














ACTIVITY 33 : THE DAWN BEFORE THE

SQUEEZE

DIRECTIONS: Complete the table below. Recall that each entry is the sum of the entries
two boxes up from and two boxes to the left of that particular entry.

pfl o 12 1 |32 ] 2 [ s2 ] 3 |72 4 |92 ] 5
0 1 1 1 1 1 1 1 ] 1 1 1 1
12 | 1 = % B 1% £0 |0y | 50 | 95 | 550 | %8
5 7 9 ol
1 1 % 2 A 3 é 4 A 5 A 6
ey, lem |- Iy : 3465 45045
3/2 1 3 (= ‘ % 3 = -’% 15 = 31548 384 3830
, s/ | 37| |99 |3
21 | U] s 2K 6 |0 |[Th| s "B
R | 7 £ 63 693 9009, 135135
5 15 384 3
5/2 1 A 3 48 i H
105 315 693 1287 285
3 1 48| 4 481 10 8120 | % | 35| * | 56
&0 99 1287 19305 328185 °
7/2 1 35 % /8 48 384 3840 |
’ |
945 ‘ 3465, 2009 19305 36465 !
4 1 384 5 384 | 15 384 35 384 70 384 126 l
on | 1 |89 1y 143 1 e o
10395 ‘ 45045 135135 328185 692835
5 1 3840 6 | | 21 | * | 56 | * | 126 | * | 252
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ACTIVITY 34 : THE SQUEEZE

It's time to take a deep breath and realize that you are about to conclude activities with
- John Wallis' scheme that, quite arguably, conquered the infinite. The only task left undone
is that which determines the value of 0. Now, as stated earlier, Wallis knew that the
value of 00 was 4/rn. However, he was one of the best "code breakers" or
"cryptographers" of the 1600's. The chart unraveled here was a code to him, a code which
“was on the verge of being broken. Thus, Wallis was not about to dispose of all the work
done to get this far in the table and settle for O being 4/n. He wanted to find out the
‘value of O using the skills of pattern recognition, interpolation, induction, and
‘generalization that had worked to get him this far. Wallis was determined to find O in his
own unique way and the brilliant manner in which he did this is the goal of this activity.

Since this interpolation scheme arguably conquered the stranglehold the Greeks' "horror of
the infinite" had on the mathematical world, let's pay one final tribute to early Greek
‘mathematics by using Greek letters to name the entries of the ¢ = 1/2 row. A carefully
constructed list of these is required to understand the steps necessary for finding 0. Thus,

a=1 ' DIRECTIONS:
Continue the list constructed in column one by finding
g =0 L ~ the next four entries in the space provided below.
4 2
5= 2o
3
8 2-4
g 2p 46
15 3-5
- 105 37 -
TR T T4 ~
192, A
4 105 7
1 384 2 - -
;= 1920 00 - -
945
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,The critical observation that must be made at this time lies in the. fact that the sequence

B, %0, &6, 0.7, 7 L Kiy,vozwﬁé‘p,crg,rvwft//,ﬁ,--'

" is monotonically increasing. Thismeansthat ¢ < B, f <z < 6, 6§< ¢, ...
Therefore, an entry in terms of O can be "squeezed" between the entries on each side
of it. The "squeezing" of O follows. -

| SQUEEZE #1 |
1<O< 3
2
| SQUEEZE #2 |
2.‘ < _4_B < }_5.. = _3_3 <0< 3"3'5.
2 .3 2. 244 244
- Pvia multiplying through by 4/3®&
[ SQUEEZE #3 |
—3—5-<i£ﬂ<357 = ==== <0< =====
R 2.4 5 2:4-6 I
| _SQUEEZE #4 | '
357 468, 3579 335577 g 3:3:55779
2:4.6 357 2-4-6-8 2:4:.4.6:68 2:4:4:6:6-8-8

% ON YOUR OWN: Complete the next five "squeezes” on O. Then, try to put together

- anargument as to what the value of B must be. You will have to picture carrying out the

© squeezing process to mﬁmty Look for a way to argue that O must be between two

 fractions that are equal, since a<b<c and a=c implies b=a = c. The key to this
involves the fact that something tendsto 1 as you go farther out in the "squeezing"
process. A way to see just what does tend to 1 is by focusing on the factor by which the
two numbers surrounding O differ. Finally, the value of B will be an infinite product.
More specifically, it will be a fraction where both the numerator and denommator are

- infinite products. ' :
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LECTURE 34A:m AS AN INFINITE PRODUCT

-If we look closely at the fourth squeeze,

357 468, 3579 3385577 o 3355779
246  3:5.7 2-4-6-8  2.4:4-6-6-8 2-4-4-6-6-8-8

it is easy to see that the two fractions which surround O differ by a factor of 9/8. After
carrying out the subsequent "squeeze," it will be easy to see that the fractions surrounding
O differ by a factor of 11/10. Next, they will differ by a factor of 13/12. The factor by
which the two fractions on either side of O differ approaches 1 as the "squeezing"
process is taken to infinity. Therefore, '

- 3-3.5-5-7-7-9-9-11-11- . ..
2-4-4-6-6-8-8-10-10-12- . ..

(2-2-4-4-616--8-8-'
=7 =2 ~ ‘

| since it was already known that O = 4/m.
1-3-3-5.57-7-9. . ..

‘This representation of © as an infinite product was the first of its kind. It bears John
Wallis' name and is the benchmark of his notoriety. Wallis' explorations into the realms of
the infinite with uncanny analytic tactics led to increased attention being given this
methodology. In turn, attention shifted away from the much more burdensome,
geometrical means for understanding infinite processes. Although the results obtained here
by Wallis were not formally proved until the nineteenth century, they had a profound
effect on Sir Isaac Newton.

Newton modeled Wallis' interpolation procedure in his discovery of the binomial series.
He too was not able to prove his results rigorously. However, the mere discovery of the
binomial series played a profound role in substantiating the use of infinite series as a tool
for working with infinite processes and limit theory. The set of activities that follow will
take you through Newton's interpolation scheme. '

One final note about Wallis' investigations hinges on the frequently unexpected nature of
mathematical invention. Wallis began his mystical and very original interpolation scheme
with the confidence that he could either prove or disprove the problem of "squaring the

' circle." Though he could not accomplish this goal, the discoveries afforded him in his
quest are certainly no less valuable.
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SET V

| NEWTON'S DISCOVERY OF
- THE BINOMIAL SERIES
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ACTIVITY 35: NEWTON AFTER WALLIS

In 1661, at nineteen years of age, Isaac Newton read John Wallis' Arithmetica Infinitorum
and subsequently began a venture that, by 1665, led to his first mathematical discovery of
lasting significance. This was the formulation of the binomial series illustrated below.

(1+x)i“=1+(‘1")x+(2)x+ ‘”;(H)‘" where (n) a(é ,1') - (a-n+1)

Influenced by Wallis' interpolation technique and, at the same time frustrated by
geometrical means by which to calculate the area under a hyperbola, Newton extended
Wallis' table to the negative side with confidence that he too could utilize Wallis'
methodology and effectively devise a way to obtain area under a hyperbola. He
constructed a table similar in design to Wallis', but which instead depicted the area brought
- on by each term following expansion. For brevity, let's use modern notation for areas

under curves represented by expressions of the form y = (1 +x)’.

0) I(1+t)°dt f

0 0

I
ey
—
&
1
I

1 t 1 x X

D [(1+0)dt = =+~ = Z+=

R !(f) e +
: x ' , . 2 3[* 2 | 3
2) I(l-s-t)zdt = j(l+2t+t2)dt =_£+2(t—+t—- = £+2l(x + X
! 1 \2) 3| 1 \2) 3

: x (20 3\ 4 2 | 3 4
3) f(1+t)3dt LA L L +——] = —+3 \+3 iy I

/ 1 |2 3) 4 2 4
The area under the curve (1+ 1)’ is of course dependent on the choice of x. But

. . . . x
without regards to x, we can say that the area under this curve is 1 times the —1- term,

2 - 3 4
plus 3 times the iz— term , plus 3 times the %— term, plus 1 times the %— term.

Continue this sequence of problems by completing the cases where p = 4, p=35, and

p = 6, and then finish the right side of Newton's chart shown in the next activity.
Remember that entries in the chart are the coefficients for the terms m the area expressions
derived after definite mtegranon .
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ACTIVITY 36 : NEWTON'S TABLE FOR (1+ x)?
DIRECTIONS: Complete the right side of this chart by detemﬁning_ the coefficients of the
X x, x3 ‘ . . . » . f Py . .
terms T -—2-,—3—,... brought on by definite integration of j,(l%-t) dt with p=4,5, and 6.
. A . S ‘

Next, note that the p =-1 column represents the area under a hyperbola 1—1—- This is
. +x

the curve Newton was having trouble with. Just what is the value of J. (1+1)'dt ?
0

Yes, you're correct, it is In (1+x). But this fact was unknown to Newton. So instead, he
recognized that the columns of his table were the diagonals of Wallis' table and,
~consequently, that each entry is the sum of the entry to the left of it and one up from that
one. Now use this binomial pattern of formulation to fill in the empty boxes on the left side
of this chart. Before doing this however you must assume, as Newton did, that the entire
top row remains constant at 1.

pl-6 |-5 |4 |3 |2 |-1 |0 |1 |2 |3 |4 |5 |6
‘term : ’ '
11 o1 o |t 1
x |
0 (1 |2 |3 |4 |5 |6
x? o
2 .
o |o |1 |3
L
3
o [0 |o |1
x* '
4 "
o (0o |0 |oO
x5 .
5
0 (0 |0 O
xe o
5
0o |0 |0 |oO
x7 .
7
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LECTURE 36A: NEWTON'S CHART

With the completion of the chart below, Newton was gble to formulate an expression for
the area (by way of placing coefficients on respective terms in the table) under the

hyperbola —l—-, namely, for x > 0, area = x -
1+x

~ We now call this area function the natural logarithm of (1 +x). FolloWing much detailed

used to manufacture tables of common logarithms.

pl-6 |-5 |4 |3 |2 |-1 |0 |1 2 3 4 |5 6
term ]

1 1 1 |1 (1 [1 |1 1/ 1 1 1 |1 1
X
1

6 [-5 |-4 |3 |2 110 |1 |2 |3 |4 |5 |6
x? |
2

21 |15 |10 |6 [3 |1 |oO 1 |3 |6 |10 |15
2 o
3 . L
. |56 |35 |20 |-10]-4 |-1 |0 T o |1 |4 |10 |20
L X 1 . ‘ X
4 -
, |26 |70 135 |15 s |1 0 0 Jo o J1 |5 |15
e
5 . \ |
o |25z |-126 |56 |21 -6 [-1 Jo |p [0 |0 |1 |6 |21
. |
6 . 1
o |462 [210 |84 128 |7 |1 Jo |o fo jo ‘f1 |7 |28
X i : .
7

Having addressed and then solved the problem of finding area under a hyperbola through
the extensive work done here, which allows for the|calculation of the area under any ‘

member in the family of curves denoted by (1+x)]  for any integer p, Newton engaged
himself in the same family of curves attacked by Wallis in his g = 1/2 row, that is,
([1 - xz]p). He concerned himself with areas over the interval [1 -x%, 1] and, from

continually returning to Wallis' work on characteristic ratios together, with an ingenious
way to determine solutions to missing entries by sqolving a system of linear equations
composed from known entries, he was able to constuct the table shown on the next page.
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LECTURE 36B: ANEW WAY TO CALCULATE &

p ,

term | -1 | =1 o 11 12 |y 4 13 |3 |2
2 3 2 3 3 |

x| 1 1 1 T R 1 1 1 1
1 |
-x* .1 |zl o I 1 12 | 4 13 |13 |2
3 | 2 B 2 |3 3 2 3
¥ |1 3 0 e el S el S Y 2 943 13 1
5 3 9 3 9 9
" la |5 o |5 |3 |4 |o |4 |2 |5 o
7 16 81 |48 |31 81 |16 |81
2 |1 33 o -100 =15 =7 o S 13 13 Jo
9 128 | 243 | 384 | 243 243 | 128 | 243
ety [ -63 o |22 |05 |14 |9 | -8 | 3|7 |o
1 256 729 | 3840|729 | | 729 | 256 | 729

With this table allowing for the computation of area under (1 - xz)p over [1 -x%, 1],
letting x =1 and using the p = 1/2 column yields a new way to calculate =, since

AREA of (l—xz)yz over [0,1] = AREA of the portion of the unit circle in quadrant I
CEHEE-EEHER) R )

=1+ ==—-1=l=1+x == - + — |+
23 8 NS 48 A\ 7 384 \ 9 3840 \ 11 46080 \ 13

11 1 5 7

6 40 112 1152 2816

(1 1 1 1 5 7

6 40 112 1152 2816
Checking that this series does indeed converge to m gave Newton the satisfaction that hlS
interpolation scheme for finding area under a curve was correct. This triggered a search
for a way to ease the burden of tabulating entries in the columns of his chart row by row.
This search in turn leads Newton to the discovery of the formula for the binomial
coefficient which is the focus of the subsequent activity.
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ACTIVITY 37:NEWTON'S p=1/2 COLUMN

With the p = 1/2 column of his (1 x* ) chart ( which again contains entries that

represent coefficients,of the terms of the row they are situated in, for formulatmg area
expressions), Newton concentrates all his energies on finding a pattern. What he found is
shown below. Carefully follow the patterns bemg developed and ﬁll in the blanks as you

goalong
ROW | COEFFICIENT
= |1 |
1 1
—x? l
3 |2 |
I S B O o (e )
5 0% 2 () 2 22
=l 3 1o (=) o1 (-12) 1-2)
7T 148 24 () 12 _2 3.2
2odos 1o ) 1 (e12) (-2) (- 2)
9 8¢ 24 6 () 12 _2 32 _-_
2 faos 1o ) 6 (o) (22 (29) ()
11 13840 24 6 (1) (_ 1-2 2 32 5.2
13
x° -945_1-1-3-5-7()_
13 -46—056 = -2--4——6-—8'1—0——— | ‘Carry this out onyourown
—x' v ‘
x| dosos 1k -) (- ) ) 7 - D (- ,) Do this on your
520~ 700 010 )

own.

Note again that the patterns dewsed above are for the p=112 column of Newton's

(1 x ) Then, move on to the next activity whxch involves the p 173 colunn of his

chart. Keep an eye out for how the change from p=1/2 to p=1/3 affects the pattems
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