
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

6-2018

INTER PROCESS COMMUNICATION BETWEEN TWO SERVERS INTER PROCESS COMMUNICATION BETWEEN TWO SERVERS

USING MPICH USING MPICH

Nagabhavana Narla

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Narla, Nagabhavana, "INTER PROCESS COMMUNICATION BETWEEN TWO SERVERS USING MPICH"
(2018). Electronic Theses, Projects, and Dissertations. 718.
https://scholarworks.lib.csusb.edu/etd/718

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/718?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

INTER PROCESS COMMUNICATION BETWEEN

TWO SERVERS USING MPICH

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Nagabhavana Narla

June 2018

INTER PROCESS COMMUNICATION BETWEEN

TWO SERVERS USING MPICH

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Nagabhavana Narla

June 2018

Approved by:

Dr. Ernesto Gomez, Advisor, Computer Science and Engineering

Dr. Tong Lai Yu, Committee Member

Dr. Yunfei Hou, Committee Member

© 2018 Nagabhavana Narla

iii

ABSTRACT

 The main aim of the project is to launch multiple processes and have those

processes communicate with each other using peer to peer communication to

eliminate the problems of multiple processes running on a single server, and

multiple processes running on inhomogeneous servers as well as the problems

of scalability. This entire process is done using MPICH which is a high

performance and portable implementation of Message Passing Interface

standard.

 The project involves setting up the password less authentication between two

local servers with the help of SSH connection. By establishing a peer to peer

communication and by using a unique shell script which is written using MPICH

and its derivatives, I am going to demonstrate the process of inter-process

communication between the servers.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my mentor, supporter, and

advisor Dr. Ernesto Gomez for the guidance and encouraging me for completing

this project. I would also like to thank my committee members Dr. Tong Lai Yu

and Dr. Yunfei Hou for their valuable suggestions and unlimited support.

I would like to thank my Dad Mr. Rambabu Narla, Mom Mrs. Sheela Rani

Narla for their unconditional love and support. Special thanks to my sister Miss.

Nagabhargavi Narla for always being with me in every situation.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ...iv

LIST OF FIGURES .. vii

CHAPTER ONE: INTRODUCTION

Background .. 1

Purpose ... 1

CHAPTER TWO: SYSTEM REQUIREMENT SPECIFICATION

Hardware Requirements .. 3

Software Requirements ... 3

Software Used ... 3

CHAPTER THREE: HISTORY OF MPICH

MPICH Installation ... 9

Program Execution Using MPICH .. 15

MPICH Commands .. 19

MPICH Routines .. 21

CHAPTER FOUR: SSH CONNECTION BETWEEN THE SYSTEMS 23

PasswordLess SSH Authentication .. 24

Setting up SSH Keys ... 24

Launch "n" Processes by Running the Same Program 27

CHAPTER FIVE: PEER TO PEER COMMUNICATION

Communication Between the Processes ... 29

Unique Shell Script .. 30

vi

Explanation .. 36

CHAPTER SIX: CONCLUSION

Note ... 39

APPENDIX A: MPIHELLO.C... 40

APPENDIX B: P2PCOMM.CPP .. 45

APPENDIX C: HOSTS.TXT .. 53

APPENDIX D: HOSTS.ALLOW .. 55

APPENDIX E: TEST.TXT .. 58

APPENDIX F: MPICH ... 60

REFERENCES ... 62

vii

LIST OF FIGURES

Figure 1. OpenSUSE Control Center Interface. .. 4

Figure 2. YaST Control Center. ... 5

Figure 3. Zypper Command Syntax in Terminal .. 5

Figure 4. Zypper Help Command in Terminal ... 6

Figure 5. Working of GCC Compiler ... 7

Figure 6. Extracting Files from a Zip Folder .. 9

Figure 7. Configuring MPICH.. 10

Figure 8. Configuring MPICH.. 11

Figure 9. MPICH Configuration Completed .. 12

Figure 10. Building MPICH ... 13

Figure 11. Installing MPICH .. 13

Figure 12. Setting Up PATH in Bin Sub Directory ... 14

Figure 13. Checking MPICH Installation ... 15

Figure 14. Example Code of CPI.C .. 16

Figure 15. Example Code of CPI.C .. 17

Figure 16. Example Code of CPI.C .. 18

Figure 17. Program Execution Using MPICH ... 19

Figure 18. Modifying HOSTS.ALLOW File ... 23

Figure 19. Setting Up SSH Keys .. 25

Figure 20. Password Less Authentication ... 25

Figure 21. Ping Statictics to Check SSH on Ubuntu ... 26

Figure 22. Ping Statistics to Check SSH on OpenSUSE 26

viii

Figure 23. Running MPICH Program Ten Times on OpenSUSE 27

Figure 24. Running MPICH Program on OpenSUSE & Ubuntu 28

Figure 25. P2PCOMM.CPP Program Code .. 30

Figure 26. P2PCOMM.CPP Program Code .. 31

Figure 27. P2PCOMM.CPP Program Code .. 32

Figure 28. P2PCOMM.CPP Program Code .. 33

Figure 29. P2PCOMM.CPP Program Code .. 34

Figure 30. P2PCOMM.CPP Program Code .. 35

Figure 31. Running Peer to Peer Communication Program Using MPICH 38

Figure 32. HOSTS.TXT File .. 54

Figure 33. HOSTS.ALLOW File .. 56

Figure 34. HOSTS.ALLOW File .. 57

1

CHAPTER ONE

INTRODUCTION

Background

The motivation behind the project is when I started learning about the parallelism

[3] and the scalability issues in the parallel processing. Working on multiple

processes running on a single server is very hard because of the many issues

like difficulty of writing code, debugging, managing concurrency, and testing. In

this process, the server will be overwhelmed. To avoid this problem, we tend to

add more servers, but the problem arises when there is a confusion of which

process should be using which server. To avoid this, the processes should start

communicating.

Once there is a communication between the processes in the presence of

multiple servers, the problem of scalability arises. All these problems like

synchronizing overhead, shared process memory space and debugging leads to

new research on how to avoid these problems. This project is one small attempt

to demonstrate a way to overcome these problems.

Purpose

The purpose of the project is to demonstrate a way of overcoming the problems

that occur during multiple processes and single server execution and multiple

process & multiple servers executions. By the end of the project, it will show how

2

using a different approach can overcome the problems of synchronization

overhead, debugging and scalability. This project acts as a first step in updating

SOS [4] library which is built on MPI which in turn uses network communication

between concurrent processes.

3

CHAPTER TWO

SYSTEM REQUIREMENT SPECIFICATION

Hardware Requirements

• Laptop or PC running LINUX.

• AKEK Cluster at CSUSB and a PC for Development.

Software Requirements

• OpenSUSE Leap 42.2

• MPICH-3.1.4

• GNU C-Compiler.

Software Used

OpenSUSE

OpenSUSE [5] is a Linux distribution developed by community supported

OpenSUSE project and number of other companies. It is an open source OS. It

was previously known as SUSE Linux & SUSE Linux professional. OpenSUSE is

very user-friendly and it helps in developing open source software tools for

developers and system administrators.

 The main features of OpenSUSE - YaST Control Center, Zypper

Package Manager & Desktop Innovation.

4

 YaST is the abbreviation for “Yet another Setup Tool”, it handles

firewall configuration, network configuration, online updates, package

manager & system setup. YaST is classified into two different modules

AutoYaST & WebYaST.

Figure 1. OpenSUSE Control Center Interface.

5

Figure 2. YaST Control Center.

Zypper Package Manager is a powerful package manager engine which

resolves the dependency and it is a convenient package management

API.

Figure 3. Zypper Command Syntax in Terminal.

6

Figure 4. Zypper Help Command in Terminal.

Getting help for the specific zypper command.

OpenSUSE released three different versions of the OS. They are desktop XGL

and Compiz, KDE & GNOME.

MPICH

MPICH [1] is an elite and generally compact implementation of Message

Passing Interface [2] (MPI) Standard. These are used on 9 out of 10

supercomputers in the entire world. The fastest supercomputer Taihu Light also

uses MPICH and its derivatives.

7

Figure 5. Working of GCC Compiler

GNU C – Compiler

GNU C – Compiler is a compiler system developed for supporting various

programming languages. Originally, it’s called GNU C – Compiler as it is used to

handle only C applications. Later its name is to GCC as now it supports C, C++,

Objective – C, FORTRAN, Ada & Go.

The GCC Compilation system includes different phases. They are:

• Pre-processor

• Compiler

• Optimizer

• Assembler

• Linker

The compiler driver co-ordinates these phases.

The pre-processor stage is used to expand the macros and include the headers

files. It can be done by using this command.

8

Ex: $ cpp hello.c > hello.i

In the compiler phase, the source code is changed to the assembly level

language. The command can be as follows:

Ex: $ gcc -Wall -S hello.i

Here – S indicates the gcc to convert the given source code into the assembly

level language.

In the optimization phase, the compiler tries to increase or decrease the

components of the executable computer program.

The assembler converts the assembly level code to machine understandable

code. And then generates an object file. The command can be as follows:

$ as hello.s -o hello.o

The output file is indicated with the option -o.

9

CHAPTER THREE

HISTORY OF MPICH

MPICH [1] is a small implementation of Message Passing Standard [2]

which is used in parallel computing for the applications which use distributed

computing. MPICH is an open source software. It was previously known as

MPICH2. It is also available in UNIX like operating system.

 The part “CH” in MPICH is taken from “Chameleon”. It is a small

programming library developed and tested by Willian Group.

MPICH Installation

 The MPICH can be installed differently in different operating systems and

environments.

Step One

 To install MPICH on the local machine it needs tar file of mpich and a C

compiler. The tar file will be in the name of mpich-3.1.4.tar.gz. Unpack the tar.gz

folder and go to the directory.

Figure 6. Extracting Files from a Zip Folder.

10

Choose the installation directory. The installation directory is supposed to

be empty. It is a good practice, if the directory is shared with all the machines that

we run the program on. If not, then it should be copied to all the machines.

Step Two

Figure 7. Configuring MPICH.

In this step, configure the folder in which mpich exists. In the command

below, I enabled socket in ch3 and enabled threads. And disabled Fortran as I

am not going to use Fortran in my project. If in case there is a use of Fortran, it

can be enabled by simply removing the - - disbale-fortran command.

./configure --prefix=/home/bhavana/mpich-install –with-device=ch3:sock –enable-

threads=multiple –with-thread-package=pthreads –disable-fortran 2>1 | tee c1.txt

Bourne shells like bash and sh accepts 2>&1, that is the reason I used

2>&1 in the command. If there are any errors in the configuration, the errors are

shown clearly in the terminal. By analyzing the errors, we can proceed to the next

step.The entire process of configuring the file takes up to two minutes. The below

screenshot describes the end of configuring MPICH.

11

Figure 8. Configuring MPICH.

12

Figure 9. MPICH Configuration Completed.

13

Step Three

In this step, we build MPICH, the screenshot below shows the command.

Figure 10. Building MPICH.

The command in the above screenshot is:

Make 2>&1 | tee m.txt

Step Four

 This step installs the MPICH commands. Executing this step, collects all

required executables and scripts in the sub directory called bin. Prefix argument

specifies it to configure.

Figure 11. Installing MPICH.

The command in the above screenshot is:

Make install 2>&1 | tee mi.txt

14

Step Five

This step adds the bin sub directory of the installation to the path in your

start up script.

Figure 12. Setting Up PATH in Bin Sub Directory.

The command in the above screenshot is:

PATH=/home/bhavana/mpich-install/bin : $PATH ; export PATH

By the end of the step five, the installation is completed. And MPICH is ready to

be used.

Step Six

To know if the installation was successful, the below two commands are used.

1. which mpicc

2. which mpiexec

By executing the above commands, we can know that the installation of MPICH

is successful or not.

15

Figure 13. Checking MPICH Installation.

When the above commands are executed in the terminal, it will give the

installation PATH of the directory where MPICH was installed. If you get the

correct result, it means that the installation was successful.

Program Execution Using MPICH

The running of MPI program can be tested by going into the examples folder of

the sub directory. Here I am demonstrating by taking an example cpi.c. It is in

/examples/cpi path.

Here is the code for cpi.c.

16

Example cpi.c

Figure 14. Example Program Code of CPI.C

17

Figure 15. Example Program Code of CPI.C

18

Figure 16. Example Code of CPI.C

19

MPI program can be executed as follows

Figure 17. Program Execution Using MPICH.

MPICH Commands

MPICC

The command mpicc compiles and links the MPI Program. This command

provides libraries to compile the program. When linking the program, it provides

the necessary libraries from mpicc.

Command Line Arguments

• -show: Displays the commands that can be used without running them.

• -help: Provides help when ever needed.

• -cc=name: Displays the compiler name instead of the default name.

• -config=name: Returns configuration file for the specific compiler.

• -echo: Shows what the program is doing.

20

Examples

Consider an example file hello.c

• Compiling a single file.

mpicc -c hello.c

• To create an executable and to link the output.

mpicc -o hello hello.o

• Compiling and linking in a single command.

mpicc -o hello hello.c

MPIEXEC

This command runs an MPI program.

Syntax.

mpiexec args executable pgmargs

Here, args is a command line argument, the executable is the name of the

program and pgmargs are arguments for executables.

Command Line Arguments

• -n: Specify the number of processes to use.

• -host: Gives hostname of the running program.

• -path: Gives the file of the executable.

• -file: Gives the name of the program.

• -configfile: Displays all the arguments in the program.

21

MPICH Routines

Routines are used in MPI programs to create communication between two

different nodes.

• MPI_Init: This routine starts the execution environment. It has two input

parameters argc which is a point to the number of arguments and argv

which pointer to argument vector. This routine should only be used when

there is one thread only.

• MPI_Comm_size: It gives the size of the group associated with the

communicator. It has two parameters comm which is a communicator and

size determines the number of processes in the communication.

• MPI_Comm_rank: Gives the rank of calling processes in the

communication. It has two input parameters comm which is a

communicator and rank which gives the rank of calling processes.

• MPI_Get_processor_name: Gives the name of the processor. It has two

parameters name which gives the name of the processor and resulteln

gives the length of the name of the processor.

• MPI_Bcast: This routine broadcast messages from the root processor of

the communicator. It has four parameters buffer which starts the address

of the buffer, count which gives the number of entries, datatype, root which

is a root of the processor, comm which gives a communicator.

22

• MPI_Reduce: Decreases the value of the processor to a single value. It

has seven parameters sendbuf, count, datatype, op, root, comm and

recvbuf.

• MPI_Wtime: It gives the completed time on calling he processor.

• MPI_Finalize: It ends the MPI execution. It determines all processes

should call this routine before exiting.

• MPI_Comm_world: MPI_Init defines the routine MPI_Comm_world to all

processes.

• MPI_Abort: Stops the executing program in the middle of the execution. It

has two parameters comm and errorcode which is used to return to invoke

environment.

• MPI_Irecv: It begins non-blocking receive. It has different parameters buf,

count, datatype, source, tag, comm and request.

• MPI_Test: The routine is used when you want to test the request. There

are three parameters request, flag, and status.

• MPI_Send: It performs a blocking send operation. It has six parameters

buf, count, datatype, dest, tag & comm.

23

CHAPTER FOUR

SSH CONNECTION BETWEEN THE SYSTEMS

SSH [6] (Secure Shell) is an open source network protocol. It is used to

login to the servers remotely. Here I am setting up the SSH connection between

two servers so that there is a communication between two servers.

Setting up SSH connection starts off with editing the host files. We need to

add the ipaddress of one server host file to another and save it. Also, edit the

hosts.allow file and add SSH for the local host and SSH and SSHd for the

ipaddress of another server.

Figure 18. Modifying HOSTS.ALLOW File.

24

Passwordless SSH Authentication

In the first step, turn off the fire wall on both machines to make the two

servers communicate with each other. To turn off fire wall on OpenSUSE, login to

root user and use the following command. This passwordless authentication is

internal to the local machine.

root@opensuse:~# systemctl stop SuSEfirewall2.service

Setting Up SSH Keys

After turning off fire wall on both servers, I set up password less login via

SSH. Login in to root user and use the following commands.

After executing the command, it asks to set the passphrase for the key.

Here I just pressed enter because I want no password to authenticate between

the two servers.

mailto:root@opensuse

25

Figure 19. Setting Up SSH Keys.

After the key is generated, use the following command to finish setting up

the passwordless authentication.

Figure 20. Passwordless Authentication.

Now I am going to test the connection by logging from one server to

another server.

26

Figure 21. Ping Statistics to Check SSH on Ubuntu.

Figure 22. Ping Statistics to Check SSH on OpenSUSE.

27

In the above screenshot, I tested the SSH connection between OpenSUSE and

Ubuntu & OpenSUSE and OpenSUSE.

Launch “n” Processes by Running the Same Program

In the below screenshot, I am running the hello world program script which

when executed gives two different parameters. The shell script is written in a way

which when executed gives, program name, IP address of the processes and the

rank of the processes.

Figure 23. Running MPICH Program Ten Times on OpenSUSE.

28

In the screenshot below, when the same script is executed on two

machines using SSH passwordless authentication. It shows IP address of the

two computers, program name, rank, and the number of processes

Figure 24. Running MPICH Program on OpenSUSE and Ubuntu.

29

CHAPTER FIVE

PEER TO PEER COMMUNICATION

Communication between the Processes

 To establish TCP/IP [8] communication between the processes, I am using

peer to peer [7] communication.

In this chapter, we will use 2 machines to demo the MPICH program

Machine A

• Hostname: OpenSUSE.

• Create user: mpiuser, home dir: /home/mpiuser/

• IP address: 192.168.200.241 / 24

• Software installed: openSUSE, mpich, mpich-devel, gcc.

Machine B

• Hostname: linux-au3f.

• Create user: mpiuser, home dir: /home/mpiuser/

• IP address: 192.168.200.231 / 24

• Software installed: OpenSUSE, mpich, mpich-devel, gcc.

Please note that we will use both openSUSE machines to simplify the process of

testing the program. If you use different OS(s) or different versions of the same

OS, we may encounter compatibility problems, which are difficult to solve.

30

The source code will be “p2pcomm.cpp”, compiled and linked to produce the

binary file “p2pcomm”. We will use command mpiexec to spawn 3 processes of

the p2pcomm program.

Unique Shell Script

Figure 25. P2PCOMM.CPP Program Code.

31

Figure 26. P2PCOMM.CPP Program Code.

32

Figure 27. P2PCOMM.CPP Program Code.

33

Figure 28. P2PCOMM.CPP Program Code.

34

Figure 29. P2PCOMM.CPP Program Code.

35

Figure 30. P2PCOMM.CPP Program Code.

36

Explanation

The reason I am trying to launch the multiple copies of the program with a

with TCP/IP [8] communication using peer to peer servers is that if we have

multiple processes and a single server that is providing information to all other

processes the server will be overwhelmed. To eliminate the problem, we need to

add more servers.

 If we add more servers, we get an issue that which process should be

using which server because there is no communication. So, the servers should

start communicating. Once the servers start to communicate the problem of

scalability arises. This is the reason processes should start communicating with

each other.

 For this reason, I wrote a shell script which allows the processes to start

communicating. And I tested the script with the help of a small data transfer file

on both machines.

The source code will be “p2pcomm.cpp”, compiled and linked to produce

the binary file “p2pcomm”. We will use command mpiexec to spawn 3 processes

of the p2pcomm program. This command will be executed in machine A:

mpiuser@opensuse:~>mpiexec -n 3 -hosts opensuse,opensuse2

/home/mpiuser/p2pcomm /home/mpiuser/test

The mpihello program will print this message:

Received: xxx from node: 1

Received: xxx from node: 2

37

RECEIVED FROM 2/2 NODES. TOTAL = XXX’

Before executing the program, we need to compile and execute the C++ program

to demonstrate the processes.

The source code is attached: p2pcomm.cpp. Compile and link the source code:

• Copy the source code to opensuse machine, /home/mpiuser, then execute

this command:

mpiuser@opensuse:~>mpic++ -o p2pcomm p2pcomm.cpp

• Copy the source code to opensuse machine, /home/mpiuser, then

execute this command:

mpiuser@opensuse2:~>mpic++ -o p2pcomm p2pcomm.cpp

NOTE: You must compile the source code in each machine to make it run

properly. If you just copy the binary from this machine to another, the binary may

not run, because of dynamic library linking problems.

After that, there will be a file named “p2pcomm” in /home/mpiuser of both

machines. Set the file to execution mode:

mpiuser@opensuse:~>chmod u+x mpihello

mpiuser@opensuse2:~>chmod u+x mpihello

Now everything is set, we run this command in machine A (opensuse), using

mpiuser:

mpiuser@opensuse:~>mpiexec -n 3 -hosts opensuse,opensuse2

/home/mpiuser/p2pcomm /home/mpiuser/test.txt

The output will be as follows

mailto:mpiuser@opensuse
mailto:mpiuser@opensuse

38

Figure 31. Running Peer to Peer Communication Program Using MPICH.

As you have seen the command line, we spawn 3 processes, in which

process 0 will be the master, process 1 and 2 will be the slaves. Each slave will

read the /home/mpiuser/test.txt file (different in each machine), count the number

of lines, then send the result back to the master.

The master then sums all the results to print out the final result.

In the following example

- The first test.txt file contains 4 lines, so the node 2 will send 4 to master:

Received: 4 from node: 2

- The second file contains 2 lines, so the node 1 will send 2 to master:

Received: 16 from node: 1

- Lastly, the master sum them up and report the total result:

Received from 2/2 nodes. Total =6.

39

CHAPTER SIX

CONCLUSION

I conclude that this project addresses the problems faced when working with

multiple processes running on a single server, and multiple processes running on

multiple inhomogeneous servers as well as the problems of scalability. This

project provides a way to deal with all the above problems by setting up SSH

connection between two passwordless authenticated servers by establishing a

peer to peer communication and by using a unique shell script which is written

using MPICH and its derivatives.

Note

AKEK was obtained under US Army Research Lab Agency program

AHPCRC. This is a Federal type grant. It was purchased on 5/1/2011.

40

APPENDIX A

MPIHELLO.C

41

#define _GNU_SOURCE /* To get defns of NI_MAXSERV and

NI_MAXHOST */

#include <sys/types.h>

#include <sys/socket.h>

#include <ifaddrs.h

#include <arpa/inet.h>

#include <netdb.h>

#include <stdio.h>

#include <string.h>

#include <mpi.h>

#include <stdlib.h>

void getlocalhostipaddr(char *ipaddr)

{

 struct ifaddrs *ifaddr, *ifa;

 int family, s, n;

 char host[NI_MAXHOST];

42

 char loopback_inf[3];

 strcpy(loopback_inf, "lo");

 if (getifaddrs(&ifaddr) == -1) {

 perror("getifaddrs");

 exit(EXIT_FAILURE);

 }

 /* To maintain the first pointer, we need to go through the linked list,

so that the list will be free in the later time*/

 for (ifa = ifaddr, n = 0; ifa != NULL; ifa = ifa->ifa_next, n++) {

 if (ifa->ifa_addr == NULL || strcmp(ifa->ifa_name, "lo") == 0)

 continue;

 family = ifa->ifa_addr->sa_family;

 /* display the names of the family and interfaces

 //printf("%-8s\n", ifa->ifa_name);

 /* display the address */

 if (family == AF_INET) {

43

 s = getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in),

 host, NI_MAXHOST, NULL, 0,

NI_NUMERICHOST);

 if (s != 0) {

 printf("getnameinfo() failed: %s\n",gai_strerror(s));

 exit(EXIT_FAILURE);

 }

 strcpy(ipaddr, host);

 break;

 }

 }

 freeifaddrs(ifaddr);

}

int main(int argc, char** argv) {

 char ipaddr[NI_MAXHOST];

 // Initialize the MPI environment

44

 MPI_Init(NULL, NULL);

 // Get the number of processes

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int world_rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor

 getlocalhostipaddr(ipaddr);

 // Print off a hello world message

 printf("Hello from IP address: %s, rank %d / %d processes\n",

 ipaddr, world_rank, world_size);

 // Finalize the MPI environment.

 MPI_Finalize();

45

 APPENDIX B

P2PCOMM.CPP

46

#include <iostream>

#include <fstream>

#include <string>

#include <mpi.h>

#include <unistd.h>

using namespace std;

int countLineFromFile(string filePath) {

 ifstream dataFile;

 string lineBuf;

 dataFile.open(filePath, ios_base::in);

 if (!dataFile) {

 cerr << "Unable to open file Filepath";

 exit(1); // call system to stop

 }

 int result = 0;

 while (getline(dataFile, lineBuf)) {

47

 cout << lineBuf << endl;

 result += 1;

 }

 dataFile.close();

 return result;

}

int main (int argc, char *argv[]) {

 if(argc <= 1) {

 cerr << "Usage: p2pcomm <filePath>" << endl;

 exit(1);

 }

 // Initialize the MPI environment

 MPI_Init(NULL, NULL);

 // Find out rank, size

 int world_rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

48

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // We are assuming at least 2 processes for this task

 if (world_size < 2) {

 cerr << "World size must be greater than 1 for " << argv[0] << endl;

 MPI_Abort(MPI_COMM_WORLD, 1);

 }

 cout << "Program name: " << argv[0] << endl;

 cout << "Process MPI id: " << world_rank << endl;

 //This is the master

 if (world_rank == 0) {

 int recvCount = 0;

 int retryCount = 0;

 int flag = -1;

 const int RETRYMAX = 3;

 const int WAITTIME = 1000000; //Microseconds

49

 MPI_Status status;

 MPI_Request request;

 int result = 0;

 int number;

 while (true) {

 //If we has no waiting receiving, flag will be != 0. And we create a

listening socket

 if(flag != 0) {

 MPI_Irecv(&number, 1, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &request);

 //Set the flag = 0 so we know we have a socket listening

 flag = 0;

 }

 //Test if the connection has completed. If so, flag will be set to 1

 MPI_Test(&request, &flag, &status);

50

 //If the connection has been completed

 if (flag == 1) {

 //Add it up

 result += number;

 //Increase the counter of returned node

 recvCount += 1;

 //Reset the retry counter

 retryCount = 0;

 cout << "Received: " << number << " from node: " <<

status.MPI_SOURCE << endl;

 }

 //If all the node has returned value, quit and print the sum of values

 //This is the normal case

 if(recvCount >= world_size - 1){

 break;

 }

51

 //Or if we have retried enough, quit and still print the sum of values,

and the number of returned nodes

 //This is an abnormal case, when a process is dead prematurely

 else if(retryCount > RETRYMAX) {

 break;

 }

 //If the connection is not completed yet, we wait, and increase the

retry counter

 retryCount += 1;

 usleep(WAITTIME);

 }

 cout << "Received from " << recvCount << " / " << world_size - 1 << "

nodes. Total = " << result << endl;

 }

 //These are the working slaves, do all the work and send the result to

master

 else {

52

 int lineCount = 0;

 lineCount = countLineFromFile(argv[1]);

 //cout << "Number of lines: " << lineCount << endl;

 MPI_Send(&lineCount, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 MPI_Finalize();

}

53

APPENDIX C

HOSTS.TXT

54

At the end of the hosts.txt file, add the ipaddress of the local servers that

you want to give permission to access and save hosts.txt file.

Host file editing should be done on all the servers on which you want to

perform communication.

192.168.17.135 linux-au3f

192.168.17.133 opensuse

Figure 32. HOSTS.TXT File.

55

APPENDIX D

HOSTS.ALLOW

56

In every Linux system, there is a host.allow file in /home/bin/etc folder.

Editing the hosts.allow file and adding the below four lines of code, gives

the servers the ability to perform SSH communication locally and also

through the network.

SSH : localhost : ALLOW

SSHd : localhost : ALLOW

SSH : 192.168.17.133 : ALLOW

SSHd : 192.168.17.133 : ALLOW

Figure 33. HOSTS.ALLOW File.

57

Figure 34. HOSTS.ALLOW File.

58

APPENDIX E

TEST.TXT

59

#This file is purely for the testing purpose.

#This file contains six lines of text

One

Two

Three

Four

Five

Six

60

APPENDIX F

MPICH

61

This appendix determines the installation steps of the MPICH on local PC.

Step 1:

Configuring MPICH

./configure –prefix=/home/bhavana/mpich-install –with-device=ch3:sock –

enable-threads=multiple –with-thread-package=pthreads –disable-fortran

2>1 | tee c1.txt

Step 2:

Building MPICH

Make 2>&1 | tee m.txt

Step 3:

Installing MPICH

Make install 2>&1 | tee mi.txt

Step 4:

Setting up PATH in Bin Sub Directory

PATH=/home/bhavana/mpich-install/bin:$PATH; export PATH

62

REFERENCES

[1] MPICH User's Guide. (n.d.). Retrieved from-

https://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1-userguide.pdf.

[2] Message Passing Interface. (2018, May 14). Retrieved from-

https://en.wikipedia.org/wiki/Message_Passing_Interface.

[3] Parallel computing. (2018, May 12). Retrieved from-

https://en.wikipedia.org/wiki/Parallel_computing.

[4] Introducing Non-Determinism to the Parallel C Compiler. Retrieved from-

http://scholarworks.lib.csusb.edu/etd/22/.

[5] OpenSUSE - Sanchez, C., & Marjanovic, Z. (n.d.). The makers' choice

for sysadmins, developers, and desktop users. Retrieved from-

https://www.opensuse.org/.

[6] SSH Connection - SDB: Configure openSSH. (n.d.). Retrieved from-

https://en.opensuse.org/SDB:Configure_openSSH.

[7] Peer-to-peer. (2018, May 14). Retrieved from-

https://en.wikipedia.org/wiki/Peer-to-peer.

[8] TCP/IP Networking. (n.d.). Retrieved from-

https://www.globalknowledge.com/us-en/course/83774/tcpip-networking/.

https://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1-userguide.pdf
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Parallel_computing
http://scholarworks.lib.csusb.edu/etd/22/
https://www.opensuse.org/
https://en.opensuse.org/SDB:Configure_openSSH
https://en.wikipedia.org/wiki/Peer-to-peer
https://www.globalknowledge.com/us-en/course/83774/tcpip-networking/

	INTER PROCESS COMMUNICATION BETWEEN TWO SERVERS USING MPICH
	Recommended Citation

	USE OF MEMORY-RESIDENT COMPUTER RECREATION PROGRAMS TO REDUCE WORKPLAE STRESS

