








HINT #4� 

I 3 15 105 985€ 

1 2 8 48 384 

To get from the first box to the third box, one must multiply by 3/2. 

To get from the second box to the fourth box, one must multiply by / .� 

To get from the third box to the fifth box, one must multiply by 5/4.� 

To get from the fourth box to the sixth box, one must multiply by _/_.� 

To get from the fifth box to the seventh box, one must multiply by 7/6.� 

To get from the - box to the box, one must multiply by _/_.� 

To get from the seventh box to the ninth box, one must multiply by / .� 

0 T/2 1 3/2 2 5/2 3 7/2 4 9/2 5
P 

0 1 1 1 1 1 1 1 1 I 1 1 

10395

15/ 105/3/ 7481/2 1 € /2 Id 78 
3840 

3 

3/ 5/ V 9/
1 1 /2 2 72 3 72 4 72 5 •7 6 

3465 45(045
3ISA 384 38405/ 7483/2 1 72 % 

35/ 63/ 99/
2 1 3 78 6 78 10 78 IS 21 
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ACTIVITY 33:THEDAWNBEFORETHE
 

DIRECTIONS:Complete the table below. Recall that each entry is the sum ofthe entries
 
two boxes up from and two boxes to the left ofthat particular entry.
 

p 0 1/2 1 3/2 2 . 5/2 3 7/2 4 9/2 5
 

7
 

0 1 1 ■ 1 1 1 1 1 1 1 1 1 

10395105/ iin 945/ mn3/ 748 35 " /384 315 " 3840 

1/2 1 □ /2 /% 

3/ 5/ V 9/
2 3 4 5 61 1 /2 /2 /2 700 

450453465iin5/ !-□ 35/ ■ 15 *-• 384 3840 

3/2 1 /2 /8 

15/00 63/ 99/ 143/
2 I /s 3 6 78 10 78 15 78 21 1 

o 

9009 135135 :fD iin 63/ 693/
384 3840V 15 " 

5/2 1 /2 /8 748 

1287 2145 
48 48 

10 748 20 35 56 13 1 4 
. 

1287 19305 328185 ' iin 
48 384 384035 " 99/

!7/2 1 % /8 
r 

3465 9009 19305 36465945/ 384.7384 384 . 384 384 
4 1 5 15 35 70 126 1 

2145 36465 692S35 

48 384 3840313 143/
9/2 1 'K 78 

328185 69283510395 45045 135135 

5 1 6 21 56 126 
3840 

2523840 3840 3840 3840 . 
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ACTIVITY 34:THESQUEEZE
 

It's time to take a deep breath and realize that you are about to conclude activities with 
John Wallis'scheme that, quite arguably,,conquered the infinite. The only task left undone 
is that which determinesthe value of □.Now, as stated earlier, Wallis knew that the 
valueof □ was 4/7t. However, he was one of the best "code breakers" or 
"cryptographers" of the 1600's. The chart unraveled here was a code to him, a code which 
was on the verge ofbeing broken. Thus, Wallis was not about to dispose of all the work 
done to get this far in the table and settle for □ being 4/7t. He wanted to find out the 
value of □ using the skills ofpattern recognition, interpolation, induction, and 
generalization that had worked to get him this far. Wallis was determined to find □ in his 
own unique way and the brilliant manner in which he did this is the goal of this activity. 

Since this interpolation scheme arguably conquered the stranglehold the Greeks' "horror of 
the infinite" had on the matheniatieal world, let's pay one final tribute to early Greek 
mathematics by using Greek letters to name the entries of the q= Ml row. A carefully 
constructed list of these is required to understand the steps necessary for finding □. Thus, 

a = 1 DIRECTIONS: 
Continue the list constructed in column one by finding 

= □ the next four entries in the space provided below. 

3 

s= -n
 
3 ■ C" — : : ' '
 

e = 11 = — A = —8 2-4 

24_ 4-6 
(b = —□ = —­

15 , 3-5 ■ 

^ 105 ^ 3-_-7 
^ 48 2-4- ^ ­

Ilia = ±=:= 
105 • -7 

= 211 = 
^ 384 2- • • 

1920­
t = □ = 

945 
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The critical observation that must be made at this time lies in the fact that the sequence
 

a,P,X, 5, s, (p, r, T], I, K, X,n, V, o, 7t, m, $, p, cr, g, t, o, co, if/, 
is monotonically increasing. This means that a < P, P ^ < <5', <? < e,. . . 
Therefore,an entry in terms of □ can be "squeezed" between the entries on each side 
of it. The "squeezing" of O follows. 

SQUEEZE #1 

1 < □ < ­
2
 

SQUEEZE #2 

3 ^ 3-5 3-3 ^ ^ 3-3-5 
— < —□ < —- > < □ < 
2 . 3 2-4 2-4 2-4-4 

^via multiplying through by 4/3^ 

SQUEEZE#3 

3-5 4-6 _ 3-5-7< —- □ < ^ ' < □ < 
2-4 3-5 2-4-6 

SQUEEZE #4 

3.3.5.5.7.7 ^ ^ ^ 3-3-5-5-7-7-93-5-7 4-6-8_ 3-5v7-9 
< < 

■ •4-6 3-5-7 2-4-6-8 2-4-4-6-6-8 2.4-4-6-6-8-8 

4>0N YOUR OWN; Complete the next five "squeezes" on □. Then, try to put together 
an argument as to what the value of □ must be. You will have to picture carrying out the 
squeezing process to infinity. Look for a way to argue that □ must be between two 
fractions that are equal, since a < b < c and a = c implies b = a = c. The key to this 
involves the fact that something tends to 1 as you go farther out in the "squeezing" 
process. A way to see just what does tend to 1 is by focusing on the factor by which the 
two numbers surrounding □ differ. Finally, the value of □ will be an infinite product. 
More specifically, it will be a fraction where both the numerator and denominator are 
infinite products. 
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LECTURE 34A:Tc AS ANINFINITEPRODUCT
 

Ifwelook closely at the fourth squeeze,
 

3-5-7 4-6-8„ 3-5-7-9 3-3-5-5-7-7 _ 3-3-5-5-7-7-9
 — < ——□ < -> — — < □ < — ,
 
2-4-6 3-5-7 2-4-6-8 2-4-4-6-6-8 2-4-4-6-6-8-8
 

it is easy to see that the two fractions which surround □ differ by a factor of 9/8. After 
carrying out the subsequent "squeeze," it will be easy to see that the fractions surrounding 
□ differ by a factor of 11/10. Next, they will differ by a factor of 13/12. The factor by 
which the two fractions on either side of □ differ approaches 1 as the "squeezing" 
process is taken to infinity. Therefore, 

3-3-5-5-7*7-9-91Ml­

2-4-4-6-6-8-8-10-10-12- . . . 

^,'2-2-4-4-6-6-8-8- . . .V . , . , . „
rr = 2 —^ . since it was already known that □ = 4/jt:.

' 1-3-3-5-5-7-7-9- . . . i 

This representation of ft as an infenite product was the first of its kind. It bears John 
Wallis' name and is the benclimark ofhis notoriety. Wallis' explorations into the realms of 
the infinite with uncanny analytic tactics led to increased attention being given this 
methodology. In turn, attention shifted away from the much more burdensome, 
geometrical means for understanding infinite processes. Although the results obtained here 
by Wallis were not formally proved until the nineteenth century, they had a profound 
effect on Sir Isaac Newton. 

Newton modeled Wallis' interpolation procedure in his discovery of the binomial series. 
He too was not able to prove his results rigorously. However, the mere discovery of the 
binomial series played a profound role in substantiating the use of infinite series as a tool 
for working with infinite processes and limit theory. The set of activities that follow wiU 
take you throughNewton's interpolation scheme. 

One final note about Wallis' investigations hinges on the frequently unexpected nature of 
mathematical invention^ Wallis began his mystical and very original interpolation scheme 
with the confidence that he could either prove or disprove the problem of"squaring the 
circle." Though he could not accomplish this goal, the discoveries afforded him in his 
quest are certainly no less valuable. 
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SET V
 

NEWTON'SDISCOVERY OF
 

THEBINOMIAL SERIES
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ACTIVITY 35: NEWTON AFTER WALLIS
 

In 1661, at nineteen years ofage,Isaac Newton read John Wallis'ArithmeticaInfmitorum
 
and subsequently began a venture that, by 1665,led to his first mathematical discovery of
 
lasting significance. This wasthe formulation ofthe binomial series illustrated below.
 

a (o^ a(a-i)- ... -(a-n-i-l)

(l+x)"=1+ where
 

vC n\
 

Influenced by Wallis'interpolation technique and, at the same time fixistrated by
 
geometrical rqeans by which to calculate the area under a hyperbola,Newton extended
 
Wallis'table to the.negative side with confidence that he too could utilize Wallis'
 
methodology and effectively devise a way to obtain area under a hyperbola.He
 
constructed a table similar in design to Wallis', but which instead depicted the area brought
 
on by each term following expansion.For brevity, let's use modem notation for areas
 

under curves represented by expressions oftheform y=(l+r)''.
 

* X .
 

0) J(l+i)°cff = \\dt = - = 1
 
n 1
 

_ X X'
 
1) ~
 T^T
 

/ 2\ ' 3

X 1 X
2) J(l+/) i/f — J(l+2/+ ~ —^2 = -
+2vtJ'-t
n 1 1
 

3\ 4
t ft'] 
X

= 

X
X
 

— —+3 +—
 
J''1+3


1 I bJ 4 T Tj­
0
 

The area under the curve (l+if is ofcourse dependent on the choice of x.But
 

without regards to x, we can say that the area under this curve is 1 times thejX term,
 

X^ X^ ■ ■ x^ 
plus 3 times the — term,plus 3 times the — term,plus 1 times the — term.
 

Continue this sequence ofproblems by completing the cases where /?=4, p=5,and
 
p=6,and then finish the right side of Newton's chart shown in the next activity.
 
Remember that entries in the chart are the coefficients for the terms in the area expressions
 
derived after definite integration.
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ACTIVITY 36:NEWTON'S TABLEFOR(1+x)^
 

DIRECTIONS; Complete the right side ofthis chart by determining the coefficients ofthe
 

2 3 ^
 

terms brought on by definite integration of[(!+/)''£// with /?=4,S, and 6.
 
1 2 3 0
 

Next, note that the p=-1 column represents the area under a hyperbola — This is
 
I+X
 

' ■ . X' • 

the curve Newton was having trouble with. Just what is the value|of (1+f)'di ?
 
0 ■ 

Yes,you're correct, it is In(l+x). But this fact was unknown to Newton.So instead, he
 
recognized that the columns ofhis table were the diagonals ofWallis'table and,
 
consequently,that each entry is the sum ofthe entry to the left ofit and one up fi"om that
 
one.Now use this binomial pattern offormulation to fill in the empty boxes on the left side
 
ofthis chart. Before doing this however,you must assume, as Newton did,that the entire
 
top row remains constant at 1.
 

p -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

term 

1 1 1 1 1 1 1 

X 

T 
0 1 2 3 4 5 6 

V 

2
 

0 0 1 3
 

x^
 

T
 
0 0 0 1
 

£l
 
4
 

0 0 0 0
 

£l
 
5
 

0 0 0 0
 

fl
 
6
 

0 0 0 0
 

7
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LECTURE 36A: NEWTON'SCHART
 

With the completion ofthe chart below,Newton was s.ble to formulate an expression for
 
the area(by way ofplacing coefiGcients on respective terms in the table) under the
 

1 X' x'* x^ X® xJ ■ 
hyperbola , namely, for x > 0, area = x-— —+y-—+y--­

1+x 2
 

We now call this area function the naturallogarithm o^(1+x).Following much detailed
 
work with this area function, Newton realized its logantmic properties and thtis it could be
 
used to manufacture tables ofcommonlogarithms.
 

-6 -5 ■ -4 -j -2 -I 0P
 

term
 

1
 

X
 

T
 
-5 -4 -3 -2
 

X
 

T
 
21 15 10 10 15
 

X
 

T
 
-56 -35 -20 -10 10 20
 

X
 

T
 
126 70 35 15 15
 

X
 

T
 
-252 -126 -56 -21 -6 21
 

X
 

T
 
462 210 84 28 28
 

X
 

T
 
Having addressed and then solved the problem offinding area under a hjiperbola through
 
the extensive work done here, which allowsfor the ̂ area under any
calculation ofthe 


member in the family ofcurves denoted by (l+x)' for any integer/*,Newton engaged
 

himselfin the same family ofcurves attacked by Wmlisin his q-1/2 row,that is,
 

([l-x^j').He concerned himselfwith areas over tde interval [l-x^,l]and,fî om
 
continually returning to Wallis'work on characterise ratios together, with an ingenious
 
way to determine solutions to missing entries by solving a system oflinear equations
 
composed fi'om known entries, he was able to constuct the table shown onthe next page.
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LECTURE 36B:A NEW WAYTOCALCULATE%
 
p 

term -1 -1 

2 

0 
1 

3 

1 

2 

2 

3 

'l 4 

3 

3 

2 

5 

3 

2 

X 

T 
1 1 1 1 1 1 1 1 1 1 1 

3 

-1 -1 

2 

0 1 

3 

1 

2 

2 

3 

1 4 

3 

3 

2 

5 2 

5 

1 
3 

8 

■ 0 -1 

9 

-1 

8 

-1 

9 

0 2, 

9 

■, '3 
S 

■ ... 5 

9 
1 

7 

-1 -5 

16 
0 5 

81 

3 4 

81 
0 -4 

81 

-I 

16 

-5 

81 
0 

£l 
9 

I 35 

128 
0 -10 

243 , 

-15 

384 

-7 

243 
0 , 5 

243 

. . , .3. , 
128 

V; 5 

243 
0 

: -x" 
11 

-1 -63 

256 
0 22 

729 

105 

3840 

14 

729 
0 -8 

729 ■ 

-3 

256 

-7 

729 
0 

Withthis table allowing for the computation of area under over [l-x^,l], 
letting X = 1 and using thep = 1/2 column yields a new way to calculate 7t, since 

AREA of over [0,l] = AREA of the portion of the unit circle in quadrantI 

1Y-1 15 fiosY-i' 945 1 
= 1+ +

Us, 384 I3840a"11 46080 A13 

=l-i-^ 1 TT 

6 40 112 1152 2816 4 

^ [ 6 40 112 1152 2816 
Checking that this series does indeed converge t0 7t gave Newton the satisfaction that his 
interpolation scheme for finding area under a curve was correct. This triggered a search 
for a way to ease the burden of tabulating entries in the columns ofhis chart row by row. 
This search in turn leads Newton to the discover of the formula for the binomial 
coefficient which is the focus of the subsequent activity. 
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ACTIVITY 37:NEWTON'S p= 1/2COLUMN
 

With the p= 1/2 column ofhis(l-x*)'' chart(which again contains entries that
 
represent coefficients,of the terms ofthe row they are situated in,for formulating area
 
expressions), Newton Concentrates all his energies on finding a pattern. What he found is
 
shown below. Carefully follow the patterns being developed and fill in the blanks as you
 
g ■ 

ROW COEFFICIENT
 

X 1 ■ ' ;: . 

T 1 

1
 

2.
3
 

-1 _ 1 _ 1 0-1-2)

T 8 2 (J 2 2-2
 

3 _ 1 -1 1 (1-1-2) (l-2u)
 
7 48 2 4 (J 1-2 _-l 3-2
 

-15 1 -I -3 (-_) _ T (1-1-2)(l-2-J {l-_-2)
 
9 384 2 4* 6 {_) 1-2 V.;2 3-2
 

' ■ 

105 I -1 -3 (-_) (-_) _ 1 (1-1-2) (l-2-J (l—2)(_-4-_)
 
3840 2 4 6 (_) (_J 1-2 _-2 3-2 5-2
 

-945 _ 1-1—2 _5^_7(_^ = Carry this out on your own.
 
13
 46080 2 4 6 8 10
 

10395 _ 1 = Dothisonyour
 
15 645120 (J (J (_) (J 10 (_J (_J
 

own.
 

Note again that the patterns devised above are for the p = 172 column ofNewton's
 

(l-x^)'.Then,move on to the next activity which involves the />= 1/3 column ofhis
 
chart. Keep an eye outfor how the change from p— 1/2 to p — 1/3 affects the patterns.
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