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ABSTRACT

o Thé' theovry of knots has recently become a "hot"' topic in mathematics,

: althbugh the study of knots b‘egan in the early 1900's. The most important |
question when dealing with knots is whether two knots are actuélly equivalent,
|e whether dne knot can be manipulated into the other knot without cutting or
splicing the knot. Different fields in mathematics are used to'help us disti}nguish
knots, such as topology and algebra. I will explain the different approaches
starting with the older methods involving groups up through the more modérn
techniques. The fh‘eory of knots deals with a vast amount of mathematics, so in
some areas | will only touch on the subject and leave it for the reader to

investjgaté further on their own.
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INTRODUCTION



Almost everyone is familiar with knots in some form or another. For
eXarane, when tying shoe laces, the trefoil knot is used. By connecting the ends
' of the shoe laces after pen‘orming the initial knot when tying your shoes, you

have the trefoil knot as shown below.

In|t|aI Knot B o Tr-efon Knot

| In mvathernza'tics it is essential ‘that we splice the ends together to form one
| contlnuous curve S0 that two knots can be compared This Ieads to the followmg
definition: A knot is a simple closed polygonal curve in R3 A knot is consndered
to be a subset of 3- dlmensmnal space whlch |s homeomorphlc to the C|rcle

'_ Recall two topologlcal spaces X and Y are called homeomorphic n‘ there is a
contmuous buectlve mapplng from X to Y whose mverse is continuous. We will

glve 2- dlmenSIonal representatlons of knots as shown above. Even though
' knots exist in ‘R3, wewil.l:ne,ed to'wrlte them down‘ so we will use 2-dimensional

;diag_}rams:. :



The most important question ‘when dealing with knots is whether two

- knots, s_uch as the trefoil and fiQUre eight, are "equivalent".

'T"refoi’l Knot ____Figure-eight Knot

*If we could manlpulate one knot lnto the other by movrng lt around without

"*cuttrng or retyrng, then the two knots are sald to be egurvalent Formally, knots

- K, and K2 are sald to be equrvalent rf there exusts a homeomorphrsm of R® onto

rtself whrch maps K onto K If two knots are equwalent they are sard to be of

R 'the same knot tyg A partroular questron of equlvalence occurs when we have

aknot Ky and the unknot O = Kz, In this }ca_se, if Ky is equrvalent to K,, then
K, is said fto be unknotted.
| ‘Alge‘braio objects oalled i‘nvaria}nts’- are used.to' determine whether two
knots areof the e‘ame knot type, i.e., areequivalent knots. The geometric

" b-robl_em vof- manipuilat‘i'ng one knot into ano’ther'canbe very difticult,\ so we

_ change it into an al‘gebraio‘prob‘lem.‘w_hi_ch_ho.befully will be eas‘iér to solve. Let

I, be an invariant for knot K,, and |, be an invariant for knot K,. Then if K,



aqd K2 are 'éj_quivélent knots‘ (ih"'the,vtpp;jllqg_icgl sense), thén their invafiants l,
and l, must be equivalent (in the_aI‘Qébfafié _sense). |

There_fdre;déihé t‘h.e‘ cﬂbht.rahsysitiYe,‘_if“i’r‘iv‘ar:i‘éhts' -1 and l, ére not
equivalent, thén the knoté K, and Kz"ar_évnotvequivalent. But if the invariants ~

~ are equivalent, nothing has been prove'n, It is only when the inVariants are

shown to be inequivalent that_We can conclude the’)t’ the knots must be”

= inequivalent."Thusi the Qse of invar‘i:antvs' helps us only to prove two knots are
inequivalent. If the Aihvériants of two knots K, and K, are inequivalent, then K,
~ cannot be ’manipulafed into K, no métfer how hard we fry or how clever we are.
In the late tWenties/e’arly ‘thiriies, Reidemeister showed two knots K1 and
K, are equival.ent if ’énd only if K; can be turned into K, by a finite sequéhce o1“, -

"moves". These moves are called the Reidemeister moves and are shown

below. (Where in each diagrarh, ohly the relévant por.t‘ionv of the knot is shown.)
I Q ® —— ® 6

3 s DC

m s X R XK

" The first invariant | began studying was a certain group associated with a

-~ knot. This group is the so-called fundamental group of the complement of the
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knot in R2. It can be shown that knots of the same type have isomorphic groups.

Given two knots, ‘if one can show that their corresponding groups are not -
isomorphic, then the two knots are not equnvalent “Groups assomated wuth knots
~are given by presentatlons ie., a collectlon of generators and relations. Two
groups are said to be of the same presentation type if they have "isomorphic
presentations". (Two presentations are isomorphic if one can be;obtéined from
the other using a finite sequehCe of Tietze Transformations, examples later.)
" In the theory of groups, the problem of determining whether two "
presentations‘giveisomorbhic groups is, in general, unsolvable. - So, since
-determining whether two groups are isomorphic can sometimes be very difficult,
~ we must consider other ‘invaria.nts. One of these invariants is the sequence of
elementary ideals which are defined in terms of the matrices formed using the.
presentation of the grbup. Another invariant is the sequence of Alekander knot
polynomials which can be defined in terms of the elementary ideals.. Since each
new invariant is defined in terms of the previous, the new inv_ari'antswilll not give
us any fnbre information than the previous ones did; however, the new invariants
may be easier to distingﬁish, easier to calculate, and easier to algebraically
manipulate. Later, | will show the use of each mvarlant and how each mvanant
contains less information than the precedmg one (knot polynomlals containing

the least information in the followmg dlagram)



Knot type
Pr_esentéltion typé
Sequence ofvéllerhentary ideals
o Sequencé of krlmt polynomials
After examining the invariants above, | will show that these are not "strong -
enough" ih\)ériants‘ to distinguish thé granny knot and square knot (showh
below). Th-ét is, each of the invariants in the list above are equivalent for both

the granny knot and square knot.

e—h 8H

Granny Knot | | Square Knot

(Remember, invariants being equivalent does not necessarily imply knots are
équivaleht. Only if invariants are inequivalent éan we conclude knots ére
inequivalent.)

'A!though these knots ook very similar and the invariants above are all
equivélent, we will later show it is not possible to turn one into the other ho
matter what wé do. We will use more modérn invariants to prove that the granny

knot and square knot are not equivalent. These invariants are the Conway-

6



»: ‘l-Alexander polynomlal the more general Jones polynomlal and |n some sense
" gthe most general Homfly polynomlal ‘The Homfly polynomlal was so named
' *-.‘_,_"]because of |ts founders who all d|scovered 1t at the same tlme (used flrst letter of

‘k;‘“;vthe"lr n‘avmejs){ |







The first invariant l studied was the fundamental group of tne compliement |
- of a knot. To understand this invariant, we first need to understand the |
}fun'damen'tal‘group for a‘n' arbitrary topological space X. Then we will investigate
the applications df the fdndamental- group to knot thedry. Fora top_ological |
space X,apatha isa continuous mapping a: [ 0, ’ta 1- X where ta is the
stopping time, ta > 0. Apath a has |n|t|al pomt a(0), and terminal ponnt a(ta)
in X. The two paths | |
| a(t)v=‘(1vf, f) 0<t<2m and

bty=(1,2t) 0 <tg2m

are distinct even though they have the same stopping time, (2m), s_arne initial
point,‘ (1, 0), same terminal point, (1, 21), and same set of image points. To b_e _
e_qg_a;i paths, a and b rnust have the same dornain of definition, i.e.‘, ter“minﬁal
points are the same, t, = t, and for every tin that'domain‘, a(t) = b(t) (paths are.
the same at any point in time). Consider two paths a and b in X, where the, ‘ |
terminal point of @ coincides with the initial point of b,i.e. é(té) '=‘b‘(0). The
producta e b is ~ | |

aty Ottt

(@Dt =3 oty sttt



The following are equnvalent

1. a-b and b C are defined
2. a- (b-c)isdefined
3. (a-b)- cisdefined

When one of them holds, the assoc:iative law & (b- C) (a- b)- c isvalid.

A path @ is called an identity path If it has a stopping time ta 0. Thepath €is

an identityife - @ =a and b-e=b. a’is the inverse ;@mformed by
traversing @ in the opposite direction. Thus, a’(t)y=a(t, : t) O0x< t< t,. A
path whose initial and terminal points coincide is called a loop. A loop's
common endpoint, P, is'its bas‘égoint. The loop with basepoint P isi.referred to
as a p-based Ig_pp_. The product of any two p-based loops is again a p-based
|oop " The identity péth at p isa multiplicative identity. Therefore, the set of all

p-based loops in Xis a semi- group wnth identity. By adding the notion of
equivalent paths we can consider a new set whose elements are the equivalent

‘classe's of paths. ‘The fundamental group is obtained as a combination of this
construction with the idea of a loop. Path @ is said to be equivalent to path b
(wri{ten a~b) if‘énd only if one can be continuously deformed into the other in

* the topological space X without moving the endpoints. Examples of equivalent

and not equivalent loops are shown below.
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a-~ b~ e, since b can be shrunk toa then both aandb can be
pulled into the basepoint p.

¢~ d, since the loopsin d can be removed

a+ d, smce d cannot be pulled across the hole in the topologlcal
space X.

'(If the ‘hole were fill_ed in, all paths would be equivalent to the -identity path €.)

11



‘ The appllcatlon of the fundamental group to knot theory changes the focus from

| ’an arbltrary topologlcal space to the complementary space of a knot The
‘ omplementary _p_a_ge_ of a knot K, con31sts of all of those ponnts of R that do
not belong to K and is denoted R3 K To explaln the fundamental group of
‘ the complernent of aknot, Iwill use the .tu‘be‘ _model of the vtref_oll knot shown

below.

Let R®- K be the oomplement of the knot and P be a fixed base point. The set
Nis made up of loops in R® - K that t)'egin and end ‘a‘t p. Since M is infinitely
large, we’di-‘vide"Q into olasses ofvequivalent loops. & anvd b are e}guivalent
means @ can be defOrmed into b, i.e., @ can be pulled, puvshed, twisted or even

crossed over itself, but its beginni‘n"g and ending points may not be moved and a

12



~ cannot come in contact with any segment of the knot. For v}example, in the
picture above loop ais equrvalent to loop b since @ can be pulled back to b.
Also, C can be untwrsted and shrunk back to the base point p (so Cis equnvalent ,
, to‘the |dent|ty loop e) }Deformations of this type are called homotopies, and
loops such as g and b that differ only by a homotopy are said to be homotopic.
- The cl.a'ss'of loops ‘homotopic' to the loop ais written [a] The set of Ioops 0]
~ cannow b‘e‘re'g"arde'd‘ as a collection of homotopy classes Multiplication of

classes is defined as follows: the product [a][b] is the path that begins at p,

| | follows @ back to p‘,}"and't'hen folloWs b back to p. Mult’iplication of classes is an

aSsoci'a'ti\./e‘operation, so ([a][b]) [cl [a]([b][c]) The class [el acts as an-

identity element so [a][e] = [e][a] = [a] Also, for every element [a] there -
exists an inverse [a] ! such that [a][a] o= [a] [a] [e]l Therezfore‘, 0
is a group. |

The fundamental group of the complement of the knot K will be denoted
by n(R3 K) and called the knot group of of K (or just the knot group if K is |
" understood). This invariant can be use_d for distinguishing kn}ots onlvy if there is
~ some way to eXpli'citly describe it. “ The 'knot group consists of a number of
~ equivalence classes of loops and can be calculated by constructing a finite list of
‘objects' that will completely descrlbe the group. This list will consist of a number

of group elements called generators and a number of equations called relations.

13



Thia list of genarators and relations is known as a Qrese'ntation of the Kn_o_f | '
. . .
~ Next, | wilI_ explain how we get the generators and relations for the
presentation of .aknot group.' I‘ Will need to explain about paths and
correspondlng notatlon for a knot.
A knot is divided into two classes of closed, connected segmedted arcs,
Wthh are the overpasses and the ndergasses The overpasses and

underpasses alternate around the knot. The overpasses are marked below |n

heavy lines, and labeled X; , X5, . - -

Each vpreséntat’ion ivs'":ma'de with frés:peét td an 'ori‘entation: of the knot K. One of

thé‘ tWO d}irec‘ti'ons along the knot is chosen as positiye. We draw an arrow on K
to mark the positive.direCfion_ Ifwe fi* a base point pin R3 - K, then each loop
a (based at p)vis' assigned an element at that defines the loop. The élem_eht a

,14



 isdefined as follows:

~ ‘where overpasses crossed under by @ are, in order, X; ,**,X; , and €, = 1or

2 D!

o }-j1'i'c'iépen‘di'n‘fg‘: on Wh?thér,-ét",ér&o'svs’és'uhde'r xij._frdm,,r}igh‘t':t'bfljeft. orfromleftto R

| rlght(lnotherwords,accordmgasxl and thé pbft}io_n 6;_1“:t_heflbo;‘:3lukndér xl
form a rl_i,‘ghvt-‘h‘an'c_i_éd}or left-handed screw). Below is an example of a loop a*

 that winds under the trefoil knot:

CatEx o,

: _fi»sgjjtts .



It can be shown, that the loops xh',-. . ., xiK‘ are the gen_érators of the knot
group. Each loop goes un_der and over the overcrbssi_ng of the,‘kn.ot,so’eachﬁ

~ loop contribute‘s:onef X;- (There are no cOntributio'ns when an ove'fcrossing is

passed from above, only when passed from below.)

X, = X
X5 = X3

From now-on, we will write xi' = X;
3 o Lo T R

vanjdi Call XX the gene'.rator‘_s'vfor the»,
0 knot 'grdupl_ =Sin¢e thevgé'hératb_ré a‘ré‘ i‘n. ch‘e".t,t'}d:-'onve.'correspondence with th,é |
overcrossings, from now on we Will omit the'v‘di.ag’ra»m showing the I_oops:thgf _
| represent the génerators.' | Thv‘e relations are formed by drawing loops under and -

around each crossing from a base point p.

16



RV P gy
V1» =Xy Xy XXg

Thrs Ioop V, that is drawn under and around one of the knots crossmgs can be |

shrunk back to the base point p so the Ioop is equrvalent to the |dent|ty Ioop e.

[To see why the relationship arnong the generators at this crosslng is given by
-this dlagram see C Kosnlowskr s"A Flrst Course in Algebralc Topology"]

Therefore, we get the relation X1, X5 X, X3 = 1. There are two more relatlons '

using the trefoil knot as shown below.

17



| Therefore the presentatlon for the knot group of the trefoil knot is
rr(R3 K) = |x1, X5, x3 X, Xy XXy = 1, x3 XX = 1, X XXX =1,
It can be shown that any one of the relations for a given knot is redundant and
can be obtained using the other relations for that knot. Below | have shoWn that
one of the relations for the trefoil knot is redUndant. (Any one of the three can

be shown to be redgndant.)
| @ vx1'1x3;1x2x3 =1
® xS XX =1
_. ©) | X, X3 X%, =1
Take @ and solve vfor Xy |
X, = XoXgX5 .
Then su‘bstitute X, = XXX, into @), so @ becomes
')‘(1-1X3_1 (XeX3X2-1)X2 =1,
which implies equa’rion @ .X1'1X3'-1X2x5 =1
- Therefore, @ is‘shqwn to be redundaht sihce it-can be ‘obtained usving ®' end
. .[For mereinformeti.on on why the generators generate ahd where the

relations come from and why one relation is redundant, refer to C. Kosniowski's

"A First Course in Algebraic ‘T_opolo,gy"'.]

18



Therefore we obta‘invfor theknot groupvof the trefoilsknot K, the
: vpresentatlon n(R K) = |x1,x2,x3 X5 Xy x1x2 =1, X1 x3'1x1x2 = 1| where
V has been dropped By rewrltlng the relatlons we get the presentatlon
(R3 K) |X1, Xoy Xgi Xg = X2 X1X2,‘ X, = X3 X,X, |. Since X; is expressed
in terms of X1 and Xz, -we'can ehmlnate X3 by substltutlng x3"' X, XX, into the
other relatlon SO n(R -K) = |x1, Xp: X4 = (x2 x1 x2)x1x2 | =
: |X1, Xpi Xy = X2 X1 X2X1X2| By multlplylng the relation through on the left by
:X1 X, , we obtaln the follow:ng common presentatlon of the knot group of the
trefoil knot: 3|x1, xz"' : X1Xix'1 = X2X1X2| This process of substitution to simplify -
and rewrlte the presentatlon |s formally known as Tletze transformatlons [For.
“rore lnformatlon see "Introduotlon to Knot Theory" by Crowell and Fox.] |
Now. that we have a presentatlon for the trefoil knot we can prove that it .

" cannot be untled that is, the trefoll knot is not of the same knot type as the trivial

‘ knot The presentation for the knot group of the trlwal knot is done below

19



" Trivial Knot

The presentation is nR®-K) = Ix: |. The trivial knot has only one.
generator, and therefore it has no felations. Hence, the group Qf the trivial knot
type is infinite cyclic. To prove that the trefoil knot is not of the same knot type
~ as the trivial knot, we must show that their knot groups are not isomophic. To

prove this, | will show that the knot group for the trefoil knot |x, y: XyX =_ryxy|‘
is not infinite cyclie. To do this we must consider the symfnetric group S5 which
s generated by the cycles (12) and (23). S is not abelian since (12)(23) =
 (1 32) and (23)(1 2) = (1 23) The presentatlon G of the trefoil knot consists of
a homomorphlsm of the free group F on x and y onto G whose kernel is N, the

- normal subgrQUp of F, generated by xyx(yxy) ‘1 Then G = F/N can be written

20



as |‘x, y: XyX = yxy |. We will now show that F/N maps homomorphically
onto a nonabelian group. |
Consider the map:
0: F — S,
X —— (12)
y —— (13),
extendedmultiplicétively. The map O is an onto group homomorphism.

Consider the commutative diagram:

3

)
g

-

O (w) | B w)

Since the mapping ¢ is defined on cosets,‘we must show well deﬁhed. If
wN =w’N, doeéd)(W N) = d(w'N)wherew and W' are related by
w' = wn, neN? Toshowd(WN) = d(w’N), first need to show

B(n)=e, ie, N ckerf. Since neN and 0 is a group homomorphism,y‘it will

21



suffice to show that @ maps the genérators of N toe.

Bxyx(yxy) "] - B(yxy)B(yxy)

© B(x)8(y)B()[B(Y)B()B(Y)] " ince 8 is s

homomorphism
(1 2)(23)(12)[(23)(12)(23)] )
= (13)(13)"

= e

Therefore B(n) = e

Now

¢[(wn)N] sincew’ = wn

bw'N)

B(wn) definition of mapping ¢

B(w)B(n) - since B is homomorphism

B(w) since B(n) = e (shown above)

$(WN) definition of mapping.

Thérefore d(w'N) = ¢(WN), so the map is well-defined. Thus, the knot group
can be mapped homomorphicélly onto a nqnabelian group. So the knot group is
nonabelian (if the knot4 group were abelian; then its irhage would be abelian) and
' therefo_re is not cyclic. This shows that the knot groubs for the trefoll knot and

trivial knot are not isomorphic. Hence, the trefoil knot cannot be untied.

22



~Another example -of-fi'ndiné‘é p'reéehtéti:oﬁ,for aknot is done below.

CvF=zyz'w!

Cvf=EzyXly
v = xwxz!
v = wy'wx

Figure-eight Knot

A preseritatidh }'4f0‘r the knot group of the figure-eight knot K is n(Ra-K)’ =

IX, Y, Z, W z= wzy', y =xyz', z = x"wx| Where v,* has been dropped.
Using Tietze transformations we can substitute z= X' wx in the o“th‘er two
relations to obtain TI(R® - K) =1x, y, w: x"wx = wx'wxy™,

y = xyx'w’'x | The second rélation}now gives W = Xy 'xyx" aﬁd by
‘substituting W = Xy'1A>(yX'k1 into th('-lzlfirst félatioh we obtain TI(R® - K) =

Ix,y: x(xy xyx)x = (xy xyx)x (vxy“xyx*)xy‘1 I which'can be simplified to
nR®-K) =1 x y 1 y'xy = xy'xyx'y'x|. By multiplying both sides‘ oh the
left by Xy, we obtéin U(R3 - K) = IX, y. ‘y =.x#1yxy‘1xyx"y“x | }Finall‘y, by
- multiplying through on thé right bylx'1yxy'1,v we‘fqbtgin the c‘omrh’on present'ationb

23



of the knot group for the flgure erght knot n(R -K) =

%,y YKy = Xy x |
In order to prove that the flgure elght knot Is dlstrnct from the trefoil, it .5

“sufficient to show that thelr groups are not |somorph|c Unfortunately, there is no
easy way to determlne whether or not two presentations have isomorphic
groups.” So what is needed are some easy to caclulate algebraic quantities
which when derived from isomorphic groups, remain the same. These are the
so-called group invariants. That is, since the knot group is usually too
‘complicated as an invariant, we must pass to one that is simpler and easier to
handle. One such invariant is the sequence of Alexander knot polynomials.

This invariant can be used to distinguish the trefoil knot and the figure-eight

knot. There is an object called the‘Alexander matrix which is constructed using

mappings of the free group onto itself called Fox derivatives. From the

‘Alexander matrix we can determine the sequence of elementary ideals which

then gives us the sequence of Alexander knot oolvnomlals For the rest of the

chapter, we will just write down the results of our calculations without leading
reader through derivations. (For details on the calculations of fox derivatives,
‘Alexander matrices,elementary ideals, and Alexander polynomials, the reader

should consult "Introduction to Knot Theoryl" by Crowell and Fox.) The
sequence of Alexander knot polynomials for the trefoil knot is A, =1 -t + t* and

A= 1for Kk = 2. The sequence of Alexander knot polynomials forthe figure-

24



~ eight knot is A= fz','- 3t+1and A = ‘1}fo‘r k 22 Therefbr‘e, the trefoil

and figure-eighf are not equivalent knots sincé their Alexander knot bolynomials g
are inequiVaient_- In C'hap'ter 2, 1 will g,ivé a detai‘leddes‘cription of another
invariant that is easier to calculate that will alsb distingUish the trefoil and the

figure-eight.

e 2~
(L N 7
Figure 1 | o - Figure 2

The sequence of Alexander knot polynomials for both figure 1 and figure

2is A, =2t*-5t+2and A, =1forkz2. The sequence of Alexander knot -

polynomials does not distinguish these two knots. To distinguish these knots we

~must use another invariant. This invariant is the sequence of elementary ideais.
The sequence of elementary ideals for figure 1 is E, = (2t*- 5t + 2) and

E, = (1) for k > 2, where (a) means the ideal generated by & in the fing

Z[t, t']. The sequence of elementary ideals for figute 2is E, = (2t - 5t + 2), |

E,=(2-t 1-2t)and E, = (1) for k > 3. Therefore, figure 1 and figure 2 are

25



“not equivalent knots since their sequence of elementary ideals are not equal.
‘This example verifies that the elementary ideals are stronger invariants than the
pﬁolynomi’als.

The following two knots cannot be disting‘uished_ using either of the two

QC/J f

Figure 3 Figure 4

previous invariants.

The Alexander matrix of each of these knots is || A2 -7t + 4 0 ||. Since

the'sequen'ce of'elemenfary ideals and the sequence of Alexander knot
polynomials are defined in terms éf the Alexander matrix, they are equivalent for
" both knots. The elementary ideals and knot polynomials are not strong enough
invariants to distinguish these two knots. Although it can be shown that their
knot groups are nonisomorphic using other methods; therefore, the two knots are
not equivalent. This"shows the presentation type is a stronger invariant than
eithér the eIémentary ideals.or khot polynomials.

The next pair of knots not‘only have equivalent Alexander matrices, but
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they possess isomorphic groups as shown below.

Granny vKnc’)t - Square Knot

Each knot group has the presentation nR*-K)=|xYy,a: a'xa
xax', a'ya = 'yay‘1 |. To distinguish the granny knot and square knot, we

will need to use more modern techniques.
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CHAPTERII

MORE MODERN TECHNIQUES
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In the 70's and 80's, J. H. Conway and Louis H. Kauffman each came up
with a whole new approach with which to study knots We will focus on
~ Kauffman's approach wh,lch uses "brackets".' This new approach uses formal
symbolism and a type of arithmetic wi_th diagv'ram"s. It also uses no fundamental
groups whatsoever. This more modern approach to knots }nvot only is,eaéier to
handle but can distinguish a wider variety of knots and objects to be defined |
later as links. |

To begin the discussion of the néw approach, | must first define (orin

some cases, redefine) a few terms. If we regard a knot as a single closed loop

in R®, then a link will be an object Consisting of one or more such loops. As

referred to earlier, the following are the Reidemeister Moves : (Only the relevant

portion of the knot or link is shown.)

I D’jz)C

LR s X =R s XK

Reidemeister proved that these three moves change the structure of the diagram
while Ieavmg the topological type of the knot or link the same. That is, two knots

can be manipulated one knot into the other without cutting or retylng |f and only
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if their dlagrams are related by a f|n|te sequence of Reldemelster moves. The
‘equwalence relatlon generated by moves ll and lll is called egular |sotogy The

'equwalence relation generated by all three moves is called amblent |sotoov

A knot or lrnk is 'said to be oruented if each arcin its dragram is assngned a

direction (accor-ding to the right—handed screw) s0 that at each crossrng the

orientations appear eitheras '

or

// +
and have a corresponding sign of £1.

" Let L = {&, B} be a link of two components & and B.
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* Define the linking number QK(L): tk(cx, B) by the formula Ik(ax, B) =
Y2 Y peamp é.(p),‘k where amp denotes the set of crossings of & with B and €(p)
denotes the sigﬁ of the crossing. |

Example:

| Ik(a, [3)=1/z(1+ 1) = 1

| So the ‘ii‘nkir’ag_.n’umber of the Ilnk é‘bo.ve‘ jis 1‘. | Nbcijtt’ifc‘e;wé}nly‘ éqlnsider the
| groés»ings: of q»-with B sowhere B cfdsses itselfi, thefe isvno contribution to the
Iihking} number. . N L

_Let K be any oﬁeﬁted Iink'vdi_a’gram. Then the w}ithe vof K (or twist number
ﬂ)"is__.defined by the jf‘ovr’m’ula. W(K) = Zpsc(K){_e(p); where C(K) dénotesjthe set

of crossings in the diagram K.
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Example:

wK)=1+1+ "1+ "1+°1="1

Thus, the writhe of the link above is -1. Notice all crossings were considered

when calculating the writhe.

- Consider a crossing in an unoriented link diagram. Two associated

labelled diagrams can be obtained by labelling and splicing the crossing (shown

below).
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Type A | Type B :

The regions labelled A (respectively B) are those that appear on the left
- (respectively rightvv) to an‘ob,server walking towafd the crossing along one of the
undercrossing segments. |

By keeping track of each splice that is perforfnéd, we ‘can reconstruct a

given knot (or link) from its descendants. A reconstruction is shown below.‘

final descendant S R ‘given knot
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The fmal descendants (that rs when all of the crossmgs havrng been o

S spllced) ofa knot or I|nk K are called the states of K. Each state can be used to -

»reconstruct K lnvanants of knots and llnks are constructed by averaglng over =

i '*"';"these states To do thls let 6 be a state of K and (KI 6) denote the

o :_.;,’,commutatlve product of the labels attached to 6 Example shown below ;i

RIS _Now we can deflne the bracket Qolynomla (K) by the follownng formula’:

f‘fr»‘j_“'{_ﬁv(K) Z (K|6)d”6” where we sum over aIl states 6 of K.



The following is an example of the use of the bracket polyvnomial.‘

There are four states (final de’s‘(‘:‘endénts’) for this link. The bracket polynorhial is
calculated as follows: -
(K) = A2 g2 + ABd1-1 + ABdM + B2 g%
=  A’d+AB+AB + Bd
“A%2d + 2AB + B*d

Notice that at each node of the tree above, the bracket of the relevant -

crossing is either A times the bracket of a type A splice or B times the bracket of
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atypeBspIrce SO (‘\ > = A(X) + B<:) C_>

“holds (where onIy the relevant portlon of the dragram is shown) An example of

how this can be used to compute the bracket is done below for the link L.

A = (QO) A(C@) N B<G,D>

A (ﬁ(ﬂ) g B(GO))
+ B (A (C:O) + B(oo))

A2d2-1 + ABdM,"" BAd1f1+ Bz.d2‘1 )

= AW + 2AB + ‘Bzd;. B

g -Notlce we got the same bracket ponnomlal as we dld uslng the tree dragram

The bracket polynom|al is not an |nvar|ant as it stands We must

‘ investlgate |t under the Reldemelster moves and determme condrtlons on A B
and d for it to becomean invariant. We first'inVestigate the bracket.under type I

and Ill moves. Consider the fQ“QWing_:f .
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\
- a2{ el TS >
p

or < D.- ) 'to‘equal<>< > (type Il move), it suffices td

‘have AB"= 1 and d = -A2-A2 Suppose A=B"'andd= -A? - A, then we

Just showed that < > > < > < > and we now consider the

bracket of a type III move.
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PR R )

/\..../ | ' Using a
= »+B ) (/-- type |
”i f\ Y ) ‘move
Usinga
= <\ /'"\ + B<.~_)Q") typei?l ,
move

\/\/’

- T‘his’ shows that the bracket ’with B=A" d= -A? '-‘ A2 is invariant under
‘ _':mdy‘es Il and Il (Th’at'is,,if two,diagfams differ ‘by a»typé Il or type 1l move,
the:i:r brackets are the same.) Let's now investigate how the_ bracket transforms

under a typ'eil’ move.
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i 1
B
-
P N
(=
~_ S
3;/'\\.
/:\\(/
( +
v};
+ TN
=g
. (
AN SN
(
S~

- We will now calculate the bracket for the same diagram but with the "loop"

having the opposite crossing.
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(G- 20Uy (=)
() os ()
ey (A p 2y () (=)
(- o)
COICIR SN
(=)

(T ()

Notice that if two diég’rams differ by a type | move, their brackets are not the

1

1

same. Therefore, the bracket is only invariant under type Il and type lll moves.

To obtain an invariant of ambient isotopy (|, I and Ill), we must normalize

the bracket. To do this, we must take a closer look at the writhe of K, w(K).
Recall the w(K) = Y,€(p) where p runs over all crossings in K, and €(p) is the
sign of the crossing. The writhe of K is an invariant of regular isotopy (I, Ill) as

shown below.
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Type Il move: (one possible orientation is shoWn)

y D’: Cer-o
B

Since w ()C) = W (D )(independent of orientation), the

writhe is invariant under a'type I move.

Type Il move: (again, one possible orientation is shown)

1
N

o+ -1+

1+ -1+ 1 =1
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,‘Srnce W ( /\ ) ( ,‘*/\_-/,) (independent of

orrentatlon) the wrlthe is rnvarlant under a type |ll move. Therefore, w(K) is an

e i?nvariant of regular rsotopy. Also notice }that (since writhe is sum on the

crossings),

(‘b"’) 1+w(f'*)
(6’) -“w(f")

_NoW"w‘e can d_é_fine«a‘ -norm}al,ized‘:’bra"cket, IK for oriented links K by the formula

Cfo= (A® -'f”.@f (KD, 1will show that the normalized bracket of [, is an
" invariant of ambient isotopy. Since w(K) and { K ) are regular isotopy
©invariants, it follows fhat I« is a re_gu_lér ithbpy .i'n\)ariant. Thus, we only need to

o | ‘.CheCK that JK is ‘invariant: under type | m_o_ves_..f -
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| g = (-ﬂe‘)-w(n*)<’03> B
[ d
T w </—>>
S )1-w<~> 3)<ﬁ>
AT L)
_3)-we-*>< -

= fa

“This shbws“[K is invariant under type | moves. Therefore, the nermalized
" bracket polynomiaIIK, is an invariant of ambient isotopy.
: 'Before | show the use of the normalized bracket polynomiale . 1 would

- liketor defme the mirror lmage of a knot or Ilnk The mirror image of K is

obtalned by exchanglng all overcrossmgs and undercrossings of K The trefoil

|

4



knot T énd its mirror image T* are shown below. The 'trefOiI and its mirror - h
im‘age have isomorphic knot groups (left as an easy check for the reéder), so
| they coﬂJIdvnot be disﬁnguished using previous‘ methods, but using the |

normaliied bracket polynomial they will be shown to be distinct knots.

T | T *
Trefoil knot and its mirror image

Using the normalized bracket polynomialJK , | will show that the trefoil

knot cannot be deformed into its mirror image T* . This will show that the trefoil

knot is fcopo_logically distinct from its mirror image.
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(&) A<e>w—1<e>

A[A A+ A (A3>]+A (A3>(A3>

= A5 A3 + A?
| SO ( T> = -A5 A3+ A7 and W(T) = lndependent of orlentatlon) |
Thus, [r = (Aa) Wm(T}

._:(AB) (A‘S'A3+A)

A (-A5 A3 + A7)
= A + A2 A—16
| Therefore the normallzed bracket polynomlal for the trefoil knot is

dr= AT A.'1-2 - AT
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Mirror |maqe T

_ <<’>> <d>+ﬂ«1<@>
(d)”‘ <oo>+t<@>

A A3><-A3> + A'[A( Aa) + A < -A9)]

o= A - A3 As
S0 (T = A - A3 A5
'_"and W(T*)‘_-.‘- -3, (independent of or‘i_entatioh).'

( A3) -w( T )<T*>

‘“_

Thus, jT - |
| (—A3>3( AR - AY)
» -A9 (A7 A - )

o = A1s + A12 + A4
:Ther-efore the normahzed bracket polynomlal for the mltror |mage of the trefoul
_' knot IS IT* = -A16 + A12 +: A4 Slnce I-I- * .IT* we conclude that.the trefoﬂ is
| .',n‘ot atnblent |sotoplc to |ts mtrro‘r trrtage That is, the trefontknot is rtot

topolog:catly equnvalent to its mlrror lmage Th|s is the first example of modern

E technlques belng more powerful than the methods in Chapter 1.
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~ In 1984, using representatlons of certam algebras, V Jones dlscovered a

polynomlal which came to be called the Jones golynomla The 1-vanable

- Jones polynomial, V, (1), is a Laurent polynomlal in the variable t (| e.,

| polynomial with integer powers of t). The polynomial satlsfles

i.  IfKis ambient isotopic to K, thenV {t} = Vi1 (t) .
i Vf')

il v S Y {1t~ )V\_.a

| =~ _/ ( v )=

vwhere‘h s y stand for Iarger link diagrams that

" differ only by the crossing shown. Jones showed that there is a unique
polynomial satisfying these identities:.

| will show that the Jones polynomial is the same as the bracket
- polynomial with the substitution A=t" -4 - Recall the formulas for the bracket

polynomial,

(<) - +(=) 200

e
X
)
R
9

®
@



" By dividing the first equation by B and the second by A and solving for

< )C ) , we obtam the foIIowmg two equatlons
(<) < > - (>¢)
- 5(=)- 00

c0|3>
) (

/

M{

}100
)(

By setting them equal,

k)

8-1( N> . _%/

)
Ao
)

By regrovupi‘ng like terms,

A<N> i A"(X) - (a2- A'2)<‘";1":.,.>‘ .
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,‘ L‘;Onentatlng them we obtaln "
<\>- 3 </‘> Gr-- X ><,__,>
. | :Now Iet o= -A3 and multtply through by d where W= W(K)

<\ > s <> (Az __A2)<,__,>

e »‘;*Factonng out an a from the frrst term and an c( from the second term on thef‘ S o

S vleft

"Aa<\ e < /> 0‘*2 2>< >
Aa<\> <-+Ma </> . (’”‘2 2>< >

. ,-Recalllng that .IK (Aa) W(K < K> allows us now to wrlte L




The final subst-itutidn A=t" yields,

. i 1J e tl-/ (t'”2 | “?')Jq

: 4

iag i s

B ‘Therefore W|th the substitution A= t " into fx (A) '.( A3) 9 K) we notlce‘ :
Je@™) satisfies the defining |dent|t|es for, VK(t) the Jones polynomlal
" By uniqUenesé of V(t), »we‘have I« (t 'Vf‘) = VK(t). Thus, the normahzed
bracket ylelds the 1-varlable Jones polynomlai | | |
‘The Jones polynomlal is structurally SImllar to the lexander—Conway
yolynomial iVK(Z) WHich is a polynomial in Z with integer coefficients. This
po-l.‘ynomial‘can be shown to satisfy the foI‘IO\)ving properties: |

) Vi@ =V @), if the orlented links K and K'are
ambient isotopic.

" Y T
‘iii) v_\ / - ;_?v‘__;

Conway showed that these propertles charactenze this polynomial, and that thls

polynom|a| is just a dlsgulsed and normallzed form of the original Alexander

,polynomlal.
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A major difference bettz‘veen the Jones polynomial, and Conway polynomial
is that the Conway polynom:al does not dlfferentlate mirror 1mages Hence, the
;-Conway polynomlal cannot d|st|ngu15h between the trefoﬂ and |ts m|rror image,
while the Jones polynomlal can. Both the Jones and Conway-AIexander

polynomlals can be generallzed to what is known as the Homfly polynomial,
o - . . 1

 Pya, 2). to b.e defined later. For o = t Z = T - Tt . P
spec‘ializes\to the Jones oolynon'tial, and for & =1, Py specializes to the
Conway-A|exa_nder polynomial. Homtly is so named after its rnany discoverers
(‘J. Hoste, A. Ocneanu, K. C. Millett, P. Freyd, W. B. R. Liekorish, D. Yetter).

The oriented invariant P(, z) can be regarded as the normalization of a

reQUIar isotopy invariant. The reqular isotopy homfly polynomial Hy(c, Z)
(which we will assume exists) is defined by the following properties:

i I the oriented links K and K’ are regular isotopic, then
Hy(ax, 2) = H¢'(a, 2).

iii.» | \1 -‘ y =ZH,.;,:|_’
g - e
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This regolar isotopy invariant can be norm'allzed by 'i}ncludi'ngo d’w(K) }to'm_eas',ure |
the \\Nrit‘he‘ in a diagram. We“ the,rl have ‘PK(a, z) = aq*® Hk(a', Z) whioh is an
invariant of a:mbient'isotopy‘. 'lo prove rthat Pk(a‘ Z) is an invariant of‘,amb,ient
isotopy, | will let P, = Py (o( 2) so PK“ o H (a Z) ‘We know PK isan
“invariant of regular |sotopy smce W(K) and Hy (o( 2) are invariants of regular
' |sotopyv We only need to show PK is an |nvar|ant under type | moves Let I K

_represent a type l move applled to K (shown below)

K I:K |

/t’ v ‘\\ o // - \\;,
SCONN I iy i

'So the question is, does P = Py ?

Pl:K = q.-W(kK) Hl:K(qv Z)‘
= a0 Yx'H(a, 2)
aa’a'H(a, 2)
a " HK(G, z)
Py

Since Pk = Py, Px isan invariant under type | moves. (Similarly, If the typel -
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" move eliminates a negative crossing, P\ = Py .) We also must show

a'w( @')H.

0

since w(@ )= 0.

a’H

@
Therefore,

0

P-, =1, sinceH®= 1.

Since Py is an invariant of ambient isotopy and P@, = 1, itonly
“r'emain"s to find the exchange identity for Py Letw= W( -"“_‘il ,

and recall that H satisfies the following idehtity,

Multiplying by &,

CaMH e - M H MH
R A =
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aoalaWH 2

- Therefore, -

: We now have the normallzed p

R lsotopy

olynom-ial which is an invariant of ambient



To show the use of the Homfly polynomial, | will calculate the Homfly

polynomial for both the trefoil a‘ndv its mirror image.

Trefoil T

Recall, the exchange identity is as follows:

- hence expanding about the
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Using a type |l move on the first term and the eXéhangé identity on the second

@) HO) @]

If we apply property (iv) twice and a type‘ Il move once, we get the following:

v o plg) o)

. Using this,

R
Hy = a“—z(“ Z°‘ —Zo(‘1)

I
N
Q
Q
+
N
Q
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Therefore, since W(T) = -3,
P(a,Z) =oa"THi(a,2)

= a’a’ o+ 22ty o

202 - ot + 2202
: . O :— o — F'Cf -1 ":
[ShDW H O - Z

| H‘ 8 - Hv 8) ] | Z ‘H (g) S |

a—-al = ZH 6 by’property (iv),
o (o) i
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Recall, the following is the diagram for the mirror image of fhe trefoil knot T.

Mirror Image T°

Again, the exchange identity is

H/‘ZH,__:

positive ‘crossing above,

- hence expanding about the

HTx = H-‘/, = H:.y, + ZH

C@ + ZH @
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~ Using a type Il move on the first term and the exchange identity on the second

term, we obtain: - :
H Tw = H (@\ + Z H @ + H (@ N

If we apply property (iv) twice and a type Il move once, we get the following:

‘ o - a— o | .
As shown earlier H - = . so we continue:

O Z

P
Hp. = a+z(°‘ x +Za)
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Therefore, since w(T)=3,

PT‘(G’ Z) N o a;w(T')_ HT.(a, Z)

a*Ra-a'l + )

2a?- ot + 2P

Once again, | havé‘show‘r‘\.that the trefoil knot and its mviylv’rd’r image are distinct,
this time using the Homﬂy‘polyr‘\d"mial.

As mentioned earlier, ‘the granny khot aﬁd the square knot (éhown below) ‘
have isomorphic knot groups, and therefore could not be distinguished 'b'y using

the methods in Chapter .

—H &%

"Hovivever; the Homfly polynomial can distinguish the granny knot and square
- knot. But using the Homfly on these knots can be very tedious. To help with this
problem, one must think of these largér knots as the "connected sum' of two

P A A LR A=A ]

smaller knots. The connected sum is formed by splicing two knots together so
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that the knots do not overlap. Therefore the granny knot |s the connected sum
of two trefoil knots, and the square knot is the connected sum of a treforl knot

and its mirror image (shown_below).

”“T.refo:il‘_i'-v'- RN ;Trefoi'jl“"".- Mirror Image Trefoil

‘Granny Knot R ~ Square Knot

lt can be'snc.wn tnat the' Homfly of the connected sum cf'tvs)o knots_is equal.
to the product of their individual Homfly polynomrals ie., HK = HA * Hg where |
the knot K is the connected sum of the knots A and B Since the granny knot,
G, is the connected sum of two trefoils, we have |

He = Hy : Hf

= Qa'-a+Za’)a’-a+ Za’)

4o -2 + 27772+ -2 2222 - 22 + Z'a?

4a-2 -;_4 + 422a'2 - 222 + az +.Z4a-2‘ ‘
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Smce W(G) = -6 the normaluzed Homﬂy polynomlal for the granny knot |s
Po(at,z) = ° | 6(40(2 4 + 4z o? 22 + a2 +Z° az)

= 4at- 40( +4za 220( + ol +za
Now, ssince the square knot, S, is thé cbnnected sum of a.-trefoil..and ité mirror

| f;-imag'e, we have the ,fbi»l:owihgv: ‘

‘HS‘=A HT.H"

(2a a+za‘)(2a o +za)

. 4- 20( +22°- 20( +1+za +22 - Z%a? +z

 5 20( + 472 - 20( +za za +z

'Smce W(S) 0, the normalized Homfly polynomlal for the square knot is

S(o( z) 5- 2a2+4z 2a2+za za2+z

- ‘_Thé square knot does not have 'th_e same Homfly pqunémial as the granny knot.

. Therefore, they,'ar‘e:.notfequival'eni 'khots;
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