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Abstract

Algebraic geometry is the study of solutions in polynomial equations using ob-

jects and shapes. Differential geometry is based on surfaces, curves, and dimensions of

shapes and applying calculus and algebra. Desingularizing the singularities of a variety

plays an important role in research in algebraic and differential geometry. Toroidal Em-

bedding is one of the tools used in desingularization. Therefore, Toroidal Embedding and

desingularization will be the main focus of my project. In this paper, we first provide a

brief introduction on Toroidal Embedding, then show an explicit construction on how to

smooth a variety with singularity through Toroidal Embeddings.
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Chapter 1

Introduction

1.1 Introduction

An affine variety is the zero set of a family of polynomials in Cn. It often

has singularities. To be able to desingularize the singularities of a variety is the key

to many research in algebraic and differential geometry. There are different techniques

in desingularization. Toroidal Embedding is one of them. In this paper, we will first

introduce the Toroidal Embedding, then apply it to smooth a variety with singularity.

First, we introduce some definitions in algebraic and differential geometry, and

recall some theorems we need. For the further details on these definitions and theorems,

see [GH] and [H].
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1.2 Definitions

Definition 1.1: Diffeomorphism

Let

f(x1, x2, . . . , xn) =
(
f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)

)
be a mapping between two open sets of Rn.

f is said to be a Cr mapping if each fi can be differentiated up to r times,

i = 1, 2, . . . , n.

f is said to be C∞-differentiable if it is C∞ mapping.

f is called a diffeomorphism if f is a bijection, and f and f−1 are both C∞-

differentiable.

Definition 1.2: Holomorphism

Let f(z) : U → C be a function of one complex variable, where U is an open set

of C,

f(z) = u(x, y) + iv(x, y)

f(z) is said to be holomorphic, if f ′(z) exists for every

z0 = (x0, y0) ∈ U,

Where

f ′(z0) = lim
z→ z0

f(z)− f(z0)

z − z0

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

= −i∂u
∂y

(x0, y0) +
∂v

∂y
(x0, y0)

A function f(z1, z2, . . . , zn) of n complex variables is said to be holomorphic if

f(z1, z2, . . . , zn) is holomorphic in each of variables.
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Definition 1.3: Manifold

Let X be a topological space satisfying the Hansdorff separation axiom.

A differentiable structure on X of dimension n is a collection of open charts

{(Ui, φi)}, i is ranging in some index I, satisfying the following conditions

(i) X =
⋃
i∈I Ui

(ii) Each of φi is a bijection of Ui onto an open set of Rn.

(iii) φj · φ−1
i : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj) is a diffeomorphism.

X is called a R-manifold of dimension n if X admits a differentiable structure

of dim n, {(Ui, φi), i ∈ I}.

Definition 1.4: Complex Manifold

A complex manifold M is a differentiable manifold admitting an open covering

{Uα} and coordinate maps φα : Uα → Cn such that φα · φ−1
β a biholomorphism

from

φβ(Uα ∩ Uβ) to φα(Uα ∩ Uβ).

Example 1.1 Real Manifold

Let X = {(x, y) : x2 + y2 = 1}, a subset of R2

U1 = {(x, y) : −1 < x < 1, y =
√

1− x2},

U2 = {(x, y) : −1 < x < 1, y = −
√

1− x2},

U3 = {(x, y) : −1 < y < 1, x =
√

1− y2},

U4 = {(x, y) : −1 < y < 1, x = −
√

1− y2}

φ1 : U1 → R,

defined by

φ1(x, y) = x
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φ3 : U3 → R,

defined by

φ3(x, y) = y

φ2 and φ4 can be defined similarly. Then

φ1 · φ−1
1 : φ1(U1),→ φ1(U1),

(φ1 · φ−1
1 )(t) = t

φ3 · φ−1
1 : φ1(U1 ∩ U3)→ φ3(U1 ∩ U3)

(φ3 · φ−1
1 )(t) = φ3(φ−1(t)) = φ3(t,

√
1− t2) =

√
1− t2,

where

0 < t < 1

{(Ui, φi), i = 1, 2, 3, 4} is a differential structure on X.

Therefore, X is a R-manifold of dimension 1.

Example 1.2 Complex Manifold The unit two-sphere S2, which is the subset of R3,

defined by

x2 + y2 + z2 = 1

is a complex manifold. One can use stereographic projection from the North Pole to the

real plane R2 with coordinates X,Y given by

(X,Y ) =
( x

1− z
,

y

1− z

)
.

This can be done for any point except the North Pole itself (corresponding to z = 1).

To include the North Pole, we introduce a second chart, in which we stereographically

project from the South Pole:

(U, V ) =
( x

1 + z
,

y

1 + z

)
,
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which holds for any point on S2 except for the South Pole(atz = −1). In both patches,

we can now define complex coordinates

Z = X + iY, Z̄ = X − iY, W = U − iV, W̄ = U + iV,

and show that on the overlap of the two patches, the transition function is holomorphic.

Indeed, on the overlap we compute that

W =
1

Z
.

This expression relates the coordinates W to Z in a holomorphic way. Hence

the two-sphere is a complex manifold which can be identified with C ∪∞.

Definition 1.5: Jacobian

(i). Holomorphic Jacobian

Let U ⊂ Cn be an open set of Cn and let f : U → Cn be a holomorphic

mapping, that is, f = (f1, f2, . . . , fn) with each fj holomorphic. Let wj = fj(z), where

z = (z1, . . . , zn). The Holomorphic Jacobian of f is the matrix

JCf =
∂(w1, . . . , wn)

∂(z1, . . . , zn)

=


∂w1
∂z1

. . . ∂w1
∂zn

. . . . . . . . .

∂wn
∂z1

. . . ∂wn
∂zn



Recall: For a complex valued function f(z) = u + iv of a complex variable

z = x+ iy

∂f

∂z
=

1

2

(∂f
∂x
− i∂f

∂y

)

=
1

2

[(∂u
∂x

+
∂v

∂y
) + i(

∂v

∂x
− ∂u

∂y

)]
and

∂f

∂z̄
=

1

2

(∂f
∂x

+ i
∂f

∂y

)
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(ii). Real Jacobian

Let

zj = xj + iyj ,

wk = uk + ivk,

j = 1, . . . , n,

k = 1, . . . , n.

The Real Jacobian of f is the matrix

JRf =
∂(u1, v1, . . . , un, vn)

∂(x1, y1, . . . , xn, yn)

=


∂u1
∂x1

, ∂u1∂y1
. . . ∂u1

∂xn
, ∂u1∂yn

. . . . . . . . .

∂vn
∂x1

, ∂vn∂y1
. . . ∂vn

∂xn
, ∂vn∂yn


One can prove that

detJRf = detJCf · detJCf.

Definition 1.6: Variety over C

1. X is called an analytic variety if X is the common zero locus of a collection

of holomorphic functions of n variables, i.e

X = {(z1, z2, . . . , zn); f1(z1, . . . , zn) = 0, . . . , fk(z1, . . . , zn) = 0} ⊂ Cn, k ≤ n,

where each fi is a holomorphic function.

z̄0 = (z1, . . . , zn) ∈ X

is called a non-singular point if rank [JC(f)(z̄0)] = k,

(i.e. there is a k × k sub-matrix A of JC(f)(z0), such that detA 6= 0.)
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where

f = (f1, . . . , fk)

Otherwise, z̄0 is called a singular point.

If Xsig = {all singular point of X},then Xsig as a submanifold of Cn.

2. X is called affine variety if X is the common zero locus of a collection of

polynomial in

C[z1, . . . , zn].

3. X is called an algebraic variety (projective variety) if X is the common zero

locus of a collection of homogenous polynomials.
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1.3 Theorems

Theorem 1.1: Implicit Function Theorem

Let (f1, f2, . . . , fk) be a holomorphic function of n complex variable (z1, . . . , zn), k ≤
n. If

det(JC(f)k(z0)) 6= 0,

where

JC(f)k =
∂(f1, . . . , fk)

∂(z1, . . . , zk)

and

z0 = (z0
1 , z

0
2 , . . . , z

0
n)

then there exist holomorphic function φ1, . . . , φk of n− k variables such that in a neigh-

borhood of z0,

f1(z1, . . . , zn) = f2(z1, . . . , zn) = · · · = fk(z1, . . . , zn) = 0

if and only if

zj = φj(zk+1, . . . , zn),

j = 1, . . . , k.

Theorem 1.2: Inverse Function Theorem

Let U ⊂ Cn be an open set of Cn and f : U → Cn be a holomorphic mapping

with detJCf(z0) 6= 0, z0 ∈ U. Then f is one-to-one in a neighborhood of z0, and f−1 is

holomorphic at f(z0).
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Chapter 2

Toroidal Embeddings

Toroidal Embeddings

We first give a brief introduction on toroidal embedding. For the further details

on the subject , see [N].

Let T be an n-dimensional complex torus, i.e., T = (C∗)n.

Definition.

(1) A torus embedding of T is an algebraic variety X such that

(a) X contains T as a Zariski open dense subset;

(b) T acts on X extending the natural action on itself defined by translation.

(2) A morphism between torus embedding X and X ′ is a map f : X → X ′ such that the

following diagram commutes,

T −−−−→ Xy f

y
X ′ X ′

We can describe the torus embedding combinatorially.

Let T = (C∗)n = Spec(C[T1, T
−1
1 , ......, Tn, T

−1
n ]) as a scheme. For a commuta-

tive ring R, Spec(R) is the set of all prime ideals of R. Let M = Hom(T,C∗). M is

called the character Group of T . Then M ' Zn with the following mapping,

for r = (r1, r2, ....rn) ∈ Zn, χr ∈M,

where χr(t1, t2, ..., tn) = tr11 t
r2
2 · · · trnn .

Let N = Hom(C∗, T ). N is called the group of one-parameter subgroup in T .

Then N ' Zn with the following mapping,
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for a = (a1, a2, ..., an) ∈ Zn, λa ∈ N,
where λa(t) = (ta1 , ta2 , ..., tan).

M and N are dual to each other under the pairing 〈, 〉 : M ×N → Z,

〈r, a〉 = Σn
i=1riai.

Notice that χr(λa(t)) = t〈r,a〉 for r ∈M,a ∈ N, and t ∈ C∗.

If we identify χr with the monomial Πn
i=1T

ri
i , for a subsemigroup S of M con-

taining 0, then C[χr]r∈S is a subring of C[M ] = C[T1, T
−1
1 , ..., Tn, T

−1
n ]. Let Nc = N ⊗C,

then NC ' Cn and T = Spec(C[M ]) = NC/N.

Let σ be a convex rational polyhedral cone in NR = N⊗R = Rn not containing

a line. Then

σ = {a ∈ NR; 〈ri, a〉 ≥ 0, i = 1, ..., k, ri ∈M}.

The dual of σ ,

σ̂ = {r ∈MR; 〈r, a〉 ≥ 0, for all a ∈ σ},

is the cone in MR.

Xσ is defined to be Spec(C[σ̂∩M ]). ThenXσ is an affine normal torus embedding

of T through Spec(C[M ]) ⊂ Spec(C[σ̂ ∩M ]).

Let {r1, ..., rm} be a subset of M which generates σ̂ ∩M , i.e.,

σ̂ ∩M = Z+r1 + · · ·+ Z+rm.

(m ≥ n, since σ does not contain a line)

Then

Xσ = Spec(C[χr1 , ...., χrm ]) ⊂ Cm.

The embedding of T into Xσ is defined by

i : T → Cm, i(t) = (χr1(t), ..., χrm(t)),

where t = (t1, ..., tn) ∈ T.



11

Xσ is the scheme-theoretic closure of i(T ) in Cm. T acts on Xσ as

t · x = (χr1(t)x1, ..., χ
rm(t)xm)

for t ∈ T, x = (x1, ..., xm) ∈ Xσ. Xσ can be decomposed as the disjoint union of T -orbits

under this action, and

{T − orbits in Xσ} ←→ {all faces of σ}.

If τ is a face of σ ( we will write it as τ < σ), let N(τ) be the subset {ri; 〈ri, 〉|τ =

0} of {r1, ..., rm}, and Oτ be the T -orbit in Xσ corresponding to τ . Then

Oτ = {(x1, ..., xm) ∈ Xσ; xi 6= 0 iff ri ∈ N(τ)},

and

dimτ + dimOτ = dimT = n

O0 = T.

A finite rational partial polyhedral decomposition of NR is a finite collection

Σ = {σi} such that

(i) the face of σ is in Σ if σ ∈ Σ;

(ii) σi ∩ σj is a face of both σi and σj for σi, σj ∈ Σ.

For a finite rational partial polyhedral decomposition Σ, we can patch allXσi , σi ∈
Σ together to form a normal torus embedding of T , XΣ, by the T -orbits. In fact, if τ < σ,

then Xτ ⊂ Xσ and the inclusion Xτ → Xσ is an open immersion in the following diagram,

T Ty y
Xτ −−−−→ Xσ.

XΣ is the disjoint union of all T -orbits in XΣ.

Xσ is smooth if and only if σ is regular, i.e.,σ is generated by a part of a Z-basis

of N . XΣ is smooth if and only if each member σ of Σ is regular. For a non-regular σ,

one can find a finite rational polyhedral decomposition Σ of σ such that each member

of Σ is regular. Then XΣ will be a smooth variety which is a blowing-up of Xσ at its

singularity.
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Chapter 3

Desingularization

Consider S = {(x, y, z) ∈ C3;F (x, y, z) = z3 − xy = 0}, then S is an analytic

hypersurface in C3. Since JCF = [−y,−x, 3z2]. It is clear that 0 = (0, 0, 0) is the only

singular point of S, i.e. S0 = S\{0} is a complex manifold. S is the natural completion of

S0 in C3, yet singular. In algebraic geometry, it is known that one can obtain a canonical

smooth completion S0 of S0 by blowing up the singular point 0. In this project, we are

going to explicitly construct S0, by using toroidal embeddings.

Let σ = {(x, y) ∈ R2;x − y ≥ 0,−x + 4y ≥ 0}. σ is called a rational convex

polyhedral cone.

Figure 3.1: σ
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Notice that σ = R+{(4, 1), (1, 1)}, where R+ is the set of all non-negative real

numbers. Let <,> denote the usual inner product in R2. The dual of σ is defined as the

following,

σ̂ = {r ∈ R2;< ~r,~a >≥ 0, ∀a ∈ σ}.

σ̂ = {~r = (r1, r2); r1a1 + r2a2 ≥ 0,∀~a = (a1, a2) ∈ σ}.

Let

~r1 = (1,−1)

and

~r2 = (−1, 4)

Claim:

σ̂ = R+{~r1, ~r2}

Proof: We will prove it by showing two inclusions, R+{~r1, ~r2} ⊂ σ̂ and σ̂ ⊂
R+{~r1, ~r2}.

(i) First, we prove R+{~r1, ~r2} ⊂ σ̂
By the definition of σ, it is clear that

~r1 ∈ σ̂

and

~r2 ∈ σ̂.

Therefore,

R+{~r1, ~r2} ⊂ σ̂

(ii) Second, we prove σ̂ ⊂ R+{~r1, ~r2}.
For any

~r = (r1, r2) ∈ σ̂,

then

< ~r,~a >≥ 0, ∀~a ∈ σ.
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Since {~r1}, {~r2} forms a basis for R2, then

~r = α~r1 + β~r2,

for some α ∈ R, and β ∈ R.

For

~a1 = (1, 1) ∈ σ,

< ~r1,~a1 >= 0,

< ~r2,~a1 >= 3,

therefore,

< ~r,~a1 >= 3β ≥ 0.

It implies that

β ≥ 0.

Similarly,

~a2 = (4, 1) ∈ σ,

< ~r1,~a1 >= 3,

< ~r2,~a2 >= 0,

then

< ~r,~a2 >= 3α ≥ 0.

It implies that

α ≥ 0

Then

~r ∈ R+{~r1, ~r2}

Therefore,

σ̂ ⊂ R+{~r1, ~r2}

We have proved that

σ̂ = R+{~r1, ~r2}
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Figure 3.2: σ̂

Let σ̂z denote the set the all integer points of σ̂, i.e., σ̂z = σ̂ ∩ Z2, where

Z = the set of integers. Then

σ̂Z = Z+{r1 = (1,−1), r2 = (−1, 4), r3 = (0, 1)},

i.e. {r1, r2, r3} forms a Z+-basis for σ̂Z

Each ri corresponds to a monomial mri in C[T1, T
−1
1 , T2, T

−1
2 ],

mr1 = T1T
−1
2 ,mr2 = T−1

1 T 4
2 ,mr3 = T2.

They induce a map

iσ : T → C3,

where, T = (C∗)2, the complex torus of dim 2.

iσ(t1, t2) = (t1t
−1
2 , t−1

1 t42, t2) =: (x, y, z).

It is clear that iσ(T ) ⊂ S. In fact,

S = Spec(C[mr1 ,mr2 ,mr3 ]),
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the Scheme-theoretic closure of iσ(T ) in C3. We will denote Spec(C[mr1 ,mr2 ,mr3 ]) by

Xσ. It is called the Torus embedding associated with a rational convex polyhedral cone

σ.

It is known that, from the general theory of Toroidal Embeddings, Xφ is smooth

if and only if φ is regular, for any rational convex polyhedral cone φ of R2. φ is called

regular if φ ∩ Z2 can be generated by a R+-basis of φ.

The cone σ above is not regular because the R+-basis {(4, 1), (1, 1)} can not

generate σ ∩ Z2.

Hence, Xσ = S has a singularity at 0 = (0, 0, 0)

Now we consider the sub-cones and their faces of σ.

Figure 3.3: The sub-cones and their faces of σ

σ1 = R+{(2, 1), (1, 1)}
σ2 = R+{(2, 1), (3, 1)}
σ3 = R+{(3, 1), (4, 1)}
τ1 = R+{(1, 1)}
τ2 = R+{(2, 1)}
τ3 = R+{(3, 1)}
τ4 = R+{(4, 1)}
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They are all regular. Σ = {0, τ1, τ2, τ3, τ4, σ1, σ2, σ3} is called a regular rational

convex polyhedral decomposition of σ.

For each cone in Σ, there is a Torus embedding of T associated to it. We are

going to construct some of them here in detail.

Considering the sub-cone σ1

Figure 3.4: σ1

It can be verified that the dual

σ̂1 =: {r ∈ R2, < r, a >≥ 0, ∀a ∈ σ1}

= R+{(1,−1), (−1, 2)}.

σ̂1 ∩ Z2 = Z+{(1,−1), (−1, 2)}.

(So, σ1 is regular.)

Therefore, the embedding iσ1 : T → C2 is given by

iσ1(t1, t2) = (t1t
−1
2 , t−1

1 t22).
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Figure 3.5: σ̂1

Let Xσ1 denote the closure of iσ1(T ) in C3, then

Xσ1 = C2.

Considering the sub-cone σ2

Figure 3.6: σ2
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It can be verified that the dual

σ̂2 =: {r ∈ R2, < r, a >≥ 0, ∀a ∈ σ2}

= R+{(1,−2), (−1, 3)}.

Figure 3.7: σ̂2

σ̂2 ∩ Z2 = Z+{(1,−2), (−1, 3)}.

(So, σ2 is regular.)

Therefore, the embedding iσ2 : T → C2 is given by

iσ2(t1, t2) = (t1t
−2
2 , t−1

1 t32).

Let Xσ2 denote the closure of iσ2(T ) in C3, then

Xσ2 = C2.
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Considering the sub-cone σ3

Figure 3.8: σ3

It can be verified that the dual

σ̂3 =: {r ∈ R2, < r, a >≥ 0, ∀a ∈ σ3}

= R+{(1,−3), (−1, 4)}.

σ̂3 ∩ Z2 = Z+{(1,−3), (−1, 4)}.

(So, σ3 is regular.)

Therefore, the embedding iσ3 : T → C2 is given by

iσ3(t1, t2) = (t1t
−3
2 , t−1

1 t42).

For the face τ1 = R+{(1, 1)} of σ,

it is found that

τ̂1 = R+{(−1, 1), (1,−1), (0, 1)},
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Figure 3.9: σ̂3

Figure 3.10: τ1

τ̂1 ∩ Z2 = Z+{(−1, 1), (1,−1), (0, 1)},

and iτ1 defines an embedding of T into C3, where

iτ1(t1, t2) = (t1t
−1
2 , t−1

1 t2, t2).

Hence, Xτ1 = {(x, y, z) ∈ C3, xy = 1} is a smooth surface in C3.
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Figure 3.11: τ̂1

For the face τ2 = R+{(2, 1)} of σ,

Figure 3.12: τ2

it is found that

τ̂2 = R+{(−1, 2), (1,−2), (1, 0)},

τ̂2 ∩ Z2 = Z+{(−1, 2), (1,−2), (1, 0)},
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Figure 3.13: τ̂2

and iτ2 defines an embedding of T into C3, where

iτ2(t1, t2) = (t−1
1 t22, t1t

−2
2 , t1).

Hence, Xτ2 = {(x, y, z) ∈ C3, xy = 1} is a smooth surface in C3.

For the face τ3 = R+{(3, 1)} of σ,

Figure 3.14: τ3
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it is found that

τ̂3 = R+{(−1, 3), (1,−3), (1, 0)},

τ̂3 ∩ Z2 = Z+{(−1, 3), (1,−3), (1, 0)},

Figure 3.15: τ̂3

and iτ3 defines an embedding of T into C3, where

iτ3(t1, t2) = (t−1
1 t32, t1t

−3
2 , t1).

Hence, Xτ3 = {(x, y, z) ∈ C3, xy = 1} is a smooth surface in C3.

For the face τ4 = R+{(4, 1)} of σ,

it is found that

τ̂4 = R+{(−1, 4), (1,−4), (1, 0)},
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Figure 3.16: τ4

τ̂4 ∩ Z2 = Z+{(−1, 4), (1,−4), (1, 0)},

and iτ4 defines an embedding of T into C3, where

iτ4(t1, t2) = (t−1
1 t42, t1t

−4
2 , t1).

Hence, Xτ4 = {(x, y, z) ∈ C3, xy = 1} is a smooth surface in C3.

Xτ2 , Xτ3 and Xτ4 will be the same type of surface as Xτ1 .

We are now going to show how can these Xτi and Xσj be patched together

through the ”orbit decompositions”.

Consider the sub-cone σ1 of σ first. It is clear that

σ̂ ⊂ σ̂1

and

σ̂ ∩ Z2 ⊂ σ̂1 ∩ Z2.

Recall that

σ̂1 ∩ Z2 = Z+{s1, s2}

and
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Figure 3.17: τ̂4

σ̂ ∩ Z2 = Z+{r1, r2, r3},

where s1 = (1,−1) and s2 = (−1, 2). Therefore, the set {s1, s2} should generates the set

{r1, r2, r3} over Z+. In fact,

r1 = s1, r2 = s1 + 2s2, r3 = s1 + s2.

Their monomials are related as in the following,

mr1 = ms1 ,mr2 = ms1m
2
s2 ,mr3 = ms1ms2 .

They induce a homomorphism α1 from Xσ1 to Xσ.

α1(u, v) = (u, uv2, uv) =: (x, y, z).

It can be verified that α1 is 1-1 on Xσ ∩ {z 6= 0}, and the following diagram
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commutes.
T −−−−→ Xσ1

α

y α1

y
Xσ Xσ

On the other hand, eachX∗ has a canonical decomposition in terms of all possible

faces of the cone. For instance,

Xσ = O0 ∪Oτ1 ∪Oτ4 ∪Oσ, where

O0 = {(x, y, z); z3 = xy, xyz 6= 0} ∼= (C∗)2 = T

Oτ1 = {(x, 0, 0);x 6= 0} ∼= C∗

Oτ4 = {(0, y, 0); y 6= 0} ∼= C∗

Oσ = {(0, 0, 0)}
This is called the orbits decompositions of Xσ.

We explain in the following how the orbit associated to a face of σ, for instance

Oτ1 , is determined.

Recall that the embedding

iσ : T → Xσ ⊂ C3

is given by the monomials {mr1 ,mr2 ,mr3}.

iσ(t1, t2) = (x, y, z)

where

x = mr1(t1, t2), y = mr2(t1, t2), z = mr3(t1, t2),

and

{r1 = (1,−1), r2 = (−1, 3), r3 = (0, 1)} ⊂ σ̂.

Notice that r1 = 0 on τ1, r2 and r3 are non-zero on τ1. Hence, the orbit Oτ1 is determined

by the conditions

x 6= 0, y = z = 0.

Similarly, Xσ1 = C2 = O1
0 ∪O1

τ1 ∪O
1
τ2 ∪Oσ1 , where

O1
0 = {(u, v), uv 6= 0} ∼= (C∗)2 = T

O1
τ1 = {(u, 0);u 6= 0} ∼= C∗

O1
τ2 = {(0, v); v 6= 0} ∼= C∗

Oσ1 = {(0, 0)}
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σ and σ1 have common faces τ1 and 0 ( the origin ). The induced homomorphism

α1 becomes an isomorphism when it is restricted to O1
0 or O1

τ1 . In the mean time, α1 will

collapse O1
τ2 ∪Oσ1 into a single point Oσ. This is illustrated in the following diagrams.

Xσ1 = O1
0 ∪ O1

τ1 ∪ O1
τ2 ∪ Oσ1

↓ ⇓ ⇓ ↘ ↙
Xσ = O0 ∪ Oτ1 ∪ Oσ ∪ Oτ4

The orbit decompositions for Xσ2 are stated in the following,

Xσ2 = O2
0 ∪O2

τ2 ∪O
2
τ3 ∪Oσ2 .

The induced homomorphism α2 from Xσ2 to Xσ will collapse O2
τ2 ∪O

2
τ3 ∪Oσ2 into a single

point Oσ,while {α2 : O2
0 → O0} is isomorphism.

Xσ2 = O2
0 ∪ O2

τ2 ∪ O2
τ3 ∪ Oσ2

↓ ⇓ ↘ ↙
Xσ = O0 ∪ Oτ1 ∪ Oσ ∪ Oτ4

Each Xτi has an orbit decompositions with two orbits only. For instance,

Xτ2 = O′0 ∪O′τ2 .

Since τ2 is a face of σ1, there is an induced immersion from Xτ2 into Xσ1 which will

isomorphically map O′0 onto O1
0, and O′τ2 onto O1

τ2 . Therefore, under the isomorphisms,

we may write

Xτ2 = O′0 ∪O′τ2

and

Xσ1 = O′0 ∪O′τ1 ∪O
′
τ2 ∪Oσ1 .

Similarly,

Xσ2 = O′0 ∪O′τ2 ∪O
′
τ3 ∪Oσ2 .

Xσ3 = O′0 ∪O′τ3 ∪O
′
τ4 ∪Oσ3 .

Xτ1 = O′0 ∪O′τ1 ,
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Xτ3 = O′0 ∪O′τ3

and

Xτ4 = O′0 ∪O′τ4

Let XΣ =
⊔3
i=1Xσi

⊔4
j=1Xτj be the union of Xσi and Xτj , patching through

the orbits. Hence, XΣ has an orbit decomposition as the following,

XΣ = O′0 ∪O′τ1 ∪O
′
τ3 ∪O

′
τ2 ∪O

′
τ4 ∪Oσ1 ∪Oσ2 ∪Oσ3 .

XΣ is a smooth variety, since Σ = {0, τ1, τ2, τ3, τ4, σ1, σ2, σ3} is a regular rational convex

polyhedral decomposition of σ. There is a homomorphism β from XΣ to Xσ, which will

be an isomorphism on O′0, O
′
τ1 and O′τ4 respectively,

O′0
∼= O0

O′τ1
∼= Oτ1

O′τ3
∼= Oτ4 .

β will map O′τ2 ∪O
′
τ3 ∪Oσ1 ∪Oσ2 ∪Oσ3 into the single point Oσ. Therefore, we

have the following diagrams.

XΣ = O′0 ∪ O′τ1 ∪ O′τ4 ∪ D

↓ ⇓ ⇓ ⇓ ↓
Xσ = O0 ∪ Oτ1 ∪ Oτ4 ∪ Oσ

where

D = O′τ2 ∪O
′
τ3 ∪Oσ1 ∪Oσ2 ∪Oσ3

Notice that Oσ = {0}, the singular point of S.

We have constructed a smooth completion XΣ of the surface S with a mapping

β : XΣ −→ Xσ = S

.

β is the blowing-up of S at its singular point 0.

β−1(0) = O′τ2 ∪O
′
τ3 ∪Oσ1 ∪Oσ2 ∪Oσ3 ,

is the exceptional divisor.
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