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This project involves an in-depth look at some ofthe historical developments that
 

preceded the formalinvention ofcalculus. It focuses chronologically on the events that led
 

to Newton's discovery ofthe binomial series. The primary purpose ofthis prGject is to
 

The discovery-based activities contain exercises on Pascal's Triangle, Alhazen'smethod for
 

acquiring formulasfor 1^+2^ +3* John Wallis'characteristic ratio ofindex
 

Wallis'famous representation of7t as an infinite product,and Newton's discovery ofthe
 

binomial series.
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Chapter1
 

Mathematics,hot unlike any other subject ofstudy, has in its historical background
 

certain developments that stand out among all Others as critical turriing points. This paper
 

involves one such development, namely, Wallis'interpolation scheme which leads to his
 

famous representation of7t as an infmite product. In fact, Wallis himselfCoined the tCrm
 

"interpolation"(originating from words meaning "to polish in between")in his most
 

celebrated •work ArithmeticaInfinitorum, published in 1656. The new method of
 

experimentation continuously eniployed by Wallis in its pages involves interpolatiph and
 

induction,leading to multitudes ofgeneralizations, Wallis'use ofinduction was the first of
 

its kind and it led to an abundant harvest offi"esh revelations in mathematics. Arguably,
 

the primary reason for such an explosion ofnewly discovered outcomes in mathematics
 

following the work in by Wallis lies in the fact that, fi"ohi ancient
 

times, until the middle ofthe seventeenth century, mathematicians avoided working with
 

the infinite due to the horrific methodology required. Wallis prepared the way to modern-


day approachesto infinite processes. He admitted both the concepts ofinfinite series and
 

limit theory into rnathematical reasoning. Thefollowing paragraphs act asa brief
 

chronology ofsignificant events in mathematicswhich ultimately directed Wallis to his
 

profound investigations.
 

The earliest writteh inquiriesinto the^infinite process date back to abouCSOO BC;
 



with the paradoxes ofZeno. IfZeno were to be reincarnated into today's world, it is likely
 

that he would believe that he couldjump from an airplane without a parachute and,even
 

more frightening, without the fear ofhitting the ground. After all, there are an infinite
 

number of"half-way points" he would have to bypass and, naturally, that would take an
 

infinite amount oftime.
 

At about the same time Aristotle wrote ofZeno's paradoxes,the Pythagoreans
 

discovered theincommensurable(segments that lacked a common measure,so that the
 

ratio oftheir lengths was what we now call irrational). This escalated interest in the idea,
 

ofthe infinite process and led to the next stage in the cultivation ofinfinite theories.
 

In about450BC Hippocrates squared the area under a curve. He ascertained that
 

the area ofthe shaded region below was equivalent to the area ofsquare AMCD.
 

Tliis problem was the first ofits kind. It showed that the area under a curve could be
 

squared. Consequently, it sparked interest in one ofthe most tantalizing problems
 

encountered in mathematics,that of"squaring the circle."
 

Shortly thereafter,the Sophist Antiphon proposed that there existed a regular
 

polygon, with a sufficient number ofsides, whose area matched that ofa circle having a
 

radius equal to the length ofthe polygon's apothem. Already and quite understandably.
 



we see the confusion perpetrated by processes involving the infinite.
 

The Pythagoreans'discovery ofthe existence ofincommensurable geometric
 

magnitudes(lengths, areas, volumes)ultimately led to the next stage in the development of
 

the theory ofthe infinite process,the writing ofthe 13 books oftheElements by Euclid in
 

about 300BC. Incommensurable geometric magnitudesforced a thorough reexamination
 

ofthe foundations ofmathematics and this task was undertaken by Euclid. He created a
 

"continuity axiom"that allowed the Greeksto deal with geometric magnitudes that could
 

not be"measured by numbers." An important application ofthe continuity axiom involved
 

the Greeks"method ofexhaustion."
 

The method ofexhaustion was utilized by the Greeks as they attempted to
 

calculate the area ofa curvilinearfigure. This application involved filling up,or
 

e>diausting,the curvilinear figure by means ofa sequence ofpolygons. It was devised,
 

apparently by Eudoxus,to provide a geometric approach to acquiringcertain limits. This
 

was an earlyform of the modem-day means used which is informally called "taking the
 

limit." The method ofexhaustion waslogically clear, but was very cumbersome,for it, in
 

practice, hinged on the idea that the difference between the area ofthe curvilinear figure
 

and the last polygon in the sequence could be made as small as desired by making the
 

sequence ofpolygons sufficiently large.In many instances, this led to difficult geometry
 

problems.
 

The classical era ofGreek mathematics probably reached its climax in the third
 

century BC.with the squaring ofthe parabola by Archimedes. In the Preface to his
 

Treatise on the Quadrature ofthe Parabola, Archimedes writes:"Many mathematicians
 



 

have endeavored to square the circle,the ellipse, or the segment ofa circle, ofan ellipse,
 

or ofa hyperbola. No one,however,seems to have thought ofattempting the quadrature
 

ofthe segment ofa parabola, which is precisely the one that can be carried out." This was
 

a significant event because since Hippocrates'squaring ofa particular crescent in 450BC.,
 

many ofthe greatest minds over the course ofthe next 190 years tried in vain to square
 

other curvilinear figures. Essentially, Archimedes'work constituted the very beginning of
 

the calculus, and indeed one ofhis proofs(he gave two)anticipated methods developed in
 

the theory ofintegration, nearly 2000 years later. Archimedes'quadrature ofthe parabola
 

b
 

was equivalent,in modem terms,to evaluation of J{px^ ¥q)dx.Generalization ofthis
 
a
 

result to other functions involved the function concept and tools ofalgebra and analytic
 

geometry.
 

Nearly 1900 years later a discovery related to Archimedes quadrature ofthe
 

parabola was made by Cavalieri. In about 1630,he calculated the area under the curves
 

j for A:=3,4,5,...,9. Cavalieri's work was based on formulas developed by the Arab
 

mathematician Alhazen in about 1000 AD.for the sums ofthe first n cubes and fourth
 

powers. Alhazen's brilliant acquisition ofa meansfor obtaining these formulas helped
 

bridge the gap between early Greek mathematics and the explosion ofideas in the
 

seventeenth century,including this one by Cavalieri, that simplified further work involving
 

infinite processes.
 

Another bridge wasthe translation,in the thirteenth century,ofAristotle's Physics.
 

Aristotle's work by no means represented the best scientific thinking ofhis day.However,
 



 

its translation had a profound influence on European thinking. He explored the nature of
 

the infinite along with the existence ofindivisibles or infmitesimals. He summoned
 

scholars "to discuss the infinite and to inquire whether there is such a thing or not, and,if
 

there is, what itis"{ Book III, Ch.4}. Because ofthis summoning,thirteenth century
 

philosophers and mathematicians became fascinated with the mysteries ofthe infinite. A
 

sample ofthe problems solved at this timefollows;
 

1. Ifa point movesthroughout the first halfofa certain time interval with a
 
constant velocity,throughout the next quarter ofthe interval at double the initial velocity,
 
throughout the following eighth at triple the initial velocity, and so on ad infinitum; then
 
the average velocity during the whole time interval will be double the initial velocity.
 

2.Ifan aliquot part(one Ath)should be taken from some quantity(a),and from the
 
first remainder such a part is taken,and from the second remainder such a part is taken,
 
and so on into infinity, such a quantity would be consumed exactly - no more,no less - by
 
such a mode ofsubtraction.
 

The first problem is equivalent to the summation^+^+^+...+^+...=2,where both
 

the initial velocity and time interval are taken as unity. The second has therrth remainder
 

a(l-I/A)" approaching zero as « goesto infinity in the expression
 

2 r -i
 

4-a
'l-i| =a
'4 ̂ ^ 44
 
Also, at this time,the first notions ofinstantaneous velocity were recorded,but fell short
 

withoutthorough understanding and toolsfor working with limits. These medieval
 

speculations on infinity and the continuum helped weaken the grip the Greeks'"horror of
 

the infinite" had on the mathematical world.
 



Bythe beginning ofthe seventeenth century,the subjects ofIndiyisibles and
 

Infinitesimals had gained popularity. Kepler initiated extensive work in the subject of
 

Infinitesimals(basically the notion that an area consists ofan infinite number ofsay,
 

rectangles, each ofwhose area is infinitely small)with the publishing ofiS/ereowe/r/a in
 

1615. Greatly influenced by this work,Cavalieri ̂ nhXxsht&Geometrialndmsibilibus in
 

1635. His method ofIndivisibles hinged on the idea that an area(surface)consisted ofan
 

infinite number oflines and that a volume(solid)consisted ofan infinite number of
 

surfaces. These treatises constituted major advancestoward breaking away from the
 

Greek's Oppressive Method ofExhaustion.
 

Roberval,Torricelli,Fermat,and Pascal pursued further the concepts of area
 

outlined above in the first halfofthe seventeenth century,thus helping to set the stage for
 

the work ofJohn Wallis'Arithmetica published in 1656. Abound with fresh
 

points ofview,new methodology,and stimulating discoveries, Wallis'
 

Infmitorum put him at the forefront ofmathematics. Quite arguably, it is this treatise by
 

Wallis which ultimately led to the"conquering ofthe infinite" by the mathematical world.
 

This was largely due to the fact that Wallis'impact on Newton wasimmense. He stood as
 

Newton's mighty predecessor and many discoveries ofthe subsequent three centuries can
 

somehow be traced back to Newton and hence,to Wallis.
 

John Wallis was most aroused by the work ofCavalieri, which brought him to the
 

beliefthat the quadrature ofthe eircle could be affected. In 1652, Wallis embarked on a
 

venture that eventually led him to his celebrated representation oftc as an infinite product.
 



 . . . . ■ 1. „ 0 +1 +2 +...+« „
Wallis began by investigating ratios ofthe form -r——r r —r.He was
 

n+n+n+..:+n
 

particularly interested in these ratios for large values ofn. He called this the characteristic
 

ratio ofindex k. The table patterns arid analogies he was able to formulate in his work here
 

encouraged him to undertake investigations directed toward the age-old problem of
 

squaring the circle. The interpolation scheme utilized by Wallis in his attempt to square
 

the circle was the first ofits kind. The intuition, use ofanalogy,inethod ofinduction, and
 

means ofgeneralization employed by Wallis throughout his work became the vehicle for
 

further discoveries for generations to come.
 

Wallis'interpolation scheme had a particularly important impact on Newton.
 

Newton's discovery ofthe BinomialTheorem wasa direct consequence ofWallis'
 

influence. The methodology originated by Wallis also had a profound effect on Leibnitz
 

and the limit concepts he developed.
 

These men,Newton and Leibnitz, played especially important roles in the
 

discovery ofcalculus,the synthesis ofa new and powerful way to arithmetically(as
 

opposed to the geometrical methods ofthe Greeks)analyze infinite processes. However,
 

it is difficult to deny the debtthese men owed to John Wallis and his Arithmetica
 

Infinitorum. This wasthe key that unlocked the chains that bound the mathematical
 

universe to the Greek's "horror ofthe infinite." The conquering ofthe infinite by gaining
 

the toolsfor working with,and the thorough understanding necessary for,limit theory and
 

its applications,took place during the late seventeenth,eighteenth, and nineteenth
 

centuries.
 



 

 

John Wallis was born at Ashford,in East Kent,on November 23, 1616. His father
 

died when he was six years old, and it was at this time he began school at Ashford. His
 

enthusiasm for learning persisted from this point onward until his death in 1703.He once
 

wrote "It was always my affection, evenfrom a child in all pieces ofLearning and
 

Knowledge,not merely to learn by rote, which iS soon forgotten,but to know the grounds
 

or reasons ofwhatIlearn;to inform my Judgement as well as furnish my Memory,and
 

thereby make a better Impression on both"[Scott,pg. 3].
 

Mathematics made its first impression on him in 1630 when his younger brother
 

had been learning to write,to cipher, and to cast account. Wallis asked what this meant
 

and was told that it dealt with "The Practical Parts ofCommon Arithmetick in
 

Numeration, Addition, Substraction, Multiplication, Division,the Rule ofThree(Direct
 

and Inverse),the Rule ofFeilowship(with and without Time),the Rule ofFalse-Position,
 

Rules ofPractise, and Reduction ofCoins,and some other little things"[Scott, pg. 4].
 
■ ' , ■ . ■ j 

In 1632,John Wallis decided to attend Emmanuel College, Cambridge. This was 
' ■ ' • ' ' . ■ ' ' ^ ■ . ■ I 

the real birthplace ofhis mathematical expertise,just as it was Newton's thirty years later. 

He graduated with a Bachelor ofArts degree in 1637and was admitted to the Master's 

degree program four years later. In spite ofthe fact that hisformal schooling involved 

primarily mathematics.Divinity remained his principle interest. In 1941,he was appointed 

chaplain to Lady Vere,the widow ofLord Horatio Vere. 

During his tenure with this family, Wallis exhibited a skill in the art ofdeciphering 

cryptic messages. The country wasinvolved in the Civil War and the speed in which 

Wallis could decode messages written in cipher caught the attention ofthe Parliamentary 



party. The Parliamentary party called on Wallis to decipher letters for many years. As a
 

master ofthis very,dangerous art, Wallis made many enemies and on occasion he was
 

accused ofexercising this skill carelessly, without regard to the potential consequences.
 

Nevertheless, Wallis was able to rise above the very turbulent surroundings ofthis time
 

and endure the negative aspects ofdeciphering coded messages for government officials.
 

In the lj55G's, Wallis played ah important role in the climb to prosperity of the
 

Royal Society. He wasthe most faithful ofits members to adhering to the Society's
 

original plan ofdeveloping the technique ofexperimentation. Wallis applied himselfto
 

virtually every branch oflearning and continually submitted his observations and
 

experiments to the Royal Society. These included astronomical observations, experiments
 

in the theory ofthe Flux and the Reflux ofthe Sea,observations on Gravity and on the | 

height ofthe barometer at different seasons, and experiments in blood transfusions,to | 
name afew. It wasthe devotion ofhis energies in its infancy that enabled Wallisto j 

stimulate interest and enthusiasm in the newly formed learning establishment called the I 

Royal Society. 


Though his interests and work ranged over almost every facet ofhuman activity,
 

Wallis added fame to both his own name and country with his endeavors in the field of j
 

mathematics. With his appointment to the post ofSavilian Professor ofGeometry in 1649,
 

mathematics becamethe subject ofserious Study. About this time, Wallis'interesit in the j
 

subject ofIndivisibles, spurred on by the works ofTorricelli, in which Cavalieri's methods
 

were constantly used,prompted the thought that in it was a way by which the circle couldl
 

be squared. The result ofthe energy directed toward solving this centuries old pfoblem 


i 

i 



arrived in 1656 with the ofJohn Wallis'rnost famous treatise,
 

rnethodpfindivisiM However,it goes far beyOnd Cavalieri's geometrical exposition
 

with the use,by Wailisof^alytiealGeometry;̂ noted earlier, it played an important
 

role in the development ofthe calculus, especially integral calculus.
 

InquireruiiinCnrvilimorumQucdraturam, aliaque
 
difficilioraMatheseosProblemata
 

It's translation is asfollows:
 

THEARITHMETICofINFINITIES,or aNEW METHOD
 
Ofstudying the QU^RATUREofClJR^®S,and othe
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AppendixA
 

The Activities
 

The following activities are ofa heuristic nature and are intended for use by first
 

year calculus students. The ra.tionale for the involvement by calculus students in these
 

activities is that no student, who gives considerable attention to calculus,should fail to
 

make acquaintance with the historical phases and logical transitions which occurred in the
 

developing stages ofthe calculus. All too often, subjects, particularly in mathematics, are
 

taught to students as finished products. However,the high school AP Calculus course
 

affords a great opportunity for students to engage in activities which are ofan
 

investigative nature,thereby leading to discovery. This opportunity occurs in the month
 

ofschool following the AP Calculus exam. These activities will serve to put the "finishing
 

touches" on the AP course by letting today's calculus students in on the methods, history,
 

and above all, the excitement of the work by Wallis and others which preceded the formal
 

invention ofthe calculus.
 

IMPORTANT
 

Asa student works through these exercises,they should think ofthemselves as a
 

cryptographer attempting to break a code. After all, as stated previously,that is what
 

John Wallis primarily did for a living. He was very good at it and thus made many
 

enemies. This might be the primary reason for Wallis'not receiving the notoriety he
 

deserved for writing ArithmeticalnflnUorum. In simulating a cryptographer,one should
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look for patterns and use intuition to predict future outcomes. Then,verify or test the
 

predictions and try to generalize the results(i.e. "break the code").
 

THE ACTIVITffiS
 

SET I; Acts as an introduction to the style and nature ofsucceeding activities.
 

SET II: Delves into the fascinating method by which Alhazen determined formulas for
 

the.sums ofthe first n integers, the first n squares,the first« cubes, etc.
 

SET III; Involves the student in Wallis'investigations into the value ofratios ofthe
 

0^ 4-f+2'+...+«'
 
form
 

ji'' +n''+n''+...+n^
 

SET IV: Embarks the student on a venture similar to that undertaken by Wallis in his
 

renowned discovery ofn as an infinite product.
 

SET V: 	 Depicts how Newton extended Wallis'concept ofinterpolation to
 

include areas under curves having negative powers associated with them,
 

to find a new representation ofn,and to create the binomial series.
 

12
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A
 

CRYPTOGRAPHIC
 

WARM-UP
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ACTIVITY 1:PASCAL'S TRIANGLE
 

DIRECTIONS:Use the space provided to expand and simplify the follovving binomial
 

expressions. 1) (a a-b)' =
 

2) (a + b)' =
 

3) (a + b)^ =
 

Now,transfer to the blanks below the coefFicients ofthe terms you got in your answers.
 

0) (a + b)'' = 1
 

1) (a + b)' = _a + _b
 

2) (a + b)- = _a'+ _ab + _b'
 

3) (a + b)^ = _a^ + _a^b + _ab' + _b^
 

At this'pointi a Gryptographer would probably make a prediction as to what the
 
answer is for problem 4. Verifying the prediction, the next step might be to predict and
 
then verify the result to be obtained in problem 5.Do this below.
 

Predict the answer to problem 4:
 

4) (a + b)"* = _a'' + _a^b + _a"b^ + _ab' + _b''
 
Verify your prediction by carrying out thefequired expansion and simplification below.
 

Predict the answer to problem 5 :
 

5) (a + b)^ =
 
Verify' youf prediction by carrying out the required expansion and simplification below.
 

The subsequent step which might be taken by a cryptographer would involve predicting
 
answers to the expansion and simplification ofwhat would be problems 6,7,8,and 9.
 
Then he/she may attempt to verify problem 9 by actually carrying out the expansion. If
 
this continued to fit the established pattern, the next step would most likely be a prediction
 
ofthe answer to say, problem 15. Ifthe cryptographer attained verification ofthis
 
prediction, he/she may very well move on to an attempt to generalize the entire situation.
 

^In other words,further effort would be directed towards deriving a formula for an
 
'^arbitrary probleim(this is usually denoted by the letter n).The use of analogy,experience,
 
intuition, and sometimesjust plain common sense is important in the initial stages of
 
pattern recognition. Once a pattern is recognized(or thought to be recognized),the next
 
phase usually involves predicting future outcomes and then obtaining verification ofthe
 
predictions. Finally,the last stage is to try to generalize the pattern developed so that an
 
arbitrary case fitting the particular situation can be solved without too much effort.
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ACTIVITY2:NUMBERPATTERNS
 

DIRECTIONS;Fill in the blanks below by following the established number patterns.
 

1 8 36 120 330 792 1716 3432 

. V 

1 7 28 210 924 

21 792
 

In the space below,list or describe any patterns that you recognize in the chart completed
 
above.
 

Now,complete the problems given on the next page.But first, recall that in mathematics
 

n{n-1)(«-2)...(w-r -r 1)
 
, where n> r and both are whole numbers.
 

l-2-3-...-r ~
 vO
 

Note that 
n 

is read "n chooser" .By definition, =1 V«s{0,l,2,3,...}.
 
.0;
 

(continued next page)
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fSV 5(5-l)(5-2), 5-4-3
 
EXAMPLE; =10. Notice that in the numerator we stopped


JJ 1-2-3 1-2-3
 
at 5 - 2. This is because n-r+l=5-3+1=5-2.EXAMPLE:
 

^8^ 8-7-6-5-4
 
=56. Again, we stopped at4in the numerator because fi - r + 1 =4.
 

1-2-3-4-5
 

<2^ (2^ '2^
 
O and and
=_ ® loJ
 —' ,
0 ~
 

f3'
 
and
 

(4^
 ^4^
 

I
I

 and
 1



I
I

1



I
I

J-k

V


2

 v4y
 

/C^
^5V fS^ ^5>
 
=; , and
 

vO/ i2y v4y
 

On your own paper, predict what would be problem © and also predict the answers to the
 
individual parts ofthis problem. Then,do the same thing for problems ©,©,and ©.
 
Finally, verify that some ofthe individual parts ofproblem © hold true to your prediction.
 

/a\■9U9
In other words, verify that the values ofsay. , and match your prediction.

2/15, 

When finished with the above work, answer the questions below in the space provided. 

What patterns did you discover in the above exercises that made your work less tedious 
and enabled you to eventually make predictions? 

In what ways do these problems relate to the first part of this activity? to activity #1? 

16 



 

ACTIVITY 3:INTEGRATION WITHIN THE
 

UNIT SQUARE
 

DIRECTIONS:Complete the followng chart by evaluating each definite integral.
 

1 ^
 
dx
k
 

II
 

0 0
 

0
 

1/2
 

I
 

3/2
 

2
 

5/2
 

3
 

111
 

4
 

^0iat do you notice aboutthe sum ofeach p^ofanswers in any particular row?
 

IS'̂ Make a mental note ofthe results above, especially those achieved when k-0,1,
 
2,3, and 4,as they are bound to reappear in the near future. Then,continue the
 
chart below.
 

4/5
 

7/3
 

8/9
 

n(n>Q)
 
1
 

jx"dx^
(that is,
 
generalize) 

0
 

Does what you noticed above aboutthe sum ofeach pair ofanswers in any particular row
 
still hold true, even in the general case where k=n '>
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ACTIVITY4:GRAPHING IN THE UNITSQUARE
 

DIRECTIONS; Illustrate geometrically the relationship between the regions in the unit
 

1 1 

square having areas equal to and for the =2 row ofthe previous 
0 ' 0 

activity. Do this by graphing y=x" above and then shading the area below the curve.
 

Then do the same thing for y= x''-- on the back ofthis paper. You should notice two
 
important things as you complete this activity. One concerns symmetry and the other deals
 
with the combined area ofthe two regions graphed: Recall that two graphs are
 
symmetrical with respect to the line y=x if, when holding a picture ofone ofthe graphs
 
up to the light with one hand and viewing it normally,turning the paper over and rotating
 
it ninety degrees clockwise gives you the proper view ofthe other graph. Tiy this after
 
completing both graphs. What do you notice about the combined areas ofthe two graphs?
 

.3 .5 .6 .7 .8 .9
.1
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ACTIVITY 5:GRAPHING CONTINUED
 

DIRECTIONS:Graph y= below and j/= on back. Then shade the region below
 
each curve. Finally, answer the questions below concerning this activity.
 

A) What is the area ofthe shaded region below? J 
1 

x'''dx =
 

B) What is the area ofthe shaded region on back? ,
 

C) What is the sum ofthese two regions?
 

D) What is the area ofthe unit square?
 

E) Why is your answer to question D the same as your answer to question C?
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ACTIVITY 6;WALLIS'QUADRATURE
 
OFTHECISSOID
 

EXERCISE I:
 

The "cissoid," shown below, is the set ofpoints P such that Show that its
 

equation is y = , x€(0,l).
 

1
 

Q
 

EXERCISE 2:
 

Note first that the area underthe cissoid is J x'^(l-- Can you evaluate this definite
 
0, ■ ■ 

integral? Ifso,feel fi-ee to skip the remainihg exercises. Ifnot, let
 

a,,= =Jx''^(l-x)-dx.Provethat the two integrals in this expression
 
0 0 _ . _
 

are in fact equal.Hmt;Let u-\-x and get one integrand in terms of a, including the
 
limits ofintegration. Then do a reverse substitution(i.e. let x=a)to obtain the second
 
integral.
 

(continued next page)
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EXERCISE 3:
 

Evaluate the definite integrals a^, a., a^, and . Show that the pattern appears to imply
 

^ m
 
that = for even values ofm. Now assume,just as Wallis did, that this
 

recursion relation holds for odd values of m as well. What is the value of a.?
 

EXERCISE 4:
 

1
 

Let =Jjc*=(1-x)^'«35£:, and note two things; l.That ii, =0.
 
0
 

2. That i.j is the area under the cissoid.
 

Evaluate the definite,integrals , b., £>,, and . Show that the pattern appe^s to imply
 

that b„ = f— , for even values ofn. Now assume,just as Wallis did, that this
 
recursion relation holds for odd values of « as well.
 

What is the value of b_^? Hint: Get i., in terms of
 

EXERCISES:
 

How many times larger is the area ofthe cissoid than the area ofthe generating semi
 
circle?
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SET II
 

ALHAZEN'SMETHODFOR
 

CALCULATING
 
k , k, k , k
 

1 +2 +3 „
 
FORANYPOSITIVEINTEGER
 

k
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ACTIVITY7:SUM OFTHE FIRST nINTEGERS
 

DIRECTIONS:Fill in the blanks. BE AWARE!Only even n is explored in this activir/.
 

Problem Figurate Sum as a
 

number , number Sum of first n inteasrs product
 
in)
 

2 , j 1-2
 (-J(_J
 
4 10 = 1-2-3-4 =(1-4)+(2-^3) =5-5 = (2)(5)
 

6 .•"21 =. 1 - 3-4-^ +6 '
 

=
 (1+6)+(2-_)-(_+4)= 7-7-7 = (3)(7)
 

8 36 = 1 -2-3^4-5+6-7-8
 

=
 .( 1+_J +(2-7)-(_+_)-(4-_J , _
 

9 . _ > _ u 9 ^
(4)(_)
 

10 55 = 1 lA-_-3-4-_^_+?+_+_+10
 

= (_+_j+(_- 9)-(3-_J+(_+ 7)+(_+_)
 

j . - ■ ■ _ • • ' ■ ——— '■ • (_J(_J 
78 = 1-2-3+4-5+6.-7:;+8 + 9 +10-ll-12 = (_J(13) 

14 1+ 2-3-4-...+12-13+ 14 = (7)(_)
■ • 

, : 136 == , 1+2-3 (_J(!7)
 

18 
■ 

1 - 2+3+ .,.-, 18 V
 (^(_) 
H- -r — ... -H . =s 

• ' (-J(-J 

"GENERALIZE" 

n = 1+ 2 + 3+ .,.-_2 . = (_)(__) 
'71 n even — ^ — 

VERIFY YOUR RESULT INPROBLEM 

A) 1 + 2 + 3 + 4 + ... +100 = ( X ) = 5050 

500 

B) T/ = ( X ) 125.250 
/ =1 
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Does your result work? Ifso, let's look at the sum ofthe first n integers
 
where n is , as opposed to even.
 

DIRECTIONS;First, fill in as many blanks as possible using your answersfrom the
 
previous page. Then,interpolate to fill in the remaining blanks. Recall that interpolate
 
means"to polish in between."
 

1 1
 

2) 3 = 1+2
 = (_)(_J
 

3) 6 = ,. 1 + 2 + 3
 

4) 10 = 1+2+ 3+4
 

5) - 1+2 + 3+4 + 0
 

6) 21= 1+2 + 3+ 4 + 5^6 =( )( )
 

7) _ = 1 + 2 + 3 + ... +7 = (_J( )
 

8) 36 = 1 + 2 + 3 + ... + 8 = ( )(__)
 

9) _ = 1 + 2 + 3 + ... + 9 = i •)( >
 

10) 55 = 1+ 2 + 3 + ... + 10 =( )( )
 

11) _= 1 + 2 + 3 + ... + 11 = (5.5)( )
 

102) = 1 + 2 + 3 + ... + 102 =( )( J
 

195) = 1 + 2 + 3 + ... + 195 = (_ )(. _)
 

"GENERALIZE"
 

n
 

n) 2]^ = ^ ^ 2 + 3 + ... + rt =( )( )
 

n can be odd or even ^
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50 

VERIFY YOUR RESULTS FROM THEPREVIOUSPAGE:
 

A) YJ = C JC )= 1275
 

/= I
 

51 50
 

B) 1/ = C JC J = Jj +
 
i-1 /=1
 

49 50
 

c) li = C X J = 1/ 
/• =1 /= 1
 

A different approach to the same summation follows.
 

1) 2(1) = 1 + 1 = (1)(2)
 

2) 2(1-2) = (1 + 2) + (1 + 2) =(2)(_J
 

3) 2(1 ^ 2 + 3)^ (1 + 2 + 3)-(1 + 2 + 3)
 
= (1 + 3) + (2 + 2)+ (3 + 1) = 4 + 4 + 4 =
 

4) 2(1 +. + _ + 4)= (1 + 2 + )"f" (1 + ^ + 3 +. y
 
= (1- +(2+ 3)+ (3^ 2)-(4+ _J=(_J( )
 

5) 2(1 + 2 + _ + + )= 1 +2+ 3 + + ^^ +^+ 2 + + 4 + 5
 
=(_+_J+(2+__)+(3+3)+(4+_)+(5^ 1)
 

* pairs must add up to6 31 V V V V V 
= _ ■ + + _ + + 

(1 + + ,+ + + )
 

(1 + 2 + 3 + 4 + 5 + 6)+ (1 +2+ 3 + 4 + 5 + 6)
 

=(_ + 6)+(2 + 5) +(_ + _J +(4 + 3)+(_ + 2) +(6 +
 
V V V V V V
 

= 4- + + +
 

On your own: Attempt setting up one or two more ofthese,then generalize.
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LECTURE7A:DISCOVERING ALHAZEN'S
 

METHOD FOR OBTAINING
 

FGRIVIULAS TO +2^
 

This lecture describes an activity thai, ifcarried out to the extreme, may replace or ai the
 
very least enhance the remainder ofactivities in this set. Thus,two approaches may be
 
taken; 1)Students answer the first group ofquestions given below and then move on lo
 

activity number eight. Because ofthe "hands-on" experience here students vvill
 
be able to move through the subsequent activities more rapidly. They will also
 
have a greater "feel" and understanding ofwhat should be learned throughout
 
the activities..
 

2)Students in effect go to the extreme with this activity. They answer the firs: set
 
ofquestions and continue on to the second set with the overall objective of
 
finding a means to acquiring formulas for 1^ +2^+3 in terms of n
 
given any positive integer k.
 

Materials needed:	An.envelope containing the pieces to both the "k =^ 2,n=6" rectangle
 
and the"^=3,n=4" rectangle as shown below.
 

The"k=2,n=6" rectangle. Tj

Tl '- 3- '
 4'

k2.	 s
 

r.
)<• H-3
 

1 +■2*3-^'/ •s" .
 

The =2,n-4" rectangle. I,+ 2+3+V-'5'<-4
 

p tT 

Instructions: 
1) Take out the pieces in the envelope containing the "k = 2, n= 6" rectangle and 

assemble all of them to form a rectangle. There are several ways in which this 
can be done. The best way to assemble the pieces is the one that is most 
"organized." If students do not assemble the pieces in the most organized 
fashion right away, they will once they start answering some of the questions. 
The most "organized" way is illustrated above. 

2) Do the same thing as described above with the "k = 2,n= 4" rectangle. 

(continued next page) 
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QUESTIONS - GROUP I
 
1)What are the length, width,and area ofthe first rectangle assembled(the"k=2,n=6"
 
rectangle)in terms ofexpressions containing n and/or k or expressions written on the
 
smaller individual pieces(rectangles)?
 
2) What are the length, width,and area ofthe secondrectangle assembled(the"k=3,
 
«=6" rectangle)in terms ofexpressions containing n and/or k or expressions written on
 
the smaller individual pieces(rectangles)?
 
3)Whatdo the";t=2,n=5", "k=2,n=4","k=2,n-3","k=2,n^2",md
 
"k=2,n= 1" rectangles look like? Sketch the most organized version ofthese rectangles
 
on your own paper.
 

4)What does the "k=2,n =7" rectangle look like? Sketch this on your paper.
 
5)What dothe =3,n=3 "k=3,«=2","k=3,n= 1 "k=3,n=5",and
 
=3,7?=6" rectangles look like'^ Sketch the most Organized version ofthese rectangles
 

on your own paper.
 

6)What are the length, width,and area ofeach ofthe rectangles sketched in numbers
 
three through five above?Be organized in your approach to answering this question. Look
 
for patterns to develop. You wiU recognize patterns sooner ifyou write your answers in
 
terms ofexpressions containing « and'or k or expressions written on the smaller individual
 
pieces(rectangles)?
 

GROUP H:
 

1)What do the "A:= 1,77= I", "Ar=:l,n=2", U= 1,n=3","Ar= 1,n=4",and
 
"Ar= 1,n= 5*' rectangles look like? Sketch the most organized version ofthese rectangles
 
on your own paper.
 

2)What do the "A:=4,77^ I", "A:=4,«-2"."Ar=4,rt=3", "A:=4,>7=4",and ^
 
"A:=4,77=5".rectangles look like? Sketchthe,most organized version ofthese rectangles
 
on your Own paper.
 

rt
 

3)Use the"k= 1" setofrectangles to determine aformula for .To do this, you will
 

have to construct the "generalized" version ofa"k-1" rectangle, determine its length (/)
 

n
 

and width (■w) strictly in terms ofn, and note that appears twice inside the 
i=l 

n 

"generalized" version of the "At = 1" rectangle. Therefore, 2^/= (/)(w). 
. ' f=l . ■ 

4) Use the formula developed inproblem three along with the "A: = 2" set of rectangles 

(includingits "generalized" version) to devise a me^s for obtaining a formula for ^i'. 
5) Continue the recursive relationships established above to find formulas in terms ofn for 

Z'^ Z'';5 

ial jal i=l 
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ACTIVITY8; ALHAZEN'S GEOMETRICAL
 

APPROACHTOTHESUM OFTHE
 
FIRST « INTEGERS
 

1) b=__ h= A=_=(b)(h) = (1)(2) = 2(1) = 1 + 1
 

Draw one line segnent aside this figure to show that its area is 1 -i- 1.
 

2) b= h=__ A= = (b)(h) =(_J(_J = 2(1+2)
 
= (1 + 2) + (1 + _)
 

Insert the area ofeach inner rectangle to show that the area
 
ofthe briglnal rectangle is (1 + 2).+ (1 + 2).
 

':A =.(b)(h)=(_J(_)= 2(1 +2+ 3)
 

Draw the line segments required to show the area ofthis 
rectangle is (1 + +^ (__ + _ ■ 

HINT: The figure in #2 above should be contained in this
 
rectangle staning in the lower left corner.
 

4)Do this next case on your own paper by continuing the patterns established above.
 

5)Same instructions as
 

6)You may skip this problem and tr>', say, problem #9 and then "generalize" ifyou feei
 
you are ready. Ifyou find difficulties in your attempt to generalize,agood idea would
 
be to return to this problem, work through it, and refi-esh your memory ofthe patterns
 
involved here. The generalization procedure for Alhazen's geometrical^proach to the
 
sum ofthe first n integers is contained in the next activity. However,you should cry
 
this on your own before advancing.Good luck.
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ACTIVITY9:GENERALIZING ALHAZEN'S
 

SUM OFTHE FIRST nINTEGERS
 

b =
 

n)
 

h=
 

AREA = (b)(h) 	=( )(.
 

« (1 > 2 ̂ 3 - ... ^ )+(
 

2- * 2- - 22
1=_ 1=_ 1=_^
 

Does the geometrical method here verify further the algebraic result achieved earlier?
 
Why? "
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ACTIVITY 10:ALHAZEN'S GEOMETRICAI,
 

APPROACHTOTHESUM OF
 

THESQUARESOFTHE FIRST a:
 
INTEGERS;A WARM-UP
 

DIRECTIONS;Dmde each rectangie beiow in such a way so that the original:contains
 

smaller rectangles having areas Oj, a., a., etc.
 

1) 2)
 

a,=1, a,=I
 

a. =I, a,= 1^ , a.= I-f2, -2"
 

6=^ 1 ^2^:
 

3)
 

HINT:	The picture you formed
 
in number2above
 

should be inserted into
 

this rectangle.
 

— 1, cfj ~ 1 , — I^2^ ^4 —^ f
 

aj=l+2-f-3, aj-j^
 

30
 



4) Sketch a rectangle with an area of 5 units by _= 1"^—^ _and do as
 

a^=l, = 

you did on the previous page with: 

a,=1-2, 

= 1 2-r_, 

a,= 

a,
5 

a = ^ ~ 

5) On your own paper,sketch a rectan^e with an area of units
 
Ijy = + + + ^ ^d complete this next case by continuing the
 
patterns established above.Here we have
 

a,=1, cTj = a,=1+2, =2\
 

aj=l+2+_, as=3^, a,.= l+2^3+_, a,=4-,
 

a,=_+_+_+_+_. ^10 ~
 

6) Complete this case in the same manner as you did those above entirely on your own
 
paper.
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ACTIVITY 11:SUMMARY OFACTIVITY 10
 

NOTE; The problem numbers below correspond to the same problem numbers of
 
activity #10.
 

1) A= a,+a, = 1 +
 

2VA= at +gj+a,-t-g, = 1 + 1 - 2 ->• I*+2^
 

3) A= g,-Sg, +a^'-ira^+a^. = _ -i- +
 

4) A- Of+<33+__ +<3.7-^^2^—
 

= 1 + + + r +
 

= zi4
 
<=l li=T
 

5) Try doing this case in the same fashion as those above.
 

DIRECTIONS:Priorto continuing,go back to activity #10 and shade in all regions whose
 

area is represented by a natural number raised to the second power(i.e. l%2\3v,...).
 
Again,the problem numbers below correspond to those in activity #10.
 

1) A=(b)(h)-(1)(2)
 

2) A=(b)(h)=(3)(3)=(m)(3)
 

3) A=(b)(h)=(_)(_)=0+2-^(LJ
 

f * \
 
4) A=(10)(5)=(_ + _ + _ +_)(_J = +
 

7
 

5 \
 

5) A=C__J(_)=(_ + _ + _ + _ + _)LJ = Z'L+l)
 
\'=' J
 

6) Complete this case in the same fashion as you did those above.Do this below.
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ACTIVITY 12 ;THEGENERALIZATIONOF
 
AT.HAZEN'S GEOMETRICAL
 

APPROACHTO THE OF
 
THE OFTHEFIRST
 

INTEGERS.
 

DIRECTIONS;Fill in the blanks below as we carry-out problem 4 in activities 10 and 11
 
to its fullest extent.
 

4)
 

rihsert the'areas 1, 1+2, 1+2+3, 1+2+3+4, 1^,2^ 3\ and 4'into their proper
 
places above. Next,shade in the f,2\ 3% and 4^ regions. Note that the area ofthe
 
figure aboveis equalto its base times its height which in turn equals the sum ofthe shaded
 
regions plus the sum ofthe non-shaded regions.In other words(or symbols).
 

(b)(h) = £ shaded regions + 2non-shaded regions
 
THUS,
 

{i+2+3+4)(4+l)=(f+2^+3^+4^)+[(l)+(l+2)+(1+2+3)+(1+2+3+4)]
 

SNotethat ~t'-1(4+1)=!/'4^(14' 
I 

jsl y isl J tsl 

X ■*" 21'^'^ ̂  j (continued on the next page) 
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4 4 ^ ^
 

Lmmt 'J LmU O
 
l=i 1=1 ^ 1=1 ^ ;=i
 

=^ fi'=|t'' =^ i,==3t/=3ri(4)(4^l)

L 1=1 ^ 1=1 1=1 r=i L^
 

Can you think ofa quick "check"to the result above? Ifso,show it below.
 

ifactivity #11. Since
 

(b)(h) = Ishaded regions + £ non-shaded regions. We have, (l-i-2+3+4-t-5)(5-i-1)
 

=(l^+2-+3^ +4^+5^)+[(i)+(1-2)-(U2:+3)+(1+2+3+4)^(_+_+_+_+_)]
 

\^/=_ y /=1 \/=l \^k=l J J
 

\^/=l J \i=l 1.4
 /
 

(_)£/
 
/=! /=i
 

/ A 5 35
 

\ z Ji=i 47=1
 

5 5 f
f ^ 1
 
— ■ 

(_)(_+_)
=
 

7=1 V - y7=1 \ _ J
 
Assoon as you understand every step above, do case6and case n (i.e. generalize)in the
 
same manner as cases4and 5 above on your own paper.
 

" 1 1 1 1

SWhen doing problem n,you will want to prove that ^ i—n*+-n.
 

i=i 3 2 6
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ACTIVITY 13:ALHAZEN'S GEOMETRICAL
 

APPROACHTOTHESUM OF
 

THE CUBES OFTHE FIRST
 

n INTEGERS
 

Note that in obtaining a formula for the sum ofthe squares ofthe first n integers(end of
 
activity #12),the formula for the sum ofthe first n integers was used. In mathematics, this
 
is called a recursive relationship. When working through this activity, look for all the
 
familar patterns above to occur,including, eventually, the two formulas you have
 
discovered above.,•
 

DIRECTIONS;Divide each rectangle below in such a way so that the original contains
 

smaller rectangles having areas a,, a,, n,, etc.
 

1) Z)
 

a,= ,a,=1
 

Oj =1% <3, =r, a- = 1" +2^, =2*
 

a,=\\ a,=l% a3=l^+2^ a,=2\ a3=l^-f2-+3̂  ̂ 5=3^
 

4) Complete this case four here on your own in the same way as those above.
 

5) Complete this case and then skip to, say, problem 9,and complete its picture. Then try
 
to create aformulafor the sura ofthe cubes ofthe first n integers by "generalizing." If
 
you run into problems,go to the next activity. It contains the procedures required for
 
generalizing.
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ACTIVITY 14:THE GENERALIZATION
 
PROCEDURE FOR ACTIVITY 13
 

SNOTE; The problem numbers below correspond to the same problem numbers in
 
acivity#13. Also, prior to continuing,go back to activity #13 and shade in all ofthe
 
regions whose area is represented by a natural number raised to the third power.Keep in
 
mind too that
 

(b)(h) = S shaded regions Z non-shaded regions
 

1)b=l^ h=l+l A = Z shaded regions Z non-shaded regions
 

(P)(i+i)=i^+i^
 

2) b= l^+_^ h=_+l
 

(i^+2-)L+i)=iN_N(r)-(i'+2-)
 
Check your result above before continuing.
 

3) h~ h= 3+_
 

(l^+2^ +3^)(_ 4-1)= +2'+_^+ +
 

3 I 3 p
 
^Is^Look familiar?
I/'
 

/=1 ;=iv«=l y
V'=i y
 

4 )6=1^+2^+3^+4^,/j=4+1
 
f ( \ 

< I. z_
V=- J '■=- )
 

^Recall the formula for this: 

(continued on next page) 
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4-2 _ 4- -3 v/1 -3 1 -2 1 .'
 
/=1 i=l i=l 13 2 6
 

^ 4 / A 4 /^ A 4
 

= S'
 
;=1 /=! \_/'=l \—Ji=l V_y'=l
 

/ \ f \
 

=> tE' 
.3 

=
 2P'-? /=l VZJi^l V-y/=i
 

Complete this problem in the space provided below (i.e. Find )
 
/=1
 

y Does your solution obtained in the manner above equate to ?
 
/=1
 

3) Find 1^ +2^+3^+4^+5' usingthe same approach as number4above.
 

n) The general case! Prove l'+2''-^3'+:..+«' =—n*-¥—rf+—n^
 
4 2 4
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ACTIVITY 15:SUMMARY OF ALHAZEN
 

SUMMARY OF RESULTS TO DATE ;
 

Let Si be the sum ofthe k"" powers ofthe first n integers. Then 

O iSi =1"T2-T3+...-hn= ■ . 

© 52=1^t2^+3^+...+/7^=__
 

© J3=1^+2^+3^+...+/i^
 

O 	5,= !■*+2"*+3'^+...+«''= I«* ^——n 
^	 5 2 3 30 

A) 	Prove number 4 above using Alhazen's geometric method. 

B) 	^5, Sg,, and Sj can be written in terms of the formulas above as shown below. Use 
these equivalent expressions to determine formulas (in terms ofn only) for 
S^y Ss, and 57. You will need these formulas in subsequent activities. 

4 .3 1e 	Sy=-si--Si = 
; 3 ^ 3 ^ 

0 	S,=^S,(\2S^-6S,^\) = 

© 	ST= 2St-Ss = 
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ACTIVITY 16:SUMSOFSUMSAND
 

FIGURATE NUMBERS
 

A)List the first ten natural numbers: , , . , , ^ , , ,
 

B)The triangular numbers: These are obtained by summing the first n integers. Thus,the
 
firstten are 1, 1+2, 1+2+3, 1+2+3+4,..., 1+2+3+...+10. Write the first ten ofthese
 
below:
 

^TheformulaTor obtaining the n'^ triangular number is:
 

The set oftriangular numbers can be illustrated in the mannershown below.
 

••••• ETC.
 

G)The tetrahedral numbers: These are derived by summing the sums ofthe first n
 
integers.In other words,by summing the first n triangular numbers. The first ten are
 
1+3,1+3+ , + +6+10,..., 1+3+6+...+ . Write the first ten ofthese below.
 

The formula for deriving the n tetrahedral number is:
 

lll'l
 
1^.2 1^.
 
— }► / +— 7 / 

2%=1 ^ 1=1 

1 ^ ^ 3 1 2 1 V Ifl 2 1 

sir
 
— —n H— —n +—i
 

2 ^3 2 6 j 2V2 2 

(continued next page) 
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The set oftetrahedral numbers(sometimes called the pyramidal numbers)can be depicted
 
in the marmershown below.
 

D) The next set offigurate numbers along with their formula can be acquired by summing
 
the sumsofthe sums ofthe first n integers. That is, by summing the first n tetrahedral
 
numbers. The first ten are 1, 1 +4,1+4+ 10, etc. List the first ten below.
 

r> \ i(i ^
 
EXERCISE:Produce aformulafor these starting with 21X 2̂ 
 

/=1
 



ACTIVITY 17:CONCLUSION TO ALHAZEN
 

DIRECTIONS;Thefollowing is a continuation ofactivity 16. Make a mental note ofthe
 
results both here and in activity 16 since they will become very useful in future activities.
 

E) List the first ten numbers in the next set offigurate numbers below. You do not need
 
to develop the formula.
 

F) ConstructPascal's Triangle below.
 

G)Describe the relationship between Pascal's triangle and the previous activity.
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SET III
 

WALLIS'CHARACTERISTIC
 

RATIO OFINDEX A:
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ACTIVITY 18:ATT81PROGRAM NECESSARY
 

FORFUTUREINVESTIGATIONS
 

THEEVALUATEPROGRAM
 

Lbl 1
 

Disp"X"
 
Input X
 
Disp"Y="
 

Disp Y|
 

Goto1
 

This program will allow you to evaluate any function in the variable "x"for
 
any real number in the domain ofthe function. The key step involves entering the
 
expression in "x" as a function of Y, in the Y= part ofthe keyboard.
 

EXAMPLE
 

0^+r+2^+...+50r
 
Suppose you want to find the numerical value of
 

50'+50^+50'+...+50^
 

Using the forrnulas developed earlier, we know we can evaluate the following
 
fimction at X=50to obtain the desired solution.
 

Simply enter this into its proper place in the TI-81,run this program and, when the
 
"x-?" prompt appears on the screen, enter 50.You should immediately see
 

Y=.3366666667
 

This is the value ofthe ratio above. More importantly, you can now find the value
 

j;=((i/3)z'+(i/2)x'+(i/6)x)/(z'(;f+i))

X
 

2
 

2000
 

200,000
 

.5
 

-1
 

-5
 

-5000 ,
 

-50,000
 

0
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ACTIVITY 19: /fc =2
 

Consider the ratio ofthe form —r ; ;— t- when k=2.
 
w+rt +«+...+«
 

0^+i^ ( )
 © 	V^-=)4 when«=l
 
1+1 L)
 

^ 0^+1^+2^ () ^ ^
 
® 	— ; 7=/~. when rt=2
 

22+2'+2' ( )
 

^ 0'+l'+2'+3' (__) (_) ^
 
® 	— '—'= . . when A?=3


32+32+32+32 (_j (_j 

■ o'+l'+2'+3'+4' L_) (J . 
@ 	-r—-r ; ; T= =T-\ ^hen n=
 

4 +4 +4 +4*+4" ( ) (_)
 

0'+l'+2'+3'+4'+5' (__) (_J ^ ^
 (D —-— ^ when «=5
 
5'+5'+5'+5'+5'+5' ( J (_J
 

Atthis point ask yourselfwhether the answers above are converging to a non-zero limit.
 
List the decimal equivalents for your solutions to the problems above.
 

©	 ■ , ® . Q) • :, © " , © ■ : 

Use Alhazen's formula and a graphics calculator to find both the fi-actional and decimal
 
forms ofthe ratios given below. Hint: Use the"up" arrow on the calculator to bring back
 
previous expressions along with the "insert" button to insert O's when needed.The
 
"evaluate" program may also be very handy.
 

©	 
O'+1'+2'+3'+4'+5'+6' (_J
 
6'+6'+6'+6'+6'+6'+6' ( _)
 

0'+V+2'+3'+4'+5'+6'+7' _( _)
 
72+72+72+72+72+72+72+72-( y - •

0'+l'+2'+...+50' _ _
 
502+50'+50^+...+50' - •
 

©©© 
0'+l'+2'+,..+500? ( )
 

500'+500'+500'+...+500' (_ )
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ACTIVITY 19 -CONTINUED

O'+f+2'+...+2000'
 

2000-+2000'+2000'+...+2000'
 

0'+l'+2'+...+5000'
 
(D®®®
 

5000'+5000' +5000' i-5000'
 

At this time, do you believe that these ratios are approaching a limit asn increases?
 
Ifso, what do you think the limit is? _____ Now,it's time to generalize.
 

r \ r \ f \
 
- , + ;n
 

n) 
0'+l'+2'+...+n' v-y V —y
 

n' +«'+...+«'
 («=)(_+_)
 
''^HINT: Simplify the numerator
 
and then use long division.
 

AN ALTERNATIVE WAY TO OBTAIN THE SAMELIMIT
 

DIRECTIONS;Transfer the fractional form ofyour answers to the =2 casefor «= 1,
 
n=2,n=3, ..,n=7 into the spaces provided below. Then fill in the blanks.
 
ISINOTE:The problem numbers below correspond to those in the previous activities.
 

1_
Lii-U 1 , u
 
2 3 (J 12 3 (__) („_) 18 3 LJ
 

LJ (J i^L) LJ LJ 1 , (J

o (_J ~ 8 = 3''(_J e 

(__J ̂ (_J ̂  3'LJ
 

1 _ 1
 
-+ 0
 

3 ~3^
 

CONCLUSION: AS W—>00,
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ACTIVITY20:k=3,DECIMALAPPROACH
 

INVESTIGATING WALLIS'CHARACTERISTIC RATIO OFINDEX it = 3
 

n RATIO FROM 
0'+1^+2'+■■■+«' COLUMN AT LEFT 

AS A DECIMAL 

Q'+l' 
1' +1^ 

0^+1'+2' 
2^+2^+2^ 

0'+1^+2'+3' 
3'+3'+3',+3' 

0^+1^+2^+3'+4' 
4^+4^+4^+4^+4' 

Or+f+2^ +3'+4'+5'
 
.5'+5' +5'+5'+5'+5'
 

50
 
0'+l'+2'+...+50'
 

50'+50'+50'+...+50'
 
500 skip
 

5000 skip
 
50,000 skip;
 

500,000 skip
 
5,000,000 skip
 
50,000,000 skip
 

.5 billion skip
 
1 billion skip
 

n Use the space below to 
^0'+l'+2'+...+»'^ prove that this limit is 

lim 1/4.V^rt' +77' +«'+...+«' J 
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ACTIVITY 21:FRACTIONAL APPROACHTO
 

1=3
 

Without theformal theory we now have at our disposal to understand limit processes,
 
John Wallis could not"take the limit as n-> oo." So he argued that the characteristic ratio
 
ofindex k-1 was 1/4 in much the manner illustrated below.
 

n RATIO'S VALUE AS YOUR
 

0'+r+2'+...+«' AKEDUGED FRACTION
 

+n^ FRACTION IS 1/4^?
 

0^+l'
 

I'+l'
 

0^+1^+2^
 

2'+2'+2'
 

0^+r+2^+3'
 

3^+3'+3'+3'
 

O'+r+2'+3'+4'
 

4^+4^+4^+4^+4^
 

0^ ̂ -1^h-2^-»3^+4^ +5^
 

5'4-5'+5'+5'+5^+5'
 

50
 
, q5^^3^2^+...4.50^
 

50^+50^+50^+...4-50^
 

^0^4-U4-2^4-...+n^ "
 
GENERALIZE;Use the space below to prove that
 

n'4-n^ 4-«^4-...4-«^ 4
 

However,do this in such a way that the results obtained in the chart above are, at the
 
same time, verified. HINT:After substituting formulasfor the numerator and denominator
 
in the limit given above,there are two routes you can take: a)use long division or b)
 
absorb 1/4 into the limit, get a common denominator,and then carry outthe subtraction.
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ACTIVITY22:k = A
 

Complete the following chart.
 

k 2 3 4 5 ■ 6 7 8 9 

C.Ratio 

of 

index k 

make predictions here # iP' 

Verify your predictidn numerically for k= A below.
 

n SOLUTION SOLUTION YOUR
 

ASA ASA FRACTION
 
■ 4 4 4 4 

n +tr +«+...+« DECIMAL FRACTION IS
 

1
 
-+
 

5 

1
 

U+U
 

O^+U+2^
 
-+
 

5 

0^+r +.2r+3'''
 

21+2''+2^
 

1
 
-+
 

5 ■ 

1 

3"+3"+3"+3^
 

.^+^+2^+3^+4^
 

:44'^.4^+4++4^+4^ ,5 
-+



1
0VT'+2^+3^+4^+5^
 
-+
 

5 

0^+U +2V...+50'' , skip 
-+
 

5^+5''+5''+5^+5^+'5"
 

1
 

50^+50''+50''+...+50^
 5 

0^+U+2^+...+5000'' skip 
-+
 
1
 

5000^+5000V...+5000^
 5 

I
 

nV«VnV...+«^
 

oVU+2V...+wl skip -+
 

5 ■ 

Atthis time,it would be wise to take a step back to see ifthe it=0 and k=1 cases fit
 
the pattern that has been established in the k= 2,3, and 4cases. But first, make a
 
prediction as to what each characteristic ratio will be.
 

The C.R. ofindex k=0 will be and the C.R.ofindex ^=I will be
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ACTIVITY23: k=0 and k= I
 

ao^io ( y
 

® TTF"n"~
 

0°+l®+2° () u O

® -7; -——=7=-= when «=2
 

2°+2'+2° (J 

0°+I°+2'+3° (J . ,

0,-T—r r—--=7=7= when /j=3
30+30+30+30 (J 

0°+l°+2°+...+70° ( J .

0® —H n 3 ^"=7^^= when «='
 

70%70°+70V...+70° ( ) ~
 

o'^+l^+3^+...+«^ _ C+_)
 
rP +rfl•rn^+...+n^ (_+_)
 

CONCLUSION: The characteristic ratio ofindex A:=0 is
 

(T) 	 O'+l' (J u 1
 
TTr'n
 

2, 	5+2^ UO 2
 
2'+2'+2' (J L)
 

U=H when.=
 
3'+3'+3'+3' (__) .(_) ~
 

^ 0'+T+2'+3'+4' (_J (J ^
 
^ 	-1 i , , , =7=T-7=T when 71=
 4'+4'+4'+4'+4' ( ) (J
 

0+i'-i-2'+...+70' ;[—(—-^0] ( ) □ 
70'+70'+70'+...+70' (__)(70) ( ) (J 

„) 0' +1' +3' +...+«' _i(X+J .. U 
+„• 	+„' +...W (JL+J (J 
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ACTIVITY24:MOREON WALLIS'C.R.
 
SUMMARYTODATE
 

O Wallis'characteristic ratio ofindex^=0 is
 

O Wallis'characteristic ratio ofindex A-=1 is
 

© Wailis'characteristic ratio ofindex k=2 is _____
 

© Wallis'characteristic ratio ofindex A=3 is
 

O Wallis'characteristic ratio ofindex A=4 is
 

DIRECTIONS:Define Wallis'characteristic ratio ofindex k in your own words.
 

EXERCISES: Verily that yOur definition above holds true for k=5, k =6, and A-=7 by
 
justjumping to the general case and considering the limit as « approaches infinity. You
 
will want to return to activity 16for the necessary formulas. Show all your work below.
 

k - 5 ■ 

k - 6
 

k = 7
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LECTURE24A:	GROUP WORKON WALLIS'
 

CHARACTERISTIC RATIO
 

Group work to be initiated by instructor at this point in time in the investigations
 

Have students list questions, concerns, discoveries, and possible directions offuture
 
investigations. Have them answer how one might expand on what has been learned so far.
 
Have them list "what ifs."
 

Promising questions that might arise as a result ofthe
 
above exercise.
 

-formula for general case: —L?
 
k+\
 

-what happens when^is negative?
 

-what happens when^is a non-integer?
 

-can one change the interval by which each base in the numerator increases?
 

0'+3'+6'+...+(3/7)^
 
e.g. 

(3«f+(3n)U(3#+...+(3«)^
 
or
 

0»»(.!)'+(.2)'+...+(^o)'
 

Instructor's Response
 

-k negative orirrational will be taken care ofby Newton later in these investigations
 

-changing the interval does not affect the value ofthe ratio(simply factor out the change)
 

-k fractional "let's investigate-next activity"
 

-formula being —I—? This can be verified through the upcoming investigations.

k+\
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ACTIVITY 25:A TI-81 PROGRAM FOR
 

EXAMINING WALLIS'C.R.FOR
 

FRACTIONAL k
 

Program for securing decimal approjomations to ratios oftheform
 

0*'+1*+2''
 
, A:>0,
 

n''
 

:Lbl2
 

:0->X -A SAMPLESCREEN
 

:Disp"N" (n=20, A:=2/3)
 
:Input N
 
:0->S N
 

;LbH ?20
 

INDEXK=
 

:IS>(X,N) ?2/3
 

:Goto 1 APFXSUM=
 

:Disp"INDEX k=" .594367346
 

rlnput k . N
 

:S/(N^-K(N+1))-»R 9
 

:Disp"APPXSUM="
 
:DiSp R
 
:Goto2
 

SNOTES ABOIJT THISPROGRAM
 

® Before running this program,you must enter the general term ofthe numerator in
 

0''+1''+2*-h...+ff^
 
into Y■^ (graphing portion of the calculator) as a fenctionpf x. 

+.n*
 

(i.e. let for our example above) 

® The loop created with "Lbl 2" and "Goto 2" allows you to continue running this 
program for different values of n. T0 escape, you must "quit." 

® A nice feature includes what is displayed on the screen after one run, viz. everything 
needed. A sample screen after a run with n= 20 and k ~ 2/3 is illustrated above. 

® WARNING! A run with n = 10,000 and ^=2/3 takes about 10-13 minutes 
depending on the freshness of the batteries. 
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LECTURE25A:INVESTIGATING RATIONAL k
 

INSTUCTOR'S NOTES;
 

-Hopefully students have realized that Alhazen's formulas will not help in the
 
generalization to cases where k is not a whole number.Thus,the need for the TI-81
 
program in activity 25.
 

-The chart in activity 26 is me^tto be completed by groups ofstudents assignedjust part
 
ofthe chart. Each group gets a different part and then reports solutionstoeach ofthe
 
other groups as they are attained.
 

-The chart in activity 26 should be completed in 1-2 class periods.
 

-The following is a"generic" investigation worksheet, meant to be completed with each
 
new k.
 

GENERIC INVESTIGATION WORKSHEET 

Group names: ■ 

k= Prediction ofthe characteristic ratio ofindex k: 

n DECIMAL
0'+l'+2'+...+«'
 
APPROXIMATION
«^(«+l)
 

1
 

2
 

3
 

4
 

5
 

10
 

100
 

1000
 

10,000(optional)
 

%Beaware that this may take awhile.
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ACTIVITY 26:INVESTIGATING RATIONAL k
 
k Initial Best appx. obtained{n) Actual C.R,of Initials of
 

Prediction index A: students
 

0 I class
l(«->oo)
 

1/5
 

1/4
 

1/3
 

2/5
 

1/2 .599898605(«=1000)
 

3/5
 

2/3 '
 

3/4
 

4/5
 

1 1/2. class
1/2[n-^x)
 
6/5 .
 

5/4
 

4/3
 

7/5
 

3/2 ,4G10022229(/i=100)
 

8/5
 

5/3
 

; 7/4:
 

•V ;9/5 :
 
■■:.i/3.v classl/3(«-» x)
 

; -li/S' . .
 
9/4
 

7/3
 
12/5
 
5/2
 
13/5
 

8/3
 

11/4
 

14/5
 

3 . classl/4(w —>• x) 
7/2 
4 classl/5(«—>• x) 

9/2 
5 classl/6(«->x) 

11/2 
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LECTURE26A:OBJECTIVES(CHECK-UP)
 

MAIN OBJECTIVE OFINVESTIGATIONSINTO JOHN WALLIS'C.R
 

To have students realize that the formula for John\iVallis' characteristic ratio ofindex k
 

(it>0and rational) is 1/(^+1) and that this relate diiectly back to
 

Ix''dx, and more generally to x^(h —
|-

n n • k -¥ \
 

SECONDARY OBJECTIVES
 

1)Students discover that the aboveis true V^>0([without proof)

2)Students investigate k=Q or ̂ <0 using their program and realize this creates an
 
"error" in the calculations. This can be remedied by storing .1 into X(line 2ofprogram)
 
instead of0. Students who have discovered that Wt.His' characteristic ratio ofindex k
 

relates directly to the area under the curve from x=0 to x= 1 may realize this on
 
their own.That would befantastic!
 

3)Students recognizethat when 0<k< 1 ,approjcimations come from below,and viee
versafor k>
 

ASSIGNMENT
 

Assignment to find out ifthese objectives have beer met(and anything else that may have
 
been discovered):
 

Write a 1-3 page essay outlining anything discovered or even suspected in
 
relation to these investigations.
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LECTURE26B:HOW WALLISTIED HIS
 

CHARACTERISTIC RATIOTO
 

AREA UNDERTHECURVE A'
 

DEFINITION;WaUis'characteristic ratio ofindex^is the ratio ofthe area under r*(or
 
for that matter, under ac^ V c 0)to the area ofthe rectangle containing the curve.
 
e-g-


Area under curve = 2/5
 

Area ofrectangle= I
 

Ratio = 2/5
 

e.g. The complement(inverse)of
 

Area under curve=3/5
 

Area ofrectangle=1
 
S
 

Ratio- 3/5
 

e.g. e.g.
 

-i.
 

1 H
 

Area under curve=4
 
■■ 

Area ofrectangle=4
 

Area under curve=(^ Ratio= 1
 

Area ofrectangle=2^
 

Ratio = 2/5
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LECTURE26C:HOW WALLIS VIEWEDTHE
 

CONCEPT OF AREA
 

(INTEGRALNOTATION WAS
 
NOTATHISDISPOSAL)
 

e.g.
 

n=5
 

y=r"
 

k=2
 

Wallis' notion ofarea wastaken from Cavalieri; That area is the sum ofan infinite number
 
of parallel line segments.The length ofthe six line segments erected above(the first
 

segment is the one at0,length is 0',the second is at.2,length is .2', etc.), when
 
summed,yield the numerator ofWallis'chai'acteristic ratio.
 

i.e. 0'+.2^+.4-+.6^+.8'+l^=.2'(0^+l-+2'+3^+4^+5-) ,
 
The sum ofthe lengths ofthe six segments correspondingto the above segments which
 
make up the rectangle the curve lies within is
 

: 1'+1^+1^+1^+1^+1^ =:2^(5':+5-f5^+.5-+5^+5^,):
 
Thus,the ratio ofthe^ea under the curve(appro?dmated since n=5)to the area ofthe
 

. .2'{0^+l'+2'+3'^4'+5') _
 
proper rectangle is —77-7— ' , ' ——rrr»-36

^ ^ .2'(5'+5T+5t:+5'^5'+5')
 
The students will recognize how this concept can be directly related to the modem-day
 
concepts offinding area under a curve(i.e. inscribed and circumsribed rectangles).
 

EXERCISES(based on material covered in the previous two lectures):
 

A)Choose two different characteristic ratios and their respective indices for each ofthese,
 
show a result like that whiOh was shOvr-n in Lecture 26B.
 

B) Explain why negative indices will not work in the situation presented in lecture 26B.
 

C)	Show how the ratio ofthe area ofany right triangle with base b and height h to the
 
area ofthe rectangle with base b and height h is 1/2 using Walliis' conceptofarea.
 

D)	Choose a curve and its complement and do with each what was done in the example
 
above.For each curve,let«-8.
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ACTIVITY27:CONCLUSION TO WALLIS'
 

CHARACTERISTIC RATIO
 

HOW WALLIS'CHARACTERISTICRATIO OFINDEX k=2 CANBE USED TO
 

SHOWTHATTHE VOLUMEOF APYRAMID IS 1/3 OF THEBOXTHAT
 

CONTAINS IT.
 

DIRECTIONS:Build the following using sugar cubes. Then continue the pattern on your
 
own until you run out ofsugar cubes.
 
O VOLUME OFPYRAMID : VOLUME OFBOX
 

1 : 1
 

e
 

ZZ7
 

r-+2' • 2'+2'
 

1^+2^+3' : 3'+3'+3'
 

O 	You can picture the drawing in your head
 
far better thanI can draw it.
 

CONCLUSIONS.
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WALLIS'REPRESENTATION
 

OF 71 AS ANINFINITE
 

PRODUCT
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ACTIVITY 28:Curves ofthe form(l
Background notes and summary;
 

After extensive work with the formulas derived by AJhazen and the ratio
 

0'+1"+2"
 
and, after determining that the value ofthis ratio as n gets large tends
 

Ic k k k
 

to — John Wallis had the confidence that he could solve the age-old problem of
 
^+1
 

"squaring the circle." That is, he felt that he could use his notion ofcharacteristic ratio
 

along with interpolation to derive a constructible value for -Jk ,one which would allow
 
for the construction with ruler and compass ofa square having the same area ofa circle
 

with, say, radius equal to one.Note that if were constructable,then one could
 
duplicate the area ofthe unit circle by constructing a square whose sides each measured
 

Wallis knew that to solvethis problem, he would have to find the area ofthe unit
 
circle. It should be noted here that the method for approximating a given circle's area
 
employed by mathematicians at this time was that which was developed by Archimedes in
 
the third century EC.Enhanced by Eudoxus,it became known as the''method of
 
exhaustion." For nearly two thousand years,mathematicians failed at their attempts to
 
"square the circle" using the Greeks'method ofexliaustion. Wallis felt he had a fresh
 
approach to this problem and began his venture by considering the equation ofthe unit
 
circle, namely,
 

X'+y^=1.He decided to work with afamily ofcurves represented by the equation
 

y=(l-x^'y.Observe that the upper halfofthe unit circle(p =q = 1/2J is one member
 
ofthis family.
 

EXERCISE 1: Sketch various members ofthe family ofcurves discussed above for whole
 
number values of p and Limit the portions ofthe curves sketched to the unit square
 
and be "organized," as a code breakerwould be,in your approach to the sketching of
 
these curves. Write your observations concerning this activity in the space below.
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ACTIVITY29:EXPANDING
 

The mostimportant observation which should have been made in the previous activity is
 

the fact that y=(l- is symmetric to y=(l-x^'^ about the line y=x. Did you
 
happen to make this observation? Ofcourse,symmetry with respect to the line
 
y-X occurs for graphs ofinverse functions,so a good exercise is to check that
 

>'=(l-x''')''-and y= are inverse fiinctiOns. Just solve one ofthese forx in
 
terms ofy,interchange the variablesjc andy,and you have the other. Wallis also realized
 
the symmetry that occurs when positive whole number values of p and q are
 
interchanged. This led him to the development ofthe following chart(the directions for
 

4
1 2 3 ' 5 ■ 6 7 8 9p
 

1
 

2
 

.3- .
 

5
 

6
 

7
 

8
 

9
 

In the previous set ofactivities, you learned that Wal!is'characteristic fatio ofindex k is
 

1 0''+\''+2''+ +rj
, and this repesents the value ofthe ratio ^ —-j———-j.as n approaches
 

At+1 n' +«*+..+«"
 
infinity. You also learned, as he did,that this characteristic ratio is directly related to the
 

ratio ofthe area under the curve y=x'' to the area ofthe rectangle containing the curve.
 

(continued next page)
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With these ideas in mind, Wallis filled in the grid above with values which represented the
 

ratios ofthe areas under the curves 7=(l-x'^)'' to the areas ofthe rectangles
 
containing them.He did this using algebraic expansion on curves where/? is a
 
natural number. The manner in which Wallis determined the values to be entered in the
 

chart is illustrated below.
 

Consider the curve >'=(l-x''')^ where ^=3 and/»=2. Then,via expansion,
 

y=[\-x^') =l-2x^+x^=lx°-2x^+x^.Wallis claimed that the ratio ofthe area
 
under this curve to'the area ofthe rectangle that contains it could befound by summing
 
the characteristic ratios ofeach term in the expansion. Thus,the desired ratio is
 

1 times the characteristic ratio of x"
 

minus2times the characteristic ratio ofx^
 
plus 1 times the characteristic ratio of x^.
 

1 ^J'] r 1 ^ r
 
That is, 1 +1
[o+lj U+v
 10
 

DIRECTIONS;Complete the chart on the previous page row by row,beginning with the
 
q=i row,using the method ofe?:pansion employed by Wallis as illustrated above.
 
^Keep an eye outfor pattenis. Ifyou recognize one,say, by the time you get to the
 
/?=4columni feei free to skip the expansions requiredfor the p~5,/>-6,and p-7
 
colunms, predict a value for the /»=8column,and then verify your prediction through
 
expansion.
 

13Please note that you are not expected to carry out all 64expansions in the chart. The
 
sooner you recognize a pattern,the less work you'll have to do.In fact, you will recognize
 
the desired patterns more quickly ifyou invert the values obtained by expansion.
 
Therefore,for the example above,the entry which should be placed in the q=3, p=2
 
box is 10 rather than 1/10.
 

Finally, make a list below ofanv patterns you recognize as you carry out the expansions
 
and enter the values representing the characteristic ratios ofthe curvesoftheform
 

7=(l-X''^)'' into the chart.
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LECTURE29A;	WHY WALLIS'METHODOF
 

EXPANSION WORKS
 

EXAiMPLE; y=(l-	 =\x°-2x^'i-x''
 

lengths of77 parallei line segments drawn to curve
 

lengths of77 parallel line segments making up rectangle
 

1-1i 1-1
 
77/
 

iV+H+r+...+r
 

V-2 + - +r-2- + +1-2 - + - .+r-2
n)
 

l^+l'+l^+...+l^
 

+l2+l2+,..+i2 2(0^ +1^ +2^+...+7r'^) 0-'' + +2^+.■■+77^ 
1^+1^+l^+...+l^ /7^+77^+77^+...+77''' 77"'+77^'+77^'+...+77 

=1-2 ^ 1+ - ^ 
}/, + \J K+1 

~ 10 
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ACTIVITY 30;ABANDONING AREA NOTION
 

IN FAVOROFINTERPOLATION
 

Due to the fact that Wallis was incapable ofexpanding the expression (l- for
 
fractional values ofp,he wasforced to abandon this method for finding characteristic
 
ratios ofthese curves in favor ofinterpolation.
 

DIRECTIONS:Use the patterns developed in the foregoing activity along with
 
interpolation to complete as much ofthe chart(located on the next page)as possible.
 

EiYou may wantto return to activity #16 to obtain the formulas necessaryfor correct
 
interpolation. Keep in mind the symmetrical features ofthe chart and be aware ofthe
 
slight twist that is required prior to using the formulas from activity #16. An example
 
follows:
 

The known entries ofthe q=2 row are 3,6, 10, 15,21, 28, 36,45,and 55. It
 
was established earlier in these activities that these are the "triangular numbers."Thus,it
 
would make sense to employ the formula for the /rth triangular number,which is
 

—^ —.However,3 is the 2n(i;trimgular number,and it is situated in the p= 1 column.
 
2
 

Also,6 is the 3rd triangular number,situated in the p=2 column. Hence,to get the value
 
required in the p-2 cplunm ofthe q -2 row,one would need to use
 

4=p+l in the formula in order to obtain the 4th triangular number.Further,
 
2 ■ . . 

to get the value required in the p =^4 column ofthe q =2 row,one would need to use
 

n(n+l)

5=p+ 1 in the formula — in order to obtain the 5th triangular number. Once
 

2
 

more,to get the value required in the p=5 column ofthe q =2 row,one would need
 

to use 6=p+ 1 in the formula in order to obtain the 6th triangular
 

number.Thisis the "slight twist" discussed above. More importantly,to find the value of,
 
say,the q=2,p=5/2 entry, one would need to use 5/2+ 1 =7/2 asn in theformula
 
given above. This yields 63/8 as a solution, which is the proper value for the q=2,
 
/?=5/2 box in the chart.
 

IMPORTANT:The exact fractional solutions to entries in the chart are necessary for
 
future interpolations. You do not need to reduce the fractions. In fact, reducing will only
 
make it harder to recognize patterns.
 
^Ifyou would like to check your solutions as you complete the chart on the next page,
 
you may use the "integral" program designed for the TI-81 calculator. This program is
 
also on the adjacent page.
 

64
 



Program for checking the entries to the chart below;
 

Prgm:AREA
 

:0
 

1->B
 

Lbl 1
 

Disp"N" '
 

Input N
 

.5(B-A)/N->H
 

0-»M
 

0->K
 

Lbl2
 

A+(2K+1)H X
 

M+2HY, M
 
IS>(K,N-1)
 

Goto2
 

Disp"MIDPT APPXTO
 
Disp M
 
Goto 1
 

This program uses"midpoint approximations" to
 

I
 

approximate the definite integral J/(x)c& where
 
0
 

/(x)= for any particular/? and .
 

JS	NOTE:The curve whose area is being
 

approximated must be entered into Y, ofthe
 
graphing portion ofthe calculator.
 

^AJso note that entries in the chart below represent
 
reciprocals ofthe actual area under the curve over
 
the interval from0to 1 on the x-axis. Be aware of
 

this fact when you do decide to check an entry in
 
the chart with this "area" program.
 

AREAIS"
 

CHART IS LOCATED ON THENEXTPAGE
 

In the space below, write down any patterns, methods,orformulas used to determine
 
missing entries.
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p 0 1/2 1 3/2 ■2 5/2 3 7/2 4 9/2 5 

0 

1/2 

1 • 2 ■3 4 5 6 

3/2 

2 ' 3 ■ 6 10 15 21 

5/2 

:■ : 4 10 , 20 35 , V 56 

7/2 

4 ^ ,5 ■ 15 35 70 126 

9/2 

5 6 21 56 126 252 . 
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ACTIVITY 31: SUMMARY OFRESULTS
 

0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5
p
 

0 1 1 1 1 1 1 1 1 1 1 1
 

10395 !
 

% 3840
3/ 15/ ^%4
 
1/2 1 /2 7%
 

3/ 5/ v 9/ 11/

1 1 /2 2 /2 3 /l 4 72 5 72 6
 

3465 45045
315/
35/ 384 3840 ■5/ 748
3/2 1 /2 /s
 

15/ 35/ 63/ 99/ 143/

2 1 /8 3 /8 6 78 10 78 15 /s 21
 

9009 135155


63/ 693/
 
384 3840
7/ 748
5/2 1 /i /8
 

1287 2145
105/ 693/

48 48


748 /48
3 1 4 10 20 35 56
 

1287 19305 32S185 ■

9/ 99/
 48 .384 3840
 
7/2 1 /l /8
 

3465 9009 1930S 36465
945/
 
384 384
7384 384 384
 

4 1 5 15 35 70 126
 

2145 36465 692835 ,


143/ 48 3840 '
 . 384
 
9/2 1 / /8
 

■ i 
10395 45045 135135 328185 692835 

3840 3840 . 3840 3840 3840
 

5 1 6 21 56 126 252
 

SOMETHINGTOPONDER; Try your best at answering the following questions.
 
Whatshould the plan ofattack be from here on? What do the bold-faced numbers
 
represent? Why is it possible for I's to exist across the^=0 row and down the/?=0
 
column? Will arithmetic average work to get the entries for any remaining boxes? Which
 
box represents the reason all this work in the chart was undertaken in the first place?
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ACTIVITY 32:ATTACKINGTHE 1/2 ROW
 

How did you do in answering the questions at the end ofthe previous activity?
 

A)What should the plan ofattack be from here on?
 
ANSWER:	Try to get the solutions to the first two empty boxes in the q= 1/2 row.
 

Ifthis can be done,then because ofthe symmetry and the fact that each
 
entry in the table is the sum ofthe entries ofthe boxes two up from and
 
two to the left ofthe one in question,the entire chart can be affected.
 

B)What do the bold-faced numbers represent?
 

ANSWER:The'entries ofPascal's Triangle, Turn the grid 45° clockwise and you will
 
notice Pascal's Triangle.
 

C)Why is it possible for I's to exist in both the first row and column ofthe chart?
 
ANSWER:	When p=0,the curve is constMt line y= 1 since anything to the 0th
 

power is 1. Thus,the ratio ofthe area ofthe rectangle to the area under
 
this curve is 1. When q=0,one must consider the limit ofthe curve
 

j-(l- as q --> 0.Try seeing what this curve approaches as q
 
approaches0for some fixed/7>0 using your TI-81 calculator. Describe
 
your observations below.
 

D)Will arithmetic average work to get the entries for any remaining.boxes?
 
ANSWER:No.This breaks downimmediately in any row or column with missing
 

entries.
 

E)	Which box represents the reason all this work in the chart was undertaken in the first
 
place?
 
ANSWER: The p=q = 1/2 box.It's the box that depicts the ratio ofthe area ofthe
 

unit square to the area ofone-fourth ofthe unit circle. Whatis this ratio?
 

ISI Wallis did not know the answer to question C.He simply applied his interpolation
 
scheme and concluded that both the first row and column must Contain I's because of
 
patterns developed through expansion.However,he did know the answerto questionE
 
(along with the others).Because the area ofa circle wasknown to be at this time,
 
Wallis knew that the ratio ofthe area ofthe unit square to the area ofone-fourththe unit
 
circle was 4/u. Butremember that his goal wasto find an exact valuefor this ratio, so
 
that the problem of"squaring the circle" could be resolved once and for all. Thus,he
 
continued interpolating in the manner illustrated on the next page.
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Wallis used the symbol□ to represent the value of the p-q=\ll entry in the 
chart. He then realized a pattern which existed in the q= 1/2 row and this in turn led to 
the filling in of the remaining boxes, each in terms of □. Take a close look now at the 
q = 1/2 row below and see if you can spot the same pattern Wallis did. 

1 3 15 105 985□ 
1 2' 8 48 384 

DON'T LOOK BELOW UNTIL YOU "GIVE UP" ON TRYING TO ESTABLISH A 
PATTERN ABOVE! Hints follow, but the goal has to be to uSe as few of the hints below 
as possible. 

HINT#1 

What do you multiply by to get from one known entry to another? Try your best on 
finding all the unknown entries above given this hint before moving on to the next hint. 

HINT #2 

Row q=\l2 can be changed to 

1 1-3 1-3-5 3-5.7□
 
1 1-2 1.2-4 2-4-6
 

HINT #3 

1 3 15 105 985□
 
1 2
 8 48 384 

To get fi"om the first box to the third box, one must multiply by 3/2. 

To get from the third box to the fifthbox, one must multiply by /4. 

To get from the fifthbox to the seventh box, one must multiply by 7/ . 

To get from the seventh box to the ninth box, one must multiply by _/_ 

(continued next page) 
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HINT#4
 

I 3 15 105 985□ 
1 2 8 48 384 

To get from the first box to the third box, one must multiply by 3/2. 

To get from the second box to the fourth box, one must multiply by / .
 

To get from the third box to the fifth box, one must multiply by 5/4.
 

To get from the fourth box to the sixth box, one must multiply by _/_.
 

To get from the fifth box to the seventh box, one must multiply by 7/6.
 

To get from the - box to the box, one must multiply by _/_.
 

To get from the seventh box to the ninth box, one must multiply by / .
 

0 T/2 1 3/2 2 5/2 3 7/2 4 9/2 5P 

0 1 1 1 1 1 1 1 1 I 1 1 

1039515/ 105/3/ 7481/2 1 □ /2 Id 78 
3840 

3 

3/ 5/ V 9/
1 1 /2 2 72 3 72 4 72 5 •7 6 

3465 45(045
3ISA 384 38405/ 7483/2 1 72 % 

35/ 63/ 99/
2 1 3 78 6 78 10 78 IS 21 
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ACTIVITY 33:THEDAWNBEFORETHE
 

DIRECTIONS:Complete the table below. Recall that each entry is the sum ofthe entries
 
two boxes up from and two boxes to the left ofthat particular entry.
 

p 0 1/2 1 3/2 2 . 5/2 3 7/2 4 9/2 5
 

7
 

0 1 1 ■ 1 1 1 1 1 1 1 1 1 

10395105/ iin 945/ mn3/ 748 35 " /384 315 " 3840 

1/2 1 □ /2 /% 

3/ 5/ V 9/
2 3 4 5 61 1 /2 /2 /2 700 

450453465iin5/ !-□ 35/ ■ 15 *-• 384 3840 

3/2 1 /2 /8 

15/00 63/ 99/ 143/
2 I /s 3 6 78 10 78 15 78 21 1 

o 

9009 135135 :fD iin 63/ 693/
384 3840V 15 " 

5/2 1 /2 /8 748 

1287 2145 
48 48 

10 748 20 35 56 13 1 4 
. 

1287 19305 328185 ' iin 
48 384 384035 " 99/

!7/2 1 % /8 
r 

3465 9009 19305 36465945/ 384.7384 384 . 384 384 
4 1 5 15 35 70 126 1 

2145 36465 692S35 

48 384 3840313 143/
9/2 1 'K 78 

328185 69283510395 45045 135135 

5 1 6 21 56 126 
3840 

2523840 3840 3840 3840 . 
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ACTIVITY 34:THESQUEEZE
 

It's time to take a deep breath and realize that you are about to conclude activities with 
John Wallis'scheme that, quite arguably,,conquered the infinite. The only task left undone 
is that which determinesthe value of □.Now, as stated earlier, Wallis knew that the 
valueof □ was 4/7t. However, he was one of the best "code breakers" or 
"cryptographers" of the 1600's. The chart unraveled here was a code to him, a code which 
was on the verge ofbeing broken. Thus, Wallis was not about to dispose of all the work 
done to get this far in the table and settle for □ being 4/7t. He wanted to find out the 
value of □ using the skills ofpattern recognition, interpolation, induction, and 
generalization that had worked to get him this far. Wallis was determined to find □ in his 
own unique way and the brilliant manner in which he did this is the goal of this activity. 

Since this interpolation scheme arguably conquered the stranglehold the Greeks' "horror of 
the infinite" had on the matheniatieal world, let's pay one final tribute to early Greek 
mathematics by using Greek letters to name the entries of the q= Ml row. A carefully 
constructed list of these is required to understand the steps necessary for finding □. Thus, 

a = 1 DIRECTIONS: 
Continue the list constructed in column one by finding 

= □ the next four entries in the space provided below. 

3 

s= -n
 
3 ■ C" — : : ' '
 

e = 11 = — A = —8 2-4 

24_ 4-6 
(b = —□ = —

15 , 3-5 ■ 

^ 105 ^ 3-_-7 
^ 48 2-4- ^ 

Ilia = ±=:= 
105 • -7 

= 211 = 
^ 384 2- • • 

1920
t = □ = 

945 
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The critical observation that must be made at this time lies in the fact that the sequence
 

a,P,X, 5, s, (p, r, T], I, K, X,n, V, o, 7t, m, $, p, cr, g, t, o, co, if/, 
is monotonically increasing. This means that a < P, P ^ < <5', <? < e,. . . 
Therefore,an entry in terms of □ can be "squeezed" between the entries on each side 
of it. The "squeezing" of O follows. 

SQUEEZE #1 

1 < □ < 
2
 

SQUEEZE #2 

3 ^ 3-5 3-3 ^ ^ 3-3-5 
— < —□ < —- > < □ < 
2 . 3 2-4 2-4 2-4-4 

^via multiplying through by 4/3^ 

SQUEEZE#3 

3-5 4-6 _ 3-5-7< —- □ < ^ ' < □ < 
2-4 3-5 2-4-6 

SQUEEZE #4 

3.3.5.5.7.7 ^ ^ ^ 3-3-5-5-7-7-93-5-7 4-6-8_ 3-5v7-9 
< < 

■ •4-6 3-5-7 2-4-6-8 2-4-4-6-6-8 2.4-4-6-6-8-8 

4>0N YOUR OWN; Complete the next five "squeezes" on □. Then, try to put together 
an argument as to what the value of □ must be. You will have to picture carrying out the 
squeezing process to infinity. Look for a way to argue that □ must be between two 
fractions that are equal, since a < b < c and a = c implies b = a = c. The key to this 
involves the fact that something tends to 1 as you go farther out in the "squeezing" 
process. A way to see just what does tend to 1 is by focusing on the factor by which the 
two numbers surrounding □ differ. Finally, the value of □ will be an infinite product. 
More specifically, it will be a fraction where both the numerator and denominator are 
infinite products. 
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LECTURE 34A:Tc AS ANINFINITEPRODUCT
 

Ifwelook closely at the fourth squeeze,
 

3-5-7 4-6-8„ 3-5-7-9 3-3-5-5-7-7 _ 3-3-5-5-7-7-9
 — < ——□ < -> — — < □ < — ,
 
2-4-6 3-5-7 2-4-6-8 2-4-4-6-6-8 2-4-4-6-6-8-8
 

it is easy to see that the two fractions which surround □ differ by a factor of 9/8. After 
carrying out the subsequent "squeeze," it will be easy to see that the fractions surrounding 
□ differ by a factor of 11/10. Next, they will differ by a factor of 13/12. The factor by 
which the two fractions on either side of □ differ approaches 1 as the "squeezing" 
process is taken to infinity. Therefore, 

3-3-5-5-7*7-9-91Ml

2-4-4-6-6-8-8-10-10-12- . . . 

^,'2-2-4-4-6-6-8-8- . . .V . , . , . „
rr = 2 —^ . since it was already known that □ = 4/jt:.

' 1-3-3-5-5-7-7-9- . . . i 

This representation of ft as an infenite product was the first of its kind. It bears John 
Wallis' name and is the benclimark ofhis notoriety. Wallis' explorations into the realms of 
the infinite with uncanny analytic tactics led to increased attention being given this 
methodology. In turn, attention shifted away from the much more burdensome, 
geometrical means for understanding infinite processes. Although the results obtained here 
by Wallis were not formally proved until the nineteenth century, they had a profound 
effect on Sir Isaac Newton. 

Newton modeled Wallis' interpolation procedure in his discovery of the binomial series. 
He too was not able to prove his results rigorously. However, the mere discovery of the 
binomial series played a profound role in substantiating the use of infinite series as a tool 
for working with infinite processes and limit theory. The set of activities that follow wiU 
take you throughNewton's interpolation scheme. 

One final note about Wallis' investigations hinges on the frequently unexpected nature of 
mathematical invention^ Wallis began his mystical and very original interpolation scheme 
with the confidence that he could either prove or disprove the problem of"squaring the 
circle." Though he could not accomplish this goal, the discoveries afforded him in his 
quest are certainly no less valuable. 
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SET V
 

NEWTON'SDISCOVERY OF
 

THEBINOMIAL SERIES
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ACTIVITY 35: NEWTON AFTER WALLIS
 

In 1661, at nineteen years ofage,Isaac Newton read John Wallis'ArithmeticaInfmitorum
 
and subsequently began a venture that, by 1665,led to his first mathematical discovery of
 
lasting significance. This wasthe formulation ofthe binomial series illustrated below.
 

a (o^ a(a-i)- ... -(a-n-i-l)

(l+x)"=1+ where
 

vC n\
 

Influenced by Wallis'interpolation technique and, at the same time fixistrated by
 
geometrical rqeans by which to calculate the area under a hyperbola,Newton extended
 
Wallis'table to the.negative side with confidence that he too could utilize Wallis'
 
methodology and effectively devise a way to obtain area under a hyperbola.He
 
constructed a table similar in design to Wallis', but which instead depicted the area brought
 
on by each term following expansion.For brevity, let's use modem notation for areas
 

under curves represented by expressions oftheform y=(l+r)''.
 

* X .
 

0) J(l+i)°cff = \\dt = - = 1
 
n 1
 

_ X X'
 
1) ~
 T^T
 

/ 2\ ' 3

X 1 X
2) J(l+/) i/f — J(l+2/+ ~ —^2 = -
+2vtJ'-t
n 1 1
 

3\ 4
t ft'] 
X

= 

X
X
 

— —+3 +—
 
J''1+3


1 I bJ 4 T Tj
0
 

The area under the curve (l+if is ofcourse dependent on the choice of x.But
 

without regards to x, we can say that the area under this curve is 1 times thejX term,
 

X^ X^ ■ ■ x^ 
plus 3 times the — term,plus 3 times the — term,plus 1 times the — term.
 

Continue this sequence ofproblems by completing the cases where /?=4, p=5,and
 
p=6,and then finish the right side of Newton's chart shown in the next activity.
 
Remember that entries in the chart are the coefficients for the terms in the area expressions
 
derived after definite integration.
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ACTIVITY 36:NEWTON'S TABLEFOR(1+x)^
 

DIRECTIONS; Complete the right side ofthis chart by determining the coefficients ofthe
 

2 3 ^
 

terms brought on by definite integration of[(!+/)''£// with /?=4,S, and 6.
 
1 2 3 0
 

Next, note that the p=-1 column represents the area under a hyperbola — This is
 
I+X
 

' ■ . X' • 

the curve Newton was having trouble with. Just what is the value|of (1+f)'di ?
 
0 ■ 

Yes,you're correct, it is In(l+x). But this fact was unknown to Newton.So instead, he
 
recognized that the columns ofhis table were the diagonals ofWallis'table and,
 
consequently,that each entry is the sum ofthe entry to the left ofit and one up fi"om that
 
one.Now use this binomial pattern offormulation to fill in the empty boxes on the left side
 
ofthis chart. Before doing this however,you must assume, as Newton did,that the entire
 
top row remains constant at 1.
 

p -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

term 

1 1 1 1 1 1 1 

X 

T 
0 1 2 3 4 5 6 

V 

2
 

0 0 1 3
 

x^
 

T
 
0 0 0 1
 

£l
 
4
 

0 0 0 0
 

£l
 
5
 

0 0 0 0
 

fl
 
6
 

0 0 0 0
 

7
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LECTURE 36A: NEWTON'SCHART
 

With the completion ofthe chart below,Newton was s.ble to formulate an expression for
 
the area(by way ofplacing coefiGcients on respective terms in the table) under the
 

1 X' x'* x^ X® xJ ■ 
hyperbola , namely, for x > 0, area = x-— —+y-—+y--

1+x 2
 

We now call this area function the naturallogarithm o^(1+x).Following much detailed
 
work with this area function, Newton realized its logantmic properties and thtis it could be
 
used to manufacture tables ofcommonlogarithms.
 

-6 -5 ■ -4 -j -2 -I 0P
 

term
 

1
 

X
 

T
 
-5 -4 -3 -2
 

X
 

T
 
21 15 10 10 15
 

X
 

T
 
-56 -35 -20 -10 10 20
 

X
 

T
 
126 70 35 15 15
 

X
 

T
 
-252 -126 -56 -21 -6 21
 

X
 

T
 
462 210 84 28 28
 

X
 

T
 
Having addressed and then solved the problem offinding area under a hjiperbola through
 
the extensive work done here, which allowsfor the ̂ area under any
calculation ofthe 


member in the family ofcurves denoted by (l+x)' for any integer/*,Newton engaged
 

himselfin the same family ofcurves attacked by Wmlisin his q-1/2 row,that is,
 

([l-x^j').He concerned himselfwith areas over tde interval [l-x^,l]and,fî om
 
continually returning to Wallis'work on characterise ratios together, with an ingenious
 
way to determine solutions to missing entries by solving a system oflinear equations
 
composed fi'om known entries, he was able to constuct the table shown onthe next page.
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LECTURE 36B:A NEW WAYTOCALCULATE%
 
p 

term -1 -1 

2 

0 
1 

3 

1 

2 

2 

3 

'l 4 

3 

3 

2 

5 

3 

2 

X 

T 
1 1 1 1 1 1 1 1 1 1 1 

3 

-1 -1 

2 

0 1 

3 

1 

2 

2 

3 

1 4 

3 

3 

2 

5 2 

5 

1 
3 

8 

■ 0 -1 

9 

-1 

8 

-1 

9 

0 2, 

9 

■, '3 
S 

■ ... 5 

9 
1 

7 

-1 -5 

16 
0 5 

81 

3 4 

81 
0 -4 

81 

-I 

16 

-5 

81 
0 

£l 
9 

I 35 

128 
0 -10 

243 , 

-15 

384 

-7 

243 
0 , 5 

243 

. . , .3. , 
128 

V; 5 

243 
0 

: -x" 
11 

-1 -63 

256 
0 22 

729 

105 

3840 

14 

729 
0 -8 

729 ■ 

-3 

256 

-7 

729 
0 

Withthis table allowing for the computation of area under over [l-x^,l], 
letting X = 1 and using thep = 1/2 column yields a new way to calculate 7t, since 

AREA of over [0,l] = AREA of the portion of the unit circle in quadrantI 

1Y-1 15 fiosY-i' 945 1 
= 1+ +

Us, 384 I3840a"11 46080 A13 

=l-i-^ 1 TT 

6 40 112 1152 2816 4 

^ [ 6 40 112 1152 2816 
Checking that this series does indeed converge t0 7t gave Newton the satisfaction that his 
interpolation scheme for finding area under a curve was correct. This triggered a search 
for a way to ease the burden of tabulating entries in the columns ofhis chart row by row. 
This search in turn leads Newton to the discover of the formula for the binomial 
coefficient which is the focus of the subsequent activity. 
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ACTIVITY 37:NEWTON'S p= 1/2COLUMN
 

With the p= 1/2 column ofhis(l-x*)'' chart(which again contains entries that
 
represent coefficients,of the terms ofthe row they are situated in,for formulating area
 
expressions), Newton Concentrates all his energies on finding a pattern. What he found is
 
shown below. Carefully follow the patterns being developed and fill in the blanks as you
 
g ■ 

ROW COEFFICIENT
 

X 1 ■ ' ;: . 

T 1 

1
 

2.
3
 

-1 _ 1 _ 1 0-1-2)

T 8 2 (J 2 2-2
 

3 _ 1 -1 1 (1-1-2) (l-2u)
 
7 48 2 4 (J 1-2 _-l 3-2
 

-15 1 -I -3 (-_) _ T (1-1-2)(l-2-J {l-_-2)
 
9 384 2 4* 6 {_) 1-2 V.;2 3-2
 

' ■ 

105 I -1 -3 (-_) (-_) _ 1 (1-1-2) (l-2-J (l—2)(_-4-_)
 
3840 2 4 6 (_) (_J 1-2 _-2 3-2 5-2
 

-945 _ 1-1—2 _5^_7(_^ = Carry this out on your own.
 
13
 46080 2 4 6 8 10
 

10395 _ 1 = Dothisonyour
 
15 645120 (J (J (_) (J 10 (_J (_J
 

own.
 

Note again that the patterns devised above are for the p = 172 column ofNewton's
 

(l-x^)'.Then,move on to the next activity which involves the />= 1/3 column ofhis
 
chart. Keep an eye outfor how the change from p— 1/2 to p — 1/3 affects the patterns.
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ACTIVITY 38:NEWTON'S p=\l'i COLUMN
 

DIRECTIONS: Carefully follow the patterns being established in the chart below and fill
 
in the blanks as you go along. CAUTION:Some fractions in this chart are reduced.
 

ROW COEFFICIENT -

X \ 

1 1 .... 

1 ■ . . ■ 

3 3 

-1 1 -2 _ 1 (1-1-3)
£l
 
5 9 3 6 1-3 2-3
 

z£l 5 1 -2 (-_) _ 1 (1-1-3) (l-2-_)
 
7 81 ~ 3" 6 () 1-3 _-3 3-3
 

£l -10 1 -2 -5 (-_) 1 (1-1-3) (l-2-_) (l-_-3)
 
9 243 3 6 9 ( ) l-_ _-3 4-3
 

- -x"
 22 1 -2 -5 (-_)(- ) 1 (1-1-3) (l-2-_) (l-_-3)(_-4-_)
 
11 729 3 6 9 ( ) ( ) 1-3 _-3 3-3 5-_
 

-154 1 -2 -5 -8 -11(-—) _ (Carry this out on your ow-n)
 
13 6561 3 6 9 12 15
 

-x'^
 374 1 (-_)(-_).(--).-11. ^ ^ = (On your ownl
 
15
 19683 ()( ) ( ) ( ) (__)( ) (--)
 

In the space below,write down what you believe was the effect ofchanging from the
 
p= 1/2 column to the p= 1/3 column.
 

81
 



 

 

 
 

 
 

 

ACTIVITY 39:NEWTON'S p=2/3 COLUMN
 

DIRECTIONS;Carefully follow the patterns being established in the chart below and fill
 
in the blanks as you go along. CAUTION;Some fractions in this chart are reduced.
 

KUW
 

X 1
 

1 1 — —
 

-x'
 U"
 
3 1 ) •
 

-1 2-1 2 (2-1-3)
 
5 9 3 6 1-3 2-3
 

4 2 -1 (-_) _ 1 (2-1-3)(2-2.J
 
7 81 3* 6 (_) 1-3 _-3 3-3
 

£l -7 2 -1 -4 (-_) _ 2 (..-1-3) (2-2-_) (2-^-3)
 
9
 243 3'6'9 "( ) l-_ _-3 4-3
 

2 -1-4 (-_)(-__) _ 2 (2-1-3)(2-2-J :(2-_-3)(„~4-J 
11 729 " 3* 6'9 ■( J (__) 1-3 _-3 3-3 5-_ 

x'^ -91 _ (_) -1-4 -7 -10 (- = ? (Carry this out on your own)
U 6561 3 " 6 ' 9 ' 12 " 15 (_ 

-x'^ 208 (_) (-_) (-J (-J - ? (On your own)
15 19683 " (_)■ (_) ■ (_) (--) ( 

In the space below, write down what you believe was the effect of changing from the
 
p = 1/2 column and/or the p= 1/3 column to the p= 2/3 column.
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ACTIVITY 40;NEWTON'S p=3/5 COLUMN
 

Yes,I realize that this column is not displayed in the chart, but let's attack it anyway.

DIRECTIONS;Carefully follow the patterns being established in the chart below and fill
 
in the blanks as you go along. CAUTION;Some fractions in this chart are reduced.
 

ROW COEFFICIENT
 

X ^ .
 
1 1 ^ ^—— —
 

z£l (_) •
 
3 (_)
 

-3 3 -2 3 (3-1-5)
 
■ 5 ■ 25 5 10 1-5 2-5 

-7 3-2 (-_) _ 3 (3-1-5) (2-2-J
 
7 125 5 10( ) 1-5 _-5 / 3-5 : /
 

x' -21 3 -2 -7 3 (3-2-_) (3-_-5)
 
~9 ~ I'To'tJ ( ) i-_ :4-5:
 

-x" ( ) 3-2-7 -12 (-_„) 3 (3-IO L--2-J (3--5)(_-40
 
11 5' 5 10 15( ) LJ 5 _-5 3-5 >_
 

( ^ ^ --^ = (do this on your own)

13 2-5' 5 10 15 20 25 (__)
 

Now,complete a similarly designed chart for Newton's p-6/7 column on your own.
 
Then,do the exact same thing for Newton's p =xr'y column.
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ACTIVITY 41:NEWTON'SFORMULAFORTHE
 

BINOMIAL COEFFICIENT
 
NEWTO"N'S = COLUMN
 

TERM COEFFICIENT
 

1
1st
 

1
 

X ■ _2nd
 

y
 

X x-y
3rd
 

y '^y
 

4th x x-y x-ly
 

y 2y 3>/
 

X x-y x-2y x—Zy
5th
 

y , ly :Zy 4y
 

X x-y x-2y x-Zy x-4y
6th
 

y 2y Zy 4y 5y
 

DIRECTIONS:Let n = — and use your algebraic skills to get each ofthe coefFicients
 

X -'iy 3 n-Z
 
in the chart in terms of n. Hint:
 

4>' 4;; 4 44 4
4^^ 4^ 


Ifthis exercise is done correctly, you should wind up with the general binomial
 
coefficients. That is,the coefficients ofthe terms created during binomial expansion of
 

(a+A)", n being a rational number. Ifyou wish to check your work,you should be able
 
to find the Binomial Thereom in any algebra textbook.
 

This culminates our work with Newton's creation ofthe binomial series. However,of
 
paramount significance is the lasting,result ofthese investigations. Commencing with
 
Wallis'daring numerical approaches to working with infinite processes,leading to
 
Newton's extension to negative exponents ofWallis'interpolation scheme,and coming to
 
a head with the discovery ofthe binomial series,the"horror ofthe infinite" that so
 
impeded the Greeks was exiled forever. AsBoyer said,Newton"had found that analysis
 
by infinite series had the same inner consistency, and was subject to the same generallaws,
 
asthe algebra offinite quantities"([b], p. 432).One final comment is that this work for
 
Newton,in large part influenced byJohn Wallis, as we have seen,became the catalyst with
 
which he would later generate his version ofthe calculus.
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