
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2018

SOCIAL NETWORK FOR SOFTWARE DEVELOPERS SOCIAL NETWORK FOR SOFTWARE DEVELOPERS

Sanket Prabhakar Jadhav
California State University - San Bernardino

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Jadhav, Sanket Prabhakar, "SOCIAL NETWORK FOR SOFTWARE DEVELOPERS" (2018). Electronic Theses,
Projects, and Dissertations. 782.
https://scholarworks.lib.csusb.edu/etd/782

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/782?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

SOCIAL NETWORK FOR SOFTWARE DEVELOPERS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfilment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Sanket Prabhakar Jadhav

December 2018

SOCIAL NETWORK FOR SOFTWARE DEVELOPERS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Sanket Prabhakar Jadhav

December 2018

Approved by:

Dr. Owen Murphy, Advisor, Computer Science and Engineering

Dr. Kerstin Voigt, Committee Member

Dr. Yunfei Hou, Committee Member

© 2018 Sanket Prabhakar Jadhav

iii

ABSTRACT

This project is the design and implementation of a web-based message

board for software developers. The purpose of “Social Network for Software

Developers” is to connect inexperienced software developers with experienced

software developers.

iv

ACKNOWLEDGEMENTS

I would like to express my special thanks of gratitude to my advisor, mentor

and supporter Dr. Owen Murphy for giving me guidance and knowledge throughout

this project. I would also like to thank Dr. Kerstin Voigt and Dr. Yunfei Hou for being

the committee members and for their valuable advice and support.

Lastly, this master’s degree has been made possible not only through the

financial support but most importantly the moral support of my parents --- thank

you!

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ...iv

LIST OF FIGURES .. vii

CHAPTER ONE: INTRODUCTION

Background .. 1

Existing System ... 2

CHAPTER TWO: SYSTEM ANALYSIS

Proposed System .. 3

System Requirement Specification .. 4

Server Requirements .. 4

Software Requirements ... 4

Software Used ... 5

Reactjs .. 5

Nodejs Framework .. 5

Axios ... 5

Mongodb and Mlab ……………………………………………… 5

Authentication …………………………………………………7

CHAPTER THREE: SYSTEM DESIGN

Uml Diagrams .. 8

Use Case Diagram .. 8

Data Flow Diagram ... 9

Sequence Diagram ... 11

vi

CHAPTER FOUR: SYSTEM TESTING

Testing Documentation .. 12

Unit Testing ... 12

User Acceptance Testing .. 12

Test Result .. 13

CHAPTER FIVE: SYSTEM SCREENSHOTS

System Working ... 14

Landing Page .. 14

Developers Options ... 16

View Profile ... 17

Login ... 18

Sign-Up ... 19

Form Section ... 20

Delete Information ... 22

Post Section .. 23

CHAPTER SIX: FUTURE ENHANCEMENTS

Future Project Development .. 24

Better Password Management .. 24

Online Tutoring.. 24

Job Openings. ... 24

APPENDIX: CODE FOR THE LOGIN SECTION ... 25

REFERENCES ... 44

vii

LIST OF FIGURES

Figure 1. Mongodb connection to Mlab using Mongoose to build tables. 6

Figure 2. Mongodb connection to Mlab .. 6

Figure 3. Demonstration of Passport working mechanism 7

Figure 4. Use case diagram for new users ... 8

Figure 5 Data flow diagram for login and registration .. 9

Figure 6. Data flow for the post feed ... 10

Figure 7. Sequence diagram for update user profile ... 11

Figure 8. Landing page for the web application. ... 14

Figure 9. Screenshot displayed when a user clicks on the developers option. ... 16

Figure 10. Display profile picture of the user .. 17

Figure 11. Display the login screen. ... 18

Figure 12. Sign up screen for new users .. 19

Figure 13. Add experience form ... 20

Figure 14. Add education form ... 21

Figure 15. Information about deleting account.. 22

Figure 16. Illustration of the post section .. 23

 1

CHAPTER ONE

INTRODUCTION

Background

This project is the design and implementation of a web-based message

board for software developers. The purpose is to connect inexperienced

developers in computer science with experienced developers to learn coding in a

short amount of time.

• In “Social Network for Software Developers”, beginners in Computer

Science who are struggling with computer programming can get help from

senior developers.

• Authenticated users can express their views on each message with the

help of comments. Every post has like and dislike options. So, without

reviewing all the comments, the user can reach a solution based on the

number of “likes on comment”.

• This application is protected with functions like login facilities and

authentication routes. (Authentication routes refer to the routes that only

certain users can access based on their authentication status)

• The project will help users create a portfolio. With the help of this portfolio,

users may obtain future internship and job opportunities.

 2

• With the use of all the features, “Social Network for Software Developers”

can help aspiring developers to save time in computer programming.

Existing System

Many new software developers who are struggling with problems and

questions have few alternatives for help. Stackoverflow is a site to connect

developers, but before posting questions, new users must first answer questions.

Codementor and Chegg are alternatives, but they require a paid subscription.

 3

CHAPTER TWO

SYSTEM ANALYSIS

Proposed System

The application begins at the home screen. If the user doesn’t have an

account on this website, the user can view the summary profile of the existing

developers. From the home page, the user will get two options either sign-up or

login.

• If any developer is signed up at the website, he can add a profile picture

with his status, his company and his location.

• The user can also link all his social profiles. Furthermore, he can add his

summary of a profile and he can add his programming skills sets of

programming. Also, the user can add work experience.

• There is also a section for education. If the user is taking any classes from

any school or any boot camp, he can add this to his profile.

• If a valid user is logged in to his profile, he can edit his profile and add

or delete experience and education.

• In the post section all the developers can post their comments. Any

developers who have any questions can add comments in this section and

then other developers can help to solve their issue.

 4

• In the post sections, developers can like or dislike the comments of other

developers’ posts. Developers can also delete their personal comments

from the post section.

System Requirement Specification

“The System” needs to have the following hardware and software

requirements to run the application.

Server Requirements

• Heroku – Website server.

• Mlab – Database server

Software Requirements

• Heroku account

• Reactjs

• Nodejs

• Axios

• Mongodb and Mlab

The user only needs a workstation with a browser to access the website.

 5

Software Used

Reactjs

Reactjs is a Javascript library for building web interfaces. It is used to

develop single page applications. When the user visits the website, it downloads

Javascript code into the browser which then runs in the browser. The user

doesn’t need to go a server for every page.

Nodejs framework

Nodejs is an open source development platform for

executing Javascript code server-side. Nodejs is useful for developing

applications that require a persistent connection from the browser to the server

and is often used for real-time applications such as chat, news feeds and web

push notifications.

Axios

Axios is a promise-based HTTP client that works both in the browser and

in a Nodejs environment. It basically provides a single API for dealing

with XMLHttpRequests and a node’s http interface.

Mongodb and Mlab.

Mongodb is the frontend database program used in this project. It

connects to the database Mlab. The program mongoose is used to create a table

schema at Mlab.Mongodb is a database system that allows you to store

https://www.theserverside.com/definition/JavaScript
https://searchwindevelopment.techtarget.com/definition/browser
https://searchunifiedcommunications.techtarget.com/definition/real-time-application-RTA

 6

documents with a dynamic structure. These documents are saved inside a

collection.

Figure 1. Mongodb connection to Mlab using Mongoose to build tables.

When the user fills an HTML form, Mongodb saves all the information with

the help of Mongoose. This data is stored in JSON format (JSON stands

for Javascript Object Notation and it’s a data format. JSON is a way to hold bits

of information, like a database.). Once the schema is created, Mongodb then

connects directly to the Mlab storage engine for queries and updates.

Figure 2. Mongodb connection to Mlab.

 7

Authentication

 AXIOS

Figure 3. Demonstration of Passport working mechanism.

• Passport is a program that accepts login credentials from an HTML form

and accesses the database.

• When the user filled out any form, it generates a token (which contains

user information) and sends it to the database.

• After receiving the token from passport package, the database verifies that

information and redirects the user to the login page. In any case, if the

token information does not match, then the user will be redirected to the

home screen.

Client/HTML

form
Server/Database

Passport-

JWT

 8

CHAPTER THREE

SYSTEM DESIGN

Uml Diagrams

Use Case Diagram

A use case diagram help to understand what will happen on each

event. With the help of the use case, we can find out the series of operaion.

In the use case, developer can create the overview of project working in the

form of diagrams.

Figure 4. Use case diagram for new users.

 9

Data Flow Diagram

The data flow diagram represents how the data flows in the system. It also

provides a detailed description of each system component. The following are the

data flow diagrams for the Login and Registration.

Figure 5. Data flow diagram for login and registration.

 10

Figure 6. Data flow for the post feed

 11

Sequence Diagram

In Sequence Diagram, object interactions are arranged in time sequence.

Here in this case, objects and classes involved in the scenario and the sequence

of messages exchanged between the objects needed to carry out the

functionality of the scenario. Sequence diagrams are sometimes called event

diagrams or event scenarios. A sequence diagram shows with a parallel vertical

lines, different processes and objects that live simultaneously in those lines. In

the horizontal arrows all the messages are exchanged.

Figure 7. Sequence diagram for update user profile.

 12

CHAPTER FOUR

SYSTEM TESTING

Testing Documentation

In software testing, we can find how computer software will operate. In

testing, the developer checks the entire software for errors and corrections.

Sometimes, the developer checks the individual part and sometimes the

developer checks the whole system at once. Git bash is a software uses for

testing a part of the computer. There are different routes are available in

Software Testing, but I only used a couple of routes here.

Unit Testing

Software Testing can be performed in different ways. Each part is checked

several times for errors and corrections. Software developers use Unit Testing

every day. Different automation tools used at the end of the day to check whether

things are working as mentioned in the scripts. Some organization brings a

couple of parts of the software’s together for testing. This can be done in several

times. That is another type of testing which is called Module Testing. Module

Testing is not included in this project.

User Acceptance Testing

 13

In User Acceptance Testing, all the parts of the software are tested

together. Before delivering this application to a client, developers check all the

part whether they are performing as mentioned in the script. If a client checks the

application, he can check all the parts are working properly as demanded. User

Acceptance is the most widely use testing in the organization. User Acceptance

is mandatory in all the organization. This is a good practice for successful

application deployment.

Test Results

This project has been tested with the tests mentioned above in the section.

During developing the software, I have tested this application for different errors

and corrections. There are no problems are found in this application.

 14

CHAPTER FIVE

SYSTEM SCREENSHOTS

System Working

Landing Page

Figure 8. Landing page for the web application.

In the above picture, the user can see the landing page of the “Social

Network for Software Developers”. Every user, whether signed up or not, will

land on this web page.

 15

As shown, on the right side, there are two options Sign Up and Login. On

the left side, there is a home button (connector) and a Developers button.

If the user clicks on ‘Developers’ button, then all the developers who are

signed up will be listed.

 16

Developers Option

Figure 9. Screenshot displayed when a user clicks on the developers’ option.

As shown, any user who has not signed up can access this option. This is

the only option non-users can access. The developers who are already signed

will be listed here.

 17

View Profile:

Figure 10. Display profile picture of the user.

 18

Login

Figure 11. Display the login screen.

On the right-hand side, if the user clicks on the Login option, they will be

redirected to this webpage. Only users who have signed up will be able to login.

 19

Sign-Up

Figure 12. Sign up screen for new users.

When a user wants to join, he can choose the sign-up option. The user

needs to fill in all the information. After that, the user will be redirected to another

form which will ask about their personal information and professional information

which will be saved as the user’s profile.

 20

Form Section

After signing up, the user will be required to complete forms for

Experience and Education

Figure 13. Add experience form.

 21

Figure 14. Add education form.

 22

Delete Information

Figure 15. Information about deleting account.

As shown in the above picture, if the user is signed up, in the dashboard

section the user can see all his information which he has added to this

application. The user can also delete the information which he filled out.

Furthermore, at any point of time the user can go ahead and delete his account

by clicking ‘Delete my account’.

 23

Post Section.

After logging into the application, the user will be seen one more option

‘Post Feed’.

Figure 16. Illustration of the post section.

An authenticated user can post his questions and the other users can

reply to the post. There is an option for like and dislikes. With the help of this

option, other users can find out which is the best answer. Moreover, if any user

posts a question, then he can go back and delete that post.

 24

CHAPTER SIX

FUTURE ENHANCEMENTS

Future Project Development

Better Password Management

• Passwords will expire after a certain period of time.

• Old passwords cannot be re-used.

• Passwords must have a specific “Strength” to be used

Online Tutoring

A feature where senior developers can tutor other users on-line will

enhance this project.

Job Openings

With this feature, aspiring developers can explore job opportunities.

25

APPENDIX

CODE FOR THE LOGIN SECTION.

26

CODE FOR THE LOGIN SECTION.

import React, { Component } from 'react';

import PropTypes from 'prop-types';

import { connect } from 'react-redux';

import { loginUser } from '../../actions/authActions';

import TextFieldGroup from '../common/TextFieldGroup';

class Login extends Component {

 constructor() {

 super();

 this.state = {

 email: '',

 password: '',

 errors: {}

 };

 this.onChange = this.onChange.bind(this);

 this.onSubmit = this.onSubmit.bind(this);

 }

 componentDidMount() {

 if (this.props.auth.isAuthenticated) {

27

 this.props.history.push('/dashboard');

 }

 }

 componentWillReceiveProps(nextProps) {

 if (nextProps.auth.isAuthenticated) {

 this.props.history.push('/dashboard');

 }

 if (nextProps.errors) {

 this.setState({ errors: nextProps.errors });

 }

 }

 onSubmit(e) {

 e.preventDefault();

 const userData = {

 email: this.state.email,

 password: this.state.password

 };

28

 this.props.loginUser(userData);

 }

 onChange(e) {

 this.setState({ [e.target.name]: e.target.value });

 }

 render() {

 const { errors } = this.state;

 return (

 <div className="login">

 <div className="container">

 <div className="row">

 <div className="col-md-8 m-auto">

 <h1 className="display-4 text-center">Log

In</h1>

 <p className="lead text-center">

 Sign in to your DevConnector account

 </p>

 <form onSubmit={this.onSubmit}>

 <TextFieldGroup

29

 placeholder="Email Address"

 name="email"

 type="email"

 value={this.state.email}

 onChange={this.onChange}

 error={errors.email}

 />

 <TextFieldGroup

 placeholder="Password"

 name="password"

 type="password"

 value={this.state.password}

 onChange={this.onChange}

 error={errors.password}

 />

 <input type="submit" className="btn btn-info btn-

block mt-4" />

 </form>

 </div>

 </div>

 </div>

30

 </div>

);

 }

}

Login.propTypes = {

 loginUser: PropTypes.func.isRequired,

 auth: PropTypes.object.isRequired,

 errors: PropTypes.object.isRequired

};

const mapStateToProps = state => ({

 auth: state.auth,

 errors: state.errors

});

export default connect(mapStateToProps, { loginUser

})(Login);

 import React, { Component } from 'react';

import PropTypes from 'prop-types';

import { withRouter } from 'react-router-dom';

import { connect } from 'react-redux';

31

import { registerUser } from '../../actions/authActions';

import TextFieldGroup from '../common/TextFieldGroup';

class Register extends Component {

 constructor() {

 super();

 this.state = {

 name: '',

 email: '',

 password: '',

 password2: '',

 errors: {}

 };

 this.onChange = this.onChange.bind(this);

 this.onSubmit = this.onSubmit.bind(this);

 }

 componentDidMount() {

 if (this.props.auth.isAuthenticated) {

 this.props.history.push('/dashboard');

 }

32

 }

 componentWillReceiveProps(nextProps) {

 if (nextProps.errors) {

 this.setState({ errors: nextProps.errors });

 }

 }

 onChange(e) {

 this.setState({ [e.target.name]: e.target.value });

 }

 onSubmit(e) {

 e.preventDefault();

 const newUser = {

 name: this.state.name,

 email: this.state.email,

 password: this.state.password,

 password2: this.state.password2

 };

33

 this.props.registerUser(newUser, this.props.history);

 }

 render() {

 const { errors } = this.state;

 return (

 <div className="register">

 <div className="container">

 <div className="row">

 <div className="col-md-8 m-auto">

 <h1 className="display-4 text-center">Sign Up</h1>

 <p className="lead text-center">

 Create your DevConnector account

 </p>

 <form noValidate onSubmit={this.onSubmit}>

 <TextFieldGroup

 placeholder="Name"

 name="name"

 value={this.state.name}

 onChange={this.onChange}

 error={errors.name}

34

 />

 <TextFieldGroup

 placeholder="Email"

 name="email"

 type="email"

 value={this.state.email}

 onChange={this.onChange}

 error={errors.email}

 info="This site uses Gravatar so if you want a profile

image, use a Gravatar email"

 />

 <TextFieldGroup

 placeholder="Password"

 name="password"

 type="password"

 value={this.state.password}

 onChange={this.onChange}

 error={errors.password}

 />

 <TextFieldGroup

 placeholder="Confirm Password"

 name="password2"

35

 type="password"

 value={this.state.password2}

 onChange={this.onChange}

 error={errors.password2}

 />

 <input type="submit" className="btn btn-info btn-block

mt-4" />

 </form>

 </div>

 </div>

 </div>

 </div>

);

 }

}

Register.propTypes = {

 registerUser: PropTypes.func.isRequired,

 auth: PropTypes.object.isRequired,

 errors: PropTypes.object.isRequired

};

36

const mapStateToProps = state => ({

 auth: state.auth,

 errors: state.errors

});

export default connect(mapStateToProps, { registerUser

})(withRouter(Register));

import React, { Component } from 'react';

import PropTypes from 'prop-types';

import { connect } from 'react-redux';

import TextAreaFieldGroup from '../common/TextAreaFieldGroup';

import { addComment } from '../../actions/postActions';

class CommentForm extends Component {

 constructor(props) {

 super(props);

 this.state = {

 text: '',

 errors: {}

 };

 this.onChange = this.onChange.bind(this);

37

 this.onSubmit = this.onSubmit.bind(this);

 }

 componentWillReceiveProps(newProps) {

 if (newProps.errors) {

 this.setState({ errors: newProps.errors });

 }

 }

 onSubmit(e) {

 e.preventDefault();

 const { user } = this.props.auth;

 const { postId } = this.props;

 const newComment = {

 text: this.state.text,

 name: user.name,

 avatar: user.avatar

 };

 this.props.addComment(postId, newComment);

38

 this.setState({ text: '' });

 }

 onChange(e) {

 this.setState({ [e.target.name]: e.target.value });

 }

 render() {

 const { errors } = this.state;

 return (

 <div className="post-form mb-3">

 <div className="card card-info">

 <div className="card-header bg-info text-white">

 Make a comment...

 </div>

 <div className="card-body">

 <form onSubmit={this.onSubmit}>

 <div className="form-group">

 <TextAreaFieldGroup

 placeholder="Reply to post"

 name="text"

39

 value={this.state.text}

 onChange={this.onChange}

 error={errors.text}

 />

 </div>

 <button type="submit" className="btn btn-dark">

 Submit

 </button>

 </form>

 </div>

 </div>

 </div>

);

 }

}

CommentForm.propTypes = {

 addPost: PropTypes.func.isRequired,

 auth: PropTypes.object.isRequired,

 postId: PropTypes.string.isRequired,

 errors: PropTypes.object.isRequired

};

40

const mapStateToProps = state => ({

 auth: state.auth,

 errors: state.errors

});

export default connect(mapStateToProps, { addComment

})(CommentForm);

import React, { Component } from 'react';

import { connect } from 'react-redux';

import PropTypes from 'prop-types';

import { deleteComment } from '../../actions/postActions';

class CommentItem extends Component {

 onDeleteClick(postId, commentId) {

 this.props.deleteComment(postId, commentId);

 }

 render() {

 const { comment, postId, auth } = this.props;

 return (

41

 <div className="card card-body mb-3">

 <div className="row">

 <div className="col-md-2">

 <img

 className="rounded-circle d-none d-md-block"

 src={comment.avatar}

 alt=""

 />

 <p className="text-center">{comment.name}</p>

 </div>

 <div className="col-md-10">

 <p className="lead">{comment.text}</p>

 {comment.user === auth.user.id ? (

 <button

 onClick={this.onDeleteClick.bind(this, postId,

comment._id)}

 type="button"

 className="btn btn-danger mr-1"

 >

42

 <i className="fas fa-times" />

 </button>

) : null}

 </div>

 </div>

 </div>

);

 }

}

CommentItem.propTypes = {

 deleteComment: PropTypes.func.isRequired,

 comment: PropTypes.object.isRequired,

 postId: PropTypes.string.isRequired,

 auth: PropTypes.object.isRequired

};

const mapStateToProps = state => ({

 auth: state.auth

});

export default connect(mapStateToProps, { deleteComment

43

})(CommentItem);

44

REFERENCES

[1]. Reactjs (2013). Reactjs Introduction [Online].

Available: https://Reactjs.org/docs/getting-started.html

[2]. Node.js (2017). Node.js Guides [Online]

Available: https://Nodejs.org/en/docs/guides

[3]. Node package manager (2016). Npm services [Online]

Available: https://docs.npmjs.com/

[4]. Mongodb (2018). Document-Oriented Database Program. [Online]

Available: https://docs.Mongodb.com/manual/

[5]. Mlab (2011) Online database server [online]

Available: https://docs.Mlab.com/

[6]. Postman (2011) Application to interact with HTTP api. [Online]

Available: https://www.getpostman.com/docs/v6/

[7]. Bootstrap (2018) Javascript Library to design front-end [Online]

Available: https://getbootstrap.com/docs/4.1/getting-

started/introduction/

[8]. Javascript (2018). Core programming language to design everything,

Available: https://developer.mozilla.org/en-

US/docs/Web/Javascript/Reference/Methods_Index

[9]. Redux (2015). Redux Documentation [Online]

Available: https://redux.js.org/

https://nodejs.org/en/docs/guides
https://docs.mlab.com/
https://getbootstrap.com/docs/4.1/getting-s
https://getbootstrap.com/docs/4.1/getting-s
https://redux.js.org/

	SOCIAL NETWORK FOR SOFTWARE DEVELOPERS
	Recommended Citation

	tmp.1543521252.pdf.88Ym0

