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Abstract

This paper will be on hyperbolic reflections and triangle groups. We will compare

hyperbolic reflection groups to Euclidean reflection groups. The goal of this project is

to give a clear exposition of the geometric, algebraic, and number theoretic properties of

Euclidean and hyperbolic reflection groups.
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Chapter 1

Introduction

Hyperbolic geometry is non-Euclidean geometry that follows all postulates from

Euclidean geometry except parallel postulate. In Euclidean geometry, lines are parallel if

they do not intersect. Therefore, one form of the parallel postulate in Euclidean geometry

states the following: given any line and a point not on that line you can construct a unique

line going through that point and parallel to the given line, see Figure 1.1.

Figure 1.1: Parallel Lines

Now in Euclidean geometry there are two quantifiers that go with the fifth

postulate. The first is that there exists a line that would be parallel to any given line

through a point not on that line. The second is that parallel line is unique, which means

there exists only one parallel line to any given line and a point not on that line. The

reason the fifth postulate fails in hyperbolic geometry is because, while we do have the
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existence of parallel lines, they are not unique. In hyperbolic geometry given a line and a

point not on that line, there exists infinitely many parallel lines through that point and

not just one. It is no surprise that Euclid was unable to prove the postulate from the

first four postulates. Euclid wrote a book called the Elements where he outlined what

we now call Euclidean geometry. In this book he included his postulates, propositions,

theorems, definitions, and mathematical proofs. The Elements was used as a textbook

for geometry for many years and is still the foundation of Euclidean geometry to this day.

The story goes that Euclid was not content with assuming the parallel postulate,

so much so, that he tried to avoid using it as much as possible. In fact, he only used the

first four postulates for the first 28 propositions of the Elements, but was forced to invoke

the parallel postulate on the 29th proposition. The reason it is not a theorem is because

the fifth postulate is entirely self-consistent and only remains a fact in Euclidean geometry.

Many mathematicians tried to prove this postulate but failed to do so. However, with

these failures also came triumphs, where new birth of geometry was introduced to the

world called “hyperbolic geometry”. While the first four postulates hold, the fifth does

not in hyperbolic geometry because given a line (geodesic) and a point not on that

geodesic you can construct infinity many lines through that point that will be parallel

to the given geodesic. Three people: Gauss, Lobachevsky and Bolyai can be credited

with discovery of hyperbolic geometry, however, Gauss never published his ideas, and

Lobachevsky was the first to present his views to the world mathematical community.

This is why hyperbolic geometry is frequently referred to as “Lobachevskian geometry”

or “Bolyai–Lobachevskian geometry” [Tha08].

Both Euclidean and hyperbolic geometries have triangles, symmetries, transla-

tions, reflections, and rotations. Furthermore, a lot of the properties and theorems hold

true in both. My focus will be in exploration of hyperbolic reflection groups and more

specifically hyperbolic triangle groups. I will research hyperbolic triangle groups and

how they behave in the hyperbolic plane. I will explore hyperbolic reflection groups and

compare them to Euclidean reflections groups.

At the core one of the most fundamental geometric symmetry is a reflection

(“mirror image”). We may not recognize it but we are surrounded by this amazing concept

every time your see tile on the kitchen floor or bathroom walls. Artists apply reflections to

show beautiful tessellations or patterns in their paintings or sculptures. Engineers apply
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reflections to enhance the structure or to add life to the building they are designing. This

fundamental concept obeys certain properties or rules. Analyzing reflections can allow us

to find groups that keep the properties. We can then start exploring these groups in the

Euclidean plane which we call reflection groups. We will look at discrete reflection groups

and how the behave and which polygons create patterns, tiles, or unique images through

composition of reflections. We will explore and analyze reflections through intersecting

lines and parallel lines to see how each effects our polygons in each case. I will provide

visual aids through use of images and interactive programs in GeoGebra. The use of

technology will aid the reader to visualize clearly what happens when reflections through

two intersecting lines or through two parallel lines are composed. GeoGebra gives freedom

to the reader to open a program and move the objects and points and clearly see how

they behave under these transformations.

The reader needs to have a concrete understanding of the importance of reflec-

tions in Euclidean geometry because this will translate into hyperbolic geometry. Our

focus is going to be on composition of reflections that yield discrete groups. We are going

to see that in Euclidean geometry we have a finite set of discrete groups. We will analyze

the structure of these groups and see the amazing tessellations that are created by these

discrete groups and their corresponding pictures. More specifically there are only three

discrete groups in Euclidean geometry that make these tessellations. They are known as

(3,3,3) triangle group associated to the 60◦− 60◦− 60◦ (regular) triangle, (2,4,4) triangle

group associated to the 45◦ − 45◦ − 90◦ triangle, and (2,3,6) triangle group associated

to the 30◦ − 60◦ − 90◦ triangle. Please see the following three images that display those

unique tessellations.
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Figure 1.2: 3,3,3

Figure 1.3: 2,4,4

Figure 1.4: 2,3,6

We know that in Euclidean geometry the interior angles of a triangle sum to

180◦. Therefore, we are limited on how many discrete triangle groups exist in Euclidean

space. This restriction does not hold in hyperbolic space. Knowing that a the sum of

interior angles of a hyperbolic triangle is less than 180◦, we find other discrete groups of

isometries in hyperbolic space that do not exist in Euclidean space. We will describe many

examples to see which tessellations can be created by these discrete groups. Our goal will

also include the importance of these groups in Euclidean and hyperbolic geometry.
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Cartographers display maps on a positively curved or spherical surface in the

plane which distorts the image of the map. Similarly, in hyperbolic geometry we display

the negative curvature which in turn also distorts distances, areas, and shapes in two

dimensional plane. To visualize this we are going to look at couple of artists that show

case this cartography skill. M.C. Escher took his Angel-Devil drawing and displayed it

in Poincare Disk, see Figure 1.5 and Figure 1.6. Jos Leys took M.C. Escher’s famous

drawing of Angel-Devil drawing in Euclidean plane and displayed it in hyperbolic upper

half-plane model, see Figure 1.7.

Figure 1.5: M.C. Escher Original

Figure 1.6: Poincare Disk

Figure 1.7: Upper Half-Plane

If you notice that all the angels and devils in Figure 1.5 are exactly the same

size and shape. What is not so obvious is that all the angels and devils in Figure 1.6



6

and Figure 1.7 are also same size and shape. Visually it is obvious that they are not

but because we are trying to put something on two-dimensional plane which belongs

in hyperbolic plane the image gets distorted. By the end of this exposition we should

see why or how these tessellations are different from one plane to the other. See other

images on different geometric planes by Jos Leys that were inspired by M.C. Escher

http://www.josleys.com/show_gallery.php?galid=325.

My thesis will contain images of different discrete groups and links to online

resources that will allow the reader to participate in the learning of these unique groups.

The reader will get a deeper understanding of each group and its structure in both

Euclidean and hyperbolic geometry. We will look at special cases and what makes these

special cases unique. Most importantly we will look at the geometric and algebraic

properties of these groups.
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Chapter 2

Euclidean Geometry

Let us define and explain notation we will use in Euclidean geometry. I will

denote Euclidean plane as E2. We shall denote R the field of real numbers and denote

R2 as the coordinate pair (x, y) in E2. Given any two points in E2, we can calculate

distance between two points using the Pythagorean Theorem. The distance formula is:

d((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2 where d represents Euclidean length in

E2. It is also a well known fact that law of cosines is also the result of Pythagorean

Theorem and as a result law of cosines gives Side-Angle-Side property (SAS). SAS

states that if the corresponding sides, angles, and sides are congruent on two different

triangles then the two triangles must be congruent. If two triangles are congruent, then

all of the corresponding sides must be equal length and all of the corresponding angles

must be equal measure.

2.1 Euclidean Transformations

In this section I will analyze Euclidean transformations. I will focus on reflection,

translations and rotations. Why are they important? Since we are looking to achieve

beautiful tessellation images we need a way to duplicate a unique image multiple times.

Transformations or composition of specific transformations allows us to create patterns

and images we are looking for. We will also use upper case letter R for reflection, upper

case letter T for translation, and Rot for rotation. Now let us define these Euclidean

transformations starting with reflection.
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Definition 2.1. A reflection in a line k is a transformation of E2, denoted Rk, such

that if P is on k then P is fixed, and otherwise Rk maps P to P ′ such that k is the

perpendicular bisector of PP ′. The line k is called the mirror of the reflection.

Figure 2.1: Euclidean Reflection

As seen in Figure 2.1 given line k and a point P not on that line we can reflect

our point P across the line k, Rk. Draw any line k and choose any point not on that line.

Then draw a perpendicular line to line k passing through point P. Draw a circle C with

the radius r = d(Q,P ) where Q is the intersection of k and the dropped perpendicular.

Our reflected point will be on the perpendicular line through points P and Q with the

radius r = d(Q,P ) across the line k and on circle C. Therefore, when we reflect point P

across line k we get point P’.

Reflection is one of the ways we can move the image on the Euclidean plane to

create images of tessellations. Another transformation we use is translation.

Definition 2.2. A translation through a vector PQ is a transformation of a plane,

denoted T ~PQ such that if T ~PQ maps X to X ′, then the vector XX ′ ∼= PQ.
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Recall that by definition a vector has magnitude (length) and direction and

vectors are congruent when both their length and direction are equivalent.

A third transformation that can be used to move the image around the Euclidean

plane is rotation.

Definition 2.3. A rotation about a point C through an angle with measure θ, denoted

RC,θ, is a transformation of a plane where C is mapped to itself and for any point X

distinct from C if RC,θ maps X to X ′, then d(X ′, C) = d(X,C) and measure of angle

XCX ′ = θ. C is called the center of the rotation.

2.2 Compositions of Reflections

In Euclidean geometry, as well as in hyperbolic geometry, reflections are at the

core of all transformations. All of the transformations seem unique in their own way but

in fact reflections are considered “atomic” transformations because from reflections you

can build rotation and translation. In E2 composition of two reflections yields either a

rotation or translation. If we are given two arbitrary lines in E2, then those lines will

intersect or will be parallel to each other. These are the only possibilities in Euclidean

plane. Let us explore each one in more detail.

Case 1: Two Intersecting Lines

Proposition 2.4. If l1, l2 ⊂ E2 are two intersecting lines and the angle from l2 to l1 is

α, then Rl1 ◦Rl2 = RotF,2α.
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Figure 2.2: Two Intersecting Lines

Proof. Let us reflect point P across the line l2, we get point P ′. By Definition 2.1

d(PG) = d(GP ′). Since d(FG) = d(FG) and ∠PGF and ∠P ′GF are right angles by

Definition 2.1. Thus, 4PGF ∼= 4P ′GF by SAS and therefore ∠β1 ∼= ∠β2. Similarly,

after reflecting point P ′ across line l1 we can show that ∠δ1 ∼= ∠δ2. It is a well known fact

that in Euclidean geometry vertical angles are congruent. Note that in Figure 2.2 measure

of angel (m∠) α = m∠β2 +m∠δ1 and the m∠PFP ′′ = m∠β1 +m∠β2 +m∠δ1 +m∠δ2 =

m∠2α. Thus, Rl1 ◦Rl2 = RotF,2α.

Example 2.5. In Figure 2.3 we observe a composition of reflections on 4GFE which

yields Rx−axis ◦ Ry−axis = Rotorigin,180. Note that the two axis intersect at the origin at

the right angle. The resulting composition of reflections is rotated about the origin twice

the angle of intersection.
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Figure 2.3: Triangle Reflected about y-axis and x -axis

Case 2: Two Parallel Lines

Proposition 2.6. If l1, l2 ⊂ E2 are parallel lines and ~v is vector from l1 to l2, then

Rl2 ◦Rl1 = T2~v.

Figure 2.4: Two Parallel Lines
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Proof. Let ~v be the distance between line l1 and line l2 as seen in Figure 2.4. By Definition

2.1 d(PA) = d(AP ′). Similarly, d(P ′B) = d(BP ′′). Since the distance between two

parallel lines is d(AP ′) + d(P ′B) =⇒ ~v = d(AP ′) + d(P ′B). Furthermore, the distance

between point P and point P ′′ is d(PA) + d(AP ′) + d(P ′B) + d(BP ′′) =⇒ d(PP ′′) =

d(PA) + d(AP ′) + d(P ′B) + d(BP ′′) = 2~v. Thus, Rl2 ◦Rl1 = T2~v.

2.3 Isometries

We want to be certain that regardless of the transformation we are performing

on these images they do not change size or shape. Therefore we want to make sure that

these transformations are isometries.

Definition 2.7. A Euclidean isometry, or isometry of E2, is a function f : E2 → E2,

which preserves Euclidean distance, that is

d(f(P1), f(P2)) = d(P1, P2) for all P1, P2 ∈ E2.

Proposition 2.8. All reflections are isometries.

To prove that reflection is an isometry we need to show that it preserves distance.

In the Figure 2.5 point P and point Q are reflected about the the line l.

Figure 2.5: Proving Euclidean Reflection
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Proof. Let points P and point Q be ∈ E2 where point P ′ is the reflection across the line l

of P and point Q′ is the reflection across the line l of Q. Need to show d(PQ) = d(P ′Q′).

By Definition 2.1 we know that d(PA) = d(AP ′) and d(QB) = d(BQ′), furthermore,

∠QBA, ∠Q′BA, ∠PAB, and ∠P ′AB are right angles. Side d(AB) = d(AB) by reflexive

property, therefore, 4QBA ∼= 4Q′BA by SAS property. Since 4QBA ∼= 4Q′BA
this implies sides d(QA) = d(Q′A). Now all is left for us is to show is that ∠QAP ∼=
∠Q′AP ′. Recall that ∠PAB and ∠P ′AB are right angles thus m∠PAQ = 90◦−m∠BAQ.

Similarly m∠P ′AQ′ = 90◦−m∠BAQ′. Since ∠BAQ ∼= ∠BAQ′, then ∠PAQ ∼= ∠P ′AQ′.

Therefore,4PAQ ∼= 4P ′AQ′ by SAS property and PQ ∼= P ′Q′. Thus, d(PQ) = d(P ′Q′)

and since reflection preserved the distance, therefore, it is an isometry.

Proposition 2.9. The composition of isometries is an isometry.

Proof. By Definition 2.7 any isometry preserves length. Thus composition of isometries

also preserves length, therefore, composition of isometries is an isometry.

Theorem 2.10. Reflections, Translations, and Rotations are isometries in E2.

Proof. We need to show that each transformation preserves length. Reflections are isome-

tries by Proposition 2.8. To show translations are isometries we will combine our propo-

sitions. By Proposition 2.8 all reflections are isometries. By Proposition 2.6 we proved

that composition of reflections through parallel lines is a translation. By Proposition

2.9 we proved that composition of isometries are isometries, therefore, translations are

isometries. Similarly we can show rotations are isometries by combining our proposi-

tions. By Proposition 2.8 all reflections are isometries. By Proposition 2.4 composition

of reflections through intersecting lines is a rotation. By Proposition 2.9 we proved that

composition of reflections are isometries, therefore, rotations are also isometries.
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Chapter 3

Hyperbolic Geometry

We will be modeling hyperbolic geometry using the upper half-plane. Let C be

the complex plane. We will use well known notation for the real and imaginary parts of

z = x+ iy ∈ C, Re(z) = x, Im(z) = y.

Definition 3.1. The subset H2 = {z ∈ C | Im(z) > 0} of the complex plane C is called

the upper half-plane. Similarly, the upper half-plane can be represented in plane R2 as

a subset H2 = {x, y ∈ R2 : y > 0}.

We will define the length between two points in H2 using the hyperbolic metric.

Let I = [0, 1] and γ : I → H2 be a piecewise differentiable path γ = z(t) = x(t) + iy(t).

Then its hyperbolic length h(γ) is given by

h(γ) =

1∫
0

√(
dx

dt

)2

+

(
dy

dt

)2

y(t)
dt =

1∫
0

∣∣∣∣dzdt
∣∣∣∣

y(t)
dt. (3.1)

The hyperbolic distance between two points is the infimum of the lengths of all

paths between them. [Kat92]

Definition 3.2. The upper half-plane model of the hyperbolic plane is the upper half-

plane together with the hyperbolic length given by Equation 3.1.

Definition 3.3. A hyperbolic line in H2, also known as geodesic, is a distance mini-

mizing path from one point to the another.
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Theorem 3.4. The geodesics in H2 are semicircles and straight lines orthogonal to the

real axis R.

See proof of this theorem in [Kat92, Theorem 1.2.1].

Let us consider a fixed line XY on the x - axis of the Euclidean plane (see Figure

3.1). The x-axis itself is not in H2, but rather “the boundary at infinity” which we will

denote as ∂H2.

Figure 3.1: Upper Half-Plane

A line in upper half-plane is either a semicircle like EF with center located on

XY or the intersecting perpendicular line DG to XY . It is important to note that in

upper half-plane points C,A and B are not in H2, but in the boundary ∂H2. We will call

the points where a geodesics intersects the boundary its endpoints.

If you recall that in Euclidean geometry the “existence” and the “uniqueness” of

parallel lines make up the fifth postulate. However, in hyperbolic geometry parallel lines

do exist but they are not “unique”. There are two types of parallel lines in hyperbolic

plane, asymptotically parallel and ultraparallel. Asymptotically parallel lines are hyper-

bolic lines that share an endpoint. In the Figure 3.2 we are given line l and a point P

not on line in upper half-plane. The asymptotically parallel lines to line l are line n and

line m. Since line n shares a point at x - axis with line l and line m shares a point at

positive infinity with line l. Ultraparallel line are hyperbolic lines that do not share an
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endpoint. The ultraparallel lines to line l in Figure 3.2 are lines k and q. Both line are

parallel to line l and go through the point P and do no share any of the endpoints.

Figure 3.2: Asymptotic and Ultraparallel

Earlier in the introduction I said that one of the best ways to view hyperbolic

geometry is being a cartographer. I also showed a famous Angel-Devil drawing by M.C.

Escher in three different planes. It is important to note that hyperbolic disk “Poincaré

disk” model and upper half-plane model can be transferred from one plane to another via

a Möbius transformation from two inversions (reflections in the inversive plane). [Hit18]

Definition 3.5. The elements of the projective special linear group PSL(2,R) are the

Möbius transformations, rational functions from C to C of the form z 7→ az+b
cz+d with

ad− bc = 1 and a, b, c, d ∈ R.

3.1 Hyperbolic Transformations

In this section I will analyze hyperbolic transformations. Just like in the Eu-

clidean section, I will focus on reflections, translations, and rotations. Since we are look-

ing to achieve beautiful tessellations in hyperbolic plane we want to be able to replicate

isometric images in H2.

Definition 3.6. If c is a Euclidean circle with radius r and center O, then a circle

inversion through c is a transformation of the plane sending point A to the point A′

such that A′ lies on the ray from O to A, and satisfies d(OA) · d(OA′) = r2, where d

denotes Euclidean distance.

Observe that if O lies on the x-axis, circle inversions restrict to a transformation

of the upper half-plane.
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Definition 3.7. If l is a geodesic in H2, then hyperbolic reflection is the transformation

I(l) : H2 7−→ H2 such that if

1) l is vertical line orthogonal to the real axis, then it is equivalent to Euclidean

reflection through a vertical line.

2) l is a semicircle with its center on x-axis, then it is the circle inversion in

the upper half-plane.

3.2 Compositions of Reflections

In Euclidean geometry we had composition of two reflections yield rotations

when the lines intersected and yielded translations when the lines were parallel. In hy-

perbolic geometry we will take a similar approach as we did in Euclidean geometry.

In the compositions of reflections section in Euclidean geometry we reflected

about two intersecting lines or parallel lines. In hyperbolic geometry we can reflect about

two intersecting hyperbolic lines, two parallel lines that meet at infinity (asymptotically

parallel), and two parallel lines that do not share endpoints (ultraparallel).

Möbius transformations are classified algebraically by their trace. There are

three types of elements in PSL(2,R) = {z → T (z) =
az + b

cz + d
| ad − bc = 1} that are

recognized by the value of its trace: Tr(T ) = |a+ d|. If Tr(T ) < 2, T is called elliptic; if

Tr(T ) = 2, T is called parabolic; and if Tr(T ) > 2, T is called hyperbolic. [Kat92, 2.1].

We will show that each of these can be realized by the composition of two hyperbolic

reflections, elliptic case with two lines intersecting, parabolic case with two asymptotically

parallel lines, and hyperbolic case with ultraparallel lines.

My goal is to compare the algebraic approach to my geometric approach and
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to show that results are equivalent. Now let us look at each case from algebraic and

geometric perspective.

3.2.1 Elliptic

For the moment, let T be an elliptic transformation represented by the matrix

A. An elliptic transformation has a fixed point O ∈ H2. By analyzing the eigenvalues,

A is elliptic if and only if it is conjugate in SL(2,R) to a matrix B =

 cos θ sin θ

− sin θ cos θ

.

This happens when the trace value is Tr(T ) < 2. This Möbius transformation can be

represented by the conjugate PBP−1, where P−1 takes the fixed point O in H2 and maps

it to i in H2. Then matrix B “rotates” it by the angle θ about the new fixed point i.

Finally, matrix P maps the point O from i back to the original location in H2. This whole

algebraic process is the same thing as reflecting through the two intersecting geodesics.

Proposition 3.8. ([Kat92, 3.3.4]) Given elliptic T (z), there exists l1, l2 which intersect

such that I(l2) ◦ I(l1) = T .

I will now prove the converse of this proposition. The composition of reflections

represented by I(l2) ◦ I(l1) is not a matrix but it is a combination of Möbius transfor-

mations that can be represented by a matrix. I will define these transformations as T .

Thus I(l2) ◦ I(l1) would represent some Möbius transformation T (z) = az+b
cz+d which then

can be written as a matrix A =

a b

c d

.

Proposition 3.9. Given two hyperbolic lines l1, l2 which intersect in H2, the composition

I(l2) ◦ I(l1) is elliptic. Furthermore, if l1 = ((x1, 0), r1), l2 = ((x2, 0), r2), and d =

|x2 − x1|, then I(l2) ◦ I(l1) can be represented by PBP−1, P−1 =

1 −x
0 y

 where x =

r22 − r21 + x21 − x22
2x1 − 2x2

and y =
√
r21 − (x− x1)2. Furthermore, B =

 cos θ sin θ

− sin θ cos θ

 where

θ = arccos
(
r21+r

2
2−d2

2·r1·r2

)
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Figure 3.3: Elliptic Transformation

The elliptic transformation is a composition of reflections through two circles.

We can see that point E is the initial point which was reflected through the circle of

center C1 and a radius of r1. That reflection was the result of E′. Now if we take E′ and

reflect that point through circle of center C2 and a radius of r2 the result will be point E′′.

Note that regardless where we choose the point, the composition of these reflections will

always be a “ hyperbolic rotation” about the fixed point where the two circles intersect.

Proof. To calculate the point of intersection we will have to look at equation of the circles.

Since both circles will lie on x-axis we can use the following two arbitrary circle equation:

(x − x1)2 + y2 = r21 and (x − x2)2 + y2 = r22. By expanding both equations and solving

for x we get the following:

x2 − 2x1x+ x21 + y2 = r21

x2 − 2x2x+ x22 + y2 = r22

−x2 + 2x1x− x21 − y2 = −r21
2x1x− 2x2x+ x22 − x21 = r22 − r21
x(2x1 − 2x2) = r22 − r21 + x21 − x22

x =
r22 − r21 + x21 − x22

2x1 − 2x2
. (3.2)
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After you find the value of x, use the following equation to find the value of y.

y = ±
√
r21 − (x− x1)2 (3.3)

Since our focus is only on the upper half-plane we can ignore the negative value

of y and just use the positive value of y to find the exact fixed point (x, y).

Since we now have our fixed point now we need to find our angle of intersection

by the use of Law of Cosine, see Figure 3.4.

Figure 3.4: Elliptic

Note segment AB is perpendicular to tangent line t2 and segment GB is per-

pendicular to tangent line t1. Therefore, ∠ABC and ∠GBE are right angles. Since

m∠θ + m∠GBC = 90◦ and m∠β + m∠GBC = 90◦ then ∠θ ∼= ∠β. Law of Cosine

formula, cos θ =
r21+r

2
2−d2

2·r1·r2 , gives us the exact angle of intersection between two geodesics.

Finding the Möbius transformation that takes our fixed point to i gives the matrix needed

to represent our composition of hyperbolic reflections. Thus, I(l2)◦I(l1) which represents

our PBP−1 = T (z) is as follows: B =

 cos θ sin θ

− sin θ cos θ

 and P−1 =

1 −x
0 y

.

I created a manipulative of this proof in GeoGebra:

https://www.geogebra.org/m/wsnwwbt2
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Example 3.10. Given C1 is centered at (−3, 0) with radius 3 and C2 is centered at

(−1, 0) with radius 3, find the matrix that will represent the composition of hyperbolic

reflections through these Euclidean circles.

First let us find the x value by referring to the equation (3.2) from above.

Substitute appropriate values from our example into the equation (3.2). We get the

following:

x =
32 − 32 + (−3)2 − (−1)2

2(−3)− 2(−1)
x = −2

Now let us use equation (3.3) to calculate our y value. Using substitution we

get the following:

y = ±
√

32 − (−2− (−3))2

y = 2
√

2

Since we are only working in the Upper Half-Plane we can ignore the negative

value of y. Therefore, your fixed point will be at (−2, 2
√

2).

To calculate the angle of intersection let us use Law of Cosine.

cos θ =
r21+r

2
2−d2

2·r1·r2

cos θ = 32+32−22
2·3·3

θ = arccos
(
32+32−22

2·3·3

)
θ = arccos

(
7
9

)
θ ≈ 38.94◦

TheMöbius transformation that takes the fixed point to i is

1 −x
0 y

 which rep-

resents our P−1. Now use substitution to compute PBP−1. Therefore, P−1 =

1 2

0 2
√

2

,

B ≈

 cos(38.94) sin(38.94)

− sin(38.94) cos(38.94)

 and P =

1 −1√
2

0 1
2
√
2

. Thus PBP−1 ≈

 1.22 2.67

−0.22 0.33


which implies that the Möbius transformation that represents the composition of hyper-

bolic reflections through the given circles is represented by T (z) ≈ 1.22·z+2.67
−0.22·z+0.33 .
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Using GeoGebra I was able to create this example and show you that our cal-

culations are correct (see Figure 3.5). GeoGebra link for Example 3.10

https://www.geogebra.org/m/efpgncem.

Figure 3.5: Example 3.10

3.2.2 Parabolic

Now, let T be a parabolic transformation represented by the matrix A. A

parabolic transformation has one fixed point in the boundary ∂H2. By analyzing the

eigenvalues, A is parabolic if and only if it conjugate over R2, to the matrix B =

1 1

0 1

.

This happens when the trace value is Tr(T ) = 2. This Möbius transformation that can

be represented by the conjugate PBP−1, where P−1 takes the fixed point and maps it

to infinity. Then matrix B translates everything one unit to the right. Finally, matrix P

maps the fixed point back to its original location. This whole process is the same thing

as reflecting through the two asymptotically parallel geodesics.

Proposition 3.11. ([Kat92, 3.3.4]) Given parabolic T (z), there exists l1, l2 which are

asymptotically parallel such that I(l2) ◦ I(l1) = T .

I will now prove the converse of this proposition.

Proposition 3.12. Given two hyperbolic lines l1, l2, which intersect in the boundary

∂H2, the composition I(l2) ◦ I(l1) is parabolic. Furthermore, if l1 = ((x1, 0), r1), and
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l2 = ((x2, 0), r2), then I(l2) ◦ I(l1) can be represented by PBP−1, P−1 =

0 r2

1 −q

 where

r =
√

0.5·|q−z2|·|q−z1|
|q−z1|+|q−z2| , q = x2 + r2, z1 = x1 + r1, and z2 = x2 − r2. Furthermore,

B =

1 1

0 1

.

In parabolic transformation the two circles will be asymptotically parallel and

we will have a single fixed points on the x-axis. Let us look at what this diagram looks

like in upper half-plane.

Figure 3.6: Parabolic Transformation

As seen in the Figure 3.6 the parabolic transformation is a composition of re-

flections through two circles. We can see that our initial point K which was reflected

through the first circle, call it l1, results in point K ′. This is represented by the following

notation, Il1(K) = K ′. Now let us reflect K ′ through the second circle call it l2 which

will result in K ′′ and is represented by the following notation, Il2 ◦ Il1(K) = K ′′.

Proof. We can calculate the fixed point (q, 0) easily. Since you are given the centers of

your circles and the radii of both circles we can use that to find the fixed point. Given

l1 = ((x1, 0), r1) and l2 = ((x2, 0), r2), then q = x2 + r2 and our fixed point is going to be

(q, 0).

To make sure that my matrix P−1AP transforms everything exactly one unit to

the right, we need to apply our knowledge about inversions through a circle. It is a well

known fact that hyperbolic reflections send circles to circles or vertical lines. As seen in
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Figure 3.6 the two vertical lines that are passing through (z̃2, 0) and (z̃1, 0) are inversions

through a circle centered at (q, 0) and a radius of r. Now we need to make sure that

these to vertical lines are exactly 0.5 units apart because as we know from Proposition

2.6, reflection through two parallel will yield to twice the distance between the two lines.

Since I want to make sure that my matrix B transforms everything only one unit to the

right, then I need the distance between two vertical lines to be exactly 0.5 units apart.

Thus, |z̃1 − z̃2| = 0.5. Using Definition 3.6 we know the following:

|q − z̃1| · |q − z1| = r2

|q − z̃2| · |q − z2| = r2

Since |z̃1 − z̃2| = 0.5 this implies that we have two equations: z̃1 − z̃2 = 0.5

and z̃1 − z̃2 = −0.5. Without loss of generality, we will define the positive solution as

the circle on the right side. Thus, our z̃1 = 0.5 + z̃2 and using substitution we get the

following systems of equations:

(q − 0.5)− z̃2 = −r2
|q−z1|

−q + z̃2 = −r2
|q−z2|

Use elimination and then solve for r to get the following equation:

r =

√
0.5 · |q − z2| · |q − z1|
|q − z1|+ |q − z2|

(3.4)

This allows us to find the required Möbius transformation which represents our

composition of hyperbolic reflections. Thus, I(l2) ◦ I(l1) which represents our PBP−1 =

T (z) is as follows: B =

1 1

0 1

 and P−1 =

0 r2

1 −q



I created a manipulative of this proof in GeoGebra:

https://www.geogebra.org/m/a25skhfe

Example 3.13. Given C1 is centered at (−4, 0) with radius 3 and C2 is centered at (1, 0)

with radius 2, find the matrix that will represent the composition of hyperbolic reflections

through these Euclidean circles.
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First using Proposition 3.12 we need to find the following values: q, z1, z2, and

r.

Thus,

q = x2 + r2 = −4 + 3 = −1,

z1 = x1 + r1 = 1 + 2 = 3,

z2 = x2 − r2 = −4− 3 = −7,

r =
√

0.5·|q−z2|·|q−z1|
|q−z1|+|q−z2| =

√
0.5·|−1−(−7)|·|−1−3|
|−1−3|+|−1−(−7)| ≈ 1.1

This implies that the Möbius transformation that takes the fixed point to in-

finity is

0 r2

1 −q

 which represents our P−1. Now use substitution to compute PBP−1.

Therefore, P−1 ≈

0 1.2

1 1

, B =

1 1

0 1

, and P ≈

−0.83 1

.83 0

. Thus. PBP−1 ≈0.17 −0.83

0.83 1.83

 which implies that the Möbius transformation that represents the com-

position of hyperbolic reflections through the given circles is T (z) ≈ 0.17·z−0.83
0.83·z+1.83 .

Using GeoGebra I was able to create this example and show that our calculations

are correct (see Figure 3.6). GeoGebra link for Example 3.13

https://www.geogebra.org/m/rtzx9zzm.

3.2.3 Hyperbolic

Now let T be a hyperbolic transformation represented by the matrix A. A

hyperbolic transformation has two fixed points in ∂H2, we call the two fixed points the

source and the sink. By analyzing the eigenvalues, A is hyperbolic transformation if and

only if it is diagonalizable over R2, or conjugate in SL(2,R) to a matrix B =

λ 0

0
1

λ

,

λ 6= 1. This happens when the trace value is Tr(T ) > 2. This Möbius transformation

can be represented by the conjugate PBP−1, where P−1 takes the source and maps it to

zero and takes the sink and maps it to infinity. Then matrix B will dilate it by a factor

of λ2 along the y-axis in the direction from zero to infinity. Finally, matrix P maps the

two fixed points back to the original locations in H2. This again is the same thing as

reflecting through the two ultraparallel geodesics.
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Proposition 3.14. ([Kat92, 3.3.4]) Given hyperbolic T (z), there exists l1, l2 which are

ultraparallel such that I(l2) ◦ I(l1) = T .

I will now prove the converse of this proposition.

Proposition 3.15. Given two ultraparallel hyperbolic lines l1 and l2, the composition

I(l2) ◦ I(l1) is hyperbolic. Furthermore, if l1 = ((x1, 0), r1), l2 = ((x2, 0), r2), and d =

|x2 − x1|, then I(l2) ◦ I(l1) can be represented by PBP−1, P =

x1 + (+x) x1 + (−x)

1 1


where +x =

−(r22 − r21 − d2) +
√

(r22 − r21 − d2)2 − 4(d)(dr21)

2 · d
and

−x =
−(r22 − r21 − d2)−

√
(r22 − r21 − d2)2 − 4(d)(dr21)

2 · d
. Furthermore, B =

λ 0

0
1

λ

 where

λ 6= 1 and λ = e
cosh−1

(
d2−r21−r22
2·r1·r2

)
.

The hyperbolic transformation is a composition of reflections through two par-

allel lines which do not share endpoints, see Figure 3.7.

Figure 3.7: Hyperbolic Transformation

We can see that our initial point E which was reflected through the first circle,
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call it C1, results in point E′. This is represented by the following notation, Il1(E) = E′.

Now let us reflect E′ through the second circle call it C2 which will result in E′′ and is

represented by the following notation, Il2 ◦ Il1(E) = E′′.

Proof. Let x be a distance away from the edge of the circle C1 and now let us invert that

point through the first circle. Using the equation for inversion we get the following,

x̃ · x = r21 ⇒ x̃ =
r21
x

.

Similarly, we can calculate the second inversion using the same process and

setting it to x will yield the following result,

d− r22
y

= x⇒ d− r22

d− r21
x

= x.

Now solve for x,

d− r22
dx− r21

x

= x

d− r22 · x
dx− r21

= x

d− x =
r22 · x
dx− r21

d2 · x− d · r21 − d · x2 + x · r21 = r22 · x
−dx2 + d2x+ r21x− r22x− dr21 = 0

dx2 + (r22 − r21 − d2)x+ dr21 = 0. (3.5)

x =
−(r22 − r21 − d2)±

√
(r22 − r21 − d2)2 − 4(d)(dr21)

2 · d
(3.6)

Since this is a quadratic, we will get two values of x using quadratic formula the

+x and the −x. Then (x1 + (+x), 0) and (x1 + (−x), 0) are your two fixed points on the

x-axis. These two x values give you P =

x1 + (+x) x1 + (−x)

1 1

.
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To calculate λ for our matrix B =

λ 0

0
1

λ

, we need to observe two ultraparallel

lines and two fixed points with a geodesics going through them, see Figure 3.8.

Figure 3.8: Lambda

Note that we need length between two geodesics to find λ. Using Darboux

Product which states the following:

2 · r1 · r2 cosh l = d2 − r21 − r22, (3.7)

we obtain l = cosh−1
(
d2−r21−r22
2·r1·r2

)
and therefore

λ = e
cosh−1

(
d2−r21−r22
2·r1·r2

)
. (3.8)

Since we have matrix P =

x1 + (+x) x1 + (−x)

1 1

 and matrix B =

λ 0

0
1

λ


we can calculate matrix P using matrix P−1. Therefore, the composition of reflections

through two non intersecting circles whose centers are on x-axis can be represented by

the Möbius transformation PBP−1.

I created a manipulative of this proof in GeoGebra:

https://www.geogebra.org/m/mqvdwjwb

Example 3.16. Given C1 is centered at (−3, 0) with radius 2 and C2 is centered at (2, 0)

with radius 2, find the matrix that will represent the composition of hyperbolic reflections

through these Euclidean circles.
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To start this example let us find the source and the sink using Equation 3.5 or

Equation 3.6. I will be using Equation 3.5 to finding my two x values. Using Equation

3.5 we get:

5x2 + (4− 4− 25)x+ 20 = 0

5x2 − 25x+ 20 = 0

(x− 4)(x− 1) = 0

+x = 4 and −x = 1.

This implies that P =

−3 + 4 −3 + 1

1 1

 =

1 −2

1 1

. To find matrix B we

first need to find λ using Equation 3.8. This yields the following:

λ = e
cosh−1

(
52−22−22

2·2·2

)
λ = 4.

Therefore, matrix B =

4 0

0
1

4

 and now we can compute our algebraic calcula-

tion of PBP−1. The result is

 1.5 2.5

1.25 2.75

 which implies that our Möbius transformation

is T (z) ≈ 1.5·z+2.5
1.25·z+2.75 .

Using GeoGebra I was able to create this example and show you that our cal-

culations are correct. GeoGebra link for Example 3.16.

https://www.geogebra.org/m/macfevmw

3.3 Isometries

In this section we want to make sure that regardless of which transformation we

perform, the image does not change its shape or size.

Definition 3.17. A transformation of H2 onto itself is called an isometry if it preserves

the hyperbolic distance on H2.

Just like in Euclidean geometry we showed that reflections are isometries which

preserves length, we need to do the same in hyperbolic geometry as well. We want to

show that hyperbolic reflection or inversions preserve length as well. This will lead into

justifying that composition of reflections will preserve length.
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Proposition 3.18. Hyperbolic reflections in geodesics are isometries.

Figure 3.9: Inversion

Proof. The goal of this proof is to show that hyperbolic reflection preserve length. In

upper half-plane our geodesics can be a semicircle or a vertical line. Let us assume we

have some curve C(t) = (x(t), y(t)), a < t < b, and we reflected that function about a

given geodesic and get C̃(t) = (x̃(t), ỹ(t)), as seen in Figure 3.9. Remember that we

defined our hyperbolic length to be
∫ √(x′(t))2+(y′(t))2

y(t) dt in Equation 3.1 and we need to

show that ∫ b
a

√
(x′(t))2+(y′(t))2

y(t) dt =
∫ b
a

√
(x̃′(t))2+(ỹ′(t))2

ỹ(t) dt.
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Figure 3.10: Similar Triangles

Let P be arbitrary point in C(t) and P ′ be the reflected point in C̃(t), as seen

in Figure 3.10. The two points and the the center point of the circle we are reflecting

about create two similar triangles. Now using Pythagorean Theorem and Definition 3.1

we get our first equation to be:√
(x1 − x0)2 + y21 ·

√
(x2 − x0)2 + y22 = r2.

Knowing that P and P ′ have to be on the same line, we can use slope formula

to get our second equation to be:

y1−y0
x1−x0 = y2−y0

x2−x0 =⇒ y2 = x2−x0
x1−x0 · y1.

Now we have two unknowns and two equations and we can solve for both un-

knowns, x2 and y2. This results in the following:

x2 = r2(x1−x0)
(x1−x0)2+(y1)2

+ x0

y2 = r2(y1)
(x1−x0)2+(y1)2

.

Let x = (x1 − x0) using substitution. This gives us two new tilde values for our

integral.

x̃(t) = r2(x(t))
(x(t))2+(y(t))2

+ x0

ỹ(t) = r2(y(t))
(x(t))2+(y(t))2

Now let us observe the squared derivative of x̃(t) and ỹ(t):
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(x̃′(t))2 =
−4r4x(t)y(t)3x′(t)y′(t)+4r4x(t)3y(t)x′(t)y′(t)+r4x(t)4x′(t)2+r4y(t)4x′(t)2−2r4x(t)2y(t)2x′(t)2+4r4x(t)2y(t)2y′(t)2

(x(t)2+y(t)2)4

(ỹ′(t))2 =
4r4x(t)y(t)3x′(t)y′(t)−4r4x(t)3y(t)x′(t)y′(t)+4r4x(t)2y(t)2x′(t)2+r4x(t)4y′(t)2+r4y(t)4y′(t)2−2r4x(t)2y(t)2y′(t)2

(x(t)2+y(t)2)4

Now use substitution and then simplify to get the following:∫ b
a

√
(x̃′(t))2+(ỹ′(t))2

ỹ(t) dt

=
∫ b
a

√
2x(t)2y(t)2x′(t)2+2x(t)2y(t)2y′(t)2+x(t)4x′(t)2+y(t)4x′(t)2+x(t)4y′(t)2+y(t)4y′(t)2

(x(t)2+y(t)2)(y(t))

Continue to simplify even further, we get:

=
∫ b
a

√
(x(t)2+y(t)2)2(x′(t)2+y′(t)2)

(x(t)2+y(t)2)(y(t))

=
∫ b
a

(x(t)2+y(t)2)
√

(x′(t)2+y′(t)2)

(x(t)2+y(t)2)(y(t))

=
∫ b
a

√
(x′(t)2+y′(t)2)

(y(t))

Thus, ∫ b
a

√
(x′(t))2+(y′(t))2

y(t) dt =
∫ b
a

√
(x̃′(t))2+(ỹ′(t))2

ỹ(t) dt, as required.

Proposition 3.19. Elliptic, Parabolic, and Hyperbolic transformations are isometries in

H2.

Proof. By Definition 3.17 any isometry preserves length. Thus composition of isometries

also preserves length, therefore, composition of isometries is an isometry.

Theorem 3.20. Elliptic and Hyperbolic transformations are an isometry in H2.

Proof. We know that hyperbolic reflections are isometries by Proposition 3.18. Note

that one reflections is orientation reversing, however, two reflections will be orientation

preserving. By Proposition 3.19 we know that composition of hyperbolic reflections are

isometries, therefore, elleptic and hyperbolic transformations are isometries in H2.
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Chapter 4

Triangle Reflection Groups

In this section I would like to focus on triangles that when reflected will form

beautiful tessellations.

Definition 4.1. A hyperbolic triangle reflection group is a discrete group which is

generated by the reflections through the walls of 4(p, q, r).

Let X denote a hyperbolic triangle with interior angles π
p , π

q , and π
r . Since the

sides of a triangle always meet (possibly at infinity), the reflection group they generate

come in one of the two types. First, the (full) reflection group 4(p, q, r) is generated

by the reflections through the walls of X(p, q, r). The fact that the angles of X are

submultiples of π guarantees that 4(p, q, r) acts properly discontinuously on H2. Second,

the subset 4+(p, q, r) of orientation preserving transformation is an index 2 subgroup. In

Figure 4.1 we can see that blue triangles are orientation preserving and the red triangles

will be the filled space by orientation reversing triangles.

A triangle group is discrete if and only if the angles of the triangle are submulti-

ples of π, where π
p and p ∈ N [Hit18]. Note that X lies in H2 precisely when 1

p + 1
q + 1

r < 1

since the sum of the interior angles in the hyperbolic triangle is strictly less than π.

We have proven that composition of reflections through two intersecting Eu-

clidean and hyperbolic lines give us “rotation” about the intersection point. We have

also proven that composition of reflections through two Euclidean parallel lines and two

asymptotically parallel lines in H2 are just “translation” of twice the distance between

the two parallel lines.

In my introduction I mention that there are three unique triangles that will
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create tessellations in the Euclidean plane. The three triangles are: (3, 3, 3) equiangular

triangle, (2, 4, 4) right isosceles triangle, and (2, 3, 6) right scalene triangle. These three

unique triangles are the only triangles that can be used to create tessellations, as seen in

Figure 4.1.

Figure 4.1: Euclidean Reflection Triangles

The reason Euclidean geometry has only three unique triangles that can make

tessellations is because the sum of the Euclidean triangle must add up to 180◦. Thus,

there are only so many possibilities for that to happen. All three angles on the triangle

have to be a quotient of π. This needs to happen because all three angles have to create

not overlapping tilling for it to create discrete group. Furthermore, it has to satisfy the

following equation: 1
p + 1

q + 1
r = 1 since the sum of the interior angles of Euclidean triangle

must equal to 180◦.

This of course does not apply to hyperbolic geometry which allows us to find

more unique triangles in that produce beautiful tessellations. My goal with hyperbolic

triangles is to analyze which circles can produce these unique triangles where I can create

tessellations in H2.

I introduced three types of elements in PSL(2,R) in 3.2.

1. Elliptic, where we learned that composition of reflections through intersecting lines

is like a rotation around a point within H2.

2. Parabolic, where we learned that composition of reflections through asymptotically



35

parallel lines is like rotation around a point on ∂H2.

3. Hyperbolic, where we learned that composition of reflections through ultraparallel

lines is like transformation along a geodesic in H2.

We have also shown that all of these can be represented by a Möbius transformation.

Therefore, I would like to observe what types of Möbius transformations can produce

tessellations given circles and their radii.

Hyperbolic triangle groups are generated by elliptic and/or parabolic transfor-

mations. Since I would like to analyze these discrete groups and also provide a Möbius

transformation for their generators, I will distinguish two types of triangles in H2. Let

me call the first types of triangles ideal triangles and the second types of triangles I will

call elliptic triangles.

4.1 Ideal Triangles

An ideal triangle in H2 is a triangle with at least one vertex on ∂H2, see Figure

4.2 and Figure 4.3.

Figure 4.2: Ideal Triangle Figure 4.3: Transformed Ideal Triangle

Note that any ideal triangle in Figure 4.2 can always be transformed into a tri-

angle in Figure 4.3. To map ideal triangle from Figure 4.2 to Figure 4.3 you invert vertical

lines through the unit circle and you get what you see in Figure 4.3. The transformed

ideal triangle has two angles that can be rotated using elliptic or parabolic transformation

and the third angle can be translated using parabolic transformation.
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Proposition 4.2. If l is the geodesic from −1 to +1 and you are constructing a4+(p, q,∞),

then the equation of the left vertical line of an ideal triangle is xL = − cos
(
π
p

)
where

p ≥ 2 and p is an integer and the equation of the right vertical line of an ideal triangle is

xR = cos
(
π
q

)
where q ≥ 2 and q is an integer, as seen in Figure 4.2.

Proof. We are given unit circle therefore we can use trigonometry to find values of xL and

xR, see Figure 4.4. I need to find the equations of these lines so I can later invert them

through the unit circle and have three semicircles. To find equations of those vertical

lines all is needed is the x-values for those points.

Figure 4.4: Finding xR

Using trigonometry we know that cosine is equal to adjacent side divided by the

hypotenuse, therefore, cos(θ) =
(
xR
1

)
where θ = π

q where q ≥ 2 and q is an integer. Thus,

xR = cos
(
π
q

)
. Similarly, the value of xL = − cos

(
π
p

)
where p ≥ 2 and p is an integer.

Proposition 4.3. If given 4+(p, q,∞) with vertical lines xL and xR from Proposition

4.2, these vertical lines can be inverted through unit circle and produce a left and a right

circles. Left circle will be centered at
(

1
2·xL , 0

)
with the radius rL =

∣∣∣ 1
2·xL

∣∣∣ and the right

circle will be centered at
(

1
2·xR , 0

)
with the radius rR =

∣∣∣ 1
2·xR

∣∣∣.
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Proof. Assume we have the values for xL and xR from Proposition 4.2. We will focus

on finding the center and the radius of the right circle first and same approach can be

applied to find the left circle. In the Figure 4.5 we want to know the radius and the center

of the blue circle to the right of the unit circle.

Figure 4.5: Finding Inverted Circle

Using Definition 3.6 we can calculate point x′R, which results in x′R = r2

xR
. Since

r will always equal 1 on a unit circle we get that x′R = 1
xR

which is the diameter of our

right circle and dividing x′R by 2 will give us the x value of the center of our circle and the

radius. Therefore, the inverted circle we are looking for will have a center at
(

1
2·xR , 0

)
and the radius rR =

∣∣∣ 1
2·xR

∣∣∣.
Example 4.4. Given an ideal triangle whose p = 6 and q = 3, find all three matrices

that will generate the triangle group 4+(3, 6,∞).

Since we are given p = 6 and q = 3 we know that the angles of this triangle are

0◦, 60◦, and 30◦. Apply Proposition 4.2 and Proposition 4.3 to find the inverted circles.

This will give you the centers and the radius of each inverted circle through the unit circle.

Now apply Proposition 3.9 to find the Möbius transformation that will generate triangle

groups about the 30◦ angle and the 60◦ angle. Furthermore, let us apply Proposition 3.12

to find the generating triangle group about the infinity point. The three matrices that

will generate the triangle group

4+(3, 6,∞) =

〈√3 1

−1 0

 ,
 0 1

−1 1

 ,
 1 0
√

3 + 1 1

〉.

GeoGebra link for additional examples.

https://www.geogebra.org/m/wsvs3aba
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Here are some images of these types of hyperbolic triangles reflections courtesy

of Dr. Meyer.

Figure 4.6: (3,6,Infinity)

4.2 Elliptic Triangles

An elliptic triangle in H2 is a triangle with all three angles being intersecting

geodesics, see Figure 4.7.

Figure 4.7: Elliptic Triangles

This implies that we can find three matrices that will generate the triangle

groups 4+(p, q, r) given the centers and the radii of three circles. This paper will not
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cover different generating formulas but rather focus on one specific triangle group, which

is 4+(2, 6, 6).

Example 4.5. Given an elliptic triangle whose p = 2, q = 6, and r = 6 find all three

matrices that will generate the triangle group 4+(2, 6, 6).

To find this elliptic triangle we will use GeoGebra to figure out the exact centers

and radii of all three circles that create it. Starting this problem I was not sure where to

begin, so we will start simple. Let the first circle C1 be centered at (1, 0) and a radius of

r = 1, moreover, all three circles will have a radius of r = 1.

To find the centers of the other two circles let us use Proposition 3.9 and the

equation θ = arccos
(
r21+r

2
2−d2

2·r1·r2

)
which is equivalent to

cos(θ) =

(
r21 + r22 − d2

2 · r1 · r2

)
(4.1)

where d = |x2 − x1|. We know that our theta must be divisible by an integer, therefore,

we know what theta is. Since we decided that all circles will have a radius of r = 1, then

the only missing variable in the equation is d. We can calculate d given different thetas.

Since we are looking for 4(2, 6, 6) that means our theta will be θ1 = 90◦, θ2 = 30◦, and

θ3 = 30◦. Using special right triangles and a unit circle we can calculate that cos(90◦) = 0

and cos(30◦) =
√
3
2 . To calculate the center of the second circle C2, use Equation 4.1 to

find d and then use d = |x2 − x1| to find x2. This yields that the center of C2 is(
−
√

2 +
√

3 + 1, 0
)

. Similarly, we can calculate that the center of the third circle C3

which is
(
−
√

2 + 1, 0
)
, as seen in Figure 4.8.

Figure 4.8: 4(2, 6, 6)
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See GeoGebra link at,

urlhttps://www.geogebra.org/m/axshgpeg

Now that we know the exact centers and radii of our three circles we can calculate

the three matrices that will generate the triangle group 4+(2, 6, 6). Apply Proposition

3.9 to find the Möbius transformation that will generate triangles groups about the 90◦

angle, 30◦ angle, and 30◦ angle. The three matrices that will generate the triangle group

4+(2, 6, 6) =

〈

1 −
√

2 −
√

2(−2 +
√

2)

−
√

2 −1 +
√

2

 ,


1 +
√

3 −
√

2 +
√

3 −2 +
√

6 −
√

5 − 2
√

6

−
√

2 +
√

3 −1 +

√
2 +
√

3

 ,


−1 +

√
3 −

√
2 −
√

3 2 +
√

6 −
√

5 + 2
√

6

−
√

2 −
√

3 1 +

√
2 −
√

3


〉
.
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Chapter 5

Conclusion

In this thesis we have analyzed reflections in Euclidean plane and hyperbolic

upper half-plane. More specifically we focused on triangle reflection groups that generated

tessellation. We observed some of many far reaching implications of the failure of the

fifth postulate for hyperbolic geometry.

We have taken the time to show the equivalence of both algebraic and geometric

approaches. One goal of this project was to show the geometric approach which is not

well published as the algebraic approach. This allowed us to see the visual mathematics

behind the algebraic approach in finding fundamental domain.

In this thesis we were able to find the matrix of Möbius transformation that

would represent the composition of reflections through two hyperbolic lines. We also

analyzed and proved that composition of reflections in both Euclidean and hyperbolic ge-

ometry give something like rotation or translation. In Euclidean and hyperbolic geometry

if two lines intersect and you reflect an image about those two lines it will be a rotation

around the intersection point. We learned that in Euclidean geometry you can only have

one unique parallel line through a point outside the given line. We then proved that

composition of reflections through two parallel lines is a translation in Euclidean plane.

However, in hyperbolic geometry we learned that there are infinitely many parallel lines

and more specifically we can have asymptotic or ultraparallel lines. We then showed that

composition of reflections through asymptotically parallel lines is hyperbolic translation

and composition of reflections through ultraparallel lines is hyperbolic dilation.

This project was an eyeopener for me because I have never studied hyperbolic
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geometry in depth. Seeing something in a different dimension allows you to see math-

ematics through a different lens. This project allowed my to see that composition of

reflections through two geodesics are equivalent to Möbius transformation. It connected

the geometry and the algebra together in one senescence.

The next step in this project is to find exact geodesics that will generate the

reflection groups we are looking for.



43

Bibliography

[Hit18] Michel P. Hitchman. Geometry with an Introduction to Cosmic Topology. Linfield

College, 2018.

[Kat92] Svetlana Katok. Fuchsian Groups. The University of Chicago Press, 1992.

[Tha08] Rajesh Thakur. Nikolai Lobachevsky. A Division of Prabhat Prakashan, 2008.


	Hyperbolic Triangle Groups
	Recommended Citation

	tmp.1594761319.pdf.0K7Ym

