
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

6-2020

BUBBLE-IN DIGITAL TESTING SYSTEM BUBBLE-IN DIGITAL TESTING SYSTEM

Chaz Hampton

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Hampton, Chaz, "BUBBLE-IN DIGITAL TESTING SYSTEM" (2020). Electronic Theses, Projects, and
Dissertations. 996.
https://scholarworks.lib.csusb.edu/etd/996

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/996?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

BUBBLE-IN DIGITAL TESTING SYSTEM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

In

Computer Science

by

Chaz Timothy Hampton

June 2020

BUBBLE-IN DIGITAL TESTING SYSTEM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Chaz Timothy Hampton

June 2020

Approved by:

Dr. Arturo I. Concepcion, Committee Chair, Computer Science

Dr. Owen J. Murphy, Committee Member

Dr. Ernesto Gomez, Committee Member

© 2020 Chaz Timothy Hampton

 iii

ABSTRACT

Bubble-In is a cloud-based test-taking system build for students and

teachers. The Bubble-In system is a test-taking application that interfaces with a

cloud server. The mobile applications have been built for Android and Apple

devices and the webserver is hosted on Digital Ocean VPS run with Nginx. The

Bubble-In application is equipped with anti-cheating mechanisms such as

question-answer key scrambling, not allowing screenshots, screen recording, or

leaving the application. The tests students take are sent to the webserver to be

graded and have statistics calculated and displayed in easy to use format for the

test creator. Instructors can use the webserver to create exams or modify

existing exams. This application was developed in Android Studio and XCode.

These features were built using Java, Swift, Obj-C, PHP, HTTP requests, and

MySQL. The application interacts with the database through the Nginx web

server.

 iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Arturo Concepcion, all of my

previous professors who have mentored me, the CSUSB university, my family, and

my friends.

 v

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………......iii

ACKNOWLEDGEMENTS...iv

LIST OF TABLES..viii

LIST OF FIGURES..ix

CHAPTER ONE: INTRODUCTION AND OVERVIEW…….………………………..1

1.1 Intro and Background………………….….…………………….…….……1

1.2 Cloud Services Architecture……….……………………………………...2

1.3 Interactive Bubble-In Applications……….………………………………..3

1.4 Cloud Implementation Overview……….………………………………….5

1.5 Three Basic Cloud Computing……….……………………………………7

1.6 RESTful Protocol……….…………………………………………………..8

1.7 RESTful Cloud Pitfalls……….……………………………………………..9

1.8 Security and Privacy……….……………………………………………..11

1.9 System in Summary……….……………….……………………………..12

2.0 System Implementation……….………….………………………………13

CHAPTER TWO: SCANTRON VS. BUBBLE-IN………………………………..…16

2.1 Scantron…………………………………………………………………...16

2.2 Bubble-In.………………………………………………………………….16

2.2 Bubble-In vs. Scantron…………………………………….…………….17

CHAPTER THREE: SOFTWARE REQUIREMENT SPECIFICATION (SRS).…19

3.1 Purpose19

 vi

3.2 Scope……….………………………………….………………………..…19

3.2.1 Definitions, Acronyms, and Abbreviations…….……......……20

3.2.2 System Interfaces (DEPLOYMENT DIAGRAM) ……….……21

3.2.3 User Interfaces……………………………………………..……22

3.2.4 Software Interfaces……………………………………….….…23

3.2.5 Communication Interfaces……………………………….….…23

3.2.6 Memory…………………………………………………….…….24

3.2.7 Operation………………………………………………….…..…24

3.2.8 Product Functions (USE CASE DIAGRAM)………….………25

3.3 User Characteristics………………………………………………………26

3.3.1 Constraints……………………………………………………….26

3.3.2 Assumptions and Dependencies……………………………...26

3.3.3 User Interfaces……………………………….….………………26

3.3.4 Login Page………………….………………….…………..……26

3.3.5 Test Page………………….…………………….………………27

3.3.6 Thank You Page………………….…………….…….…………27

3.3.7 Hardware Interfaces………………….……….…………..……27

3.4 Software Interfaces…………….………………….……………….……..27

3.4.1 Communication Interfaces…………….………………….……27

3.4.2 Functional Requirements……..……..………………….……..27

3.4.3 Login Screen…………….…………...…….…………………...28

3.4.4 Test Page…………….………………….…………………....…28

3.4.5 Performance Requirements…………….………………..….…28

3.4.6 Design Constraints…………….………………….…….………28

3.4.7 Software System Attributes……….…….……………………..28

3.4.8 Reliability…………….………………….………………….……29

 vii

3.4.9 Availability…………….………………….………………….….29

3.5 Security…………….………………….………………….……………….29

3.5.1 System…………….………………….…………..……….……..29

3.5.2 Testing…………….………………….…………..……….……..29

3.5.3 Unit Testing…………….………………….…….………………30

3.5.4 Integration Testing…………….……………….….……………30

3.5.5 Acceptance Testing…………….……………….….…………..30

3.5.6 Asset List…………….………………….………..………….…..30

 CHAPTER FOUR: SOFTWARE ARCHITECTURE AND DESIGN (SAD)……31

4.1 Individual Architecture Design…………..……………………………...31

4.2 Application Architecture Design…………..……………………………33

CHAPTER FIVE: IMPLEMENTATION AND CODING……………………………35

5.1 Test Controller Source Code IOS……..………………………………..35

5.2 Test Controller Source Code Android……………………………….…43

5.3 Submission Controller Server Source Code………………..………….53

5.4Test Controller Server Source Code………………...…………....….…57

CHAPTER SIX: TESTING AND DEMO…………………………………………….61

6.1 Student Demo………………………………...………………………….61

6.2 Teacher Demo………………………..………………………………….64

CHAPTER SEVEN: CONCLUSION …………..……………………………….……69

7.1 Next Steps…………..……………………………….…………………….69

7.2 What I Learned...………..……………………………….……….……….70

7.3 Accomplishments…………..……………………………………………..71

REFERENCES..73

 viii

LIST OF TABLES

Table 1. Definitions, Acronyms, and Abbreviations...20

 ix

LIST OF FIGURES

Figure 1. A VPN Cloud Connection to a Mobile Device...4

Figure 2. Evolution of Cloud Computing………………………................................6

Figure 3. Overview of RESTful Architecture………………….................................9

Figure 4. Authentication Workflow ………….…………………..............................11

Figure 5. Deployment Diagram………………………………….............................21

Figure 6. Use Case Diagram…….………….…………………...............................25

Figure 7. Individual Architecture Design ………….…………...............................31

Figure 8. Application Architecture Design ………….………….............................33

Figure 9. Student Login Page ………….…………..……..…….............................61

Figure 10. Student Cheat Page...….…………..……..……...................................62

Figure 11. Student Test Page ………….……………...….…….............................63

Figure 12. Login Page……….…………………...64

Figure 13. Test Creation Page………….…………………....................................64

Figure 14. Test Edit Page………….…………………..65

Figure 15. Scores Page……………..66

Figure 16. Scores Page with Data………….……………......................................66

Figure 17. Student Review Page………….………………….................................67

Figure 18. Statistics Page………….…………………..67

Figure 19. Statistics .CSV Excel Format………….………....................................68

 1

CHAPTER ONE

INTRODUCTION AND BACKGROUND

1.1 Intro and Background

Classical distributed computing systems were the best in their time and

offered many advantages to business and personal developers alike. With

distributed systems, many computers are able to support the same service or

systems and provide the opportunity to upscale. In 1960 during a speech at MIT,

John McCarthy eluded “like water and electricity, computing can also be sold like

a utility.” Later in 1999 the company Salesforce began distribution of its

applications to the end users though a convent website. Later around 2002

Amazon Web Services was founded and a few years later it was joined by

Google, Microsoft, HP and other large companies. The face of the IT industry

was never the same from the inception of distributed cloud computing services.

This is not only benefiting large corporations but also individual developers and

freelancers today.

In a typical working day, the average computer professional is only

utilizing a fraction of their computational resources. Cloud computing provides a

way for users and developers to better manage what resources they want, and

they then, only pay for what they need instead of needing to own all the hardware

 2

themselves. In this research paper we will evaluate Software as a Service (SaaS)

several deployment models such as private, public and community cloud

environments. The differences in these models and in contract with conventional

distributed computing will be explored. The time of classical grid computing is

becoming an outdated feature to be replaced by a more dependable one, cloud

computing. In order to be considered a cloud computing platform five key

characteristics must be established. In this paper we will examine these

characteristics and what advantages and disadvantages are associated with

them. One issue is security in cloud computing and the debate around if it is truly

more vulnerable or not.

1.2 Cloud Services Architecture

In cloud computing the users only have to pay for the resources they have

or plan on consuming. This workload can be adjusted in the future to upscale or

downscale accordingly. Classically the user or organization would have to

purchase the resources they needed or thought they might need out right. It is

common for products to have what is called peak hours or critical execution times

where the most amount of demand is placed on the product or system. In the

classical method the user or organization would have to purchase far more

resources than they would need for regular day to day work if the peak

performance was sufficiently high. With cloud computing this massive overhead

can be avoided and all the user or organization needs is a web browser and

 3

internet connection to use cloud computing even for massive projects. Cloud

computing provides its end users with resource pooling and elasticity or the

ability to upscale or downscale [1]. In fact, most of today’s social media outlets

and websites use a cloud computing service. This compelling fact hints that cloud

computing has something to offer to many different types of clients. In general,

the reason for this massive adoption is the scalability, agility and simplicity

involved with cloud systems. It is just too convenient for businesses and

developers alike to use a cloud service to host their platform on that anything

else seems archaic.

1.3 Interactive Bubble-In Applications

When using cloud and RESTful services to dynamically present and load

data on mobile applications, how does the application receive input from the user

and have the resulting input computed and then displayed back to the device? By

having the UI or User Interface remain fully on the physical device, the rest of the

application can run remotely on the cloud service. By having the applications UI

deliver the input events to the remote server for execution they can then be

computed safely and securely [14]. This cloud-based server is able to be

dynamically scaled up or down depending on the demand placed on the server.

This works in the Bubble In application where an agent monitors occurrences of

user input then executing on the virtual cloud environment see Fig 1 for more

detail. After some time has passed, a window will display prompting for input.

 4

The remote cloud server detects this input and runs this data through several

algorithms, the first of which check the validity of the students provided

credentials for the desired test. The student who is authenticated will then be

presented with a dynamically loaded UI from the cloud server onto the test page

of the application with the exam’s contents displayed. This process of having the

mobile device interact with the server can be seen in Figure 1. In Figure 1,

mobile devices are connecting to the Digital Ocean cloud server where the

computations for the exams take place.

Fig. 1. A VPN Cloud Connection to a Mobile Device [8]. (Edited)

 5

1.4 Cloud Implementation Overview

Consider an average workday in your office or workstation, how much of

your machine’s resources do you expect are being utilized? Well, as stated by

Marston in the article “Cloud Computing a Business Perspective” the average for

most users is about 10 percent of the processor, 60 percent of the memory and

20 percent of the bandwidth During peak usage hours [14]. Regardless the user

paid 100 percent of the cost of those resources up front when they purchased the

computer. Now imagine a very large corporation with many computers going

underutilized. If these computers could be used to their potential or the company

invested in less resources, they could optimize their performance. This is not the

case however since many products need to be flexible and scalable on demand.

It is not conceivable to buy and sell computers on the fly, this is where cloud

computing saves the day. Web servers, application servers and database

servers are commonly under minimal usage when they could be taking

advantage of pooled resources.

 6

Fig. 2. Evolution of Cloud Computing [8].

When using a cloud computing platform your company would not have to

invest up front as a capital expenditure, in buying the hardware but simply signs

up with a service provider in a pay as you go or pay what you use billing model

[8]. This model means that companies can change from a capital expenditure

model (CapEx) to an operating expenditure model (OpEx) just for meeting the

computational needs.

 7

1.5 Three Basic Cloud Computing

Client computers (the end user can interact with the cloud using the client

computers), Distributed computers (the servers are distributed among the

different places but acts like they as working with each other) and data center’s

(the compilation of the servers) [8]. There exist three main services cloud

computing provides which are: Software as a Service (SaaS), Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS). In a public cloud system,

which is the system the Bubble In application utilizes, access is available to

anyone with an internet connection and this system may exist anywhere

worldwide. This type of service has the problem of data integrity which arises

partly from regulatory regulations. Some corporations for example those based in

the United States are not allowed to store consumer data in other countries. This

issue is so detrimental for some that they opt for private cloud solutions [8]. A

private cloud solution is one that provides services to a single entity. This single

entity maybe a government, corporation or anyone else willing to pay for the

resources. While this service is available to anyone, it is expensive and is usually

reserved only for large enterprises and governments [4]. Lastly, the community

cloud solution can be decently described as a middle ground for private and

public cloud services. However, community cloud systems come with pros and

cons of both implementations. In this implementation entities with common

interests can pool their resources to create what is called a hybrid cloud.

 8

1.6 RESTful Protocol

 REST (REpresentational State Transfer) is an architectural style based on

transferring representations of resources from a server to a client. It is the style

that underlies the web as a whole and has been used as a much simpler method

than SOAP/WSDL for implementing web services. A RESTful web service is

identified by its URI (Universal Resource identifier) and communicates using the

HTML protocol. It responds to HTML methods GET, PUT, POST, and DELETE

and returns a resource representation to the client. Simplistically, POST means

create, GET means read, PUT means update, and DELETE means delete.

RESTFul services involve a lower overhead than so-called ‘big web services’ and

are used by many organizations implementing service-based systems that do not

rely on externally provided services [2].

 9

1.7 RESTful Cloud Pitfalls

REST is a flexible and powerful technique used to communicate in

distributed systems. HTTP provides direct stateless access to web operations.

As stated in the paper Managing Authorization with RESTful XML, “The reason

for using REST as interaction technique lies in the supported operations going

along with the HTTP-verbs, the lack of com- plex handling of states and the

variability regarding resource characteristics.” REST is able to work with many

types of resources even when they are represented in custom formats or JSON

[3]. In Figure 3 we can see how the Bubble-In system is implementing RESTful

protocols. The Laravel framework handles requests which are resources inside of

the project. These resources are created in code files such as course, class and

HTML files. Outside of the figure we can see a campus with multiple classrooms

utilizing the system.

Fig. 3 Overview of RESTful Architecture [8]. (Edited)

 10

 This is why REST services are used in the Bubble In application where the

user data communicated are a mix of string and integer values as well as

formatted JSON data types. While the widespread adoption of cloud computing

seems to benefit every party, this may not be the case when considering security

[8]. Security is comprehensive, not only the providers use of the system, but also

yours and any middle user or application. When evaluating a systems security,

we must do so in an end-to-end approach. From the end user to the data center

many regulation laws and security issues may be present and provide issues in

data integrity. If the data sent by the user to the data center or data center to the

user can be intercepted and read, our data integrity has been compromised. The

only way to ensure maximal data integrity seems to be to have secured end

points which are the user and data center [8]. Further, the data channel which

information is transferred must be secure at all times. This data to be transferred

must also be in an encrypted state to avoid man in the middle attacks where

some entity intercepts the message and can use it to their liking.

 11

Fig. 4 Authentication Workflow [8].

What is accomplished by a secured and encrypted channel is third party

software is unable to compromise data integrity of the cloud system. Most cloud

systems use encryption keys when encrypting a channel. Another method is to

use a public key chain such as a certificate authority to verify this public chain

(CA), in this method both parties must agree on the protocols and keys to be

verified valid. In Figure 4 we can see how the Laravel authentication framework

handles requests. This framework comes with multiple loops of error checking

upon receiving a request from a mobile device.

1.8 Security and Privacy

Since a virtual cloud environment will usually operate in a public cloud, it is

critical that the user’s data will communicate over a secured channel and all end

points are also secured [1]. In addition to this is it is important to choose a

reputable IaaS provider when deploying the virtual cloud environment. In the

 12

case of the Bubble In system Digital Ocean VPS is used to host the cloud server

which is a small scale but also reliable cloud service provider. Digital Ocean

provides state of the art security measures from on premises security, backup

generators, full CCTV, Role Bases Access Control to mitigate unrestricted

access to any instance. The Bubble In instance hosted on Digital Ocean also

provides security monitoring as well as instance backup and recovery options. A

verbose authentication and encryption are required to secure and establish the

communication channel. Storing SSH exchange keys for connection is utilized in

Bubble In to provide this encryption and authentication to the cloud server. For a

stronger level of security, multiple user accounts with the minimum required

permissions are provided for admin and developer accounts alike.

1.9 System in Summary

Cloud computing is a catalyst for the future to come in which social,

professional and political life are affected. Its benefits are a tremendous

improvement over conventional distributed grid style computing service. Cloud

computing’s services being offered at such a reasonable set of pricing options is

truly the best choice for most companies in the modern world. The startup costs

for this service when compared to traditional methods are vastly less and now

bringing a new product or idea to fruition is simpler, cheaper and better than ever

before. While there are certain security concerns, with practical and responsible

security measure they can be effectively dealt with. We have discussed many

 13

practical approached to implementing safe and secured communication channels

over RESTful service communication. By taking greater care of the increased

number of end points added by the cloud system it can remain secured. In

general, the benefits cloud computing offers dwarf its drawbacks making it a very

logical component in the future of industry and education for the coming years. In

applications such as Bubble In the benefits of RESTful services combined with

Cloud Computing are critical to operational success. The flexibility of both REST

services and dynamic cloud services are key should the applications resources

need to be quickly upscaled. The same issues found in this paper were

addressed in the creation and management of the Bubble In cloud system where

security measures and restrictions are placed throughout the system at the

application and server level as well as authentication on each component and

user account. By taking carful considerations for the security and integrity of the

system it is now able to operate in public cloud system without the worry of data

a breach due to negligence.

2.0 System Implementation

These previously discussed topics will be implemented into the Bubble In

system with Service-Orientated Architecture. The Bubble In PHP Laravel Web

Server will be hosted on a cloud server provided by Digital Ocean. Digital Ocean

is a reputable cloud computing company with reasonable pricing and flexible

plans. Laravel is made for the development of web applications following the

 14

model–view–controller (MVC) architectural pattern. Features of Laravel include: a

modular packaging system with a dedicated dependency manager, different

ways for accessing relational databases, utilities that aid in application

deployment and maintenance, and its orientation toward easy to understand

syntax. Most of the Bubble In test taking system will be computed on the cloud to

minimize the workload on mobile devices. The student’s individual grades,

statistics for each exam such as most and least chosen question and printable

PDF documents will be computed on the cloud. The mobile devices will interface

with this cloud system via the RESTful paradigm. In accordance with

Representational State Transfer (REST) protocols our web application will use

HTTP looks ups such as GET, PUT, POST and DELETE requests to

communicate with devices. Service-Oriented Architecture in Bubble In allows the

ability to: combine a large number of facilities from existing services to form

applications, encompass a set of design principles that structure system

development and provide means for integrating components into a coherent and

decentralized system, computing packages functionalities into a set of

interoperable services, which can be integrated into different software systems

belonging to separate business domains. With Bubble In we will combine multiple

web server programing standards such as HTML, CSS, PHP, and some

JavaScript. System development will be decentralized and stored on a git

repository. The web server will be built using visual studio and the command

terminal. The server will run on Nginx and use a MySQL database for storage.

 15

The cloud server will also be outfitted with an SSL certificate to allow secure and

trusted communication. The mobile applications will be developed in XCode and

Android studio with native code. When the full system is in place, it could be used

by many different organizations at the same time with no issue needing to add

new code.

 16

CHAPTER TWO:

SCANTRON VS. BUBBLE-IN

2.1 Scantron

Scantron sheets grew in popularity as a test taking aid in the mid 1970’s. A small

Scantron reader can cost $4000 [5], the type of readers used by large

organizations can cost up to $85000 [6]. Scantron readers can be unreliable and

if broken may take days to fix at best by a certified technician (More cost)

Readers can be temperamental and produce errors during grading Students

must purchase their forums and may forget them under stress such as on exam

day. Instructors must manually enter grades for each student Students could

cheat by copying very easily since randomizing questions is tedious for the

teacher and makes the grading process much longer and complicated.

2.2 Bubble-In

The Bubble-In application implements the following:

■ Anti-cheating mechanisms such as disabling screenshots, screen

recording reading messages or leaving the application.

■ Automatic question-key scrambling

■ Automatic exam statistic calculation

■ Immediate test exam feedback

 17

■ Low overhead to begin using the system

■ Low-no maintenance cost

■ Portable grading sheet (PDF, CSV) available for download and print via

single click

■ Saves money for students and schools

■ Customizable test layout design accommodating text based and bubble in

only formats

■ Easily accessible to download on mobile devices

2.3 Bubble-In vs. Scantron

Scantron Pros:

■ Integrated into schools

■ Familiar

Cons:

▪ Expensive overhead to start

▪ Expensive maintenance

▪ Unreliable

▪ Lacking in grading features

▪ Lacking in anti-cheating features

Bubble-in Pros:

▪ Feature rich

▪ Anti-cheating mechanisms

 18

▪ Automatic question-key scrambling

▪ Automatic exam statistic calculation

▪ Immediate feedback

▪ Low overhead

▪ Low-no maintenance cost

▪ Portable grading sheet (PDF, CSV)

▪ Saves money for students and schools

Cons:

▪ Instructor must be willing to utilize a webpage to create

exams

From this comparison we can see compelling reason to use the Bubble-In

system instead of the classical Scantron for taking exams.

 19

CHAPTER THREE:

SOFTWARE REQUIREMENT SPECIFICATIONS (SRS)

3.1 Purpose

This document defines the requirements for the Bubble-In mobile application.

The mobile application is being developed primarily for teachers, but with the

students use as well.

The aim is to satisfy the requirements given by Dr. Helena Addae, Associate

Professor in the Department of Management. Dr. Addae wants an application

that allows students to be able to use the application to take a test, and for that

test to be graded without the use of a typical ScanTron reader. The goal is to

focus on security of the application, implement a optimized server side

application, and add functionality to the application.

3.2 Scope

The first task is to disable screenshots within the application. I want to

keep a running total of how many times a student leaves the application while

taking a test. Should the student exit the application more than once, the test will

be submitted. The teacher will have access to these records and can then take

disciplinary action if necessary. A time feature will also be implemented, this will

 20

not allow students to submit the exam outside of designated time. Others are a

delete test function for the teacher and improved server programming and a

method to scramble test questions for each student. In addition, applications will

be made on Android and IOS to support most phones in the class. Loaner

tablets may also be in each class in case of a forgotten device or another brand

of phone not supported. The Server must be hosted on a cloud-based solution to

ensure it is scalable, reliable and dependable during exam time.

3.2.1 Definitions, Acronyms, and Abbreviations

Definitions, Acronyms, and Abbreviations

Android Google’s mobile operating system

Android Studio IDE for software development

Apache Web

Server

Web server software

App Application

HTML Language used to create webpages

HTTP HyperText Transfer Protocol. Used to send signals to server

IDE Integrated Development Environment

Java Language used on Android Studio and promotes functionality to

mobile app

MySQL Database language that interacts with a server to query data

PHP Server-side scripting language

SRS Software requirement specifications

 21

SDK Software development kit

Wifi Wireless internet for devices

XML Language that produces layout and design

ScanTron A form that requires penciled-in answers and machines check its

correctness

Test Id A specific generated identification number that uniquely identifies a

singles test key

Xcode Apples IDE for software development

IOS Apple’s brand of mobile devices

3.2.2 System Interfaces (DEPLOYMENT DIAGRAM)

Fig. 5. Deployment Diagram.

 22

This application has been developed in Android Studio and XCode.

These features have been built with the use of: Java, Swift, Obj-C, PHP, HTTP

requests and MySQL. The application interacts with the database through a

Nginx web server.

3.2.3 User Interfaces

• Login Page – Allows an existing user to sign into his/her account and

provides a link to the new account page. Successful login links to the

Teacher’s Dashboard page. Students require no login and will continue as

students.

• New Account Page – Allows a teacher to create an account to begin

managing tests and grades. Teacher’s Dashboard Page – This page lists

all tests the teacher has created and allows the teacher to view student

grades and the key for each test. This page also allows the teacher to

create a new test.

• Create Test Page – This page allows a teacher to create a new test. The

teacher will be able to generate a random test ID and specify the number

of questions.

• Student Page – Used to keep all info about one particular student in the

course. Enrolled courses and all previous scores on exams will be found

in this file.

 23

• Teacher Page – Used to store all data on teacher accounts. The courses

teachers have created are stores here along with all exams made by the

teachers.

• Test Page – Used to store exams used by teachers currently in use.

• Apache Web Server- Engine used in hosting the Bubble-In cloud server.

3.2.4 Software Interfaces

• Java – The primary language for developing any functions that will take

place on Android devices.

• Swift – The primary language for developing any functions that will take

place on Apple devices.

• PHP – Used to communicate with the server and push/pull data from the

database.

• HTTP – Communicates with the web server. Also uses JSON requests to

get/push to the database.

• MySQL – Used to create the database and tables in which the data will be

stored as well as provide any necessary queries.

3.2.5 Communication Interfaces

This application will use either cellular (3G, 4G, 5G) data or Wi-Fi to

request and submit data from the server.

 24

3.2.6 Memory

This application is built for all android systems that run Android 4.4 KitKat

(API 19) and above. Apple devices running IOS 10.3 and above are supported.

This legacy support ensures 90% of devices support the application.

3.2.7 Operation

Should the application need changes these can be made offline, tested

and then published for a new app store / google play store update.

 25

3.2.8 Product Functions (USE CASE DIAGRAM)

Fig. 6. Use Case Diagram.

 26

3.3 User Characteristics

A user can be either a student or a teacher. Both the student and teacher

can access the application on their Android/Apple device.

3.3.1 Constraints

Operating system constraint - The user must have Android 4.4 KitKat (API

19) and above. Apple devices running IOS 10.3 or later installed on his/her

mobile device.

3.3.2 Assumptions and Dependencies

• The user must have Internet access on his/her mobile device in order to

use the application.

• There must be a server to store the database which contains student

and teacher data.

3.3.3 User Interfaces

This section shows the screens that the user interacts with in the

application.

3.3.4 Login Page

When the user enters the app, he/she will encounter a login page.

 27

3.3.5 Test Page

This page is the actual test. When the students arrive at this page, they

will be given the test that the teacher has generated.

3.3.6 Thank You Page

This page confirms submission of test. As long as the test was submitted

to the webserver successfully this will display to the user.

3.3.7 Hardware Interfaces

This application supports on Android 4.4 or IOS 10.3 or higher.

3.4 Software Interfaces

This application uses MySQL for its database and has been developed

using Android Studio and XCode.

3.4.1 Communication Interfaces

This application will require an internet connection via Wi-Fi or mobile

data for access to the database.

3.4.2 Functional requirements

In software engineering, functional requirements define a function of a

system or its component.

 28

3.4.3 Login Screen

Teachers will be able to create an account if they don’t already have one

and log in with their credentials. Students will have to continue as students to

use the app.

3.4.4 Test Page

A student user will be able to answer questions and submit them to the

database. A teacher user will use this test page to create test keys.

3.4.5 Performance Requirements

The application will require a stable internet connection to communicate

with the database. The response for the individual grades for a student should

be within a few minutes from the time they submitted their test answers.

3.4.6 Design Constraints

This application is designed for Android and Apple mobile devices and

therefore constrained to those devices.

3.4.7 Software System Attributes

The requirements in this section specify the required reliability,

availability, and security.

 29

3.4.8 Reliability

This application can be used on most Android and Apple mobile devices.

3.4.9 Availability

The application will always be available. However, the functionality will be

gained through access that professors will grant.

3.5 Security

 Ideas implemented in order to protect software from malicious or

accidental harm.

3.5.1 System

Students will only be able to take the test within the open test date and

time. Suspicious activities such as when the app is put into a background

process or take screen shots will be logged. The Laravel framework hides the

source code and by scrambling test questions we ensure no two students may

copy off each other.

3.5.2 Testing

 Is an evaluation of the quality of the software produced and consists of

several types of testing.

 30

3.5.3 Unit Testing

Each page will be tested separately for correct functionality.

3.5.4 Integration Testing

All the pages will be integrated into the mobile application, which then

they are going to be tested in different sequences.

3.5.5 Acceptance Testing

After the testing of unit and integration, this testing will make sure the

product is ready to be used when it is released.

3.5.6 Asset List

 31

CHAPTER FOUR:

SOFTWARE ARCHITECTURE AND DESIGN (SAD)

4.1 Individual Architecture Design

Fig. 7. Individual Architecture Design.

 32

• LoginActivity – When the user enters the app, he/she will encounter a

login page. If the user is a teacher, he/she will login using his/her

username and password. If the user is a student, there is a button that

allows the user to continue as a student. There is also a “Create account”

button if the teacher does not yet have an account

• WarningActivity – Displays a warning text box to inform the student that

the application is using anti-cheating mechanisms. The app prevents

screenshots, leaving the application and other features.

• TeacherActivity – After a teacher selects a test key that has already been

created, he or she will be directed to this page. This page will have three

different columns that the user can choose from. One will contain the

grades the students for that particular test. The middle column will contain

the answers to the test which can be modified as well as the individual

weights associated. Lastly, the right column will contain settings for that

particular test.

 33

4.2 Application Architecture Design

Fig. 8. Application Architecture Design.

• LoginActivity – When the user enters the app, he/she will encounter a

login page. If the user is a teacher, he/she will login using his/her

username and password. If the user is a student, there is a button that

allows the user to continue as a student. There is also a “Create account”

button if the teacher does not yet have an account

 34

• WarningActivity – Displays a warning text box to inform the student that

the application is using anti-cheating mechanisms. The app prevents

screenshots, leaving the application and other features.

• TeacherActivity – After a teacher selects a test key that has already been

created, he or she will be directed to this page. This page will have three

different columns that the user can choose from. One will contain the

grades the students for that particular test. The middle column will contain

the answers to the test which can be modified as well as the individual

weights associated. Lastly, the right column will contain settings for that

particular test.

• ThankyouActivity – Displays to the user that their test has been

successfully submitted.

 35

CHAPTER FIVE:

IMPLEMENTATION AND CODING

5.1Test Controller Source Code IOS

This code file is described as TestActivity in the previous chapter.

3 // Displays the Answer Sheet

4 class TestViewController: UIViewController, UITableViewDelegate,

UITableViewDataSource

5 {

6 var OptionBText = ["-":"-"]

7 var OptionCText = ["-":"-"]

8 var OptionDText = ["-":"-"]

9 var OptionEText = ["-":"-"]

10 var onResumeCounter = 1 // amount of times the user is able to leave

the app "accidently"

11 var allowedTimeOutsideApp = 5.0 //Amount of time outside the app that is

aloud

12 var TestTime = 0

13 var timer = Timer()

14 var dateLeft = Date()

 36

15 var ReasonForSubmission = ""

16 var SubmissionID = 0

17 var TestCode = 0

18 var notificationCenter = NotificationCenter.default

19

20 //set up a short and long tap gesture, must hold the submit button to

submit answersheet

21 let tapGesture = UITapGestureRecognizer(target: self, action:

#selector(normalTap))

22

23 let longGesture = UILongPressGestureRecognizer(target: self, action:

#selector(longTap))

24

25 tapGesture.numberOfTapsRequired = 1

26 SubmitBtn.addGestureRecognizer(tapGesture)

27 SubmitBtn.addGestureRecognizer(longGesture)

28

29 timer = Timer.scheduledTimer(timeInterval: 1.0, target: self, selector:

#selector(UpdateTimer), userInfo: nil, repeats: true)

30 override func didReceiveMemoryWarning() {

31 super.didReceiveMemoryWarning()

32 // Dispose of any resources that can be recreated.

 37

33 }

34

35

36 @objc func normalTap(sender: UITapGestureRecognizer)

37 {

38 SubmitBtn.setTitle("Hold to Submit", for: .normal)

39 }

40

41 //called by notificationCenter whenever app moves to the background

42 @objc func movedToBackground ()

43 {

44 self.onResumeCounter -= 1

45 self.dateLeft = Date() // Sets the dateLeft var to the time when the app

was but intot the backgroud

46 }

47 // called bt the noticationCenter whenever the app resumes from a

background state

48 @objc func startApp()

49 {

50 let TimeSpentOutside = abs(self.dateLeft.timeIntervalSinceNow)

51 print(TimeSpentOutside)

52

 38

53 if onResumeCounter < 0 || TimeSpentOutside > allowedTimeOutsideApp

54 {

55 var method = ""

56 let StudentAnswers = getAnswerString()

57 if onResumeCounter < 0

58 {

59 method = "Exited"

60 }

61 else if onResumeCounter > 0

62 {

63 method = "Time Exited"

64 }

65 doInBackGround(method, Answers: StudentAnswers)

66 }

67 }

68

69 @objc func ScreenShot()

70 {

71 let StudentAnswers = getAnswerString()

72 doInBackGround("Screen Shot", Answers: StudentAnswers)

73 }

74 @IBAction func radioSelected(_ sender: DLRadioButton) {

 39

75 answerArray[sender.tag] = (sender.titleLabel?.text)!

76 }

77

78 //the following function will create an array of strings for numbering our

questions

79 //it also initializes our answerArray with 0 representing blank

80 func generateDataSet (_ questions: Int) -> [String] {

81 var dataSet = [String]()

82 var count = 0

83

84 while (count < questions && count < 9) {

85 count += 1

86 let tempString = "0\(count)"

87 dataSet.append(tempString)

88 answerArray.append("0")

89 }

90

91 }

92

93 return dataSet

94 }

95

 40

96 //this function converts our array of strings into a single string

97 func getAnswerString () ->String {

98

99 var answerString = ""

100 noAnswer = ""

101

102 //convert answers array to a string

103 for (index, answer) in answerArray.enumerated() {

104

105 //while building the string, if we come across an unanswered

question

106 //notify the user.

107 if answer == "0" {

108 noAnswer += "\(index+1), "

109

110 }

111

112 answerString += answer

113 }

114 return answerString

115 }

116 @objc func UpdateTimer()

 41

117 {

118 if (TestTime > 0)

119 {

120 TestTime -= 1

121 print(TestTime)

122 }

123 else

124 {

125 let StudentAnswers = getAnswerString()

126 doInBackGround("OutOfTime", Answers: StudentAnswers)

127 }

128 }

129

130 func getReasonForSubmission(reason: String) -> String {

131 switch reason {

132 case "Exited":

133 return "You have exited the test too many times and your Test was

submitted."

134 case "Time Exited":

135 return "You have left the test for too long and your Test was

submitted."

136 case "OutOfTime":

 42

137 return "Time has expired and your Test was submitted."

138 case "Screen Shot":

139 return "Screen Shot taken and your test was submitted."

140 default:

141 //should not be called ever

142 return "Something Went Wrong and your Test was Submitted"

143 }

144 }

145

146 override func prepare(for segue: UIStoryboardSegue, sender: Any?)

147 {

148 if segue.identifier == "TestToBad"

149 {

150 let badVC: BadViewController = segue.destination as!

BadViewController

151 badVC.reason = getReasonForSubmission(reason:

ReasonForSubmission)

152 }

153

154 }

155

156

 43

157 }

5.2 Test Controller Source Code Android

This code file is described as TestActivity in the previous chapter.

1.

public class TestViewActivity extends AppCompatActivity

2. {

3. //Test questions and Time variables

4. int numberofQs = 0;

5. int TestTime = 0 ;

6. int SubmissionID = 0;

7. String TestName = "";

8. String TestCode = "";

9.

10. //json object for the database

11. JSONObject jsonObject;

12. boolean canSumbit = false;

13.

14. //timers for the exiting of the app

15. public long pausedTime;

 44

16. public long allowedTimeOutsideApp = 10000; //This is a time representation in

milliseconds

17. public int onResumeCounter = 0; // number of times you have left the app

18. public boolean exited = false;

19.

20. //Views for disabling the status bar

21. private WindowManager manager;

22. private WindowManager.LayoutParams localLayoutParams;

23. private customViewGroup view;

24.

25.

26. @Override

27. protected void onCreate(Bundle savedInstanceState)

28. {

29. super.onCreate(savedInstanceState);

30.

31. DisableStatusBar();

32.

33. setContentView(R.layout.activity_test);

34. try

35. {

36.

 45

37. //Populate Arrays

38. //Number of elements of the TestViewActivity = numbers variable that was

sent form the server.

39. // makes the number double digits

40. for (int i = 1; i <= numberofQs; i++)

41. {

42. if (i < 10)

43. {

44. numbers.add("0" + String.valueOf(i) + ".");

45. }

46. else

47. {

48. numbers.add(String.valueOf(i) + ".");

49. }

50. //fills the array that will be sumbited with all 0s

51. submitted.add("0");

52. }

53.

54. //pass submited through the adapter page

55. Intent sub = getIntent();

56. sub.putStringArrayListExtra("sub",submitted);

57.

 46

58. //init listview

59. scantron = (ListView) findViewById(R.id.listView);

60.

61. //Add the header at the top of the list

62. header = new TextView(this);

63. header.setBackgroundColor(Color.parseColor("#EF5D16"));

64. header.setTextColor(Color.parseColor("#FFFFFF"));// White writing

65. header.setTextSize(30);

66. header.setGravity(Gravity.CENTER_VERTICAL |

Gravity.CENTER_HORIZONTAL);

67. scantron.addHeaderView(header);

68.

69. // set the TestViewActivity of header to the TestViewActivity name

70. header.setText(TestName);

71.

72. scantron.addFooterView(submit);

73.

74. //Set the adapter and populate rows

75. //Inputting this activity, layout, two string arrays.

76. TestAdapter testadapter = new

TestAdapter(this,R.layout.activity_test_layout,numbers,submitted);

77. scantron.setAdapter(testadapter);

 47

78.

79. //sets up a countdown timer Needs alot of testing

80. Log.i("Test Time" , Integer.toString(TestTime));

81. Log.i("Test Time" , Integer.toString(TestTime*1000));

82. if(TestTime <= 86400)

83. {

84. new CountDownTimer(TestTime * 1000, 1000)

85. {

86. @Override

87. public void onTick(long millisUntilFinished)

88. {

89. if (millisUntilFinished % (60 * 1000) == 0) {

90. if (millisUntilFinished / (60 * 1000) < 5) {

91. header.setText(TestName + Long.toString(millisUntilFinished /

(60 * 1000)) + " minutes Remaining");

92. }

93. }

94. }

95.

96. public void onFinish()

97. {

98. for (int i = 0; i < submitted.size(); i++) {

 48

99. studentAnswers += submitted.get(i);

100. }

101. try {

102. Submission("OutOFTime", studentAnswers,

SubmissionID);

103. } catch (JSONException e) {

104. e.printStackTrace();

105. }

106. }

107. }.start();

108. }

109.

110. //Sets he button to change the text on press and not holding down

111. submit.setOnClickListener(new View.OnClickListener()

112. {

113. @Override

114. public void onClick(View v)

115. {

116. Log.i("STUDENT ANSWERS", studentAnswers);

117. if(submit.getText() == "Submit Test")

118. {

119. canSumbit = true;

 49

120. int i = 1;

121. for(String answer : submitted)

122.

123. //Onlongclick - requires the button to be held down and it will submit

124. submit.setOnLongClickListener(new View.OnLongClickListener()

125. {

126. @Override

127. public boolean onLongClick(View v)

128. {

129. Log.i("SUBMIT", "Attempting to submit the test");

130. //submits the test

131. if(canSumbit)

132. {

133. Log.i("Student Answers", studentAnswers);

134. try

135. {

136. Submission("Student Submit", studentAnswers,

SubmissionID);

137.

138. //Back button function

139. public void onBackPressed() {

140. //do nothing

 50

141. //disables back button

142. }

143.

144. public void onPause() {

145. super.onPause();

146. pausedTime = System.currentTimeMillis() + allowedTimeOutsideApp;

147. Log.i("Time paused", String.valueOf(System.currentTimeMillis()));

148. Log.i("Acceptable reentry time", String.valueOf(pausedTime));

149. manager.removeView(view);

150. }

151.

152. // // TODO: Think of way to handle a spilt screen

153. public void onResume() {

154. super.onResume();

155. //onResume function is called on load, which sets the counter to 2 so

this is there one free exit from the app as long as its under 10 seconds

156. onResumeCounter ++;

157. if ((System.currentTimeMillis() > pausedTime) &&

(onResumeCounter > 1)) {

158. exited = true;

159. for (int i = 0; i < submitted.size(); i++)

160. {

 51

161. studentAnswers += submitted.get(i);

162. }

163. try {

164. Submission("Time Exited",studentAnswers,SubmissionID);

165. } catch (JSONException e) {

166. e.printStackTrace();

167. }

168. }

169. @Override

170. protected void onPreExecute()

171. {

172. super.onPreExecute();

173. }

174. //gets the result from the server, this will include result, number of

TestViewActivity questions, TestViewActivity name, and time

175. //result will be checked for errors each possible error will need to be

checked

176. //if result is good will put the rest of the information into the exsisting

json object and continue

177. protected void onPostExecute(JSONObject method)

178. {

179. if (Responsecode == 200) {

 52

180. String temp = "";

181. try {

182. temp = method.getString("Method");

183. } catch (JSONException e) {

184. e.printStackTrace();

185. }

186.

187. if (temp.equals("Student Submit")) {

188. Intent i = new Intent(TestViewActivity.this,

ThankYouActivity.class);

189. i.putExtra("json", method.toString());

190. Log.i("TEST BEFORE START", method.toString());

191. startActivity(i);

192. } else {

193. Intent i = new Intent(TestViewActivity.this,

BadSubmissionActivity.class);

194. i.putExtra("json", method.toString());

195. Log.i("TEST BEFORE START", method.toString());

196. startActivity(i);

197. }

198. }else{

199. // no connection to the server

 53

200. //Todo change to a different screen

201. Intent i = new Intent(TestViewActivity.this, LoginActivity.class);

202. startActivity(i);

203. }

204. }

205. @Override

206. protected void onProgressUpdate(Void... values)

207. {

208. super.onProgressUpdate(values);

209. }

210. }

211.

212. }

5.3 Submission Controller Server Source Code

This code file is described as Apache Web Server in the previous chapter.

 if ($test->simpleT == "no")//Not a simple test, randomize the ordering.

 {

 Log::info("NOT A SIMPLE TEST. WILL SHUFFLE");

 array_multisort($OTF, $QTF, $ATF, $BTF, $CTF, $DTF, $ETF, $KTF);

 $string = join($KTF);

 $test->answer_key = $string;

 54

 }

 else

 {

 Log::info("SIMPLE TEST. NO SHUFFLE");

 //leave the order as it was.

 }

 $test->questionsss = json_encode($QTF);

 $test->optionsA = json_encode($ATF);

 $TimeRemaining = $datetime->diffInSeconds($end);

 if ($test->answer_key == null) {

 $numQ = $test->questions()->count();

 } else {

 Log::info("else");

 $numQ = strlen($test->answer_key);

 }

 Log::info($numQ);

 55

 $answer_string = "";

 for ($i = 0; $i < $numQ; $i++) {

 $answer_string = $answer_string . '0';

 }

 if (!($datetime > $test->start && $datetime < $test->end)) {

 $res = "The test you are trying to access is not available to students at this

time.";

 return Response::json(['Reason' => $res], 403);

 }

 Log::info("TE

ST IS AVAILABLE");

 $submission = Submission::where([

 ['test_id', '=', $test->id],

 ['stu_id', '=', $st_id]

])->first();

 $subtestCode = Submission::where(['test_id' => $test->id])->get();

 $subStuId = Submission::where(['stu_id' => $st_id])->get();

 56

 $vtest = Test::where('code', $testCode)->get();

 if ($submission != null) {

 Log::info("This user already submitted a test!");

 //if 0 >= 1

 if ($submission->submission_number >= $test->subs) {

 $res = "You have already taken this exam the maximum number of

times";

 return Response::json(['Reason' => $res], 403);

 }

 $subID = $submission->id;

 } else {

 $subID = $sub->id;

 }

 $test->save();

 return Response::json([

 57

 'TestName' => $test->name,

 'optionsD' => $optionsDF,

 'optionsE' => $optionsEF,

 'simpleT' => $test->simpleT

], 200);

 }

5.4 Test Controller Server Source Code

public function store(Request $request)

 {

 Log::info($request);

 $questions = Bank::find($request->banks)->questions()->with('options')-

>inRandomOrder()->take($request->questions)->get();

 }

 $gid = Test::all()->max('group');

 $gid++;

 for ($i = 0; $i < $request->tests; $i++)//for ($i = 0; $i < $request->tests; $i++)

 {

 $code = HomeController::randomString();

 $test = new Test();

 58

 $test->code = $code;

 $test->name = $request->name;

 if($request->simpleT == "")//box is unchecked. (real string value is "")

 {

 $test->simpleT = "no";

 }

 else //box is checked. (real string value is "on")

 {

 $test->simpleT = "yes";

 }

 //if the professor did not select a test bank to use, allow them to generate

an answer key

 if ($request->banks == null) {

 $key = "";

 for ($i = 0; $i < $request->questions; $i++) {

 $key = $key . "0";

 }

 $test->answer_key = $key;

 59

 $test->save();

 return redirect()->action('TestController@edit', ['course' => $test-

>course_id, 'id' => $test->id]);

 }

 //otherwise generate the test from the bank

 }

 }

 //if all students get the same test, only generate one

 if ($request->sameT == 'yes') {

 $i = $request->tests;

 }

 if ($request->simpleT == 'yes') {

 $test->simpleT = $request->simpleT;

 }

 if ($request->simpleT != 'yes') {

 $test->simpleT = $request->simpleT;

 }

 }

 60

 $test = Test::where('group', $gid)->first();

 $bank = Bank::find($request->banks)->first()->name;

 return view('print_test', ['test' => $test, 'bank' => $bank, 'number' => $request-

>tests]);

 }

 61

CHAPTER SIX:

TESTING AND DEMO

6.1 Student Demo

Fig. 9. Student Login Page.

Before student’s test, the Bubble-In application is equipped with anti-

cheating mechanisms such as question-answer key scrambling, not allowing

screen shots, screen recording or leaving the application.

 62

Fig. 10. Student Cheat Page.

This is the screen displayed on the application when the student leaves

the application for any reason. If the application leaves the foreground, that event

causing it to do so is logged and reported.

 63

Fig. 11. Student Test Page.

 64

6.2 Teacher Demo

Fig. 12. Login Page.

Fig. 13. Test Creation Page.

 65

Fig. 14. Test Edit Page.

 66

Fig. 15. Scores Page.

Fig. 16. Scores Page with Data.

 67

Fig. 17. Student Review Page.

Fig. 18. Statistics Page.

 68

Fig. 19. Statistics .CSV Excel Format.

Here we can see the .csv file generated by the website. This is the results

from a specific exam. Teachers can upload this file type directly to blackboard

with confidence that student have not cheated due to various anti-cheating

mechanisms in the applications in addition to question order scrambling and

answer scrambling on top of the question scrambling.

 69

CHAPTER SEVEN:

CONCLUSION

7.1 Next Steps

 The next foreseeable steps for the Bubble-In system are adding and

improving the anti-cheating mechanisms in the mobile applications of Android

and Apple devices. Another feature that needs to be addresses is taking

attendance. Making sure that a student is not taking an examination from home

needs to be taken into account. The Bubble-In application is a competitor to the

iClicker brand of products and should be updated with features to beat those

offered by iClicker. The last feature which needs to be added is a new method for

scrambling test questions and answers. Currently both are scrambled for each

student when they are making the request to the server. A perhaps more efficient

solution would be to scramble these ahead to time and store them on the server.

This needs to be evaluated however since storing the exams on the server will

take up more storage, which is cheap, but scrambling them on the fly uses more

RAM, which is also currently at a low utilization due to the optimization of the

Bubble-in system. These metrics can all be found on the Digital Ocean

dashboard and should be logged and kept track of to compare both

implementations.

 70

7.2 What I Learned

In this project I have worked on cloud computing servers where I have

implemented multiple instances of the Bubble In system. Cloud computing is a

catalyst of many new systems and technologies so by understanding its

intricacies I am well informed and educated on the topic for job opportunities. By

not only being familiar with cloud computing but having implemented a running

web server I have no doubt this or any other future products I work on can be

made more effective with this gained knowledge.

In addition to cloud computing technologies, this project gives me in depth

and hands on experience with mobile application development using native code.

By implementing the Bubble In application on Android and IOS I am well versed

in both Java and Swift as well as the SDK. Further, when developing the cloud

server, I became experienced with PHP in the Laravel framework. I also had the

opportunity to work in JavaScript and HTML hyper script. I became much more

proficient with MySQL when developing the database which involved the

RESTful protocols when communicating with mobile devices running the Bubble-

In application including GET, POST, PUT. Simplistically, POST means create,

GET means read, PUT means update, and DELETE means delete [2]. The web

server Bubble-In and the web server provider, Digital Ocean, operate with the

Service-Oriented Software Engineering (SOSE) paradigm of building software

today. This paradigm is the latest development in building software with a

service-oriented approach.

 71

7.3 Accomplishments

I would like to conclude my project proposal by expressing my gratitude

for this opportunity and challenge. For a short background on myself, I

transferred to CSUSB from Victor Valley Community College, completed a

bachelor’s degree and I couldn’t enjoy the university more. The Campus is

beautiful and loaded with every resource you would need to be successful. The

help and guidance I have received from faculty and instructors during my degree

has been instrumental.

This masters project directly assisted me in my long term educational and

career goals. I hope to attain my master’s degree in Computer Science and

eventually move into industry involved with software development. Once a

master’s degree is achieved, I also have the option to pursue my doctorate

degree or begin teaching at the college level immediately with an M.S. which I

would also enjoy. I have a special interest in mobile app development and find

the creative process very fulfilling where I truly enjoy working many hours on my

projects.

By completing this project, I have advanced towards my career goals.

First, my knowledge of the subject has strengthened and my professional

marketability and earning potential has increased. I have also obtained a strong

foundation for graduate study. My long-term career goals include finishing my 4-

year commitment in the United States Air Force serving as a Cyber Security

 72

Officer. I hope to move into industry after my service in the Air Force which I

believe this project has helped me in immensely.

Putting in this extra time is necessary to stay knowledgeable and ensure

you are solving problems in the most optimal way. I have a special interest in

helping and teaching my peers and in mobile application development. I find that

the more useful my work is to someone the happier I am with the time I have

invested, and the products created. I find the creative process very fulfilling and I

truly enjoy working many hours on my projects. As the late Apple CEO Steve

Jobs once said, "Your work is going to fill a large part of your life, and the only

way to be truly satisfied is to do what you believe is great work. And the only way

to do great work is to love what you do." These few sentences perfectly

summarize my desire and drive in my development and education.

I understand that not everyone is fortunate enough or always in a position

to complete a master’s degree so with this in mind, I have made a conscious

effort to study diligently, work smarter, put in extra time and to encourage others

to do the same.

Very Respectfully,

Chaz T. Hampton

 73

REFERENCES

[1] AlShahwan, F., Faisal, M. & Ansa, G. J Ambient Intell Human Comput

(2016)

[2] “Chapter 19 Service-Oriented Architecture.” Software Engineering, by Ian

Sommerville, Pearson Education Asia Limited, 2014, pp. 511–513.

[3] Garrison, G., Kim, S., Wakefield, R.L.: Success Factors for Deploying

Cloud Computing. Commun. ACM. 55, 62–68 (2012).

[4] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud

computing — The Business Perspective. Decis. Support Syst. 51, 176–

189 (2011).

[5] "Panasonic KV-S4065CL, Panasonic KV-S4065CL Scanner, New (KV-

S4065CL)". Esupplybox.Com, 2020,

https://www.esupplybox.com/index.php/panasonic-kv-s4065cl-new-

scanner-kv-s4065cl-e014-

202g001.html?gclid=CjwKCAiAhc7yBRAdEiwAplGxX62ey4LzZ3L0oNkAp

6w8Rz6Ng_xvBy2iZxEJPz2_zcwvcm4YVbXdjBoCBmEQAvD_BwE.

Accessed 24 Feb 2020.

[6] Sebastian Graf & Vyacheslav Zholudev. Managing Authorization with

RESTful XML (2017)

[7] "Product". Insight, 2020,

https://www.insight.com/en_US/shop/product/1615962/Kodak%20Alaris/1

615962/Kodaki5850-documentscanner/?platform=google-

 74

shopping&partner=smb&campaign=smb&sku=1615962&gclid=CjwKCAiA

hc7yBRAdEiwAplGxXwZUhBWlJ4y-beXXlF4w2b87tuM7K-

oEbkUmjf0M8BPQtG7uke8OwRoCHrYQAvD_BwE. Accessed 24 Feb

2020.

[8] Srivastava, Priyanshu & Khan, Rizwan. A Review Paper on Cloud

Computing. International Journal of Advanced Research in Computer

Science and Software Engineering. 8. 17. 10.23956/ijarcsse.v8i6.711

(2018)

[9] Venters, W., Whitley, E.A.: A Critical Review of Cloud Computing:

Researching Desires and Realities. J. Inf. Technol. 27, 179–197 (2012).

[10] Yang, H., Tate, M.: A Descriptive Literature Review and Classification of

Cloud Computing Research. Commun. Assoc. Inf. Syst. 31 (2012).

[11] Shih-Hao Hung and Chi-Sheng Shih, Executing mobile applications on the

cloud: Framework and issues. National Taiwan University, Taipei 106,

Taiwan (2011)

	BUBBLE-IN DIGITAL TESTING SYSTEM
	Recommended Citation

	OLE_LINK3
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2

