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- S ~ ABSTRACT

: The purpose of this paper is toldeﬁne functions on a 3-djmensi(;nal space and
study the properties of these functions, which has béen done for 1 and 2-dimensional
space. The 3-dimensional space used is subspace of the 4-dimensional quatémionic space.
Much of the work done parallels complex analysis. Becéuse of the identities discovered,
further study ito (iuatemionic analysis is likely. Also the results allow for many

applications in the area of physics.
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CHAPTER 1

Ny Introduction

Complex matrices of the form(_zw v;) are called quaternions. The quarternions

form a 4-dimensional vector space over the real numbers. I will refer to this set of

matrices as H and it will be written H ="{aI+bz_"+c]+dI;a,b,c,d € R} where
1 0)=+-_(i 0)-= 0 1Y7_(0 i) . .
I=(0 ’1) ! =((l) i) J =(_1 0) k =(i 6) The pulpqse of this paper is to study

the subset of H where d=0. This subset forms a 3-dimensional vector space over the real

numbers. I will refer to this subset as J and it will be written J = {a+bi fi—c] a,b,c € R}.
. I will be discussing the algebraic and functional properties of these 3-dimensional

quaternions. Much of what I have done paralléls the work done in 2-dimensional complex

analysis.

The first part of this paper introduces the quaternions and their algebraic

- properties. The set H forms an algebra over the reals. Next, i)ropg:ﬂ:ies of the subset J
are examined. It is shown that the set J is not closed under multiplication. Integral
powers are closed but division in general is not. The Jordan product will be used on the
set J givingus a J ofdan algebra. Some of the basic properties of the J ofdan product will

be demonstrated.

~ Once a Jordan algebra is established, elementary functions with domain and



codomain J are defined. These functions are defined as i)ower series with real
coeﬂicienté. -‘ The exponential ﬁmctilon isan example c;f an elementafy function and will be
used throughout this paper to demonstrate various properﬁes or formulas of elementary
ﬁlncﬁon;. A discuss\ion. of the convergence of such functions will bé done which- parallels
the complex analysis version showing the convergence of complex analytic functions.
This w111 be fpﬂdwed by an explanation of why the formal derivative of an elenrientary
 function could not be defined in the same manner a§ ié done for cémplex and _real
fu.nétionvs.

' I‘his leads to the next part of the paper. Since the formal dérivative was not
attainable, a formuia ;‘élating the adjoint matn'); and the Jacobian of an elementa'fy function
was 'created and pfoven. Again, the exponentiai is used to demonstrate the discoveries
that were made in this section of the paper. .

Next, some applications of these elementary functions will be explored. The:
divergence and curl of the exponential function as well as the general elementary function
will be calculated. Stokes’s thec;rem and the Divergence theorem will then be applied.
The divc;,rgence and curl have applications in physics.

This topic was chosen because it was possible to create functions with domaiﬁ
and Acodomain‘ J_, these functions being power series. This made it éossible to do studies
similar to real and complex analysis. It is hoped that the results of this projec’i will find

applications in areas such as elasticity and hyperbolic geometry.



 CHAPTER 2

Quaternions and a 3-dimensional Hyperplane

A complex 2x2 matrix of the‘form(_zw ‘zf) is called a quaternion. Quaternions

| L (a+ib c+ed)_ (1 0Y.,(i 0). (0 1 i\
arewnttenmtheform(_cHd a—ib)_a(o 1)+b(0 __1.)+c(1 O)"’d( 0)_,

Whe're a, b, c and d are real numbers. For the purpose of this paper, 7 = ((l) g)

i = (_01 (1)) k= ((1) O) and /= ((1) (1)) which allows the‘quatemion to be written

q=a+bi +cj +dk. The followiﬁg properties are'clear for 7,7, j and k:

72 j =], Tj=k, ji=—k, jk=7, 8 =—7, ki =], 7k =—]. Let o denote

the function with domain the quaternions and codomain V,(R) given by {

a'( a+ib  c+id

\etid a —vib) — (a,b,c,d). o isa bijection, and under o the structure of matrix -

addition corresponds with vector addition, and the structure of scalar multiplication of

matrices correspohds’to scalar multiplicatibn. The isomorphism o means the set H of

quaternions is a 4-d1men81ona1 vector space over the real numbers.

We will now be d1scussmg the hyperplane of the quatermons where d 0. It wﬂlv ‘
be shown that the subset J = {a +bi +¢ Ia,b,c € R} forms a 3-dimensional vector space

over the reals.

Theoreni 2.1

- J is a 3-dimensional subspace of the vector space H = {a~+ bi +¢j +dkla,b,c,d € R},



Proof
| Show J forms a group under additioh.
1. cloéure .\
Let q,,9, € J.
q,+9q, = (a+blz"’.+ ¢.j) +(q2 +b,7 +¢,7) =(a; +a,) +(b1 +8,)7 +(c, +¢,)j € &. |
2. . associativé : '
Thisis 'inheﬁteq fromH.
3. identity
| This is also inheﬁted‘from H.
4  inverse. | |

Letg, €J
'soq,=a,+bj+c,j.
Letvq2 =-a,+-bi +—bJ‘ elJ
sé q,+q, =(a, +bj +c,j)+(-q, +;blf +c,j)
= ,(;zl +=a,)+ (b +=b,)i +(c, +-¢,)]
=0.

Therefore g, =—¢, is the inverse of g,
Show J is closed under scalar multiplication.

~ Letqlv'e.] and o € R.



Soafg,)= oc(a1 +b,7 + CJ)
= oa, +abi +ac,].
Therefore a(q,) is in J since o, ab,,0¢, eR.

ﬂ Therefore J is closed under scalar multiplication, and J has been proven to be a subspace

of H.

J does not form a group under multiplication, however, because it is not closed

under multiplication.

Letq,,q, E»J.

, Spaq1Q2 =(al +b1f+c1j)(a2 +b2?+c2f) i

, (ala2 +ab,i + alczj +a,bi -bb, +bck +a, clj ~b,ck - clcz)

= (ala2 - blbz - qléz) + (alb'2 + azbl)f +(‘a]lc,‘T + azcl)] -I-‘(blc2 - bzcl)E.
Since q,9, ha’s ak - éompongnt, J is not closed ui;der ﬁlultip]ication. WhileH forms an
. alg;ebra over fhe reals, ‘J is not a subalgébra beéausé it isnot closed under multip}]ication.v
J is. also pot commu’;ativé in generalf
Letq,q, € J. |
Sé 4.9, = (a1a2 ~bb, - clcz) +(a1b2 +qzbl)? +(“1¢z +a'zcl)] +(b1c2 - bzcl)E,
z;nd 9,9, = (éz +b,i + czj")(a1 +bi + cJ)

= a,a, +a,bi +a,c,] +ab,i —bb, +b,cik +a,c,j —bc,k - cic,



_% (alc‘z_zv - b.lbb2 -¢éc, )‘+ (arz‘b1 +a,b, )7 +(aye, + ac,)j + (bzclv— b.c,)k
# q,q, because thé k terms are different.
o Therefore J is not co;lmmutatﬁé. In fact, ﬁe k -compbhe;nts are oppositeg while the others
are ‘the same. | This will be ‘ubseful later. Also, siﬁcg the eleménts of J do not comute,
 division is not well-defined, since ¢,q; ' and q, in1 are not ‘jneces'sary' equa1.>
Neﬁ, it wﬂl be ‘sho_wn that J is élosgd under integrai poWers, evén thdugh J isnot
closed under multip]iéatio@ ini. general. | |
- Theorem 2.2
~ Jisclosed under integral powers. |
Lemma 2.3
Let V be any Z-dimensi‘onal subspace which contaiﬁs’the real axis. ;I'hen Vis isommphié :

to the §omplex plane as a real algebra. .

Proof of Lemma:
. ] | N
V = a plane through the real axis.




(0,cosvy, sin“\u‘)' © Let Iy be a plane through the real axis where )
' ‘ 0 <y < 7 is the dihedral angle Iy makes with the
- plane spanned by the real axis and the 7 — axis.

Y
v

v

"The span of (1,0,0) and (0,cosw,siny) gives the subspace V. We will refer to such a

subspace V as a C-plane.

S ;
Let H\,, bea C-plane represented by quatermons of the form [s cosw} s,t € R

ssiny,
- We deﬁneV—é‘"—)C as follows: = -
()
o a\v:lscosw}k—)t+sz‘
S ssiny) - |
o . (¢ ) :
~ Therefore g € Vmeansq=L,sjcost=t+scoswi +ssinyj for some 5,7 € R.
- Ssiny, . :

* Now that everything has been defined, we can prove that V E C by showing ¢, is an
isomorphism.
1. Show «r, is linear.

Let ¢,¢, €R and ¢,,9, €I,



So o’c\',(clq1 + Qz qz) = Ot\',[cl(tl,sI cos\, s, siﬁ \|/) +c, (1‘2 ,8, COSV, S, sin \y)]
- aw[(cltl ,C;S; COS,C, S, sin \|/) + (czz‘2 ,C,8, COS,C, S, Sin \u)]

= ocw(clz‘l +c¢,1,,¢,8, COSY+C, S, COSV,C, S, sin Y+ c,s, sin \y)

= ocw[clt1)+ Cth-,(CISI +c2s2)cosl|/,(clsl +c2s2) sin\y]_
=(ct, +e,t,) +(es, +e,5,)i

= ety +(eys,)i +¢,t, +(c;5,)i

= c,(t, +s,1) +¢,(t, +5,i)

= cll[oc“,(tl,sl COSV, S, sin\u)] +c, [oc“,(t2 ,8, COS\Y, s, sin \y)]

=c, [oc .,,(‘11)] +c, [“;v(qz )]

= clocw(ql) "‘czo‘\u(%) -
Therefore o, is linear.
2. Show ,, is a bijection.

Let ¢ € C, so ¢ can be written ¢ = ¢ + si where 7,5 € R.

(¢ ) () .
There exists Ls cost € V such that ast cost =1+si.
- \ssiny, ssiny

~ Therefore 7, is onto.



Let ¢,,c, € C with ¢, =c,.
Soc, =t +si and c, =t,+s,i where ?,t,,s ands, € R.
Alsot, =t, and s, = s, since ¢, =c¢,.

t - t

1 2

~Thus | s, cosy|=|s, cosy| since each component is equal.
s siny) \s, siny,

Therefore ¢, is one to one.
«,, has now been shown to be a bijection. -
3. Show «,, preserves mﬂtip]écation.

Let ql :qZ € V

S0 ¢, = #, +5, cosyi +s, sin\j and g, =1, +s, cosyi +s, sin\yj.


http:cos\|/+.Si

Also aw(qlq?) =a, (tl +5, cosy7 +5, sin (2, +s, cosyi +s, sin \J)]

(tltz +1,5, COS +1,8, Sin\Jj +5,2, cOSYi —s,5, cos” Yy+s,5, coswsiil\uk\

\ +5,t, sinyj — 5,5, cosysin yk — 5,5, sin® y J

=a (tlz‘2 —sisz) +(z‘1s2 +s1t2) cosw?+(tlsz +s1t2) sin \ﬁ]
_ | (tltz _SIS2) _}
= o (1,5, +5,,) cosy

L(tlsz +.S1tz) Sin\]fJ |

= (tltZ - SISZ) +(t1S2 +8,0 )i
=14, +(tlsz)i +(S1t2 )i 515,
= (t, +s,), +s,i)

= ocw(ql)%(qz)-

Therefore ¢z, preserves multiplication.

Since ¢,, is a bijection which preserves multiplication, ¢,, is an isomorphism. An
isomorphism has been constructed from an arbitrary 2-dimensional subspace containing
the real axis to the complex plane. This proves the lemma. Using Lemma 2.3, we can now

pfove Theorem 2.2.

Proof.

Let qgelJ.

So g=a+bi +¢j for some a,b,c e R.

10



c

Leta=tb =‘scosx|/ and ¢ = ssiny with s = +vb* +¢* and y = tan™ .

So we may write ¢ = ¢ +scosyi +ssinyj and g € I,,.
Also 1T, = C (the complex plane).

| “Thus q 1ie§ on a plane isomorphic to the complex plane and therefore has the same
proper(ies a point in the complex plane has. Since the complex plane is closed under
multip]icatioﬁ g can be multiplied with itself and the product will still be in the plane IT,,.
Since division in the bcomplvex plane is well-defined ¢ can be inverted and the reciprocal

will still be in the plane IT,. In other words, all integral powers of ¢ remain in the plane

I1,. Therefore J is closed under integral powers. .

The Lemma also shows that the product of any two elements in a particular plane,
IT,,, remains in that plane.
Let g, =1, +5,cosyi +s,siny and g, =1, +s, cosyi +s, sinyy.

Soq,q9, = (tlt2 —slsz) +(t1s2 +slt2)cosw§'+(tls2 +slt2)sin\lﬁ € HW.

Multiplying two elements in different C-planes gives a different result, however.

Let g, € Iy, andgq, € Iy .

Sogq, =t +s,cosyi +s5, sin\ylf and g, =1, +5, cos\y,i +5, siny, .

11



A

-

Thus q,q, = t,, +1,5, COS\Y,7 +1,5, SN, ] +5,¢, COSY,7 — 5,5, COSY, cosy, +5,5, COsY, sin y, &
48,2, siny, ] — 5,8, siny, cosy,k — s,s, siny, sin y,

= (tlz‘2 — 5,5, COS, COS\Y, — S, S, Sin , sin \Vz) +(t1s2 cosy, +s,t, coswl);
+(tls2 sin \y, + 5,2, sin \ul)f + (s1s2 cos\y, sin y, — §,5, siny, costl?
=t,t, — 5,8, cos(\y, — W, ) + (1,5, cosy, + 5,2, cosy, )i +(2,s, siny, +s,2, siny, ) j

+s,8, sin(y, =y, )k.

This shows the product of two elements in different planes is not an element of J unless
the sin(y, — ;) =0. This is true when \, —\, = nn, meaning the two elements would
_ lie on the same plane. Therefore the two elements must be in the same plane for the

product to be in the same plane, or even in the subspace J.

Now that an isomorphism has been established between thé complex plane and any

- plane containing the real axis, which we will refer to as a C-plane, similarities between

it
P

complex numbers and quaternions in a plane will be discussed.
Properties of the complex plane:
1. Closed under niultip]ication

2. Commutative

W

. Contains inverses

4. Closed under division

12



‘Properties of elements of J that lie in one C-plane:

L q,q, €11, |

9.9, € 11,  (proved previously)
2. ¢,9, = 4,49, since IT,, is isomorphic to C.
Specifically

g, =t,+s,cosyi +s,sinyj and g, =1, +5, cosy# +s, siny.

80 q,q, = (t,t, —5,5,)+ (2,5, +5,t,)cosyi + (2,5, +5,2,) sin vy (calculated previously)
= 9%

3. g, is the inverse of g,

e . | . t1 | 1 | = S
q, =t +s,cosyi +s,sinyj g, = +[ )coswz +(—-——-——— sin
o ! 2ot as 4 +s] 1} +s”

. ) (1 } L
9,9, = (t, + s, cosyi +s, sin )(ﬁ)(tl1 + -5, cosyi +—s, sIn \yj)
- : . 1

1

1 (5" st cosyi +—s,t, sin g +s,, cosyi +s,” cos” -5, cosy sin vk

+5,¢, sin yf +s,” sin ycosyk +s5, sin®

13



q i} _
4. —F=qq, ' =q¢,7'q, €1],
-4, \ ' , .

As expected, the elements of J which lie m the same C-plane behave the same as complex

numbers.

As stated previously, in general the product of two elements of 'J is not
commutative. Their products differ only in the k -components which are negatives of each

other. Geometrically g,9, and g,q, are reflections in J.
Definition -

 Reflection in a hvoerplane" Sﬁppose U is a hyperplane of the n-dimensional inner

product space V, defined as the set of vectors orthogonal to a fixed unit vector w. Then
we define 7, the reflection in U, by the formula r, (v)=v—(2v-w)w, where v is an

arbitrary vector in V.
Example:
In R? the reflection in the line y=x is given by r, (v) = v—(2v-w)w.

.Ri ‘ y=x

b

=22

The matrix representation for this reflection is ((1) (1)) relative to the standard basis.



Lemma 2.4

ifq,,9, €J then qq, =r,;(q2ql).
Proof of Lemma

Case 1:

If ¢, and g, are elements hof the bsame C-plane then ¢ig, has‘ no k cbmponent,b and
therefore reflecting with ’respect to the & -vector does nothing. r:(9:9,) = 9,9, It was
shoM previously that q,q, = q,q, when él énd q, are in the same C-plane. | The;'efore
ri(9) =99, = qlqg‘
Case 2:

- If g; and g; are elements of different C-planes, the proof is a little more complicated.

N

Let g, el'LI,l and g, e_II\I,Z.

So q,9, =(t,2, _slsé)cos(\lfl =\, )+ (5,1, cosy, +5,4, cos‘%);
+H(s,, siny, +5,2, siny, ).7+sls2 sin(\y, —w, )k
and q,q, = (t,t, — 5,5, ) cos(y, — ‘Vz)_"‘(szt1 cosy, +5,4, COSWI);

+H(s,t, siny, +s,2, siny, ).7_ §182 JSin(‘Vz -y k.

15



~ Using the reflection definition,

(0,0 = 0.0, ~ (209, Bk
= 4,4, — [~ 25,5, sin(y, — v, )}k
= (i, = 5,5,) cos(Wy =W, ) + (8,7, COS, + 5,8, COSVY, )7 |
+(s,¢, siny, + 5,2, sin y, )] — 5,8, sin(\y, — )Ig +2s,s, sin(y, =W, )I;
= (t,t, — 5,5,) cos(Y; — W, )+ (5,7, COS, + 5,7, COSY, )f | |
+(s;t1 sin \1)2 + slt‘2 siny, )7 +s,s, sin(y, =y, )I;

=419
This proves the lemma 7;(4,4,) = 4,4,
Lemma 2.5

9

Letge J. Thenqg ' =—>.
| g

. Proof of Lemma

Lef q=a,+bji + cJ and ¢ =a, +b,7 +c2j’.

So ¢ = a,a,+ab,i +a,c,] +abi —bb, +bck +a,ci -bck —cpc,.
_ For g to be the inverse of q

a,a,-bb, —66 = 1, ab, +a,b, =0, ac, +a,c, =0 and bc, 7'?’2"1 =0.

Solving for unknowns a, ,b, and c, in terms of @, ,b, and c,,

16



a, —b, -

a, =—————— b, =—— and c, = .
27 a2 4+b el 7 al +b] +c! 2 al+b! +c}
So q'1=—(-1—2-.

g

Checking explicitly,
aq~" = (a, +57 +¢,7) —o— [a - 57 - ¢.J)
_ a, +b, +¢; } ,
———1——(a2 —abi-aci+abi+b>+bck+ac _"+bcl:t’+c2)i
_af+b'f+cf 1 19 161 T a0 1 161 161J 70,6 1
Tl CRURLY

=1
" It was determined at a later point in this study that knowing the form and

relationship between /2~ gh and hgh™ , where 4, ¢ € J, was useful.

1

‘ o e = _ re = -1 _ Lz 2
Let.q—a1+b,z +c,j and h—ba2+b21 +c,j, soh _—_—_a§+b22]‘+c§ (a2 —~b,i —02]). .

17



Thenh'lq;z—l?( —b,i - 02])(0 +bi +clj)(a +b,i +02])

H2(aa2+abz+ac1 ab,i +bb, bck ac;+bck+cc2)h
a2 +abb, tayec, —a,bb, +a,b; - a,cc, +a1c§)

alazb +a1a2b +b,b} +b,c,c, +bycic, +b cz)

aze, aac —b2c, +b.b,c, +a.a,c, +bb,c, +c,ct)j
11— , € +0,0,¢, +a,a,c, +v0,0,C, (G, )]

(a
(a32
|n* (a2
|  (~a,b cl+a2b ¢, —a b, +abyc, +abe, —ab, ) |

| (a2 a0 +a,e2) +(a2b, +507 ~bie? 28,06, )7 ]

t

._+(a§ ¢, —b2c, + clc,f +2b,b,c, )_7 + (2a2b102 -2a,b, cl J

o o {(alaf +a,b} +.‘a1c§ ) + (a;"b1 +bb2 —b,c] + 2b2c1c2-~)f’ -|
hgh™" =151 3
” |_+(a._, ¢, —bic, + clc2 +2b b c2) (2a2b102 - 2a2bzcl)k

Notice their sum isin J.

Since J is nbt closed uﬁde_r mﬂtipﬁcatiom thebJord;.z‘m product will be used, and the
set of \‘quatemions w1th no k- component together with the Jordan product will be
referred to as J'. | |
Definition

: | | ' 1
~ The Jordan product is defined as follows. Let 9% €J, then [q1 ,‘qz] = E(qlq2 + qqu).

18



With the pfoduct of twob eléments m J defined this waif, the resulting quaternion is als@)
in J.

| Let g, = a, +b7 +'\cjland‘ q, =a, +bi?+c2].
Using the deﬁniti;)n- of the J ordan produc;,

-

L1 SR S I
| ‘[q;»,qZ] = —2-[(41:1 fbli +cj)a, +5,i +c,]) +(a, +b;i +c,7)(a, +b, +c1j)]

1 I_ala2 +a,b,i + a1c2z+ a,bi —bb, +bc;k +a,c,.j —bck - e,

;+a1‘a2 +a,bi +’azclj_' +,b,i — blb2 fl;bzcll_c’ + ach ~b,c,k —c,c,
= (qla2 —-bb, - .clcz) + (albz» + azbl)f + (alc2 + a;cl)j el
Thus, using this product, We now havg a Jordan algebra.
Thé fo]loWing are various properties of the J ordan pioduct.
Letq,,49,,9, € 3" and 7 e R.

1

[qlaqzl = _2— v(‘]lqz +q2‘11)

1
= —Z_(qqu +9,9, )

=[q,.4)

The Jordan product is commutative.
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) _
[qu] =E(‘11r+rq1)
-
_ = E(qul) ‘
| =rq1;
The Jordan produét with a scalar is the same as scalar ﬁlultipﬁcation.
90 +a,] = Slala +a.)+(a +a)a]
1 | .
= E(qlqz +9,9; + 9.9, +q3q1)
"1
= _2_(q1‘I2 +9,9, +9.4; +q3Q1)

1, 1 o
B -Z—(ql% +q2,ql),+5(qlq.3 +q2ql)
= [ql’qZ] 4;[q1’q3]’

The Jordan product is distributive.

[[ql;qz],qs] ={-21-(q1q2 +42q1)»q3] |

111

| 1
= E[E(qlqz +q2€1)q3 +Eq3(qlq2 +q2q1)‘:|“

1 .
= Z(qlq2q3 +4,9:9; +9:9,9, +Q3q2q1)~
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‘ EREE! |

[q.l,[qz a%]] =|_q175(q2% +Q3Q2):I ‘
111 1 '

= E[E%-(‘]zqs +q3Q2) +'2—(‘I2q3 +q3q2)q1]

1 ,
= Z(qlqzqs +Q1q3q2 +4,9:9, +q3q2Q1)-

The Jordan product is not associative as the following computation shows. The A

associator is computed as follows.
4.4} 45) - 2,142 5]
1 ‘ .
= (00:4; + 009, + 4,00, +4:020))
1
- Z(Q1Q2‘I3 +9:9:9, +9:9:9, + q3Q2Q1)
= Z(qz%qs +9:9.9, +9.9:9. +q2'q3‘I1)-

9,995 =\a, +b,i +cz])(a1 +b11 +C,])q

a, +bi +cj)
+( c+ac ]+(bc blcz)lzl 7 3)

[(ala2 b, —cc, )+ ) (a2b1 +a,b, )z’
( a,a,a, —abb, —a,c,c, —a,bb, —ab,b, —a,c,c, - alczcs)
+\a,a,b, +a,a,b, +a,a,b, = bb,b, - b,cic, —b,cicy + b,czcs‘)?

+ (a2c713c1 +a,a,c, +b,b,c, - bb,c, +a,a,c, - bb,c;, - clczcs)j
(a b

,¢, —ab.c, —a,b,c, —ab,c, +a,bc, +ab,c, )’k.

21



-

.[-(so_zolo_ Leglg— i+ Dir'n+ sozvlv)_l_
!( talo% — fg%g'q — 'gvn+ Ygtn'n + quv‘n)+
(zotosv — %g'gtn — $2'9% — fg'q%w — ©2%'p — tg%'n — svzptp) -

L4

(%%%+%%%+%%%+%%%)
I

'}[(I3zqsﬂ+ Lot + L'ty — So'g*p — iq'n — sazqtp)_l_
[(EOZOIO — Totq%g - LHipTy 4 %ylgtq — Sa'g%q + “'vin+ SOIDZU)+
£(I3§9£q+ IhEalg — ta%lg — fg%g'G - 'g*v% + Yg'vn + sqlvzp)_l_

(Iazogv — %%n — g%ty — 'g°q%n — So%'p - g%g'n — snzvlv) = bEhh |

v

.,l(zolqsv_'_ % 'n+ %gtn — 2% — Ytq% — E:)qut))+
_[(E:)Zo‘a — Ytqlg— D'+ it - 'g%q+ Do + SQIDZD)_i_
!(Iozq€q_+ Zy%lg — Ealo%q - g%q'q — Ygtv'n + g0 + sqlvzv)+

(IDZOEn — Y'p - g% - Ygtg'n — Yo% - fq'g%y — inzvlv) = ppp

.g(zasqtv_'_ Llgtn + £2%g'n — I.qu‘iﬂ _ EOIqZU _ Iasqu)_,_
[(EOZDIO — Diglg - Wtp'n+ 2%'g - ig%q + €p + Iosvzv)_l_

g(€9z31q+ %latq - fa'o%g — *g%q'q - zqsb1v+ 9%’ + ‘qEDZD)+

(‘Zozalv ~ %l - fg%g'n — ‘quqsv — olalp — Yg'gty — sUZDIU) = BIpEh



CHAPTER 3

Elementary Functions and Their Convergence

- Now that it has been estab]isliéd that we are working with a set that is closed
‘under the Jordan product, functions with domain and co-domain of J will be cdnsidered.
The convergence of such functions will be discussed‘as well as the derivative.

1 Definition
A function f*J—J is called elementary at a provided it can be represented as a series

f (q) = icn(q - a) , ¢, € R, where the domain of f is the set of all g for which this

‘n=0

series converges.

Definition

. i ‘ . 1
The exponential function is defined as follows: f (q) =e? = Z; q".
n=0711

This is an example of an elementary function at a=0.
The elementary functions discussed in this paper will be centered at the oﬁgin. In

other words, a=0 and f (q) = ichq". Without loss of generality, we can let a=0 and use

n=0
f (q) = icnq” in forthcoming calculations.

n=0

It will be shown that f (q) = 2.¢,q" converges on a ball centered at the origin, just
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~ as complex analytic functions converge on a disc centered at the origin. This will be done
by first proving absolute convergence; then by showing the radius of convergence R is the

same in all C-planes.

Theorem 3.1
Suppose there is some g, H¢ 0 such that icnql” converges. Then for each g with lql < ‘q1|
n=0 ‘

~ the series chq is absolutely convergent.

n=0
Note:

qn+l

n

In this proof, division of absolute values of quatermons is used. Wthe is not well-

“org.' -q,., which are not necessarily

n

‘ equal is we]l-deﬁned since each is a distance from the origin and therefore areal
number.
Proof of 'theorem: 7

Suppose the distance from g to jthe_oﬁgin is less than or equal to some » which is strictly

less than the distance from ¢; to the origin.

In other words, qu‘ wherer € R.

Since > c,qy converges (given),

n=0
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which means , ' .c,q; =0,

r < Mfor all n.

"{i} < Mp" for all n, where p=7—<1.
iqll ‘

- Iqx

Again we are dealing with absolute values, or distances from the origin, which means we

do not have to worry about division of quaternions since |q| eR.

" < Mp” for all n.

But Mp" is a geometric series which converges if Ipl <1.

Since p = ﬁ <1,

n .
converges using the

Therefore Mp" converges absolutely,

comparison test.

" < Mp” for all n.

So icnq" is absolutely convergent, which completes the pfoof
n=0

The proof of this theorem works for quaternions the same way it does for

complex numbers. Next, the radius of convergence needs to be determined for
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f@)=Ze,q".
‘ Deﬁnition:

Radius of Convergence: There are three possibilities for the radius of convergence of

icnq" withc, e Rand g € J.

n=0

1 Xc,q" converges only for g=0.
2 XZc,q" converges for all q.

3 2c,q" converges for some g but not all g.

If case 1 is true the radius of convergence is zero.
R=0.
- If case 2 is true the radius of convergeﬁce is infinity.
R =oo.
If case 3 is true, the radius of convergence will be defined as follows:

Let g’ be a point of convergence and g” a point of divergence.

n=0

Then icn(q’)" converges and icn(qy”)" diverges.
n=0

Using the theorem just proved,
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. n L4
means 2.c,q" diverges.

|q| < Iq '| mean,s\chq" convergés ‘and |q| >\q"

Therefore |q' < ‘q"l. .

We now define the radius of convergence to be the number R such that

|q| < Rmeans 2c,q" converges and |q' > Rmeans X.c,q" diverges.

B

This completes the definition of the radius of convergence. Using this definition along

~ with Theorem 3.1, the convergence of an elementary function can be found. -

Since our radius of convergence for elementary quaternionic functions is based on

distances from the origin, a function will have the same radius of convergence in each
C-plane. In other words, the function f (q) = 2.c,q" converges on a ball of radius R

centered at the origin. f converges for all points inside the ball, diverges for all points

outside the ball, and as with complex analysis f is inconclusive on the bounding sphere.

We now know that these elementary functions are absolutely convergent on an
open ball centered at the origin with radius R. Next will be a theorem used to determine
what the value of Ris. The ratio test will be used in the next theorem so a proof of this

theorem will be given.
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Theorem 3.2

Ui,

The Ratio Test: Let U, be a series with positive terms and suppose ;. E)mm

a) If p<1 the series converges.

b) If p>1 the series diverges.
| ¢) If p=1 the series may converge or diverge, so that another test must be tried.
Proof. .

part a)

Assume p<1 and let 'r=1/;( 1 +p).

Thus p<r<1 >since r is the midpoint between 1 and p.

It follows that the number € = 7 — p is positive.

U

U

. ﬁm Uk+1
Since p =g _5 4o s
k

it follows that for k sufficiently large say 4>K the ratio are

within € units 'of p.

U U, ’
Thus we will have U'f“ <p+ewhenk 2K or UM <rwhenfk = K.
k k

That is Uy, <rU, when k2K
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This yields the inequalities:
Uga <rU,
Ugsr %rUM < rzU;
Ugis <tUy, < r’U,
Uga <rU,,, < r‘iUk etcetera.
But | < 1.
So thaf rU, +r’U k’ +r°U,+..isa co’ﬁvergent geometric series.

From the above inequalities and the comparison test it follows that U, ,, +U,,, + U, ;+...

must also be a convergent series.

Thus U, +U, +U,+.4U,+... converges because convergence is unaffected by deleting’

a finite number of terms from the beginning of a series.
.W.e have proven part a), the seﬁes converges if p< 1. v
~partb)

Assume p> 1thus e = p- 1is a positive number.

. U . :
Since p =} im+oo UM it follows that for & sufficiently large say A=K the ratio
k

k+1

Uy

is

within € units of p.

U U
Thus —*% > p—e when & > K or —*- > 1 when & > K.
U, ‘ U, |
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ThatisU,,, }Uk when £ > K.
This yields the inequalities:
U K+ >U,
Ugso SUk+1 >U,
Uss >Usa > U,

Uk >U,,.s >U, etcetera.
Since U, > 0 it follows that , _, U, #0.
So U, +U2;l-...+Uk+... diverges.

We have proven part b), the series diverges p > 1.

part c)

o0

2.— is a divergent harmonic series.
k=1 .

1
]. ]. k
Therefore, & _)_ookjl'—l- =5

So p=1.

L | v .
’;Z_lk—z is a convergent p-series.
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1 L
| lim (k+1> lim k° ‘
Therefore, g oo™ 1 =k —>w0p? 1opr1 -

So p= 1~.

Therefore the ratio test does not distingdish between cpnvergehce and divérgence when

p=1
' Theorem 3.3
2, e ’ Lm (Cpu| .
‘Suppose 2c,q" has a positive or infinite radius of convergence R. If ,, _, P exists
; n=0 - ’ ) Ch 1

. thenl l-im ‘Cn+1
SR O h—>o© c,
Proof:
‘ ]jm cn+l
Let L=n_)°o .
hn
lim Cn_qu lim (C,u9 lim (€
_Thenn_>00—c—n—=n__)°o p =‘q‘n__)007—=‘q|L
) ' nq - ) ' n

Note: This is possible since J is closed under integral powers.

Using the ratio test,

when |q|L < 1the series X.c,q" is absolutely convergent
: n=0 ) ' ' )
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and when |q|L > 1the series icnq" diverges.
. n=0

Using the definition of R,
1 1
=7 orL = R
S ljm cn+l _ 1
° n—>w . | R
This completes the proof.
Example:

el

1
The radius of convergence for f(x)=e" = ZF x* is infinity.
. k=0K'!

o0

Using the ratio test for f(¢q)=e? = 2—q",

n=0n!
_ lim |G| tim | ¢ || tm o] _
P=n-w q, _n—>00(n_|_1)! q" _n—)oon+1_

Since p < 1 for all ¢ € J, the series converges absolutely and the radius of convergence is
R =co,

Using the previous theorem,

1
lim |G| lim [(@+DY  lim | n! |  lim | 1 |_
no® o |Tno 1 | TR0 R P> Pp4]|
n!,

1
So —=0and R=co.
OR an o0
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The exponential function has the same radius of convergence in real, complex and

quaternionic space. It converges over the whole space.

|
It is worth pointing out that g and e? lie in the same C-plane. e? = Z;—; q" is an
. . N : n=0712:

infinite series in g. If ¢ is in a particular C-plane, then all powers of q are also in the C-
plane because the theorem stated previously showed this. Also, any finite sum of these
powers is also in the same C-plane. This is also true for the limit of these sums.

Obviously, the same property hoI_ds for any elementary function.

Next, an attempt was made to ﬁnd the derivative of an elementary function using a
definition based on the calculus derivative. In calculus, when given the M§tion
f(x) = c;x", the function f'(x) = nc,x"" is proven to be the dérivative function. In.
complex analysis when given the function f(z) = c,z", it is proven that the function
f’(é) =nc,z"" is ﬁe derivative ﬁmétibn. This was an important discovery in complex
analysis. For both calculus and compiex analysis, however, sh(v)wingy thqt J was the
derivative function re‘quired using the binomial theorem. An aftempt was made to fo]lowl’
the complex analysis proof, but we were unable to use the binoﬁ:ial theorem. Rewritten

for quaternions, a reasonable analogue of the binomial theorem would look as follows:

(q+n)" = j%(’;)[q"'j ,h’]. This formula turned out not to be true.

Example:

(g+h)’ = ¢°* +qhq+hq* +WPq+q*h+qh* +hgh+ 1.
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LY=L Jewr e Jorro o

2 2 2 3
=q° +:<l2 q h+hq )J+:1_ (qh +h )_|+h
3 3 3 3
=q’+=q"h+-hq* +=qh* +~h’q+I’
7 +54 M T4 X! :
which does not equal (g + 7)°.
Since the binomial theorem can not be used, a different approach was tried.
Letting f(g) = chq and flq)= inc,;qf‘” , an attempt was made to bound the right

n=0 n=1

side of the following equation.

[f(q +h) —f(q),h"]‘—- ;Encnq"" =[ %cﬂ(q +h)n - %cnq",h'l]— }énc,,q"'l

Using the right side of the above eduation,

[Zc (g+n)"n" - Zcq"h +Zh ‘e, (g +h) Zh c,q ] ch

n=0 n=1

=-1-iﬂc"<q+h>"—m"lh-*+h-1cn<q+hy-cnqn1}

2 n=2

+ %(clh‘1 —ch™ +h7l, —h7'c, +c,(q+h)hT —c,gh™ +h7e (g +h) - h"lclq)

- .
n-1

—2.n6,4"" =
n=2 .
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_ iz{[ (q+h) -c,q ]h +h” [ (q+h) —cq]}—incnq“

n=2

—Zc {[(q+h) -q ]h“+h [(q+h) —q] 2nq"" }

n—2

If we had been able to bound the right side of this equation so as 7z — 0 the whole right |

side went to zero, we would have had the following equation:
lim ) o e
W2l +R) - 1)) - Erea)=o.

This would mean hhf:()[ f (q +h h ] chnq , and therefore f’ would be the

n=1

derivative of f.

- With very little success at proving this, the cases where n=2 and n=3 were
considered. While doing these, it turned out that the limit of the right side as # — 0 was

path dependent, and therefore we could not state that

f’(q) = h]j_l_fo[f(q+h) - f(q),h' l] was equal -to %ncnq”'1 . The following shows how

the proof of f"(q) = {':,ncnq"'1 failed for the n=2 case.

n=1

n—2

[f(q+h)—f(q),h'l]—gnc" =-—-Zc [h (g+h)" -q ) ((Q+h)" —‘I")h'1 —2nq".'1

n=2

= %cz[h'l((wh)2 - qz) +((q +h)’ - qz)h" - 4q]
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&, (™ (qh+ h +1*) + (ah + hq + h* 1™ )

N|= N~ N~

cy(h7'gh+q +h+q+hgh™ +h—4q)

c,(h7'qh + hgh™ +2h -2q),

As said previously in this paper i gh and hq K! were both multiplied out in
: componént form to see if an};thjng could be gained. The hope was that W' qh and hgh™
would equal 2q. When this didn’t work, an effort was made to rewrite all of the terms
without using /™ . This also failed. Next the terms wefe rewritten in components
7, j, and k where h=h, +h27+}137 and q=q,+q,i +q,]. |
Let hg = gh+ok and gh = hq - o witho € R. )
These 'twoAterms differ only in the & compoﬁ_ent which are opposites. \
Thus /2~ gh+hgh™* = (gh+a E)h™ " +h™ (g +a k)
=g+oki'+q-ah 'k

=2q+oakh ' —ah k.
Continuing with the » = 2 case, the components of  and g will be used.

: B
E c,(ngh+hgh™ + 2h- 2q)

v‘ 1 77 -1 -17
=Ecz(2q+akh —ah k)+c2h—cf2q

 = %c_z(al}fh'l - ah"lﬁ) +c,h
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- cz.[%(ﬁh' L_h 172)]+ ch.

1

o U+ + 1),

Letting 2= h, +hi +h,j and h™ ' =

N B S P ST I S
kh 1=W(h(,k.—hu +hi) and h ’k=|“h|—z(hok+hxf’hz’)'

Substituting these values into the above equation,

| —
SN

- %f—(hz? _hj)+eh.

a =the constant of the £ component of g which is (ql‘h2 - qzhl)f .

Substituting these values into the above equation,

_ cz(qlhz _%hl)
|

(7 = 1,J) +c;h

L C2 (qlhz - Q2h1)(h2;;h1j)
B R R+

+c,h.

As h — 0 the above equation has no limit because it depends on the path of /.

Th1s proves that our attempt fails for the case where 7 =2.
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Since it was not possible to prove that the derivative of an elementary function is

%nc—,?q""1 , a comparison between the function defined by this series and the Jacobian will

-

be made.

Definition

n=0

Given an elementary function, f (q) = iénq" the derived function is defined to be
F@=Znea :

The next step is to find out more about the derived function and how it is related to the

. Jacobian.
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APPENDIX

- Functions with Coefficients in J

Since we are dealing with a space that has the Jordan product defined on it, it is

worth considering the behavior of functions with quaternionic coefficients.

: Deﬁnitioﬁ

A Jordan function f:J — J is defined as f(q) = i[cn,q”] where ¢, € J.
' n=0 .

An attempt was made to show that these Jordan functions converge absolutely. A
-proof similar to the one used for elementary was tried, but did not wdrk. The fo]lbwing

counter-example shows that these Jordan functions do not converge absolutely.
For f(q)= Z[cn,q”] where én eld, if i[cn',qo”] converges for some go # 0
n=0 n=0 .

then for each g with |g| <|g,| the series f(¢) = i[c,,;q”] is absolutely convergent. This
: . n=0

statement can be shown to be false using a countve‘r-example.k Therefore, these Jordan

functions do not converge absolutely.

nm AT, ., AN
Define ¢, = cos—— —sin—i +n!sin—j.
" 2 2 2

- 1
Let g, = ai where —2— <o <l

in

So g, = oe?
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’ nm . nm.
and ¢q," = oc”'cosT +a” sin= 7.

To obtain values of c,g,", the following table will be used.

nw
n COS— sm—
- 2
0 1 0
1 0 1
2 -1 0
3 0 -1 )

n n NN nn n ‘. AT . N
[C,,,qo ]=0L COS—CosS— — 0 (—-Sm—sm———)
2 2 2 2

, nt__nAm ., . NN :
+| o” cos— cos— + o — sin— cos— |i
2 2. 2 2

-

w o MU AT -
+(oc n!sm—cos———)]
: 2 2

- . nn nw -
=a" +0i +oc"n!sm7cos—5—1.

© . - ) .
Therefore Z[cn R qo”] converges because each component converges. The real part
n=0 ’

converges because o <1. The i — component converges because it is zero. The

j — component converges because it equals zero using the table. ‘ .
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- Now we need to find a g that is closer to the origin than g, such that Z[cn ,q"]

n=0

s

does not converge.

o 1.
Letq-zj. |

" To obtain values of c,q", the following table will be used.

n g
0 1
1-
1 =5
2]
L, 1
4,
1-
3 .17
8]
4 L
16
etc.
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[c ,q”]: cos = — sinﬂ7+n!sin£n——f,(lf)n A
" 2 2 27°\2

= (cds@—)(—l— _") ' - (sin ﬂ)f(l -’) ' + (n' sin _n_n_) i(_’)nﬂ
=% N\GY EYACK Y PYAY

Looking at just the real part,
= cosF (l _") ' + (n' sinﬂ) i‘(_")"ﬂ
2 \27) TV

n=0,2,4, ... n=1,3,5, ...

(1 |
—  neven
© 2
=>a,, where a, = 1
n=0 - _n'
— nodd
L 2n .

The first piece converges, but the second part diverges.

We have just found a q such that Z [cn ,q"] diverges. Therefore, thesé Jordan

n=0

-

functions are not absolutely convergent as hoped.
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CHAPTER 4

Adjoints and Jacobians of Elementary Functions

_N6w that it has been established that the usual derivative is not defined as it was

for réal and complex analysis, a comparison between the derived function, which we will
refer to as f~, defined by f"(q) = incn (g-a)"", and the Jacobian of S will be made.
n=1 : )

In order to compare the Jacobian of f with the derived function, we will actually be

ﬁsing the adjoint of f, denoted 4 . and éeﬁned as fo]léws.
Déﬁnition
Let g e J*. Theb adjoint 4, is the ]jnear operator (a 3x3 matriX) such that
Aq(p)=[q,p] for allé eJ'. |

in order to compﬁte 4 4+ » We must compute tf*,l], .71, and Lr,71.
‘This gives a matrix with entries as follows.

£@=Entg-ay™

1st Column 2nd Column | 3rd Column

[n(g—a)y.]] [n(g-ay.i]  [g-ay.]]

Letting f*(q) = Zn(q—a)"" =a,, +a,i +a,;j wherea,,, a,, and a,, are functions of
v n=1 ) . ' IR ‘
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X, y, and z, then the columns of 4 ;- areas follows.

,[au +ayi +va31.7> 1] [au +ayi +ayj, i [an +ayi +a31] J]

=a,, tayl +a; ] =-a, ta;l = _a31 +a11]

: e (au —ax _a31\
This gives the adjoint matrix 4 .= Lan a, 0 J
a,, 0 ap,

In real and ’complefc analysis, the J acobiavn. and the adjoint of the derivative
 function are coincidental, and the Jacobian has certain propérties known as the Cauchy-
Riemann equations. We will be determining what, if any; the ﬁroperties of thevJ acobian
are for the quaternionic space J *. We will also compare thé J acbbian with the adjoint of

the derived function. ) ’ -

Recall that f(q)= ijcnq” =u+iv+jw where g = X+iy+Jz.

(ou ou ou)

ox Oy oz

o . ov ov ov
\ThustheJacoblaan “lox &y
ow ow ow

\Ox 08y 0z/

In order to determine the relationship between the Jacobian and the adjoint matrix,
we mvestlgate the properties of an arbitrary monomial ¢”. Note that the behavmr of a
monomial of the form (g - a)" will have these same properties, so we can work w1th q

without loss of genera]ity. First, we work out the cases n =2, 3 and 4 as examples.
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;
f
Letq=dc+fy+jz. o _\ !;
Forn=2, \ j
<
flg)=q* = (x+iy+jz)(x+iy+Jz) ;
- 4T Byt 4T+ etz |

= (x; -y —22\) +72xy+]2xz.

Thusu = x? —y* —z%, v=2xy and w = 2xz.

We can now compute the entries of the Jacobian.

2x -2y -2z i
J ={2y 2x 0 | ‘
2z 0 2x / 1’

In order to get the entries of the adjoint matrix we need to find a,,, a,, and a;, as defined

. previously.

The derived function is f”(q) = 29 = 2x +i2y+j2z.

Soa,, =2x, a, =2y and a,, =2z.

We can now fill in the entries of the adjoint matrix.
| ' I

(2x -2y ~2z7) |
4.=2y 2x 0 | _-f
LZZ 0. ZxJ

| |

In this case, it appears that Jy = 4 .. : ;
|

{

J

|

Forn=3, f(¢)=q =[(x2'—y2 —zz)+z_"2xy+]2xz](x +7y+}z)

= (x3 -3xy* - 3xzz) +z_"(3x2y -y’ - yzz) +7(3xzzj;— y*z - 23).
| ]
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Thus u = x* - 3xy* —3xz®, v=3x"y -y’ - yz* and w=3x’2-y’z-2°,

3x? —3y% - 322 - 6xy - 6xz
g =| 6xy 3x? -3y* - z* —2yz f
6xz —-2yz 3x? —y? - 327 |

The derived function is £~ (g) = 3¢* = (3’x2 —3vy2 - 3z2) +716xy+ j6xz. |

So a,, =3x* -3y - 327, ay = 6xy and a,, = 6xz.

o (3% =3y* =327 - 6xy - 6xz

4.= 6xy 3x* -3y* -32° 0 . |
6xz 0 3x?-3y*-3z*) ) {

Now it is clear that J, # A s although they agree in the ﬁrst row and column. It

is also interesting to notice some of the properties that seem to be true aboxfflt Jr. Should

these properties hold true in generél, we would have analogues of the Cauc"ylhy-‘Riemann

i
|
|

equations from complex aﬁalysis.
Theorem 4.1 | ‘ " |
Let f(q)= n%cnq” be an eleméntary function. Theﬁ tﬁe following are trué abéut the
| Jacobian matrix J; with entrie‘s aj.

a) a,, =—a,.

b) a3 = —a;.

) a, = a,,.

We will contmue to check this theorem for the examples Worked out and ]wﬂl prove it

l

\ i
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later in the chapter. Now we will check the n = 4 case.

Fdrn= 4, -

ff(q) =q*= [(x"‘v —3xy? - 3xzz)'+ 7(33??)/ -y*— yzz) +j(3x2z:¥ yiz— z3)](x'\+ iy +jz) ‘v

)

= (x4 +y* +2% —6x?y? —6x727 + 2y222) +7(4x3y —4xy® — 439722)

=

+J(4x3zv— dxy® — 4xz3).
Thus u=x* +y* +2z* —6x?y? - 6x22% +2y%z%, v=4x’y —4xy’ —4xyz* and
w=4x’z—4xy’z — 4xz>.
4x® —12xp° —12xz>  4y° —12x%y+4yz® © 4z° —12x°z+4y%z

J, =|12x*y—4y® —4yz®  4x’ -12xp* - 4xz® —8xyz
12x%z - 4y*z—42° —8xyz 4x® —4xy* —12xz°

The derived function is £ (q) = 4¢° = (4x* — 12xp* — 12xz?) +7(12x%y - 4y° — 4yz?)

1

+j(12x%z - 4%z - 42°),

(4x* - 12xy% —12xz® - 12x*y+4y* +4yz* - 12xzz+4yzz+4z3\

4 .=

4 12x*y —4y® —4yz*  4x® -12xp* —12xz2° 0

1257z~ 4y?z — 42° 0 4y’ —12%% - 12x2° J
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Once again the J acobian and adjoint agree only in the first row and column. Also the
three equations from Theorem 4.1 are true.

It would be helpful, however, to have a non-poiynomial example for comparison.
Going back to the expohential example again, we will find the Jacobian and badjoint
* matrices for this elementary function by first computing %, v and w explicity. In order to

~ do this we will need ‘to refer back to the mapping used previously.

For f(q)—e Z 1 , let q—t+scoswz +ss1n\w

(¢ -
Using the prevmusly defined map, Ls cos\ |[—¥—>7+si, and applymg it to e we get the -
Ssiny, -

following equations.

n=0m!

oc“,:(e.")=voc (Z —q )

2 1 . . i
= Zaw(;q”) (since o, preserves addition and convergence is absolute)

= Z—aw(q”) (since o, preserves scalar multiplication)
ol 1 n . ’
= Z—[oc w(q)] (since o, preserves powers).

Therefore a,(e)=

0 o [oc ] . This means a,(e?) = e*® by the definition of the

ao(q)

exponential function. Also e*@ = ¢ = ¢'(coss+isins). Combining the previous
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results we can obtain a useable form for e?.
e’ =a,’ 1(e"‘“‘(")) ‘(since o, is an isomorphism and e? converges absolutely)
— -1 t T S
=a, (e’ coss +ie sin s)
=¢' coss+ie’ sinscosy+ je' sinssiny. -

Finally, we conclude that the coordinate functions for e? are
u=e' coss, v=e' sinscosy and w = e’ sinssin\y, where

x=t, y=scosy and z = ssiny.

Now we can begin finding the entries of the Jacobian.

u_
ax—e COSS.

. Ou ;. Os
— =-—e SIns—.
oy - oy

We need to solve for —S~.
oy

y =.scos\y and z=ssiny
Taking the derivative of both with respect to y,

1=—ssi\n\|lgw + coswﬁ and O=scoswa—w + sin\uvﬁ.

oy oy oy

S

Solving for é,
oy

-5 coswg\li
0s _ o
oy siny
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Bs ' | 8
- Substituting 5;— into the above equation allows us to find —\—V.

o
R ’ | _scos"\vé‘_ﬂl —ssin” Wé}l‘l - Scos.2 ‘I/Q\—V
. oy By S % | 5
I=-ssiny_— + cosut.—J which gives 1= -
oy sin e
0 ov -
Therefore siny=—s—> so =t =V

@ .
We can now find the value of a—; by substituting A into the equation

dy

oy
as _ —SCoSY
Oy siny
| ) V(— sin \v)
5 S COS B
oy siny
0s .
——=-cos\y.
oy

; ) 0 0
Substituting é back into 6—; we can finish computing a—;
ou s os
o e i
ay S5
= —e' sinscosy.

ou ¢ . _Os
— =—¢'sins—.
0z oz

We need to solve for @
0z

50



y=scosy and z=ssin\u.l
Taking the derivative of both with respect to z,

. oy Bs oy . . Os
0=—-ssiny— + cosy— l=scosy— + smy—.
, Vo Vo hPY Vo

Solving for —{,
0z

.oy
os SSW-
oz cosy
. . O, o | Oy
- Substituting 2 into the above equation allows us to find P
sin s sin ov
1= scosw—\E +
oz cosy
oy oy

. 2
—ssin\y— — scos” y—

sin

(scos2 Y + ssin® \|/) oy

cos\y oz
.
cosy Oz
oy _ cosy
oz s
-
_ 0os .. oy, 5 . SSVS
We can now find the value of — by substituing — into the equation —=——————.
0z 0z 0z cos\y

Os _ ssinycosy

E scos\y
Os .
az'sm“‘
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0 0 ’ )
Substituting 5;— back into —a-zu- we can finish computing

Ou , . ds
- =-—e SInS——

oz dz
= —e' sinssin .
& ! sin s cos
—=e .
o V.
v _ ’( in s sin oy + cos cossasj
A b ov o
E R U R A

—sin

= (— sin s sin + cosycoss cosw)

e’ sinssin® , .
———  + e’ cosscos® .
s

v ,( o L ceswe 65)
——=e|—-smSssm\y— COo 0SS —
oz v 0oz W 0oz
,( . . cosy . )
= e | —Ssmssm\y +» COS\ycosscosy

—e' sinssinycosy ; i
= ~ + e’ cosssin\ycos\y.
S

ow . .
— = ¢’ sinssiny.

Ox
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w e (— sinscoéw—allj—
. oy

oy

' "=e'(sinscosu/

sin
N

—e’ sin ssin \y cos

S

0

-0z 0Oz

cos

e’(sinscosw

e’ sinscos®

t( ‘ \ . aS)
—=e|SmmSsCosSy—— + sin YCOSS —
Z

oy

. 6s)
+ sin\ycoss—
+ sin\ycoss cosw)

+ €' cosssin\ycosy.

0z

+ sinycosssin \u)

=———— + e cosssin® y.

S

Thus, we have computed the Jacobian matrix for f(q) = e”.

e' coss

e’ sinscosy

e’ sinssin

—e' sinscosy

¢ sinssin®
s

+ ¢’ cosscos’

—e' sin s sin \ycosy

S

+¢' coss sin ycosy

—e' sinssin

—e' sinssin ycos\y

S

+ ¢’ coss sin ycos\y

e' sinscos®
s

+e' cosssin® )

Note that all entries are defined at s = 0 by taking limits as needed.
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The Jacobian for the exponential function satisfies the equations in Theorem 4.1.

Also, since £7(q) = f(q) we have f*(q) =e? =e' coss+7e' sinscosy+ je' sinssiny.

From which we calculate the adjoint matrix.

(e coss —e'sinscosy  —e' sinssin \V\
4.= e sinscosy e’ coss 0 I
e’ sinssin\y 0 e’ coss J

We will come back to the exponential example later when a relationship between

J; and /%, . has been determined. We note, however, that the first row and column agree

o ) 5
as in the monomial cases ¢°, ¢’ and ¢’.

From looking at these examples, it was obvious that the Jacobian and the adjoint
varied only in the lower right four entries. This is the reason the idea for using a

derivation came about.

Definition

Let A be an algebra. A derivation on A4 is a linear operator D with the property
| D(pq) = D(p)q + PDX(q)- |

The set of derivations on H forms a vector space and becomes a Lie algebra under
the usual commutator bracket product. The following derivations were found by letting

the choices for p and ¢ vary and doing basic linear algebra. We omit the calculations.
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Theorem 4.2
a) derivations on H
H= a+b7+cf+dl_c‘v\;vith p,qeH.

When D(pq) = D(p)q + pD(q), the set of derivations consists of 4x4 matrices of

0 0 0 O
the form D = Lg 8 8 :%J where o, B andy € R.
0 a B v

b) derivations on H'

H=a+bi +¢ +dk with p, g eH".

When D([p,q)) =[D(p).q]+[p,D(¢)], then the set of derivations consists of matrices of.

(0o 0o 0)

the form D = 8 2 _g‘ :EJ whe‘reot,Bandy‘eRﬁ.
OB v O

Corollary

J=a+bi +¢j with p,qe J".

When D([ p,q]) = [D( p), q] +[ p,D(q)], then the set of derivations consists'of matrices of

(0 0 0)
- the form D = LO 0 -—thereoceR.
. A0 o 0

Note that the vector space of derivationis on J* is 1-dimensional. Also, it worked

out correctly because if a derivation matrix for H' is restricted to J*, it results in a
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- derivation matrix of the proper form. Derivations on J * will be used to determine the

 relationship between J; and4, o

Definition

(00 o , |
Given D= LO 0 —o |, we define D to be the unique derivation such that
0 a O : .

(o0 0 R |
DD =D D’=LO 1 OJ. Thus, D = — | relative to the standard basis.
- o 01 o | % E
LO .—a 0 )

' The following property of the derivation matnx proved véry useful later in

determining the relationship between J cand 4 . |

Let A be any 3 by 3 matrix.

a,. ap a13\ ‘ 0 0‘ 0
A=|a, a, a23J; andlet D=|0 0 -o|
Q; azp s 0 a 0

. (0 0 -0 a11 a,12 a13» 0 O 0\
Then D’AD=|0 0 Yla, a, a,|0 0 -a
. 0 —% ) (¥ a31 . a32‘ a3, 0 o 0
A . }
0 0 o Yo o o)
=| hay,  Jua, Jeay |0 0 —a
~Veay ~Yaa, -l )0 o 0
(0 o o)
=0 a,; —a32J.
\0 -a,; a,;
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The definition of D* together with the above property are what led to the formula

relating the Jacobian and adjoint.

* As stated earlier, the Jacobian and adjoint differed only in the lower right four
entries. By using the derivation matrix, the process for determining the relationship
between the Jacobian and adjoint began to move along rapidly.  Before long, a formula

was stated that worked for the examples given earlier.

)

We begin first by examining the general monomial case. |

Letf(q)=q" =u+iv+ jw.

Thenf*(q) = nqn-# =ay, +a21;+a31j-

ou ou o |
ox oy oz . ’ \
ov ov ov a, —4; a3,

&
Il

™ 'é; . and Af.=[a21 a, OJ.
ow ow ow a5 0 a,;

\ox &y éz)

(0 0 0) 0 0 0
‘D=L0 0 -—ocJ and D'=l0 0 Y|
0 oo O 0 =% 0)

We will also use the conjugate and the divergence of the conjugate.

f=u-iv-jw and divf = trace J;.

Using all of these items, the main theorem of this paper can be stated and will then be

proven for monomials. |
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Theorem 4.3

Let f be an elementary function on J* and D any derivation on J*. Then
A= J,+D'[J, +(dif)I|D where Iis the 3x3 identity matrix.
Proof:

The following is a proof for f{g)=q" . After this is completed, the theorem will be

proven for elementary functions.

Given g =x +iy+jz and f(q)=q" we will make the following change of variables.

- -

i C oz :
Let p =x*+»*+z* and L= 2 J . NotethatI>=- 1
‘ _ \/y3+zz \/yz+z2 -
2 » 2 2
x* +z
And set cos’®=—5—5— and sinzco=2L5——,_.
X*+y*+z X +y +z

So that g = p (coso+sinwL).

Prove q" = p"(cosno + sinnwl) by induction.

Forn=2,
q* = plcosw + sin L) p(cos® + sin wL)
= p*(cos® @ +2 cosw sin oL +sin® ol? )
=p’ (cosf @ + sin 20L + sin® o(- 1))
= p*(cos® @ + sin 20L — sin® o)

= p*(cos2m + sin 2aL).

~ Assume true for n=k and prove true for n=k+1.
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qk+1 = qkq
| = p*(cosko + sinkoL)p(coso + sinwl)

- = p"*(coskocoso + coskosinal + cosmsin kol — sinosin ko)

= p*[cos(k+ Do + sin(k+DoL].
~ Therefore ¢” = p” (cosno + sin nol) by an inductive proof.

We now have ¢” written in a form that can be used in order to find the adjoint matrix and

Jacobian.
Ifq" = p"(cosno + sinnol),

‘then ¢" = p” cosno + p" sinnoLl
p"ysinnwi  p"zsinnwj
+/
\/ y* +z? J y* +z?

= p” cosnw +

p'ysinnw p'zsinnw

Sou p cosnm, v=—F—— and w=—Ff——".
VY +2 VY +2

Beginning with the adjoint matrix, we will éompute its entries.

| f (q) ng" | |
=np"” l(cos(n Do + sin(n- l)coL) - ’ -

=np""| cos(n—Do + sin(n-1o| AN Y |
| st s
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np™ cos(n - 1)o

np"ysin(n - o

np" "'z sin(n — )o

( "1 cos(n—1) np"ysin(n—1)o np"zsin(n - 1)o)
np"~ cos(n—1)o - - - ,
p . _Jy2 +Z2 Jy2 +Z2
n-1 . .
np" ysin(n-1)o . _
: np” " cos(n—-1 0
4. = \/yz D p ( )m‘ |
np" 'zsin(n - Do
. 2 ( 2 ) 0 np" " cos(n - Do
Ny +z

Next we will find the Jacobian for f{g).

ou o o) |
ox Oy 0z
P LA i
7| ox oy - oz |
ow o ow oW
ox

E?

- Using u, v and w as defined previously we compute the Jacobian entires.
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QE _ p"Ocosnm + cosnmop”
ox Ox - Ox

— AN 7' aW : n-1 1 =1 .u
=p (—nsmn(o-—a—x—) + cqsnco(np E(p )-Zx)

‘ n _* 6w ‘ n-2 ‘
=—np smn(ogg + nxp’ " cOSn®.

ow
We need to find F before continuing.

x2

We know cos’ 0 =—5——5—5 .
CxT 4y 4z

We will now take the derivative with respect to x.

o aw (P 4yre?)2x-x2(2%)
— 28InOCOSO—— = 2 -
ox (x* +y* +27)

ow 2x(y2 +zz)

S .
o T —sin 20p*

. ow . ' .
We now substitute the value of . into the above equation.
‘ x

au n o 2x(y2 +Zz)\ n-2
5; = —np SN 1, —W + nxp cosn@

n_2[28i11n(0(y2 +z) J
= nxp 3 2 + cosno
sin 20p _

.| 2sin nop”® sin® ® :
= nxp : > + cosno
/ sin 20p ‘
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v | 2sinnosin’e
=ncosop’ | ————— + cOSno

sin 2®

n_l(z sin 720 sin @ sin © cos®
= np

- + CcOosn® cosco)
: sin 2®

=np"(sinnosine + cosnocosn)

=np"” cos(n-1o.

& 2 ( 8 snco}aw + sinnanp™™ 6p) :
— = ——=——| p'ncosno—— =
xSV o P )
) 2x(y* -I;z2 ‘ 1 v
=(__L__ p"ncosnco—(.y——q—) + sinncon‘p""—p“Zx)
V:+22\ —sin20p” 2
y [ np" cosna2pcosop’ sin® @ i )
= = + np" *pcosm sin 7o
P+ ~ —sin2wp’
| y (np" COSN®M Sin® - L
= + np"” cosw sinno
\[y +z°\ -p
‘npn—,ly

= ———=—(-cosnosine® + cososinnn)
s 2 2
\/y- +z° ‘

_ np"ysin(n—- o -

v ‘/yz 22
w_ ——Z—(p”‘n cosno 2 + sin nonp”™™ —aﬂ)
ox y? +22 - Ox . Ox
e 2, ,2 '
= (p"n COSn® ﬂy——tET) + sinnonp™! lp"’l 2x)
y? + 7 —sin 20p 2

z p"*ncosna2pcosop’ sin’ ® w2 .
+ np"?pcos sinnm
2,2 i

y + —Sin20)
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z a . ' . .
= ————(np" ! cosno sino(-1) + np"" coso smnco)
’yz +Z2

}npn—lz
=————(coso sinnw — cosno sinw)

/yz 472
_np"'zsin(n-No
\/)’2 +72

Ou . ow N 1 OP
— =—p'nsinno—— + cosnonp" —.
. P oy P oy

oy

ow v
We need to find — before continuing.

dy

y2 +Z2

We know sin’ 0 = 5———.
X 4yt 4z

 We will now take the derivative with respect to y.

) ow (x2 +3? +zz)2y - (*+2%)2y
2siIM®CcosO—— = 2 .
oy (x* +* +2%)

) ow 2x%y
25sINMCOSO L~ ="
o p
ow X
So = —?

o —_.
oy p sin@coso

aW .
We now substitute the value of -(-3; into the above equation.

ou . “{ xzy ) + | -1y
— = —p'nsinne| 4————— |+ cosnonp’ =
oy P p' sinw cos SHORP 5P 2
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., | —psinnocos® op* o
=np r +cosnap
p* sinwcosw v

= np™! y(_ sin 70 cos® + cosnoa)
psin® p-

_p-1.| —SINAOCOS® | COSNO Sin®
=np : + =
psin® psin®

np""y (—si | na)
=-—2—-;‘ —SIM 2O COS® + COSnOSIN®
\/y +z

_ np"" ysin(o - no)

_np" ysin(n-1o

\/ x +y ow _I ap\

- ncosnO— -+ Smn()) + Slnn(!)n
ay Y iz U’y % |+ ysinnang™ 5 )

1

1 PR
p'ysinno— (y +z ) 2zy

v

y+Z

sin @p” yn cosnox? ) . ]
P P ) Y + psin@p” sin no |

l_
| p* sinw cosm
{+psm @y sinnonp™ yp— p”y sin nmy

psin®
[ np™y? cos? mp® cosno ]
+ p™*! sin o sin nw
_ 1 cos®
y +z? ‘ p"'y? sinnw
+np"'y? sin@ sinno - —————
sino
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1p"y? coswcosne +np" y* sinosinno | .
1 .

—_— n-1_,2 3
- .2 2 . . S 720 ,
y otz |_+p”+1 sin @ sin g — 200 J
sin®
np" Y cos(n-o  pMsinosinno  p"y?sinno
= 2, 2 + 2, .2 T2 o2 i
V +z V +z - (y* +2*)sine

np"'y? cos(n—1)m . p"*! sino sinnw — p"'y” sinne
Vit (y? +2*)sine

np*'y* cos(n- 1o N p' 'z’ sinno

- y: +z* (3? +2%)sino

_ ( ? cos(n—1 - z siﬁnco)

= 2P cosn o “sno )
aw -y2 _:l_ZZ ( . - a(o . i 6p)
— =-5——|p"zncosno — + sinnoznp" —
&y +z o &y

p” sinn(ru%(y2 +z?)_%2y - o

V* +2°

Y2 (p"zn cosnax’y

¥ +2z* \ p*sinocoso

+ sinnoznp™! %p"‘ ZyJ

- p"z sinncoy(y2 +zz) 2

y2 +22

p"*'znsin @ cosnw cos’ wp?y w_l e
— + p"'znsin o sin noy
1 ~ p'sinocose

=2, 2 :

Y+ p"zsinoy

psin®
: 1 n-1 P . p"” yzsinno

= ———| np" " yzcosnhw coso + np"yzsino sinno - ————

y:+z , » ~ sinw
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’ - n-1 .
= %(np"*yz cos(n-No - —p——y—s—"i’—"i)
y +z ’

sino
n-1 .
= __p2 y22 (ncos(n—l)co - su.m(o)
y:+z sin®
ou ow 0 0 \
Fl —np" sin no——+ cosnanp”” BZB where 55 =’5 12z

ow
“We need to find P before continuing. -

y2 +ZZ

We know sin® @ = 5——5—.
X2+ +z

We will now take the derivative with respect to z.

ow (X +)* +22)2z - (57 +2%)2z

2sin®coso— =
0z p'
ow x’z
So — =

0z p'sinocoso’

o Lo .
We now substitute the value of F into the above equation.
4 \

ou . x’z ' L
— =-np'sinne| 54— | + np" *zcosno
p'sinocosm,)

—np” sinnop’ cos’ ® -
+ np" 7z cosnw

p’ sinocos®

—np"*z sin no cos® -
= : + np"*z cosno
: sino o

np"’z, . o
- (-sinnmcoso + cosnosino)
sino _
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n-2

o}

np "z (
yZ +Z2

sin(o - nm)

_—np"'zsin(n-o

- | ,y2+22
@ VxX* +y*

oz y 4z

) 1
p ysmnm[2

w

V:+z

_ Py sinnoz(y® +2°)2

2

y2 +ZZ

y2 +ZZ

(psinopn cosnop? cos® o

p'n cosno—— +y sin nonp”™
Z

.

(v +28) 22z

+ npsinosinnop™ ' — psinno

_p )z
y*+2*\ p* sinm cosm
pn—lyz 4 .
=71 2-\ncosnmcoso) + nsinosinno -
Yy tz :
-1 4 )
p " yz sinno
=— yz ncos(n-1o - —; )
Vi +z sin®
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oz

(yp"ncosnox®z + ysinnonp™zp™ ‘) |

sin 1o

sin @

)

1
psin®
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ow Y+ do , )
z yi P (chosncogz— + smnq)) + zsinnonp™ = |
' 1, L

, p”zsinno)E(y2 +22) 222

y2 +22
psinop”zn cosnax’z o \
1 — + psinop” sinno
_ p’ sinmcosm
Y+ 1

+psinaz sinnonp”'p” 'z — p"zsinnaz

€

psine

(np"322 cosnwp® cos® o » )
1 | P P + p"*'sinosin 7o |

- cos® .
»* +22L ' p"z" sinno J

+np"'z* sinosinno - -
. sin®

| 70"z cosnocoso + np"z* sinnosino
p" 'z sinno

sino

y* +2% | +p" sinosinno —

np"'z* cos(n - o N p™*! sin® o sinnw — p"'z* sin no
2 2* . ’
V' +z (3? +2°)sinw

- np"”'z% cos(n— 1o + p(? +2*) sinno - p'z’ sinno
y+2 / (»* +2%)sine

np"'z* cos(n - 1o . p"'y? sinno

y +z T (y* +2%)sino
o, “ y* sinnw
=———|nz"cos(n-Yo - —/—|
yi+z , ~ sino
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So divf =—p

np" cos(n—- 1o

np" 'y sin(n-1)o

\/yz +72

np"zsin(n - 1o
N y +2°

=np" " cos(n-1o - p"'1[n cos(n-1)o +

po1 SINIO

~p

sin®

o SIN7IW

sinw

Now that all of the entries have been found we can write the Jacobian as a matrix.

’ A
np"ysin(n-1)o np" 'zsin(n - o
/yz + 72 | ‘/yz +72
o I_ny2 cos(n — l)co-l 0" lyz [n cos(n - Do |
> 2[ z? sinneo ——| sinno
y +zi |+ y +z7| — .
sino sin®

n-1

np

—— sin 7o
y'+z

o yz {n cos(n— l)co}

sin®

We now need to compute the divergence of the conjugate.

n-1 2 .
o o p ) 2 sinno |
div/ = np" cos(n-1)o - —— "o + ———
v/ =np"" cos(n—1) N I_ny cos(n—1) P J
n-1 2 .
p " y sinno |
-————|nz'cos(n—-Do + —/——
X +22L (n=1) sin® J
ol [ ny* cos(n-1)o + nz? cos(n—l)co-l
=np" " cos(z - 1o - 2* sinnm ? sin no
p ( ) 2 +22| +— Y : _I
L sinwe sin®
ot | noos(n - Do(y* +22)
=np" ' cos(n—1)o - sin n@
p ( Jo 422 | +— l(yz +Zz) ) J
L sino

ﬁnnm]
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y2 +Z2

:

|

-+

sin®

nz* cos(n—1)o |
¥ sinno

|

/




Next, the parts of the formula will be computed and the formula will be shown to be true.

J, +divf
\
n n-—1 _1 ' _ . _ )
P C?ffn. o np"ysin(n-1)o ‘np"'zsin(n - o
_p smno - - J 2, 2 - J 2, 2
sin® Ytz y +z
o' sm (-1 p* ny? cos(n - o | p”‘iyz ncos(n—1o
P 2 . 2 : y2 +z7| 2 . y2 +2z2 ]
\/)f +z z* sinno sin no
L sine 4 i sino A
p" " sinne
sin®
2 .
n1 |1z cos(n—1)o
n—1 ; n— ncos(n—1)o p
np" y\zsin(n-1o - p*lyz s(r-Do | P
P+ ¥ +z . yre y* sinno
. Sm 720 T
I - sino L S i
p" sinno
sin®
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D'J, +@v)p

g

| ny? cos(n— Do

z? sinno
sin®

3 11970)

pn—l

SIao

ncos(n—1o

sIno’

L sin@ -
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0 {
w1 | 2COS(n— Do
p )z
v +z? _
sinn®
L sin®

n—1

y +z

— N —

nz* cos(n-1o

2 -
smno
L2 Smne

L sSmao -

P sinno

SIao




J, +D[J, +(@vH|D
o

np’f'l cos(n—Dw

np" " ysin(n— Do

nb""ly \Z, sin(n - Do

\

=Af*

np™ ' ysin(n— Do

np™" cos(n—Nw

np™'zsin(n - Do

)

np™" cos(n— 1w

To see how the entries a,; and as; were shown to be equal, see below.

n-1

y:+z

a5

n—-1

5 [ﬁy’ cos(n - 1)(6 +

+ 2p = I.nz2 cos(n— Do+

y +z

z? sinneo
sin®
2 . '| n-1 s
y'sinno | p" sinno
sin® J sin®

p"'sinne p"! sinne

= np"™ cos(n — 1)m +-

=np" cos(n-1a.

sin®

S ®
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n-1 |' 2 . T
. » sin no
a,, = 2p > I_nz2 cos(n- Do L2 S0
y 4z .‘ sino |
i . : z'sinne | p" sinno.
+—— I_ny cos(n—1o+— -
yi+z sino | sin@

p*'sinno  p" sinno

=np"" cos(n— 1o +——; -
sino - sin®

=np"" cos(n - 1o.
Theorem 4.3 has been proven for functions in J* of the form f{g)=q". The
equation 4 . = J, + D’ [J o+ (divf)I ]D was only proven for monomials without

coefﬁcient's._ If a real coefficient were introduced, it would still be true because the
coefficient could be pulled out in front. Since the formula contains all linear operations it
follows from basic linear algebra that the formula is also true for finite sums of monomials.

In other words, it is also true for polynomials.
Is the formula 4 . = J; + D*[J P +(divh)I ]D also true for convergent power

series f(q) = écnq" ? It was shown m Chapter 3 that f converges, and therefore f*
converges on thé same open ball. Since 4 o is made up of the three components of £, all
the entries in 4 /- converge. Thus, 4 - is well-defined for a power series. Also five
entries in Jy are the same as the onesin 4 . so that leaves only four entries left to check.

We need to check these four entries to make sure each one converges.
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Letf(a)= Se,d".

Using our previous change of variables, -

f(@)= %cn(p'i cosnm + sinncoL)
n=0 :

: i [ ) . y;+Zj _|
= 2.c,| p cosnm sIn nE ————
=0 o /yz +vzz JF,

( c,p'ysinnoi-  c,p"zsinnwj )

' =§:c'p"cosn0).+ +
o= vy 4zt Ny +z

no. e e n_ e -
=c,p'ysinnoi = c,p"zsinngj

= ZC " .cosno + Z—'——_ + - .
n=0 np n=0 'yz _|.Z2 n=0 ’yz .|_Z2

This gives us #, v and w.

v v ow ow | |
We need to check —, —, —, and —— to make sure they converge.
oy’ 0z’ Oy - Oz -
| P [, 2 sinno |
?:—. iyz—+z_2 ny* cos(n—No + Tone
Y - n=0
| =c,p'mycos(n—1)o  =c,p"z’ sinnw
=2 T + X
n=0 y +z S »n=0(y +z )smm

2 ou .. - ’
The first piece converges because yzyT <1 and the rest is - which we know

L . ) 2 \ sinno
converges. The second piece is a little trickier. First, 2z 7 < 1. Next, is of
i yi+z sin®

. sinno .. ncos(n—Dao
indeterminate form at ©=0. So im>22? = [im ( ) =n at® = 0. Therefore, -

S o COS®
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. .
the second piece is 2c,7np"" at ® = 0 which converges. So — converges.
¢ n=0 o

oy
o zc p yz ( sinnm)
= Do +
8z yi+z noos(n =l sin®
c,p" yzncos(n Do c,p"" yzsinno
= Z Z—————.
ur y+zt n—O(y +2?) sin

‘ ' ou
The first piece converges because 2y+ 5~ < 1 and the rest is r which we know
yi+z X

' . © . 0v
converges. The second piece also converges for the same reasons stated for P
, ' Y

P

Therefore % Converges. ‘The next two entries % and 5 alsq converge because of
their similarities to the previous two entries. Now that all of the entries of Jr have been
shown to convergé, we know that the formula holds for f(q)= écnq” aswell. This
complefes the proof of Theorem 4.3. |

Corollary

Let f be a complex analytic function. Then 4 .= J;

" Proof of Corollary. |

The corollary is true because the only derivation of the complex plane is the zero

derivation. This reduces the equation in Theorem 4.3 to 4 = J;.
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Going back again to the exponential function which is an example of an elementary

function, we can check to see if it follows our formula.

© 1 . -
Let /(9)= X—q" = ¢’ and show 4. = J, + D [, +@v)1|D.

( )
e’ coss —e' sinscosy —e' sinssiny
e’ sinssin® y e’ sinssinycosy
e’ sinscosy s s
J, = +e’ cosscos® + e’ cosssinycosy|.
e’ sin s sin ycosy e’ sinscos’® y
e’ sin ssiny s s
, +e' cosssinycosy +e’ cosssin® y
\ o)

N e'sinssin’y Y e’ sinscos®
divf =e’ coss — ————— — e’ cosscos’ Yy — —————

t s 2
— € CcosSsIn-
S S A

e
: e’ sins .
=e' coss — —— — e’ cos
s
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J, +D"[J, +(@div)I|D

3

( 3\
0 0 0
P . 2 .
e' sinssin’ y P
e e’ sin ssin y cosy
S -— -
R . P
| .0 , . e’ sins , . :
=+ _ +e’ cosssin® y - — + e’ cosssin ycosy
) . )
P e’ sinssin® y
e’ sinssin y cosy _—
- s
0 s ..
, . P, e’ sins
+e' cosssin ycosy +e' cosscos® y —
T »
\ Y,
" t t t o)
e’ coss . —e'sinscosy  —e’sinssiny
e’ sinscosy e’ coss 0
e’ sinssin 0 e’ coss
\ ' J
=Af.,.

Our formula works for the exponential function, and yields some identities connecting the
power series and closed form expressions. These will be useful later when we are working

with Stokes’s Theorem and the divergence theorem.

~ Next it is also interesting to consider what the formula gives at the point of



expansion, g=0. Still using f{q)=e?, we will evaluate J; and A - at g=0. .

If g=0, then x=0, y=0 and z=0.

So s=0 and #=0.
\ \
e’ cos0 —e’ sin Ocosy —e’ sinOsiny
e’ sin 0sin® e’ sin 0 sin ycosy
0 0 | 0
e sinOcosy 0 ) o . .
J, = : +e” cosOcos” y +e cosOsin ycosy |.
e° sin Osin ycosy e’ sinOcos’ y
e’ sin Osin 0 0
+¢° cosOsin ycosy +e° cosOsin® y
- J
e’ sin 0 . - lim sins
o =\.1 smce o O—S—=1.
Therefore
1 0 o )
0 sin® y+cos® y 0 oo
J, = =lo 1 0
. 00 1
0 0 cos® y +sin® y
J
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D'[J, +(dvf)I|Datq o

(=]

L

(0 0 o)

[0 0 0

o
o
N

o (1 00
J; +D'[J, +(dif)I|D evaluated at g = 0is Lg 1 o|

.
0 0
e’ sin 0sin®
0
0 o ., €sin0
= - +e cosOsin” y— 0
e’ sin 0 sin ycosy
0 0
— ¢’ cosOsin ycosy
\
(0 0
lO cos® y+sin? y—-1

‘sin \ycos\y — sin ycos\y

e’ sin 0sin ycos\y
0
0 .
—e cosOsin\ycosy

e’ sin 0sin®

—

e’ sin0
0

+e’ cosOsin® y—

0 )

sin ycos\y — sin ycos\y

cos® y+sin® y—1

01

79



The Jacobian and the adjoint are equal when evaluated at g =0 for the exponential
function. Both are equal to the identity matrix. While this is true for the exponential

function at the point of expansion, is this true for monomials as well?

Let f(\q)=q2 andg=x+iy+Jz.

“(2x =2y -2z
SoJ, =2y 2x 0 |

22 0 2
000

At g=0 J,=[0 0 0|
0 0 0 ‘

2x -2y -2z
Also Af~= 2y 2x 0

2z 0 2x
0 0O

At g=0 Af*=0 0 0}
’ 0 0 O

It turns out that at the point of expansion, g=0 , for the function f(g) = g*

A - = J,. They are both the zero matrix. This is true for all monomials wheren > 1. For

fl@)=q, J, = Af. =] at g = 0. The same would be true for f(q) = c,q".

. Isit true for f(q)= icnq" ? Since all of the entries of 4 - and J, are the same as
n=0

they were when using f(g) = ¢” except that each entry has a real coefficient and a
summation now, it would still be true. The same reasons used before apply now. At
q=0, x=0, y=0 and z=0. Therefore, p=0, and each entry contains a p so each entry

equals 0. This results in the Jacobian and adjoint being equal when evaluted at g=0.
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Theorem 4.4
For all elementary functions on J, J,(a) = 4 .(a). In other words, the Jacobian and
, - adjoint matrices are equal at the point of expansion.

Finally, we formulate a conjecture which is the conjugate of Theorem 4.4.

Conjecture
" Suppose we have a function f:J — J and J; has ¢ entries on an open, simply-
connected set Q. If J, + D’ [J P +‘(dzf_157 ) ]D satisfies our generalized Cauchy-Riemann

- form, is f elementary at each a € Q.
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CHAPTER 5

Applications

The last part of this paper will consider some applications of elementary functions
on J. We are dealing with a vector field F and so the curl and divergence will be

calculated. The Divergence Théorem and Stokes’s Theorem will be applied to the vector

field. The elementary function, flg)= icnq” , with the exponential function,
n=0
. L 1 N . . . - S
Sf(g)=e= %;an , as a particular example will be considered.

We will begin by.computing the divergence of an elémentary function. Also, the

divergence of the conjugate of £, denoted £, will be computed.
Let f(q) = icnqni cn € R

Since ¢” = p"(cosnw +sinnol)
, i +zj 1
= p"| cosno + sinn —y—J]
/yz +22 J
) p"ysinnwi  p"zsinnaj
= p" coSno + —F———t ———,
' ' \/y +z \/y +z

=)

p"ysinnai  p"zsinnaoj J

we have f(q)= icn p" cosno + +
n=0 "\ N R N (o
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sin noi zsinnay
vwhereu—Zcp COSna, y= 3 %Py P Yy

‘n=0 ‘ "-0.1/y +z* dw= ”}3’ \/y +27

Ei
Since d1vf = §u+ a_v +6_ , these partial derivatives need to be computed.

Ou

P glc np"™ cos(n— Do. |

6v = c,p" ‘ z? sinno
ay ~E1y 2 [ny cos(n—No + —; }

sin@
ow = cp| y? sinno
o " Eyr e | ke £ TR
[ z* sinnw 2 sinno |
ny* cos(n— Do +———+nz? cos(n - 1)0)+y————|
divf = Zc p" Y neos(n-No + — SO SO
n=1 » y +z
w© 1, Ca g , )\ Sinno |
; |_(y +z )ncos(n—l)a) + (y +z )ncos(n—l)m + (y +z ) o J

inno
Zc o l|'2cos(n Do + = ]
sin®

Oou Ov Ow ® _, sinno
Similarly, lef——x 5 E=—n§1 o Sno

Now we will compute the divergence of the exponential function as well as the

divergence of its conjugate. We will be using the exﬁ]icit form of exponential instead of

the series form.
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=1 -4 e
For f(q)=e = Z;ﬁq" ,ed =¢' coss + ie' sinscosy + je' sinssiny. .
. n=071! .

ou ov ow

poar

Agaig divf = P +5—Z—

ov e
‘where — = e’ coss, — = —sinssin® y + e’ cosscos®
. .

Ox oy

ow e 2 t <2
and 2, = 5 Smscos “y + e’ cosssin® y.
z s ‘

t . et

‘ : e . : .
Therefore, div f = e’ coss+—sinssin® y+e’ cosscos’ y+—sin scos’ y+e’ cosssin’ y
s s

t

=2e’ coss+—sins
S .

p— t 1
Similarly, div 7 = — Ssms. ,

Before applying the divergence theorem, we will compute the curl of

flg)= icnq" and its conjugate, as well as the curl of the exponential function and its
n=0 .

cqnjugate.
i j ok
' 0 0 0
The curl f ax o %
u v ow

(@ v oou_dw v 6u)
oy 0z 0z ox’ Ox dy)
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For f(q)= §cnq”,

p

35 p"yz|

: ncos(n— o ——
w1 y* + 27 sn—1) sin®

- =c,np"zsin(n-1o

= c,np" " ysin(n- 1o

curl f =

©c 0" lyz| sinno
2,0y o]

n=1 y2v +Z2 L

= ¢ np"'zsin(n— o

ncos(n-— ’1)(;) -

n=1

= ¢, np" ' ysin(n- o

Z

\ n=1 \/yz—-l-zZ

= ¢,np"zsin(n - Do

=[0, -2
n=1 *

Similarly, curl f = (O, 0, 0).

Theorem 5.1

+ Z

n=1

— , 2%
y +z n=l

2 c,np" 'y sin(n- l)co}

. y2 +Z2

\

sinnm]
sino®

The vector field afforded by the conjugate of an elementary on J is curl-free, whereas the

curl of a vector field afforded by the elementary function itself lies in the 7/ — plane.

Now we will compute the curl of the exponential function and its conjugate.
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For f(q)=¢’,

t - 3\
e . . .
——sin ssinycosy+e’ cosssinycosy
§ et . : ,
+—sinssin\ycosy—e’ cosssin \ycos\y
s 3

¢

curl f = e’ sinssin\y+ e’ sinssiny

—e' sinscosy— e’ sinscosy

J
= (0, 2¢' sinssiny, - 2e’ sinscosw).
Of course, curl f= (0, 0, O).
In summary,
f(@)= Zec,q" g flq)=e’
© [ sin nw e
div f chr"’ll_Z cos(n—Dw +—; ] 2e’ coss+—sins
=1 sinw s
) 1 ot o
divi Ferm s:me e’ sins
n=1 simw. S
: 0 \

(
= ¢ nr" "z sin(n— Dw ( o, ')
B |
cutl f n=1 Yy +z

b

’ |
t . .
2e sinssiny,

— 2e" sinscos
= ¢, "' zsin(n—)w Y
22 2 . 2

\ n=l y +z J
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For comparison, we will compute the curl of the complex exponential function and
its conjugate.
Let f(z)=e’, wherez=x+iy then f(z)=¢" = e"(cosy+isiny).

This givesus # =e* cosy and v=e" sin y.

Therefore, curl f (o o a”)
erefore, curl f =0, ———
ox oy
=(0, e*siny+e” siny)
= (O, 2¢” siny).

Similary, curl f =(O, O).

These results coincide with the results obtained for f{g)=e? since in the xy-plane
=0 and the curl of e? would then be (0, 0, —2e'sin s). There is a difference in sign

which is acceptable because the curl needs an orientation defined.

What about the general elementary function? It must also agree with the complex

exponential function when restricted to the xy-plane. This would mean z = 0 and

curl f = (O, 0, 2Xc np"" sin(n- 1)0)). Notice that I let =1 instead of 1. Itis
n=1

Yy
2
vy
not necessary to worry about the sign, as said previously, since it just gives the
orientation. The last entries for each curl must agree. These entries are

2¢"siny and 2Xc,np" " sin(n—1)o. In order to compare these, some variable changes
. . n=1

will be made.
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1
Letc, =—
n!

then 2 icnnp"'l sin(n - 1)o
n=1
=2 21_| 'sin(n- Do

w(n 1)’(Jx +y )— sin(n - 1)o.

Converting from these variables to polar coordinates, the elementary function’s entry is

2Ei(n '

* sin(n- 1.

Since the curl of the élementary function must agree with the curl of the complex

exponential function, an identity results.

e*siny=2 “sin(n-o.

n=l(n— 1)! 4

Now that the divergence and curl have been computed for both functions, the

Divergence Theorem and Stokes’s Theorem can be applied.

Divergence Theorem on unit ball

LetF be continuously differentiable throughout the unit ball.

: bThen ) JF-rdo=) J | divFaV where 7 is thé outward unit normal.

sphere

In order to use the divergence theorem we will need to decide on the variables to

be used and the limits of integration. Two different methods were used for doing this.
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The first method is a variation on the cylindrical coordinate system.

Before integrating, the limits of intégration needed to be determined. Once found,
the limits were checked by integrating over the unit ball. The following variables will be

used. ‘ |

t - distance on the x—aﬁs —ﬁ <t< \/_1——.5'2
s - length ofyector ,O <s<1

\ - angle vector makes with xy-plane 0<y<2n
Jacobian = s

Checking the limits of integration over the unit ball, we have

21 1 V1s® 2 Vi-s®
J Tsdtdsay=T 1 st] dsdy
0 0_/1—¢? 00 V1=

2

= | J2sV1-s*dsdvy.

00

Letting # = 1— s* and du = — 2sds,

= —2Jn }u%dud\u
00

. ) .
=—Jﬁzu%:| ay
03

1

219 2 27 4
=7 = 5“’] =~ which is what it should be,
0 0
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After checking the limits of integration, the divergence theorem was applied to the

conjugate of the exponential function.

—e'
——sms.
s

Given f(q) = e? then divf =

it 2
Sol | I’div]dv=-f J' Tet sinsdydrds
ball

0_y1-s* 0

P Toe s ]ands

=— sins| dt
0_ 1-s% 0

‘ \ll-sz

[e' sin sds

2

=- _ZnJ
0

—/1-s

=- ZRJ e' sin's ds

0

:I«/l—T- v
-Vi-s?

=- 21t£sins(e‘/l'7 —e"/'?)ds

=— 47t£sinssinh(\/l—s2 )dg

No elementary antiderivative exists for this integral. Variations of this integral
appear in the theory of electrodynamics. In order to evaluate it, we will try a different

approach.

This time spherical coordinates will be used. We will begin by applying the
‘divergence theorem to the conjugate of the general elementary function. The variables of

integratioﬁ will be p, ®, and . They are defined below.
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p = magnitude of § = /x* +y* +z> 0<p<1
o = angle ¢ makes with the real axis 0 <o <=

\j/ = angle the C - plane (g lies in) makes with the xy - plane 0< y <7
The Jacobian factor for spheﬁcal coordinates is p’ sino.

!sin no

Given f(q),= Eoc"q » € R then divf = ,.Z-i sin®

m di";;f" = ‘j jf jicnp"“ sin nodpdody
© ball , 0 0 0 ,

2% ¢, | 0 when 7 is even
-2 when 7 is odd

v=—,,z=l:-(.:v_n(n+2)

w 2T

-3 [- d -
ZI n(n+2) \ywhennlsodd Owhennlseven

_10
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Lettingn=2k+1fork =0 —> o,

2k+l )

(2k + 1)(2k +3)

we get -4 Z

. Cokn
Therefore | | fdn(f 47|:§) (2k+l)(2k+3)'

Now the divergence theorem will be applied to the elementary function, using the

same limits and Jacobian.

- & © \ sin no
Gi = Xc q" ,then divf = ""|:2 -Do+
ven f(q) E)c"q en yf Elc" p cos(n . o .

sinno | , .
p* sin®
in @

j I Idlvfdv f’ I }an p""l[Zcos(n l)a)+

© 2
— 2 T ]. n+1 d 4 2k+1
2.2c - cos(n 1o sin odpdady+ ng(2k+1)(2k+3)

n+2 1

-| C2k+1
cos(n l)co smmJOdmd\j/+4n Z(2k+ N2k 53)

= Jﬂ Tcos(n Do sin (Dd(Dd\jl+ 4n Z C2kn

n=1n +20 o2k +1)(2k + 3)
% p— f 12 {sinfo (1~ 1)0] + sinfw + (1~ Do dady+ 4n p e +012)'E21 e
B 20T - dnc i S S
= in ol COZ(E; e cojznm 1, i +44” &k +012)z+21k +3)
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= ¢, *cos(n—2)o cosna)]

+4 Coksl
m=in+20 2-n dy+ ‘n:Z

o2k + D2k +3)

=c 2w 1 1) (1 1)d\v Copn

= - +— |- - + '

-Em+2£( n-2 n) (n 2 n “kzo(zk+1)(2k+3)
when nis odd

~ neven =0

I 22(l ! )d +4nZ C2kn
TEnt20 2 VT S0k 1)k +3)
n odd

= c, T 1 1)] Cppn
n—1n+2| 2(n—n—Z v T 47tkzo(2k+1)(2k+3)

n odd
»27nc,| - 1  Copn
=Zus 2I n(n— 2)J 4“k§(2k +1)(2k +3)
n odd
e ‘8_7rcn © 41|:cln
% E—ln(n +2)(n-2) * Eln(n +2)
n odd - nodd
n-2 2
=4 :
nnZ_ic [n(n +2)(n-2)  nn+2)(n- 2)] ~
n odd
. o -4
=47 Z—c"(n—) n odd

mn(n+2)(n-2)

. i czk+1(2k 3)
=02k +1D)(2k +3)(2k-1)°

czk+1(2k 3)
(2k+1)(2k +3)(2k-1)°

Thereforef [ Tdivf =4n Z
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EE

Instead of i mtegratmg the divergence of the exponential function, the prevmus
work w1]1 be apphed

‘=1 1 1
Let f(g)=e? = %;q” with ¢, = —

R R OV Th

- 2k-3 ®
From previous work, J [ ] divf =4n 2(2 k :12)?211(6_'_ 3)( 2) Y for f(q) = gocnq”

1 |
But for f(q)=¢" = £—q" and cy = |

(2k-13)
_ M Idlvf o Z:(2k +1D)(2k+3)2k -2k +D!

Again the previous Work will be applied to find the integral of the conjugate of the

exponential function.

' . " Coks1 =S
From previous work | . | fdlvf— 4“%(2k+1)(2k+3) for £(q) gcnq
But for f( )=e"=§—qi c =;

1 wo ! N YT

,. _ 1

I e = 4“%(2k+1)(2k+3)(2k+1)'

—4'(1+ 1+ 1+"+' L +)

T 1373531 5. 7.5 T T 2k + )2k + )2k + D))

We want to rewrite this series and compare it with the integral we found previously using

cylindrical coordinates. We recall the MacLauren expansion of the hyperbolic sine

function from which we derive the following.
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3 5

X
sinh(x) = x+§+§+f..

sinh(¥) . x* x*
" =1+ 30 + 51 +...

Isinh(x)_ . x? N x’ N
x 7331 5.5

csinh(x)  ,  x*  «x°

x] BTN
sinh(x)]v x? x* x’
— ==+ + +..

j[xj x 37 3.5.31 5.7.51

'v Let g(x) = T dt = shi(x), then .f[xjs ):I= ng(x)dx.

Therefore | | | divf = - 41'5] xg(x)dx

- 4n£[xz inh(7 )dtde for f'(q) = Zc q".

In order to finish this, integration by parté will be used.

LGN

dv = xdx
du=s—££2dx v=—1-x2
X 2

Sof | def-_ﬂ(ismh(x)I ) s snha) ]

X
1 2 o« ! 1} .
=— 4m —x"shi(x) ——)xsinh xdx |.
12 o 20
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Again integration by parts will be used. o

u=x dv = sinh xdx

du=dx v =coshx

0

:SoJ"I I&ivf=— 471;[%x2shi(x)l ——;—{xcoshxn —]coshxdx}]

=- 27tx2shi(x)|: +2nx cosh x|} — 27 sinh x|
= — 2mshi(1) + 27 cosh(1) - 27 sinh(1).

Another identity can be obtained by equating What was just found with the attempt

made previously using cylindrical coordinates.
For f(g)=¢”

[ ] fdivj_r =~ 4n£sinssinh(\/1—7)ds,

and |

J I [divf = - 2mshi(1) + 2% cosh(1) - 27 sinh(1)-

By equating these two results,

jsins sinh(\/ 1-s )dg = %[shi(l) — cosh(1) + sinh(1)]

=%—shi(l)—-%(e1 +e")+—§—(e1 -e™ ]

- :shi(l) ——%(e - B] - %[shi(l) —ﬂ

| —

9% -



An approximation for shi(1) is required to estimate this integral.
. sinh ¢
'Given shi(x) = Tdt
o t

sinh #

then shi(1) = J dt
, 0

—1+L+L+ >1
T 313 515 T T

Therefore, shi(1) is slightly greater than 1. (s%i(1) ~ 1.0573)
Substituting this value back in,

1

N smssinh(\/l—sz\)ds;%[shi(l)-ﬂ

-0
~ —1—[1——1]
2 e

Thus we have obtained an explicit evaluation of an integral form which appears in the

theory of electrodynamics.
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The Divergence Theorem has been applied to f'and f forf(q) = %cnq” and
f(gq)=e?. Now some results of Stokes’s Theorem will be stated.

Stokes’s Theorem

If C bounds a surface S, and S lies within the region of convergence for fand F '

(respectively F ) is a vector ﬁeld afforded by f (respectively f), then

IF -ds = H curl F-77dA (and similarly for F ).
C S -

Theorem 5.2
For the conjugate of an elementary function f'with

( 2np" 'zsin(n-Do  2np"'ysin(n- 1o

wlf =0 T T e

integral of F over C is equal to zero. Whereas for £, the line integral of F over any C

] and curlf = (O, 0, 0), the line

lying in a plane parallel to the 77 — plane is equal to zero.
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CHAPTER 6

Conclusion

‘The purpose of this paper was to study the properties of functions defined on a
distinguished hyperplane of the quaternion. We chose J to be a 3-dimensional subspace
which was closed under integral powers. This permitted the construction of functions on

J by power series with real coefficients.

These functions were called éleméntary functions and were shown to converge on
a ball centered at the point of expansion which was taken without loss of generality to be
the origin. The significance of these functions is that they generalize aﬁaiytic functions on -
the complex plane to three dimensions. The studies that followed were similar to those
done in real and complex analysis. Throughout the paper, the exponentiai function, which
is an example of an elementary function, was used to demonstrate the properties of
elementary functions. The exponential function, defined as a i)ower s\eries with real
coefficients, was shown to converge on the whole spacé. Because the expdnentiai

function could be written in series form as well as component form, comparisons were

made which led to interesting identities.

Continuing with what was done in complex analysis, an attempt was made to’
define a quaternionic derivative. Since elementary functions had properties similar to
complex analytic functions, it was hoped that the derivative could be defined as it was

done in complex analysis. This was not possible, however. Instead, the term by term
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po§ver rule was used to define a new function called the deﬁed function, and a
relationship between the adjoix.lt‘of the/derived function and the Jacobian was estab]iShéd. R
In real and complex space, these two matrices are identical. Howéver, 111 quatelhioniq_
space, the relationship was different. An equation relating these objecfs was obtained

using derivations on J".

Finally, some applications of these elementary functions were considered. The
Divgfgence Theorem and Stokes’s Theorem, which have app]icatiohs in physics, were
appIied to the quaternionic vector field. Special emphasis was given to the exponential

function as an example.

The> studies done in this paper are just the beginning of what could be explored in.
the area of quatefniohic analy'sis.J Since the upper-half space of J is a model for
hyperbo]ic‘ geometry, these elementary functions may have app]icafions in this field of
study. In the latter part of the paper, the curl of the Vecfor field afforded by elementary
functions and their quaternibnic conjugates was computed. Since the curl of the conjugate
turned out to be zero on an open ball which is simply connected, we know a scalér
potential function exists for the conjugate function. What applications might be derived
from the scalaf potential function, and what methods could be used? Also, since complex
analytic functions are useful in the theory of planar elasticity, what are the applications of

these 3-dimensional elementary functions in the theory of elasticity?

Finally, since the main identity in the paper (Theorem 4.3) expresses the adjoint

matrix explicitly in terms of the Jacobian matrix, we have eﬁ’ectively found an analogue
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for ‘the determination of coeﬂicients of the power series expansion of a complex analytic
function from the Valugs of its deﬁatwes. Two questions in particular} occur. What
properties of the Jacobian bf a function f:J — J ensure tilat it has an expansion as an
elemeptary function on some ball? Also, is there a Cauchy integral-t&pe formuia for an
elementéry function f:J — J? As one can see, the topic of this paper has man};

applications and further areas of studies which can be explored.
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