
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

12-2018

California State University, San Bernardino Chatbot California State University, San Bernardino Chatbot

Krutarth Desai

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Desai, Krutarth, "California State University, San Bernardino Chatbot" (2018). Electronic Theses, Projects,
and Dissertations. 775.
https://scholarworks.lib.csusb.edu/etd/775

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/775?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO CHATBOT

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Krutarth Desai

December 2018

CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO CHATBOT

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Krutarth Desai

December 2018

Approved by:

Dr. Tong Lai Yu, Advisor, School of Computer Science and Engineering

Dr. Ernesto Gomez, Committee Member

Dr. Owen Murphy, Committee Member

© 2018 Krutarth Desai

iii

ABSTRACT

Now-a-days the chatbot development has been moving from the field of

Artificial-Intelligence labs to the desktops and mobile domain experts. In the

fastest growing technology world, most smartphone users spend major time in

the messaging apps such as Facebook messenger. A chatbot is a computer

program that uses messaging channels to interact with users using natural

Languages. Chatbot uses appropriate mapping techniques to transform user

inputs into a relational database and fetch the data by calling an existing API and

then sends an appropriate response to the user to drive its chats. Drawbacks

include the need to learn and use chatbot specific languages such as AIML

(Artificial Intelligence Markup Language), high botmaster interference, and the

use of non-matured technology. In this project, Facebook messenger based

chatbot is proposed to provide domain independent, an easy to use, smart,

scalable, dynamic and conversational agent in order to get information about

CSUSB. It has the unique functionalities which identify user interactions made by

their natural language, and the flawless support of various application domains.

This provides an ample of unique scalabilities and abilities that will be evaluated

in the future phases of this project.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Tong Lai Yu,

for all his guidance and help during the project. His patient guidance, enthusiastic

encouragement, and scholarly advice have helped me to a great extent to

accomplish this research work. He is not only a professor for me, he is more like

a close friend and a respected person that worth learning in life.

I would also like to extend my thanks to Dr. Ernesto Gomez and Dr. Owen

Murphy for being the committee members. Thank you for your valuable advice

and support.

I am also very thankful for the help of the Department of Computer

Science at California State University, San Bernardino. Especially, my graduate

advisor Dr. Ernesto Gomez, who gave me great help during the graduate study.

Finally, I want to thank my family for the support and encouragement

throughout my study.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

CHAPTER ONE: INTRODUCTION

What is Chatbot ... 1

Background ... 2

CHAPTER TWO: PROJECT OVERVIEW

Objective .. 4

Technologies ... 5

CHAPTER THREE: INTRODUCTION TO REGULAR EXPRESSIONS

What is Regular Expression ... 7

Principles of Regular Expression.. 7

CHAPTER FOUR: CHATBOT MECHANISM

 Anatomy of Chatbot ... 15

CHAPTER FIVE: PROJECT ARCHITECTURE

How CSUSB Chatbot Internally Works .. 20

Connecting Chatbot With Facebook ... 22

CHAPTER SIX: UML DIAGRAMS

Use Case Diagram .. 24

Class Diagram ... 26

Sequence Diagram ... 27

Component Diagram ... 28

vi

State Diagram ... 29

CHAPTER SEVEN: CONCLUSIONS .. 30

APPENDIX A: PROJECT SCREENSHOTS ... 32

APPENDIX B: CODE OF CRITICAL PARTS .. 41

REFERENCES ... 51

vii

LIST OF FIGURES

Figure 1. Regular Expression .. 8

Figure 2. RegExr Tool .. 9

Figure 3. Word Boundary ... 10

Figure 4. OR Quantifier .. 11

Figure 5. Pattern of Zip Code .. 12

Figure 6. Pattern of Email Address .. 13

Figure 7. Email Address in RegExr Tool ... 14

Figure 8. Chatbot Anatomy .. 16

Figure 9. User’s Question .. 17

Figure 10. Keyword Extraction ... 18

Figure 11. Chatbot in Nutshell ... 19

Figure 12. CSUSB Chatbot Mechanism .. 21

Figure 13. Chatbot on Messenger ... 23

Figure 14. Use Case Diagram of Professors .. 24

Figure 15. Use Case Diagram of Courses .. 25

Figure 16. Class Diagram .. 26

Figure 17. Sequance Diagram ... 27

Figure 18. Component Diagram .. 28

Figure 19. State Diagram ... 29

1

CHAPTER ONE

INTRODUCTION

What is Chatbot

Chatbots are computer algorithms that interact with humans using a

conversational interface [1]. Chatbots satisfy user requirements by replying to

questions in a simpler yet efficient way. They are user-friendly and always

available for the user when needed. Chatbots are designed to simulate an

interaction with another human. In the fast-growing technologically-advanced

world, most smartphone users spend major time in messaging apps such as

Facebook messenger. That gives great opportunity to create interactive chatbots

that understand user questions and provide them with the answers. Chatbots are

great for business growth, upsells and marketing purposes.

A chatbot is a computer program that interacts with a human through a

chat interface and is designed to simulate a human [2]. The chatbot systems

employ simply a dialogue system based on a natural language. Therefore, they

can be used as interfaces for a vast number of applications including

entertainment applications, educational applications, e-learning platforms,

research engines, and ecommerce web-site navigations.

2

Background

In the current world, there are a lot of voice-based personal assistants

available. Siri designed by Apple, Google home, Alexa by Amazon, Cortana by

Microsoft are technically chatbots. They are chat-based conversational agents.

We can chat with a bot the same way as we speak to a friend or a coworker, and

it responds back in a human-like tone that demonstrates the personality that the

bot creator has structured.

Machines are learning the art of human expressions and conversations.

Algorithms and technologies are filling the gap in human computer interaction.

Joseph Weisenbaum made the very first chatbot in 1966. It was called ELIZA [3].

ELIZA was made to recognize human interaction by using simple pattern

recognition. It was released to administrative staff in the guise of a psychiatrist.

People thought that it was a real doctor and Weisenbaum was shocked to see

how humans behaved with the computer program. Users got emotional while

chatting with ELIZA, which was incredible. From ELIZA, computer scientists learn

that humans have a desire to communicate with a computer in much the same

way as they do with another human. Facebook launched the messenger platform

in 2016. As a result, other companies started heavy investments in messenger

bots, artificial intelligence and machine learning. Bots are created in different

industries such as news, weather, shopping, retail and much more. Bots serve a

lot of user traffic in the current world [5].

3

 A messenger bot uses pattern matching or Natural Language Processing

to parse user inputs. The bots use Node.js, Python or Java to parse user data

and to log, analyze and send answers back to the user. Bots are deployed to

web servers and fulfil users’ requests all the time [6]

4

CHAPTER TWO

PROJECT OVERVIEW

Objective

The objective of this project is to create a messenger bot using the

Facebook messenger platform. The bot would be available online all the time

which can facilitate users’ questions and inquiries regarding Professors and

Courses of Computer Science and Engineering department of California State

University, San Bernardino. A user may ask questions about professors to check

their office hours, email, phone, office location and list of all the professors of

Computer Science and Engineering Department. A user may also ask questions

about Computer Science courses to check class location, room number, lab

hours, course name or title, number of units and course instructor. The user is

allowed to ask about the course catalog to know about what classes are offered

in a quarter. The bot would listen to user’s questions on Facebook messenger

and answers accordingly. A bot understands the intention of the users and

replies back in human language. The users do not have to search on the website

to get the information about professors and courses of California State

University, San Bernardino. The messenger bot is rapid, innovative and human

friendly.

5

The NLP module is responsible for processing user input in a way that

facilitates the mission of getting the needed answer. The pattern matching

dictionary consists of patterns which find the intent of the question.

Technologies

I intend to create a messenger bot using the Facebook messenger

platform. The bot app will be built on a Node.js module that serves as an

interface to the messenger platform. I will create a REST APIs for CSUSB in

Java to fetch the data from the database and it will be hosted in Microsoft Azure.

The data will be stored in a MySQL database. The bot code in Node.js will be

deployed on the Heroku server. The admin portal will be created in C#, ASP.Net

to add professors and course details which will be deployed in Microsoft Azure.

I am going to use xregexp Node.js library for regular expression to create

the RegEx pattern dictionary, which extracts the actionable piece of data from the

given sentence to process further. I am going to use Windows 10 as the

operating system.

I am going to use IntelliJ Idea to create node.js app for bot. I will use

Microsoft Visual Studio 2013 to write a C#, ASP.Net for building an admin portal.

I will use Eclipse to create RestAPIs in Java. Below is the advantage of choosing

Node.Js for my project.

 It is faster than other languages.

 It almost never blocks.

6

 It yields great concurrency.

 Everything is asynchronous.

 It offers a unified programming language and data type.

It is highly scalable.

7

CHAPTER THREE

INTRODUCTION TO REGULAR EXPRESSIONS

What is Regular Expression

A Regular Expression or RegEx are an extremely powerful way of

identifying patterns in strings [9]. A RegEx is available across most computer

languages with flavor specific variations. The usage of RegEx is mentioned

below. [9]

 Validating passwords, email address, IP address, pin codes, phone

number, credit card numbers and more.

 Turning all email id and URLs in a blog post to valid hyperlinks.

 Searching and replacing text based on a given pattern.

 Finding / renaming files based on a given pattern.

Principles of Regular Expression

 A Regular Expression begins and ends with a Forward Slash (“/”). This

performs like a container which will hold a pattern. The next thing is a pattern

itself which sets inside those forward slashes. Lastly, it has optional flags which

can be used to enable things like case insensitive search among other things.

[10]

8

Figure 1. Regular Expression

 Figure 1 shows a format of Regular Expression. A word “colours” is an

actual pattern where “?” is an optional quantifier. Over here characters “U” and

“S” are optional which means a word “colours” may also be written like “color”.

Finally, we have optional flags “i” and “g” at the end. A flag “i” stands for Ignore

Case while a flag “g” stands for “Global” which means it should find all instances

of the word that matches in a given data set. So pattern in figure 1 matches word

like “color”, ”colour”, ”colors”, ”colours”, ”CoLouRs”, ”CoLoRs”, “COLORS”. [10]

 In order to build and check patterns you can use RegExr which is online

tool to help you learn, test and build Regular Expressions. Here is a link

9

https://www.regexr.com to use this tool. Figure 2 is the picture of RegExr Tool

which identifies a set of pattern from given paragraph.

Figure 2. RegExr Tool

Let’s move forward with another quantifier which is “\b”. Here, “\b” stands

for Boundary which expects a word isolated on both side by an empty space. A

word boundary instructs a RegEx that given a word is an isolated word surround

by an empty space but not the part of any word. Figure 3 shows an example of a

word boundary using “/b”. In a given example there is a pattern to match a word

“the” which is enclosed by “/b”. Given pattern will match a word “the” only if it is

an isolated word but not a part of any word. In a given paragraph word “the” is a

part of a word “there” but it won’t be matched because a given pattern is

enclosed by “/b”. [10]

https://www.regexr.com/

10

Figure 3. Word Boundary

 Let’s take a look of another quantifier “|” which is known as “OR”

quantifier. Since we have two words to match, it will match all the words which

are separated by “|”. Figure 4 is an example of how “|” quantifier works to match

given set of words. In this example a user wants to match words “hot” and “cold”

at the same time. Both words are separated by “|”. [10]

11

Figure 4. OR Quantifier

 Let’s move further with another quantifier “\d” which stands for a Digit. “\d”

is used to match digits from 0 to 9. In order to match a word with white space “\s”

is being used. “\s” will match words separated by a white space. Figure 5 is an

example of a pattern for matching a zip code (pin code) of a city. It shows a

pattern which is matched for zip code with and without an empty space. [10]

12

Figure 5. Pattern of Zip Code

 Finally, our last example is to match an email addresses from a given

paragraph. It will start with a word boundary “\b”. Let’s first focus to the username

part of the email id which appears before @ sign. A username may contents

alphabets from A to Z which is defined as “[a-z]”, numbers from 0 to 9 which is

defined as [0-9] and a symbol of a Hyphen (-) or an Under Score (_) which are

followed by “\b”. This set of characters could be more than one, so “+” quantifier

will be used to match all of these. In order to put this in definable pattern, let’s

now place @ sign followed by a back slash. Now for the domain, it should

contain alphabets and numbers. After then we will add a dot for the top level

domain such as .com, .net, .co.us and we will use an “{n}” quantifier which allows

us to set a number of characters from 2 to 24. The largest top level domain is

13

about 24 characters long. Let’s take a look of figure 3.2.6 to understand a pattern

of email address. [10]

Figure 6. Pattern of Email Address

 In order to test this pattern I will use online tool RegExr which is

mentioned in figure 7. In this figure you can see it only selects Email Ids as

expected.

14

Figure 7. Email Address in RegExr Tool

15

CHAPTER FOUR

CHATBOT MECHANISM

Anatomy of Chatbot

 The first piece in a chatbot anatomy is the human. The human is the most

important component here because he is the user who has to be impressed by

how the bot performs. A user needs a channel to interact on. This could be

Facebook Messenger, WeChat, Skype or Slack as well. Messages that user

types in are then sent by this channels to the chatbot. Here, the chatbot is an

application that expects a user messages and begins a conversation session. A

session is an active as long as the current set of messages make up for an

actively persuade conversation. These messages are then sent to a parser. A

parser job is to process user’s message, sent in a human language such as an

English and then to convert it into structured data that can be consumed. In this

case most system will produce two kinds of data elements. The first is called

Intent. Intent suggests what the user intends to do. [11]

16

Figure 8. Chatbot Anatomy

A figure 8 shows how essentially a chatbot works. For instance, in the

sentence “What is the weather like in New York?” a user intends to know about

the weather. This is the first piece of data that parser must compute. After this is

done, parser also needs to extract actionable data. So in the given example,

actionable piece of data is set to New York. This actionable data is called Entities

which coupled with Intent are required to produce a suitable response to process

data. A function designed to handle this intent can then take the location entity

and call a third party API to fetch weather data and send it back to the user.

Once the data are processed, or fetched from an API, the next anatomical

17

component is the Responder. A Responder takes the data and produces a

human like output and sends back the response to a channel from where it came

and onward to a user. [11]

 Let’s take an example of one more question of a project. In figure 9 a user

asks question “Who is the instructor of CSE 202 in fall 2018?” Let’s examine this

question. Most people are not expected to be a grammatical genius when they

are in a phone typing a message. So this question may also be asked like “Who

teaches CSE 202 in fall 2018?” In both cases intent of the user is the same but

sentence formation is a bit different. But we just emphasize on the keywords but

not in sentence formation.

 Figure 9. User’s Question

 Figure 10 shows that in the given sentence there are three actionable

pieces of data that we want to recognize and extract which are “Instructor”, “CSE

202” and “Fall 2018”. Words “Instructor” and “Teaches” refer to the professor’s

name, a word “CSE 202” refers to a course name and a word “Fall 2018” refers

to the specific quarter. These keywords represent as Entity. In the given

18

sentence, Intent is to know about professor’s name for given course that user

wants to check for.

Figure 10. Keywords Extraction

 Figure 11 shows this is how a bot is going to function in a nutshell. Once a

sentence goes into a bot, very first step is attempt to match a pattern from given

set of rules. Once a pattern is matched, it goes on to extract intent and entities

from the sentence. Once it gets an actionable piece of data, it proceeds further

by calling a Course API to fetch an actual data which are stored in a database.

Once we get response from an API, we parse and process the data to create a

suitable reply for user to read.

19

Figure 11. Chatbot in Nutshell

20

CHAPTER FIVE

PROJECT ARCHITECTURE

How CSUSB Chatbot Internally Works

 A CSUSB Chatbot begins with human input. Human has to ask a question

by typing in messaging app and that question has to pass through set of rules. If

the given input does match with one of the given set of rules, the app should then

move on to extract intent and entities. Intent is what the conversation is all about

and Entity is actionable data components that bot has to extract from the user’s

messages to be able to process and send back an appropriate response. [11]

 Once a human input goes into a bot then it will attempt to match a given

set of patterns by RegEx Patterns Dictionary. If pattern matcher function matches

one of the patterns, it goes on to extract Entities from the sentence. At the same

time it also identifies Intent. For instance, user asks question like “Who is the

location of class CSE 202”. In the given sentence, a word “Location” and a

course “CSE 202” are actionable piece of data which are known as entities and

intent is, to find a location of given a class. Once it gets intent and entities, it goes

on to process by calling an API to fetch the actual data based on the entities that

have been extracted. Once it gets response from API service, it moves further to

parse and process the response to create a suitable reply for the user to read

which is then sent back to user.

21

Figure 12. CSUSB Chatbot Mechanism

Figure 12 shows that process of a chatbot starts from The Interactive

Terminal Interface which is nothing but a platform of Facebook Messenger. Once

user type a message into a bot, the pattern matcher function will run the

message through a set of regular expression rules. Regular Expression is a

universal syntax that is used to detect patterns and extract data from a given

sentence. If a pattern matcher function does find a pattern in the user’s input, it

extracts an actionable data from the sentence and then it runs through CSUSB

API to get actual data. This data comes back as a JSON object which is parsed

to get what user wants. JSON is a JavaScript Object Notation which is a light

weight object to data interchange. JSON object is used for serializing and

CSUSB

API

22

transmitting data over a network connection. Once the JSON response is parsed,

it will generate an appropriate reply which is printed back for user to read.

Connecting Chatbot With Facebook

 Building a chatbot is a one part of this project other part is to connect a

chatbot with Facebook Messenger platform to type messages. Figure 13 shows

that process of deploying a chatbot on messenger platform begins with creating a

Facebook page. This is absolutely essential. This page could be for the chatbot

itself or it could be existing Facebook page such as the one for a business or an

organization. The following step is to create a Facebook application and add the

messenger platform product. CSUSB Chatbot links to a messenger platform

using web-hooks. Web-hooks are specially designated URLs where messages

from users are received by a chatbot. At the same time chatbot application talks

to messenger by making calls to the send APIs. Once the connection between

chatbot and messenger platform is made, next step is to test and train a bot to

understand and respond to user. Once all of these are done, last step is to

submit a chatbot to Facebook for approval to make it available to use in public.

[12]

23

Figure 13. Chatbot on Messenger

24

CHAPTER SIX

UML DIAGRAMS

Use Case Diagram

Use Case Diagram represents user’s interaction with Professors and

Courses. Figure 14 shows that user can check List of all Professors, Email

Address, Phone Number, Office Hours and Office Location of all faculties.

Figure 14. Use Case Diagram of Professors

25

Figure 15 describes that user is able to check Course Catalog, Course

Title, Timings of Courses, Class Location, Number of Units and Course

Instructor.

Figure 15. Use Case Diagram of Courses

26

Class Diagram

 Figure 16 describes static structure and relationship between two classes

Professors and Courses. It represents all data members and methods which are

used in class Professors and Courses. It states that relationship between class

Professor and class Course is One-to-Many which represents that one professor

can teach more than one courses.

Figure 16. Class Diagram

27

Sequence Diagram

 Figure 17 shows object interactions between User and Professors and

also between User and Courses arranged in time sequence. It depicts the

objects and classes involved in the scenario and the sequence of messages

exchanged between the User and Professors and also between User and

Courses to carry out the functionality of the scenario.

Figure 17. Sequance Diagram

28

Component Diagram

 Figure 18 depicts the number of components and how different

components are interect with each other. Here it is shown Professors Component

and Courses Component are interect with User Component.

Figure 18. Component Diagram

29

State Diagram

 Figure 19 shows that process of chatbot starts with user input which

passes through pattern matcher to extract actionable piece of data. Once it

extracts enity it process further to call CSUSB API to get an actual data. This

data would be in JSON format which parses throgh Response Parser to convert

in actual data which responds back to user.

Figure 19. State Diagram

30

CHAPTER SEVEN

CONCLUSIONS

The CSUSB chatbot project demonstrates the ease of use of the

Facebook chatbot for the purpose of finding information on professors and

courses of Computer Science. The chatbot code uses regular expression, pattern

matching and intent of the questions. It creates buckets based on the intent of

the question and assigns the task to the appropriate module. It uses Natural

Language Understanding to create the buckets of the user’s intension. The

chatbot uses Entity, Context and Intent model. Entity demonstrates the system of

the chatbot. Intent demonstrates the action of the user. Context shows the state

of the intension. Each module calls APIs to fetch the data specific to the

question. Rest APIs are designed to fetch data from mySQL database. APIs are

created on .NET platform and hosted on Azure cloud. A chatbot application

executor executes and parses the API responses and forms answer sentences.

The application code is hosted on the Heroku and salesforce cloud. It uses

Facebook exposed APIs webhook to post the messages on Facebook

messenger. Chatbots are scalable, resilient and rapid applications.

 The Chatbots are obedient enough to answer all the questions. They can

be also enhanced with Artificial Intelligence and Machine Learning. There is a lot

of research going on about Natural Language Processing to understand the

intent of the question. It can be achieved using generative and selective

31

modelling approach. The machine learned models can be trained using the

questions asked by users. Sequence-to-Sequence is a famous modelling

technique to train language models. The chatbots learn the context of the

questions and forms reply. Tech companies also use Artificial Neural Network to

train chatbot models. Data scientists and researchers all over the world are

solving problems to learn the intent of the questions and reply intelligently.

In the current world, businesses are investing a lot in developing chatbots.

There are technology companies like aivo, botsify and chatfuel who provide

infrastructure frameworks to create chatbots using artificial intelligence.

Companies in Banking, eCommerce, Financial Services and IT advertising

industry develop bots on mobile applications, Facebook platform or other

messenger platform to help customers. The Chatbots fulfills customer’s need

such as weather information, crimes, news, package tracking updates, FAQs,

feedback, shopping etc.

32

APPENDIX A

PROJECT SCREENSHOTS

33

Add professor’s details

Show professor’s details

34

Add course details

Show course details

35

36

37

38

39

40

41

42

APPENDIX B

CODE OF CRITICAL PARTS

43

Server.js

const express = require('express');
const bodyParser = require('body-parser');

const config = require('./config');
const FBeamer = require('./fbeamer');

const matcher = require('./matcher');
//Get APIs
const weather = require('./weather');
const professorApi = require('./api/professorApi');
const courseApi = require('./api/courseApi');
const professorAll = require('./api/professorAllApi');
const courseAll = require('./api/courseAllApi');
//Weather Parser
const {currentWeather} = require('./parser');
//Professor Parser
const {officeHr} = require('./parser/professorsParse');
const {emailId} = require('./parser/professorsParse');
const {phoneNo} = require('./parser/professorsParse');
const {officeLocation} = require('./parser/professorsParse');
const {allProfessors} = require('./parser/professorsParse');
//Course Parser
const {courseTitle} = require('./parser/courseParse');
const {courseTime} = require('./parser/courseParse');
const {classLocation} = require('./parser/courseParse');
const {courseUnits} = require('./parser/courseParse');
const {courseByProfessor} = require('./parser/courseParse');

const server = express();
const PORT = process.env.PORT || 3000;
const f = new FBeamer(config.fb);

server.get('/', (req, res) => f.registerHook(req,res));
server.post('/', bodyParser.json({
 verify: f.verifySignature

}));

let mapCourse = getMapCourses();

server.post('/', (req, res, next) => {
 return f.incoming(req, res, data => {
 try{
 if(data.type === 'text'){
 matcher(data.content, async resp => {
 switch(resp.intent){
 case 'Hello':
 await f.txt(data.sender, `${resp.entities.greeting} How can I help you?`);
 break;
 case 'Greetings':
 await f.txt(data.sender, 'I am doing great! How can I help you today?');
 break;
 case 'CurrentWeather':
 await f.txt(data.sender, 'Let me check...');
 let weatherData = await weather(resp.entities.city, 'current');

44

 let cwResult = currentWeather(weatherData);
 await f.txt(data.sender, cwResult);
 break;
 //Show Professors:
 case 'AllProfessors':
 await f.txt(data.sender, 'Here is the faculty list:');
 let response = await professorAll(resp.entities.professor);
 for(let i = 0; i<response.length; i++) {
 if(response[i].lname){
 await f.txt(data.sender, response[i].fname +' '+ response[i].lname);
 }
 }
 break;
 case 'OfficeHours':
 await f.txt(data.sender, 'Let me check...');
 let cwData1 = await
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase()));
 let office = officeHr(cwData1);
 await f.txt(data.sender, office);
 break;
 case 'Email':
 // await f.txt(data.sender, 'Let me check...');
 let cwData2 = await
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase()));
 let email = emailId(cwData2);
 await f.txt(data.sender, email);
 break;
 case 'Phone':
 // await f.txt(data.sender, 'Let me check...');
 let cwData3 = await
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase()));
 let phone = phoneNo(cwData3);
 await f.txt(data.sender, phone);
 break;
 case 'OfficeLocation':
 await f.txt(data.sender, 'Let me check...');
 let cwData4 = await
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase()));
 let loc = officeLocation(cwData4);
 await f.txt(data.sender, loc);
 break;
 // Show Courses:
 case 'AllCourses':
 await f.txt(data.sender, 'Here is the course catalog:');
 let courses = await courseAll(resp.entities.course);
 for(let i = 0; i<courses.length; i++) {
 if(courses[i].id){
 await f.txt(data.sender, courses[i].number +' '+ courses[i].name+' by
'+courses[i].professors.fname+' '+courses[i].professors.lname);

 }
 }
 break;
 case 'CourseName':
 // await f.txt(data.sender, 'Let me check...');
 let courseData1 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/,
"").toLowerCase()));
 let title = courseTitle(courseData1);
 await f.txt(data.sender, title);
 break;

45

 case 'CourseTime':
 await f.txt(data.sender, 'Let me check...');
 let courseData2 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/,
"").toLowerCase()));
 let time = courseTime(courseData2);
 await f.txt(data.sender, time);
 break;
 case 'ClassLocation':
 await f.txt(data.sender, 'Let me check...');
 let courseData3 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/,
"").toLowerCase()));
 let location = classLocation(courseData3);
 await f.txt(data.sender, location);
 break;
 case 'CourseUnits':
 // await f.txt(data.sender, 'Let me check...');
 let courseData4 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/,
"").toLowerCase()));
 let units = courseUnits(courseData4);
 await f.txt(data.sender, units);
 break;
 case 'CourseByProfessor':
 await f.txt(data.sender, 'Let me check...');
 let courseData5 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/,
"").toLowerCase()));
 let course = courseByProfessor(courseData5);
 await f.txt(data.sender, course);
 break;
 case 'Help':
 await f.txt(data.sender,`This is the personal assistant bot for CSUSB. This bot serves
you informations about courses and professors of Computer Science and Engineering department
only. Please type "Sample Questions" for more idea.`);
 break;
 case 'SampleQuestions':
 await f.txt(data.sender,`You may ask "Who is the instructor of cse 202?" "May I
know office hours of Dr. Yu?" You may ask questions about professors(by last name) to check their
office hours, email, phone, office location. You may ask questions about computer science courses
to check course title, class location, class/lab hours or timing, no. of units and course instructor.
You may type "Faculty List" or "Course Catalog" to get more details about faculties and courses.`);
 break;
 case 'Exit':
 await f.txt(data.sender, `${resp.entities.greeting} Krutarth!̀);
 await f.txt(data.sender, `Have a great day :)`);
 break;
 default: {
 await f.txt(data.sender, `I don't know what do you mean. Type "Help" for more help.`);
 }
 }
 });
 }
 } catch(e){

 console.log(e);
 }
 });
});
server.listen(PORT, () => console.log(`CSUSB ChatBot Service running on Port ${PORT}`));

46

Pattern.js

const patternDict = [{
 pattern : '\\b(?<greeting>Hi|Hello|Hey)\\b',
 intent : 'Hello'
},{
 pattern: '\\b(How are you|How are you doing|How you doing)',
 intent: 'Greetings'
},{
 pattern: 'like\\sin\\s\\b(?<city>.+)',
 intent: 'CurrentWeather'
},{
 pattern: '\\b(?<professor>.+)\\slist',
 intent: 'AllProfessors'
},{
 pattern: '(office ?hours?)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b',
 intent: 'OfficeHours'
},{
 pattern: '(email ?id|email|email ?address)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b',
 intent: 'Email'
},{
 pattern: '(phone no.?|phone number|phone|contact|contact number|contact
information)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b',
 intent: 'Phone'
},{
 pattern: '(office number|office no.?|office location|office)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b',
 intent: 'OfficeLocation'
},{
 pattern: '(name|title)\\sof\\s\\b(?<course>.+)\\b',
 intent: 'CourseName'
},{
 pattern: '(time?i?n?g?|duration|hours?|lab hours?|lab time?i?n?g?|class
hours?)\\sof\\s\\b(?<course>.+)\\b',
 intent: 'CourseTime'
},{
 pattern: '(location|room number|room no.?|lab ?n?u?m?b?e?r?|class ?n?u?m?b?e?r?|class
location)\\sof\\s\\b(?<course>.+)\\b',
 intent: 'ClassLocation'
},{
 pattern: '(units?|credits?)\\s(of|have|has)\\s\\b(?<course>.+)\\b',
 intent: 'CourseUnits'
},{
 pattern: '(instructor|faculty|professor|teacher)\\sof\\s\\b(?<course>.+)\\b',
 intent: 'CourseByProfessor'
},{
 pattern: '(teache?s?i?n?g?)\\s\\b(?<course>.+)\\b',
 intent: 'CourseByProfessor'
},{
 pattern: '(list of ?a?l?l?|all|all the|catalogu?e? of)\\s\\b(?<course>.+)\\b',
 intent: 'AllCourses'
},{
 pattern: '\\b(?<course>.+)\\b\\sare\\s?c?a?t?a?l?o?g?o?u?e?',
 intent: 'AllCourses'
},{
 pattern: '\\b(?<course>.+)\\b\\scatalogo?u?e?',
 intent: 'AllCourses'
},{
 pattern: '\\b(help|menu|info)\\b',
 intent: 'Help'

47

},{
 pattern: '\\b(sample questions?)\\b',
 intent: 'SampleQuestions'
},{
 pattern : '\\b(?<greeting>bye|see you)',
 intent : 'Exit'
}];

 Matcher.js
'use strict';
const patterns = require('../patterns');
const XRegExp = require('xregexp');

let createEntities = (str, pattern) => {
 return XRegExp.exec(str, XRegExp(pattern,"i"));

}

let matchPattern = (str, cb) =>{
 let getResult = patterns.find(item =>{
 if(XRegExp.test(str, XRegExp(item.pattern, "i"))){
 return true;
 }
 });

 if(getResult){
 return cb({
 intent: getResult.intent,
 entities: createEntities(str, getResult.pattern)

 });
 } else {
 return cb({});

 }
}

module.exports = matchPattern;

CourseApi.js

var Request = require("request");

COURSE_URL = "https://chatbot2018.azurewebsites.net/api/courses/";

const getCourseService = (id, callback) => {
 return new Promise((resolve, reject) => {
 Request.get(`${COURSE_URL}${id}`, {json:true}, (err,res,body) => {
 if(err){

 reject(err);
 }
 resolve(body);
 });
 });
}
module.exports = getCourseService;

ProfessorApi.js

48

var Request = require("request");

PROFESSOR_URL = "https://chatbot2018.azurewebsites.net/api/professors/";

const getProfessorService = (id, callback) => {
 return new Promise((resolve, reject) => {
 Request.get(`${PROFESSOR_URL}${id}`, {json:true}, (err,res,body) => {
 if(err){

 reject(err);
 }
 resolve(body);
 });
 });
}

module.exports = getProfessorService;

ProfessorParse.js

let officeHr = response => {
 if(response.lname){
 return `Office hours of Dr. ${response.lname} are ${response.officeHours}.`
 }
}

let emailId = response => {
 if(response.lname){
 return `Email of Dr. ${response.lname} is ${response.email}.`

 }
}

let phoneNo = response => {
 if(response.lname){
 return `Phone number of Dr. ${response.lname} is ${response.phone}.`
 }
}

let officeLocation = response => {
 if(response.lname){
 return `Office location of Dr. ${response.lname} is ${response.location}.`

 }
}

let allProfessors = response => {
 console.log("Here is the faculty list: ");
 for(let i = 0; i<response.length; i++) {
 if(response[i].lname){
 console.log(`${response[i].fname} ${response[i].lname},`);

 }
 }
}

module.exports = {
 officeHr,
 emailId,
 phoneNo,
 officeLocation,
 allProfessors
};

49

CourseParse.js

let courseTitle = response => {
 if(response.id){
 let course = response.number;
 return `The title of ${course.trim()} is ${response.name}.`
 }
}

let courseTime = response => {
 if(response.id){
 let courseId = response.number;
 return `Hours of ${courseId.trim()} are ${response.time}.`

 }
}

let classLocation = response => {
 if(response.id){
 let courseNo = response.number;
 return `The class location of ${courseNo.trim()} is ${response.location}.`

 }
}

let courseUnits = response => {
 if(response.id){
 let units = response.noOfUnits;
 return `Total number of units are ${units.toString()}.`

 }
}
let courseByProfessor = response => {
 if(response.id){
 let courseName = response.number.trim();
 return `Instructor of ${courseName} is ${response.professors.fname} ${response.professors.lname} ̀

 }
}

module.exports = {
 courseTitle,
 courseTime,
 classLocation,
 courseUnits,
 courseByProfessor
};

Fbeamer.js

'use strict';

const crypto = require('crypto');
const request = require('request');
const apiVersion = 'v2.8';

class FBeamer {

 constructor({ pageAccessToken, verifyToken, appSecret}) {
 try {

50

 if (pageAccessToken && verifyToken) {
 this.pageAccessToken = pageAccessToken;
 this.verifyToken = verifyToken;
 this.appSecret = appSecret;
 } else {
 throw "One or more tokens/credentials are missing!";
 }
 } catch (e) {

 console.log(e);
 }
 }

 registerHook(req, res) {
 const params = req.query;
 const mode = params['hub.mode'],
 token = params['hub.verify_token'],
 challenge = params['hub.challenge'];
 // if mode === 'subscribe' and token === verifytoken, then send back challenge
 try {
 if ((mode && token) && (mode === 'subscribe' && token === this.verifyToken)) {
 console.log("Webhook registered!");
 return res.send(challenge);
 } else {
 throw "Could not register webhook!";
 return res.sendStatus(200);

 }
 } catch(e) {

 console.log(e);
 }
 }

 verifySignature(req, res, buf) {
 return (req, res, buf) => {
 if(req.method === 'POST') {
 try {
 let signature = req.headers['x-hub-signature'];
 if(!signature) {
 throw "Signature not received";
 } else {
 let hash = crypto.createHmac('sha1', this.appSecret).update(buf, 'utf-8');
 if(hash.digest('hex') !== signature.split("=")[1]) {
 throw "Invalid signature!";
 }
 }
 } catch (e) {

 console.log(e);
 }
 }
 }
 }

 incoming(req, res, cb) {
 res.sendStatus(200);
 if(req.body.object === 'page' && req.body.entry) {
 let data = req.body;
 data.entry.forEach(pageObj => {
 if(pageObj.messaging) {
 pageObj.messaging.forEach(messageObj => {
 console.log(messageObj);

51

 if(messageObj.postback) {
 // Handle postbacks
 } else {
 // Handle messages
 return cb(this.messageHandler(messageObj));

 }
 });
 }
 });
 }
 }

 messageHandler(obj) {
 let sender = obj.sender.id;
 let message = obj.message;

 if(message.text) {
 let obj = {
 sender,
 type: 'text',
 content: message.text

 }

 return obj;

 }
 }
 sendMessage(payload) {
 return new Promise((resolve, reject) => {

 request({
 uri: `https://graph.facebook.com/${apiVersion}/me/messages`,
 qs: {
 access_token: this.pageAccessToken

 },
 method: 'POST',
 json: payload

 }, (error, response, body) => {
 if (!error && response.statusCode === 200) {

 resolve({
 mid: body.message_id

 });
 } else {

 reject(error);
 }
 });
 });
 }

 txt(id, text, messaging_type = 'RESPONSE') {
 let obj = {

 messaging_type,
 recipient: {

 id
 },
 message: {
 text
 }
 }

 return this.sendMessage(obj);

52

 }

 img(id, url, messaging_type = 'RESPONSE') {
 let obj = {

 messaging_type,
 recipient: {
 id
 },
 message: {
 attachment: {
 type: 'image',
 payload: {

 url
 }
 }
 }
 }

 return this.sendMessage(obj);

 }
}

module.exports = FBeamer;

Config.js

if(process.env.NODE_ENV === 'production') {
 module.exports = {
 fb: {
 pageAccessToken: process.env.pageAccessToken,
 verifyToken: process.env.verifyToken,
 appSecret: process.env.appSecret
 }
}

53

REFERENCES

[1] Goodwin, R., Lee, J., and Stanoi, G. “Relational Database Systems for Large

 Scale Ontology Management” in Proceeding of CIDR Conference. 2005

 pp.150-195

[2] Abu Shawar, B. and Atwell, E. “Chatbots: Are They Really Useful?” in

 Proceedings of LDV-Forum 2007. pp.31-50.

[3] ALICE, (2011). “A.L.I.C.E. Artificial Intelligence Foundation [online]. Available

 from: http://alice.pandorabots.com. 2007

[4] Freese, E. “Enhancing AIML Bots Using Semantic Web Technologies,” in

 Proceeding of Extreme Markup Languages, 2007

[5] Falbo, R., Menezes, C., and Rocha, A. “ A Systematic Approach for Building

 Ontologies,” in Proceedings of 6th IberoAmerican Conference on AI, number

 LNCS1484 Lecture Notes in Artificial Intelligence Lisbon, Portugal, 2005

 pp.349-360.

[6] Falbo, R., Guizzardi, G., and Duarte, K., “An Ontological Approach to Domain

 Engineering,” in Proceedings of 14th International Conference on Software

 Engineering and Knowledge Engineering (SEKE’02) Ischia, Italy, 2002,

 pp.351-358.

[7] Liao, L., Qu, Y., and Leung, H. “A Software Process Ontology and Its

 Application,” in Proceedings of Workshop on Sematic Web Enable Software

 Engineering (SWESE) Galway, Ireland, 2005.

http://alice.pandorabots.com/

54

[8] Z. Zhang, J. Jiang, X. Liu, R. Lau, H. Wang, R. Zhang. “A Real Time Binary

 Pattern Matching Scheme for Stock Time Series,” Australian Computer

 Society, Inc. 2010, vol. 104, pp. 161– 170

[9] Corradini, F., Grabmayer, C. “A Characterization of Regular Expressions

 under Bisimulation” Journal of the ACM, 2010, vol. 54, pp. 61– 100

[10] Yang, X., Qiu, T., Wang, B. “Improving Regular-Expression Matching in

 Strings,” ACM Transactions on Database System, 2016, vol. 40, pp. 151–

 170

[11] Jain, M., Kumar, P., Kota, R., Patel, S. “Evaluating and Informing the Design

 of Chatbots,” Interacting with Conversational Agents, 2018, vol. 12, pp. 895–

 906

[12] O’ Brien Chris. 2016. “Facebook Messenger chief says platform’s 34,000

 chatbots are finally improving user experience. (2016).” From

 http://venturebeat.com/2016/11/11/facebookmessenger-chief-saysplatforms-

 34000/-chatbots-are-finally-improving-user-experience/

http://venturebeat.com/2016/11/11/facebookmessenger-chief-saysplatforms-

	California State University, San Bernardino Chatbot
	Recommended Citation

	USE OF MEMORY-RESIDENT COMPUTER RECREATION PROGRAMS TO REDUCE WORKPLAE STRESS

