California State University, San Bernardino Chatbot

Krutarth Desai
005452196@coyote.csusb.edu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

Part of the Computer and Systems Architecture Commons

Recommended Citation
Desai, Krutarth, "California State University, San Bernardino Chatbot" (2018). Electronic Theses, Projects, and Dissertations. 775.
https://scholarworks.lib.csusb.edu/etd/775

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.
CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO CHATBOT

A Project
Presented to the
Faculty of
California State University,
San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in
Computer Science

by
Krutarth Desai
December 2018
CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO CHATBOT

A Project
Presented to the
Faculty of
California State University,
San Bernardino

by
Krutarth Desai
December 2018
Approved by:

Dr. Tong Lai Yu, Advisor, School of Computer Science and Engineering

Dr. Ernesto Gomez, Committee Member

Dr. Owen Murphy, Committee Member
ABSTRACT

Now-a-days the chatbot development has been moving from the field of Artificial-Intelligence labs to the desktops and mobile domain experts. In the fastest growing technology world, most smartphone users spend major time in the messaging apps such as Facebook messenger. A chatbot is a computer program that uses messaging channels to interact with users using natural Languages. Chatbot uses appropriate mapping techniques to transform user inputs into a relational database and fetch the data by calling an existing API and then sends an appropriate response to the user to drive its chats. Drawbacks include the need to learn and use chatbot specific languages such as AIML (Artificial Intelligence Markup Language), high botmaster interference, and the use of non-matured technology. In this project, Facebook messenger based chatbot is proposed to provide domain independent, an easy to use, smart, scalable, dynamic and conversational agent in order to get information about CSUSB. It has the unique functionalities which identify user interactions made by their natural language, and the flawless support of various application domains. This provides an ample of unique scalabilities and abilities that will be evaluated in the future phases of this project.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Tong Lai Yu, for all his guidance and help during the project. His patient guidance, enthusiastic encouragement, and scholarly advice have helped me to a great extent to accomplish this research work. He is not only a professor for me, he is more like a close friend and a respected person that worth learning in life.

I would also like to extend my thanks to Dr. Ernesto Gomez and Dr. Owen Murphy for being the committee members. Thank you for your valuable advice and support.

I am also very thankful for the help of the Department of Computer Science at California State University, San Bernardino. Especially, my graduate advisor Dr. Ernesto Gomez, who gave me great help during the graduate study.

Finally, I want to thank my family for the support and encouragement throughout my study.
# TABLE OF CONTENTS

ABSTRACT .................................................................................................................. iii

ACKNOWLEDGEMENTS ............................................................................................... iv

LIST OF FIGURES ......................................................................................................... vii

CHAPTER ONE: INTRODUCTION
   What is Chatbot ......................................................................................................... 1
   Background ............................................................................................................... 2

CHAPTER TWO: PROJECT OVERVIEW
   Objective ..................................................................................................................... 4
   Technologies ............................................................................................................. 5

CHAPTER THREE: INTRODUCTION TO REGULAR EXPRESSIONS
   What is Regular Expression ..................................................................................... 7
   Principles of Regular Expression ............................................................................ 7

CHAPTER FOUR: CHATBOT MECHANISM
   Anatomy of Chatbot ............................................................................................... 15

CHAPTER FIVE: PROJECT ARCHITECTURE
   How CSUSB Chatbot Internally Works .................................................................... 20
   Connecting Chatbot With Facebook ...................................................................... 22

CHAPTER SIX: UML DIAGRAMS
   Use Case Diagram ................................................................................................... 24
   Class Diagram .......................................................................................................... 26
   Sequence Diagram ................................................................................................... 27
   Component Diagram ............................................................................................... 28
LIST OF FIGURES

Figure 1. Regular Expression ................................................................. 8
Figure 2. RegExr Tool ........................................................................... 9
Figure 3. Word Boundary ..................................................................... 10
Figure 4. OR Quantifier ....................................................................... 11
Figure 5. Pattern of Zip Code ................................................................. 12
Figure 6. Pattern of Email Address ....................................................... 13
Figure 7. Email Address in RegExr Tool ........................................... 14
Figure 8. Chatbot Anatomy ................................................................. 16
Figure 9. User’s Question .................................................................... 17
Figure 10. Keyword Extraction ............................................................. 18
Figure 11. Chatbot in Nutshell ............................................................. 19
Figure 12. CSUSB Chatbot Mechanism .............................................. 21
Figure 13. Chatbot on Messenger ....................................................... 23
Figure 14. Use Case Diagram of Professors ........................................ 24
Figure 15. Use Case Diagram of Courses .......................................... 25
Figure 16. Class Diagram .................................................................... 26
Figure 17. Sequence Diagram ............................................................. 27
Figure 18. Component Diagram .......................................................... 28
Figure 19. State Diagram ..................................................................... 29
CHAPTER ONE

INTRODUCTION

What is Chatbot

Chatbots are computer algorithms that interact with humans using a conversational interface [1]. Chatbots satisfy user requirements by replying to questions in a simpler yet efficient way. They are user-friendly and always available for the user when needed. Chatbots are designed to simulate an interaction with another human. In the fast-growing technologically-advanced world, most smartphone users spend major time in messaging apps such as Facebook messenger. That gives great opportunity to create interactive chatbots that understand user questions and provide them with the answers. Chatbots are great for business growth, upsells and marketing purposes.

A chatbot is a computer program that interacts with a human through a chat interface and is designed to simulate a human [2]. The chatbot systems employ simply a dialogue system based on a natural language. Therefore, they can be used as interfaces for a vast number of applications including entertainment applications, educational applications, e-learning platforms, research engines, and ecommerce web-site navigations.
Background

In the current world, there are a lot of voice-based personal assistants available. Siri designed by Apple, Google home, Alexa by Amazon, Cortana by Microsoft are technically chatbots. They are chat-based conversational agents. We can chat with a bot the same way as we speak to a friend or a coworker, and it responds back in a human-like tone that demonstrates the personality that the bot creator has structured.

Machines are learning the art of human expressions and conversations. Algorithms and technologies are filling the gap in human computer interaction. Joseph Weizenbaum made the very first chatbot in 1966. It was called ELIZA [3]. ELIZA was made to recognize human interaction by using simple pattern recognition. It was released to administrative staff in the guise of a psychiatrist. People thought that it was a real doctor and Weizenbaum was shocked to see how humans behaved with the computer program. Users got emotional while chatting with ELIZA, which was incredible. From ELIZA, computer scientists learn that humans have a desire to communicate with a computer in much the same way as they do with another human. Facebook launched the messenger platform in 2016. As a result, other companies started heavy investments in messenger bots, artificial intelligence and machine learning. Bots are created in different industries such as news, weather, shopping, retail and much more. Bots serve a lot of user traffic in the current world [5].
A messenger bot uses pattern matching or Natural Language Processing to parse user inputs. The bots use Node.js, Python or Java to parse user data and to log, analyze and send answers back to the user. Bots are deployed to web servers and fulfil users’ requests all the time [6]
CHAPTER TWO
PROJECT OVERVIEW

Objective

The objective of this project is to create a messenger bot using the Facebook messenger platform. The bot would be available online all the time which can facilitate users’ questions and inquiries regarding Professors and Courses of Computer Science and Engineering department of California State University, San Bernardino. A user may ask questions about professors to check their office hours, email, phone, office location and list of all the professors of Computer Science and Engineering Department. A user may also ask questions about Computer Science courses to check class location, room number, lab hours, course name or title, number of units and course instructor. The user is allowed to ask about the course catalog to know about what classes are offered in a quarter. The bot would listen to user’s questions on Facebook messenger and answers accordingly. A bot understands the intention of the users and replies back in human language. The users do not have to search on the website to get the information about professors and courses of California State University, San Bernardino. The messenger bot is rapid, innovative and human friendly.
The NLP module is responsible for processing user input in a way that facilitates the mission of getting the needed answer. The pattern matching dictionary consists of patterns which find the intent of the question.

Technologies

I intend to create a messenger bot using the Facebook messenger platform. The bot app will be built on a Node.js module that serves as an interface to the messenger platform. I will create a REST APIs for CSUSB in Java to fetch the data from the database and it will be hosted in Microsoft Azure. The data will be stored in a MySQL database. The bot code in Node.js will be deployed on the Heroku server. The admin portal will be created in C#, ASP.Net to add professors and course details which will be deployed in Microsoft Azure.

I am going to use xregexp Node.js library for regular expression to create the RegEx pattern dictionary, which extracts the actionable piece of data from the given sentence to process further. I am going to use Windows 10 as the operating system.

I am going to use IntelliJ Idea to create node.js app for bot. I will use Microsoft Visual Studio 2013 to write a C#, ASP.Net for building an admin portal. I will use Eclipse to create RestAPIs in Java. Below is the advantage of choosing Node.Js for my project.

- It is faster than other languages.
- It almost never blocks.
• It yields great concurrency.

• Everything is asynchronous.

• It offers a unified programming language and data type.

It is highly scalable.
CHAPTER THREE
INTRODUCTION TO REGULAR EXPRESSIONS

What is Regular Expression

A Regular Expression or RegEx are an extremely powerful way of identifying patterns in strings [9]. A RegEx is available across most computer languages with flavor specific variations. The usage of RegEx is mentioned below. [9]

- Validating passwords, email address, IP address, pin codes, phone number, credit card numbers and more.
- Turning all email id and URLs in a blog post to valid hyperlinks.
- Searching and replacing text based on a given pattern.
- Finding / renaming files based on a given pattern.

Principles of Regular Expression

A Regular Expression begins and ends with a Forward Slash (“/”). This performs like a container which will hold a pattern. The next thing is a pattern itself which sets inside those forward slashes. Lastly, it has optional flags which can be used to enable things like case insensitive search among other things. [10]
Figure 1 shows a format of Regular Expression. A word “colours” is an actual pattern where “?” is an optional quantifier. Over here characters “U” and “S” are optional which means a word “colours” may also be written like “color”. Finally, we have optional flags “i” and “g” at the end. A flag “i” stands for Ignore Case while a flag “g” stands for “Global” which means it should find all instances of the word that matches in a given data set. So pattern in figure 1 matches word like “color”, ”colour”, ”colors”, ”colours”, ”CoLouRs”, ”CoLoRs”, ”COLORS”. [10]

In order to build and check patterns you can use RegExr which is online tool to help you learn, test and build Regular Expressions. Here is a link
https://www.regexr.com to use this tool. Figure 2 is the picture of RegExr Tool which identifies a set of pattern from given paragraph.

Let’s move forward with another quantifier which is “\b”. Here, “\b” stands for Boundary which expects a word isolated on both side by an empty space. A word boundary instructs a RegEx that given a word is an isolated word surround by an empty space but not the part of any word. Figure 3 shows an example of a word boundary using “/b”. In a given example there is a pattern to match a word “the” which is enclosed by “/b”. Given pattern will match a word “the” only if it is an isolated word but not a part of any word. In a given paragraph word “the” is a part of a word “there” but it won’t be matched because a given pattern is enclosed by “/b”. [10]
There are colors and then there are colours. The difference is only in the spelling. Color is a subjective issue. I might like a colour but may not like another. For instance, I like red, but I don’t like yellow. Colours are fun and so are colors.

Let’s take a look of another quantifier “|” which is known as “OR” quantifier. Since we have two words to match, it will match all the words which are separated by “|”. Figure 4 is an example of how “|” quantifier works to match given set of words. In this example a user wants to match words “hot” and “cold” at the same time. Both words are separated by “|”. [10]
Sometimes it is **hot**, sometimes it is **cold**, but the weather in this city is always great for an evening walk. Even during the winter season, it is never as **cold** as in the hills up North.

Figure 4. OR Quantifier

Let’s move further with another quantifier “\d” which stands for a Digit. “\d” is used to match digits from 0 to 9. In order to match a word with white space “\s” is being used. “\s” will match words separated by a white space. Figure 5 is an example of a pattern for matching a zip code (pin code) of a city. It shows a pattern which is matched for zip code with and without an empty space. [10]
Finally, our last example is to match an email addresses from a given paragraph. It will start with a word boundary “\b”. Let’s first focus to the username part of the email id which appears before @ sign. A username may contents alphabets from A to Z which is defined as “[a-z]”, numbers from 0 to 9 which is defined as [0-9] and a symbol of a Hyphen (-) or an Under Score (_) which are followed by “\b”. This set of characters could be more than one, so “+” quantifier will be used to match all of these. In order to put this in definable pattern, let’s now place @ sign followed by a back slash. Now for the domain, it should contain alphabets and numbers. After then we will add a dot for the top level domain such as .com, .net, .co.us and we will use an “{n}” quantifier which allows us to set a number of characters from 2 to 24. The largest top level domain is
about 24 characters long. Let’s take a look of figure 3.2.6 to understand a pattern of email address. [10]

Matching e-mail IDs

In order to test this pattern I will use online tool RegExr which is mentioned in figure 7. In this figure you can see it only selects Email Ids as expected.
Figure 7. Email Address in RegExr Tool
CHAPTER FOUR
CHATBOT MECHANISM

Anatomy of Chatbot

The first piece in a chatbot anatomy is the human. The human is the most important component here because he is the user who has to be impressed by how the bot performs. A user needs a channel to interact on. This could be Facebook Messenger, WeChat, Skype or Slack as well. Messages that user types in are then sent by this channels to the chatbot. Here, the chatbot is an application that expects a user messages and begins a conversation session. A session is an active as long as the current set of messages make up for an actively persuade conversation. These messages are then sent to a parser. A parser job is to process user's message, sent in a human language such as an English and then to convert it into structured data that can be consumed. In this case most system will produce two kinds of data elements. The first is called Intent. Intent suggests what the user intends to do. [11]
Figure 8. Chatbot Anatomy

A figure 8 shows how essentially a chatbot works. For instance, in the sentence “What is the weather like in New York?” a user intends to know about the weather. This is the first piece of data that parser must compute. After this is done, parser also needs to extract actionable data. So in the given example, actionable piece of data is set to New York. This actionable data is called Entities which coupled with Intent are required to produce a suitable response to process data. A function designed to handle this intent can then take the location entity and call a third party API to fetch weather data and send it back to the user. Once the data are processed, or fetched from an API, the next anatomical
component is the Responder. A Responder takes the data and produces a human like output and sends back the response to a channel from where it came and onward to a user. [11]

Let’s take an example of one more question of a project. In figure 9 a user asks question “Who is the instructor of CSE 202 in fall 2018?” Let’s examine this question. Most people are not expected to be a grammatical genius when they are in a phone typing a message. So this question may also be asked like “Who teaches CSE 202 in fall 2018?” In both cases intent of the user is the same but sentence formation is a bit different. But we just emphasize on the keywords but not in sentence formation.

Figure 9. User’s Question

Figure 10 shows that in the given sentence there are three actionable pieces of data that we want to recognize and extract which are “Instructor”, “CSE 202” and “Fall 2018”. Words “Instructor” and “Teaches” refer to the professor’s name, a word “CSE 202” refers to a course name and a word “Fall 2018” refers to the specific quarter. These keywords represent as Entity. In the given
sentence, Intent is to know about professor’s name for given course that user wants to check for.

Figure 10. Keywords Extraction

Figure 11 shows this is how a bot is going to function in a nutshell. Once a sentence goes into a bot, very first step is attempt to match a pattern from given set of rules. Once a pattern is matched, it goes on to extract intent and entities from the sentence. Once it gets an actionable piece of data, it proceeds further by calling a Course API to fetch an actual data which are stored in a database. Once we get response from an API, we parse and process the data to create a suitable reply for user to read.
Figure 11. Chatbot in Nutshell
CHAPTER FIVE
PROJECT ARCHITECTURE

How CSUSB Chatbot Internally Works

A CSUSB Chatbot begins with human input. Human has to ask a question by typing in messaging app and that question has to pass through set of rules. If the given input does match with one of the given set of rules, the app should then move on to extract intent and entities. Intent is what the conversation is all about and Entity is actionable data components that bot has to extract from the user’s messages to be able to process and send back an appropriate response. [11]

Once a human input goes into a bot then it will attempt to match a given set of patterns by RegEx Patterns Dictionary. If pattern matcher function matches one of the patterns, it goes on to extract Entities from the sentence. At the same time it also identifies Intent. For instance, user asks question like “Who is the location of class CSE 202”. In the given sentence, a word “Location” and a course “CSE 202” are actionable piece of data which are known as entities and intent is, to find a location of given a class. Once it gets intent and entities, it goes on to process by calling an API to fetch the actual data based on the entities that have been extracted. Once it gets response from API service, it moves further to parse and process the response to create a suitable reply for the user to read which is then sent back to user.
Figure 12 shows that process of a chatbot starts from The Interactive Terminal Interface which is nothing but a platform of Facebook Messenger. Once user type a message into a bot, the pattern matcher function will run the message through a set of regular expression rules. Regular Expression is a universal syntax that is used to detect patterns and extract data from a given sentence. If a pattern matcher function does find a pattern in the user’s input, it extracts an actionable data from the sentence and then it runs through CSUSB API to get actual data. This data comes back as a JSON object which is parsed to get what user wants. JSON is a JavaScript Object Notation which is a lightweight object to data interchange. JSON object is used for serializing and
transmitting data over a network connection. Once the JSON response is parsed, it will generate an appropriate reply which is printed back for user to read.

Connecting Chatbot With Facebook

Building a chatbot is a one part of this project other part is to connect a chatbot with Facebook Messenger platform to type messages. Figure 13 shows that process of deploying a chatbot on messenger platform begins with creating a Facebook page. This is absolutely essential. This page could be for the chatbot itself or it could be existing Facebook page such as the one for a business or an organization. The following step is to create a Facebook application and add the messenger platform product. CSUSB Chatbot links to a messenger platform using web-hooks. Web-hooks are specially designated URLs where messages from users are received by a chatbot. At the same time chatbot application talks to messenger by making calls to the send APIs. Once the connection between chatbot and messenger platform is made, next step is to test and train a bot to understand and respond to user. Once all of these are done, last step is to submit a chatbot to Facebook for approval to make it available to use in public. [12]
Figure 13. Chatbot on Messenger
CHAPTER SIX

UML DIAGRAMS

Use Case Diagram

Use Case Diagram represents user's interaction with Professors and Courses. Figure 14 shows that user can check List of all Professors, Email Address, Phone Number, Office Hours and Office Location of all faculties.

Figure 14. Use Case Diagram of Professors
Figure 15 describes that user is able to check Course Catalog, Course Title, Timings of Courses, Class Location, Number of Units and Course Instructor.

Figure 15. Use Case Diagram of Courses
Figure 16 describes static structure and relationship between two classes Professors and Courses. It represents all data members and methods which are used in class Professors and Courses. It states that relationship between class Professor and class Course is One-to-Many which represents that one professor can teach more than one courses.

Figure 16. Class Diagram
Sequence Diagram

Figure 17 shows object interactions between User and Professors and also between User and Courses arranged in time sequence. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the User and Professors and also between User and Courses to carry out the functionality of the scenario.

Figure 17. Sequence Diagram
Figure 18 depicts the number of components and how different components are interact with each other. Here it is shown Professors Component and Courses Component are interact with User Component.
Figure 19 shows that process of chatbot starts with user input which passes through pattern matcher to extract actionable piece of data. Once it extracts entity it process further to call CSUSB API to get an actual data. This data would be in JSON format which parses through Response Parser to convert in actual data which responds back to user.
CHAPTER SEVEN
CONCLUSIONS

The CSUSB chatbot project demonstrates the ease of use of the Facebook chatbot for the purpose of finding information on professors and courses of Computer Science. The chatbot code uses regular expression, pattern matching and intent of the questions. It creates buckets based on the intent of the question and assigns the task to the appropriate module. It uses Natural Language Understanding to create the buckets of the user’s intension. The chatbot uses Entity, Context and Intent model. Entity demonstrates the system of the chatbot. Intent demonstrates the action of the user. Context shows the state of the intension. Each module calls APIs to fetch the data specific to the question. Rest APIs are designed to fetch data from mySQL database. APIs are created on .NET platform and hosted on Azure cloud. A chatbot application executor executes and parses the API responses and forms answer sentences. The application code is hosted on the Heroku and salesforce cloud. It uses Facebook exposed APIs webhook to post the messages on Facebook messenger. Chatbots are scalable, resilient and rapid applications.

The Chatbots are obedient enough to answer all the questions. They can be also enhanced with Artificial Intelligence and Machine Learning. There is a lot of research going on about Natural Language Processing to understand the intent of the question. It can be achieved using generative and selective
modelling approach. The machine learned models can be trained using the questions asked by users. Sequence-to-Sequence is a famous modelling technique to train language models. The chatbots learn the context of the questions and forms reply. Tech companies also use Artificial Neural Network to train chatbot models. Data scientists and researchers all over the world are solving problems to learn the intent of the questions and reply intelligently.

In the current world, businesses are investing a lot in developing chatbots. There are technology companies like aivo, botsify and chatfuel who provide infrastructure frameworks to create chatbots using artificial intelligence. Companies in Banking, eCommerce, Financial Services and IT advertising industry develop bots on mobile applications, Facebook platform or other messenger platform to help customers. The Chatbots fulfills customer’s need such as weather information, crimes, news, package tracking updates, FAQs, feedback, shopping etc.
APPENDIX A

PROJECT SCREENSHOTS
Add professor’s details

Show professor’s details
Hi there! How can I help you?

How you doing

I am doing great! How can I help you today?

What is the weather like in San Bernardino?

Right now, it is partly cloudy in San Bernardino, United States. It is moderately cold at 17 degrees celsius.

What is the dinner for today

I don't know what do you mean. Type "Help" for more help.

This is the personal assistant bot for CSUSB. This bot serves you informations about courses and professors of Computer Science and Engineering department only. Please type "Sample Questions" for more idea.
Science and Engineering department only. Please type "Sample Questions" for more idea.

You may ask "Who is the instructor of cse 202?" "May I know office hours of Dr. Yu?" You may ask questions about professors (by last name) to check their office hours, email, phone, office location. You may ask questions about computer science courses to check course title, class location, class/lab hours or timing, no. of units and course instructor. You may type "Faculty List" or "Course Catalog" to get more details about faculties and courses.

What is the office hours of Dr. Murphy?

Office hours of Dr. Murphy are Mon - Wed, 1:30PM to 3:30PM.

May I know email of Dr. Yu?

Email of Dr. Yu is tyu@csusb.edu.

What is the email address of Dr. Gomez?

Email of Dr. Gomez is ernesto@csusb.edu.

I wanna check email id of Dr. Murphy.

Email of Dr. Murphy is murphy@csusb.edu.
Where is the office of Dr. Voigt?

Let me check...

Office location of Dr. Voigt is JB 349.

I wanna see office location of Dr. Yu

Office location of Dr. Yu is JB 346.

What is the phone number of Dr. Gomez?

Phone number of Dr. Gomez is (909) 537-5429.

May I know contact number of Dr. Turner?

Phone number of Dr. Turner is (909) 537-5326.

What is the phone number of Dr. Gomez?

Phone number of Dr. Gomez is (909) 537-5429.

May I know contact number of Dr. Turner?

Phone number of Dr. Turner is (909) 537-5326.

I wanna see the contact information of Dr. Murphy.

Phone number of Dr. Murphy is (909) 537-5408.

Phone number of Dr. Yu is (909) 537-5334.
Show me professors list of computer science department

Here is the faculty list:
Dr. Tong Lai Yu
Dr. Owen Murphy
Dr. Arturo Concepcion
Dr. George Georgiou
Dr. Ernesto Gomez
Dr. Yunfei Hou
Dr. Yasha Karant
Dr. Josephine Mendoza
Dr. Haiyan Qiao
Dr. Qingquan Sun
Dr. David Turner
Dr. Kerstin Voigt

May I know the class instructor of CSE 310?

Let me check...
Instructor of CSE 310 03 is Dr. Tong Lai Yu

Who is teaching CSE 201?

Instructor of CSE 201 07 is Dr. David Turner

May I know the title of CSE 310?

The title of CSE 310 03 is DIGITAL LOGIC.

What is the course name of CSE 313?

The title of CSE 313 01 is MACHINE ORGANIZATION.
I want to check lab hours of CSE 655

Let me check...

Hours of CSE 655 01 are Tue-Thu, 12:00 PM - 01:20 PM.

What is timing of Cse431?

Hours of CSE 431 02 are Mon-Wed, 12:00 PM - 01:45 PM.

What is the lab time of CSE330?

Let me check...

Hours of CSE 330 01 are Tue-Thu, 12:00 PM - 01:15 PM.

What is the class location of cse660?

Let me check...

The class location of CSE 660 01 is CS 128.

Where is the class of cse310?

Let me check...

The class location of CSE 310 03 is CE 213.

What is the room number of CSE 655?

Let me check...

The class location of CSE 655 01 is HP 122.
655 01 is HP 122.

How many number of units of cse 488?

Total number of units are 2.

I wanna check total units of CSE 489

Total number of units are 2.

What is the title of cse 489?

The title of CSE 489 01 is SENIOR SEMINAR.

And the location of cse 489?

Let me check...

The class location of CSE 489 01 is PL 224.

Could you show me course catalog?

Here is the course catalog:

CSE 201 07 COMP SCI I by Dr. David Turner
CSE 201 08 COMP SCI I by Dr. David Turner
CSE 201 13 COMP SCI I by Dr. David Turner
CSE 202 01 COMP SCI II by Dr. Kay Zemoudeh
CSE 202 02 COMP SCI II by Dr. Kay Zemoudeh
CSE 202 04 COMP SCI II by Dr. Kay Zemoudeh
CSE 310 01 DIGITAL LOGIC by Ms. Taline Georgiou
CSE 310 02 DIGITAL LOGIC
APPENDIX B

CODE OF CRITICAL PARTS
Server.js

const express = require('express');
const bodyParser = require('body-parser');

const config = require('./config');
const FBaemer = require('./fbaemer');

const matcher = require('./matcher');

const weather = require('./weather');
const professorApi = require('./api/professorApi');
const courseApi = require('./api/courseApi');
const professorAll = require('./api/professorAllApi');
const courseAll = require('./api/courseAllApi');

//Weather Parser
const {currentWeather} = require('./parser');

//Professor Parser
const {officeHr} = require('./parser/professorsParse');
const {emailId} = require('./parser/professorsParse');
const {phoneNo} = require('./parser/professorsParse');
const {officeLocation} = require('./parser/professorsParse');
const {allProfessors} = require('./parser/professorsParse');

//Course Parser
const {courseTitle} = require('./parser/courseParse');
const {courseTime} = require('./parser/courseParse');
const {classLocation} = require('./parser/courseParse');
const {courseUnits} = require('./parser/courseParse');
const {courseByProfessor} = require('./parser/courseParse');

const server = express();
const PORT = process.env.PORT || 3000;

const f = new FBaemer(config.fb);

server.get('/', (req, res) => f.registerHook(req, res));
server.post('/', bodyParser.json({
  verify: f.verifySignature
}));

let mapCourse = getMapCourses();

server.post('/', (req, res, next) => {
  return f.incoming(req, res, data => {
    try{
      if (data.type === 'text'){
        matcher(data.content, async resp => {
          switch (resp.intent){
            case 'Hello':
              await f.txt(data.sender, `${resp.entities.greeting} How can I help you?`);
              break;
            case 'Greetings':
              await f.txt(data.sender, 'I am doing great! How can I help you today?');
              break;
            case 'CurrentWeather':
              await f.txt(data.sender, 'Let me check...');
              let weatherData = await weather(resp.entities.city, 'current');
              break;
          }
        });
      }
    }
  });
});
let cwResult = currentWeather(weatherData);
await f.txt(data.sender, cwResult);
break;
//@Show Professors:

switch (msg)
{
case 'AllProfessors':
    await f.txt(data.sender, 'Here is the faculty list:');
    let response = await professorAll(resp.entities.professor);
    for(let i = 0; i<response.length; i++) {
        if(response[i].lname){
            await f.txt(data.sender, response[i].fname + ' ' + response[i].lname);
        }
    }
    break;

case 'Email':
    // await f.txt(data.sender, 'Let me check...');
    let cwData2 = await professorApi(mapProfessor.get((resp.entities.professor).toLowerCase()));
    let email = emailId(cwData2);
    await f.txt(data.sender, email);
    break;

case 'OfficeLocation':
    await f.txt(data.sender, 'Let me check...');
    let cwData4 = await professorApi(mapProfessor.get((resp.entities.professor).toLowerCase()));
    let loc = officeLocation(cwData4);
    await f.txt(data.sender, loc);
    break;
// Show Courses:

case 'AllCourses':
    await f.txt(data.sender, 'Here is the course catalog:');
    let courses = await courseAll(resp.entities.course);
    for(let i = 0; i<courses.length; i++) {
        if(courses[i].id){
            await f.txt(data.sender, courses[i].number + ' ' + courses[i].name + ' by
            ' + courses[i].professors.fname+' '+courses[i].professors.lname);
        }
    }
    break;

case 'CourseName':
    // await f.txt(data.sender, 'Let me check...');
    let courseData1 = await courseApi(mapCourse.get((resp.entities.course).replace(/s+/,
    ''')).toLowerCase()));
    let title = courseTitle(courseData1);
    await f.txt(data.sender, title);
    break;
case 'CourseTime':
    await f.txt(data.sender, 'Let me check...');
    let courseData2 = await courseApi((resp.entities.course).replace(/\s+/,
        '').toLowerCase());
    let time = courseTime(courseData2);
    await f.txt(data.sender, time);
    break;

    case 'ClassLocation':
        await f.txt(data.sender, 'Let me check...');
        let courseData3 = await courseApi((mapCourse.get((resp.entities.course).
            replace(/\s+/, '').toLowerCase()));
        let location = classLocation(courseData3);
        await f.txt(data.sender, location);
        break;

    case 'CourseUnits':
        let courseData4 = await courseApi((mapCourse.get((resp.entities.course).
            replace(/\s+/, '').toLowerCase()));
        let units = courseUnits(courseData4);
        await f.txt(data.sender, units);
        break;

    case 'CourseByProfessor':
        await f.txt(data.sender, 'Let me check...');
        let courseData5 = await courseApi((mapCourse.get((resp.entities.course).
            replace(/\s+/, '').toLowerCase()));
        let course = courseByProfessor(courseData5);
        await f.txt(data.sender, course);
        break;

    case 'Help':
        await f.txt(data.sender, 'This is the personal assistant bot for CSUSB. This bot serves
        you informations about courses and professors of Computer Science and Engineering department
        only. Please type "Sample Questions" for more idea.');
        break;

    case 'SampleQuestions':
        await f.txt(data.sender, 'You may ask "Who is the instructor of cse 202?" "May I
        know office hours of Dr. Yu?" You may ask questions about professors(by last name) to check their
        office hours, email, phone, office location. You may ask questions about computer science courses
        to check course title, class location, class/lab hours or timing, no. of units and course instructor.
        You may type "Faculty List" or "Course Catalog" to get more details about faculties and courses.
        ');
        break;

    case 'Exit':
        await f.txt(data.sender, `${resp.entities.greeting} Krutarth!`);
        await f.txt(data.sender, 'Have a great day :);');
        break;

    default: {
        await f.txt(data.sender, 'I don’t know what do you mean. Type "Help" for more help.');
    }
}
}

try {
    server.listen(PORT, () => console.log(`CSUSB ChatBot Service running on Port ${PORT}`));
} catch(e){
    console.log(e);
}
const patternDict = [{
  pattern: `\\b(?<greeting>Hi|Hello|Hey)\\b`,
  intent: 'Hello'
},
{ pattern: `\\b(How are you|How are you doing|How you doing)\\b`,
    intent: 'Greetings'
},
{ pattern: `\\b(like)\\b`,
    intent: 'CurrentWeather'
},
{ pattern: `\\b(?<city>.+)\\b`,
    intent: 'CurrentWeather'
},
{ pattern: `\\b(?<professor>.+)\\b`,
    intent: 'AllProfessors'
},
]
Matcher.js

`use strict`;
const patterns = require('../patterns');
const XRegExp = require('xregexp');

let createEntities = (str, pattern) => {
  return XRegExp.exec(str, XRegExp(pattern, 'i'));
}

let matchPattern = (str, cb) =>{
  let getResult = patterns.find(item =>{
    if(XRegExp.test(str, XRegExp(item.pattern, 'i'))){
      return true;
    }
  });
  if(getResult){
    return cb({
      intent: getResult.intent,
      entities: createEntities(str, getResult.pattern)
    });
  } else {
    return cb({});
  }
}

module.exports = matchPattern;

CourseApi.js

var Request = require("request");

COURSE_URL = "https://chatbot2018.azurewebsites.net/api/courses/";

const getCourseService = (id, callback) => {
  return new Promise((resolve, reject) => {
    Request.get(`${COURSE_URL}${id}`, {json:true}, (err, res, body) => {
      if(err){
        reject(err);
      } else {
        resolve(body);
      }
    });
  });
}

module.exports = getCourseService;

ProfessorApi.js
var Request = require("request");

PROFESSOR_URL = "https://chatbot2018.azurewebsites.net/api/professors/";

const getProfessorService = (id, callback) => {
    return new Promise((resolve, reject) => {
        Request.get(`${PROFESSOR_URL}${id}`)', {json:true}, (err,res,body) => {
            if(err){
                reject(err);
            }
            resolve(body);
        });
    });
}

module.exports = getProfessorService;

ProfessorParse.js

let officeHr = response => {
    if(response.lname){
        return 'Office hours of Dr. ${response.lname} are ${response.officeHours}'.
    }
}

let emailId = response => {
    if(response.lname){
        return 'Email of Dr. ${response.lname} is ${response.email}'.
    }
}

let phoneNo = response => {
    if(response.lname){
        return 'Phone number of Dr. ${response.lname} is ${response.phone}'.
    }
}

let officeLocation = response => {
    if(response.lname){
        return 'Office location of Dr. ${response.lname} is ${response.location}'.
    }
}

let allProfessors = response => {
    console.log("Here is the faculty list: ");
    for(let i = 0; i<response.length; i++) {
        if(response[i].lname){
            console.log(' ${response[i].lname} ${response[i].name}',
        }
    }
}

module.exports = {
    officeHr,
    emailId,
    phoneNo,
    officeLocation,
    allProfessors
};
CourseParse.js

```javascript
let courseTitle = response => {
    if(response.id){
        let course = response.number;
        return `The title of ${course.trim()} is ${response.name}.`
    }
}

let courseTime = response => {
    if(response.id){
        let courseid = response.number;
        return `Hours of ${courseid.trim()} are ${response.time}.`
    }
}

let classLocation = response => {
    if(response.id){
        let courseNo = response.number;
        return `The class location of ${courseNo.trim()} is ${response.location}.`
    }
}

let courseUnits = response => {
    if(response.id){
        let units = response.noOfUnits;
        return `Total number of units are ${units.toString()}.`
    }
}

let courseByProfessor = response => {
    if(response.id){
        let courseName = response.number.trim();
        return `Instructor of ${courseName} is ${response.professors.fname} ${response.professors.lname}`
    }
}

module.exports = {
    courseTitle,
    courseTime,
    classLocation,
    courseUnits,
    courseByProfessor
};
```

Fbeamer.js

```javascript
'use strict';

const crypto = require("crypto");
const request = require('request');
const apiVersion = 'v2.8';

class FBeamer {
    constructor({ pageAccessToken, verifyToken, appSecret}) {
        try {
```
if (pageAccessToken && verifyToken) {
    this.pageAccessToken = pageAccessToken;
    this.verifyToken = verifyToken;
    this.appSecret = appSecret;
} else {
    throw "One or more tokens/credentials are missing!";
}

try {
    if ((mode && token) && (mode === 'subscribe' && token === this.verifyToken)) {
        console.log("Webhook registered!");
        return res.send(challenge);
    } else {
        throw "Could not register webhook!";
        return res.sendStatus(200);
    }
} catch(e) {
    console.log(e);
}

registerHook(req, res) {
    const params = req.query;
    const mode = params['hub.mode'],
    token = params['hub.verify_token'],
    challenge = params['hub.challenge'];
    // if mode === 'subscribe' and token === verifytoken, then send back challenge
    try {
        if ((mode && token) && (mode === 'subscribe' && token === this.verifyToken)) {
            console.log("Webhook registered!");
            return res.send(challenge);
        } else {
            throw "Could not register webhook!";
            return res.sendStatus(200);
        }
    } catch(e) {
        console.log(e);
    }
}

verifySignature(req, res, buf) {
    return (req, res, buf) => {
        if(req.method === 'POST') {
            try {
                let signature = req.headers['x-hub-signature'];
                if(!signature) {
                    throw "Signature not received";
                } else {
                    let hash = crypto.createHmac("sha1", this.appSecret).update(buf, 'utf-8');
                    if(hash.digest('hex') !== signature.split("=")[1]) {
                        throw "Invalid signature!";
                    }
                }
            } catch (e) {
                console.log(e);
            }
        }
    }
}

incoming(req, res, cb) {
    res.sendStatus(200);
    if(req.body.object === 'page' && req.body.entry) {
        let data = req.body;
        data.entry.forEach(pageObj => {
            if(pageObj.messaging) {
                pageObj.messaging.forEach(messageObj => {
                    console.log(messageObj);
                })
            }
        })
    }
}
if(messageObj.postback) {
  // Handle postbacks
} else {
  // Handle messages
  return cb(this.messageHandler(messageObj));
}

messageHandler(obj) {
  let sender = obj.sender.id;
  let message = obj.message;

  if(message.text) {
    let obj = {
      sender,
      type: 'text',
      content: message.text
    }

    return obj;
  }
}

sendMessage(payload) {
  return new Promise((resolve, reject) => {
    request({
      uri: `https://graph.facebook.com/${apiVersion}/me/messages`,
      qs: {
        access_token: this.pageAccessToken
      },
      method: 'POST',
      json: payload
    }, (error, response, body) => {
      if (!error && response.statusCode === 200) {
        resolve({
          mid: body.message_id
        });
      } else {
        reject(error);
      }
    });
  });
}

txt(id, text, messaging_type = 'RESPONSE') {
  let obj = {
    messaging_type,
    recipient: {
      id
    },
    message: {
      text
    }
  }

  return this.sendMessage(obj);
```javascript
img(id, url, messaging_type = 'RESPONSE') {
  let obj = {
    messaging_type,
    recipient: {
      id,
    },
    message: {
      attachment: {
        type: 'image',
        payload: {
          url
        }
      }
    }
  }
  return this.sendMessage(obj);
}

module.exports = FBeamer;

Config.js

if(process.env.NODE_ENV === 'production') {
  module.exports = {
    fb: {
      pageAccessToken: process.env.pageAccessToken,
      verifyToken: process.env.verifyToken,
      appSecret: process.env.appSecret
    }
  }
}
```
REFERENCES


