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 ABSTRACT

This paper w1ll analyze convex functlons Iri particular it will
investlgate criteria for convexity. The 1nvest1gat10n will list the
criteria from the weakest to the strongest based on theorems
definitions, proposmons and various examples

The theory of convex :functions_is based on the theory of real-
valued functions of a real varlable The purpose of this thesis is to.
analyze convex functlons ' "

: We ‘begin w1th the analytlc and geometrlc representatlon of

” :'convex functions. Then we estabhsh some properties of convex
functlons Namely,vwe show that a convex function on an open
interval has to be continuous and it has: to be differentiable with the
possible . exceptlon of a countable set. We prov1de and prove two.
different versions of Jensen's 1nequa11ty for convex functlons, and we
use this inequality to establish the familiar inequality between
arithmetic and geometric means. | |

In the second chapter we give sufflclent cr1ter1a for convexity,
from the familiar criteria involving Second derlvauves to cr1ter1a

1nvolv1ng Schwartz and Peano denvatlves

The bibliography lists several books Wthh deal with convex
functions and related matenal

iii
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1 Defmltlons and Examples

B Definltlon 1 1"' A functlon f 1s sa1d to1

f(ax+(1 a) )< af(x)*“ “)f (")

""*:,for all x, (a<x<x <b) and 0<a<1

»“a:i:'élExample 1 1 The functlon (X) e 13' -cofn‘Vexi"on “‘

“ . -_fTo show that f is convex, we have to venfy that the Y R
va‘g_,followmg 1nequa11ty holds (R T

Let 0<x<x <1 and OSa,_ i e B T e
| S af(x)+(1 a)f(x’)
s+ (1- )
= S ealeb)s <> |
f-—a’z'x2+2axx 2axx +(1 2a+a )(x)

'Hence:,“ we have to check that R

2

and the last 1nequa11ty hold".,fsmce 0<a<1 o
A"}‘.;?';_:_-jfTherefore ‘gf(ax+(1 a) ) af(x)+(1 a)f(x)
| : "Hence-v ."‘?f(x) x 1s convex JEe




o : Flg 1 dlsplays a geometrlc 1nterpretatlon Wthh w1ll be very useful )
~in estabhshmg results about convex - functlons Geometric - arguments

“will be used in proofs wherever poss1ble so it 1s useful to keep th1s
- flgure 1n m1nd o o S :

- m,..m s

5 -:__T FM 5 F(tm(l bm?

i
1
I
I
l
e ;fx_‘.;’____, ath'l'(l‘cQ/)(‘ b

| 'Notice" that as o ranges from ‘O'to”l‘ 'the pomt t—ax+(1 ‘a)x;, ranges"'
. from x to x ~or from x’ to x. Therefore Q = (1, f(t)) is’ always below or -

L -f’_._v‘?'ion the llne connectmg P= (x, (x)) and R= ( f ( )) Therefore the -
~ slope of the line connectlng pomts R and Qis always greater than or ;e

“equal to. the slope of the line connectmg pomts Pand R.
. ,Analytlcally, th1s says that whenever x<t<x . then AU

)10 _ 1 )- f(t)

X = -x Txet




Also, R is always on or above the line connecting pomts P and Q.
See Flgures 2 and 3 below. :

Fig. 2 | Fig. 3

Therefore, the slope of the line connecting points P and R is always |

greater than or equal to the slope of line connecting points P and Q.

Analytically, this says that whenever x<t<x’, then
0= £(x)  F(x)=1 )

t=x ' x'-x

2)

By combining (1) and (2), we obtain the fbllowing useful proposition.

Proposition 1.1 Let f be convex on (a,b). Then fora<x<t<x’<b,
P=(xf(x)), @=(1f(t)), R=(x".f(x)), we have the following inequality

SlOPePQ=f—(tz-:—££ClSslopePR——L——)_—f(—2<slgpeRQ—f(x) f(t)

X -t

Example 1.2} The function f(x)=e¢* is convex on (Qéo,‘oo).
- Fig. 4




By looking at the graph of f(x)=e*, it is obvious that for any
—eo< x<t<x'<oo, the point (1,f(s)) is below the line connecting the
points (x,f(x)),(x,f(x")). We will give a proof of this fact later.

- Continuity

In this section, we investigate continuity of convex functions. The
main theorem is the following result. '

Theorem 1 11If a function, f is convex on (a, b) then f is contlnuous
on (a,b). -

Proof. Let a<s<x,<x<t<b, and .
| o s=efe)

X, = (%0, £(%))
=(xf(x)
T=(.f(t)

We will show that f is contmuous at x, from the right, for the

continuity from the left is ‘established in an analogous manner.
Since f is convex, from Figure 5 below, X, is on or below

the line SX which implies X is on or above the line SX,. Also X is on
~ or below the line X,T.

- Fig.5

1

SR | 4
a s Mo

- Therefore, (xf(x)) is between the lines SXO, and X,T.
Analytically,

f(S)—f(xo)(x_ ) flx )<f(x)<f() £, )(x %)+ flx) G

$—Xo Xo



As x> x,*, the left-hand side of (3); and the right- -hand 51de of (3)
converge to f(x,). Therefore, by the Squeeze Theorem,

lim £(x) = f(x,).

X—)x°+

) »A convex functlon on a closed 1nterva1 [a,b], doesnt necessanly have
to be contmuous ‘at the endpomts a and b.

'For example, the function

Fig. 6
¥ —l<x<l
fx)=42 x=-1 ,

12 x=1

is eOnvex on [-1,1], but obviously it fails to be continuous at the
endpoints. ' - '

~We will use Theorem 1.1, to e’stablish the well-known Jensen's
Inequality. '

Theorem 1.2 (Jensen's Inequality) Let y be a convex function on
an interval (a,b) and f a Riemann integrable functlon on (a,b) w1th
a<f(x)<b.

- Then v(—jf(x)dx] < —I v f(x))dx

" The more general 1inequality 1nvolv1ng Lebesgue integration‘ holds

- and it is proved in [7].  Lebesgue's integration is beyond the scope of -

" this thesis. ‘We w111 use the ideas from [7] to- prove the theorem. In
order to prove the theorem we w1ll brlefly Teview the definition of
“_the supremum : -

Definition 1.2 Let A be an ordered set and X a subset of A. An
" element beA is’ called the least upper “bound (or supremum) of X if b
" 'is ‘an upper bound for X and there is no upper bound b’ for X that is
less than b. We denote the supremum of X by sup X.



o From the deflmtlon of a supremum 1t is. clear that 1f b = sup X e
then for all an a<b Also 1f c is such that for all an a<c, then e
»,b<c '?, FES e e : |

B _';"The proof of Jensens 1nequa11ty now follows

’.:jv"'bgProof Let a<s<t<u<b Sl S
U o , : F1g 7

e _‘}The equatlon of the l1ne passmg through pomts (s, (s)) and (u (u)) s "y

y———"’(”l"‘ L ’(x s)+w(s)

S1nce y/ is convex l[/(t)<y(t) More specifically, »
" | w(t)<M(r 9+ ve)

‘and from here

,W(t) l//(s) l//(u) y/(s) _}. (4)
tS‘_.‘:us . o

By Proposmon 1 1 applled to l[/ w1th u=x,s=x, ‘We have"‘ e

Lt VW-ye) YW-v® e

',‘jju s u t

A ,“,Let z_-l-)l—j (v)dv Smce a<f(x)<b we have a<t<b :



“Then from (4) and ), B s finite and ﬁsl(‘*—):?"@ for all b>u>1.
: o R u— .
'Hence, for all b>u>t we. have | ' '

V@RyOE-) o

‘Also from (6), for au‘ "a"<s<t.
v -v(s)
t-s

VOO ®

Combining (7) and (8), we have that for all a<s<b y/(s)> w(t)+ﬁ(s t).
In particular, the inequality is true if we replace s byf(x). Then for

</3 and from here

_Qall xe(a b) we have w(f (x)) (t) -B(f (x) )20 Smce by Theorem 3.1,

- v is continuous, y(f(x)) is Riemann 1ntegrable 'S0 1ntegrat1ng the
1nequa11ty above, we. obtam '

Il// f(x))dx fv/(r)dx 13 _[ flee + ﬁjtdx > j0dx

f (f(x))dx (b- a)v'(t) (b-a)B-t+{B-a)f-120

J"I’ f (x)dx 2(b- d)l/f(t) (b a)v(————jf(x)dx) ‘which is the

desu'ed 1nequa11ty

Example 1.3 Leta<x1,x2,-- 2 X, <b.

| Let f(x)={x,. for a+£l—-!-)-(b—a)< < +l(b a), 1<i<n.
. _ o n ,

and y(x)=e"

" Fig. 8

,‘,xnv'» | . o

-
L



The functlon v is convex and f is Riemann integrable. By Jensen's
Inequahty, '

b )
T s [, | ©)

. i L -
‘Since j f(x)dx=‘(b_a)2x,.,, and vj’ef “dx Z ‘the left-hand side of
n

i=1 a i=1

(x,+ +x,)

© is equal to e” =(e" -e-..e*)r , while the right-hand side of

v | T

- (9)is — (e"'+ +e™ ) Thus (e“.o_e"’a..e"")"Sl(e"‘+...+e""). Now let y, =e".
: n

Then y,e(O +e) and by substitution, we get (yype3,) " < 1(y1+ o+ +y,)

which is a familiar 1nequa11ty between the arithmetic and ‘geometric
means.

A weaker form of JenSen’s inequality, Theorem 1.3, is described
below. Here we give a different proof of Theorem 1.3 by using
Theorem 1.1.

. Theorem 1.3 (Jensens Inequallty) Let v be a convex function on

- (0,1), 0<x, <1, 0<p,.,and for‘z,-1,2 .n, define P, Zp, Then ‘

( Y pix ) —210.

n i=] n l"l

| Proof. Let y be a convex function on (0,1), 0<x,<1 and 0< p, for
i=12,..,n. Define f(x) {x onI where I is an interval of the length

%, see Figure 9.

n

Fig. 9

\ F

Kal —
Myt ——

o, b—

OT T I, |



Clearly, f(x) 1s between 0 and 1 and 1t 1s Rlemann 1ntegrable

Therefore by Theorem 12 w(j f(x)dx) ju/ f(x)d.x Fmally s1nce'}:.'

| jf x)dx Ex p, and jv/f(x)dx 21// p we obtam |

o ,_1 x-l S L
( sz l) —Zpl
n x—l n i=1.
| v-.‘,;‘,,leferentlab111ty

Now. we examlne d1fferent1ab111ty propertles of convex functlons -
* Our goal is to show that convex functions are d1fferent1ab1e with the :

A See. F1gure 10

' poss1ble exception of a countable number of points. We ‘will need

, .some background on. one- s1ded derlvatrves and monotonlc functlons BRI

Deflmtlon 13 The rrght hand der1vat1ve I (x) and the left hand R

der1vat1ve f (x) are’ def1ned to. be as follows ,’

f (x) im, i _() f();)_ i ,‘(1‘0)
f_ (x)—hm ( ) ~f(x) - et Ty

Theorem 1 4 Letf be convex on”(a b) Then
a) fi.and’ f_,exrst on - (a, b) \ PRI S
'b) f7 and f’ are monotone 1ncreas1ng, and

9 fr v (@0, ln 23 £, (w)éhmf @

'v" 'Proo'f’ Let ye(a b) Consider'the points w<x<y<z<t in (a b) with P,
Q, R, and S, the correspondlng po1nts on the graph of the functlon f




Since f is convex, by Proposition 1.1,

slope PO <slope PR< slope QR < slope QS <slopeRS .

Since w<x<y, implies slope PR < slope OR, it follows that slope QR
increases as xTy. Similarly, slope RS decreases as zly. Therefore,
the left-hand side of the inequality '
sipe gr=10=10) JA=10).
x=y z=y

= slope RS increases as xT y, and the

: r1ght -hand side decreases as zly Therefore, f’(y)=] 1¥nf (sz:i )
f() f(y)

and fl(y)= hm

of the theorem is proved. Moreover, the monotonicity of the slopes
PR and QR implies that whenever x<y<z,

F&-£0) _ . _f()- f() | :
P < p10) < 720) s 750 | (12)

x—

exist. Smce'ye(a,b) was arbitrary, part (a)

To prove (b), let w<y be two points.ih (a,b). If w<x<y, then from

(12) we have f/(w)< f;(w)sM, and f—(’%:-y@s F()<£.(). On
—w - _

f@)=fw)  f@=10)

the other hand,' from Proposition 2.1, we have y
' X—-w x-
and hence f’(w)< fi(w)< f/(y) S £1(3), | 3)
establishing the monotonic nature of f’ and f;. |
Finally to prove (c), let we(a,b). For y>w from (13) we have

Fiw) < £1(). - » (14)
Since f; is monotone increasing, lettmg yiw in (14), we get
fiw)<lim£0)-

yvw
On the other hand, for x<w, from (13) we have f.(x)<f/(w). (15)

Letting xTw in (15), we get lim fi(x) < f.(w).
|  Txtw .

In order to prove that the set E where the derivative of a convex
function fails to exist is countable, we need Theorem 1.2 below
- regarding  continuity of monotonic functions.

10



Definition 1.4 If 'g is an inereasing function on (a,b), then g_(x) is
defined to be ]im g(x+h). Slmllarly, g.(x) is defined to be hmg(x+h)

h—0" h—0"*

Since g is an increasing function, g (x) and g,(x) exist, and
g (x)<g(x)<g,(x).

Lemma 1.1 Let an increasing function, g, be defined on (a,b). Let
X,X,,++,X, be arbitrary points lying in (a, b) Then _
[2.(a) - g(@]+(3[e.( xk g-(xk)])+[g(b g-(b)]<g(b) @  (16)

k=1

Proof. We may assume that a<x, <x, ‘<~-<x,,<‘b.‘ Let x, =a, x,,+1=b.
Choose points YosYis* s Vu such that,x‘,c‘<y,(<x,;+1 - (k=0,1,...,n) Since g is
an increasing function, g,(x,)<g(y) and g (x,)2g(y,,). Combining
- these inequalities', we obtain |
8.(5)~8.(x)<8(n)~80s) (k=12:n)
8.(a)-g(a)<g(y)-g(a) and
- g(b)-g(b)< g(b)-2(3,)
Adding the left and right side of the inequalities yields
Y (g.(x) - 8_(x:)) + 8. (@) - g(a) + g(b) - g.(b)<2( 8(%) - 80a ))+g(yo)—g(a)+g(b)—g(yn:

k=1

- By simplifying the nght hand side of th1s 1nequahty, we obtain (16)

C.orollary 1.1 An ‘mcreasmg function, g, defined on (a,b) can have
only a finite number of points of discontinuity at which g, (x)-g_(x) is
greater than a given positive number o. o

Proof. If the points x,x,,...,x, é’(a,b) are points of discontinuity with
g.(x;)-g.(x;) greater than o, then from (15), |

nasi[g+f (%) - 8_(x,)] < g(B) - g(a) and hence n<§(_)6+g(a) Therefore,

there can be only f1n1te1y many XX, e(a b) for Wthh g.(x)-g.(x)
is greater than c. . . R . ‘

Theorem 1.5 The set of points.ef discontinuity of an increasing
function, g, defined on (a,b) is at most countable.

11



Proof. Let H be the set of all points Qf discontinuity of the function
g. Let H, be the set of those points of discontinuity of this function,

at which g(x)—g_(x)or g,(x)-g(x) is greater than 71(- Clearly, if xeH,
then there is an integer k such that g(x)- g'(x)z-llz or g.(x)- g(x)Z%.

Thus, xeH,, and hence, H=|JH,. If xeH,, then

k=1
g.(x)-g.(x)=g,(x)—gx)+g(x)- g (x)2 %, therefore by Corollary 1.1, each

H, is finite. Hence H is at most countable.

Now we are ready to prove our main result of this section.

Theorem 1.6 If f is convex on (ab), then the set where f’ fails to
exist is countable. : ‘

Proof. By Theorem 1.4, f] is an increasing function, and for
we(a,b), lim/.(x)<f w)<fi(w)<limfi(x). Therefore, if w is a point
‘ *xTw ’ Coxdw

of continuity of f, then f’(w)=fi(w) ie. f is differentiable at w. By
Theorem 1.5, the set of points where f, is not continuous is at most
countable. Hence, the set of points where f is not differentiable is at
most countable. The converse is false, as the following example
shows.

f(x)={x—%for711-<xbs , h=273,...




A v - n-
Then f’(x) exists on (0,1) except at the sequence {——— . Alsoitis
h=1

clear that f’(x)=1 where it exists, but f(x) is not convex.

13



CHAPTER II
In this chapter, we give criteria for convexity. We divide these criteria
into two groups, and we present them from the weakest to the strongest.
We begin by the first set of criteria for convexity which is based on the
differentiability of a function.
2 ~ First Set of Criteria for Convexity
The following is a useful criterion to check for convexity.
Proposition 2.1 Suppose f”(x)=0. Then f(x) is convex.
Proof. Suppose f is not convex. Then there is a<x<b such that

(x,f(x)) is above the line connecting the points (a,f(a)) and (b,f(b)).
See Figures 12 and 13 below. o '

Fig. 12 » Fig. 13
L |
o
¢ ()
| B (b, ()
| |
|

A |(Q,{‘\(a\) I l

.

o n b

For both cases, f(a)< f(b) and f(a)> f(b), it is obvious that the slope of
AC > the slope of AB, and also that the slope of BC < the slope of AB.
From here, we find that the slope of AC > the slope of BC. Since f is
“differentiable, by the Mean Value Theorem, there exists a number ¢
in (a,x) such that . ; . ' '

f’(c)=-f(—);)-:—J;(Q = slope of AC.

14



~And also, there c-xists‘ a number d in (x,b) such that |

fd) = -f(bz—_){(ﬁ= slope of BC.

It follows that f’(c)> f’(d). o o

Since ¢ <d, f” decreases. - ‘
But f”(x)=0 implies f’ is non-decreasing, a contradiction.
~ Hence, f must be convex. | ‘

We use this proposition to provide several examples of convex
functions. - :

. ’Exahlple 21 f(x)=e"
 fwee
P

. Since: e* >0, the function, f(‘x')'=e", is cOriVex.by"Proposition 2.1.

Fig. 14

~ Graph of F7(x)




-1

Example' 2.2 f(y)=

T 1+e”
oy  —€ ‘
f0) (1+.e")2 .
d . ” _ __e—2y +e77
an 70) (1 + e‘y)3 |

From the graph of f”(y) below, we see that f”(y)>0 for 0<y<eo.
Therefore, by the proposition, f is convex on (0,).

Fig. 15

| Graph of f”(y)

Previously it had been shown that, for a differentiable function,
convexity implies ‘an increasing derivative which leads into
Proposition 2.2 which shows the converse to be true, i.e. an
increasing derivative implies that f(x) is convex.

16



Proposition 2.2 Suppose f'(x) is non- decreasrng Then f(x) is
convex.

Proof Let f(x) be increasing. Suppose that f is not convex. Then
there is x, <x<ux, such that (x,f(x)) is above the line connectlng
(x,£(x))s (%2 F(x,)). As in the proof of Proposition 2.1, we would

obtain two points c<d such that f’(c)> f’(d), which is a contradiction
since f’(x) is 1ncreasmg Therefore f is convex.

The next example shows that Proposition 2.2 is stronger than
Proposmon 2.1.

U x> forx=0
Exam le 2.3 f(x)= .
o P f(‘) {0 for x<0
,(')_ 2x forx>0
* 0 forx<0° : :
- f(x)is non decreasmg, therefore f(x) is convex, but obviously f”(0)
-=doesnt ex1st - ' ER :

Then

A functlon can stlll be convex w1thout f (x) existing at a point.

| ;Example 24 Let f(x) IxI
. B Fig. 16

Clearly the functlon is convex;, but it is also clear that f (O) doesnt
exist. Moreover there is a convex function for Wthh f’ doesn't exist
at countable many points. ' v

From Theorem 14(b) we see that for convex functlons where f(x)
exists, 1t has to be 1ncreasmg

17



Example 2.5 Consider

’(2n+1)x 1 1
- for ——<x<—
n(n+1) n(n+1) n+1 n
fx)=
0 for x<0
(
e . . 11 11
which are segments with endpoints |—, - | and | =, | for
‘ o n+l (n+1) n'n')
n=1, 2, 3, ... |
“Therefore,
| et ‘ n+l  n
f(x)=1
. doesn' t exist _ for x_—__l.

~ Now it will be shown that f'(x) is increasing.

In order to show that f'(x) is increasing, it will be shown below that

18



2m+1 2n+1 11

C—>=
mm+1) — n(n+1) for m n
For 2m+1 2n+1
T omm+1) " n(n+1)
Zm+1 _ 2n+l 0  for —1—>limpliesn—m>0
mm+1) n(n+1) m n

; | (n* +n)(2m+1) - (2n+ 1)(.m‘2 +m)
mn(m +1)(n+1)

> 0

Simplifying, we obtain

(n—m)(2mh+n+m+l) |
mn(m+1)(n+1)

‘We know that (n-m)>0 s1nce l>—1-, and 2mn+n+m+1>0

m n
‘Also mn(m + 1)(n + 1) >0.

~ Therefore,
2m+1 2n+1 11
> : for _—>—
m(m +1) n(n+1) - m n

Hence, f'(x) is increasing but doesnt exist at countably many points.
Convexity of f(x) is obv1ous from the graph. '

Second Set of Criteria for Convexity‘-

;‘The second set of cr1ter1a 1s based on some generahzed derlvatlves
~in partlcular on Peano and Schwartz derivatives. S

We ‘»begln ‘with- deflimtlo“n‘s of “Peano and Schwartz derivatives.

19



Deflmtlon 2.1 Second Peano Derlvatlve

| lf(x+h) FO)—hf'(x) -

If] S
~Tho0 2' “h"

it 1S called the Second Peano Der1vat1ve

exrsts then the 11m1t 1s denoted fz(x) and o

If f"(x) ex1sts, then by Taylors formula fz(x) ex1sts, and fz(x)-f"(x)
If fz(x) ex1sts f" doesnt necessarrly exist as the follow1ng example
shows o : D - o
: Example 2 6 f(x) {x smx__,} x_¢
o x=0
Here fz(x) O but f”(x) doesn't exist. : o
By def1n1t1on if fz(x) ex1sts, then f (x) must ex1st S

: ‘j Defrnltlon 22 “The Schwartz Derrvatlve is deflned as
' h)=2f(x)+ f(x+h
- i LG =27 () f()f )

: > :
h->0_;”. L

If f,(x) exists,i ‘the’n' £. ) exists, as it can be easily verified.

S If fs‘”(x), eXists';, then' fzi(x)' d'oesn't h‘ave-to‘ exist.
vTheorér‘n‘-v 21 If f2 0 on (a,b) then f 1s convex -

‘Proof Flrst we prove the specral case when f2 >0 SuppoSe that f is
" not convex. Then there are a<xo<xl<x2<b such that (xl, flx )) is above]
- the graph of the functlon between the pornts x0 and x,. Let
= f( 2) =
v2 0 2 0

and (x,, f(xz))', and cons1der the functlon h(x) f(x) g(x) “Then it is easy

| )= ;

to check that h(x,)= h( ) 0, h(x)>0; and since g”(x) 0 hQ(x) fz(x)>0
| "_"-:”Smce h is contmuous on [x,,x,], there is X <X<X; such that h attams its
7‘_max1mum at ¥, and hence h’(x) 0. From | '

h(x+t) h(x) th(x) h(x+t) h(x)

._ hz(E) and hg(x)>0 for all

r—>0 o t_’ R x—>0

(x+t) h(x)

ssuffrcrently small 1, we have 0 and from here it follows

_; f( ) be the line connectlng pornts (xo; f(xo)) o



h(X+t)>h(¥) which is a contradiction to the choice of x. Therefore f is
convex. | | - | |

To prove the generalvcase’ f,(x)=0 implies f(x) is convex, we will
‘assume that f is not convex. Therefore, there are x,<x, <x,

such that (x,,f(x,)) is above the chord connecting (% f(x,)) and
(x,,f(x,)). As in the special case, consider A(x)= f(x)— g(x). Then
h(x,)=h(x,)=0, h(x,)>0 and h(x)=f,(x)20.

Let H(x)= h(x)- hx) (=% =x) e H(xo)%H(x2)=0, and

2 (o =x)(x-x)

H(x,)=h(x,)- Q=(—22>0 and therefore H is not convex, On the other

hand, H,(x)=h,(x)+ hx) >0 and by the special case, H is
o (xl—xo)(xzfx,) ) o
convex. A contradiction Therefore, f is convex.

‘Theorem - 2.2 If f is continuous and the Schwartz denvatlve f(x)>0
on (a, b) then f is convex. ‘

Proof. First we prove the spe01al case when f/{x)>0. Suppose that f
is not convex. Let x,<x <x,, g and h be as in the proof of the special
~case of Theorem 2.1. Then we have that A exists and A’>0. Since h
" is continuous, there is x,<X¥<ux, such that h attains its maximum at X.
(x+t) 2h(x)+h(x 1)
t—)o t
h(X+1)+ h(X—1)>2h(X). But this can happen only if h(X+ £)> h(X) or
h(x-t)>h(x). In either case, h doesnt attain a maximum at ¥, which
is a contradlctlon

From mi{x)=

>0 for all suff1c1ently small t,

The general case can be proved in exactly the same way as the
- general case of Theorem 2.1.

In the proofs ‘of Theorems 2.1 and 2. 2, we used basically the same
idea which we briefly describe below:
We assume that a function f is not convex. By adding a sulltable

function g, we obtain the function 4 with the same original
hypothesis as the function f, but for which there are three points

21



X, <X, <x, such that h(x,)=h(x,)=0, and h(x,)>0. Since 4 is continuous
there is x, <x<x, such that the function A attains its maximum at X.
Finally the assumption on the function contradicts the choice of Xx.

We use the same idea to prove the next two theorems but first we
introduce Schwartz denvates

Let f be a function, the following expression

- fix)=liminf, i (x+t)—21: gx)+f =) is called the lower Schwartz

FO+ 1) =2£(x)+ f(x=1)
£

is called the upper Schwartz derivate of f at a point x. Note that

although neither Peano nor Schwartz derivative has to exist, the

Schwartz derivates always exist.

derivate of f at a point x While_ f(x)=lim sup,_,

" Theorem 2.3 Iff is contmuous and the lower Schwartz derivate is
positive, then f is convex. ’

Proof. Suppose that f is not convex. Let X, <X, <X,, g and h be as in
the proof of the special case of Theorem 2.1. Then we have that
h;20. Since h is continuous, there is x,<X¥<x, such that h attains its

maximum at ¥. As in proofs of Theorems 2.1 and 2.2 above, it is
enough to consider only the special case A/>0. From

h(x +1) = 2h(x)+ h(x - 1)
= ) t2 ]

h(x +1t) = 2h(x) + h(x — 1) > 0. But that can happen only if h(J—C +1)> h(x) or
h(x—1)>h(x). In either case, h doesn't attain a maximum at ¥, which
is a contradiction.

K(%) = lim inf,_, >0, for sufficiently small r,

s

'Theorem 2.4 If f is contlnuous and the upper Schwartz derivate is
positive, then f is convex.

Proof. ‘ Suppose that f is not convex. Let x,<x,<x,, g and h be as in
the’proof of the special case of Theorem 2.1. Then we have that
: h'>0 Since h is continuous, there is x, <¥<x, such that h attains its

maximum at f . From hs(x)=lim Sup, o h(x+t) Z}zl‘g )+h(x t)

>0, there is
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al sequence {t} converglng to. 0 such that h(x+t) 2h(_)+h(; -1,)>0. .
~But that can happen only it h(x+t )>h( ) or h(x-t, )>h( ). In e1ther -

case, h doesnt attaln a maxtmum at x, Wthh 1s a contradlctlon
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