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ABSTRACT 

Now-a-days the chatbot development has been moving from the field of 

Artificial-Intelligence labs to the desktops and mobile domain experts. In the 

fastest growing technology world, most smartphone users spend major time in 

the messaging apps such as Facebook messenger. A chatbot is a computer 

program that uses messaging channels to interact with users using natural 

Languages. Chatbot uses appropriate mapping techniques to transform user 

inputs into a relational database and fetch the data by calling an existing API and 

then sends an appropriate response to the user to drive its chats. Drawbacks 

include the need to learn and use chatbot specific languages such as AIML 

(Artificial Intelligence Markup Language), high botmaster interference, and the 

use of non-matured technology. In this project, Facebook messenger based 

chatbot is proposed to provide domain independent, an easy to use, smart, 

scalable, dynamic and conversational agent in order to get information about 

CSUSB. It has the unique functionalities which identify user interactions made by 

their natural language, and the flawless support of various application domains. 

This provides an ample of unique scalabilities and abilities that will be evaluated 

in the future phases of this project. 
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CHAPTER ONE 

INTRODUCTION 

 

What is Chatbot 

Chatbots are computer algorithms that interact with humans using a 

conversational interface [1]. Chatbots satisfy user requirements by replying to 

questions in a simpler yet efficient way. They are user-friendly and always 

available for the user when needed. Chatbots are designed to simulate an 

interaction with another human. In the fast-growing technologically-advanced 

world, most smartphone users spend major time in messaging apps such as 

Facebook messenger. That gives great opportunity to create interactive chatbots 

that understand user questions and provide them with the answers. Chatbots are 

great for business growth, upsells and marketing purposes.  

A chatbot is a computer program that interacts with a human through a 

chat interface and is designed to simulate a human [2]. The chatbot systems 

employ simply a dialogue system based on a natural language. Therefore, they 

can be used as interfaces for a vast number of applications including 

entertainment applications, educational applications, e-learning platforms, 

research engines, and ecommerce web-site navigations.  
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Background 

In the current world, there are a lot of voice-based personal assistants 

available. Siri designed by Apple, Google home, Alexa by Amazon, Cortana by 

Microsoft are technically chatbots. They are chat-based conversational agents. 

We can chat with a bot the same way as we speak to a friend or a coworker, and 

it responds back in a human-like tone that demonstrates the personality that the 

bot creator has structured.  

Machines are learning the art of human expressions and conversations. 

Algorithms and technologies are filling the gap in human computer interaction. 

Joseph Weisenbaum made the very first chatbot in 1966. It was called ELIZA [3]. 

ELIZA was made to recognize human interaction by using simple pattern 

recognition. It was released to administrative staff in the guise of a psychiatrist. 

People thought that it was a real doctor and Weisenbaum was shocked to see 

how humans behaved with the computer program. Users got emotional while 

chatting with ELIZA, which was incredible. From ELIZA, computer scientists learn 

that humans have a desire to communicate with a computer in much the same 

way as they do with another human. Facebook launched the messenger platform 

in 2016. As a result, other companies started heavy investments in messenger 

bots, artificial intelligence and machine learning. Bots are created in different 

industries such as news, weather, shopping, retail and much more. Bots serve a 

lot of user traffic in the current world [5].  
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 A messenger bot uses pattern matching or Natural Language Processing 

to parse user inputs. The bots use Node.js, Python or Java to parse user data 

and to log, analyze and send answers back to the user. Bots are deployed to 

web servers and fulfil users’ requests all the time [6] 
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CHAPTER TWO 

PROJECT OVERVIEW 

 

Objective 

The objective of this project is to create a messenger bot using the 

Facebook messenger platform. The bot would be available online all the time 

which can facilitate users’ questions and inquiries regarding Professors and 

Courses of Computer Science and Engineering department of California State 

University, San Bernardino.  A user may ask questions about professors to check 

their office hours, email, phone, office location and list of all the professors of 

Computer Science and Engineering Department. A user may also ask questions 

about Computer Science courses to check class location, room number, lab 

hours, course name or title, number of units and course instructor. The user is 

allowed to ask about the course catalog to know about what classes are offered 

in a quarter. The bot would listen to user’s questions on Facebook messenger 

and answers accordingly. A bot understands the intention of the users and 

replies back in human language. The users do not have to search on the website 

to get the information about professors and courses of California State 

University, San Bernardino. The messenger bot is rapid, innovative and human 

friendly.  
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The NLP module is responsible for processing user input in a way that 

facilitates the mission of getting the needed answer. The pattern matching 

dictionary consists of patterns which find the intent of the question.  

 

Technologies 

I intend to create a messenger bot using the Facebook messenger 

platform. The bot app will be built on a Node.js module that serves as an 

interface to the messenger platform. I will create a REST APIs for CSUSB in 

Java to fetch the data from the database and it will be hosted in Microsoft Azure. 

The data will be stored in a MySQL database. The bot code in Node.js will be 

deployed on the Heroku server. The admin portal will be created in C#, ASP.Net 

to add professors and course details which will be deployed in Microsoft Azure. 

I am going to use xregexp Node.js library for regular expression to create 

the RegEx pattern dictionary, which extracts the actionable piece of data from the 

given sentence to process further. I am going to use Windows 10 as the 

operating system. 

I am going to use IntelliJ Idea to create node.js app for bot. I will use 

Microsoft Visual Studio 2013 to write a C#, ASP.Net for building an admin portal. 

I will use Eclipse to create RestAPIs in Java. Below is the advantage of choosing 

Node.Js for my project. 

 It is faster than other languages. 

 It almost never blocks. 
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 It yields great concurrency. 

 Everything is asynchronous. 

 It offers a unified programming language and data type. 

It is highly scalable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

CHAPTER THREE 

INTRODUCTION TO REGULAR EXPRESSIONS 

 

What is Regular Expression 

A Regular Expression or RegEx are an extremely powerful way of 

identifying patterns in strings [9]. A RegEx is available across most computer 

languages with flavor specific variations. The usage of RegEx is mentioned 

below. [9] 

 Validating passwords, email address, IP address, pin codes, phone 

number, credit card numbers and more. 

 Turning all email id and URLs in a blog post to valid hyperlinks.  

 Searching and replacing text based on a given pattern. 

 Finding / renaming files based on a given pattern. 

 

Principles of Regular Expression 

 A Regular Expression begins and ends with a Forward Slash (“/”). This 

performs like a container which will hold a pattern. The next thing is a pattern 

itself which sets inside those forward slashes. Lastly, it has optional flags which 

can be used to enable things like case insensitive search among other things. 

[10] 
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Figure 1. Regular Expression 

 

 Figure 1 shows a format of Regular Expression. A word “colours” is an 

actual pattern where “?” is an optional quantifier. Over here characters “U” and 

“S” are optional which means a word “colours” may also be written like “color”.  

Finally, we have optional flags “i” and “g” at the end. A flag “i” stands for Ignore 

Case while a flag “g” stands for “Global” which means it should find all instances 

of the word that matches in a given data set. So pattern in figure 1 matches word 

like “color”, ”colour”, ”colors”, ”colours”, ”CoLouRs”, ”CoLoRs”, “COLORS”. [10] 

 In order to build and check patterns you can use RegExr which is online 

tool to help you learn, test and build Regular Expressions. Here is a link 
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https://www.regexr.com to use this tool. Figure 2 is the picture of RegExr Tool 

which identifies a set of pattern from given paragraph. 

 

Figure 2. RegExr Tool 

 

Let’s move forward with another quantifier which is “\b”. Here, “\b” stands 

for Boundary which expects a word isolated on both side by an empty space. A 

word boundary instructs a RegEx that given a word is an isolated word surround 

by an empty space but not the part of any word. Figure 3 shows an example of a 

word boundary using “/b”.  In a given example there is a pattern to match a word 

“the” which is enclosed by “/b”. Given pattern will match a word “the” only if it is 

an isolated word but not a part of any word. In a given paragraph word “the” is a 

part of a word “there” but it won’t be matched because a given pattern is 

enclosed by “/b”. [10] 

https://www.regexr.com/
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Figure 3. Word Boundary 

 

 Let’s take a look of another quantifier “|” which is known as “OR” 

quantifier. Since we have two words to match, it will match all the words which 

are separated by “|”. Figure 4 is an example of how “|” quantifier works to match 

given set of words. In this example a user wants to match words “hot” and “cold” 

at the same time. Both words are separated by “|”. [10] 
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Figure 4. OR Quantifier 

 

 Let’s move further with another quantifier “\d” which stands for a Digit. “\d” 

is used to match digits from 0 to 9. In order to match a word with white space “\s” 

is being used. “\s” will match words separated by a white space. Figure 5 is an 

example of a pattern for matching a zip code (pin code) of a city. It shows a 

pattern which is matched for zip code with and without an empty space. [10] 
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Figure 5. Pattern of Zip Code 

 

 Finally, our last example is to match an email addresses from a given 

paragraph. It will start with a word boundary “\b”. Let’s first focus to the username 

part of the email id which appears before @ sign. A username may contents 

alphabets from A to Z which is defined as “[a-z]”, numbers from 0 to 9 which is 

defined as [0-9] and a symbol of a Hyphen (-) or an Under Score (_) which are 

followed by “\b”. This set of characters could be more than one, so “+” quantifier 

will be used to match all of these. In order to put this in definable pattern, let’s 

now place @ sign followed by a back slash. Now for the domain, it should 

contain alphabets and numbers. After then we will add a dot for the top level 

domain such as .com, .net, .co.us and we will use an “{n}” quantifier which allows 

us to set a number of characters from 2 to 24. The largest top level domain is 



13 

 

about 24 characters long. Let’s take a look of figure 3.2.6 to understand a pattern 

of email address. [10] 

 

Figure 6. Pattern of Email Address 

 

 In order to test this pattern I will use online tool RegExr which is 

mentioned in figure 7. In this figure you can see it only selects Email Ids as 

expected.   
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Figure 7. Email Address in RegExr Tool 
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CHAPTER FOUR 

CHATBOT MECHANISM 

 

Anatomy of Chatbot 

 The first piece in a chatbot anatomy is the human. The human is the most 

important component here because he is the user who has to be impressed by 

how the bot performs. A user needs a channel to interact on. This could be 

Facebook Messenger, WeChat, Skype or Slack as well. Messages that user 

types in are then sent by this channels to the chatbot. Here, the chatbot is an 

application that expects a user messages and begins a conversation session. A 

session is an active as long as the current set of messages make up for an 

actively persuade conversation. These messages are then sent to a parser. A 

parser job is to process user’s message, sent in a human language such as an 

English and then to convert it into structured data that can be consumed. In this 

case most system will produce two kinds of data elements. The first is called 

Intent. Intent suggests what the user intends to do. [11] 
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Figure 8. Chatbot Anatomy 

 

A figure 8 shows how essentially a chatbot works. For instance, in the 

sentence “What is the weather like in New York?” a user intends to know about 

the weather. This is the first piece of data that parser must compute. After this is 

done, parser also needs to extract actionable data. So in the given example, 

actionable piece of data is set to New York. This actionable data is called Entities 

which coupled with Intent are required to produce a suitable response to process 

data. A function designed to handle this intent can then take the location entity 

and call a third party API to fetch weather data and send it back to the user. 

Once the data are processed, or fetched from an API, the next anatomical 
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component is the Responder. A Responder takes the data and produces a 

human like output and sends back the response to a channel from where it came 

and onward to a user. [11] 

 Let’s take an example of one more question of a project. In figure 9 a user 

asks question “Who is the instructor of CSE 202 in fall 2018?” Let’s examine this 

question. Most people are not expected to be a grammatical genius when they 

are in a phone typing a message. So this question may also be asked like “Who 

teaches CSE 202 in fall 2018?” In both cases intent of the user is the same but 

sentence formation is a bit different. But we just emphasize on the keywords but 

not in sentence formation. 

 

   Figure 9. User’s Question 

 

 Figure 10 shows that in the given sentence there are three actionable 

pieces of data that we want to recognize and extract which are “Instructor”, “CSE 

202” and “Fall 2018”. Words “Instructor” and “Teaches” refer to the professor’s 

name, a word “CSE 202” refers to a course name and a word “Fall 2018” refers 

to the specific quarter. These keywords represent as Entity. In the given 
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sentence, Intent is to know about professor’s name for given course that user 

wants to check for. 

 

Figure 10. Keywords Extraction  

 

 Figure 11 shows this is how a bot is going to function in a nutshell. Once a 

sentence goes into a bot, very first step is attempt to match a pattern from given 

set of rules. Once a pattern is matched, it goes on to extract intent and entities 

from the sentence. Once it gets an actionable piece of data, it proceeds further 

by calling a Course API to fetch an actual data which are stored in a database. 

Once we get response from an API, we parse and process the data to create a 

suitable reply for user to read. 
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Figure 11. Chatbot in Nutshell 
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CHAPTER FIVE 

PROJECT ARCHITECTURE  

 

How CSUSB Chatbot Internally Works 

 A CSUSB Chatbot begins with human input. Human has to ask a question 

by typing in messaging app and that question has to pass through set of rules. If 

the given input does match with one of the given set of rules, the app should then 

move on to extract intent and entities. Intent is what the conversation is all about 

and Entity is actionable data components that bot has to extract from the user’s 

messages to be able to process and send back an appropriate response. [11]  

 Once a human input goes into a bot then it will attempt to match a given 

set of patterns by RegEx Patterns Dictionary. If pattern matcher function matches 

one of the patterns, it goes on to extract Entities from the sentence. At the same 

time it also identifies Intent. For instance, user asks question like “Who is the 

location of class CSE 202”. In the given sentence, a word “Location” and a 

course “CSE 202” are actionable piece of data which are known as entities and 

intent is, to find a location of given a class. Once it gets intent and entities, it goes 

on to process by calling an API to fetch the actual data based on the entities that 

have been extracted. Once it gets response from API service, it moves further to 

parse and process the response to create a suitable reply for the user to read 

which is then sent back to user. 
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Figure 12. CSUSB Chatbot Mechanism 

 

Figure 12 shows that process of a chatbot starts from The Interactive 

Terminal Interface which is nothing but a platform of Facebook Messenger. Once 

user type a message into a bot, the pattern matcher function will run the 

message through a set of regular expression rules. Regular Expression is a 

universal syntax that is used to detect patterns and extract data from a given 

sentence. If a pattern matcher function does find a pattern in the user’s input, it 

extracts an actionable data from the sentence and then it runs through CSUSB 

API to get actual data. This data comes back as a JSON object which is parsed 

to get what user wants. JSON is a JavaScript Object Notation which is a light 

weight object to data interchange. JSON object is used for serializing and 

CSUSB 

API 
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transmitting data over a network connection. Once the JSON response is parsed, 

it will generate an appropriate reply which is printed back for user to read. 

Connecting Chatbot With Facebook 

 Building a chatbot is a one part of this project other part is to connect a 

chatbot with Facebook Messenger platform to type messages. Figure 13 shows 

that process of deploying a chatbot on messenger platform begins with creating a 

Facebook page. This is absolutely essential. This page could be for the chatbot 

itself or it could be existing Facebook page such as the one for a business or an 

organization. The following step is to create a Facebook application and add the 

messenger platform product. CSUSB Chatbot links to a messenger platform 

using web-hooks. Web-hooks are specially designated URLs where messages 

from users are received by a chatbot. At the same time chatbot application talks 

to messenger by making calls to the send APIs. Once the connection between 

chatbot and messenger platform is made, next step is to test and train a bot to 

understand and respond to user. Once all of these are done, last step is to 

submit a chatbot to Facebook for approval to make it available to use in public. 

[12] 
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Figure 13. Chatbot on Messenger 
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CHAPTER SIX 

UML DIAGRAMS 

 

Use Case Diagram 

Use Case Diagram represents user’s interaction with  Professors and 

Courses. Figure 14 shows that user can check List of all Professors, Email 

Address, Phone Number, Office Hours and Office Location of all faculties. 

 

Figure 14. Use Case Diagram of Professors 
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Figure 15 describes that user is able to check Course Catalog, Course 

Title, Timings of Courses, Class Location, Number of Units and Course 

Instructor. 

 

Figure  15. Use Case Diagram of Courses 
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Class Diagram 

 Figure 16 describes static structure and relationship between two classes 

Professors and Courses. It represents all data members and methods which are 

used in class Professors and Courses. It states that relationship between class 

Professor and class Course is One-to-Many which represents that one professor 

can teach more than one courses. 

 

 

 

Figure 16. Class Diagram 
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Sequence Diagram 

 Figure 17 shows object interactions between User and Professors and 

also between User and Courses arranged in time sequence. It depicts the 

objects and classes involved in the scenario and the sequence of messages 

exchanged between the User and Professors and also between User and 

Courses to carry out the functionality of the scenario. 

 

 

Figure 17. Sequance Diagram 
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Component Diagram 

 Figure 18 depicts the number of components and how different 

components are interect with each other. Here it is shown Professors Component 

and Courses Component are interect with User Component. 

 

 

Figure 18. Component Diagram  
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State Diagram 

 Figure 19 shows that process of chatbot starts with user input which 

passes through pattern matcher to extract actionable piece of data. Once it 

extracts enity it process further to call CSUSB API to get an actual data. This 

data would be in JSON format which parses throgh Response Parser to convert 

in actual data which responds back to user. 

 

 

Figure 19. State Diagram 
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CHAPTER SEVEN 

CONCLUSIONS 

 

The CSUSB chatbot project demonstrates the ease of use of the 

Facebook chatbot for the purpose of finding information on professors and 

courses of Computer Science. The chatbot code uses regular expression, pattern 

matching and intent of the questions. It creates buckets based on the intent of 

the question and assigns the task to the appropriate module. It uses Natural 

Language Understanding to create the buckets of the user’s intension. The 

chatbot uses Entity, Context and Intent model. Entity demonstrates the system of 

the chatbot. Intent demonstrates the action of the user. Context shows the state 

of the intension. Each module calls APIs to fetch the data specific to the 

question. Rest APIs are designed to fetch data from mySQL database. APIs are 

created on .NET platform and hosted on Azure cloud. A chatbot application 

executor executes and parses the API responses and forms answer sentences. 

The application code is hosted on the Heroku and salesforce cloud. It uses 

Facebook exposed APIs webhook to post the messages on Facebook 

messenger. Chatbots are scalable, resilient and rapid applications. 

  The Chatbots are obedient enough to answer all the questions. They can 

be also enhanced with Artificial Intelligence and Machine Learning. There is a lot 

of research going on about Natural Language Processing to understand the 

intent of the question. It can be achieved using generative and selective 
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modelling approach. The machine learned models can be trained using the 

questions asked by users. Sequence-to-Sequence is a famous modelling 

technique to train language models. The chatbots learn the context of the 

questions and forms reply. Tech companies also use Artificial Neural Network to 

train chatbot models. Data scientists and researchers all over the world are 

solving problems to learn the intent of the questions and reply intelligently.  

In the current world, businesses are investing a lot in developing chatbots. 

There are technology companies like aivo, botsify and chatfuel who provide 

infrastructure frameworks to create chatbots using artificial intelligence. 

Companies in Banking, eCommerce, Financial Services and IT advertising 

industry develop bots on mobile applications, Facebook platform or other 

messenger platform to help customers. The Chatbots fulfills customer’s need 

such as weather information, crimes, news, package tracking updates, FAQs, 

feedback, shopping etc. 
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APPENDIX A 

PROJECT SCREENSHOTS 
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Add professor’s details 

 

 

Show professor’s details 
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Add course details 

 

 

Show course details 
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APPENDIX B 

CODE OF CRITICAL PARTS 
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Server.js 

 
const express = require('express'); 
const bodyParser = require('body-parser'); 

 
const config = require('./config'); 
const FBeamer = require('./fbeamer'); 
 
const matcher = require('./matcher'); 
//Get APIs 
const weather = require('./weather'); 
const professorApi = require('./api/professorApi'); 
const courseApi = require('./api/courseApi'); 
const professorAll = require('./api/professorAllApi'); 
const courseAll = require('./api/courseAllApi'); 
//Weather Parser 
const {currentWeather} = require('./parser'); 
//Professor Parser 
const {officeHr} = require('./parser/professorsParse'); 
const {emailId} = require('./parser/professorsParse'); 
const {phoneNo} = require('./parser/professorsParse'); 
const {officeLocation} = require('./parser/professorsParse'); 
const {allProfessors} = require('./parser/professorsParse'); 
//Course Parser 
const {courseTitle} = require('./parser/courseParse'); 
const {courseTime} = require('./parser/courseParse'); 
const {classLocation} = require('./parser/courseParse'); 
const {courseUnits} = require('./parser/courseParse'); 
const {courseByProfessor} = require('./parser/courseParse'); 

 
const server = express(); 
const PORT = process.env.PORT || 3000; 
const f = new FBeamer(config.fb); 

 
server.get('/', (req, res) => f.registerHook(req,res)); 
server.post('/', bodyParser.json({ 
    verify: f.verifySignature 

})); 
 
let mapCourse = getMapCourses(); 

 
server.post('/', (req, res, next) => { 
    return f.incoming(req, res, data => { 
        try{ 
            if(data.type === 'text'){ 
                matcher(data.content, async resp => { 
                    switch(resp.intent){ 
                        case 'Hello': 
                            await f.txt(data.sender, `${resp.entities.greeting} How can I help you?`); 
                            break; 
                        case 'Greetings': 
                            await f.txt(data.sender, 'I am doing great! How can I help you today?'); 
                            break; 
                        case 'CurrentWeather': 
                            await f.txt(data.sender, 'Let me check...'); 
                            let weatherData = await weather(resp.entities.city, 'current'); 
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                            let cwResult = currentWeather(weatherData); 
                            await f.txt(data.sender, cwResult); 
                            break; 
                         //Show Professors: 
                        case 'AllProfessors': 
                            await f.txt(data.sender, 'Here is the faculty list:'); 
                            let response = await professorAll(resp.entities.professor);  
                            for(let i = 0; i<response.length; i++) { 
                                if(response[i].lname){ 
                                    await f.txt(data.sender, response[i].fname +' '+ response[i].lname); 
                                } 
                            } 
                            break; 
                        case 'OfficeHours': 
                            await f.txt(data.sender, 'Let me check...'); 
                            let cwData1 = await 
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase())); 
                            let office = officeHr(cwData1); 
                            await f.txt(data.sender, office); 
                            break; 
                        case 'Email': 
                           // await f.txt(data.sender, 'Let me check...'); 
                            let cwData2 = await 
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase())); 
                            let email = emailId(cwData2); 
                            await f.txt(data.sender, email); 
                            break; 
                        case 'Phone': 
                          //  await f.txt(data.sender, 'Let me check...'); 
                            let cwData3 = await 
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase())); 
                            let phone = phoneNo(cwData3); 
                            await f.txt(data.sender, phone); 
                            break; 
                        case 'OfficeLocation': 
                            await f.txt(data.sender, 'Let me check...'); 
                            let cwData4 = await 
professorApi(mapProfessor.get((resp.entities.professor).toLowerCase())); 
                            let loc = officeLocation(cwData4); 
                            await f.txt(data.sender, loc); 
                            break; 
                        // Show Courses: 
                        case 'AllCourses': 
                            await f.txt(data.sender, 'Here is the course catalog:'); 
                            let courses = await courseAll(resp.entities.course);  
                            for(let i = 0; i<courses.length; i++) { 
                                if(courses[i].id){ 
                                    await f.txt(data.sender, courses[i].number +' '+ courses[i].name+' by 
'+courses[i].professors.fname+' '+courses[i].professors.lname); 

                                } 
                            } 
                            break; 
                        case 'CourseName': 
                         //   await f.txt(data.sender, 'Let me check...'); 
                            let courseData1 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/, 
"").toLowerCase())); 
                            let title = courseTitle(courseData1); 
                            await f.txt(data.sender, title); 
                            break; 
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                        case 'CourseTime': 
                            await f.txt(data.sender, 'Let me check...'); 
                            let courseData2 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/, 
"").toLowerCase())); 
                            let time = courseTime(courseData2); 
                            await f.txt(data.sender, time); 
                            break; 
                        case 'ClassLocation': 
                            await f.txt(data.sender, 'Let me check...'); 
                            let courseData3 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/, 
"").toLowerCase())); 
                            let location = classLocation(courseData3); 
                            await f.txt(data.sender, location); 
                            break; 
                        case 'CourseUnits': 
                          //  await f.txt(data.sender, 'Let me check...'); 
                            let courseData4 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/, 
"").toLowerCase())); 
                            let units = courseUnits(courseData4); 
                            await f.txt(data.sender, units); 
                            break; 
                        case 'CourseByProfessor': 
                            await f.txt(data.sender, 'Let me check...'); 
                            let courseData5 = await courseApi(mapCourse.get((resp.entities.course).replace(/\s+/, 
"").toLowerCase())); 
                            let course = courseByProfessor(courseData5); 
                            await f.txt(data.sender, course); 
                            break; 
                        case 'Help': 
                            await f.txt(data.sender,`This is the personal assistant bot for CSUSB. This bot serves 
you informations about courses and professors of Computer Science and Engineering department 
only. Please type "Sample Questions" for more idea.`); 
                            break; 
                        case 'SampleQuestions': 
                            await f.txt(data.sender,`You may ask "Who is the instructor of cse 202?"  "May I 
know office hours of Dr. Yu?"  You may ask questions about professors(by last name) to check their 
office hours, email, phone, office location. You may ask questions about computer science courses 
to check course title, class location, class/lab hours or timing, no. of units and course instructor. 
You may type "Faculty List" or "Course Catalog" to get more details about faculties and courses.`); 
                            break;  
                        case 'Exit': 
                            await f.txt(data.sender, `${resp.entities.greeting} Krutarth!̀ ); 
                            await f.txt(data.sender, `Have a great day :)`); 
                            break;  
                        default: { 
                        await f.txt(data.sender, `I don't know what do you mean. Type "Help" for more help.`); 
                        } 
                    } 
                }); 
            } 
        } catch(e){ 

            console.log(e); 
        } 
    }); 
});   
server.listen(PORT, () => console.log(`CSUSB ChatBot Service running on Port ${PORT}`)); 
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Pattern.js 

const patternDict = [{ 
    pattern : '\\b(?<greeting>Hi|Hello|Hey)\\b', 
    intent : 'Hello' 
},{ 
    pattern: '\\b(How are you|How are you doing|How you doing)', 
    intent: 'Greetings' 
},{ 
    pattern: 'like\\sin\\s\\b(?<city>.+)', 
    intent: 'CurrentWeather' 
},{ 
    pattern: '\\b(?<professor>.+)\\slist', 
    intent: 'AllProfessors' 
},{ 
    pattern: '(office ?hours?)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b', 
    intent: 'OfficeHours' 
},{ 
    pattern: '(email ?id|email|email ?address)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b', 
    intent: 'Email' 
},{ 
    pattern: '(phone no.?|phone number|phone|contact|contact number|contact 
information)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b', 
    intent: 'Phone' 
},{ 
    pattern: '(office number|office no.?|office location|office)\\sof\\s?(d|D)?r?.?\\s\\b(?<professor>.+)\\b', 
    intent: 'OfficeLocation' 
},{ 
    pattern: '(name|title)\\sof\\s\\b(?<course>.+)\\b', 
    intent: 'CourseName' 
},{ 
    pattern: '(time?i?n?g?|duration|hours?|lab hours?|lab time?i?n?g?|class 
hours?)\\sof\\s\\b(?<course>.+)\\b', 
    intent: 'CourseTime' 
},{ 
    pattern: '(location|room number|room no.?|lab ?n?u?m?b?e?r?|class ?n?u?m?b?e?r?|class 
location)\\sof\\s\\b(?<course>.+)\\b', 
    intent: 'ClassLocation' 
},{ 
    pattern: '(units?|credits?)\\s(of|have|has)\\s\\b(?<course>.+)\\b', 
    intent: 'CourseUnits' 
},{ 
    pattern: '(instructor|faculty|professor|teacher)\\sof\\s\\b(?<course>.+)\\b', 
    intent: 'CourseByProfessor' 
},{ 
    pattern: '(teache?s?i?n?g?)\\s\\b(?<course>.+)\\b', 
    intent: 'CourseByProfessor' 
},{ 
    pattern: '(list of ?a?l?l?|all|all the|catalogu?e? of)\\s\\b(?<course>.+)\\b', 
    intent: 'AllCourses' 
},{ 
    pattern: '\\b(?<course>.+)\\b\\sare\\s?c?a?t?a?l?o?g?o?u?e?', 
    intent: 'AllCourses' 
},{ 
    pattern: '\\b(?<course>.+)\\b\\scatalogo?u?e?', 
    intent: 'AllCourses' 
},{ 
    pattern: '\\b(help|menu|info)\\b', 
    intent: 'Help' 



47 

 

},{ 
    pattern: '\\b(sample questions?)\\b', 
    intent: 'SampleQuestions' 
},{ 
    pattern : '\\b(?<greeting>bye|see you)', 
    intent : 'Exit' 
}]; 
 

     Matcher.js  
'use strict'; 
const patterns = require('../patterns'); 
const XRegExp = require('xregexp'); 

 
let createEntities = (str, pattern) => { 
    return XRegExp.exec(str, XRegExp(pattern,"i")); 

} 
 
let matchPattern = (str, cb) =>{ 
    let getResult = patterns.find(item =>{ 
        if(XRegExp.test(str, XRegExp(item.pattern, "i"))){ 
            return true; 
        } 
    }); 
 
    if(getResult){ 
        return cb({ 
            intent: getResult.intent, 
            entities: createEntities(str, getResult.pattern) 

        }); 
    } else { 
        return cb({}); 

    } 
} 
 
module.exports = matchPattern; 

 

CourseApi.js  

var Request = require("request"); 
 
COURSE_URL = "https://chatbot2018.azurewebsites.net/api/courses/"; 

 
const getCourseService = (id, callback) => { 
    return new Promise((resolve, reject) => { 
        Request.get(`${COURSE_URL}${id}`, {json:true}, (err,res,body) => { 
            if(err){ 

                reject(err); 
            } 
            resolve(body); 
        }); 
    });   
} 
module.exports = getCourseService; 

 

ProfessorApi.js 
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var Request = require("request"); 

 
PROFESSOR_URL = "https://chatbot2018.azurewebsites.net/api/professors/"; 

 
const getProfessorService = (id, callback) => { 
    return new Promise((resolve, reject) => { 
        Request.get(`${PROFESSOR_URL}${id}`, {json:true}, (err,res,body) => { 
            if(err){ 

                reject(err); 
            } 
            resolve(body); 
        }); 
    });   
} 
 
module.exports = getProfessorService; 

 

ProfessorParse.js 

let officeHr = response => { 
    if(response.lname){ 
        return `Office hours of Dr. ${response.lname} are ${response.officeHours}.` 
    } 
} 
 
let emailId = response => { 
    if(response.lname){ 
        return `Email of Dr. ${response.lname} is ${response.email}.` 

    } 
} 
 
let phoneNo = response => { 
    if(response.lname){ 
        return `Phone number of Dr. ${response.lname} is ${response.phone}.` 
    } 
} 
 
let officeLocation = response => { 
    if(response.lname){ 
        return `Office location of Dr. ${response.lname} is ${response.location}.` 

    } 
} 
 
let allProfessors = response => { 
    console.log("Here is the faculty list: "); 
    for(let i = 0; i<response.length; i++) { 
        if(response[i].lname){ 
            console.log( `${response[i].fname} ${response[i].lname},`); 

        } 
    } 
} 
 
module.exports = { 
    officeHr, 
    emailId, 
    phoneNo, 
    officeLocation, 
    allProfessors 
}; 
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CourseParse.js 

 

let courseTitle = response => { 
    if(response.id){ 
        let course = response.number; 
        return `The title of ${course.trim()} is ${response.name}.` 
    } 
} 
 
let courseTime = response => { 
    if(response.id){ 
        let courseId = response.number; 
        return `Hours of ${courseId.trim()} are ${response.time}.` 

    } 
} 
 
let classLocation = response => { 
    if(response.id){ 
        let courseNo = response.number; 
        return `The class location of ${courseNo.trim()} is ${response.location}.` 

    } 
} 
 
let courseUnits = response => { 
    if(response.id){ 
        let units = response.noOfUnits; 
        return `Total number of units are ${units.toString()}.` 

    } 
} 
let courseByProfessor = response => { 
    if(response.id){ 
        let courseName = response.number.trim(); 
        return `Instructor of ${courseName} is ${response.professors.fname} ${response.professors.lname}  ̀

    } 
} 
 
module.exports = {  
    courseTitle, 
    courseTime, 
    classLocation, 
    courseUnits, 
    courseByProfessor 
}; 
 

Fbeamer.js 

'use strict'; 

 
const crypto = require('crypto'); 
const request = require('request'); 
const apiVersion = 'v2.8'; 

 
class FBeamer { 

  constructor({ pageAccessToken, verifyToken, appSecret}) { 
    try { 
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      if (pageAccessToken && verifyToken) { 
        this.pageAccessToken = pageAccessToken; 
        this.verifyToken = verifyToken; 
        this.appSecret = appSecret; 
      } else { 
        throw "One or more tokens/credentials are missing!"; 
      } 
    } catch (e) { 

      console.log(e); 
    } 
  } 
 
  registerHook(req, res) { 
    const params = req.query; 
    const mode = params['hub.mode'], 
      token = params['hub.verify_token'], 
      challenge = params['hub.challenge']; 
      // if mode === 'subscribe' and token === verifytoken, then send back challenge 
      try { 
        if ((mode && token) && (mode === 'subscribe' && token === this.verifyToken)) { 
          console.log("Webhook registered!"); 
          return res.send(challenge); 
        } else { 
          throw "Could not register webhook!"; 
          return res.sendStatus(200); 

        } 
      } catch(e) { 

        console.log(e); 
      } 
  } 
 
  verifySignature(req, res, buf) { 
    return (req, res, buf) => { 
      if(req.method === 'POST') { 
        try { 
          let signature = req.headers['x-hub-signature']; 
          if(!signature) { 
            throw "Signature not received"; 
          } else { 
            let hash = crypto.createHmac('sha1', this.appSecret).update(buf, 'utf-8'); 
            if(hash.digest('hex') !== signature.split("=")[1]) { 
              throw "Invalid signature!"; 
            } 
          } 
        } catch (e) { 

          console.log(e); 
        } 
      } 
    } 
  } 
 
  incoming(req, res, cb) { 
    res.sendStatus(200); 
    if(req.body.object === 'page' && req.body.entry) { 
      let data = req.body; 
      data.entry.forEach(pageObj => { 
        if(pageObj.messaging) { 
          pageObj.messaging.forEach(messageObj => { 
            console.log(messageObj); 
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            if(messageObj.postback) { 
              // Handle postbacks 
            } else { 
              // Handle messages 
              return cb(this.messageHandler(messageObj)); 

            } 
          }); 
        } 
      }); 
    } 
  } 
 
  messageHandler(obj) { 
    let sender = obj.sender.id; 
    let message = obj.message; 

 
    if(message.text) { 
      let obj = { 
        sender, 
        type: 'text', 
        content: message.text 

      } 
 
      return obj; 

    } 
  } 
  sendMessage(payload) { 
    return new Promise((resolve, reject) => { 

      request({ 
        uri: `https://graph.facebook.com/${apiVersion}/me/messages`, 
        qs: { 
          access_token: this.pageAccessToken 

        }, 
        method: 'POST', 
        json: payload 

      }, (error, response, body) => { 
        if (!error && response.statusCode === 200) { 

          resolve({ 
            mid: body.message_id 

          }); 
        } else { 

          reject(error); 
        } 
      }); 
    }); 
  } 
 
  txt(id, text, messaging_type = 'RESPONSE') { 
    let obj = { 

      messaging_type, 
      recipient: { 

        id 
      }, 
      message: { 
        text 
      } 
    } 
 
    return this.sendMessage(obj); 
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  } 
 
  img(id, url, messaging_type = 'RESPONSE') { 
    let obj = { 

      messaging_type, 
      recipient: { 
        id 
      }, 
      message: { 
        attachment: { 
          type: 'image', 
          payload: { 

            url 
          } 
        } 
      } 
    } 
 
    return this.sendMessage(obj); 

  } 
} 
 
module.exports = FBeamer; 

 

Config.js 

 
if(process.env.NODE_ENV === 'production') { 
  module.exports = { 
    fb: { 
      pageAccessToken: process.env.pageAccessToken, 
      verifyToken: process.env.verifyToken, 
      appSecret: process.env.appSecret 
    } 
}  
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