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ABSTRACT

In this thesis, we searched several monomial and permutation progenitors for symmet-

ric presentations of important images, nonabelian simple groups, their automorphism

groups, or groups that have these as their factor groups. Our target non-abelian sim-

ple groups included sporadic groups, linear groups, and alternating groups. In this

presentation, we have described our search for the homomorphic images through the

permutation progenitor 2∗15 : (D5 ×3) and constuction of a monomial representation

through the group 23 : 3. We have constructed PGL(2,7) over 23 : 3 on 6 letters and

L2(11) over 22 : 3 on 8 letters. We have also given our construction of S5×2 and L2(25) as

homomorphic images of the monomial progenitors 3∗3 :m D4 and S∗6 : S5. In addition,

we have described as to how to solve the extension problem for finite groups through

the example of the group (4×22) :· A4. We note that the symmetric presentations and

constructions given in this presentation are original, to the best of our knowledge.
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Introduction

In Chapter 1, we will discuss progenitors. We begin by listing definitions and

theorems relevant to progenitors. In this chapter, we construct permutation progeni-

tors of free products. We utilize the computing program MAGMA to very the success of

a built progenitor. We will also find the homomorphic images of progenitors factored

by given relations.

In Chapter 2, we will discuss a monomial progenitor. The monomial progen-

itor will be constructed using a process known as the "lifting process." This process

grants us the ability to produce a monomial matrix to obtain a new control group on

which our monomial progenitor will be constructed from.

In Chapter 3, we describe the process to solve the extension problem for fi-

nite groups through examples.

In Chapter 4, we construct the double coset enumeration of a group G over a

transitive group N of finite permutations and monomial progenitors.
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Chapter 1

Preliminaries

1.1 Definitions and Theorems

Definition 1.1.1. (Permutation) If X is a nonempty set, a permutation is the bijective

mapping α : X → X . [Rot95]

Definition 1.1.2. (Disjoint) Two permutations α,β ∈ SX are disjoint if every x moved

by one is fixed by the other. In symbols, if α(a) 6= a, then β(a) = a, and if α(b) = b, then

β(b) 6= b. [Rot95]

Theorem 1.1.3. Every permutationα ∈ Sn , is either a cycle or a product of disjoint cycles.

[Rot95]

Definition 1.1.4. (Semigroup) A semigroup (G ,∗) is a nonempty set G equipped with

an associative operation ∗. [Rot95]
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Definition 1.1.5. (Symmetric Group) The symmetric group, denoted Sn is the set of all

permutations of the nonempty set X = {1,2, ...,n}. Sn is a group of order n! on n letters.

[Rot95]

Definition 1.1.6. (Group). A group is a semigroup G containing an element e such that

(i) e ∗a = a = a ∗e for all a ∈G

(ii) for every a ∈G, there is an element b ∈G with a ∗b = e = b ∗a. [Rot95]

Definition 1.1.7. (Order) If G is a group, then the order of G, dentoted |G|, is the number

of elements in G. [Rot95]

Definition 1.1.8. (Free Group) If X is a subset of a group F , then F is a free group with

basis X if, for every group G and every function f : X → G, there exists a unique homo-

morphism ϕ : F →G extending f . [Rot95]

Definition 1.1.9. (Presentation) Let X be a set and let ∆ be a family of words on X . A

group G has generators X and relations∆ if G ∼= F /R, where F is the free group with basis

X and R is the normal subgroup of F generated by ∆. The ordered pair (X |∆) is called a

presentation of G. [Rot95]

Definition 1.1.10. (Progenitor) A progenitor is a semi-direct product of the following

form: P∼= 2∗n :N = {πw |π ∈ N, and w is a word in the ti }, where 2∗n denotes a free product

of n copies of a cyclic group of order 2 generated by involutions ti for i=1,...,n; and N is
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a transitive permutation group of degree n which acts on the free product by permuting

the involutory generators.[Curt96]

Lemma 1.1.11. (Factoring Lemma) (Know as the Grindstaff Lemma) Factoring the pro-

genitor m∗n :N by (ti , t j ) for 1 ≤ i < j ≤ n gives the group mn :N.[Grind15]

1.2 Permutation Progenitor 2∗15 : (D5 ×3)

We will write the progenitor generated by x ∼ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

and y ∼ (1,4)(2,8)(3,12)(6,9)(7,13)(11,14). The presentation of N is< x, y | y2, x−4 y x y >.

We use MAGMA to find the permutation that stabilizes 1 in N , denoted by N 1. The per-

mutation that stabilizes 1 is (2,5)(3,9)(4,13)(7,10)(8,14)

(12,15). We use our Schreier System to find the word that corresponds to the permu-

tation (2,5)(3,9)(4,13)(7,10)(8,14)(12,15) which is y x . In order to complete our pro-

genitor of G , we add the stabilizer of 1 in N to the presentation. We also add t 2 to

the presentation since our t ′i s are of order 2. Thus the progenitor of G =< x, y, t |
y2, x−4 y x y, t 2, (t , y x ) >. In order to verify the progenitor, we must re-write our presen-

tation of N in terms of the stabiliser and orbits of the stabiliser of N 1. The orbits of N 1

are {1}, {6}, {11}, {2,5}, {3,9}, {4,13}, {7,10}, {8,14}, and {12,15}. We can verify our progen-

itor in MAGMA by applying the Grindstaff Lemma on the following code: G < x, y, t >:=
Gr oup < x, y, t |y2, x−4∗y∗x∗y, t 2, (t , y x ), (t , t x5

), (t , t x10
), (t , t x ), (t , t x2

), (t , t x3
), (t , t x6

), (t , t x7
),

(t , t x11
) >;

#G ;

Our progenitor G is infinite. In order to find a finite presentation, we must factor G by

relations.
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1.2.1 Writing First Order Relations

We can compute all the possible relations of G by computing the orbits of the

centralizer. In order to achieve this, we must find identify the conjugacy classes of N.

Conjugacy Classes of N

Class Representative of Class
# of

elements

in the class

C1 e 1

C2 x2 y x = (1,13)(3,6)(4,10)(5,14)(8,11)(9,15) 5

C3 (x y)2 = (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) 1

C4 (y x−1)2 = (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10) 1

C5 x3 = (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15) 2

C6 x2 y x y = (1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12) 2

C7 x y = (1,8,6,13,11,3)(2,12,7)(4,5,9,10,14,15) 5

C8 y x−1 = (1,3,11,13,6,8)(2,7,12)(4,15,14,10,9,5) 5

C9 x = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 2

C10 x2 = (1,3,5,7,9,11,13,15,2,4,6,8,10,12,14) 2

C11 y x−2 y = (1,8,15,7,14,6,13,5,12,4,11,3,10,2,9) 2

C12 y x−1 y = (1,12,8,4,15,11,7,3,14,10,6,2,13,9,5) 2

Table 1.1: Conjugacy Classes 2∗15 : (D5 ×3)
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Now that we found the conjugacy classes and have identified the represen-

tative for each class, we proceed to find the centraliser and orbits of the centraliser of

each class.
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Orbits of Centraliser(N , Rep)

Class Representative Centraliser(N , Rep) Orbits of Centraliser(N , Rep)

C2 x2 y x
< (1,13)(3,6)(4,10)

(5,14)(8,11)(9,15) >

{2,12,7}, {1,13,11,8,6,3}, {4,10,14,5,9,15}

C3 (x y)2 < (1,6,11)(2,7,12)

(3,8,13)(4,9,14)(5,10,15) >
{1,2,4,3,8,5,12,9,6,13,10,7,14,11,15}

C4 (y x−1)2 < (1,11,6)(2,12,7)

(3,13,8)(4,14,9)(5,15,10) >
{1,2,4,3,8,5,12,9,6,13,10,7,14,11,15}

C5 x3 < (1,4,7,10,13)(2,5,8,11,14)

(3,6,9,12,15) >
{1,4,11,7,14,6,10,2,9,13,5,12,8,15,3}

C6 x2 y x y
< (1,7,13,4,10)(2,8,14,5,11)

(3,9,15,6,12) >
{1,7,11,13,2,6,4,8,12,10,14,3,5,9,15}

C7 x y
< (1,8,6,13,11,3)(2,12,7)

(4,5,9,10,14,15) >

{2,12,7},

{1,13,8,11,6,3},

{4,10,5,14,9,15}

C8 y x−1 < (1,3,11,13,6,8)

(2,7,12)(4,15,14,10,9,5) >

{2,7,12},

{1,13,3,6,11,8},

{4,10,15,9,14,5}

C9 x
< (1,2,3,4,5,6,7,8,

9,10,11,12,13,14,15) >
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

C10 x2 < (1,3,5,7,9,11,13,

15,2,4,6,8,10,12,14) >
{1,3,5,7,9,11,13,15,2,4,6,8,10,12,14}

C11 y x−2 y
< (1,8,15,7,14,6,13,5,

12,4,11,3,10,2,9) >
{1,8,15,7,14,6,13,5,12,4,11,3,10,2,9}

C12 y x−1 y
< (1,12,8,4,15,11,

7,3,14,10,6,2,13,9,5) >
{1,12,8,4,15,11,7,3,14,10,6,2,13,9,5}

Table 1.2: Orbits of Centraliser 2∗15 : (D5 ×3)
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From the orbits of the centraliser, we obtain the following first order relations:

First Order Relation (N , Rep)

Class Relations

C2 x2 y xt x , x2 y xt , x2 y xt x3
,

C3 (x y)2t ,

C4 (y x−1)2t ,

C5 x3t ,

C6 x2 y x y t ,

C7 x y t x , x y t , x y t x3
,

C8 y x−1t x , y x−1t , y x−1t x3
,

C9 xt ,

C10 x2t ,

C11 y x−2 y t ,

C12 y x−1 y t

Table 1.3: First Order Relations 2∗15 : (D5 ×3)

Now we add the first order relations to the progenitor to obtain a

homomorphic image of G.

G =< x, y, t |y2, x−4 y x y, t 2, (t , y x ), (t , t x5
), (t , t x10

), (t , t x ), (t , t x2
),

(t , t x3
), (t , t x6

), (t , t x7
), (t , t x11

), (x2 y xt x )a , (x2 y xt )b , (x2 y xt x3
)c ,

((x y)2t )d , ((y x−1)2t )e , (x3t ) f , (x2 y x y t )g , (x y t x )h , (x y t )i , (x y t x3
) j ,

(y x−1t x )k , (y x−1t )l , (y x−1t x3
)m , (xt )n , (x2t )o , (y x−2 y t )p , (y x−1 y t )q >

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 983040
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 160

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 48

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 320

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 48

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 491520

1.3 Permutation Progenitor 2∗15 : (D3 ×5)

We will write the presentation for the progenitor of the Transitive Group 15.

Let N be the subgroup generated by x ∼ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) and y ∼
(1,11)(2,7)(4,14)(5,10)(8,13). The presentation of the subgroup N is< x, y | y2, x−4 y x−1 y >.

We will let t ∼ t1, this means that t commutes with the stabiliser of 1 in N . We use

MAGMA to find the permutation that stabilizes 1 in N . The permutation that stabi-

lizes 1 is (2,12)(3,8)(5,15)(6,11)(9,14). We apply the Schreier System in MAGMA. The

Schreier System will produce the word corresponding to its permutation representa-

tion. The word corresponding to the permutation (2,12)(3,8)(5,15)(6,11)(9,14) is y x .

We add the y x to the presentation of N and obtain < x, y, t |y2, x−4 y x−1 y, y x , t 2, (t , y x ) >.

We proceed to find the orbits of the stabilizer of 1. The orbits of the stabilizer are

{1}, {4}, {7}, {10}, {13}, {2,12}, {3,8}, {5,15}, {6,11}, and {9,14}. We make t commute with

the orbits of the stabilizer. We add the each to the progenitor to obtain the presentation

G =< x, y, t | y2, x−4 y x−1 y, t 2, (t , y x ), (t , t x3
), (t , t x y ), (t , t x4 y ), (t , t x7 y ), (t , t x ), (t , t x2

), (t , t x4
),

(t , t y ), (t , t x3 y ) >.

The progenitor is infinite. In order to make it progenitor finite, we factor the progenitor

by relations.
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1.3.1 First Order Relations

We can compute all the possible first order relations by computing all the

orbits of the centralizes of the conjugacy classes of N . Let’s find the classes of N .

Class Representative of Class # of elements in the class

C1 e 1

C2 y x = (2,12)(3,8)(5,15)(6,11)(9,14) 3

C3 x y x−1 y = (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) 2

C4 x3 = (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15) 1

C5 x−3 = (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6) 1

C6 x y x−2 y = (2,11,5,14,8)(3,12,6,15,9) 1

C7 x2 y x−1 y = (1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12) 1

C8 x y = (2,3,14,15,11,12,8,9,5,6) 3

C9 x−2 y = (1,4,7,10,13)(2,15,8,6,14,12,5,3,11,9) 3

C10 y x2 = (1,13,10,7,4)(2,9,11,3,5,12,14,6,8,15) 3

C11 y x−1 = (1,10,4,13,7)(2,6,5,9,8,12,11,15,14,3) 3

C12 x = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 2

C13 x2 = (1,3,5,7,9,11,13,15,2,4,6,8,10,12,14) 2

C14 y x−1 y = (1,5,9,13,2,6,10,14,3,7,11,15,4,8,12) 2

C15 x−2 = (1,14,12,10,8,6,4,2,15,13,11,9,7,5,3) 2

Table 1.4: Conjugacy Classes 2∗15 : (D3 ×5)
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Now that we have listed the conjugacy classes of N , we will find the cen-

traliser of each class. In addition, we wil find the orbits of each centraliser.
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Class Representative Centraliser(N , Rep) Orbits of Centraliser(N , Rep)

C2 y x < (2,12)(3,8)(5,15)(6,11)(9,14) > {1,13,10,7,4},

{2,12,14,9,11,6,8,3,5,15}

C3 x y x−1 y
< (1,6,11)(2,7,12)(3,8,13)

(4,9,14)(5,10,15) >
{1,6,13,11,3,10,8,

15,7,5,12,4,2,9,14}

C4 x3 < (1,4,7,10,13)(2,5,8,11,14)

(3,6,9,12,15) >

{ 1, 2, 11, 3, 7, 12, 4, 8, 13, 5, 14, 9, 6, 10, 15 }

C5 x−3 < (1,13,10,7,4)(2,14,11,8,5)

(3,15,12,9,6) >

{ 1, 2, 11, 3, 7, 12, 4, 8, 13, 5, 14, 9, 6, 10, 15}

C6 x y x−2 y < (2,11,5,14,8)(3,12,6,15,9) >
{ 1, 2, 11, 3, 7, 12, 4, 8, 13, 5, 14, 9, 6, 10, 15 }

C7 x2 y x−1 y
< (1,7,13,4,10)

(2,8,14,5,11)(3,9,15,6,12) >

{1, 2, 11, 3, 7, 12, 4, 8, 13, 5, 14, 9, 6, 10, 15}

C8 x y < (2,3,14,15,11,12,8,9,5,6) > {1, 7, 13, 4, 10 },

{ 2, 12, 3, 8, 14, 9, 15, 5, 11, 6}

C9 x−2 y
< (1,4,7,10,13)

(2,15,8,6,14,12,5,3,11,9) >
{1, 4, 7, 10, 13 },

{2, 12, 15, 5, 8, 3, 6, 11, 14, 9 }

C10 y x2 < (1,13,10,7,4)

(2,9,11,3,5,12,14,6,8,15) >
{ 1, 13, 10, 7, 4 },

{ 2, 12, 9, 14, 11, 6, 3, 8, 5, 15 }

C11 y x−1 < (1,10,4,13,7)

(2,6,5,9,8,12,11,15,14,3) >
{ 1, 10, 4, 13, 7 },

{ 2, 12, 6, 11, 5, 15, 9, 14, 8, 3 }

C12 x
< (1,2,3,4,5,6,7,8,

9,10,11,12,13,14,15) >
{ 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15 }

C13 x2 < (1,3,5,7,9,11,13,

15,2,4,6,8,10,12,14) >
{ 1, 3, 5, 7, 9, 11, 13,

15, 2, 4, 6, 8, 10, 12, 14 }

C14 y x−1 y
< (1,5,9,13,2,6,10,

14,3,7,11,15,4,8,12) >
{ 1, 5, 9, 13, 2, 6, 10,

14, 3, 7, 11, 15, 4, 8, 12 }

C15 x−2 < (1,14,12,10,8,6,4,2,

15,13,11,9,7,5,3) >
{1, 14, 12, 10, 8, 6, 4, 2,

15, 13, 11, 9, 7, 5, 3 }

Table 1.5: Orbits of Centraliser 2∗15 : (D3 ×5)
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From the orbits of the centraliser, we obtain the following first order relations:

First Order Relations (N , Rep)

Class Relations

C2 (y x t )a

C3 (x y x−1 y t x3
)b

C4 (x3t x y )c

C5 (x−3t y x−1
)d

C6 (x y x−2 y t y x2
)e

C7 (x2 y x−1 y t x ) f

C8 (x y t y x )g

C9 (x−2 y t x2
)h

C10 (y x2t x y x )i

C11 (y x−1t x y x−2
) j

C12 (xt x−1
)k

C13 (x2t x y x−1
)l

C14 (y x−1 y t y )m

C15 (x−2t y x−2
)n

Table 1.6: First Order Relations 2∗15 : (D3 ×5)

We add the first order relations to the progenitor to obtain a homomorphic

image of G,

G =< x, y, t | y2, x−4 y x−1 y, y x , t 2, (t , y x ), (y x t )a , (x y x−1 y t x3
)b , (x3t x y )c , (x−3t y x−1

)d , (x y x−2 y t y x2
)e ,

(x2 y x−1 y t x ) f , (x y t y x )g , (x−2 y t x2
)h , (y x2t x y x )i , (y x−1t x y x−2

) j , (xt x−1
)k , (x2t x y x−1

)l , (y x−1 y t y )m ,
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(x−2t y x−2
)n >

1.4 Permutation Progenitor 2∗24 : (4×2 : S3)

In this section we will write the presentation for the progenitor 2∗24 : (4×2) :

S3 N is generated by x ∼ (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,23)(18,21)(20,24),

y ∼ (1,15,17)(2,13,18)(3,11,19)(4,16,20)(5,10,21)(6,14,22)(7,9,23)(8,12,24), and

z ∼ (1,2,4,5)(3,8,6,7)(9,16,12,15)(10,11,13,14)(17,22,20,19)(18,24,21,23). The presen-

tation of N =< x, y, z|x2, y3, z4, (y−1x)2, z−2 y−1z2 y, (y z−1x)2, z−1 y−1z−1 y−1z y−1 >
The notation 2∗24, tells us we have 24 t ′s of order 2. We will let t ∼ t1, this

means that t will commute with the stabilizer of 1 in N . We use MAGMA to find the per-

mutations that stabilize 1 in N . The permututation that stabilizes 1 is (2,6)(3,5)(7,8)(9,21)

(10,17)(11,23)(12,18)(13,20)(14,24)(15,22)(16,19).

We use our Schreier System to determine the permutation is xz−1 y−1. We add xz−1 y−1

to our presentation of N to get the presentation of 2∗24. Thus our progenitor is G =<
x, y, z|x2, y3, z4, (y−1x)2, z−2 y−1z2 y, (y z−1x)2, z−1 y−1z−1 y−1z y−1, t 2, (t , xz−1 y−1) >. Our

progenitor G is infinite. In order to make it finite we factor by relations.

1.4.1 Writing the First Order Relations

First order relations are written in the form (πa
i )b = 1, where a ∈ N and w is a

work in the t ′i s. We can compute all the possible relations by computing the orbits of

the centralizers of the Conjugacy Classes of N . Let’s find the classes of N .
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Conjugacy Classes of N

Class Representative of Class
# of elements

in the class

C1 e 1

C2 z2 = (1,4)(2,5)(3,6)(7,8)(9,12)(10,13)(11,14)(15,16)(17,20)(18,21)(19,22)(23,24) 1

C3 zxz = (1,11)(2,15)(3,12)(4,14)(5,16)(6,9)(7,13)(8,10)(17,20)(18,19)(21,22) 12

C4 y = (1,15,17)(2,13,18)(3,11,19)(4,16,20)(5,10,21)(6,14,22)(7,9,23)(8,12,24) 8

C5 z = (1,2,4,5)(3,8,6,7)(9,16,12,15)(10,11,13,14)(17,22,20,19)(18,24,21,23) 6

C6 y z = (1,9,18,4,12,21)(2,14,20,5,11,17)(3,13,24,6,10,23)(7,16,19,8,15,22) 8

C7 zx = (1,10,3,16,4,13,6,15)(2,12,7,11,5,9,8,14)(17,22,24,18,20,19,23,21) 6

C8 z−1x = (1,13,3,15,4,10,6,16)(2,9,7,14,5,12,8,11)(17,19,24,21,20,22,23,18) 6

Table 1.7: Conjugacy Classes of 2∗24 : (4×2 : S3)

Next we must find the centraliser of each class representative. Once we have

found the centraliser of each class, we must then find the orbit of each centraliser.
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Orbits of Centraliser(N ,Rep)

Class Representative Centraliser(N ,Rep) Orbits of Centraliser(N ,Rep)

C1 e 1

C2 z2
<(1, 4)(2, 5)(3, 6)(7, 8)(9, 12)(10, 13)

(11, 14)(15, 16)(17, 20)(18,21)(19, 22)(23, 24)>
{ 1, 9, 15, 2, 23, 16, 7, 17,

10, 13, 4, 18, 8, 20, 12, 3,

22, 21, 11, 5, 14, 24, 6, 19}

C3 zxz

<(1, 11)(2, 15)(3, 12)(4, 14)(5, 16)

(6, 9)(7, 13)(8, 10)(17, 20)(18,19)(21, 22)>

{ 17, 20 },{ 23, 24 },

{ 1, 11, 4, 14 },

{ 2, 15, 5, 16 },

{ 3, 12, 6, 9 },

{ 7, 13, 8, 10 },

{ 18, 19, 21, 22 }

C4 y

<(1, 15, 17)(2, 13, 18)(3, 11, 19)

(4, 16, 20)(5, 10, 21)(6, 14,22)(7, 9, 23)(8, 12, 24)>

{1, 15, 4, 17, 16, 20 },

{ 2, 13, 5, 18, 10, 21 },

{ 3, 11, 6, 19, 14, 22 },

{ 7, 9, 8, 23, 12, 24 }

C5 z
<(1, 2, 4, 5)(3, 8, 6, 7)

(9, 16, 12, 15)(10, 11, 13, 14)

(17, 22, 20,19)(18, 24, 21, 23)>

{ 1, 2, 20, 4, 19, 5, 17, 22 },

{ 3, 8, 18, 6, 24, 7, 21, 23 },

{ 9, 16, 13, 12, 14, 15, 10, 11 }

C6 y z

<(1, 9, 18, 4, 12, 21)(2, 14, 20, 5, 11, 17)

(3, 13, 24, 6, 10, 23)(7,16, 19, 8, 15, 22)>

{ 1, 9, 18, 4, 12, 21 },

{ 2, 14, 20, 5, 11, 17 },

{ 3, 13, 24, 6, 10, 23 },

{ 7, 16, 19, 8, 15, 22 }

C7 zx

<(1, 10, 3, 16, 4, 13, 6, 15)(2, 12, 7, 11, 5, 9, 8, 14)

(17, 22, 24,18, 20, 19, 23, 21)>
{ 1, 10, 3, 16, 4, 13, 6, 15 },

{ 2, 12, 7, 11, 5, 9, 8, 14 },

{ 17, 22, 24, 18, 20, 19, 23, 21 }

C8 z−1x

<(1, 13, 3, 15, 4, 10, 6, 16)(2, 9, 7, 14, 5, 12, 8, 11)

(17, 19, 24,21, 20, 22, 23, 18)>
{ 1, 13, 3, 15, 4, 10, 6, 16 },

{ 2, 9, 7, 14, 5, 12, 8, 11 },

{ 17, 19, 24, 21, 20, 22, 23, 18 }

Table 1.8: Orbits of Centraliser 2∗24 : (4×2 : S3)
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From the orbits of the centraliser, we obtained the first order relations as

shown in the table above.

Relations (N ,Rep)

Class Relations

C2 z2t

C3 zxzt y−1
, zxzt y z y , zxzt , zxzt z , zxzt x y−1z , zxzt xz−1x , zxzt x y z ,

C4 y t , y t z , y t x y−1z , y t x y−1

C5 zt , zt x y−1z , zt y z ,

C6 y zt z , y zt x y−1z , y zt x y−1
,

C7 zxt , zxt z , zxt y−1
,

C8 z−1xt , z−1xt z , z−1xt y−1

Table 1.9: First Order Relations 2∗24 : (4×2 : S3)

Now we add our first order relations to our progenitor to obtain a homomor-

phic image of G,

G =< x, y, z, t |x2, y3, z4, (y−1x)2, z−2 y−1z2 y, (y z−1x)2, z−1 y−1z−1 y−1z y−1, (z2t )a , (zxzt y−1
)b ,

(zxzt y z y )c , (zxzt )d , (zxzt z )e , (zxzt x y−1z ) f , (zxzt xz−1x )g , (zxzt x y z )h , (y t )i , (y t z ) j , (y t x y−1z )k ,

(y t x y−1
)l , (zt )m , (zt x y−1z )n , (zt y z )o , (y zt )p , (y zt z )q , (y zt x y−1z )r , (y zt x y−1

)s , (zxt )t , (zxt z )u ,

(zxt y−1
)v , (z−1xt )a1, (z−1xt z )a2, (z−1xt y−1

)a3 >

if #G gt 48 then a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,a1,a2,a3, #G;
end if; end for;
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Chapter 2

Monomial Progenitors

2.1 Preliminary

Definition 2.1.1. (Formula for Induced Character)

ϕG
α(x) = n

hα

∑
ω∈Cα∩H

=ϕ(ω),α= 1,2,3, ...,m

. Definition 1.1.12. (Character) Let A(x) = (ai j (x)) be a matrix representation of G of

degree m. We consider the characteristic polynomial of A(x), namely

det (λI − A(x)) =



λ−a11(x) λ−a12(x) ... λ−a1m(x)

λ−a21(x) λ−a22(x) ... λ−a1m(x)

... ... ...

λ−am1(x) λ−am2(x) ... λ−amm(x)


This is a polynomial of degree m in λ, with the coefficient of −λm−1 is

ϕ(x) = a11(x)+a22(x)+ ..+amm(x)

It is customary to call the right-hand side of this equation the trace of A(x), abbreviated

to tr A(x), so that ϕ(x) = tr A(x)
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We regard ϕ(x) as a function on G with values in field K , and we call it the character of

A(x).[Led77]

Theorem 2.1.2. The number of irreducible characters of G is equal to the number of con-

jugacy classes of G.[Led77]

Definition 2.1.3. (Degree of a Character) The sum of squares of the degrees of the dis-

tinct irreducible characters of G is equal to |G|. The degree of a character χ is χ(1). Note

that a character whose degree is 1 is called a linear character.[Led77]

Definition 2.1.4. (Lifting Process) Let N be a normal subgroup of G and suppose that

A0(N x) is a representation of degree m of the group G/N . Then A(x) = A0(N x) defines a

representation of G/N lifted from G/N . If ϕ0(N x) is a character of A0(N x), then ϕ(x) =
ϕ0(N x) is the lifted character of A(x). Also, if u ∈ N , then A(u) = Im,ϕ(u) = m = ϕ(1).

The lifting process preserves irreducibility.[Led77]

Definition 2.1.5. (Induced Character) The character of A(x), which is called the in-

duced character ofφ, will be dentoted byφG . Thus,φG = trA(x) =
∑n

i=1 φ(ti xti
−1).[Led77]

Definition 2.1.6. (Formula for Induced Character)

ϕG
α(x) = n

hα

∑
ω∈Cα∩H

=ϕ(ω),α= 1,2,3, ...,m

.
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2.2 A Monomial Progenitor for 23 : 3

G = 23 : 3 is generated by xx = (3,6) and y y = (1,3,5)(2,4,6)

The conjugacy classes of the group G are C1 = I D(G)

C2 = (1,4)(2,5)(3,6)

C3 = (1,4), (2,5), (3,6)

C4 = (1,4)(3,6), (2,5)(3,6), (1,4)(2,5)

C5 = (1,3,5)(2,6,4), (1,6,5)(2,4,3), (1,3,2)(4,6,5), (1,6,2)(3,5,4)

C6 = (1,5,3)(2,6,4), (1,5,6)(2,3,4), (1,2,6)(3,4,5)(1,2,3)(4,5,6)

C7 = (1,6,2,4,3,5), (1,3,5,4,6,2), (1,3,2,4,6,5), (1,6,5,4,3,2)

C8 = (1,5,3,4,2,6), (1,5,6,4,2,3)(1,2,6,4,5,3), (1,2,3,4,5,6)

Let us consider the subgroup H of G,

H = I d(G), (1,4)(2,5), (2,5)(3,6), (1,4)(3,6), (2,5), (1,4), (3,6), (1,4)(2,5)(3,6)

The conjugacy classes of H are

D1 = I d(G)

D2 = (1,4)(2,5)

D3 = (2,5)(3,6)

D4 = (1,4)(3,6)

D5 = (2,5)

D6 = (1,4)

D7 = (3,6)

D8 = (1,4)(2,5)(3,6)
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Class D1 D2 D3 D4 D5 D6 D7 D8

Size 1 1 1 1 1 1 1 1

Representative I d(G) (1,4)(2,5) (2,5)(3,6) (1,4)(3,6) (2,5) (1,4) (3,6) (1,4)(2,5)(3,6)

φ 1 -1 -1 1 -1 1 1 -1

In the table below, we have the characters φ of G corresponding to the subgroup H.

Class C 1 C 2 C 3 C 4 C 5 C 6

Size 1 1 3 3 4 4

Representative I d(G) (1,4)(2,5)(3,6) (1,4) (1,4)(3,6) (1,3,5)(2,6,4) (1,5,3)(2,6,4)

φG 3 -3 1 -1 0 0

Class C 7 C 8

Size 4 4

Representative (1,6,2,4,3,5) (1,5,3,4,2,6)

φG 0 0

a) We want to induce the φ of H up to G to obtain the character φG .

φG
α = n

hα

∑
w∈H∩Cα

φ(w), where n = |G|
|H | = 24

8 = 3.

φG
1 = n

h1

∑
w∈H∩C1

φ(w)

So, φG
1 = 3

1 (φ(1)) = 3(1) = 3
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φG
2 = n

h2

∑
w∈H∩C2

φ(w)

So, φG
2 = 3

1 (φ(1,4)(2,5)(3,6)) = 3(−1) =−3

φG
3 = n

h3

∑
w∈H∩C3

φ(w)

So, φG
3 = 3

3 (φ(1,4)+φ(2,5)+φ(3,6)) = 1(1+−1+1) = 1

φG
4 = n

h4

∑
w∈H∩C4

φ(w)

So, φG
4 = 3

3 (φ(1,4)(3,6)+φ(2,5)(3,6)+φ(1,4)(2,5)) = 1(1+−1+−1) =−1

φG
5 = n

h5

∑
w∈H∩C5

φ(w)

So, φG
5 = 3

4 (φ(0)) = 3
4 (0) = 0

φG
6 = n

h6

∑
w∈H∩C6

φ(w)

So, φG
6 = 3

4 (φ(0)) = 3
4 (0) = 0

φG
7 = n

h7

∑
w∈H∩C7

φ(w)

So, φG
7 = 3

4 (φ(0)) = 3
4 (0) = 0
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φG
8 = n

h8

∑
w∈H∩C8

φ(w)

So, φG
8 = 3

4 (φ(0)) = 3
4 (0) = 0

b) Show the monomial representation has the generators

A(xx) =


1 0 0

0 1 0

0 0 −1

 and A(y y) =


0 1 0

0 0 1

1 0 0


G = HeU H(1,3,5)(2,4,6), H(1,5,3)(2,6,4).

Let t1 = e, t2 = (1,3,5)(2,4,6), t3 = (1,5,3)(2,6,4)

A(xx) =


φ(t1xt−1

1 ) φ(t1xt−1
2 ) φ(t1xt−1

3 )

φ(t2xt−1
1 ) φ(t2xt−1

2 ) φ(t2xt−1
3 )

φ(t3xt−1
1 ) φ(t3xt−1

2 ) φ(t3xt−1
3 )



=


φ(exe) φ(ex(1,5,3)(2,6,4)) φ(ex(1,3,5)(2,4,6))

φ((1,3,5)(2,4,6)xe) φ((1,3,5)(2,4,6)x(1,5,3)(2,6,4)) φ((1,3,5)(2,4,6)x(1,3,5)(2,4,6))

φ((1,5,3)(2,6,4)xe) φ((1,5,3)(2,6,4)x(1,5,3)(2,6,4)) φ((1,5,3)(2,6,4)x(1,3,5)(1,3,5)(2,4,6))



=


φ((3,6) φ((1,5,3,4,2,6)) φ((1,3,2,4,6,5))

φ((1,6,2,4,3,5)) φ((1,4, )) φ((1,2,6,4,5,3))

φ((1,5,6,4,2,3)) φ((1,3,5,4,6,2)) φ((2,5))



=


1 0 0

0 1 0

0 0 −1
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A(y y) =


φ(t1 y t−1

1 ) φ(t1 y t−1
2 ) φ(t1 y t−1

3 )

φ(t2 y t−1
1 ) φ(t2 y t−1

2 ) φ(t2 y t−1
3 )

φ(t3 y t−1
1 ) φ(t3 y t−1

2 ) φ(t3 y t−1
3 )



=


φ(e ye) φ(e y(1,5,3)(2,6,4)) φ(e y(1,3,5)(2,4,6))

φ((1,3,5)(2,4,6)ye) φ((1,3,5)(2,4,6)y(1,5,3)(2,6,4)) φ((1,3,5)(2,4,6)y(1,3,5)(2,4,6))

φ((1,5,3)(2,6,4)ye) φ((1,5,3)(2,6,4)y(1,5,3)(2,6,4)) φ((1,5,3)(2,6,4)y(1,3,5)(1,3,5)(2,4,6))



=


φ((1,3,5)(2,4,6)) φ((e)) φ((1,5,3)(2,6,4))

φ((1,5,3)(2,6,4)) φ((1,3,5)(2,4,6)) φ((e))

φ((e)) φ((1,5,3)(1,5,3)(2,6,4)) φ((1,3,5)(2,4,6))



=


0 1 0

0 0 1

1 0 0


(c) Give a permutation representation of A(xx) and A(y y) of the monomial

representation of part (b).

A(xx) =


1 0 0

0 1 0

0 0 −1



=


1 0 0

0 1 0

0 0 2

 where a11 = 1, a22 = 1, and a33 = 2.
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This give us,

t1 → t1,

t2 → t2,

and t3 → t 2
3

1 2 3 4 5 6

t1 t2 t3 t 2
1 t 2

2 t 2
3

↓ ↓ ↓ ↓ ↓ ↓
t1 t2 t 2

3 t 2
1 t 2

2 t3

1 2 6 4 5 3

Therefore, A(xx) = (3,6).

A(y y) =


0 1 0

0 0 1

1 0 0

 where a12 = 1, a23 = 1, and a31 = 1.

This gives us,

t1 → t2,

t2 → t3

t3 → t1

1 2 3 4 5 6

t1 t2 t3 t 2
1 t 2

2 t 2
3

↓ ↓ ↓ ↓ ↓ ↓
t2 t3 t 2

1 t 2
2 t 2

3 t1

2 3 1 5 6 4
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Therefore, A(y y) = (1,2,3)(4,5,6).

(d) Give the presentation of the monomial progenitor 3∗3 :m (23 : 3).

A presentation for S4 is < x, y | x2, y3, (x y)6 >. We need to find the Normaliser{t , t 2}.

The Stabiliser(N , {1,4}) = (3,6), (2,5), (1,4). This means that t commutes with all 3.

Thus, our presentation is < x, y, t | x2, y3, (x y)6, (x, y)2, (t , x), (t , y x y−1), t (x y ) = t 2 >.
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Chapter 3

Ismorphism Types

3.1 Preliminaries

Definition 3.1.1. (Abelian) A pair of elements a and b in a group commutes if a*b=b*a.

A group is abelian if every pair of its elements commutes. [Rot95]

Definition 3.1.2. (Homomorphism) Let (G,*) and (H,◦) be groups. A function f:G↔H is

a homomorphism if, for all a, b ∈ G, f(a*b) = f(a) ◦ f(b). [Rot95]

Definition 3.1.3. (Isomorphism) An isomorphism is a homomorphism that is also a bi-

jection. We say that G is isomorphic to H, denoted G∼=H, if there exists an isomorphism

f:G ↔ H. [Rot95]

Theorem 3.1.4. Let p be a prime. A group G of order pn is cyclic if and only if it is an

abelian group having a unique subgroup of order p. [Rot95]
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Definition 3.1.5. (normal subgroup) A subgroup K≤G is a normal subgroup, denoted

by kEG, if g K g−1=K for every g∈G. [Rot95]

Theorem 3.1.6. (First Isomorphism Theorem) Let f: G−→H be a homomorphism with

kernal K. Then K is a normal subgroup of G and G/K∼=im(f). [Rot95]

Theorem 3.1.7. (Second Isomorphism Theorem) Let N and T be subgroups of G with

N normal. Then N∩T is normal in T and T/(N∩T)∼=NT/N. [Rot95]

Theorem 3.1.8. (Third Isomorphism Theorem) Let K≤H≤G, where both K and H are

normal subgroups of G. Then H/K is a normal subgroup of G/K and (G/K)(H/K)∼=G/H.

[Rot95]

Theorem 3.1.9. (Correspondence Theorem) Let KEG and let υ:G−→G/K be the natural

map. Then S 7→ υ(S)=S/K is a bi-jection from the family of all those subgroups S of G

which contain K to the family of all the subgroups of G/K. Moreover, if we denote S/K by

S∗, then: (i) T≤S if and only if T ∗ ≤ S∗, and then [S:T]=[S∗:T ∗]; and (ii) TES if and only

if T ∗ E S∗, and then S/T ∼= S∗/T ∗. [Rot95]

Definition 3.1.10. (maximal normal subgroup) A subgroup H≤G is a maximal normal

subgroup of G if there is no normal subgroup N of G with H<N<G. [Rot95]

Definition 3.1.11. (simple) A group G6=1 is simple if it has no normal subgroups other
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than G and itself. [Rot95]

Definition 3.1.12. (direct product) If H and K are groups, then their direct product,

denoted by H×K, is the group with elements all ordered pairs (h,k), where h∈H and k∈K,

and with the operation (h,k)(h’,k’)=(hh’,kk’). [Rot95]

Theorem 3.1.13. (Jordan-Holder Theorem) Every two composition series of a group G

are equivalent.

Suppose that the finite group G has two composition series

G = B0 > B1 > . . . > Bn = {1} and G = C0 > C1 > . . . > Cm = {1}. Then n = m and the

lists of composition factors for the two series are identical in the sense that if |H | ≤ |G|
and Φ(H) = {i ≥ 1 : Bi−1/Bi

∼= H } and Ψ(H) = {i ≥ 1 : Ci−1/Ci
∼= H } then Φ(H) =Ψ(H).

[Rot95]

Definition 3.1.14. (semi-direct product) A group G is a semi-direct product of K by Q,

denoted by G=K×Q, if KCG and K has a complement Q1
∼=Q. One also says that G splits

over K. [Rot95]

Definition 3.1.15. (Mixed-Extension) If G is an extension of an abelian group not equal

to the center of G, then this is called a mixed extension. [Rot95]

Definition 3.1.16.(normal subgroup in composition series) A normal subgroup N of

a group G is called a maximal normal subgroup of G if

(a) N 6= G
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(b) whenever N ≤ M CG then either M = N or M +G.

By the Correspondence Theorem, if N CG and N 6=G then every normal subgroup of G/N

corresponds to a normal subgroup of G containing N. So a normal subgroup N is maxi-

mal if and only if G/N is simple.

Definition 3.1.17. (Composition series)Given a group G, a composition series for G of

length n is a sequence of subgroups G=B0 > B1 > ···> Bn =1G such that

(i) Bi C Bi−1 for i= 1,... ,n.

(ii) Bi−1/Bi is simple for i=1,...,n. In particular, Bi is a maximal normal subgroup of G

and Bi−1 is simple. The (isomorphism classes of the) quotient groups Bi /Bi−1 are called

composition factors of G.

Example 3.1.18.

S4 has the following composition series of length 4, where K is the Klein group

{(1), (12)(34), (13)(24), (14)(23)}.

S4 > A4 > K > {(12)(34)} > {1}

We know that A4 CS4; the composition factor S4/A4
∼=C2.

We have seen that K C A4; and A4/K ∼=C3

All subgroups of K are normal in K, because K is abelian.

Both K /{(12)(34)} and {(12)(34)}/{1} are isomorphic to C2.

So the composition factors of S4 are C2 (three times) and C3 (once).
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3.2 Isomorphism Type 42 : 4

Our goal is to find the Isomorphism type of the transitive group N on 8 letters.

N is a group of order 64 and is generated by x ∼ (2,6)(3,7) , y ∼ (1,3)(4,8)(5,7), and

z ∼ (1,2,3,8)(4,5,6,7). The Normal Lattice of N is given below.

Figure 3.1: Normal Lattice of 42 : 4

The largest normal abelian subgroup of N is N L[8], which is of order 16. From

this we can conclude that N L[8] is isomorphic to Z2 ×Z2 ×Z2 ×Z2, Z4 ×Z2 ×Z2, Z4 ×
Z4 or Z16. We see that N L[8] has two generators of order 4, A ∼ (2,8,6,4) and B ∼
(1,3,5,7)(2,8,6,4). Thus, N L[8] ∼= 4×4 = 42.

A presentation for N L[8] is given by < A,B | A4,B 4, (AB) >.

N L[8] is an abelian subgroup of order 16 and N is of order 64. If N has a normal sub-

group of order 4, then N is a direct-product. However, N does not have a normal sub-

group of order 4. Thus we can conclude that N is a semi-direct product of N L[8].
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By factoring N by N L[8] we obtain that N is an extension of N L[8] by N /N L[8].

N /N L[8] is generated by C ∼ (1,2,3,8)(4,5,6,7). So N /N L[8] =
<C > which is of order 4.

Now we conjugate the generators of N L[8] =< A,B > by C and compute AC and BC .

AC = (2,8,6,4)(1,2,3,8)(4,5,6,7)

= (1,7,5,3)

= AB 3

(3.1)

BC = (1,3,5,7)(2,8,6,4)(1,2,3,8)(4,5,6,7)

= (1,7,5,3)(2,8,6,4)

= A2B 3

(3.2)

The presentation of N is < a,b,c | a4,b4, (ab),c4, ac = ab3,bc = a2b3 >. Therefore, N is

the semi-direct product of 42 : 4.

3.3 Ismorphism Type (4×22) : S3

Our goal is to find the Isomorphism type of the transitive group N on 14

letters. N is a group of order 96 and is generated by w ∼ (1,7)(3,9)(4,10)(6,12) x ∼
(14,7,10)(2,5,8,11)(3,6,9,12) y ∼ (1,5,9)(2,6,10)(3,7,11)(4,8,12) and z ∼ (1,5)(2,10)(4,8)(7,11).

The Normal Lattice of N is given by The largest normal abelian subgroup of N is N L[7]

which is of order 16. From this we can conclude that N L[7] is isomorphic to Z2 ×Z2 ×
Z2 ×Z2, Z4 ×Z2 ×Z2, Z4 ×Z4 or Z16. We see that N L[7] has one generators of order

4 and three generators of order 2 A ∼ (1,4,7,10)(2,5,8,11)(3,6,9,12), B ∼ (3,9)(6,12),

C ∼ (1,7)(3,9)(4,10)(6,12) and D ∼ (1,7)(2,8)(4,10)(5,11). However, I need to determine
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Figure 3.2: Normal Lattice of (4×22) : S3

if all four generator are needed to generator N L[7] which is of order 16. We conclude

that N L[7] is generated by ABC . Thus N L[7] ∼= 4×22.

A presentation for N L[7] is given by < A,B ,C | A4,B 2,C 2(A,B)(A,C )(B ,C )) >.

N L[7] is an abelian subgroup of order 16 and N is of order 96. If N has a normal sub-

group of order 6, then N is a direct-product. However, N does not have a normal sub-

group of order 6. Thus we can conclude that N is a semi-direct product of N L[7] by

S3.

By factoring N by N L[7] we obtain that N is an extension of N L[7] by N /N L[7].

N /N L[7] is generated by D ∼ (1,5,9)(42,6,10)(3,7,11)(4,8,12) which is of order 3 and

E ∼ (1,5)(2,10)(4,8)(7,11) which is of order 2. So N /N L[7] =< D,E > which is of order

6.
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Now we conjugate the generators of N L[7] =< A,B ,C > by D and E and compute

AD ,B D , C D , AE , B E , and C E .

AD = (1,4,7,10)(2,5,8,11)(3,6,9,12)(1,5,9)(2,6,10)(3,7,11)(4,8,12)

= (1,4,7,10)(2,5,8,11)(3,6,9,12)

= A

(3.3)

B D = (3,9)(6,12)(1,5,9)(2,6,10)(3,7,11)(4,8,12)

= (7,1)(4,10)

= B ∗C

(3.4)

C D = (1,7)(3,9)(4,10)(6,12)(1,5,9)(2,6,10)(3,7,11)(4,8,12)

= (1,7)(2,8)(4,10)(5,11)

= A2 ∗B

(3.5)

AE = (1,4,7,10)(2,5,8,11)(3,6,9,12)(1,5)(2,10)(4,8)(7,11)

= (1,4,7,10)(2,5,8,11)(3,6,9,12)

= A

(3.6)

B E = (3,9)(6,12)(1,5)(2,10)(4,8)(7,11)

= (3,9)(6,12)

= B

(3.7)

C E = (1,7)(3,9)(4,10)(6,12)(1,5)(2,10)(4,8)(7,11)

= (2,8)(3,9)(5,11)(6,12)

= A2 ∗B ∗C

(3.8)
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The presentation of N is < a,b,c,d ,e | a4,b2,c2, (a,b), (a,c), (b,c),d 3,e2, (d ∗
e)2, ad = a,bd = b ∗ c,cd = a2 ∗b, ae = a,be = b,ce = a2 ∗b ∗ c >. Therefore, N is the

semi-direct product of 4×22 : S3.

3.4 Isomorphism Type (4×22) : •A4

Our goal is to find the Isomorphism type of the transitive group N on 24 let-

ters. N is a group of order 192 and is generated by x ∼ (1,3)(2,4)(5,23)(6,24)(11,12)

(13,14)(15,16)(17,18)(19,22)(20,21) and y ∼ (1,7,22,24,10,19)(2,8,21,23,9,20)

(3,11,15,6,14,18)(4,12,16,5,13,17).

The Normal Lattice of N is

Figure 3.3: Normal Lattice of 4×22
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The largest normal abelian subgroup of N is NL[5], which is of order 16. This

implies that NL[5] can be isomorphic to Z2×Z2×Z2×Z2, or Z4×Z2×Z2, or Z4×Z4, or

Z16. N L[5] is generated by three elements,

< A,B ,C >=< (1,5,24,4)(2,6,23,3)(7,11,10,14)(8,12,9,13)(15,22,18,19)(16,21,17,20),

(1,2)(3,4)(5,6)(15,17)(16,18)(19,21)(20,22)(23,24),

(1,23)(2,24)(3,5)(4,6)(7,8)(9,10)(11,12)(13,14) >. The presentation for NL[5] is given

by < a,b,c | a4,b2,c2, (a,b), (a,c), (b,c) >. Since N L[5] is an abelian subgroup of order

16 and N is of order 192, we are looking for a normal subgroup of order 12. However, N

does not have a normal subgroup of order 12.

Now we factor N by N L[5] and see that N is an extension of N L[5] by N /N L[5].

Thus, N /N L[5] ∼= q =< N L[5]D, N L[5]E > and N /N L[5] =< D,E > is of order 12.

D ∼ (1,3)(2,4)(5,23)(6,24)(11,12)(13,14)(15,16)(17,18)(19,22)(20,21) of order 2 and E ∼
(1,7,22,24,10,19)(2,8,21,23,9,20)(3,11,15,6,14,18)(4,12,16,5,13,17) of order 6. Now

we conjugate every generator in N L[5] by D and E .

AD = (1,5,24,4)(2,6,23,3)(7,11,10,14)(8,12,9,13)(15,22,18,19)(16,21,17,20)D

= (1,4,24,5)(2,3,23,6)(7,12,10,13)(8,11,9,14)(15,20,18,21)(16,19,17,22)

= ABC

(3.9)

B D = (1,2)(3,4)(5,6)(15,17)(16,18)(19,21)(20,22)(23,24)D

= (1,2)(3,4)(5,6)(15,17)(16,18)(19,21)(20,22)(23,24)

= B

(3.10)
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C D = (1,23)(2,24)(3,5)(4,6)(7,8)(9,10)(11,12)(13,14)D

= (1,23)(2,24)(3,5)(4,6)(7,8)(9,10)(11,12)(13,14)

=C

(3.11)

AE = (1,5,24,4)(2,6,23,3)(7,11,10,14)(8,12,9,13)(15,22,18,19)(16,21,17,20)E

= (1,6,24,3)(2,5,23,4)(7,13,10,12)(8,14,9,11)(15,19,18,22)(16,20,17,21)

= A3C

(3.12)

B E = (1,2)(3,4)(5,6)(15,17)(16,18)(19,21)(20,22)(23,24)E

= (1,23)(2,24)(3,5)(4,6)(7,8)(9,10)(11,12)(13,14)

=C

(3.13)

C E = (1,23)(2,24)(3,5)(4,6)(7,8)(9,10)(11,12)(13,14)E

= (7,9)(8,10)(11,13)(12,14)(15,16)(17,18)(19,20)(21,22)

= A2BC

(3.14)

The presentation of N is < a,b,c,d ,e|a4,b2,c2, (a,b), (a,c), (b,c),d 2,e3, (d ∗ e)3, ad =
abc,bd = b,cd = c, ae = a3c,be = c,c3 = a2bc >.

However when we verify if the presentation is isomorphic to N , MAGMA tells us that it

is not.

MAGMA CODE:
> H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),d^2,
e^3,(d*e)^3,a^d=a*b*c,b^d=b,c^d=c,a^e=a^3*c,b^e=c>;
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> H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),d^2,
e^3,(d*e)^3,a^d=a*b*c,b^d=b,c^d=c,a^e=a^3*c,b^e=c,c^e=a^2*b*c>;
> #H;
192

> f,H1,k:=CosetAction(H,sub<H|Id(H)>);
> IsIsomorphic(H1,N);
false

From this we can conclude that N is not a semi-direct product of N L[5], rather it is a

mixed extension. This means that some elements of N /N L[5] can be written in terms

of the elements in NL[5]. In order to proceed, we must check the order of the elements

of N L[5].

In MAGMA we compute:

> Order(q.1);
2
> Order(T2) eq Order(q.1);
true
> Order(q.2);
3
> Order(T3) eq Order(q.2);
false
> Order(T2*T3) eq Order(q.1*q.2);
false
> Order(T3);
6
> Order(q.2);
3

Given that there exists a homomorphism from N to N /N L[5], we know

T [2],T [3] ∈ N . However, we verified through MAGMA that D = T [2] is of order 3,

and E = T [3] is order of E is 6. This means that E 3 ∈ N L[5], and (D ∗E)3 = AB .

> H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),
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d^2,e^3=a^2,(d*e)^3=a*b,a^d=a*b*c,b^d=b,
c^d=c,a^e=a^3*c,b^e=c,c^e=a^2*b*c>;
> #H;
192
> f,H1,k:=CosetAction(H,sub<H|Id(H)>);
> IsIsomorphic(H1,N);
true Mapping from: GrpPerm: H1 to GrpPerm: N
Composition of Mapping from: GrpPerm: H1 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: N

Therefore, the presentation of N is< a,b,c,d ,e|a4,b2,c2, (a,b), (a,c), (b,c),d 2,e3 = a2, (d∗
e)3 = ab, ad = abc,bd = b,cd = c, ae = a3c,be = c,ce = a2bc >. Thus N is the mixed ex-

tension of (4×22) : •A4
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Chapter 4

Double Coset Enumeration

4.1 Preliminaries

Definition 4.1.1. (right coset) If S is a subgroup of G and if t ∈ G, then a right coset of S ∈
G is the subset of G: St = {st:s ∈ S} (a left coset is tS = {ts:s∈S}). One calls t a representative

of St (and also tS). [Rot95]

Theorem 4.1.2. If S≤G, then any two right (or any two left)cosets of S in G are either

identical or disjoint. [Rot95]

Theorem 4.1.3. If S≤G, then the number right cosets of S in G is equal to the number of

left cosets of S in G. [Rot95]

Definition 4.1.4. (index) If S≤G, then the index of S in G, denoted [G:S], is the number

of right cosets of S in G. [Rot95]
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Definition 4.1.5. (conjugate) If x ∈ G, then a conjugate of x in G is an element of the

form axa−1 for some a ∈ G. [Rot95]

Definition 4.1.6. (double coset) If S and T are subgroups of G, then a double coset is a

subset of G of the form SgT, where g ∈ G. [Rot95]

Definition 4.1.7. (G-set) If X is a set and G is a group, then X is a G-set if there is a func-

tion α: G× X −→ X (called an action), denoted by α: (g, x) 7→ gx, such that:

(i) 1x = x for all x ∈ X; and

(ii) g(hx) = (gh)x for all g, h ∈ G and x ∈ X. [Rot95]

Definition 4.1.8. (acts) G acts on X, if |X | = n, then n is called the degree of the G-set X.

[Rot95]

Definition 4.1.9. (G-orbit) If X is a G-set anf x ∈ X, then the G-orbit of x is ϑ(x) = {gx : g

∈ G} ⊂ X, (ϑ(x) denoted Gx). [Rot95]

Definition 4.1.10. (stabilizer) If X is a G-set and x ∈ X, then the stabilizer of x, denoted

by Gx , is the subgroup Gx = g ∈ G : gx = x ≤ G. [Rot95]

Theorem 4.1.11. If X is a G-set and x ∈ X, then |ϑ(x)| = [G : Gx ]. [Rot95]

Corollary 4.1.12. If a finite group G acts on a set X, then the number of elements in any
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orbit is a divisor of |G|. [Rot95]

Corollary 4.1.13. (i) If G is a finite group and x ∈ G, then the number of conjugates of x ∈
G is [G : CG (x)] (CG , is centralizer). (ii) If G is a finite group and H ≤ G, then the number

of conjugates of H ∈ G is [G : NG (H)] (NG , is normalizer). [Rot95]

Definition 4.1.14. (transitive) A G-set X is transitive if it has only one orbit; that is for

every x, y ∈ X, there exists σ ∈ G with y = σx. [Rot95]

Definition 4.1.15. (Point Stabilizer) A point stabilizer of w in N , denoted by N w , N w =
{n ∈ N | wn = w} ≤ N , where w is word of the t ′i s

Lemma 4.1.16. The point stabilizer N w is a subgroup of N. Apply the subgroup test to

N w .

1. we = w ⇒ e ∈ N w

2. Let a,b ∈ N w , we want to show that ab ∈ N w

w ab = (w a)b

= wb

= w

⇒ ab ∈ N w

3. Let a ∈ N w . Show a−1 ∈ N w . Given w a = w

Then w aa−1 = w a−1. So w = w−a . Thus a−1 = w, and a−1 ∈ N w .

Definition 4.1.17. (Coset Stabilizing Group) The coset stabilizing group of the coset

N w is N (w)={n∈N |N w n=N w where w is a word in the t ′i s.
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Lemma 4.1.18. The coset stabilizer N (w) is a subgroup of N . Apply the subgroup test to

N w .

1. e ∈ N (w) since N we = N w

2. Let a,b ∈ N (w), we want to show that ab ∈ N (w)

N w a = N w and N wb = N w, Then N w ab = N (w a)b

= (N w a)b

= N (w)b

= N w ⇒ ab ∈ N (w)

3. Let a ∈ N (w). Show a−1 ∈ N (w). Given N w a = N w

⇒ (N w a) = N w

⇒ (N w a)a−1 = (N w)a−1

⇒ N w aa−1 = N w a−1

⇒ N w = N w−a . Thus a−1 ∈ N (w).

Lemma 4.1.19. N w ≤ N (w)

Let a ∈ N w and N (w) = {n ∈ N | N wn = N w}

⇒ w a = w

⇒ N w a = N w

⇒ a ∈ N (w).

Lemma 4.1.20. The number of right cosets in the double cosets N w N is |N |
|N (w)| , since

N a 6= N b ⇐⇒ N (w)a 6= N (w)b.

Lemma 4.1.21.(Equality of Right Cosets N w1 = N w2
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⇐⇒ w1 ∈ N w2

⇐⇒∃n ∈ N 3 w1 = nw2

Lemma 4.1.22.(Equality of Double Cosets Let N w N = {N wn | n ∈ N } = {mwn | n,m ∈
N } define a double coset. Let N w1N = {N wn

1 | n ∈ N } be one double coset and w1 ∈
N w1N and let Let N w2N = {N wn

2 | n ∈ N } be a different double coset. Then N w1N =
N w2N

w1 ∈ N w1N = N w2N

⇐⇒ w1 ∈ N w2N

⇐⇒ w1 = mw2n wherem,n ∈ N

⇐⇒ w1 = mn−1w2n

⇐⇒ w1 = mnwn
2

⇐⇒ w1 = g wn
2 whereg = mn ∈ N

Definition 4.1.23. (Double Coset Algorithm) Perform the double coset enumeration of

group G over transitive group N, where double cosets take the form NwN = {Nwn | n ∈ N}

= {N w n | n ∈ N}.

(i) Compute the point-stabilizer N w and coset stabilizer of each double coset.

(ii) Compute the number of right cosets by using the formula |N |
|N (w)| , where N (w) = {n ∈ N

| N wn = Nw} is the coset stabilizer of the right coset.

(iii) For each double coset NwN, compute the orbits of N (w). It suffices to determine the

double coset of Nwti for a single representative of each orbit. Note, N (w) ≥ N w is always

true.

(iv) Determine which double coset each coset representative Nwti belongs to, (repeat the

process until closed by coset multiplication ) .
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4.2 Double Coset Enumeration of PGL(2,7) over 22 : 3

G = 26:22:3
(xt y t x )2,(xt y (t y )x )3 Consider the group,

G < x, y, t >=Gr oup < x, y, t |x3, y3, (x y)2, t 2, (t , x y−1x) > factored by (xt y t x )2 and (xt y (t y )x )3

where x = (1,3,5)(2,4,6) , y = (1,2,6)(3,4,5) and t = t1. Now we substitute the values of

x and y and expand our relation (xt y t x )2 = e to obtain,(
(135)(246)t (126)(345)

1 t (135)(246)
1

)2 = ((135)(246)t2t3)2

= (135)(246)t2t3(135)(246)t2t3

= (135)(246)(135)(246)(t2t3)(135)(246)t2t3

= (153)(264)t4t5t2t3

(4.1)

Our first relation (153)(264)t4t5t2t3 = e can be written as (153)(264)t4t5 = t3t2

Similarly, we expand our second relation to obtain,(
(135)(246)t (126)(346)

1 (t (126)(345)
1 )(135)(246)

)3 = ((135)(246)t2t4)3

= (135)(246)t2t4(135)(246)t2t4(135)(246)t2t4

= (135)(246)3(t2t4)(135)(246)2
(t2t4)(135)(246)t2t4

= et6t2t4t6t2t4

(4.2)

Our second relation t6t2t4t6t2t4 = e can be written as t6t2t4 = t4t2t6.

We conjugate the first relation (153)(264)t4t5 = t3t2 by all the elements of N

to obtain twelve new relations.
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(153)(264)t4t (153)(264)
5 = t3t (153)(264)

2 ⇒ (153)(264)t2t3 = t1t6

(153)(264)t4t (156)(234)
5 = t3t (156)(234)

2 ⇒ (123)(456)t2t6 = t4t3

(153)(264)t4t5(132)(465) = t3t (132)(465)
2 ⇒ (156)(234)t6t4 = t2t1

(153)(264)t4t (126)(345)
5 = t3t (126)(345)

2 ⇒ (156)(234)t5t3 = t4t6

(153)(264)t4t (162)(354)
5 = t3t (162)(354)

2 ⇒ (123)(456)t3t4 = t5t1

(153)(264)t4t (165)(243)
5 = t3t (126)(345)

2 ⇒ (126)(345)t3t1 = t2t4

(153)(264)t4t (14)(25)
5 = t3t (14)(25)

2 ⇒ (156)(234)t1t2 = t3t5

(153)(264)t4t (14)(36)
5 = t3t (14)(36)

2 ⇒ (123)(456)t1t5 = t6t2

(153)(264)t4t (135)(246)
5 = t3t (135)(246)

2 ⇒ (153)(264)t6t1 = t5t4

(153)(264)t4t (123)(456)
5 = t3t (123)(456)

2 ⇒ (126)(345)t5t6 = t1t3

(153)(264)t4t (25)(36)
5 = t3t (25)(36)

2 ⇒ (126)(345)t4t2 = t6t5

(4.3)

We conjugate the second relation t6t2t4 = t4t2t6 by all the elements of N to
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obtain twelve new relations.

t6t2t (153)(264)
4 = t4t2t (153)(264)

6 ⇒ t4t6t2 = t2t6t4

t6t2t (156)(234)
4 = t4t2t (156)(234)

6 ⇒ t1t3t2 = t2t3t1

t6t2t (132)(465)
4 = t4t2t (132)(465)

6 ⇒ t5t1t6 = t6t1t5

t6t2t (126)(345)
4 = t4t2t (126)(345)

6 ⇒ t1t6t5 = t5t6t1

t6t2t (162)(354)
4 = t4t2t (162)(354)

6 ⇒ t2t1t3 = t3t1t2

t6t2t (165)(243)
4 = t4t2t (126)(345)

6 ⇒ t5t4t3 = t3t4t5

t6t2t (14)(25)
4 = t4t2t (14)(25)

6 ⇒ t6t5t1 = t1t5t6

t6t2t (14)(36)
4 = t4t2t (14)(36)

6 ⇒ t3t2t1 = t1t2t3

t6t2t (135)(246)
4 = t4t2t (135)(246)

6 ⇒ t2t4t6 = t6t4t2

t6t2t (123)(456)
4 = t4t2t (123)(456)

6 ⇒ t4t3t5 = t5t3t4

t6t2t (25)(36)
4 = t4t2t (25)(36)

6 ⇒ t3t5t4 = t4t5t3

(4.4)

We will use our technique of double coset enumeration to show that

|G| ≤ 336.

1st Double Coset [∗]

Let [∗] represent the double coset which contains NeN = {N (e)n | n ∈ N } = {N }. The

coset stabilizer of NeN = N. The number of single cosets in [∗] is equal to |N |
|N | = 12

12 = 1.

The orbits of N on {1,2,3,4,5,6} are {1,2,3,4,5,6}, that is, there is one single orbit. Now

select a representative from the single orbit, say 1, and find the double coset that con-

tains N t1. We determine that N t1 belongs to a new double coset N t1 N denoted by [1].

There are 6 elements in the orbit {1,2,3,4,5,6}, therefore, all 6 symmetric generators

will move forward.



48

Figure 4.1: Cayley Graph PGL(2,7) over 22 : 3

2nd Double Coset

Let [1] represent the double coset that contains all the elements in N t1N .

N t1N = {N (t1)n | n ∈ N }

= {N t e
1 , N t (1,5,3)(2,6,4)

1 , N t (1,5,6)(2,3,4)
1 , N t (1,3,2)(4,6,5)

1 ,

N t (1,2,6)(3,4,5)
1 , N t (1,6,2)(3,5,4)

1 , N t (1,6,5)(2,4,3)
1 , N t (1,4)(2,5)

1 ,

N t (1,4)(3,6)
1 , N t (1,3,5)(2,4,6)

1 , N t (1,2,3)(4,5,6)
1 , N t (2,5)(3,6)

1 }

= {N t1, N t2, N t3, N t4, N t5, N t6}

(4.5)

The point stabilizer of N 1 is e, (25)(36), since these are the only two elements that sta-

bilize 1. The coset stabilizer of N (1) = {e, (25)(36)}. The number of single cosets in [1] is

equal to |N |
|N (1)| = 12

2 = 6. The orbits of N on {1,2,3,4,5,6} are {1}, {4}, {2,5}, and {3,6}. Now

select a representative from each single orbit, 1 ∈ {1},4 ∈ {4}, 2 ∈ {2,5},3 ∈ {3,6} and de-

termine the double cosets that contains N t1t1, N t1t4, N t1t2, and N t1t3. We have four

possible new double cosets. We use our first relation to determine if we will have four

distinct double cosets.
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N t1t1 = Ne ∈ [∗] , since there is one element in the orbit {1}, one symmetric generator

will return to [∗].

N t1t2 belongs to a new double coset N t1t2N denoted by [12], since there are two ele-

ments in the orbit {2,5}, two symmetric generators will move forward.

N t1t3 denoted by [13]= [12]. If we conjugate our first relation (153)(264)t4t5 = t3t2 by

(123)(456) we get

(153)(264)t4t (123)(456)
5 = t3t (123)(456)

2

(126)(345)t5t6 = t1t3

Now, t1t3 = (126)(345)t5t6

So N t1t3 = N t5t6 = N (t1t2)(153)(246) ∈ [12]

But N t1t3 6∈ [12] so N t1t3 = [12]

N t1t4 belongs to a new double coset N t1t4N denoted by [14], since there is one ele-

ment in the orbit {4}, one symmetric generator will move forward.
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Figure 4.2: Cayley Graph PGL(2,7) over 22 : 3

3rd Double Coset [12]

Let [12] represent the double coset containing the elements,

N t1t2N = {N (t1t2)n | n ∈ N }

= {N (t1t2)e , N (t1t2)(1,5,3)(2,6,4), N (t1t2)(1,5,6)(2,3,4), N (t1t2)(1,3,2)(4,6,5),

N (t1t2)(1,2,6)(3,4,5), N (t1t2)(1,6,2)(3,5,4), N (t1t2)(1,6,5)(2,4,3), N (t1t2)(1,4)(2,5),

N (t1t2)(1,4)(3,6), N (t1t2)(1,3,5)(2,4,6), N (t1t2)(1,2,3)(4,5,6), N (t1t2)(2,5)(3,6)}

= {N t1t2, N t5t6, N t5t3, N t3t1, N t2t6, N t6t1,

N t6t4, N t4t5, N t4t2, N t3t4, N t2t3, N t1t5, }

(4.6)

Lemma N t1t2t4 = N t2t3t1

Conjugate the original relation (153)(264)t4t5 = t3t2 by (165)(243) to get,

(153)(264)t4t (165)(243)
5 = t3t (14)(25)

2

(156)(234)t3t1 = t2t4

Then t1t2t4 = t1(156)(234)t3t1

= (126)(453)t2t3t1

⇒ N t1t2t4 = N t2t3t1

(4.7)
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Lemma N t1t2t5 = N t3

Conjugate the original relation (153)(264)t4t5 = t3t2 by (14)(25) to get,

(153)(264)t4t (14)(25)
5 = t3t (14)(25)

2

(156)(234)t1t2 = t3t5

⇒ t1t2 = (165)(243)t3t5

Then t1t2t5 = (165)(243)t3t5t5

= (165)(243)t3

⇒ N t1t2t5 = N t3

(4.8)

Lemma N t1t2t6 = N t3t4t3

Conjugate the original relation (153)(264)t4t5 = t3t2 by (156)(234) to get,

(153)(264)t4t (156)(234)
5 = t3t (156)(234)

2

(123)(456)t2t6 = t4t3

⇒ t2t6 = (132)(465)t4t3Then t1t2t6

= t1(132)(465)t4t3

= (132)(465)t3t4t3

⇒ N t1t2t6 = N t3t4t3

(4.9)

The point stabilizer of N 12 is {e}. The coset stabilizer of N (12) = {e}. The number of

single cosets in [12] is equal to |N |
|N (12)| = 12

1 = 12. The orbits of N on {1,2,3,4,5,6} are

{1}, {2}, {3}, {4}, {5},and {6}. Now select a representative from each single orbit, 1 ∈ {1},

2 ∈ {2}, 3 ∈ {3}, 4 ∈ {4},5 ∈ {5}, and 6 ∈ {6} and determine the double cosets to which they

belong.
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N t1t2t1 ∈ [121], which is a new double coset. Thus one symmetric generator moves

forward.

N t1t2t2 ∈ [1], since N t1t2t2 = N t1e = N t1. Thus, one symmetric generator goes back.

N t1t2t3 ∈ [123], which is a new double coset. Thus one symmetric generator moves

forward.

N t1t2t4 ∈ [123]. From the lemma, we know N t1t2t4 = N t2t3t1 = N (t1t2t3)(1,2,3)(4,5,6).Then

N t1t2t4 ∈ [123]. Thus, one symmetric generator goes to [123].

N t1t2t5 ∈ [1]. From the lemma N t1t2t5 = N t3 = N t (132)(465)
1 . Then N t1t2t5 ∈ [1]. Thus,

one symmetric generator moves goes back to [1].

N t1t2t6 ∈ [121]. From the lemma N t1t2t6 = N t3t4t3 = N (t1t2t1)(135)(246). Then N t1t2t6 ∈
[121]. Thus, one symmetric generator moves forward.
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Figure 4.3: Cayley Graph PGL(2,7) over 22 : 3

4th Double Coset [14]

Let [14] represent the double coset containing the elements,

N t1t4N = {N (t1t4)n | n ∈ N }

= {N (t1t4)e , N (t1t4)(1,5,3)(2,6,4), N (t1t4)(1,5,6)(2,3,4), N (t1t4)(1,3,2)(4,6,5),

N (t1t4)(1,2,6)(3,4,5), N (t1t4)(1,6,2)(3,5,4), N (t1t4)(1,6,5)(2,4,3), N (t1t4)(1,4)(2,5),

N (t1t4)(1,4)(3,6), N (t1t4)(1,3,5)(2,4,6), N (t1t4)(1,2,3)(4,5,6), N (t1t4)(2,5)(3,6)}

= {N t1t4, N t5t2, N t3t6, N t2t5, N t6t3, N t4t1,

(4.10)

The point stabilizer of 14 is {e, (25)(36)}. In order to see the number of elements that are

in the coset stabilizer, we must identify the element that stabilizes the coset.
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If we conjugate our relation by (135)(246) to obtain,

(153)(264)t6t1 = t5t4.

So t2(153)(264)t1 = t5t4.

Thus (153)(264)t1t4t5 = t4.

Therefore, t1t4t5t2 = (135)(246) ∈ N .

ThenN t1t4t5t2 = N

Hence N t1t4 = N t2t5.

N (t1t4)(126)(345) = t2t5

(4.11)

⇒ (126)(345) belongs to N (14).

Therefore, the coset stabilizer of N t1t4 is < e, (25)(36), (126)(345) >= N . The number

of single cosets in [14] is equal to |N |
|N (14)| = 12

12 = 1. The orbits of N on {1,2,3,4,5,6} are

{1,2,3,4,5,6}. Now select a representative from the single orbit, 4 ∈ {1,2,3,4,5,6}, and

determine the double cosets to which it belongs.

N t1t4t4 ∈ [1], since t4t4 = t 2
4 = e and N t1t4t4 = N t1e ∈ [1]. Thus all 6 symmetric genera-

tors go back to [1].
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Figure 4.4: Cayley Graph PGL(2,7) over 22 : 3

5th Double Coset [121]

Let [121] represent the double coset containing the elements,

N t1t2t1N = {N (t1t2t1)n | n ∈ N }

= {N (t1t2t1)e , N (t1t2t1)(1,5,3)(2,6,4), N (t1t2t1)(1,5,6)(2,3,4), N (t1t2t1)(1,3,2)(4,6,5),

N (t1t2t1)(1,2,6)(3,4,5), N (t1t2t1)(1,6,2)(3,5,4), N (t1t2t1)(1,6,5)(2,4,3), N (t1t2t1)(1,4)(2,5),

N (t1t2t1)(1,4)(3,6), N (t1t2t1)(1,3,5)(2,4,6), N (t1t2t1)(1,2,3)(4,5,6), N (t1t2t1)(2,5)(3,6)}

= {N t1t2t1, N t5t6t5, N t5t3t5, N t3t1t3, N t2t6t2, N t6t1t6,

N t6t4t6, N t4t5t4, N t4t2t4, N t3t4t3, N t2t3t2, N t1t5t1, }

(4.12)

The point stabilizer of 121 is {e}. However, since N t1t2t1 = N t3t1t3, the coset stabilizer

of N (121) = {e, (132)(465), (1,2,3)(4,5,6)}. The number of single cosets in [121] is equal

to |N |
|N (121)| = 12

3 = 4. The orbits of N on {1,2,3,4,5,6} are {1,2,3} and {4,5,6}. Now select

a representative from each single orbit, 1 ∈ {1,2,3} and 4 ∈ {4,5,6} and determine the

double cosets to which they belong.
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N t1t2t1t1 ∈ [12]. Since t1t1 = t 2
1 = e. Then N t1t2t1t1 = N t1t2t e

1 = N t1t2 ∈ [12]. Thus 3

symmetric generators go back to [12].

N t1t2t1t4 ∈ [12]. If we conjugate our original relation (153)(264)t4t5 = t3t2 by (132)(465)

we get

((153)(264)t4t5)(132)(465) = (t3t2)(132)(465)

(156)(234)t6t4 = t2t1

(4.13)

Also, if we conjugate our original relation (153)(264)t4t5 = t3t2 by (123)(456) we get

((153)(264)t4t5)(123)(456) = (t3t2)(132)(465)

(126)(345)t5t6 = t1t3

(4.14)

We use both relations to show,

t1t2t1t4 = t1(156)(234)t6t4t4

= (156)(234)t5t6e

= (156)(234)t5t6

(4.15)

N t1t2t1t4 = N t5t6 = N (t1t2)(153)(264) ∈ [12]. Therefore, N t1t2t1t4 ∈ [12] Thus 3

symmetric generators go back to [12].
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Figure 4.5: Cayley Graph PGL(2,7) over 22 : 3

6th Double Coset [123]

Let [123] represent the double coset containing the elements,

N t1t2t3N = {N (t1t2t3)n | n ∈ N }

= {N (t1t2t3)e , N (t1t2t3)(1,5,3)(2,6,4), N (t1t2t3)(1,5,6)(2,3,4), N (t1t2t3)(1,3,2)(4,6,5),

N (t1t2t3)(1,2,6)(3,4,5), N (t1t2t3)(1,6,2)(3,5,4), N (t1t2t3)(1,6,5)(2,4,3), N (t1t2t3)(1,4)(2,5),

N (t1t2t3)(1,4)(3,6), N (t1t2t3)(1,3,5)(2,4,6), N (t1t2t3)(1,2,3)(4,5,6), N (t1t2t3)(2,5)(3,6)}

= {N t1t2t3, N t5t6t1, N t5t3t4, N t3t1t2, N t2t6t4, N t6t1t5,

N t6t4t2, N t4t5t3, N t4t2t6, N t3t4t5, N t2t3t1, N t1t5t6, }

(4.16)

The point stabilizer of N 123 is {e}. However, since N t1t2t3 = N t5t3t4, the coset stabi-

lizer of N (123) = {e, (1,5,6)(2,3,4), (1,6,5)(2,4,3)}. The number of single cosets in [123]

is equal to |N |
|N (12)| = 12

3 = 4. The orbits of N on {1,2,3,4,5,6} are {1,5,6} and {2,3,4}. Now

select a representative from each single orbit, 1 ∈ {1,5,6} and 3 ∈ {2,3,4} and determine

the double cosets to which they belong.
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N t1t2t3t1 ∈ [12]. If we conjugate our original second relation t6t2t4 = t4t2t6 by (14)(36)

we get

t6t2t (14)(36)
4 = t4t2t (14)(36)

6

⇒ t3t2t1 = t1t2t3

(4.17)

Now we show,

t1t2t3t1 = t3t2t1t1

= t3t2

= (153)(264)t4t5

⇒ N t1t2t3t1 = N t4t5 = N (t1t2)(14)(25) ∈ [12]

(4.18)

Therefore, N t1t2t3t1 ∈ [12]. Thus, 3 symmetric generators go back to [12].

N t1t2t3t3 ∈ [12]. Since, t3t3 = t 2
3 = e. Then N t1t2t3t3 = N t1t2t 2

3 = N t1t2. Thus 3 sym-

metric generators go back to [12].
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Figure 4.6: Cayley Graph PGL(2,7) over 22 : 3

4.3 Double Coset Enumeration of PSL(2,11) over D6

G = 26:N
(x y t y )3,(xt y2 t )5

Consider the group, G < x, y, t >:=Gr oup < x, y, t |x3, y3, (x∗
y)2, t 2, (t , x ∗ y−1 ∗x), t ∗ t y ∗ t x∗y ∗ t y = y2 ∗ t x2 ∗ t y2 > factored by (x y t y )3 and (xt y2

t )5

where x = (1,3,5)(2,4,6) , y = (1,2,6)(3,4,5), t ′s are of order 2 and t = t1. Next we will

expand our relations.

Expanding the relation (x ∗ y ∗ t y )3

Let π= x y = (1,4)(2,5)

π2 = (x y)2 = e

and π3 = (x y)3 = (1,4)(2,5) Now we will expand our relation (x ∗ y ∗ t y )3 = e
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(x ∗ y ∗ t y )3 = (πt (1,2,6)(3,4,5)
1 )3

= (πt2)3

=πt2 ·πt2 ·πt2

=π3tπ
2

2 tπ2 t2

= (1,4)(2,5)t e
2 t (1,4)(2,5)

2 t2

= (1,4)(2,5)t2t5t2

(4.19)

Our relation is (1,4)(2,5)t2t5t2 = e which can also be written as (1,4)(2,5)t2t5 =
t2. We use this relation to find other relation by conjugating by the elements in N .

(
(1,4)(2,5)t2t5

)(1,3,5)(2,4,6) = t (1,3,5)(2,4,6)
2 ⇒ (1,4)(3,6)t4t1 = t4 (4.20)(

(1,4)(2,5)t2t5
)(1,2,6)(3,4,5) = t (1,2,6)(3,4,5)

2 ⇒ (2,5)(3,6)t6t3 = t6 (4.21)(
(1,4)(2,5)t2t5

)(1,5,3)(2,6,4) = t (1,5,3)(2,6,4)
2 ⇒ (2,5)(3,6)t6t3 = t6 (4.22)(

(1,4)(2,5)t2t5
)(1,6,2)(3,5,4) = t (1,6,2)(3,5,4)

2 ⇒ (1,4)(3,6)t1t4 = t1 (4.23)(
(1,4)(2,5)t2t5

)(1,4)(2,5) = t (1,4)(2,5)
2 ⇒ (1,4)(2,5)t5t2 = t5 (4.24)(

(1,4)(2,5)t2t5
)(2,5)(3,6) = t (2,5)(3,6)

2 ⇒ (1,4)(2,5)t5t2 = t5 (4.25)(
(1,4)(2,5)t2t5

)(1,3,2)(4,6,5) = t (1,3,2)(4,6,5)
2 ⇒ (1,4)(3,6)t1t4 = t1 (4.26)(

(1,4)(2,5)t2t5
)(1,2,3)(4,5,6) = t (1,2,3)(4,5,6)

2 ⇒ (2,5)(3,6)t3t6 = t3 (4.27)(
(1,4)(2,5)t2t5

)(1,5,6)(2,3,4) = t (1,5,6)(2,3,4)
2 ⇒ (2,5)(3,6)t3t6 = t3 (4.28)(

(1,4)(2,5)t2t5
)(1,6,5)(2,4,3) = t (1,6,5)(2,4,3)

2 ⇒ (1,4)(3,6)t1t4 = t1 (4.29)(
(1,4)(2,5)t2t5

)(1,6,5)(2,4,3)) = t (1,6,5)(2,4,3)
2 ⇒ (1,4)(3,6)t4t1 = t4 (4.30)

(4.31)
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Expanding our relation (xt y2
t )5

Let t = t1, x = (1,3,5)(2,4,6), x2 = (1,5,3)(2,6,4), x3 = e, x4 = (1,3,5)(2,4,6),

and x5 = (1,5,3)(2,6,4). Also, let y = (1,2,6)(3,4,5) and y2 = (1,6,2)(3,5,4).

We expand our relation as follows:

(xt y2

1 t1)5 = (xt (1,6,2)(3,5,4)
1 t1)5

= (xt6t1)5

= xt6t1 · xt6t1 · xt6t1 · xt6t1 · xt6t1

= x5(t6t1)x4
(t6t1)x3

(t6t1)x2
(t6t1)x t6t1

= (1,5,3)(2,6,4)t2t3t6t1t4t5t2t3t6t1

(4.32)

Our relation is (1,5,3)(2,6,4)t2t3t6t1t4t5t2t3t6t1 = e which can also be written as (1,5,3)(2,6,4)t2t3t6t1t4 =
t1t6t3t2t5

We will also use the relation (1,6,2)(3,5,4)t5t6t2 = t1t2t4. We can also conju-
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gate this relation by all the elements of N to obtain eleven new elements.

(1,6,2)(3,5,4)t5t6t (1,5,3)(2,6,4)
2 = t1t2t (1,5,3)(2,6,4)

4 ⇒ (1,3,2)(4,6,5)t3t4t6 = t5t6t2

(1,6,2)(3,5,4)t5t6t (1,5,6)(2,3,4)
2 = t1t2t (1,5,6)(2,3,4)

4 ⇒ (1,3,5)(2,4,6)t6t1t3 = t5t3t2

(1,6,2)(3,5,4)t5t6t (1,3,2)(4,6,5)
2 = t1t2t (1,3,2)(4,6,5)

4 ⇒ (1,3,5)(2,4,6)t4t5t1 = t3t1t6

(1,6,2)(3,5,4)t5t6t (1,2,6)(3,4,5)
2 = t1t2t (1,2,6)(3,4,5)

4 ⇒ (1,6,2)(3,5,4)t3t1t6 = t2t6t5

(1,6,2)(3,5,4)t5t6t (1,6,2)(3,5,4)
2 = t1t2t (1,6,2)(3,5,4)

4 ⇒ (1,6,2)(3,5,4)t4t2t1 = t6t1t3

(1,6,2)(3,5,4)t5t6t (1,6,5)(2,4,3)
2 = t1t2t (1,6,5)(2,4,3)

4 ⇒ (1,3,2)(4,6,5)t1t5t4 = t6t4t3

(1,6,2)(3,5,4)t5t6t (1,4)(2,5)
2 = t1t2t (1,4)(2,5)

4 ⇒ (1,3,2)(4,6,5)t2t6t5 = t4t5t1

(1,6,2)(3,5,4)t5t6t (1,4)(3,6)
2 = t1t2t (1,4)(3,6)

4 ⇒ (1,6,5)(2,4,3)t5t3t2 = t4t2t1

(1,6,2)(3,5,4)t5t6t (1,3,5)(2,4,6)
2 = t1t2t (1,3,5)(2,4,6)

4 ⇒ (1,6,5)(2,4,3)t1t2t4 = t3t4t6

(1,6,2)(3,5,4)t5t6t (1,2,3)(4,5,6)
2 = t1t2t (1,2,3)(4,5,6)

4 ⇒ (1,6,5)(2,4,3)t6t4t3 = t2t3t5

(1,6,2)(3,5,4)t5t6t (2,5)(3,6)
2 = t1t2t (2,5)(3,6)

4 ⇒ (1,3,5)(2,4,6)t2t3t5 = t1t5t4

(4.33)

First Double Coset[∗]

Let [∗] represent the double coset [∗] = {NeN = N (e)n | n ∈ N = N }. The coset stabilizer

of Ne = N. The number of single cosets in [*] is equal to |N |
|N | = 12

12 = 1. The orbits of N

on {1,2,3,4,5,6} is {1,2,3,4,5,6}, that is, there is one single orbit. Now select a repre-

sentative from the single orbit, say 1, and find the double coset that contains N t1. We

determine that N t1 belongs to a new double coset N t1N denoted by [1]. There are 6

elements in the orbit {1,2,3,4,5,6}, therefore, all 6 symmetric generators will move for-

ward.
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Figure 4.7: Cayley Graph PSL(2,11) over D6

Second Double Coset[1]

N t1N = {N (t1)n | n ∈ N }

= {N t e
1 , N t (1,5,3)(2,6,4)

1 , N t (1,5,6)(2,3,4
1 ), N t (1,3,2)(4,6,5)

1 , N t (1,2,6)(3,4,5)
1 ,

N t (1,6,2)(3,5,4)
1 , N t (1,6,5)(2,4,3)

1 , N t (1,4)(2,5)
1 , N t (1,4)(3,6)

1 , N t (1,3,5)(2,4,6)
1 ,

N t (1,2,3)(4,5,6)
1 , N t (2,5)(3,6)

1 }

= {N t1, N t2, N t3, N t4, N t5, N t6}

(4.34)

The point stabilizer of N 1 = {(2,5)(3,6)}. Similarly, the coset stabilizer N (1) = {(2,5)(3,6)}.

The number of single right cosets in N (1) = |N |
|N (1)| = 12

2 = 6.The orbits of N (1) on X =
{1,2,3,4,5,6} are {1}, {2,5}, {3,6} and {4}. Now we select a representative from each orbit,

say 1 ∈ {1},2 ∈ {2,5},3 ∈ {3,6} and 4 ∈ {4} and determine the double coset it belongs to.

N t1t1 ∈ [∗] since t1t1 = t 2
1 = e. Thus, one symmetric generator will move forward.

N t1t2 ∈ [12] which is a new double coset. Thus, two symmetric generators will move

forward.
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N t1t3 ∈ [13] which is a new double coset. Thus, two symmetric generators will move

forward.

N t1t4 ∈ [1]. In order to prove that N t1t4 ∈ [1], we conjugate our original relation (1,4)(2,5)t2t5 =
t2 by (1,6,5)(2,4,3) to obtain (1,4)(3,6)t1t4 = t1.

t1t4 = t1t4

= (1,4)(3,6)t1t4t4

= (1,4)(3,6)t1t 2
4

= (1,4)(3,6)t1 since t 2
4 = e

⇒ N t1t4 = N t1 ∈ [1]

Thus, one symmtric generator loops back to [1].

Figure 4.8: Cayley Graph PSL(2,11) over D6
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Third Double Coset[12]

N t1t2N = {N (t1t2)n | n ∈ N }

= {N (t1t2)e , N (t1t2)(1,5,3)(2,6,4), N (t1t2)(1,5,6)(2,3,4), N (t1t2)(1,3,2)(4,6,5),

N (t1t2)(1,2,6)(3,4,5), N (t1t2)(1,6,2)(3,5,4), N (t1t2)(1,6,5)(2,4,3), N (t1t2)(1,4)(2,5),

N (t1t2)(1,4)(3,6), N (t1t2)(1,3,5)(2,4,6), N (t1t2)(1,2,3)(4,5,6), N (t1t2)(2,5)(3,6)}

= {N t1t2, N t5t6, N t5t3, N t3t1, N t2t6, N t6t1, N t6t4, N t4t5, N t4t2, N t3t4, N t2t3,

N t1t5}

(4.35)

The point stabilizer of N 12 = {e}. Similarly, the coset stabilizer N (12) = {e}. The number

of single right cosets in N (12) = |N |
|N (12)| = 12

1 = 12.The orbits of N (12) on X = {1,2,3,4,5,6}

are {1}, {2}, {3}, {4}, {5} and {6}. Now we select a representative from each orbit, say 1 ∈
{1},2 ∈ {2},3 ∈ {3}, 4 ∈ {4},5 ∈ {5} and 6 ∈ {6} and determine the double coset it belongs

to.

N t1t2t1 ∈ [121], which is a new double coset. Thus one symmetric generator moves

forward.

N t1t2t2 ∈ [1] since, t2t2 = t 2
2 = e and N t1e = N t1 ∈ [1]. Thus one symmetric generator

goes back to [1].

N t1t2t3 ∈ [123] which is a new double coset. Thus, one symmetric generator moves

forward.
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N t1t2t4 ∈ [124] which is a new double coset. Thus, one symmetric generator moves

forward.

N t1t2t5 ∈ [12]. In order to prove that N t1t2t5 ∈ [12], we use our original relation

(14)(25)t2t5 = t2.

t1t2t5 = t1(14)(25)t2

= (14)(25)t4t2

⇒ N t1t2t5 = N t4t2 = N (t1t2)(14)(36) ∈ [12].

N t1t2t6 ∈ [13] which is a new double coset.

Figure 4.9: Cayley Graph PSL(2,11) over D6
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Fourth Double Coset [13]

N t1t3N = {N (t1t3)n | n ∈ N }

= {N (t1t3)e , N (t1t3)(1,5,3)(2,6,4), N (t1t3)(1,5,6)(2,3,4), N (t1t3)(1,3,2)(4,6,5),

N (t1t3)(1,2,6)(3,4,5), N (t1t3)(1,6,2)(3,5,4), N (t1t3)(1,6,5)(2,4,3), N (t1t3)(1,4)(2,5),

N (t1t3)(1,4)(3,6), N (t1t3)(1,3,5)(2,4,6), N (t1t3)(1,2,3)(4,5,6), N (t1t3)(2,5)(3,6)}

= {N t1t3, N t5t1, N t5t4, N t3t2, N t2t4, N t6t5N t6t2, N t4t3, N t4t6, N t3t5,

N t2t1, N t1t6}

(4.36)

The point stabilizer of N 13 = {e}. Similarly, the coset stabilizer N (13) = {e}. The number

of single right cosets in N (13) = |N |
|N (13)| = 12

1 = 12. The orbits of N (13) on X = {1,2,3,4,5,6}

are {1}, {2}, {3}, {4}, {5}, {5}. Now we select a representative from each orbit, say 1 ∈ {1},2 ∈
{2},3 ∈ {3} and 4 ∈ {4}, 5 ∈ {5} and 6 ∈ {6} and determine the double coset it belongs to.

N t1t3t1 ∈ [131], which is a new double coset. Thus, one symmetric generator moves

forward.

N t1t3t2 ∈ [123]. In order to show this, we will use the relation (135)(462)t6t1t3 = t5t3t2

obtained by conjugating the relation (162)(354)t5t6t2 = t1t2t4 by (156)(234). In addi-

tion, we will use the relation (135)(246)t4t5t1 = t3t1t6 obtained by conjugating the rela-

tion (162)(354)t5t6t2 = t1t2t4 by (132)(465).
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t1t3t2 = t1t5t5t3t2

= t1t5(135)(246)t6t1t3

= (135)(246)t3t1t6t1t3

= (135)(246)(135)(246)t4t5t1t1t3

= (153)(264)t4t5t3

⇒ N t1t3t2 = N t4t5t3 = N (t1t2t3)(14)(25) ∈ [123]

(4.37)

N t1t3t3 ∈ [1]. Since t3t3 = t 2
3 = e. Therefore N t1t3t3 = N t1t 2

3 = N t1. Thus, one symmet-

ric generator moves back.

We also determine

N t1t3t4 ∈ [121]. Thus one symmetric generator goes to [121].

N t1t3t5 ∈ [12]. Thus, one symmetric generator goes to [12].

N t1t3t6 ∈ [13]. In order to show this, we conjugate our original relation (14)(25)t2t5 = t2

by (123)(456) to obtain,

(14)(25)t2t (123)(456)
5 = t (123)(456)

2

(25)(36)t3t6 = t3.
(4.38)

Now we have,

t1t3t6 = t1(25)(36)t3

= (25)(36)t1t3

N t1t3t6 = N t1t3 ∈ [13]

(4.39)
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Thus, one symmetric generator goes back to [13].

Figure 4.10: Cayley Graph PSL(2,11) over D6

Fifth Double Coset[124]

N t1t2t4N = {N (t1t2t4)n | n ∈ N }

= {N (t1t2t4)e , N (t1t2t4)(1,5,3)(2,6,4), N (t1t2t4)(1,5,6)(2,3,4), N (t1t2t4)(1,3,2)(4,6,5),

N (t1t2t4)(1,2,6)(3,4,5), N (t1t2t4)(1,6,2)(3,5,4), N (t1t2t4)(1,6,5)(2,4,3), N (t1t2t4)(1,4)(2,5),

N (t1t2t4)(1,4)(3,6), N (t1t2t4)(1,3,5)(2,4,6), N (t1t2t4)(1,2,3)(4,5,6), N (t1t2t4)(2,5)(3,6)}

= {N t1t2t4, N t5t6t2, N t5t3t2, N t3t1t6, N t2t6t5, N t6t1t3, N t6t4t3, N t4t5t1, N t4t2t1,

N t3t4t6, N t2t3t5, N t4t5t1}

(4.40)

The point stabilizer of N 124 = {e}. However, since N t1t2t4 = N t3t4t6, the coset sta-

bilizer N (124) = {e, (1,5,3)(2,6,4), (1,3,5)(2,4,6)}. The number of single right cosets in
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N (124) = |N |
|N (124)| = 12

3 = 4. The orbits of N (124) on X = {1,2,3,4,5,6} are {1,3,5}, {2,4,6}.

Now we select a representative from each orbit, say 3 ∈ {1,3,5},2 ∈ {2,4,6} and deter-

mine the double coset it belongs to.

N t1t2t4t3 ∈ [121]. In order to show this, we will use our relation, (162)(354)t5t6t2 =
t1t2t4.

t1t2t4t3 = (162)(354)t5t6t2t3

= (162)(354)t5t6t2(25)(36)t3t6

= (162)(354)(25)(36)t2t3t5t3t6

= (132)(465)t2t3t5t3t6

= (132)(465)(153)(264)t1t5t4t3t6

= (25)(36)t1t5t4t3t6

= (25)(36)(123)(456)t6t4t3t3t6

= (126)(345)t6t4t6

(4.41)

Thus 3 symmetric generator go back to [121].

N t1t2t4t2 ∈ [12]. Thus 3 symmetric generators go back to [12].
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Figure 4.11: Cayley Graph PSL(2,11) over D6

Sixth Double Coset[123]

N t1t2t3N = {N (t1t2t3)n | n ∈ N }

= {N (t1t2t3)e , N (t1t2t3)(1,5,3)(2,6,4), N (t1t2t3)(1,5,6)(2,3,4), N (t1t2t3)(1,3,2)(4,6,5),

N (t1t2t3)(1,2,6)(3,4,5), N (t1t2t3)(1,6,2)(3,5,4), N (t1t2t3)(1,6,5)(2,4,3), N (t1t2t3)(1,4)(2,5),

N (t1t2t3)(1,4)(3,6), N (t1t2t3)(1,3,5)(2,4,6), N (t1t2t3)(1,2,3)(4,5,6), N (t1t2t3)(2,5)(3,6)}

= {N t1t2t3, N t5t6t1, N t5t3t4, N t3t1t2, N t2t6t4, N t6t1t5, N t6t4t2, N t4t5t3, N t4t2t6,

N t3t4t5, N t2t3t1, N t1t5t6}

(4.42)

The point stabilizer of N 123 = {e}. However, since N t1t2t3 = N t3t1t2, the coset sta-

bilizer N (123) = {e, (1,3,2)(4,6,5), (1,2,3)(4,5,6)}. The number of single right cosets in

N (123) = |N |
|N (123)| = 12

3 = 4. The orbits of N (123) on X = {1,2,3,4,5,6} are {1,2,3}, {4,5,6}.

Now we select a representative from each orbit, say 1 ∈ {1,2,3},4 ∈ {4,5,6} and deter-
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mine the double coset it belongs to.

N t1t2t3t1 ∈ [12],

N t1t2t4t4 ∈ [13].

Figure 4.12: Cayley Graph PSL(2,11) over D6
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Seventh Double Coset[121]

N t1t2t1N = {N (t1t2t1)n | n ∈ N }

= {N (t1t2t1)e , N (t1t2t1)(1,5,3)(2,6,4), N (t1t2t1)(1,5,6)(2,3,4), N (t1t2t1)(1,3,2)(4,6,5),

N (t1t2t1)(1,2,6)(3,4,5), N (t1t2t1)(1,6,2)(3,5,4), N (t1t2t1)(1,6,5)(2,4,3), N (t1t2t1)(1,4)(2,5),

N (t1t2t1)(1,4)(3,6), N (t1t2t1)(1,3,5)(2,4,6), N (t1t2t1)(1,2,3)(4,5,6), N (t1t2t1)(2,5)(3,6)}

= {N t1t2t1, N t5t6t5, N t5t3t5, N t3t1t3, N t2t6t2, N t6t1t6,

N t6t4t6, N t4t5t4, N t4t2t4, N t3t4t3, N t2t3t2, N t1t5t1}

(4.43)

The point stabilizer of N 121 = {e}. Similarly, the coset stabilizer N (121) = {e}. The num-

ber of single right cosets in N (121) = |N |
|N (12)| = 12

1 = 12.The orbits of N (121) on X = {1,2,3,4,5,6}

are {1}, {2}, {3}, {4}, {5} and {6}. Now we select a representative from each orbit, say 1 ∈
{1},2 ∈ {2},3 ∈ {3}, 4 ∈ {4},5 ∈ {5} and 6 ∈ {6} and determine the double coset it belongs

to.

We determine that,

N t1t2t1t1 ∈ [12], thus one symmetric generator goes to [121].

N t1t2t1t2 ∈ [121], thus one symmetric generator goes back to [121].

N t1t2t1t3 ∈ [13], thus one symmetric generator goes to [13].

N t1t2t1t4 ∈ [124], thus one symmetric generator goes to [124].

N t1t2t1t5 ∈ [121], thus one symmtric generator goes to [121].
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N t1t2t1t6 ∈ [131], thus one symmetric generator goes to [131].

Figure 4.13: Cayley Graph PSL(2,11) over D6

Eighth Double Coset [131]

N t1t3t1N = {N (t1t3t1)n | n ∈ N }

= {N (t1t3t1)e , N (t1t3t1)(1,5,3)(2,6,4), N (t1t3t1)(1,5,6)(2,3,4), N (t1t3t1)(1,3,2)(4,6,5),

N (t1t3t1)(1,2,6)(3,4,5), N (t1t3t1)(1,6,2)(3,5,4), N (t1t3t1)(1,6,5)(2,4,3), N (t1t3t1)(1,4)(2,5),

N (t1t3t1)(1,4)(3,6), N (t1t3t1)(1,3,5)(2,4,6), N (t1t3t1)(1,2,3)(4,5,6), N (t1t3t1)(2,5)(3,6)}

= {N t1t3t1, N t5t1t5, N t5t4t5, N t3t2t3, N t2t4t2, N t6t5t6N t6t2t6, N t4t3t4,

N t4t6t4, N t3t5t3, N t2t1t2, N t1t6t1}

(4.44)

The point stabilizer of N 131 = {e}. However, since N t1t3t1 = N t2t4t2, the coset sta-
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bilizer N (131) = {e, (1,2,6)(2,3,5), (1,6,2)(3,5,4)}. The number of single right cosets in

N (131) = |N |
|N (131)| = 12

3 = 4. The orbits of N (131) on X = {1,2,3,4,5,6} are {1,2,6}, {3,4,5}.

Now we select a representative from each orbit, say 1 ∈ {1,2,6},3 ∈ {3,4,5} and deter-

mine the double coset it belongs to.

We determine

N t1t3t1t1 ∈ [13]. Thus, three symmetric generatos go back to [13].

N t1t3t1t3 ∈ [121]. Thus, three symmetric generators go to [121].

Figure 4.14: Cayley Graph PSL(2,11) over D6
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4.4 Double Coset Enumeration of 3∗2 :m D4

G = 3∗2:m D4

(x2 y t t x )4

The elements of N are {e, (1432), (1234), (13)(24), (12)(34), (14)(23), (13), (24)}, and the

order of |N | = 8. Suppose x = (1,2,3,4) , y = (2,4) and t = t1.

Before we begin our double coset enumeration, lets expand our relation (x2 y t t x )4.

(x2 y t t x )4 = ((1,2,3,4)2(2,4)t1t (1,2,3,4)
1 )4

= ((1,3)(2,4)(2,4)t1t2)4

= ((1,3)t1t2)4

= (1,3)t1t2(1,3)t1t2(1,3)t1t2(1,3)t1t2

= (1,3)4(t1t2)(1,3)3
(t1t2)(1,3)2

(t1t2)(1,3)t1t2

= t3t2t1t2t3t2t1t2

(4.45)

After expanding our relation we see that it is t3t2t1t2t3t2t1t2 = e. We can simplify our

relation to get t3t2t1t2 = t4t3t4t1

Relations

We conjugate our relation t3t2t1t2 = t4t3t4t1, by the elements of N to find new relations.
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t3t2t1t (1,4,3,2)
2 = t4t3t4t (1,4,3,2)

1 ⇒ t2t1t4t1 = t3t2t3t4

t3t2t1t (1,2,3,4)
2 = t4t3t4t (1,2,3,4)

1 ⇒ t4t3t2t3 = t1t4t1t2

t3t2t1t (1,3)(2,4)
2 = t4t3t4t (1,3)(2,4)

1 ⇒ t1t4t3t4 = t2t1t2t3

t3t2t1t (1,2)(3,4)
2 = t4t3t4t (1,2)(3,4)

1 ⇒ t4t1t2t1 = t3t4t3t2

t3t2t1t (1,4)(2,3)
2 = t4t3t4t (1,4)(2,3)

1 ⇒ t2t3t4t3 = t1t2t1t4

t3t2t1t (1,3)
2 = t4t3t4t (1,3)

1 ⇒ t1t2t3t2 = t4t1t4t3

t3t2t1t (2,4)
2 = t4t3t4t (2,4)

1 ⇒ t3t4t1t4 = t2t3t2t1

(4.46)

We will use our technique of double coset enumeration to show that |G| ≤ 480

Labeling

1 2 3 4

t1 t2 t 2
1 t 2

2

First Double Coset

[∗] = {NeN = N (e)n | n ∈ N = N }. The coset stabilizer of Ne = N. The number of single

cosets in [*] is equal to |N |
|N | = 8

8 = 1. The orbits of N on {1,2,3,4} is {1,2,3,4}, that is, there

is one single orbit. Now select a representative from the single orbit, say 1, and find

the double coset that contains N t1. We determine that N t1 belongs to a new double

coset N t1N denoted by [1]. There are 4 elements in the orbit {1,2,3,4}, therefore, all 4

symmetric generators will move forward.
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Figure 4.15: Cayley Graph of 3∗2 :m D4

Second Double Coset[1]

N t1N = {N (t1)n | n ∈ N } = {N t1, N t2, N t3, N t4}. The point stabilizer of N 1 = {e, (2,4)}.

Similarly, the coset stabilizer N (1) = {e, (2,4)}. The number of single right cosets in

N (1) = |N |
|N (1)| = 8

2 = 4. The orbits of N (1) on X = {1,2,3,4} are {1}, {2,4}, {3}. Now we se-

lect a representative from each orbit, say 1 ∈ {1},2 ∈ {2,4}, and 3 ∈ {3} and determine the

double coset it belongs to.

N t1t1 = N t 2
1 = N t3 ∈ [1], so one symmetric generator loops back to [1].

N t1t2 ∈ [12], which is a new double coset. This tells us two symmetric generators move

forward.

N t1t3 = N t1t 2
1 = N t 3

1 ∈ [∗], since N t 3
1 = Ne. Therefore one symmetric generator goes

back to [*].
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Figure 4.16: Cayley Graph of 3∗2 :m D4

Third Double Coset[12]

N t1t2N = {N (t1t2)n | n ∈ N }

= {N (t1t2)e , N (t1t2)(1,4,3,2), N (t1t2)(1,2,3,4), N (t1t2)(1,2)(3,4), N (t1t2)(1,4)(2,3),

N (t1t2)(1,3)(2,4), N (t1t2)(1,3), N (t1t2)(2,4)}

= {N t1t2, N t4t2, N t2t3, N t2t1, N t4t3, N t3t4, N t3t2, N t1t4}

(4.47)

The point stabilizer of N 12 = {e}. Similarly, the coset stabilizer N (12) = {e}. The number

of single right cosets in N (12) = |N |
|N (12)| = 8

1 = 8. The orbits of N (12) on X = {1,2,3,4} are

{1}, {2}, {3}, {4}. Now we select a representative from each orbit, say 1 ∈ {1},2 ∈ {2},3 ∈ {3}

and 4 ∈ {4} and determine the double coset it belongs to.

N t1t2t1 ∈ [121], which is a new double coset. This tells us one symmetric generator

moves forward.

N t1t2t2 ∈ [12]. This result is obtained by evaluating our t’s. N t2t2 = N t 2
2 . From our

labeling we know that N t 2
2 = N t4. We replace N t2t2 with N t4 to get N t1t4 which is in



80

the double coset [12]. Therefore, one symmetric generator loops back to [12].

N t1t2t3 ∈ [123], which is a new double coset. Thus one symmetric generator moves

forward.

N t1t2t4 ∈ [1]. Once again we must evaluate our t’s. From our labeling N t4 = N t 2
2 . We

replace N t4 and obtain N t1t2t 2
2 which can be simplified to N t1t 3

2 . Since our t’s are of

three, t 3
2 = e. Thus N t1t2t 2

2 = N t1 ∈ [1] and one symmetric generator goes back to [1].

Figure 4.17: Cayley Graph of 3∗2 :m D4

4th Double Coset[121]

N t1t2t1N = {N (t1t2t1)n | n ∈ N }

= {N (t1t2t1)e , N (t1t2t1)(1,4,3,2), N (t1t2t1)(1,2,3,4), N (t1t2t1)(1,2)(3,4),

N (t1t2t1)(1,4)(2,3), N (t1t2t1)(1,3)(2,4), N (t1t2t1)(1,3), N (t1t2t1)(2,4)}

= {N t1t2t1, N t4t1t4, N t2t3t2, N t2t1t2, N t4t3t4, N t3t4t3, N t3t2t3, N t1t4t1}

(4.48)
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The point stabilizer of N 121 = {e}. Similarly, the coset stabilizer N (121) = {e}. The num-

ber of single right cosets in N (121) = |N |
|N (121)| = 8

1 = 8. The orbits of N (121) on X = {1,2,3,4}

are {1}, {2}, {3}, {4}. Now we select a representative from each orbit, say 1 ∈ {1},2 ∈ {2},3 ∈
{3} and 4 ∈ {4} and determine the double coset it belongs to.

N t1t2t1t1 = N t1t2t 2
1 . From our labeling we know t 2

1 = t3, so we replace t 2
1 to get N t1t2t3 ∈

[123]. This tells us one symmetric generator goes to [123].

N t1t2t1t2 ∈ [1212], which is a new double coset. This tells us one symmetric generator

moves forward.

N t1t2t1t3 ∈ [12]. We obtain this by evaluating our t’s. From our labeling we know t3 = t 2
1 .

So we replace t3 to get N t1t2t1t 2
1 = N t1t2t 3

1 , which simplifies to N t1t2. Thus one sym-

metric generator goes back to [12].

N t1t2t1t4 ∈ [1214], which is a new double coset. This tells us one symmetric generator

moves forward.

5th Double Coset[123]

N t1t2t3N = {N (t1t2t3)n | n ∈ N }

= {N (t1t2t3)e , N (t1t2t3)(1,4,3,2), N (t1t2t3)(1,2,3,4), N (t1t2t3)(1,2)(3,4),

N (t1t2t3)(1,4)(2,3), N (t1t2t3)(1,3)(2,4), N (t1t2t3)(1,3), N (t1t2t3)(2,4)}

= {N t1t2t3, N t4t1t2, N t2t3t4, N t2t1t4, N t4t3t2, N t3t4t1, N t3t2t1, N t1t4t3}

(4.49)
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Figure 4.18: Cayley Graph of 3∗2 :m D4

The point stabilizer of N 123 = {e}. Similarly, the coset stabilizer N (123) = {e}. The num-

ber of single right cosets in N (123) = |N |
|N (123)| = 8

1 = 8. The orbits of N (123) on X = {1,2,3,4}

are {1}, {2}, {3}, {4}. Now we select a representative from each orbit, say 1 ∈ {1},2 ∈ {2},3 ∈
{3} and 4 ∈ {4} and determine the double coset it belongs to.

N t1t2t3t1 ∈ [12]. This result is obtained by using our labeling and evaluating our t’s.

From our labeling we know t3 = t 2
1 . If we replace t3 with t 2

1 , we have N t1t2t 2
1 t1 =

N t1t2t 3
1 . This can be simplified to N t1t2, since t 3

1 = e. So N t1t2t3t1 = N t1t2, and one

symmetric generator goes by to [12].

N t1t2t3t2 ∈ [1214], which is a new double coset. If we conjugate our original relation

(1,3)t3t2t1t2 = t4t3t4t1 by (13) we get (31)t1t2t3t2 = t4t1t4t3. And t4t1t4t3 ∈ [1214] since

N t1t2t1t (1432)
4 = N t4t1t4t3. Therefore N t1t2t3t2 ∈ [1214] and one symmetric generator

moves forward.
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N t1t2t3t3 ∈ [121]. In order to prove this we will use our labeling.

N t1t2t3t3 = N t1t2t 2
1 t 2

1 since t3 = t 2
1

= N t1t2t 3
1 t1

= N t1t2t1, since t 3
1 = e

(4.50)

so one symmetric generator goes back to [121]

N t1t2t3t4 ∈ [1234], which is a new double coset. Thus, one symmetric generator moves

forward.

Figure 4.19: Cayley Graph of 3∗2 :m D4



84

6th Double Coset[1212]

N t1t2t1t2N = {N (t1t2t1t2)n | n ∈ N }

= {N (t1t2t1t2)e , N (t1t2t1t2)(1,4,3,2), N (t1t2t1t2)(1,2,3,4), N (t1t2t1t2)(1,2)(3,4),

= N (t1t2t1t2)(1,4)(2,3), N (t1t2t1t2)(1,3)(2,4), N (t1t2t1t2)(1,3), N (t1t2t1t2)(2,4)}

= {N t1t2t1t2t1, N t4t1t4t1t4, N t2t3t2t3t2, N t2t1t2t1t2,

N t4t3t4t3t4, N t3t4t3t4t3, N t3t2t3t2t3, N t1t4t1t4t1}

(4.51)

The point stabilizer of N 1212 = {e}. Similarly, the coset stabilizer N (1212) = {e}. The

number of single right cosets in N (1212) = |N |
|N (1212)| = 8

1 = 8. The orbits of N (1212) on

X = {1,2,3,4} are {1}, {2}, {3}, {4}. Now we select a representative from each orbit, say

1 ∈ {1},2 ∈ {2},3 ∈ {3} and 4 ∈ {4} and determine the double coset it belongs to.

N t1t2t1t2t1 ∈ [12121] which is a new double coset. Thus, one symmetric generator

moves forward.

N t1t2t1t2t2 ∈ [1214], since N t1t2t1t2t2 = N t1t2t1t 2
2 and t 2

2 = t4. We substitute t4 to ob-

tain N t1t2t1t4. Thus, one symmetric generator goes to [1214].

N t1t2t1t2t3 ∈ [1212]. Thus, one symmetric generator goes to [1212].

N t1t2t1t2t4 ∈ [121]. We use our labeling to establish N t1t2t1t2t4 = N t1t2t1t2t 2
2 . We sim-

plify N t1t2t1t2t 2
2 to N t1t2t1t 3

2 = N t1t2t1. Thus, one symmetric generator goes back to

[121].
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Figure 4.20: Cayley Graph of 3∗2 :m D4
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7th Double Coset[1214]

N t1t2t1t4N = {N (t1t2t1t4)n | n ∈ N }

= {N (t1t2t1t4)e , N (t1t2t1t4)(1,4,3,2), N (t1t2t1t4)(1,2,3,4), N (t1t2t1t4)(1,2)(3,4),

N (t1t2t1t4)(1,4)(2,3), N (t1t2t1t4)(1,3)(2,4), N (t1t2t1t4)(1,3), N (t1t2t1t4)(2,4)}

= {N t1t2t1t4, N t4t1t4t3, N t2t3t2t1, N t2t1t2t3,

N t4t3t4t1, N t3t4t3t2, N t3t2t3t4, N t1t4t1t2}

(4.52)

The point stabilizer of N 1214 = {e}. Similarly, the coset stabilizer N (1214) = {e}. The

number of single right cosets in N (1214) = |N |
|N (1214)| = 8

1 = 8. The orbits of N (1214) on

X = {1,2,3,4} are {1}, {2}, {3}, {4}. Now we select a representative from each orbit, say

1 ∈ {1},2 ∈ {2},3 ∈ {3} and 4 ∈ {4} and determine the double coset it belongs to.

N t1t2t1t4t1 ∈ [123]. If we conjugate our relation (13)t3t2t1t3 = t4t3t4t1 by (1,4,3,2) we

get t2t1t4t1 = t3t2t3t4

t1t2t1t4t1 = t1t2t1t4t1

= t1t3t2t3t4

= t1t3t2t3t4

= t 3
1 t2t3t4 since t3 = t 2

1

= t2t3t4 since t 3
1 = e

(4.53)

N t2t3t4 ∈ [123] since N (t1t2t3)(1234) = N t2t3t4. Therefore, N t1t2t1t4t1 = N t2t3t4 ∈ [123].

N t1t2t1t4t2 ∈ [121]. In order to prove this, we will use our labeling. Recall t4 = t 2
2 and



87

t 3
2 = e. Therefore,

N t1t2t1t4t2 = N t1t2t1t 2
2 t2

= N t1t2t1t 3
2

= N t1t2t1

(4.54)

Thus, one symmetric generator goes back to [121].

N t1t2t1t4t3 ∈ [1234]. In order to prove this, we will use the relation obtained by conju-

gating the original relation t3t2t1t2 = t4t3t4t1 by (1,4,3,2) to obtain t2t1t4t1 = t3t2t3t4.

This relation can be rewritten as t2t1t4t1 = t3t2t3t4.

t1t2t1t4t3 = t1t2t1t4t3

= t1t2t1t4t1t1 since t3 = t 2
1

= t1t2t1t4t1t1

= t1t3t2t3t4t1

= t1t3t2t3t4t1

= t1t 2
1 t2t3t4t1 since t3 = t 2

1

= t2t3t4t1 since t 3
1 = e

(4.55)

N t1t2t1t4t3 = N t2t3t4t1 = N (t1t2t3t4)(1,2,3,4) ∈ [1234]. Thus, one symmetric generator

goes to [1234].

N t1t2t1t4t4 ∈ [1212]. In order to prove this we will use our labeling. If t4 = t 2
2 then

t 2
4 = t2. Therefore N t1t2t1t4t4 = N t1t2t1t 2

4 which can be rewritten as N t1t2t1t2 ∈ [1212].

Thus, one symmetric generator goes to [1212].
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Figure 4.21: Cayley Graph of 3∗2 :m D4

8th Double Coset[1234]

N t1t2t3t4N = {N (t1t2t3t4)n | n ∈ N }

= {N (t1t2t3t4)e , N (t1t2t3t4)(1,4,3,2), N (t1t2t3t4)(1,2,3,4), N (t1t2t3t4)(1,2)(3,4),

N (t1t2t3t4)(1,4)(2,3), N (t1t2t3t4)(1,3)(2,4), N (t1t2t3t4)(1,3), N (t1t2t3t4)(2,4)}

= {N t1t2t3t4, N t4t1t2t3, N t2t3t4t1, N t2t1t4t3, N t4t3t2t1,

N t3t4t1t2, N t3t2t1t4, N t1t4t3t2}

(4.56)

The point stabilizer of N 1234 = {e}. Similarly, the coset stabilizer N (1234) = {e}. The

number of single right cosets in N (1234) = |N |
|N (1234)| = 8

1 = 8. The orbits of N (1234) on

X = {1,2,3,4} are {1}, {2}, {3}, {4}. Now we select a representative from each orbit, say

1 ∈ {1},2 ∈ {2},3 ∈ {3} and 4 ∈ {4} and determine the double coset it belongs to.
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N t1t2t3t4t1 ∈ [12341], which is a new double coset. Thus, one symmetric generator

moves forward.

N t1t2t3t4t2 ∈ [123]. From our labeling t 2
4 = t2 so we can rewrite N t1t2t3t4t2 as N t1t2t3t 2

2 t2

which is equal to N t1t2t3 ∈ [123] since t 3
2 = e. Thus N t1t2t3t4t2 ∈ [123]. Thus, one sym-

metric generator goes to [123].

N t1t2t3t4t3 ∈ [1234]. In order to prove that N t1t2t3t4t3 ∈ [1234] we will conjugate our

original relation t3t2t1t2 = t4t3t4t1 by (14)(23) we obtain t2t3t4t3 = t1t2t1t4. Now we

can rewrite the relation as the following:

t2t3t4t3 = t1t2t1t4

t−1
2 t2t3t4t3 = t−1

2 t1t2t1t4

t3t4t3 = t4t1t2t1t4

We will use the relation to t3t4t3 = t4t1t2t1t4 to prove N t1t2t3t4t3 ∈ [1234].

t1t2t3t4t3 = t1t2t2t4t1t2t1t4

= t1t4t2t1t2t1t4

= t1t1t2t1t4

= t3t2t1t4

(4.57)

N (t1t2t3t4)(13) = N t3t2t1t4 so N t3t2t1t4 ∈ [1234]. Thus, one symmetic generator goes to

[1234].

N t1t2t3t4t4 ∈ [1214]. In order to prove this, we conjugate our original relation t3t2t1t2 =
t4t3t4t1 by (13) to obtain t1t2t3t2 = t4t1t4t3. We can rewrite the relation as t1t2t3t2 =
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t4t1t4t3.

t1t2t3t4t4 = t1t2t3t2 since t2 = t 2
4

= t4t1t4t3

(4.58)

N t1t2t3t4t4 = N t4t1t4t3 = N (t1t2t1t4)(1,4,3,2) ∈ [1214]. Thus, one symmetric generator

goes to [1214].

Figure 4.22: Cayley Graph of 3∗2 :m D4
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9th Double Coset[12121]

N t1t2t1t2t1N = {N (t1t2t1t2t1)n | n ∈ N }

= {N (t1t2t1t2t1)e , N (t1t2t1t2t1)(1,4,3,2), N (t1t2t1t2t1)(1,2,3,4), N (t1t2t1t2t1)(1,2)(3,4),

N (t1t2t1t2t1)(1,4)(2,3), N (t1t2t1t2t1)(1,3)(2,4), N (t1t2t1t2t1)(1,3), N (t1t2t1t2t1)(2,4)}

= {N t1t2t1t2t1, N t4t1t4t1t4, N t2t3t2t3t2, N t2t1t2t1t2,

N t4t3t4t3t4, N t3t4t3t4t3, N t3t2t3t2t3, N t1t4t1t4t1}

(4.59)

The point stabilizer of N 12121 = {e}. However, since N t1t2t1t2t1 = N t2t1t2t1t2, then

(1,2)(3,4) ∈ N (12121). Additionally, N t1t2t1t2t1 = N t4t3t4t3t4, then (1,4)(2,3) ∈ N (12121).

The coset stabilizer N (12121) ≥ N 12121, since N (12121) = {e, (1,2)(3,4), (1,4)(2,3), (1,3)(2,4)}.

The number of single right cosets in N (12121) = |N |
|N (12121)| = 8

4 = 2. There is one single or-

bit for N (12121) which is {1,2,3,4}. Now we select a representative from each orbit, say

3 ∈ {1,2,3,4} and determine the double coset it belongs to.

N t1t2t1t2t1t3 = N t1t2t1t2 ∈ [1212] since t1t3 = t 3
1 = e. Thus all four symmetric genera-

tors go back to [1212].
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Figure 4.23: Cayley Graph of 3∗2 :m D4

10th Double Coset[12341]

N t1t2t3t4t1N = {N (t1t2t3t4t1)n | n ∈ N }

= {N (t1t2t3t4t1)e , N (t1t2t3t4t1)(1,4,3,2), N (t1t2t3t4t1)(1,2,3,4),

N (t1t2t3t4t1)(1,2)(3,4), N (t1t2t3t4t1)(1,4)(2,3),

N (t1t2t3t4t1)(1,3)(2,4), N (t1t2t3t4t1)(1,3), N (t1t2t3t4t1)(2,4)}

= {N t1t2t3t4t1, N t4t1t2t3t4, N t2t3t4t1t2, N t2t1t4t3t2,

N t4t3t2t1t4, N t3t4t1t2t3, N t3t2t1t4t3, N t1t4t3t2t1}

(4.60)

The point stabilizer of N 12341 = {e}. However, since N t1t2t3t4t1 = N t3t2t1t4t3,

then (1,3) ∈ N (12341). Thus, N (12341) ≥ N 12341 since N (12341) = {e, (13)}. The number of

single right cosets in N (12341) = |N |
|N (12341)| = 8

2 = 4. The orbits N (12341) on X = {1,2,3,4} are

{1,3}, {2}, and {4}. Now we select a representative from each orbit, say 3 ∈ {1,3}, 2 ∈ {2},

and 4 ∈ {4} and determine the double coset it belongs.



93

N t1t2t3t4t1t3 ∈ [1234]. In order to prove this, we use our labeling t3 = t 2
1 and t 3

1 = e

N t1t2t3t4t1t3 = N t1t2t3t4t1t3

= N t1t2t3t4t1t 2
1

= N t1t2t3t4t 3
1

= N t1t2t3t4

(4.61)

Thus N t1t2t3t4t1t3 ∈ [1234] and two symmetric generators go to [1234].

N t1t2t3t4t1t2 ∈ [123412], which is a new double coset. Thus, one symmetric generator

moves forward.

N t1t2t3t4t1t4 ∈ [12341]. Thus, one symmetric generator goes to [12341].

Figure 4.24: Cayley Graph of 3∗2 :m D4
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11th Double Coset[123412]

N t1t2t3t4t1t2N = {N (t1t2t3t4t1t2)n | n ∈ N }

= {N (t1t2t3t4t1t2)e , N (t1t2t3t4t1t2)(1,4,3,2), N (t1t2t3t4t1t2)(1,2,3,4),

N (t1t2t3t4t1t2)(1,2)(3,4), N (t1t2t3t4t1t2)(1,4)(2,3),

N (t1t2t3t4t1t2)(1,3)(2,4), N (t1t2t3t4t1t2)(1,3), N (t1t2t3t4t1t2)(2,4)}

= {N t1t2t3t4t1t2, N t4t1t2t3t4t1, N t2t3t4t1t2t3, N t2t1t4t3t2t1,

N t4t3t2t1t4t3, N t3t4t1t2t3t4, N t3t2t1t4t3t2, N t1t4t3t2t1t4}

(4.62)

The point stabilizer of N 123412 = {e}. However, since N t1t2t3t4t1t2 = N t3t2t1t4t3t2,

then (1,3) ∈ N (123412). Additionally, N t1t2t3t4t1t2 = N t2t3t4t1t2t3, then (1,2,3,4) ∈ N (123412).

Thus, N (123412) ≥ N 123412 since N (123412) = {e, (1,3), (1,2,3,4), (1,3)(2,4), (1,2)(3,4)}. The

number of single right cosets in N (123412) = |N |
|N (123412)| = 8

4 = 2. The orbit N (123412) on

X = {1,2,3,4} is {1,2,3,4}. Now we select a representative from the orbit, say 4 deter-

mine the double coset it belongs.

N t1t2t3t4t1t2t4 ∈ [12341].

t1t2t3t4t1t2t4 = t1t2t3t4t1t2t 2
2

= t1t2t3t4t1t 3
2

= t1t2t3t4t1e

= t1t2t3t4t1

(4.63)

N t1t2t3t4t1t2t4 = N t1t2t3t4t1 ∈ [12341]. Thus, four symmetric generators go back to

[12341].
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Figure 4.25: Cayley Graph of 3∗2 :m D4
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Appendix A

MAGMA CODE 2∗15 : (D5×3)

N:=TransitiveGroup(15,3);
#N;
N;
Generators(N);
N.1;
N.2;
S:=Sym(15);
xx:=S!((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
yy:=S!((1, 4)(2, 8)(3, 12)(6, 9)(7, 13)(11, 14));
N:=sub<S|xx,yy>;
#N;
FPGroup(N);
NN<x,y>:=Group<x,y|y^2,x^-4*y*x*y>;
#NN;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..30]];
for i in [2..30] do

P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
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if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

N1:=Stabiliser(N,1);
#N1;
N1;

Generators(N1);
for i in [1..30] do if ArrayP[i]
eq N!((2, 5)(3, 9)(4, 13)(7, 10)(8, 14)(12, 15))
then Sch[i]; end if; end for;

Orbits(Stabiliser(N,1));

G<x,y,t>:=Group<x,y,t|y^2,x^-4*y*x*y, t^2, (t,y^x),(t,t^(x^5)),
(t,t^(x^10)), (t,t^x), (t,t^(x^2)), (t,t^(x^3)), (t, t^(x^6)),
(t,t^(x^7)), (t,t^(x^11))>;

C:=Classes(N);
C;

for i in [1..48] do 1^ArrayP[i], Sch[i]; end for;

for i in [2..12] do
i, Orbits(Centraliser(N,C[i][3]));
end for;

for a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q in [0..17] do
G<x,y,t>:=Group<x,y,t|y^2,x^-4*y*x*y, t^2, (t,y^x),(t,t^(x^5)),
(t,t^(x^10)), (t,t^x), (t,t^(x^2)), (t,t^(x^3)), (t, t^(x^6)),
(t,t^(x^7)), (t,t^(x^11)),
(x^2 * y * x*t^x)^a,
(x^2 * y * x*t)^b,
(x^2 * y * x*t^(x^3))^c,
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((x * y)^2*t)^d,
((y * x^-1)^2*t)^e,
(x^3*t)^f,
(x^2 * y * x * y*t)^g,
(x * y*t^x)^h,
(x * y*t)^i,
(x * y*t^(x^3))^j,
(y * x^-1*t^x)^k,
(y * x^-1*t)^l,
(y * x^-1*t^(x^3))^m,
(x*t)^n,
(x^2*t)^o,
(y * x^-2 * y*t)^p,
(y * x^-1 * y*t)^q>;

if #G gt 30 then a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,
#G;
end if; end for;
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Appendix B

MAGMA CODE 2∗15 : (D3×5)

N:=TransitiveGroup(15,4);
#N;
N;
Generators(N);
N.1;
N.2;
S:=Sym(15);
xx:=S!((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
yy:=S!((1, 11)(2, 7)(4, 14)(5, 10)(8, 13));
N:=sub<S|xx,yy>;
FPGroup(N);
NN<x,y>:=Group<x,y|y^2, x^-4*y*x^-1*y>;
#NN;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..30]];
for i in [2..30] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
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PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

N1:=Stabiliser(N,1);
#N1;
Generators(N1);

for i in [1..30] do if ArrayP[i]
eq N!((2, 12)(3, 8)(5, 15)(6, 11)(9, 14))
then Sch[i]; end if; end for;

G<x,y,t>:=Group<x,y,t|y^2, x^-4*y*x^-1*y, t^2, (t,y^x)>;

Orbits(Stabiliser(N,1));

xx^3;
xx*yy;
(xx^4)*yy;
(xx^7)*yy;
xx;
xx^2;
xx^4;
yy;
(xx^3)*yy;

G<x,y,t>:=Group<x,y,t|y^2, x^-4*y*x^-1*y, t^2, (t,y^x),
(t,t^(x^3)),
(t,t^(x*y)),
(t, t^((x^4)*y)),
(t,t^((x^7)*y)),
(t,t^x),
(t,t^(x^2)),
(t,t^(x^4)),
(t,t^y),
(t,t^((x^3)*y))>;
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C:=Classes(N);
C;
Classes(N);

for i in [2..15] do
i, Orbits(Centraliser(N,C[i][3]));
end for;

for j in [2..15] do
C[j][3];
for i in [1..30] do
if ArrayP[i] eq C[j][3]
then Sch[i]; end if;
end for;
end for;

for a,b,c,d,e,f,g,h,i,j,k,l,m,n in [0..10] do
G<x,y,t>:=Group<x,y,t|y^2, x^-4*y*x^-1*y, y^x, t^2, (t,y^x),
(y^x*t)^a,
(x * y * x^-1 * y*t^(x^3))^b,
(x^3*t^(x*y))^c,
(x^-3*t^(y * x^-1))^d,
(x * y * x^-2 * y*t^(y * x^2))^e,
(x^2 * y * x^-1 * y*t^x)^f,
(x * y*t^(y*x))^g,
(x^-2 * y*t^(x^2))^h,
(y * x^2*t^(x * y * x))^i,
(y * x^-1*t^(x * y * x^-2))^j,
(x*t^(x^-1))^k,
(x^2*t^(x * y * x^-1))^l,
(y * x^-1 * y*t^y)^m,
(x^-2*t^(y * x^-2))^n>;

if #G gt 30 then a,b,c,d,e,f,g,h,i,j,k,l,m,n, #G;
end if; end for;
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Appendix C

MAGMA CODE 2∗24 : (4×2 : S3)

2 * 24 : N
c = (1, 10)(2, 5)(3, 7)(4, 8)(6, 9)(11, 12)
N =
Permutation group N acting on a set of cardinality 24

Order = 48 = 2^4 * 3
(1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16)
(17, 23)(18,21)(20, 24)
(1, 15, 17)(2, 13, 18)(3, 11, 19)(4, 16, 20)(5, 10, 21)
(6, 14, 22)(7, 9,23)(8, 12, 24)
(1, 2, 4, 5)(3, 8, 6, 7)(9, 16, 12, 15)(10, 11, 13, 14)
(17, 22, 20,19)(18, 24, 21, 23)
(1, 3, 4, 6)(2, 7, 5, 8)(9, 14, 12, 11)(10, 16, 13, 15)
(17, 24, 20,23)(18, 19, 21, 22)
(1, 4)(2, 5)(3, 6)(7, 8)(9, 12)(10, 13)(11, 14)(15, 16)
(17, 20)(18,21)(19, 22)(23, 24)

Stabiliser of 1 in N
Permutation group acting on a set of cardinality 24

Order = 2
(2, 6)(3, 5)(7, 8)(9, 21)(10, 17)(11, 23)(12, 18)
(13, 20)(14, 24)(15,

22)(16, 19)
*/
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S:=Sym(24);
xx:=S!(1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16)
(17, 23)(18,21)(20, 24);
yy:=S!(1, 15, 17)(2, 13, 18)(3, 11, 19)(4, 16, 20)(5, 10, 21)
(6, 14, 22)(7, 9,23)(8, 12, 24);
zz:=S!(1, 2, 4, 5)(3, 8, 6, 7)(9, 16, 12, 15)(10, 11, 13, 14)
(17, 22, 20,19)(18, 24, 21, 23);
ww:=S!(1, 3, 4, 6)(2, 7, 5, 8)(9, 14, 12, 11)(10, 16, 13, 15)
(17, 24, 20,23)(18, 19, 21, 22);
pp:=S!(1, 4)(2, 5)(3, 6)(7, 8)(9, 12)(10, 13)(11, 14)(15, 16)
(17, 20)(18,21)(19, 22)(23, 24);

N:=sub<S|xx,yy,zz,ww,pp>;
#N;

#sub<S|xx,yy,zz>;
/*48*/
#sub<S|xx,yy>;
/*6*/
#sub<S|xx,zz>;
/*16*/
#sub<S|yy,zz>;
/*24*/

N:=sub<S|xx,yy,zz>;

FPGroup(N);
NN<x,y,z>:=Group<x,y,z|x^2, y^3, z^4, (y^-1 *x)^2,
z^-2 * y^-1 * z^2 * y, (y*z^-1*x)^2,
z^-1 * y^-1 * z^-1 * y^-1 *z * y^-1>;
#NN;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..48]];
for i in [2..48] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
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if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=zz; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=zz^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

Orbits(Stabiliser(N,1));

N1:=Stabiliser(N,1);
N1;
N12:=Stabiliser(N,[1,2]);
C12:=Centraliser(N,N12);
C12;
/* This was to check the famous lemma.
We found out that the lemma does not apply*/

W,phi:=WordGroup(N);
rho:=InverseWordMap(N);
A:=N!(2, 6)(3, 5)(7, 8)(9, 21)(10, 17)(11, 23)(12, 18)(13, 20)
(14, 24)(15,22)(16, 19);
A;
A@rho;

AA:=function(W)
w3 := W.3^-1; w4 := W.1 * w3; w2 := W.2^-1; w5 := w4 * w2; return w5;
function> end function;

AA(NN);

Stabiliser(N,1) eq sub<N|xx * zz^-1 * yy^-1>;

G<x,y,z,t>:=Group<x,y,z,t|x^2, y^3, z^4,(y^-1 * x)^2,
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z^-2 * y^-1 * z^2 * y,(y * z^-1 * x)^2,
z^-1 * y^-1 * z^-1 * y^-1 * z * y^-1, t^2, (t,x * z^-1 * y^-1)>;

Orbits(N12);

C:=Classes(N);
for j in [2..8] do
C[j][3];
for i in [1..48] do
if ArrayP[i] eq C[j][3]
then Sch[i]; end if;
end for;
end for;

#C;

C;

for i in [2..8] do i,C[i][3], Orbits(Centraliser(N,C[i][3])); end for;

for i in [1..48] do 1^ArrayP[i], Sch[i]; end for;
/*The code above will print out the names :)*/

/* MAKE t COMMUTE WITH EVERYTHING

(z^2*t),
(z*x*z*t^(y^-1)),
(z*x*z*t^(y*z*y)),
(z*x*z*t),
(z*x*z*t^z),
(z*x*z*t^(x * y^-1 * z)),
(z*x*z*t^(x * z^-1 * x)),
(z*x*z*t^( x * y * z)),
(y*t),
(y*t^z),
(y*t^(x*y^-1*z)),
(y*t^(x*y^-1)),
(z*t),
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(z*t^(x * y^-1 * z)),
(z*t^(y * z)),
(y*z*t),
(y*z*t^z),
(y*z*t^(x * y^-1 * z)),
(y*z*t^(x * y^-1)),
(z*x*t),
(z*x*t^z),
(z*x*t^(y^-1)),
(z^-1 * x*t),
(z^-1 * x*t^z),
(z^-1 * x*t^(y^-1)),
*/

G<x,y,z,t>:=Group<x,y,z,t|x^2, y^3, z^4, (y^-1 *x)^2, z^-2 *
y^-1 * z^2 * y, (y*z^-1*x)^2, z^-1 * y^-1 * z^-1 * y^-1 *z *
y^-1,
(z^2*t)^a,
(z*x*z*t^(y^-1))^b,
(z*x*z*t^(y*z*y))^c,
(z*x*z*t)^d,
(z*x*z*t^z)^e,
(z*x*z*t^(x * y^-1 * z))^f,
(z*x*z*t^(x * z^-1 * x))^g,
(z*x*z*t^( x * y * z))^h,
(y*t)^i,
(y*t^z)^j,
(y*t^(x*y^-1*z))^k,
(y*t^(x*y^-1))^l,
(z*t)^m,
(z*t^(x * y^-1 * z))^n,
(z*t^(y * z))^o,
(y*z*t)^p,
(y*z*t^z)^q,
(y*z*t^(x * y^-1 * z))^r,
(y*z*t^(x * y^-1))^s,
(z*x*t)^t,
(z*x*t^z)^u,
(z*x*t^(y^-1))^v,



107

(z^-1 * x*t)^a.1,
(z^-1 * x*t^z)^a.2,
(z^-1 * x*t^(y^-1))^a.3>;

if #G gt 48 then
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,a.1,a.2,a.3,
#G;
end if; end for;
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Appendix D

MAGMA CODE 23 : 3

S:=Sym(6);
xx:=S!(3, 6);
yy:=S!(1, 3, 5)(2, 4, 6);
G:=sub<S|xx,yy>;

Classes(G);
CT:=CharacterTable(G);
CT;

H:=sub<G|(2, 5),(2, 5)(3, 6),(1, 4)(2, 5)>;
Classes(H);
CH:=CharacterTable(H);
CH;
for i in [2..8] do for j in [7,8] do if Induction(CH[i],G) eq CT[j]
then i, j; end if; end for; end for;

T:=Transversal(G,H);
T;
G;
C:=Classes(G);
#C;
for i in[1..8] do C[i][3]; end for;
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H:=sub<G|(2, 5),(2, 5)(3, 6),(1, 4)(2, 5)>;
D:=Classes(H);
#D;
for i in[1..8] do D[i][3]; end for;

C:=CyclotomicField(2);
GG:=GL(3,C);
A:=[[C.1,0,0] : i in [1..3]];
for i ,j in [1..3] do A[i,j]:=0; end for;
for i,j in [1..3] do if T[i]*xx*T[j]^-1 in H then
A[i,j]:=CH[8](T[i]*xx*T[j]^-1); end if; end for;
B:=[[C.1,0,0] : i in [1..3]];
for i ,j in [1..3] do B[i,j]:=0; end for;
for i,j in [1..3] do if T[i]*yy*T[j]^-1 in H then
B[i,j]:=CH[8](T[i]*yy*T[j]^-1); end if; end for;
GG!A; GG!B;

Order(GG!A);
Order(GG!B);
Order(GG!A*GG!B);

H:=sub<GG|A,B>;
#H;
IsIsomorphic(H,G);

S:=Sym(6);
xx:=S!(3,6);
yy:=S!(1,2,3)(4,5,6);
N:=sub<S|xx,yy>;

#N;

IsIsomorphic(N,G);

xx*yy;

N1:=Stabiliser(N,{1,4});
N1;
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#N1;

NN<a,b>:=Group<a,b|a^2,b^3,(a*b)^6, (a,b)^2>;
#NN;

(xx,yy);

NN<a,b>:=Group<a,b|a^2,b^3,(a*b)^6,(a,b)^2>;
#NN;

W:=WordGroup(N);
rho:=InverseWordMap(N);
a:=N!(3,6);
b:=N!(2,5);
c:=N!(1,4);
a@rho;
function(W)

return W.1;
end function
xx;

b@rho;
function(W)

w2 := W.2^-1; w3 := W.1 * w2; w4 := W.2 * w3; return w4;
end function

B:=function(W)
function> w2 := W.2^-1; w3 := W.1 * w2; w4 := W.2 * w3;
return w4;
function> end function;

B(NN);
yy*xx*yy^-1;

c@rho;
function(W)

w2 := W.2^-1; w6 := w2 * W.1; w7 := w6 * W.2; return w7;
end function
C:=function(W)
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function> w2 := W.2^-1; w6 := w2 * W.1; w7 := w6 * W.2;
return w7;
function> end function;
C(NN);

xx^yy;

G<x,y,t>:=Group<x,y,t|x^2,y^3,(x*y)^6,(x,y)^2, (t,x),
(t,y*x*y^-1),t^(x^y)=t^2>;
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Appendix E

MAGMA CODE 42 : 4

S:=Sym(8);
T:=TransitiveGroups(8);
T;
T[30];

A:=S!(2, 6)(3, 7);
B:=S!(1, 3)(4, 8)(5, 7);
C:=S!(1, 2, 3, 8)(4, 5, 6, 7);
N:=sub<S|A,B,C>;
N;

#N;
Center(N);
CompositionFactors(N);
NL:=NormalLattice(N);
NL;

for i in [1..13] do if IsAbelian(NL[i]) then i;end if;end for;
NL[8];

X:=AbelianGroup(GrpPerm,[4,4]);
IsIsomorphic(NL[8],X);
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q,ff:=quo<N|NL[8]>;
q;
#q;

q eq sub<q|q.1,q.2,q.3>;
A:=N!(2, 8, 6, 4);
B:=N!(1, 3, 5, 7)(2, 8, 6, 4);

T:=Transversal(N,NL[8]);
T;

C:=N!(1, 2, 3, 8)(4, 5, 6, 7);

for i in [0..3] do for j in [0..3] do i,j, A^i*B^j; end for; end for;

A^T[3];

A*B^3;

B^T[3];

A^2*B^3;

H<a,b,c>:=Group<a,b,c|a^4,b^4,(a,b),c^4,a^c=a*b^3,b^c=a^2*b^3>;
f,H1,k:=CosetAction(H,sub<H|Id(H)>);
IsIsomorphic(H1,N);
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Appendix F

MAGMA CODE (4×22) : S3

S:=Sym(12);
T:=TransitiveGroups(12);
T;
T[53];
A:=S!(1, 7)(3, 9)(4, 10)(6, 12);
B:=S!(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12);
C:=S!(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12);
D:=S!(1, 5)(2, 10)(4, 8)(7, 11);
N:=sub<S|A,B,C,D>;
N;
#N;
CompositionFactors(N);
NL:=NormalLattice(N);
NL;
for i in [1..14] do if IsAbelian(NL[i]) then i;end if;end for;
NL[7];

X:=AbelianGroup(GrpPerm,[4,2,2]);
IsIsomorphic(NL[7],X);

q,ff:=quo<N|NL[7]>;
q;
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q1:=q.3;
q2:=q.4;

NL[7];

A:=N!(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12);
B:=N!(3, 9)(6, 12);
C:=N!(1, 7)(3, 9)(4, 10)(6, 12);
D:=N!(1, 7)(2, 8)(4, 10)(5, 11);

/* I need to determine if I need all four, that is, A,B,C,D.*/

M:=sub<N|A,B,C>;
#M;

/*So I don’t need D since NL[7] is order 16*/

A:=N!(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12);
B:=N!(3, 9)(6, 12);
C:=N!(1, 7)(3, 9)(4, 10)(6, 12);

T:=Transversal(N,NL[7]);
T;

D:=N!(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12);
E:=N!(1, 5)(2, 10)(4, 8)(7, 11);

A^T[2];
B^T[2];

A^T[2] eq A^D;
> A^T[2] eq A;

for i in [0..3] do for j in [0..1] do for k in [0..1] do i,j,k,
A^i*B^j*C^k;
end for; end for; end for;

/*A^T[] eq A;
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(1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)
> B^D;
(1, 7)(4, 10)

NOT NEEDED C^T[2];
(2, 8)(3, 9)(5, 11)(6, 12)

C^D;
(1, 7)(2, 8)(4, 10)(5, 11)
A^E;

A^T[3] eq A*B^2;
B^E;
B^T[3] eq B*C^2;;

C^T[3] eq C;

C^T[3];
(2, 8)(3, 9)(5, 11)(6, 12)
C^E eq C*D;

H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),
d^3,e^2,(d*e)^2,a^d=a,b^d=b*c,c^d=a^2*b,a^e=a,b^e=b,c^e=a^2*b*c>;

f,H1,k:=CosetAction(H,sub<H|Id(H)>);
IsIsomorphic(H1,N);
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Appendix G

MAGMA CODE (4×22) :· A4

S:=Sym(24);
T:=TransitiveGroups(24);
T[500];

/*Permutation group acting on a set of cardinality 24
Order = 192 = 2^6 * 3

(1, 3)(2, 4)(5, 23)(6, 24)(11, 12)(13, 14)(15, 16)(17, 18)(19, 22)
(20, 21)
(1, 7, 22, 24, 10, 19)(2, 8, 21, 23, 9, 20)(3, 11, 15, 6, 14, 18)
(4, 12, 16, 5, 13, 17)*/

xx:=S!(1, 3)(2, 4)(5, 23)(6, 24)(11, 12)(13, 14)(15, 16)
(17, 18)(19, 22)(20,21);
yy:=S!(1, 7, 22, 24, 10, 19)(2, 8, 21, 23, 9, 20)(3, 11, 15, 6, 14, 18)
(4, 12, 16, 5, 13, 17);
N:=sub<S|xx,yy>;
N;

#N;

CompositionFactors(N);

NL:=NormalLattice(N);
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NL;

for i in [1..9] do if IsAbelian(NL[i]) then i;end if;end for;

NL[5];
X:=AbelianGroup(GrpPerm,[4,2,2]);
IsIsomorphic(NL[5],X);

q,ff:=quo<N|NL[5]>;
q;

A:=N!(1, 5, 24, 4)(2, 6, 23, 3)(7, 11, 10, 14)(8, 12, 9, 13)
(15, 22, 18, 19)(16,21, 17, 20);
B:=N!(1, 2)(3, 4)(5, 6)(15, 17)(16, 18)(19, 21)(20, 22)(23, 24);
C:=N!(1, 23)(2, 24)(3, 5)(4, 6)(7, 8)(9, 10)(11, 12)(13, 14);
D:=N!(1, 24)(2, 23)(3, 6)(4, 5)(7, 10)(8, 9)(11, 14)(12, 13)
(15, 18)(16, 17)(19, 22)(20, 21);

/*BUT I need to determine if I need all four that is A,B,C,D.*/

A:=N!(1, 5, 24, 4)(2, 6, 23, 3)(7, 11, 10, 14)(8, 12, 9, 13)
(15, 22, 18, 19)(16,21, 17, 20);
B:=N!(1, 2)(3, 4)(5, 6)(15, 17)(16, 18)(19, 21)(20, 22)(23, 24);
C:=N!(1, 23)(2, 24)(3, 5)(4, 6)(7, 8)(9, 10)(11, 12)(13, 14);
M:=sub<N|A,B,C>;
#M;

/* 16, so I do not need D, since NL[5] is order 16
So far the presentation NL[5] is
<a,b,c|a^{4}, b^{2}, c^{2},(a,b),(a,c),(b,c)> */

T:=Transversal(N,NL[5]);
T;

IsIsomorphic(q,Alt(4));

FPGroup(q);
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Generators(NL[5]);

A;
B;
C;

NL[5] eq sub<NL[5]|A,B,C>;

ff(T[2]) eq q.1;
ff(T[3]) eq q.2;

T2:=N!(1, 3)(2, 4)(5, 23)(6, 24)(11, 12)(13, 14)(15, 16)(17, 18)
(19, 22)(20,21);

T3:=N!(1, 7, 22, 24, 10, 19)(2, 8, 21, 23, 9, 20)
(3, 11, 15, 6, 14, 18)(4, 12,16, 5, 13,17);

for i in [0..3] do for j,k in [0..1] do
if A^T2 eq A^i*B^j*C^k then i,j,k;
end if; end for; end for;

for i in [0..3] do for j,k in [0..1] do
if B^T2 eq A^i*B^j*C^k then i,j,k;
end if; end for; end for;

for i in [0..3] do for j,k in [0..1] do
if C^T2 eq A^i*B^j*C^k then i,j,k;end if;end for; end for;

for i in [0..3] do for j,k in [0..1] do
if C^T3 eq A^i*B^j*C^k then i,j,k;end if;end for; end for;

for i in [0..3] do for j,k in [0..1] do
if A^T3 eq A^i*B^j*C^k then i,j,k;end if;end for; end for;

for i in [0..3] do for j,k in [0..1] do
if B^T3 eq A^i*B^j*C^k then i,j,k;end if;end for; end for;

H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),d^2,
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e^3,(d*e)^3,a^d=a*b*c,b^d=b,c^d=c,a^e=a^3*c,b^e=c>;
H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),d^2,
e^3,(d*e)^3,a^d=a*b*c,b^d=b,c^d=c,a^e=a^3*c,b^e=c,c^e=a^2*b*c>;
#H;

f,H1,k:=CosetAction(H,sub<H|Id(H)>);
IsIsomorphic(H1,N);
/*false*/
#N;

Order(T2) eq Order(q.1);
true
Order(T3) eq Order(q.2);
false
Order(T2*T3) eq Order(q.1*q.2);
/*false*/
Order(T3);

Order(q.2);

for i in [0..3] do for j,k in [0..1] do
if T3^3 eq A^i*B^j*C^k then i,j,k;end if;end for; end for;

Order(T2*T3);

Order(q.1*q.2);

for i in [0..3] do for j,k in [0..1] do
if (T2*T3)^3 eq A^i*B^j*C^k then i,j,k;end if;end for; end for;

H<a,b,c,d,e>:=Group<a,b,c,d,e|a^4,b^2,c^2,(a,b),(a,c),(b,c),d^2,
e^3=a^2,(d*e)^3=a*b,a^d=a*b*c,b^d=b,c^d=c,a^e=a^3*c,b^e=c,
c^e=a^2*b*c>;
#H;

f,H1,k:=CosetAction(H,sub<H|Id(H)>);
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Appendix H

MAGMA CODE PSL(2,11)

G<x,y,t>:=Group<x,y,t|x^3,y^3,(x*y)^2, t^2,
(t,x*y^-1*x),
t*t^y*t^(x*y)*t^y=y^2*t^(x^2)*t^(y^2),
(x*y*t^y)^3>;
#G;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
Index(G,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

DC:=[Id(G1),
f(t),
f(t * x * t),
f(t * y * t),
f(t * x * t * y * t),
f(t * x * t* y^-1 * t),
f(t * x * t * x^-1 * t),
f(t * y * t * y^-1 * t)];

ts:=[Id(G1) : i in [1..6]];
ts[1]:=f(t);
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ts[2]:=f(t^y);
ts[3]:=f(t^x);
ts[4]:=f(t^(x*y));
ts[5]:=f(t^(x^2));
ts[6]:=f(t^(y^2));
IN:=sub<G1|f(x),f(y)>;
cst := [null : i in [1 .. 55]] where null is [Integers() |];
prodim := function(pt, Q, I)
v := pt;
for i in I do

v := v^(Q[i]);
end for;
return v;
end function;
for i := 1 to 6 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1; end
if; end for; m;
/*6*/

S:=Sym(6);
xx:=S!(1, 3, 5)(2, 4, 6);
yy:=S!(1, 2, 6)(3, 4, 5);
N:=sub<S|xx,yy>;
N1:=Stabiliser(N,1);
#N1;
N1;
Orbits(N1);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2] eq g*(DC[i])^h then i; end if; end for;
end for;/* 3 */
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[4] eq g*(DC[i])^h then i; end if; end for;
end for;/*2*/
for i in [1..8] do
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for g,h in IN do
if ts[1]*ts[3] eq g*(DC[i])^h then i; break;break;
end if; end for; end for;/*4*/

/*Third Double Coset*/
S:={[1,2]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if; end for; end for;

N12:=Stabiliser(N,[1,2]);
N12s:=N12;
tr1:=Transversal(N,N12s);
for i := 1 to #tr1 do

ss := [1,2]^tr1[i];
cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1; end
if; end for; m;
/*18*/
Orbits(N12s);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1] eq g*(DC[i])^h then i; end if;
end for; end for;/*7*/

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[2] eq g*(DC[i])^h then i; end if;
end for; end for;/*2*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[3] eq g*(DC[i])^h then i; end if;
end for; end for; /*6*/
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for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[4] eq g*(DC[i])^h then i; end if;
end for; end for; /*5*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[5] eq g*(DC[i])^h then i; end if;
end for; end for; /*3*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[6] eq g*(DC[i])^h then i; end if;
end for; end for; /*4*/

/*S:={[1,4]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[4]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if; end for; end for;
/*{[ 1, 4 ]}*/

N14:=Stabiliser(N,[1,4]);
N14s:=N14;
#N14s;
/*2*/
tr2:=Transversal(N,N14s);
for i := 1 to #tr2 do

ss := [1,4]^tr2[i];
cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
Orbits(N14s);
for i in [1..8] do for g,h in IN do
if ts[1]*ts[4]*ts[1] eq g*(DC[i])^h then i; end if;
end for; end for;/*1*/
for i in [1..8] do for g,h in IN do
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if ts[1]*ts[4]*ts[4] eq g*(DC[i])^h then i; end if;
end for; end for;/*2*/
for i in [1..8] do for g,h in IN do
if ts[1]*ts[4]*ts[2] eq g*(DC[i])^h then i; end if;
end for; end for;/*3*/
for i in [1..8] do for g,h in IN do
if ts[1]*ts[4]*ts[3] eq g*(DC[i])^h then i; end if;
end for; end for;/*4*/ */

/*Fourth Double Coset*/
S:={[1,3]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[3]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if; end for; end for;

N13:=Stabiliser(N,[1,3]);
N13s:=N13;
#N13s;
/*1*/
tr3:=Transversal(N,N13s);
for i := 1 to #tr3 do

ss := [1,3]^tr3[i];
cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*30*/
Orbits(N13s);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[1] eq g*(DC[i])^h then i; end if;
end for; end for;/*8*/
for i in [1..8] do
for g,h in IN do
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if ts[1]*ts[3]*ts[2] eq g*(DC[i])^h then i; end if;
end for; end for;/*6*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[3] eq g*(DC[i])^h then i; end if;
end for; end for;/*2*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[4] eq g*(DC[i])^h then i; end if;
end for; end for;/*7*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[5] eq g*(DC[i])^h then i; end if;
end for; end for;/*3*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[6] eq g*(DC[i])^h then i; end if;
end for; end for;/*4*/

/*Fifth Double Coset*/
S:={[1,2,4]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[4]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i];
end if; end for; end for;
/*

[ 1, 2, 4 ]
[ 3, 4, 6 ]
[ 5, 6, 2 ]

*/

N124:=Stabiliser(N,[1,2,4]);
N124s:=N124;
tr5:=Transversal(N,N124s);
for i := 1 to #tr5 do

ss := [1,2,4]^tr5[i];
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cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1; end
if; end for; m;

for n in N do if [1,2,4]^n eq [3,4,6]
then N124s:=sub<N|N124s,n>;
end if; end for;
#N124s;
Generators(N124s);
[1,2,4]^N124s;

for n in N do if [1,2,4]^n eq [5,6,2]
then N124s:=sub<N|N124s,n>;
end if; end for;
#N124s;
Generators(N124s);
[1,2,4]^N124s;

/*34*/
Orbits(N124s);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[4] *ts[1] eq g*(DC[i])^h then i; end if;
end for; end for;/*7*/

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[4]*ts[2] eq g*(DC[i])^h then i; end if;
end for; end for;/*3*/

/*Sixth Double Coset*/
S:={[1,2,3]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[3]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
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then print SSS[i];
end if; end for; end for;
/*
[ 1, 2, 3 ]

[ 3, 1, 2 ]
[ 2, 3, 1 ]

*/
N123:=Stabiliser(N,[1,2,3]);
N123s:=N123;
tr6:=Transversal(N,N123s);
for i := 1 to #tr6 do

ss := [1,2,3]^tr6[i];
cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*38*/
for n in N do if [1,2,3]^n eq [3,1,2]
then N123s:=sub<N|N123s,n>;
end if; end for;
#N123s;
Generators(N123s);
[1,2,3]^N123s;

for n in N do if [1,2,3]^n eq [2,3,1]
then N123s:=sub<N|N123s,n>;
end if; end for;
#N123s;
Generators(N123s);
[1,2,3]^N123s;

Orbits(N123s);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[3] *ts[1] eq g*(DC[i])^h then i;
end if; end for; end for;/*3*/

for i in [1..8] do
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for g,h in IN do
if ts[1]*ts[2]*ts[3]*ts[4] eq g*(DC[i])^h then i;
end if; end for; end for;/*4*/

/*Seventh Double Coset*/
S:={[1,2,1]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[1]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i];
end if; end for; end for;

N121:=Stabiliser(N,[1,2,1]);
N121s:=N121;
tr7:=Transversal(N,N121s);
for i := 1 to #tr7 do

ss := [1,2,1]^tr7[i];
cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*50*/
Orbits(N121s);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1] *ts[1] eq g*(DC[i])^h then i;
end if; end for; end for;/*3*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1]*ts[2] eq g*(DC[i])^h then i;
end if; end for; end for;/*7*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1]*ts[3] eq g*(DC[i])^h then i;
end if; end for; end for;/*4*/
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for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1]*ts[4] eq g*(DC[i])^h then i;
end if; end for; end for;/*5*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1]*ts[5] eq g*(DC[i])^h then i;
end if; end for; end for;/*7*/
for i in [1..8] do
for g,h in IN do
if ts[1]*ts[2]*ts[1]*ts[6] eq g*(DC[i])^h then i;
end if; end for; end for;/*8*/

/*Eighth Double Coset*/
S:={[1,3,1]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[3]*ts[1]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i];
end if; end for; end for;

N131:=Stabiliser(N,[1,3,1]);
N131s:=N131;
tr8:=Transversal(N,N131s);
for i := 1 to #tr8 do

ss := [1,3,1]^tr8[i];
cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..55] do if cst[i] ne [] then m:=m+1; end
if; end for; m;
/*54*/

for n in N do if [1,3,1]^n eq [2,4,2]
then N131s:=sub<N|N131s,n>;
end if; end for;
#N131s;
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Generators(N131s);
[1,3,1]^N131s;

Orbits(N131s);

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[1] *ts[1] eq g*(DC[i])^h then i;
end if; end for; end for;
/*4*/

for i in [1..8] do
for g,h in IN do
if ts[1]*ts[3]*ts[1]*ts[3] eq g*(DC[i])^h then i;
end if; end for; end for;
/*7*/
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Appendix I

MAGMA CODE of 3∗2 :m D4

S:=Sym(4);
xx:=S!(1,2,3,4);
yy:=S!(2,4);
N:=sub<S|xx,yy>;
G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^2,t^3,(y,t),t^(x^2)=t^2,
(x^2*y*t*t^x)^4>;
#DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);
f,G1,k:=CosetAction(G,sub<G|x,y>);
#G1;
CompositionFactors(G1);
H:=sub<G|x,y,
y * x^2 * t * x * t * x * t * x * t * x * t * x * t>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
IN:=sub<G1|f(x),f(y)>;
ts := [ Id(G1): i in [1 .. 4] ];
ts[1]:=f(t); ts[2]:=f(t^(x)); ts[3]:=ts[1]^-1;
ts[4]:=ts[2]^-1;

DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>, sub<G|x,y>);
#G1;
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DC:=[ f( Id(G)),
f( t),
f( t * x * t),
f( t *x * t * x * t^-1),
f( t * x * t*x*t),
f( t * x * t * x * t^-1 * x * t^-1),
f( t * x * t * x * t * x * t^-1),
f( t * x * t * x * t * x * t),
f( t * x * t * x * t^-1 * x * t^-1 * x * t),
f(t * x * t * x * t * x * t * x * t),
f( t * x * t * x * t * x * t * x * t * x * t) ];
Index(G1,IN);

cst := [null : i in [1 .. 60]] where null is [Integers() | ];
prodim := function(pt, Q, I)
v := pt;
for i in I do

v := v^(Q[i]);
end for;

return v;
end function;
for i := 1 to 4 do

cst[prodim(1, ts, [i])] := [i];
end for;

m:=0; for i in [1..60] do if cst[i] ne [] then m:=m+1; end if;
end for;m;
Orbits(N);
for i in [1..#DC] do for m,n in IN do if ts[1] eq m*(DC[i])^n then i;
break;end if; end for;end for;

N1:=Stabiliser(N,1);
Generators(N1);
Orbits(N1);

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[1]
eq m*(DC[i])^n then i; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]
eq m*(DC[i])^n then i; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[3]
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eq m*(DC[i])^n then i; break; break;end if; end for;end for;

S:={[1,2]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];

end if; end for; end for;

N12:=Stabiliser(N,[1,2]);
Orbits(N12);
#N12;
N12s:=sub<N|N12>;
tr1:=Transversal(N,N12s);
for i:=1 to #tr1 do
ss:=[1,2]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[2]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[3]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[4]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;

S:={[1,2,1]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
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for g in IN do if ts[1]*ts[2]*ts[1]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[1]]
then print SSS[i];

end if; end for; end for;

N121:=Stabiliser(N,[1,2,1]);
Orbits(N121);
#N121;
N121s:=sub<N|N121>;
tr1:=Transversal(N,N121s);
for i:=1 to #tr1 do
ss:=[1,2,1]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[1]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[2]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[3]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[1]*ts[4]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;

S:={[1,2,3]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[3]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i];

end if; end for; end for;

N123:=Stabiliser(N,[1,2,3]);
Orbits(N123);
#N123;
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N123s:=sub<N|N123>;
tr1:=Transversal(N,N123s);
for i:=1 to #tr1 do
ss:=[1,2,3]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[3]*ts[1]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[3]*ts[2]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[3]*ts[3]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if ts[1]*ts[2]*ts[3]*ts[4]
eq m*(DC[i])^n then i; break; break; end if; end for;end for;

S:={[1,2,1,2]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[2]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];

end if; end for; end for;

N1212:=Stabiliser(N,[1,2,1,2]);
Orbits(N1212);
#N1212;
N1212s:=sub<N|N1212>;
tr1:=Transversal(N,N1212s);
for i:=1 to #tr1 do
ss:=[1,2,1,2]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
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then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[1] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[2] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[3] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[4] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;

S:={[1,2,1,4]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[4]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[4]]
then print SSS[i];

end if; end for; end for;

N1214:=Stabiliser(N,[1,2,1,4]);
Orbits(N1214);
#N1214;
N1214s:=sub<N|N1214>;
tr1:=Transversal(N,N1214s);
for i:=1 to #tr1 do
ss:=[1,2,1,4]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;
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for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[4]*ts[1] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[4]*ts[2] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[4]*ts[3] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[4]*ts[4] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;

S:={[1,2,3,4]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[3]*ts[4]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i];

end if; end for; end for;

N1234:=Stabiliser(N,[1,2,3,4]);
Orbits(N1234);
#N1234;
N1234s:=sub<N|N1234>;
tr1:=Transversal(N,N1234s);
for i:=1 to #tr1 do
ss:=[1,2,3,4]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1] eq m*(DC[i])^n then i; break;
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break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[2] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[3] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[4] eq m*(DC[i])^n then i; break;
break; end if; end for;end for;

S:={[1,2,1,2,1]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[2]*ts[1]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[1]]
then print SSS[i];

end if; end for; end for;

N12121:=Stabiliser(N,[1,2,1,2,1]);
#N12121;
N12121s:=N12121;

for n in N do if [1,2,1,2,1]^n eq [2,1,2,1,2]
then N12121s:=sub<N|N12121s,n>;
end if; end for;
#N12121s;
Generators(N12121s);
[1,2,1,2,1]^N12121s;

for n in N do
if [1,2,1,2,1]^n eq [4,3,4,3,4]
then N12121s:=sub<N|N12121s,n>;
end if; end for;
Generators(N12121s);
[1,2,1,2,1]^N12121s;
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Orbits(N12121);
#N12121;
N12121s:=sub<N|N12121>;
tr1:=Transversal(N,N12121s);
for i:=1 to #tr1 do
ss:=[1,2,1,2,1]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[1]*ts[1] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[1]*ts[2] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[1]*ts[3] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[1]*ts[2]*ts[1]*ts[4] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;

S:={[1,2,3,4,1]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[3]*ts[4]*ts[1]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[1]]
then print SSS[i];
end if; end for; end for;

N12341:=Stabiliser(N,[1,2,3,4,1]);
#N12341;
N12341s:=N12341;



141

for n in N do if [1,2,3,4,1]^n eq [3,2,1,4,3]
then N12341s:=sub<N|N12341s,n>;
end if; end for;
#N12341s;
Generators(N12341s);
[1,2,3,4,1]^N12341s;

Orbits(N12341);
#N12341;
N12341s:=sub<N|N12341>;
tr1:=Transversal(N,N12341s);
for i:=1 to #tr1 do
ss:=[1,2,3,4,1]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[1] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[2] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[3] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;
for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[4] eq m*(DC[i])^n then i;
break; break; end if; end for;end for;

S:={[1,2,3,4,1,2]};
SS:=S^N;SS;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for g in IN do if ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[2]
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eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];

end if; end for; end for;

N123412:=Stabiliser(N,[1,2,3,4,1,2]);
#N123412;
N123412s:=N123412;

for n in N do if [1,2,3,4,1,2]^n eq [2,3,4,1,2,3]
then N123412s:=sub<N|N123412s,n>;
end if; end for;
#N123412s;
Generators(N123412s);
[1,2,3,4,1,2]^N123412s;

for n in N do if [1,2,3,4,1,2]^n eq [3,2,1,4,3,2]
then N123412s:=sub<N|N123412s,n>;
end if; end for;
#N123412s;
Generators(N123412s);
[1,2,3,4,1,2]^N123412s;

Orbits(N123412);
#N123412;
N123412s:=sub<N|N123412>;
tr1:=Transversal(N,N123412s);
for i:=1 to #tr1 do
ss:=[1,2,3,4,1,2]^tr1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..60] do if cst[i] ne []
then m:=m+1;
end if; end for;m;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[2]*ts[1]
eq m*(DC[i])^n then i; break; break;
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end if; end for;end for;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[2]*ts[2]
eq m*(DC[i])^n then i; break; break;
end if; end for;end for;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[2]*ts[3]
eq m*(DC[i])^n then i; break; break;
end if; end for;end for;

for i in [1..#DC] do for m,n in IN do if
ts[1]*ts[2]*ts[3]*ts[4]*ts[1]*ts[2]*ts[4]
eq m*(DC[i])^n then i; break; break;
end if; end for;end for;
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