>: <u>Guidlines for assessing a fuzzy reform</u> (Report No. MDS 375). Berkely, CA: National Center for Research in Vocational Education.
- Tan, H. (1989). <u>Private sector training in the United States: Who gets it and why.</u> New York: Institute on Education and the Economy, Teachers College, Columbia University.
- Tinto, V. (1987). Leaving college: Rethinking the causes and cures of student <u>attrition</u>. Chicago: University of Chicago Press.
- U.S. Department of Labor. (1987). Workforce 2000: Work and Workers for the 21st Century. Washington D.C.
- Vaughan, R. J. (1991). The new limits to growth: Economic transformation and vocational education. Phi Delta Kappan, 70, 446-449.
- Van Hanegan, J., Barron, L., Young, M., Williams, S., & Bransford, J. (1991). The jasper series: An experiment with new ways to enhance mathematical thinking. In Halpern, D. (ed.), Concerning the the development of thinking skills in science and mathematics (pp. 22-49). Hillsdale NJ: Erlbaum.
- Venezky, R. L., Kaestle, C.F., & Sum, M. (1987). <u>The subtle danger: Reflections on</u> <u>the literacy abilities of America's young adults.</u> Princeton: Educational Testing Service.

- Weekly Compilation of Presidential Documents . (1994, May 9). <u>Statement on Signing</u> the School-to-Work Opportunities Act of 1994. <u>30</u>, 988-989. Washington, DC: U.S. Government Printing Office.
- Weekly Compilation of Presidential Documents . (1994, May 23). <u>Remarks on Goals</u> <u>2000 Legislation</u>. <u>30</u>, 1092-1094. Washington DC: U.S. Government Printing Office.
- Womack, J. (1989). <u>The U.S. automobile industry in an era of international</u> <u>competition: Performance and prospects</u>. MIT Commission on Industrial Productivity, Working Papers. Cambridge: MIT press.