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ABSTRACT 

Learning the parts of objects have drawn more attentions in computer 

science recently, and they have been playing the important role in computer 

applications such as object recognition, self-driving cars, and image processing, 

etc… However, the existing research such as traditional non-negative matrix 

factorization (NMF), principal component analysis (PCA), and vector quantitation 

(VQ) has not been discovering the ground-truth bases which are basic 

components representing objects. On this thesis, I am proposed to study on 

pattern recognition enhancement combined non-negative matrix factorization 

(NMF) with automatic relevance determination (ARD). The main point of this 

research is to propose a new technique combining the algorithm Expectation 

Maximization (EM) with Automatic Relevance Determination (ARD) to discover 

the ground truth basis of datasets, and then to compare my new proposed 

technique to the others such as: traditional NMF, sparseness constraint and 

graph embedding in pattern recognition problems to verify if my method has over 

performance in accuracy rate than the others. Particularly, the new technique will 

be tested on variety of datasets from simple to complex one, from synthetic 

datasets to real ones. To compare the performance, I split these datasets into 10 

random partitions as the training and the testing sets called 10-fold cross 

validation, and then use the technique called Euclidean algorithm to classify them 

and test their accuracy. As the result, my proposed method has higher accuracy 
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than the others, and it is good to use in pattern recognition problems with missing 

data. 
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CHAPTER ONE 

INTRODUCTION 

 

Pattern Recognition  

Patten recognition and machine learning have played an important role in 

many modern computer applications recently such as: computer vision, image 

segmentation, natural language processing,1 visualization, data mining, etc… 

and many researchers have been discovering variety of algorithms to achieve 

better accuracy rate on object recognition problems. Pattern recognition is the 

subject which automatically discovers regularities in data by using algorithms 

combining with using these regularities to solve some interesting problems such 

as classifying objects into different categories [1]. To illustrate what the pattern 

recognition is, we will consider the simple, famous handwritten digit recognition 

problem on figure 1.1. Each digit (0,1,…,9) will have 28 x28 pixel image, so we 

can create a vector x consisting of 784 real numbers. Our purpose will build the 

adaptive model to identify correctly the digit as the output from input data x. The 

accuracy or performance also depends on the models, algorithms, classification 

methods we choose. 

 For more detail, we are using machine learning approach to solve 

recognition problems. From a large batch of input x consisting different digits is 

considered as training set which is used to find out the parameters for the 

learning models. Each digit has been put into correct catalogues beforehand. 
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The output running by machine learning algorithm is a function y(x) that means 

the model takes input x and then generate the output y(x). If the output digit y(x) 

is matching to the input x classified in categories, the model produces the correct 

identified digit. Otherwise, it is mismatching. The accuracy of the model is 

calculated based on the proportion of number of matching digits. When the 

model is trained, then it can be used to classify new digit images which are not in 

the training set called test set. The ability that machine can recognize the new 

digit image not being in the training set plays the important role in practical 

applications called generalization [1] 

 

 

Figure 1. The Example of Hand Written Digit Recognition [1] 

 

Motivation 

Learning parts of objects is important in computer application, and it gets 

more attention from many researchers. However, these famous algorithms using 

in machine learning recently cannot recognize the part of objects called the 
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ground truth bases such as conventional non negative matrix factorization 

(NMF)[2] [3], principal component analysis (PCA)[4], sparseness constraint[5], 

graph embedding[6]. For example, in face recognition application, it is supposed 

that a human face is composed of four basic components: mouth, nose, eyes, 

and eyebrows that are ground-truth bases to represent a face. If an algorithm 

could discover correctly four above components, it can represent a face. In 

contrast, if an algorithm extracts components rather than four, it means that a 

face is composed by other parts that are not intrinsic features [7]. Indeed, PCA , 

sparseness constraint, and graph embedding only discovered a whole face 

instead of ground-truth bases while traditional NMF discovered basic 

components that are redundant. In practice, an algorithm fails to extract basic 

components leading to not recognize correctly objects, not detect motions in 

video, and camera processing. If it is applied in real time applications: self-driving 

car, face recognition, it will cause serious issues related to security and safety. 

Therefore, finding correctly the number of ground truth bases is significant in 

extracting the hidden structures of investigated data, and improving a 

performance. 

 

Signification Implications 

 In practice, data-sets are so complicated and redundant, and we also 

have to deal with missing data. NMF has become the popular technique for 

data analysis and dimensionality reduction. However, we have to assume the 
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number of components and choose the appropriate values depending on 

specific datasets. Therefore, it causes heavily cost of computation and time 

consuming of doing experiments to choose the best value for the number of 

components [8] [9]. Tan and Févotte [10] proposed the method to automatically 

determine the optimal value of the number of ground truth bases. It has the 

advantage of fewer computations involved, but the drawback is that we have to 

estimate parameters in mathematical models depending on datasets. Indeed, 

for complicated datasets, this method is not practical because we have to 

choose the best values of parameters with many trials to discover the correct 

number of ground truth bases. In this proposal, we propose another technique 

that integrates Expectation Maximization (EM) algorithm [11] to determine the 

optimal value of the number of components. Using EM to resolve missing, 

hidden problems is very powerful, and efficient, and this solution is suitable to 

our issue. Our advantage is that it is free hyper-parameters in mathematical 

models, but still gets the expected result. In the audio-visual scene analysis, a 

speaker may face to the camera while he/she keeps silent, or a speaker turns 

away of a camera while he/she is speaking. Speech signals have the sparse 

structure and have the mixture of different sources such as voice, noise, …, 

music background. Applying the EM on this scene is well-suited to find audio-

visual clusters, and to discriminate between speaking and silent people [12], 

and then we will compare our results with different algorithms: sparseness 
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constraint [13] [14] [15] and non-negative graph embedding [16]–[18] to see if 

EM algorithm has better performance compared to others. 
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CHAPTER TWO 

AUTOMATIC RELEVANCE DETERMINATION WITH NMF 

 

Introduction 

Non-negative matrix factorization (NMF) was first introduced by Lee, 

Seung [2] [19] as the machine learning technique learning a parts representative 

of data, and then it has been used widely in dimensionality reduction, and extract 

the sparse and useful features from datasets[20]. For example, NMF can be 

applied to the face recognition to discover some basic components as known as 

learned base images such as: eyes, eyebrows, mouth, nose, and cheek, etc…[2] 

which have locally representation than comprehensively. Objects in universe are 

represented by non-negative physical values such as: pixels, weight, length… , 

so NMF is the suitable machine learning technique learning part of objects. 

Although principle component analysis (PCA), linear discriminant analysis (LDA) 

have been famous techniques in dimensionality reduction, both of them are 

consisting of negative and positive values which is not represented correctly the 

physical meaning of objects in the world. In addition, NMF decomposes the 

original matrix into sub matrices containing only non-negative values having 

meaningful representation of objects. Furthermore, NMF has the simple 

multiplicative iteration which has more advantages than others [21]. In this 

chapter, we will discuss the basic concepts of NMF such as mathematical model, 

cost functions, the multiplicative update rule, and some applications. 
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NMF Concepts and Properties 

NMF Model   

Supposedly, we have the M dimensional of the random non-negative 

vector x, and N is the number of observations denoted as xi (i=1,2,3,...,N), 

Supposedly,  we have the big matrix X having M-by-N dimensionality in which M 

is the number of rows (M dimensionality of a random vector ), and N is the 

number of columns (the number of observation), denoted as 𝑋 ∈  𝑅𝑀×𝑁, NMF will 

separate the original matrix X in to 2 smaller sub matrices W and H in which W 

has M-by-K dimensionality ( 𝑊 ∈ 𝑅𝑀×𝐾, namely basic matrix consisting basic 

components extracted from the original data, and H is the coefficient matrix 

having K-by-N dimensionality ( 𝐻 ∈  𝑅𝐾×𝑁), The combination of W and H is used 

to reconstruct the whole objects. In the mathematical form, we need to 

decompose X into W and H such that W, and H need to satisfy equation below 

𝑋 ≈ 𝑊𝐻 𝑠. 𝑡.𝑊 ≥ 0, 𝐻 ≥ 0 (1) 

Where K, the unknown parameter, is the latent number as well as the number of 

columns on W and rows on H respectively. Normally, K usually is chosen such 

that K ≤  M × N/(M +  N)  [7]. Figure 2 is to illustrate the NMF decomposition 

model  
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Figure 2. The NMF Decomposition Model 

 

Cost Function 

It is used to estimate the factorization X ≈ WH, and measure how 

performance of the approximate factorization is. Basically, const function can be 

calculated by distance between two non-negative matrices namely, C and D. 

Usually the cost function has been obtained by the simple measurement called 

Euclidian distance between C and D. Euclidean distance has the form 

below:‖𝐶 − 𝐷‖
2
= ∑ (𝐶𝑖𝑗 − 𝐷𝑖𝑗)𝑖𝑗

2
. In NMF, the cost function is considered as the 

optimization problems which minimize ‖𝑉 −𝑊𝐻‖
2
 with respect to W and H such 

that W, and H ≥ 0. Although the function above is convex either on W and H, but 

not both of them. Therefore, it is hard to find the global minima of this function, 

but finding the local minima is possible. One of the easiest way to find the local 

minima is to use the gradient descent. However, the convergence speed is going 

to be slow [22] 
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Multiplicative Update Rules 

The alternative way to find the local minima in cost function from 

optimization problem above, we can use the multiplicative rules which is easy to 

implement and faster in convergence than gradient descent. The two equations 

below are the updating rules implemented on W and H at the same time using 

Euclidean distance: 

𝐻𝑘𝑗 ← 𝐻𝑖𝑗
(𝑊𝑇𝑋)𝑘𝑗

(𝑊𝑇𝑊𝐻)𝑘𝑗
 (2)  

𝑊𝑖𝑘 ← 𝑊𝑖𝑘
(𝑋𝐻𝑇)𝑖𝑘

(𝑊𝐻𝐻𝑇)𝑖𝑘
 (3)  

Applications 

NMF has been used widely in many applications by its property such as: 

automatically extracting hidden and sparse components from data. In this 

section, we will discuss more detail of NMF applications in imaging processing-

facial reconstruction, and text mining-topic recovery and documentation 

classification. Furthermore, NMF also has applications in environment[23], 

biology [24],  In the image processing, let assume each columns of face data 

matrix 𝑋 ∈  𝑅𝑀×𝑁 be a vector of M dimensionality in the greyscale, and N are the 

number of faces of each person. The entry (i, j)th means the ith pixel of the face jth 

. NMF can decompose the original matrix X into non-negative sub matrices W, 

and H such that each column of matrix W can represent images, and we usually 

denote W to be the basis image matrix, and then we can reconstruct the original 

face images by linear combination of W and coefficient matrix H (𝐻 ≥ 0). Figure 
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3 is to illustrate how NMF decomposes the original matrix to basis images matrix 

(W) and coefficient matrix (H). Furthermore, usually, the unknown parameter k 

(the number of columns, and rows on W and H respectively) is much smaller 

than N (the number of faces) in a big dataset. Therefore, the basis matrix is 

decomposed into localized feature, and then with few basis images, we can 

reconstruct to original faces. Figure 4 is to illustrate some basic localized feature 

such as: mouth, nose, eyes, mustaches, lips, eyebrows.[20].  

 

 

Figure 3. Image Reconstruction of MIT Dataset for the 19x19 Pixel Image 

 



11 
 

 
 

Figure 4. Basic Images: Eyes, Nose, Eyebrows, Mouth for Face 

 

Automatic Relevance Determination  

Although NMF has been used widely in machine learning such as face 

recognition, and text mining, speech analysis, it is assuming a given latent 

parameter, or the number of components K. Practically, it is not easy to choose 

the k components because it depends a lots on the types and size of datasets. 

To address this issue, Tan, and Févotte [10] suggested the improvement on 

basic NMF model by integrating the Bayesian PCA [1], and sparse Bayesian 

learning [25] into the model. This technique is called automatic relevance 

determination (ARD) [26] , and it is successful to estimate the latent number k, 

and the result has been validated by synthetic datasets. 



12 
 

Model Order Determination 

In NMF, the latent K, the model order, is used to discover the ground truth 

bases from dataset. Therefore, it is can be used to find out the meaningful and 

hidden information from datasets. However, in practice, K is hard to estimate 

because we do not have much prior knowledge about it. Recently, many 

researchers have paid more attention to how to estimate the optimal Keff to get 

more understanding on datasets we are investigating, and Tan, and Févotte [10] 

has proposed ARD method to achieve Keff. For example, assuming, we have a 

single face made up by 4 basic components like: mouth, eyes, nose, and lips. 

Ideally, if we can decompose the original matrix X into the basis image W , and 

coefficient matrix H with number of columns and rows on H to be Keff=4, we can 

easily to reconstruct the face with only 4 ground truth bases. However, we do not 

know exactly how many basic components we have, so usually we initialize the 

number of component K to be very large to make sure we do not skip any important 

components. In this case, the computing cost is very expensive and time 

consuming. 

Mathematical Model of ARD 

To estimate the Keff, we need to add one more prior parameter β=[ β1, 

β2,…, βk] on columns and rows of W and H respectively, and then, we need to find 

the optimized value of these hyper-parameters β*, W* and H* by multiplicative 

updating rules. Accurately, we need to find β*, W* and H* by optimizing the 

maximum a posteriori (MAP): 
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min(W,H, β) 𝐶𝑀𝐴𝑃(𝑊,𝐻, β) ≜ −l𝑜𝑔𝑝(𝑊,𝐻, β|X)(4)  

Where the posteriori has the form below:  

−l𝑜𝑔𝑝(𝑊,𝐻, β|X) ≜  −l𝑜𝑔𝑝(𝑋|𝑊,𝐻) - l𝑜𝑔𝑝(𝑊|β)- l𝑜𝑔𝑝(𝐻|β)- l𝑜𝑔𝑝(β)(5)  

To maximize the term l𝑜𝑔𝑝(𝑋|𝑊,𝐻), we need to minimize the Kullback-Leibler 

cost function 𝐷𝐾𝐿(𝑋|𝑊,𝐻)  =  𝐷𝐾𝐿(𝑋|𝑋)̂, where: 

𝐷𝐾𝐿(𝑋|𝑋)̂ ≜∑ 𝑥𝑚𝑛
𝑚𝑛

𝑙𝑜𝑔
𝑥𝑚𝑛
𝑥𝑚𝑛̂

− 𝑥𝑚𝑛 + 𝑥𝑚𝑛  ̂(6) 

Figure 5 is to illustrate the graphical model of NMF in which wmk, or hkn is 

estimated the hyper-parameter βk, and on the top level of the model, βk is 

estimated by 2 different hyper-parameters a, and b.  
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Figure 5. The Graphical Model for NMF where M is Number of Rows on W 

 

Prior model on W and H. We assume the distribution on each column k on 

W and H is independent half normal distribution, and each prior k is modeled 

through a parameter β, and it has the form: 

𝑝(𝑤𝑚𝑘|β𝑘) = ℋ𝒩 (𝑤𝑚𝑘|0, β𝑘
−1)(7)  

𝑝(ℎ𝑘𝑛|β𝑘) = ℋ𝒩 (ℎ𝑘𝑛|0, β𝑘
−1) (8)  

Where: 
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ℋ𝒩(𝑥|0, β−1) =  √
2

𝜋
  β−

1
2 exp (−

1

2
𝛽𝑥2) (9) 

Is the independent half normal distribution for non-negative value of x with 

inverse variance 𝛽2. From the equation (7) and (8) above, we can obtain the 

estimation for W and H: 

−l𝑜𝑔𝑝(𝑊|β)∑∑
1

2
𝛽𝑘𝑤𝑚𝑘

2 −
𝑀

2
𝑙𝑜𝑔

𝑚𝑘

β𝑘 (10) 

−l𝑜𝑔𝑝(𝐻|β)∑∑
1

2
𝛽𝑘ℎ𝑘𝑛

2 −
𝑁

2
𝑙𝑜𝑔

𝑚𝑘

β𝑘 (11) 

And then, we define efficient Keff: 

𝐾𝑒𝑓𝑓 ≜ {β𝑘 ∶ β𝑘 < L𝑘 − 𝜀 } (12) 

𝐿 ≜
𝑀 + 𝑁 + 2(𝑎 − 1)

𝑏
 

Lk is the upper bound of β𝑘, and 𝜀 is defined as small value specified by users. 

 Prior model on β. We are assuming each β𝑘 is distributed as a Gamma 

distribution with two hyper-parameters ak, and bk as known as shape and scale 

parameters respectively. Therefore, estimation on β has the form: 

𝑃(β𝑘|a𝑘, 𝑏𝑘) =
𝑏𝑘
𝑎𝑘

Γ(a𝑘)
β𝑘

𝑎𝑘−1 exp(−β𝑘𝑏𝑘) , β𝑘 ≥ 0 (13) 

−l𝑜𝑔𝑝(𝛽) ≜∑β𝑘𝑏𝑘 − (𝑎𝑘 − 1) log(𝛽𝑘) (14)

𝑘

 

The algorithm below shows the step by step how ARD obtains the optimal value 

of Keff by multiplicative updating rules where V, and F is the original matrix, and 

the number of rows on W respectively which is equivalent to X matrix, and M 
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rows mentioned on chapter 2. After the end loop, we can compute the optimal 

value Keff  by equation (12).Figure 7 is to illustrate the ground truth bases 

discovery via ARD. We know that this dataset has 16 limb positions and one 

static torso, and ARD can discover 17 basic components. We will discuss more 

detail about this dataset on later section. 

 

 
 

Figure 6. The Algorithm for ARD by Multiplicative Updating Rules 
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Figure 7. The Ground Truth Bases Discovery of a Swimmer Dataset 
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CHAPTER THREE 

INFORMATIVE MODEL FOR ARD USING 

 EXPECTATION MAXIMIZATION (EM) 

 

Motivation 

As mentioned above, we do not have enough prior knowledge to 

determine the value of K, so we usually choose it randomly, and do many 

experiments to get the reasonable value of K. This computation is so costly and 

not practical. Another approach was proposed by Tan and Févotte [10] in which 

the authors used a technique called automatic relevance determination (ARD) to 

determine the optimal value of K for the specific data-sets. On this approach, Tan 

and Févotte assumes the hyper-parameter βK has the Gamma distribution which 

depends on 2 other shape and scale parameters denoted a, b respectively. The 

technique just gets the expected result for some datasets that authors did 

experiments. For different datasets, we need to adjust hyper-parameters βK, a, 

and b to be suitable to new datasets. To avoid involving hyper-parameters to 

determine the model order and cost function, we propose the expectation 

maximization (EM) algorithm to determine the model order. Using EM to estimate 

the model order is well-known technique and suitable to missing or hidden data 

[11]. We will apply EM to determine the model order of data. Experiments on 5 

different data-sets reveal the performance improvement and free hyper-

parameters. 
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Related Work 

Researching on selection of model order has not been investigating 

enough. There are very few literature review discussing model order selection. 

There are some Bayesian methods to determine model order, but they are not 

efficient because computation is very costly, and we have to evaluate the 

corresponded K (model order) based experiments [10]. Tan and Févotte [10] 

proposed the method to automatically determine the optimal value of Keff given a 

large initial value of K with less computationally involving. For this proposal, 

authors try to estimate the number of columns of W as well as the number rows 

of H to determine the model order and ground-truth basis However, this method 

has the drawback is that we need to estimate various values of hyper-parameters 

with variety of data-sets in the model. For complicated data-sets, this method is 

not practical, and we have to do many experiments to find out the optimal value 

of K. In addition, authors had two fixed hyper-parameters on the first level 

parameter structure while another parameter is as a random variable which is not 

relevant to statistical perspective. Qingquan et al [7] proposed another method 

called non-informative hierarchical inference in which authors use the hyper-

parameter as the random variable rather than a constant to estimate the model 

order and ground-truth basis. Although, this approach is free hyper-parameters, it 

is not robust as ARD and Variational Bayesian approach and sensitive to 

initialization and complexity of the datasets [6] In this thesis, we propose another 

technique that integrates Expectation Maximization (EM) algorithm to determine 



20 
 

optimal value of model order. Using EM to resolve missing/hidden problems is 

very powerful, and efficient, and this solution is suitable to our issue. 

Decomposing the data matrix into W and H without any prior knowledge about 

the number of columns and rows Keff of W and H respectively. Utilizing the EM 

algorithm helps us to optimize the value of K to determine correct model order 

and ground-truth basic. Our advantage is that it is the free hyper-parameters 

model, but still get the expected result. 

 

Data Models [27]  

There are some algorithms developed to determine the model factor K. 

Some of them are considered as maximum likelihood NMF under the assumption 

of data distribution. The maximum likelihood (ML) estimate of W and H given by 

minimizing the negative log likelihood of them [10] 

 ML(W,H) = argmin
W,H≥0

 ℒ(W,H)(15),  

where ℒ (W, H) is the negative log likelihood of the factors. In this section, we will 

present three common distributions for data layer modeling in NMF optimization: 

Gaussian distribution, Poisson distribution, and Gamma distribution. 
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Gaussian Distribution 

Assuming the noise in data is following the independent and identical 

distributed (i.i.d) Gaussian with σN
2 . We are easy to obtain the Gaussian log-

likelihood of W and H 

 p(X|WH, σ2) = (
1

√2σ2π
)M×N∏ ∏ exp (

−1

2
(
X−WH

σ
)
2

)NM  (16).  

The log likelihood function of Eq. (2.3) is obtained accordingly. In fact, the log-

likelihood function plays the role as the costing function 

 log p(X|WH) ∝
1

2σ2
∑ ∑ (X −WH)2N (17)M .  

Therefore, the ML of W and H could be obtained by taking the gradient of (2.4) [10] 

 ∇Hlog p(X|WH) =
1

σN
2 W

T(WH− X)(18),  

 ∇Wlog p(X|WH) =
1

σN
2 (WH − X)H

T(19). 

Poisson Distribution 

If the data is following Poisson distribution that has only one parameter, the 

entire model is simpler. Furthermore, its cost function will be Kullback-Leibler 

divergence (KL divergence) that is widely used in NMF optimization [7]. 

Let θ = [WH] and X denote the parameter of Poisson distribution and random 

variable, respectively. We can obtain the Poisson probability density function (pdf) 

with logarithm 
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 ℒ(θ) = ln p (X|WH) = ln∏ ∏
[WH]

ij

Xij
ℯ
−[WH]ij

Xij!
ji  

 = ∑ ∑ (Xijln [WH]ij − [WH]ij − ln (Xij!))ji = -DKL(X|WH) (20) 

Based on Stirling’s formula [11], the fractal term ln(Xij!) can be simplified and 

approximated as 

 ln(Xij!) ≈ XijlnXij − Xij. (21) 

Substituting (2.8) into (2.7), we have 

 L(θ) =  lnp(X|WH) = ∑ ∑ (Xijln
[WH]ij

Xij
− [WH]ij + Xij)ji = DKL (X|W H).(22) 

Obviously, the generalized KL-divergence cold be used as the cost function of the 

model. 

 

Parameter Models [27] 

Half Normal Distribution 

In Bayesian PCS [13], each column k of W (respectively row k of H) is given 

a normal prior with precision parameter βk. Similarly, independent half-normal 

priors over each column k of W and row k of H are defined by [12], and the priors 

are tied together through a single, common precision parameter βk. We set: 

 p(wfk|βk) = ℋ𝒩(wfk|0, βk
−1)(23),  
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 p(hkn|βk) = ℋ𝒩(wkn|0, βk
−1) (24) 

 ℋ𝒩(x|0, β−1) = √
2

π
β−

1

2 exp (
−1

2
βx2) (25).  

Eq. (2.14) is the half-normal probability density function (defined for x ≥ 0) 

parameterized by the precision (inverse variance) β2. 

The minus log-priors can be written as: 

 −logp(W|β) = ∑ ∑
1

2
βkwfk

2 −
F

2
logβk (26)fk ,  

 −logp(H|β) = ∑ ∑
1

2
βkhkn

2 −
N

2
logβknk (27)  

In practice, it is found that the effective dimensionality can be deduced from the 

distribution of the βk
’ s, and cluster into 2 group: a group of values in same order 

of magnitude to relevant components and a group of similar values of much higher 

magnitude corresponding to irrelevant components [12]. They defined effective K 

as 

 Keff = |{βk: βk < Lk − ε}| (28)  

where Lk is the upper bound dependent on the prior’s parameters and ε ≥ 0 is a 

user-defined small constant. The goal is to compute precisely the value of Lk in 

terms F, N and the parameter of the prior on βk. 

Exponential Distribution 

In order to enable our model to be automatic and feasible, we assume that 

base matrix W and feature matrix H are independent, and we choose to use the 
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same parameter to model both the columns of basis matrix and the rows of feature 

matrix. We define an independent exponential distribution for each columns of W 

and each row of H with prior λk to simplify the complexity of the model. The reason 

to choose exponential model is that it has the sharper performance and free of 

second parameter. From our assumption, the likelihood of columns of W and rows 

of H can be represented by [7] 

 p(Wmk|λk) = λk ⋅ e
−λkWmk(29)  

 p(Hkn|λk)  = λk ⋅ e
−λkHkn  (30).  

Then we can obtain the log-likelihood of the priors as: 

 lnp(W|λ) = ∑ ∑ (lnλk − λkWmk)km (31),  

 lnp(H|λ) = ∑ ∑ (lnλk − λkHkn)(32)nk .  

The inference procedure to find the optimal values of the priors equals to the 

optimization process to converge to the ground-truth bases. Through the L2-norm 

selection, we could discover that the vectors in W and H finally emerge to two 

clusters. One cluster includes the vectors whose L2-norm is much larger than 0, 

while the other cluster contains the vectors of which the L2-norm is close to 0. As 

a matter of fact, the vectors with large L2- norm values are the ground-truth bases, 

and the others are the irrelevant bases. In addition, the number of such vectors 

that have larger L2-norms is the real model order [7]. 
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Tweedie Distribution 

The β-divergence is a family of cost functions that includes the squared 

Euclidean distance, Kullback-Leibler and Itakura-Saito divergences as special 

cases. The β-divergence can be mapped to a log likelihood function for the 

Tweedie distribution, parametrized with respect to its mean. In particular, the 

values β = 0, 1, 2 underlie the multiplicative Gamma observation noise, Poisson 

noise and Gaussian additive observation noise respectively. The Tweedie 

distribution is a special case of the exponential dispersion model [14], and it has 

the mean and variance: 

 var[x] = Φμ(2 − β) (33)  

where µ = E[x] is the mean, β is the shape parameter, and Φ is referred to as the 

dispersion parameter The Tweedie distribution is only define for β ≤ 1 and β ≥ 2. 

For β ≠ 0, 1 its pdf has the form 

 𝒯(x|μ,Φ, β) = h(x,Φ)exp (
1

Φ
(
1

β−1
xμβ−1 −

1

β
μβ)) (34)  

where h (x, Φ) is the base function. 𝒯(x|µ, Φ, β) varies with the value of β, but the 

set of values that µ can take on is generally IR+, except for β=2, it is IR, and the 

Tweedie distribution coincides with the Gaussian distribution of mean µ and 

variance Φ. For β = 1 and Φ = 1, the Tweedie distribution coincides with the 

Poisson distribution. For β = 0, it coincides with the Gamma distribution with shape 

parameter α = 1/µ and scale parameter µ/α. The base function admits a closed 
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form only for β ∈ {−1, 0, 1, 2} [15] The deviance of Tweedie distribution, i. e., the 

log likelihood ratio of the saturated (µ = x) and general model, is proportional to the 

β-divergence. 

 log
T(x|μ=x,Φ,β)

𝒯(x|μ,Φ,β)
=

1

Φ
dβ(x|Φ) (35)  

where dβ(·|·) is the scalar cost function defined: 

 dβ(x|y) =

{
 
 

 
 

xβ

β(β−1)
+
yβ

β
−
xyβ−1 

(β−1)
, β ∈ R{0,1},

xlog
x

y
− x + y, β = 1,

x

y
− log

x

y
− 1, β = 0

 (36)  

β-divergence acts as a minus log-likelihood for the Tweedie distribution whenever 

the latter is defined.  

 

Non-Informative Model for ARD Using EM Algorithm 

EM algorithm is the most well-known algorithm to estimate the parameters 

from incomplete or mixture data in machine learning. It is the iterative algorithm 

through the E-step(expectation) and M-step(Maximization). In the E-step, the 

conditional expectation of the complete-data log-likelihood is computed on the 

basis of the observed data and parameter estimates. In the M-step, parameters 

are estimated by maximizing the complete-data log-likelihood from E-step. 

Therefore, EM has been applied to obtain maximum a posteriori(MAP) estimate 

of mixing matrix [28] such as the base and feature matrix in our model order 
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determination and ground-truth base recognition. In the audio-visual scene 

analysis, a speaker may face to the camera while he/she 4 keeps silent, or a 

speaker turns away of a camera while he/she is speaking. Speech signals have 

the sparse structure and have the mixture of different sources such as voice, 

noise, music background. Applying the EM on this scene is well-suited to find 

audio-visual clusters and to discriminate between speaking and silent people 

[12]. Another application of EM from incomplete data is that it is used to learn the 

driving behavior in multiclass users traffic flow. In this study, the speed is 

considered as the result of driving behavior, and the speed distribution on the 

road is assumed as the mixture of Gaussian distribution. EM algorithm was 

applied to train and classify different user-classes [29]. 

 

EM Mathematical Model [27] 

Prior Assumption 

Our goal is using the EM to estimate accurate the model order for 

nonnegative matrix factorization. This method is an extension of sparse regression 

via EM proposed by Figueiredo M [11]. Considering β=[ β1, β2,…, βk] is the 

hidden/missing data. If in some ways, we could observe the complete log-posterior 

log p (β, σ2 |W H, β) which has the form below: 

p(WH, σ2|X, β) ∝ p(X|WH, σ2)p(WH|β) p(σ2) (37) 

Denote X ∈ IRM×N as the data matrix, base matrix W ∈ IRM×K, and feature matrix H 

∈ IRK×N, we assume: 
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p(W|β1) =∏𝒩

k

k=1

(Wk|0, β1k) = ℋ𝒩(W|0, ψ(β1))(38) 

p(H|β2) = ∏ 𝒩k
k=1 (Hk|0, β2k) = ℋ𝒩(H|0, ϕ(β2)) (39) 

where ψ(β1) = diag (β11
−1, β12

−1, … , β1k
−1), and φ(β2) = diag (β21

−1, β22
−1, … , β2k

−1) (40) 

Gaussian Log-likelihood 

We are easy to obtain the Gaussian log-likelihood 

p(X|WH, σ2) = (
1

√2σ2π
)M×N∏∏exp(

−1

2
(
X −WH

σ
)2) (41)

NM

 

Log p(X|W H) = −N ×Mlog√2𝜋𝜎 −
1

2𝜎2
∑∑(𝑋 −𝑊𝐻)2 (42)

𝑁𝑀

 

EM Algorithm Implementation 

 First, apply logarithms to (15) since p (σ 2) is flat, we have: 

log p(WH, σ2|X, β) ∝ logp(X|WH, σ2) + logp(W|β1) + logp(H|β2) 

                ∝ −𝑀x𝑁𝑙𝑜𝑔(𝜎2) −
||𝑉−𝑊𝐻||2

𝜎2
−𝑊𝑇𝜓𝑊 −𝐻𝑇𝜙𝐻 (43)  

Second, From (19), the complete log-posteriors is linear with respect to ψ, 

and φ, and other two terms do not depend on β, the E-step reduces to computing 

the conditional expectation of ψ, and φ, given and the current 𝜎𝑡
2,̂ 𝑊𝑡

  ̂ ,𝐻𝑡
  ̂which 

we denote as 

𝑃1(𝑡) = 𝐸[𝜓(β1)|𝑋, 𝜎𝑡
2̂,𝑊𝑡

  ]̂   
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                                                  = 𝑑𝑖𝑎𝑔{𝐸[𝛽1
−1|𝜎𝑡

2̂,𝑊𝑡
 ]̂ ,… , 𝐸[𝛽1𝑘

−1|𝜎𝑡
2̂,𝑊𝑡

 ]̂  } (44) 

𝑃2(𝑡) = 𝐸[𝜙(β2)|𝑋, 𝜎𝑡
2̂,𝑊𝑡

  ]̂   

                                                  = 𝑑𝑖𝑎𝑔{𝐸[𝛽2
−1|𝜎𝑡

2̂,𝑊𝑡
 ]̂ ,… , 𝐸[𝛽2𝑘

−1|𝜎𝑡
2̂,𝑊𝑡

 ]̂  } (45) 

As for 𝑝(β1|𝑋,𝑊, 𝜎
2 )  =  𝑝(β1|𝑊) because given W, and β1 does not 

depend on X, 𝜎2, or H. So, 𝑝(β1|𝑋, 𝜎𝑡
2̂ , 𝑊) ∝ 𝑝(𝑊𝑡̂ |β1)𝑝(β1). Similarly, we could 

get the same thing 𝑝(β2|𝑋, 𝜎𝑡
2̂ , 𝐻) ∝ 𝑝(𝐻𝑡̂ |β2)𝑝(β2).Since p(W|β1) =

ℋ𝒩(W|0, ψ(β1)). p(β1), and p(β2) are the exponential hyper-priors, elementary 

integration yields: 

𝐸[𝛽1,𝑖
−1|𝑋, 𝜎𝑡

2̂,𝑊𝑡
 ]̂ =

∫
1
𝛽1,𝑖

∞

0
ℋ𝒩(𝑊𝑡|̂ 0, 𝛽1,𝑖)

𝛾1
2 exp (−

𝛾1
2 𝛽1,𝑖𝑑𝛽1,𝑖)

∫ ℋ𝒩(𝑊𝑡|̂ 0, 𝛽1,𝑖)
𝛾1
2
exp (−

𝛾1
2
𝛽1,𝑖𝑑𝛽1,𝑖)

∞

0

=
√𝛾1

|𝑊𝑡̂| 
 (46) 

Similarly, we can obtain: 

𝐸[𝛽2,𝑖
−1|𝑋, 𝜎𝑡

2̂,𝑊𝑡
 ]̂ =

√𝛾2

|𝐻𝑡̂| 
 (47)  

E step. Thus, 

𝑃1(𝑡) = √𝛾1𝑑𝑖𝑎𝑔{|𝑊1(𝑡)
−1̂ |,𝑊2(𝑡)

−1̂ , … ,𝑊𝑘(𝑡)
−1̂ } (48) 

𝑃2(𝑡) = √𝛾2𝑑𝑖𝑎𝑔{|𝐻1(𝑡)
−1̂ |, 𝐻2(𝑡)

−1̂ , … , 𝐻𝑘(𝑡)
−1̂ } (49) 
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The Q-function, the expected value with respect to W and H as the missing 

variables of the complete log -posterior, is obtained by plugging P1(t) and P2(t) in the 

place of ψ and φ 

𝑄(𝑊𝐻, 𝜎2|𝑊̂(𝑡), 𝐻̂(𝑡), 𝜎2̂(𝑡))

= −𝑀 × 𝑁𝑙𝑜𝑔(𝜎2) −
||𝑋 −𝑊𝐻||

𝜎2

2

−𝑊𝑇𝑃1(𝑡)𝑊 − 𝐻𝑇𝑃1(𝑡)𝐻 (50) 

Finally, the M-step consists in maxing Q(WH, σ2|Ŵ(t), Ĥ(t), σ2̂(t)) with respect 

to σ2 and WH, yielding:  

M-step. 

σ̂t+1
2 = argmaxσ2 (−M × N log(σ2) − 

||X −WH|2
2

σ2
) 

  =
||X−WH|2

2

MN
 (51) 

     WĤ(t) = argmaxβ (− 
||X −WH|2

2

σ2
−WTP1(t)W− HTP2(t)H) (52) 

And then, we need to take the integral of (26), and we have: 

−𝑄(𝑊,𝐻|𝑊,̂ 𝐻̂) =
1

2
||V −WH|2

2 +
1

2
𝑇𝑟(𝑊𝑉𝑊𝑇) +

1

2
𝑇𝑟(𝐻𝑇𝑇𝐻)(53) 

∂Q

∂W
  =  −XH𝑇 +W HH𝑇 +  W V (54) 
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∂Q

∂H
  =  −W𝑇X +W𝑇WH+  TH (55) 

Where, V, and T are diagonal matrix of estimated 𝛽1,𝑖, 𝛽2,𝑖 respectively. 

Finally, we can get the updating rules for W* and H*: 

𝑊∗ = 𝑊
𝑋H𝑇

(𝑊𝐻H𝑇 +𝑊𝑉)
(56) 

𝐻∗ = 𝐻
W𝑇𝑋

(W𝑇𝑊𝐻 + 𝑇𝐻)
(57) 
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CHAPTER FOUR 

NMF BASED ON SPARSENESS CONSTRAINTS 

 

Sparse Coding 

The approach of sparse distributed coding indicates that there are very few 

active units corresponding the large input datasets [30]. Therefore, sparseness is 

the effective representation of the data in which redundant features have very low 

probability (close to zero) and represented features have higher probability 

(greater than zero). Therefore, sparseness representation has the ability to 

represent basic components of the objects. Figure 8 is to illustrate the sparse 

coding diagram in which a very few of output actively represents multi-

dimensional data inputs (e.g. only 4 actively unit outputs correspond to multi  input 

vector).[30]  
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Figure 8. The Sparse Coding Diagram 

 

Sparseness is also applied in the image processing process learning about 

the objects. Figure 9 is to illustrate the sparse coding network. The image patch 

shows the 12× 12 pixel values on the pixel values bar chart, and inputs are 

transformed to the sparser scheme as shown on the top bar chart  
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Figure 9. The Sparse Coding Network for the Image [14] 

 

Sparseness Constraints Concepts 

 The sparseness constraints mentioned above is the representation that 

there are few active units as the output vector [30]. Indeed, the inactive units 

have the values closely to zero while the significant units have higher values than 

zero. Figure 10 is to  illustrate the representation and different sparseness 

constraints level  on four different output vectors 
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Figure 10. Different Sparseness Constraints Level on Vectors [5] 

 

 Another example of the sparsity is applied in face recognition. Figure 11 is 

to illustrate variety of sparseness constraints on ORL faces. When we applied the 

sparseness constraints level (0.5), we can get the whole faces globally (Figure 

11-a). However, when we increase the level to 0.6 (Figure 11-b), the whole faces 

gradually change to local features. At this point, we can see more clearly eyes, 

noses, lips,…, etc. Finally, we change the constraints level to 0.75 (Figure 11-c), 

the global faces convert to local features completely.  
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Figure 11. Changes of Sparseness Constraints Level on ORL Faces [5] 

 

There are many sparseness measures proposed on research papers 

recently. The general idea is mapping from Rn to R to measure the energy of a 

vector consisting of few active units. The simple sparseness measure is 

computed based on the relationship between the L1 norm and L2 norm [5]: 

𝑠𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠(𝑥) =  
√𝑛 − (∑|𝑥𝑖 |)/√∑𝑥𝑖

2

√𝑛 − 1
  (58) 

where n is the dimensionality of x. he function above will reach the maximum 

value at one if and only if x contains only a single non-zero component, and 

reach the zero values if and only if all components are equal interpolating 

smoothly between the two extremes [5] 
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NMF with Sparseness Constraint 

Our goal is to apply constraints levels on NMF to find the optimal 

sparseness values. But in the real application, we do not know how much 

sparseness constraints we should apply on W and H. Generally, it depends on 

the application we are working on to apply suitable constraints levels to get better 

understanding of data  

 

 
Figure 12. NMF with Sparseness Constraints 

 

Sparseness Constraints Mathematical Model 

In order to enforce sparseness on W or H in the NMF presented in Equation 

(1). Two formulations are the corresponding algorithms for sparse NMFs, i.e. 
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SNMF/L for sparse W (where ‘L’ denotes the sparseness imposed on the left 

factor) and SNMF/R for sparse H (where ‘R’ denotes the sparseness imposed on 

the right factor). The sparse NMF formulations that impose the sparsity on a factor 

of NMF utilize L1-norm minimization [15] 

SNMF/R. To apply sparseness constraints on H, we formulate the 

following SNMF/R optimization problem from Equation (1) 

min(𝑊,𝐻) =
1

2
{||𝑋 −𝑊𝐻||𝐹

2 + 𝜂||𝑊||𝐹
2 + 𝛽∑||𝐻(: , 𝑗)|

𝑛

𝑗=1

| 1
2} (59) 

where H(:,j) is the j-th column vector of H, 𝜂 is a parameter to suppress , 

and ||𝑊||𝐹
2  is a regularization parameter to balance the trade-off between the 

accuracy of the approximation and the sparseness of H 

SNMF/L. To impose sparseness constraints on W, we introduce the 

SNMF/L formulation  

min(𝑊,𝐻) =
1

2
{||𝑋 −𝑊𝐻||𝐹

2 + 𝜂||𝐻||𝐹
2 + 𝛼∑||𝑊(𝑖, : )|

𝑛

𝑗=1

| 1
2} (60) 

where W (i, :) is the i-th row vector of W,  𝜂   is a parameter to suppress , 

and  ||𝐻||𝐹
2 is a regularization parameter to balance the trade-off between the 

accuracy of the approximation and the sparseness of W 
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CHAPTER FIVE 

NMF BASED ON GRAPH EMBEDDING 

 

Introduction 

 Pattern recognition and classification tasks have been paid attention 

recently and applied widely in computer vision, object recognition. Yan et al. [31] 

suggested that most of machine learning algorithms can be implemented on the 

general framework called graph embedding. Graph embedding is one of the 

machine learning techniques used in dimensionality reduction. In the graph 

embedding framework, the original data is decomposed into 2 parts as known as 

the intrinsic graph and penalty graph. In the intrinsic graph, a dataset has been 

characterized by data pairs which are similar. On the contrary, the penalty graph 

has been characterized by unfavorable relationship of the original data. Finally, 2 

parts have been connected to reconstruct the original data approximately [32] 

    

Graph Creation 

 Supposedly, we have the set of data, we can build up the intrinsic graph G 

which is undirected and weighted. Let X be the set of vertices of graph G, and let 

E be the set of edges of graph G, and the edges is the connection of similar pairs 

of the original data, and G can be denoted by this form G = {X, E}. Figure 13 

illustrates the graph construction from intrinsic graph and penalty graph. In the 
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intrinsic graph, each point in the same class has been grouped based on the k-

nearest neighbors (left hand side). In the penalty graph, each point characterized 

by unfavorable relationship on each class connected to another class which also 

is characterized by unflavored similarities (right hand side).   

 

   

Figure 13. Adjacency Relationship Intrinsic and Penalty Graph [31] 
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Graph Embedding 

Non-Negative Matrix Factorization (NMF) factorizes the data matrix X into 

one lower-rank non-negative basis matrix and one non-negative coefficient 

matrix. Its objective function is:  

min 

𝑊,𝐻
||𝑋 −𝑊𝐻|| , 𝑠. 𝑡 𝑊,𝐻 ≥ 0 (61)  

Yan et al. [9] claimed that most of them can be explained within a unified 

framework, called graph embedding. Let G = {X, S} be an undirected weighted 

graph with vertex set X and similarity matrix S ∈ RN×N . Each element of the real 

symmetric matrix S measures for a pair of vertices the similarity, which is 

assumed to be non-negative in this work. The diagonal matrix D and the 

Laplacian Matrix L of a graph G are defined as: 

𝐿 = 𝐷 − 𝑆,𝐷𝑖𝑖 =∑𝑆𝑖𝑗, ∀ i (62) 

𝑖≠𝑗

 

Graph embedding generally involves an intrinsic graph G, which 

characterizes the favorite relationship among the training data, and a penalty 

graph Gp = {X, Sp}, which characterizes the unfavorable relationship among the 

training data, with Lp = Dp − Sp, where Dp is the diagonal matrix as defined in 

Eq.(3) [10] 

Graph Embedding Mathemcatical Model 

For given H = Ht, update the basis matrix W as:  

𝑊𝑖
𝑡+1 = 𝜆𝑋𝑖𝐻

𝑇(𝐾(𝑊𝑖
𝑡) + 2𝐷ℎ)−1   (63) 
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Where: Ki = diag{K1(ht
1)ii, ··· , KN(ht

N)ii }, and 𝑊𝑖
𝑡+1 is the ith row vector 

of W t+1, HT is the transpose matrix of H,  

For given W = W t+1, update the matrix H as: 

𝐻𝑖
𝑡+1 = 𝜆𝑤𝑖

𝑇𝑋(𝐾𝑖 + 2𝐿𝑝)
−1
   (64) 

𝐻𝑖
𝑡+1 is the ith row vector of H t+1, WT is the transpose matrix of W [9] 
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CHAPTER SIX 

EXPERIMENTS AND EVALUATIONS 

 

In this section, we will evaluate our proposed method (EM) on 5 different 

datasets: Fence, Swimmer, ORL faces, Japanese faces, and Yale extension 

faces. The data is from simple one: Fence, Swimmer, to complicated one: faces  

 

Datasets 

The Fence Dataset   

The Fence data is the synthetic dataset introduced by Sun et al [7]. It is 

consisting of 69 binary images having 32x32 pixel image on each. Each image 

has 4 vertical bars and 4 horizontal bars placed on different position from top to 

bottom, and from left to right. We classify this dataset into 4 groups based on the 

number of bars (not position of each bar). For more detail, group 1 has 2-bar 

images, group 2 has 4-bar images, group 3 has 6-bar images, and finally group 4 

has 8-bar images. Figure 14 illustrates the 16 samples of Fence dataset 
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Figure 14. The Sample of Fence Dataset [7] 

 

The Swimmer Dataset   

The Swimmer dataset [8] is the one of the most famous synthetic dataset 

used in machine learning research because its simplicity. It is containing the set 

of 256 images, each image illustrates on the subplot with one static part called 

torso, and 4 moving parts called the limbs, each part has four different positions. 

The goal is to use our proposed method (EM) to extract 16 limb position and one 

torso separately[16]. There are 256 images on this set, so we separate it into 4 

groups, each group is containing 64 consecutive images. Figure 15 illustrates the 

16 samples of Swimmer dataset. 
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Figure 15. Sample of Swimmer Dataset [8] 

 

The ORL Faces Dataset   

The ORL face dataset is including 400 face images of 40 people. There are we 

have 10 samples on each person. The image of each person is taken at various 

conditions such as: the different level of light intense, opening and closed eyes, smiling or 

not smiling, wearing glasses or not wearing glasses., and then each image is cropped 

into 32x32 image pixels. Figure 16 is to illustrate some samples of face image from ORL 

dataset.[21]. 
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Figure 16. The Sample Images of ORL Dataset [21] 

 

The JAFFE Faces Dataset   

JAFFE dataset [33] is consisting of 213 face images from 10 Japanese female 

models [34]. There are 7 facial expressions (6 facial expressions and 1 neutral one) on 

this dataset. Each person shows different expressions such as: angry, disgust, fear, 

happy, sad, and surprise [35], and we cropped these images into 49x49 image pixels. 

Figure 17 is to illustrate the sample of JAFFE dataset. 
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Figure 17. The Sample of Japanese Faces Dataset [34] 

 

The Extended Yale Faces Dataset  

 The extended Yale Faces is consisting of 16128 images from 28 people 

with 9 poses and 64 illumination conditions [36], and then the data is cropped in 

to 32x32 pixel images [37] 

 

 

Figure 18. Sample Faces Images of Extended Yale Dataset [36] 
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Ground Truth Bases Discovery 

Ground truth bases discovery is often used as the basis for training pattern 

recognition algorithms to generate thematic maps or to detect objects of interest [38]. 

High accuracy ground-truth data plays the important roles for the development and 

evaluation of algorithms related to computer vision[39] 

In this section, we will apply our proposed algorithm called EM on different 

datasets mentioned above: Fence, Swimmer, ORL, and Jaffe to extract ground truth 

bases data. Our advantage is that it could discover the ground truth bases from datasets 

while the other methods: non-negative matrix factorization (NMF)[11], principle 

component analysis (PCA)[4], NMF with sparseness constraint on W or H (NMFSC) [5] 

and graph embedding (GE) [18] couldn’t discover it. 

First of all, we will split our data in 10-fold cross validation. It means the data will be 

split into 10 random partition as a training set (90%) and a test set (10%), and then we will 

run 5 epochs in which each epoch will consist of 1 one full training cycle. This set up will 

be applied to all datasets. For each specific data, we will edit or add more parameters that 

is suitable to our situations. 

For the Fence data, there are 4 vertical bars and 4 horizontal bars. Therefore, we 

have totally 8 ground truth bases, and the EM can discover exactly 8 ground-truth bases. 

We will choose the initial base number that is greater than the number of ground truth 

bases. In this experiment, we will set the initial model order to be 18 components, and we 

will run 1000 iteration on each training cycle. Figure 19 to Figure 23 is to illustrate how EM 

can discover the number of ground-truth bases compared to others (traditional NMF, 
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PCA, NMF with sparseness constraints and NMF with graph embedding). As you can 

see, the EM method has extracted correctly the number of ground-truth bases as 

expected while the other methods (NMF, PCA, NMF with sparseness constraints, NMF 

with Graph embedding) cannot extract the unique components as EM. Moreover, there 

are lots of duplicated components on each subplot when the other methods have been 

applied. There are 8 bases components with 1 variation via EM based ARD. 

 

 

 

Figure 19. Ground Truth Bases Discovery via EM Based ARD for Fence 

 

 

 

Figure 20. Pattern Discovery via NMF for Fence 
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Figure 21.Pattern Discovery via PCA for Fence 

 

 

 

Figure 22. Pattern Discovery via NMF with Sparseness Constraint for Fence 

 

 

 

Figure 23. Pattern Discovery via NMF with Graph Embedding for Fence 
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 For the Swimmer dataset, we already know there are 16 limb positions, and one 

static torso. Our goal will extract ground truth bases from swimmer datasets, and it should 

extract 16 unique patterns (17 unique patterns if we include one static torso) as expected. 

The setup is also similar to fence dataset, but the only difference is that we will choose the 

initial model order K= 25, and we will run 1000 iterations on each training cycle. is to 

illustrate the EM extracts exactly 16 ground truth bases of swimmer dataset on different 

subplots while these others cannot recover them. They have more than one component 

on each subplot compared to EM. In PCA method, it just discovers principle components 

on first 12 subplots, and eliminates components that are less important. Therefore, PCA 

might miss some necessary components from dataset. As the result, there are 16 ground 

truth bases with variation of 1 component when running 5 full training cycles. Figure 24 to 

Figure 28 illustrates the ground truth bases images via EM based ARD method 

compared to other methods (PCA, NMF, NMF with sparseness constraint, and NMF with 

graph embedding) 
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Figure 24. Ground Truth Bases Discovery with EM Based ARD of Swimmer 
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Figure 25. Basic Images Discovery with NMF for Swimmer 
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Figure 26. Basic Images Discovery via NMF with GE for Swimmer 
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Figure 27. Basic Images Discovery via PCA for Swimmer 
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Figure 28. Basic Images Discovery via NMF with SC for Swimmer 

 

 Now, we move forward to the ORL faces data which is real and complicated to 

see how our proposed method can discover basic components from the data. Because 

we do not have any prior knowledge of ground truth bases components from this data, so 
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we will choose the initial value of model order K=100,121, 144 to be big enough, and we 

will run 4000 iterations on each training cycle, and then apply EM method to see how 

many basic components EM can discover. Finally, we get the result of 62 ground truth 

bases with variation of 7 components. Figure 29 to Figure 33 is to illustrate the basic 

components on each method, and EM takes over the other ones when it can recover the 

ground truth bases from dataset such as: mouth, eyebrows, eyes, nose,… 

 

 
Figure 29. Ground Truth Bases Discovery via EM Based ARD for ORL 
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Figure 30. Basic Images Discovery via NMF for ORL 
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Figure 31. Basic Images Discovery via NMF with GE for ORL 
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Figure 32. Basic Images Discovery via PCA for ORL 
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Figure 33. Basic Images Discovery via NMF with SC for ORL 

  

The Jaffe faces dataset is similar with ORL faces datasets, and we also do not 

know the correct number of ground truth bases. Therefore, we have to choose the initial 

model order K=100,1221,144 to define the estimated number of basic components. 

Figure 34 to Figure 38 is to illustrate the sample of basic components from the Jaffe 

dataset. Apparently, EM can extract the unique pattern from the dataset compared to the 

others. The result shows that there are 64 ground truth bases with variation of 3 

components. 
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Figure 34. Ground Truth Bases Discovery via EM Based ARD for Jaffe 
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Figure 35. Basic Images Discovery via NMF for Jaffe 
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Figure 36. Basic Images Discovery via NMF with GE for Jaffe 
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Figure 37. Basic Images Discovery via PCA for Jaffe 
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Figure 38. Basic Images Discovery via NMF with SC for Jaffe 

 

The Extended Yale faces dataset is similar with ORL faces, and Jaffe faces, but 

the size is bigger than others. It’s more than 1000 face images, and we also set up the 

experiment like the others. The result shows that there are 73 ground truth bases with 

variation of 9 components. Figure 39 is to illustrate the ground truth bases of extended 

Yale faces 
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Figure 39. Ground Truth Bases Discovery via EM for Extended Yale 
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Figure 40. Basic Images Discovery via NMF for Extended Yale 
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Figure 41. Basic Images Discovery via PCA for Extended Yale 
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Figure 42. Basic Images Discovery via NMF with SC for Extended Yale 
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Figure 43. Basic Images Discovery via NMF with GE for Extended Yale 

  

We are doing the experiments on both ORL and Jaffe faces, and Yale datasets, 

and all of them can recover the ground truth bases in the range form [64-73]. It is 

reasonable with the physical images because faces have same basic components 

whatever the datasets are. Therefore, our EM can recover the correct number of basic 

components from datasets. Table 1 shows the summarization of ground truth bases 

discovery via EM method over different datasets. 
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Table 1. Ground Truth Bases Discovery of Fence, Swimmer, ORL, Jaffe      

Datasets Model 

Order K 

Iteration Number of 

simulation 

Ground 

truth bases 

discovery 

Fence 18 1000 50 8 (±1) 

Swimmer 25 1000 50 16 (±1) 

ORL  100,121,144 4000 50 62 (±7) 

Jaffe 100,121,144 4000 50 64 (±3) 

Extended 

Yale 

100,121,144 4000 50 73 (±9) 

 

 

In addition, we also define the optimal model order by calculating the L2 

norm of bases for Fence, Swimmer, ORL, and Jaffe, and extended Yale.  

Apparently, with EM algorithm, the L2 norm graph shows that the ground truth 

bases (red circles) have more energies than the others (empty circles), and the 

number of red circles also equal to the ground truth bases we already discover 

from these subplots mentioned above. Figure 44 to Figure 48 illustrates the L2 

norm that discovers the ground truth bases from different datasets 
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Figure 44. L2 Norm is to Discover 8 Ground Truth Bases for Fence Dataset  

 

On Figure 44, We set the initial value K =18, and the EM discover 8 

ground truth bases (4 horizontal bars, and 4 vertical bars). Apparently, the 8 

ground truth bases have positive values (red circles) which are greater than less 

important components (empty circles) that have values around zero.  
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Figure 45. L2 Norm Discovers 16 Ground Truth Bases of Swimmer Dataset  

 

On Figure 45, We set the initial value K = 25, and the EM discover 16 

different limb positions ground truth bases . Apparently, the ground truth bases 

have positive values (red circles) which are greater than less important 

components (empty circles) that have values around zero. In this experiment, we 

choose the threshold value 0.095 to choose basic components. It means that any 

component is greater than the threshold value = 0.095 we will consider them as 

the ground truth bases, and skip the zero values. 
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Figure 46. L2 Norm is to Discover 62 Ground Truth Bases for ORL 

 

On Figure 46, We set the initial value K = 120, and the EM discover 62 

ground truth bases (eyes, lips, eyebrows, nose,..,etc) . Apparently, the ground 

truth bases have positive values (red circles) which are greater than less 

important components (empty circles) that have values around zero. In this 

experiment, we choose the threshold value 0.15 to choose basic components. It 

means that any component is greater than the threshold value = 0.15 we will 

consider them as the ground truth bases, and skip the values which is less than 
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the threshold value, and totally, we can discover around 63 basic components for 

this dataset. 

 

Figure 47. L2 Norm is to Discover 64 Ground Truth Bases for Jaffe Dataset 

 

On Figure 47, We set the initial value K = 120, and the EM discover 64 

ground truth bases (eyes, lips, eyebrows, nose,..,etc) . In this experiment, we 

choose the threshold value 0.15 to choose basic components. It means that any 

component is greater than the threshold value = 0.15 we will consider them as 



77 
 

the ground truth bases, and skip the values which is less than the threshold 

value, and totally, we can discover around 64 basic components for this dataset. 

 

 
Figure 48. L2 Norm is to Discover 73 Ground Truth Bases for Yale Dataset 

 

On Figure 48, We set the initial value K = 100, and the EM discover 73 

ground truth bases (eyes, lips, eyebrows, nose,..,etc) . In this experiment, we 

choose the threshold value 0.3 such that we easily recognize the basic 

components on subplots mentioned above. 

 

  



78 
 

Recognition Accuracy Comparison to Unsupervised , 
and Supervised Learning 

EM vs. Principal Component Analysis (PCA), NMF, Linear Discriminant 

Analysis (LDA), We also compare our proposed method with others (NMF, PCA, 

LDA) to see how EM can improve the recognition accuracy. In the experiment, 

we integrate our algorithm EM into specific datasets, and measure the accuracy 

of the coefficient matrix H in training set over coefficient Matrix H in test set. We 

will set the different of initial bases for different datasets and will get the best 

result with respect the number of bases. For example, we set the number of 

bases for ORL datasets K=36,49,61,81,100, and then we observed that the 

number of bases K=100 will get the best result as the best recognition accuracy. 

From the Table 2, we can see that all algorithms are working well on real 

datasets(ORL, and Jaffe) than synthetic datasets ( swimmer, and fence). In any 

cases, our proposed algorithm EM has better performance than others based on 

the recognition accuracy rate.  

 

Table 2. Recognition Accuracy Rate for Fence (K=16); Swimmer(K=35), ORL 
              Faces (K=100), and Jaffe (K=100) via EM; NMF, PCA, and LDA 

 Datasets 

Algorithms Swimmer ORL Faces Jaffe Faces Yale B 

EM 91.34(±0.85) 99.5 (±0.9) 94.5 (±0.42) 87.17 (±0.02) 

NMF 79.32 (±1.24) 96.21 (±0.39) 92.5 (±0.36) 84.25(±0.25) 

PCA 75.02(±0.48) 85.16 (±0.16) 87.95(±0.7) 82.03 (±0.18) 

LDA 75.59(±0.57) 88.75(±0.14) 89.50(±0.3) 82.98 (±0.5) 
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Based on the recognition accuracy rate on each dimensionality reduction, 

we can obtain the bar graph for comparison between EM and others. Figure 49 

to Figure 52 illustrate the comparisons of EM to others (NMF,PCA, LDA). In the 

swimmer dataset, EM has dramatically greater values than others, and the 

maximum recognition rate can get up to 90%. In the ORL datasets, the 

recognition rates between different algorithms are similar, but the EM also had 

slightly higher recognition rate compared to others, and the recognition rate can 

get up to 95 % at 100th dimensionality. In the Jaffe dataset, the EM has 

dramatically higher recognition rate at 36th, and 49th dimensionality, but only 

slightly higher than others when the dimensionality goes up to 100. At this point, 

and recognition rate is almost 100 %. In the Yale faces dataset, it is more 

complicated than others (ORL and Jaffe), so the recognition rate is not as high as 

others, but the EM recognition rate is still higher than other algorithms 
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Figure 49. Recognition Accuracy Comparison of EM to Others for Swimmer  
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Figure 50. Recognition Accuracy Comparison of EM to Others for ORL 



82 
 

Figure 51. Recognition Accuracy Comparison of EM to Others for Jaffe 
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Figure 52. Recognition Accuracy Comparison of EM to Others for Yale 
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Recognition Accuracy Comparison to Sparsity Based , 
and Graph Embedding 

In this section, we will compare EM to other algorithms such as Sparsity 

(NMF with SC) based on the Euclidean distance (I) [5]  with the sparseness 

constraint on W, or H, and Kullback-Leibler distance (II) [40]; and graph 

embedding (I) [17] (II) [18]. In the swimmer dataset, the EM recognition rate 

achieves the maximum value at 35th dimensionality which is pretty higher than 

others, but it just gets slightly higher than others when the dimensionality 

becomes bigger. For the ORL, Jaffe, and Yale datasets, although the EM has 

higher recognition rate than others, but it is just slightly higher. The most 

recognition rate can be observed in ORL faces with almost 100 % 

 

Table 3. Comparison EM to Sparsity Based, and Graph Embedding 

 Datasets 

Algorithms Swimmer ORL Faces Jaffe Faces Yale B 

EM 91.34(±0.85) 99.5 (±0.9) 94.5 (±0.42) 87.17 (±0.02) 

NMF 79.32 (±1.24) 96.21 (±0.39) 92.5 (±0.36) 84.25(±0.25) 

NMF_SC (I) 81.26(±1.46) 98.16 (±0.16) 93.67(±0.7) 85.26 (±0.18) 

NMF_SC(II) 80.17(±0.93) 
 

97.75(±0.14) 93.13 (±0.3) 84.57 (±0.5) 

GE(I) 80.65(±0.62) 96.63 (±0.67) 91.29(±0.63) 86.11 (±0.41) 

GE(II) 81.76(±0.25) 97.82(±0.91) 92.68(±0.13) 86.78 (±0.53) 
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Figure 53. Comparison of EM to Others for Swimmer Dataset 
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Figure 54.Comparison of EM to Others for ORL  Dataset 
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Figure 55. Comparison of EM to Others for Jaffe Dataset 
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Figure 56. Comparison of EM to Others for Yale Dataset 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORKS 

 

Conclusion 

 In conclusion, our proposed algorithm has successfully discovered the 

ground truth bases as well as the model order K in the different datasets from 

simple ones such as: swimmer, and fence to complicated ones: ORL, Jaffe, and 

Yale faces datasets. In addition, the EM algorithm with ARD can achieve the 

higher recognition rate than other algorithms such as: NMF, LDA, PCA, Sparsity 

based, and graph embedding. Therefore, our new algorithm has achieved 2 

goals: ground truth bases extraction, and improve the recognition rate. 

 

Future Works 

 Our EM can discover the ground truth bases from the dataset, it is easily 

the recognized these ground truth bases on simple datasets such as swimmer 

and fence. We can count and visualize clearly the unique patterns in fence (4 

horizontal bars and 4 vertical bars), and swimmer (16 limb positions, and one 

static torso). However, for the complexity dataset such as: ORL, Jaffe, and 

extended Yale faces datasets, it discovers the faces with mix components, and it 

is hard to visualize what the ground truth bases are. In the future, we can find out 
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the way to integrate the sparse coding to the EM so that it can both discover the 

ground truth bases and easily to recognize them on subplots. 
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