1990

A curriculum for private pilot airplane

Richard D. Thompson

Follow this and additional works at: http://scholarworks.lib.csusb.edu/etd-project
Part of the Vocational Education Commons

Recommended Citation
http://scholarworks.lib.csusb.edu/etd-project/764

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.
CURRICULUM DEVELOPMENT FOR
PRIVATE PILOT AIRPLANE

RICHARD D. THOMPSON, BVE, MA

CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO
SEPTEMBER, 1990
CALIFORNIA STATE UNIVERSITY
SAN BERNARDINO
A CURRICULUM FOR
PRIVATE PILOT AIRPLANE

A Project of the School of Education
In Partial Fulfillment of the Requirements of the Degree
of
Master of Arts
in
Education: Vocational Option
by
Richard D. Thompson, BVE, MA
San Bernardino, California
September, 1990
A CURRICULUM FOR
PRIVATE PILOT AIRPLANE

by

Richard D. Thompson, BVE, MA

SEPTEMBER, 1990

Approved by:

Advisor: Dr. Ronald Pendleton

Second Reader: Dr. Joe English
STATEMENT OF THE PROBLEM:

The purpose of this project was to develop a competency based curriculum for private pilot airplanes for use at the community college or university level. The need for development of curricular materials for such a course was shown through the lack of availability of current materials, new teaching processes and evaluation of student needs. An emphasis on "Learning by doing" is of prime importance to be successful with the materials and information provided. Implementation of course materials will exceed, merely studying for a test.
PROCEDURE

Current literature was reviewed from ground schools that were federally approved and not approved. Informal surveys were then administered to Ground School students and Aeronautics Department faculty members at San Bernardino Valley College. Fixed-based operators and flight instructors were also surveyed to help develop the proposed curriculum. Reviewing the literature and surveys established the need for a competency-based ground school.

DESCRIPTION OF THE COMPETENCY-BASED CURRICULUM MATERIALS DEVELOPED:

The curricular materials for a Private Pilot Ground School were primarily developed for usage in a post-secondary setting. First, a brief course outline is presented which describes the course resources, topics, instructional methods, required tests and any additional supplemental tests or information. Next, a comprehensive syllabus (and course guide) are provided. The syllabus describes and explains all course requirements, required materials, course activities and resources. Class lesson plans are provided along with supplemental data to outline the objective of each class. The course is designed on a semester system. The class would meet twice a week for a three hour lesson for eighteen weeks. Flexibility is built into the syllabus
for holidays at the end of the curriculum. If the curriculum was to be utilized in a quarter system, some modification would become necessary. Following the syllabus, an instructor's guide is provided which contains materials and helpful information to be used by the instructor. An introductory section explains how to use the instructor's guide and provides information about course design, recommended methods for evaluating students performance, record-keeping, and the role of the instructor. The remainder of the guide is broken down into class lessons which contain supplemental information. The information may be altered at the instructor's option.
TABLE OF CONTENTS

SECTION I - INTRODUCTION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>The Objective</td>
<td>1</td>
</tr>
<tr>
<td>Context of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>Problem statement</td>
<td>2</td>
</tr>
<tr>
<td>Purpose of the Project</td>
<td>3</td>
</tr>
<tr>
<td>Definitions</td>
<td>4</td>
</tr>
<tr>
<td>Assumptions</td>
<td>5</td>
</tr>
<tr>
<td>Delimitations</td>
<td>5</td>
</tr>
<tr>
<td>Limitations</td>
<td>5</td>
</tr>
<tr>
<td>Significance of the Project</td>
<td>5</td>
</tr>
<tr>
<td>Summary of Section I</td>
<td>6</td>
</tr>
<tr>
<td>Organization of the Remainder of the Project</td>
<td>7</td>
</tr>
</tbody>
</table>

SECTION II - REVIEW OF THE LITERATURE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>FAA Requirements for Ground School</td>
<td>8</td>
</tr>
<tr>
<td>Private Pilot Applicants</td>
<td>8</td>
</tr>
<tr>
<td>Experience for Private Pilot Applicants</td>
<td>8</td>
</tr>
<tr>
<td>The Significance of Current and Proposed Training</td>
<td>10</td>
</tr>
<tr>
<td>Methods for Private Pilot Applicants</td>
<td>10</td>
</tr>
<tr>
<td>Summary of Section II</td>
<td>14</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS CONTINUED

SECTION III - METHODOLOGY 15
Introduction 15
Project Design 15
Population and Sampling 15
Project Setting 16
Calendar of Events 17
Sampling Scheme 18
Data Collection 18
Summary of Section III 19

APPENDICES 20

REFERENCES 25

GROUND SCHOOL COURSE (AIRPLANES) 26
Course Outline 28
Comprehensive Syllabus and Course Guide 31
Instructor's Guide
SECTION I INTRODUCTION

Statement of the Problem

The Objective

The objective of this project was to develop a competency-based curriculum for ground school (airplanes). The proposed course would offer hands-on training aids from other courses at San Bernardino Valley College currently being offered. These classes would primarily be ("Flight Lab") and ("Airframe and Powerplant Maintenance"). The hands-on training aids incorporated here would enhance retention within the ground school curriculum.

Context of the Problem

Attention to safety is a growing concern to everyone. According to Aircraft Owners and Pilots Association (AOPA) and the Federal Aviation Agency (FAA) approximately 85% of the accidents encountered were related to pilot error.

In the Southern California area, to include portions of Arizona and Nevada, 33% of all aircraft in the United States are based. This area contains the most congested and complex airspace throughout the nation. As a result to this airspace, it has become the most challenging for all pilots, not just the private pilots to operate within.

Currently there are four community colleges offering aviation courses locally: SBVC, Mount San Antonio College (Mt. Sac), Riverside City College (RCC), and Chaffey College.
Only two of these colleges offer full degree programs in Flight Operations: SBVC and Mt. Sac. Currently there is no competency-based ground school course available. The ground school is the foundation for the students to build upon. Primarily, the existing courses satisfy the FAA, but to a large extent merely teach to the written test which is required to be passed prior to receiving a private pilot certificate.

The proposed course would not increase the departments budget, it would merely utilize other valuable learning resources already available. The course would increase motivation by participation and enhance retention by utilizing hands-on techniques. The course would also enhance enrollment in other aviation related courses required for the Associate of Science Degree. Higher graduation rates could be expected and increased transfers to four year degree programs.

Problem Statement

There are no competency-based curriculum available for post-secondary courses in ground school (airplanes). The previously existing curriculum has not had a major revision in fourteen years at SBVC. In view of technological advances, changes to Federal Aviation Regulations and local airspace restrictions, this is inadequate.
Purpose of the Project

The purpose of the project was to develop an updated curriculum for ground school (airplanes). The new curriculum has been greatly expanded to include resources, training aids, simulators, mock-ups, and student activities not covered in the outdated curriculum. The course would be offered at SBVC both day and evenings during the Spring and Fall semesters.
DEFINITIONS

For the purpose of this project, the following terms will be defined as follows:

Federal Aviation Administration (FAA) A Department of Transportation Agency which regulates air transportation.

Federal Aviation Regulations (FAR) Aviation law regulated and enforced by the FAA.

Fixed Based Operator (FBO) A place of business or an airport that may provide the following: Flight instruction, aircraft rental, services, supplies, fuel and parking or hangar rentals.

Ground School (Airplanes) A curriculum designed to teach all information required by the FARs for Private Pilot Airplane.

Flight Operations Degree A two year, associate degree offered at a community college.

Flight Simulator A ground-based training devise used to familiarize pilots with correct use of flight controls and instruments.

A & P License A license required by FAA to work on aircraft (Airframe and Powerplant).

Private Pilot Certificate FAA certification permitting the holder to exercise the privilege of a private pilot listed part G1 of the FAR.

San Bernardino Valley College (SBVC) A community college in San Bernardino, California.
ASSUMPTIONS

For the purpose of this project, it is assumed that:

1. Questionnaire research reliability produces valid information on the preferences of the respondents.
2. Practical application instruction "hands on" increases retention of material covered in lecture.
3. Equipment, supplies and support services available for courses offered at SBVC will remain available for the proposed course.

DELIMITATIONS

The parameters of the project are as follows:

1. The proposed course is designed for application in a community college. However, application at a university level would be equally important.

LIMITATIONS

The project is limited by:

1. Lack of literature documenting use of flight simulators and real aircraft in a ground school curriculum.
2. FAA regulations and requirements for student pilots and private pilot applicants.

SIGNIFICANCE OF THE PROJECT

It is obvious that the future of aviation is unlimited. The basic foundation to pilot training is dependent on the applicant receiving good competent ground training. The methods currently used in community colleges are not
providing hands-on training. It is projected that the proposed course would stimulate motivation, increase retention, retain enrollment, expose other related aviation courses, and assure proper initial training for tomorrow's professional pilots.

Summary of Section I

This introductory segment of the project, A Curriculum for Ground School (Airplanes), has identified the problem addressed by this project, and has briefly argued the importance of providing hands-on training to students enrolled in ground school courses.
ORGANIZATION OF THE REMAINDER OF THE PROJECT

The remainder of the project includes: A comprehensive review of the literature of ground school procedures and a section outlining the methodology used in conducting the research project and compiling the proposed course curriculum. The curriculum provides a course outline, comprehensive syllabus and course guide, and instructor's guide for the proposed course.
SECTION II REVIEW OF THE LITERATURE

INTRODUCTION

The review of the literature for ground school will proceed in the following manner. First, a review of current FAA requirements for aeronautical knowledge for private pilot applicants is presented. Then, the significance of various current and proposed training methods is addressed. At the conclusion of this chapter, a summary is provided.

FAA REQUIREMENTS FOR AERONAUTICAL KNOWLEDGE FOR PRIVATE PILOT APPLICANTS

The Federal Aviation Regulations (FAR) require all applicants for private pilot certificate to present evidence that he or she has received ground instruction in compliance with part 61.105; (a)1-5. Aeronautical knowledge. This evidence is to be presented in a form of a passing score of (70%) on the FAA Private Pilot written examination (FAR, 1990).

Such ground instruction includes the following topics for private pilot airplane applicants; the FAR applicable to private pilot privileges, limitations, and flight operations, accident reporting and use of Airman's Information Manual (AIM). In addition, ground instruction in Visual Flight Rules (VFR) navigation, pilotage, dead reckoning, and radio navigation must be included. Lastly,
the private pilot applicant must be able to evaluate critical weather situations and be able to read reports and forecasts, calculate weight and balance and know their effects on the aircraft, calculate performance charts, communication procedures, and interpret aircraft and engine instruments. This represents the maximum knowledge that must be understood and retained by the FARs.
THE SIGNIFICANCE OF CURRENT AND PROPOSED TRAINING METHODS FOR PRIVATE PILOT APPLICANTS

The ground instruction referred to earlier is currently received through a private pilot ground school course, individual instruction from a certified flight or ground instructor or home study courses. The first method is lacking in that it only relates to a minimum of hands-on training. This type of course is currently offered at the four community colleges serving the San Bernardino, Riverside, Pomona, and Walnut areas (Catalog survey, 1987). The ground instruction offered at the colleges are in compliance with FAA guidelines (Schlenker, 1985).

The second method is offered in combination with flight training available at various (FBOs). The instructor's time averages $20 per hour (Cost survey, 1990). Often this approach is very expensive and does not assure that all pertinent materials are received and retained.

The third type of ground training is relatively new to the aviation industry. It is generally constructed with a textbook, workbook, and training videos that supplement the written material. This type of ground instruction meets the minimum standards by the FAA but has no hands-on teaching incorporated. Materials and information are very limited (Student Survey, 1990).

A fourth type of ground instruction not included
previously would be beneficial and rewarding for student pilots. This method would include the usage of flight circulators, or instrument trainers available but not currently utilized in ground school operations. Flight simulators are widely used for both basic and advanced training. Air safety has improved since the FAA-approved simulators become available. The simulators give hands-on training to flight controls, instruments, and chart interpretation. This method would also include preflight operations on real aircraft. This would also provide hands-on training. In addition, preflight, maintenance operations, and logbooks would be studied and interpreted. Seeing and touching an aircraft and exposing basic non-safe conditions would result in better retention of such vital information. New materials such as composite structures and procedures would be introduced in which SBVC has the only class offered in the surrounding area.

The need for an updated course would be in accordance with current FARs; it is long overdue. The new course would help bridge the gap between what is now offered and what could be offered. The student survey indicated that fear, anxiety, and lack of a good training facility were the primary reasons for their lack of involvement in a ground school.

Events that lead to discomfort, physical or mental, are adverse to learning. (Mager, 1984) considered some
of these as fear, anxiety, pain, boredom, and physical discomfort. He also felt that pleasant settings and atmosphere would encourage learning and retention. The fear of failing could be a major roadblock to learning. A teacher should build up confidence in the learner. Criticism, poor evaluations, and anxiety may cause a student to limit their involvement or drop the course (Rogers, 1986). It is important that courses provide immediate potential for their application to help motivate students. Between the ages of 20 years and 50 years is the career development of most adults. (Rogers, 1986, p. 39), therefore it is important to provide immediate potential for application of skills learned. Pilots fall within this age group but because of aging, illness, and company policies, the sooner the student starts, the better the chances are for procuring a desirable career.

Competency-based instruction helps to eliminate anxieties with specific goals and hands-on instruction. In *Principles of Instructional Design*, Gagre (1974) spoke of performance objectives, sequential instruction, structured lessons, and assessing student performance, while Robert F. Mager (1984) describes what is now competency-based instruction based on three characteristics performance, conditions, and criteria. "Teaching can be compared to selling commodities." "No one can sell unless someone buys" (Dewey, 1959, P. 134). The ground school course at SBVC
and other institutions has been around for a long time, but it is now time to update ourselves with current information, materials, and teaching techniques. According to Dr. Ronald K. Pendleton (1990), there has been an increasing number of students enrolling in Vocational Education programs at CSUSB from SBVC Technical Division. This tends to show that higher education in a more familiar environment can help relieve anxieties and fears so common in most students.

Competency-based instruction with familiar surroundings, clear objectives, performance objectives, and hands-on training would decrease fear and anxieties. This course would probably succeed within the framework of Mager and Gagre and continue to grow as observed by Pendleton. The student would graduate from the course with skills, knowledge, and expertise in the aviation field. It would also contribute to higher education and self-evaluation.

The final exam in this course would be the FAA written test required by the FAA. A passing score of 70% would be acceptable to procure a private pilot's certificate.
SUMMARY OF SECTION II

The review of the literature began with the minimum FAA requirements for aeronautical knowledge for private pilot applicants. Current and proposed methods of ground instruction were then reviewed along with their apparent shortcomings and benefits. Then research was conducted to reinforce competency-based instruction including their results. Finally, the expected course final results were mentioned.
SECTION III METHODOLOGY

INTRODUCTION

This section will detail how the proposed project was carried out. First, the project design will be outlined and the populations which were sampled will be described. A description of the project and calendar of events will be provided next. Then, the sampling scheme and methods used to collect data will be described. Finally, this section will conclude with a summary.

PROJECT DESIGN

The design of this project is as follows: The need to establish a new competency-based curriculum was established in several different ways. First, a telephone survey was conducted to different flight schools to obtain information from their "Chief Instructors" about their students. Second, a survey was developed and implemented to all ground school students who have recently completed the course at SBVC and their faculty. Finally, a telephone survey was conducted to local FAA designated flight examiners.

Once the need was established, the course outline was developed and resource materials were located and obtained. Then, a comprehensive syllabus was developed and written. This was followed by a course guide and instructor's guide. The course syllabus and supplemental information were designed to meet a competency of a ninth grader.
Individual teachers may elect to administer a placement test in the first week of school to determine English, writing, and math skills. This is an option available for the teacher.

PROJECT SETTING

The setting for the majority of the project was the home of the developer. All pertinent information was brought here and processed.

The office of the Aeronautics Department at SBVC was also utilized to collect data, assess surveys, reproduce materials, and utilize various equipment and supplies.
<table>
<thead>
<tr>
<th>Date</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 05, 1990</td>
<td>*Wrote introduction section</td>
</tr>
<tr>
<td></td>
<td>*Wrote survey instruments</td>
</tr>
<tr>
<td></td>
<td>*Validated surveys</td>
</tr>
<tr>
<td></td>
<td>*Conducted phone surveys to flight schools and examiners</td>
</tr>
<tr>
<td>June 07, 1990</td>
<td>*Wrote limitations section</td>
</tr>
<tr>
<td></td>
<td>*Conducted student needs</td>
</tr>
<tr>
<td></td>
<td>*Survey of SBVC faculty and students</td>
</tr>
<tr>
<td></td>
<td>*Conducted examiners survey</td>
</tr>
<tr>
<td>July 2, 1990</td>
<td>*Conducted survey of college catalogs</td>
</tr>
<tr>
<td></td>
<td>*Wrote significance of the project section</td>
</tr>
<tr>
<td>July 05, 1990</td>
<td>*Wrote preliminary literature review section</td>
</tr>
<tr>
<td>July 10, 1990</td>
<td>*Wrote methodology section</td>
</tr>
<tr>
<td>July, 1990</td>
<td>*Wrote course outline</td>
</tr>
<tr>
<td></td>
<td>*Located and obtained resource materials</td>
</tr>
<tr>
<td></td>
<td>*Wrote syllabus and course guide</td>
</tr>
<tr>
<td>August, 1990</td>
<td>*Wrote instructor's guide</td>
</tr>
<tr>
<td>August, 1990</td>
<td>*Wrote summary, project completed</td>
</tr>
<tr>
<td>August 17, 1990</td>
<td>*Turned in final draft to readers</td>
</tr>
<tr>
<td>August 31, 1990</td>
<td>*Make any necessary revisions/corrections</td>
</tr>
<tr>
<td>September 26, 1990</td>
<td>*Turn in revised project to readers</td>
</tr>
<tr>
<td>October 10, 1990</td>
<td>*Turn in final draft to MA project committee</td>
</tr>
<tr>
<td>October, 1990</td>
<td>*Take approved final draft to printers</td>
</tr>
<tr>
<td>October, 1990</td>
<td>*Turned in bound project</td>
</tr>
</tbody>
</table>
SAMPLING SCHEME

Sampling of student needs took place in the following manner. Before administering the survey instruments, samples of each were distributed to advanced commercial pilots to check for readability, validity, and clarity. During the final week of school (Fall, 1990), students enrolled both in day and evening classes at SBVC in ground school were formally surveyed. The names were obtained from the current rosters of the class. The instructors were then given a packet of student needs surveys for each student. The instructor also received a faculty survey form. The instructor distributed the forms in class and returned the completed surveys along with the faculty survey.

The telephone survey of local FBOs and flight examiners phone numbers were obtained from the local FAA office in Riverside, California. This enabled the surveys to be completed with the appropriate people. Any FBO, chief instructor or examiner requesting the outcome of the survey was provided the information.

The survey of local college aviation programs was conducted by the project developer. The current courses were at SBVC and then compared with other courses available from current school catalogs.

DATA COLLECTION

Data was collected by the program developer through
the written surveys and telephone interviews as previously mentioned. The information was then recorded on the applicable forms (appendix A-E). The information was then condensed and evaluated by the project developer.

SUMMARY OF SECTION III

The methodology section first began with an introduction; then, the project design was outlined and a description of the population sampled was provided. A sampling scheme was provided and methods for the collection and documentation were outlined. Finally, a summary of this section was provided.
APPENDIX A

Cover Page for Student and Faculty Surveys
AERONAUTICS STUDENT AND FACULTY SURVEY

PLEASE READ BEFORE COMPLETING

The purpose of this survey is to evaluate and improve the outdated curriculum at SBVC in ground school (airplanes). Your participation is totally voluntary. There is no consequence if you elect not to participate. The survey will stimulate growth and improve course contents for a current and safer curriculum in the future.

Your input would be greatly appreciated.
APPENDIX B

STUDENT SURVEY INSTRUMENTS
AERONAUTICS STUDENT SURVEY

DIRECTIONS: DO NOT SIGN YOUR NAME. Please fill out the survey to the best of your ability.

Course #: ________________ Your age: __________

Reason for completing the course:
() Aeronautics degree
() To pass the FAA examination
() General knowledge
() Friend or spouse
() Other

Were you satisfied with the course contents:

Was the material presented in a logical and meaningful way:

Are there any areas that could be improved: Please explain:

Comments:

APPENDIX C

Instructor Survey Instrument
AERONAUTICS INSTRUCTOR SURVEY

DIRECTIONS: DO NOT SIGN YOUR NAME. Please fill out survey to the best of your ability.

Course #:__________ Number of years teaching:__________

What is your average class size:_____________________

What percentage complete the course:_________________

Was there any feedback from students to improve your course:

What would or could you do to improve the existing course:

A study is being made to determine the need for a competency-based ground school (airplanes) to include simulators and real aircraft as training aids. Please list any comments or suggestions use the back of this page if needed:

APPENDIX D

FBO Chief Instructor and Cost Survey
FBO CHIEF INSTRUCTOR AND COST SURVEY

Name of FBO:___

Contact person/title:___

Airport location:__

Address:__

Phone:___

Instruction rates

Instructor: $per hr.: Block: Special rates:___________________________

Ground school rates if applicable:__

What is your opinion of ground schools (airplanes) in the local area:

__

What areas of concern do you think need improvement, if any:

__

Do you think a competency-based ground school, utilizing simulators and real aircraft would stimulate motivation, interest and help with retention:

__

Thank you for your time and support.
APPENDIX E

Examiner's Survey
APPENDIX E

EXAMINER'S SURVEY

Name of examiner:________________________

Years of experience in this area:________________________

Address:________________________

Phone:________________________

When testing applicants for private pilot airplane, where do most people attain their ground school knowledge:________

Are there any areas that are continually weak or may need improvement:________________________

Do you think a competency-based ground school utilizing simulators and real aircraft would stimulate motivation, interest, and help with retention:________________________

Thank you for your time and support.
REFERENCES

U.S. Department of Transportation, Federal Aviation Administration (1990), FAR AIM, Seattle: ASA.

Schlenker, R. (June, 1990), FBO Chief Instructor and Cost Survey), unpublished raw data.

Thompson, R. (June, 1990), (Community College Aeronautical Student and Faculty Survey), unpublished raw data.

Thompson, R. (July, 1990) (Community College Catalog Survey: Mt. San Antonio College, Chaffey College, Riverside City College, San Bernardino Valley College), unpublished raw data.

Thompson, R. (June, 1990), (Examiner's survey), unpublished raw data.

U.S. Department of Transportation, Federal Aviation Administration (1990), Private Pilot Written Test Questions, Answers, and Explanations, Seattle: ASA.
A CURRICULUM FOR

AERO 122, 142

PRIVATE PILOT GROUND SCHOOL (AIRPLANES)

Developed by:

Richard D. Thompson, BVE, MA
1990

San Bernardino Valley College

Aeronautics Department
1. Course Number: Aero 122, 142
2. Course Name: Private Pilot Ground School (Airplane)
3. Hours, days per week: Hours: 3 Days: 2
4. Units: 6
5. Recommended Textbooks: See attached list
6. Course Objective:
The Student will be able to:
1. Obtain the required aeronautical knowledge required by the FAA to pass the Private Pilot written test (airplane).
7. Description on list TOPICS TO BE COVERED:
1. Assignments are from textbook, An Invitation to Fly.
2. Tests are constructed from the current question and answer booklet.
3. See attached list for assignments in relationship to each lesson number.
8. DESCRIPTION OF QUIZZES AND TESTING:
1. Quizzes: Short answer or essay questions.
2. Tests: Multiple choice with four possible answers.
3. Final: FAA administered multiple-choice with possible answers.
9. METHODS OF INSTRUCTION:
1. Lecture
2. Group discussion
3. Ground demonstration and directed discovery
10. USE OF VISUAL AIDS OR AUDIO AIDS
1. VCR - tapes
2. 16 mm films
3. Flight simulators
4. School's real aircraft

11. ADDITIONAL COMMENTS
This course meets twice per week for three hours each lesson
<table>
<thead>
<tr>
<th>LESSON NUMBER</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>History film</td>
</tr>
<tr>
<td>3</td>
<td>Chapter I</td>
</tr>
<tr>
<td>4</td>
<td>Chapter II up to load factor, page 42</td>
</tr>
<tr>
<td>5</td>
<td>Finish chapter II</td>
</tr>
<tr>
<td>6</td>
<td>Test on chapters 1 and 2</td>
</tr>
<tr>
<td>7</td>
<td>Chapter III, powerplant</td>
</tr>
<tr>
<td>8</td>
<td>Chapter IV up to compass, page 111</td>
</tr>
<tr>
<td>9</td>
<td>Finish chapter IV, flight instruments</td>
</tr>
<tr>
<td>10</td>
<td>Test on chapters III and IV</td>
</tr>
<tr>
<td>11</td>
<td>Chapter V, weight and balance</td>
</tr>
<tr>
<td>12</td>
<td>Practice problems, weight and balance</td>
</tr>
<tr>
<td>13</td>
<td>Chapter VI, performance</td>
</tr>
<tr>
<td>14</td>
<td>Test on chapters V and VI</td>
</tr>
<tr>
<td>15</td>
<td>Chapter VII up to special A/S, page 201</td>
</tr>
<tr>
<td>16</td>
<td>Finish chapter VII, airspace</td>
</tr>
<tr>
<td>17</td>
<td>Chapter X, flight publications</td>
</tr>
<tr>
<td>18</td>
<td>Test on chapters VII and X</td>
</tr>
<tr>
<td>19</td>
<td>Mid-term, chapters 1 - 7 and 10</td>
</tr>
<tr>
<td>20</td>
<td>Chapter VIII, basic weather</td>
</tr>
<tr>
<td>21</td>
<td>Chapter IX, using weather</td>
</tr>
<tr>
<td>22</td>
<td>Review weather (movies)</td>
</tr>
<tr>
<td>LESSON NUMBER</td>
<td>OBJECTIVES</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>23</td>
<td>Test on chapters VIII and IX</td>
</tr>
<tr>
<td>24</td>
<td>Chapter XI, regulations</td>
</tr>
<tr>
<td>25</td>
<td>Flight computer, computer side</td>
</tr>
<tr>
<td>26</td>
<td>Flight computer, wind side</td>
</tr>
<tr>
<td>27</td>
<td>Chapter XII, basic navigation</td>
</tr>
<tr>
<td>28</td>
<td>Chapter XIII, radio navigation</td>
</tr>
<tr>
<td>29</td>
<td>Chapter XIV, composite navigation</td>
</tr>
<tr>
<td>30</td>
<td>Test on flight computer and navigation</td>
</tr>
<tr>
<td>31</td>
<td>Chapter XV, medical and Chapter XVI, emergencies</td>
</tr>
<tr>
<td>32</td>
<td>Review for final</td>
</tr>
<tr>
<td>33</td>
<td>Review for final</td>
</tr>
<tr>
<td>34</td>
<td>Final, FAA test</td>
</tr>
</tbody>
</table>
Required/recommended texts:

5. Aircraft handbook/manuals appropriate to the type of aircraft utilized.
AERO 122, 142
PRIVATE PILOT GROUND SCHOOL
AIRPLANES
SYLLABUS AND COURSE GUIDE

Developed by:
Richard D. Thompson, BVE, MA
1990

Student: ____________________________
Semester: __________________________
Instructor: __________________________
Class hours: _________________________
Office hours: _________________________
Telephone: __________________________
Mail: _______________________________
<table>
<thead>
<tr>
<th>LESSON #</th>
<th>DATE</th>
<th>TOPIC/ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGE I LESSONS 1-6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | | Introduction
*Introduction *course objectives*
college/facilities tour, paperwork |
| 2 | | History
*History film, "We Saw It Happen"
Finish paperwork |
| 3 | | Chapter I (Prep)
*FARS *terms/definitions*
responsibilities *medical requirement*
*student pilot certificate *preflight |
| 4 | | Science of Flight (Aircraft)
Bernoell's Principle *Newton's Laws*
*Lift *Controls and axis *4 forces
*stall |
| 5 | | Science of Flight con't. (aircraft)
*Load factors *trim tabs *stability
*torque *flaps *"P" factor *wake
turbulence |
| 6 | | Review for test
*Review *Test on chapters I & II |
| **STAGE II LESSONS 7-10** | | |
| 7 | | Powerplant (aircraft)
*Fuel *Inspections *Ignition *Electrical
*Props *Carburetor/injection |
| 8 | | Flight instruments (simulation)
*Pitot/static |
| 9 | | Flight instruments Con't. (simulation)
*Gyros *Compass |
| 10 | | Review for test
*Review *Test on chapters III & IV |
<table>
<thead>
<tr>
<th>LESSON #</th>
<th>DATE</th>
<th>TOPIC/ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE III LESSONS 11-14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11 | | Weight/balance (Prep)
*Computation *Weights *Center of gravity |
| 12 | | Weight/balance cont. (Prep)
*Adverse loading *Shifting weights
*Safe/unsafe conditions/characteristics |
| 13 | | Perforce (Prep)
*Variables *Charts/graphs *Computations
*Density altitude |
| 14 | | Review for test |
| **STAGE IV LESSONS 15-18** |
| 15 | | Airports/Airspace (Prep)
*Airport markings *Traffic pattern
*Lighting *Wind indicators *Basic communications *Control zones
*Airport traffic areas |
| 16 | | Airports/airspace cont. (Prep)
*Advanced communications *Navigation
*Special use airspace *Nightflying |
| 17 | | Flight Publications
*A/M *Exam-o-grams *Notices to airman
*Charts *Airworthiness directives
*Advisory circulars |
| 18 | | Review for Test
*Review *Test on chapters VII & X |
| **STAGE V LESSONS 19-23** |
| 19 | | Review for Mid-Term
*Review *Test on chapters I-VII & X |
| 20 | | Basic Weather (prep)
*Causes *Pressure systems *Ice *Fog
*Clouds *Air mass *Fronts |
<table>
<thead>
<tr>
<th>LESSON #</th>
<th>DATE</th>
<th>TOPIC/ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>Weather Services (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Pilot reports *Enroute flight advisory *Transcribed weather enroute broadcasts</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Weather Review (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Review *Volume (4 A & B) of weather tapes (attached)</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Review for Test (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Review *Test on VIII & IX</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Regulations (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Parts 61, 91, 830</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Flight Computer (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Computation site</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Flight Computer (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Wind side</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Basic Navigation (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Plotter *Computer *Charts *Variation *Deviation *Latitude *Longitude</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Radio Navigation (Simulation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Testing equipment *Variable omni range *Non-directional beacons *Transponders</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Composite Navigation (Simulation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Sample cross country *Utilizing all navigational equipment combined together</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Review for Test (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Review *Test on chapters XII, XIII, & XIV</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Medical Factors, Emergencies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Vertigo *Hyperventilation *Hypoxia *Drinking *Drugs *Carbon monoxide *Emergencies (prep) *Regulations *Procedures *Fly aircraft *Don't panic</td>
</tr>
<tr>
<td>LESSON #</td>
<td>DATE</td>
<td>TOPIC/ACTIVITY</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review for FAA final (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review for FAA final (Prep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAA final exam</td>
</tr>
</tbody>
</table>
IMPORTANT - PLEASE READ

This syllabus presents the FORMAT for Aero 122, 142 in an organized, easy to follow manner. The course meets twice a week, three hours per meeting. The CLASS SCHEDULE is provided at the beginning of the syllabus. There are ten stages of instruction. The stages group together related information. Each stage of instruction will indicate a stage objective and completion standard. The individual lessons that make up each stage are given with a brief outline. It is imperative that students bring to class the required textbooks each and every class meeting. Additional handouts will be provided by the instructor. NOTE: This class will not merely prepare you for the FAA written test. It has been designed to cover many other aspects of ground and flight training. Lectures are based on the assumption that the student has read the assigned material.
The course will be graded by utilizing four scores: quizzes, tests, final, and attendance.

1. **QUIZZES**: Each class will normally begin with a quiz covering the material assigned and/or previous material. This will be accomplished by the instructor listing ten items or highlights from the assigned reading. The lecture will be primarily based around the quiz. Quizzes will be graded prior to the end of the lesson and returned.

2. **TESTS**: Tests are constructed to cover information covering the related material from the assigned chapters (see course outline). Tests, to include the mid-term normally will be fifty multiple-choice questions. The test is constructed from the current Private Pilot Test Questions. Tests will be graded immediately and returned. No student should leave until questions missed have been reviewed. This is done to stimulate retention and ensure proper learning of the applicable information.

3. **FINAL**: The final will be the FAA designated written test for private pilot. The test will be administered by a FAA written test examiner. The FAA test score minimum is 70%. The tests are mailed, and graded by FAA in Oklahoma City. Test results are then mailed to the applicant. A copy of the results must be made and given to the instructor for a grade in this course.
4. **ATTENDANCE:** A percentage of your course grade will be dependent on your participation and attendance. The percentage of individual scores will be evaluated accordingly:

1. **Quizzes:** 15%
2. **Tests:** 50%
3. **Final:** 25%
4. **Attendance:** 10%

The following breakdown of percentage scores will be applicable for a letter grade:

1. **A** 100-90
2. **B** 89-80
3. **C** 79-70
4. **D** 69-60
5. **F** 59 or less

ABSENCE: There is no excused absence unless prior arrangements have been made with the instructor. No make-up quizzes unless the day missed was excused. Tests will be made up on individual basis.
AERO 122, 142
PRIVATE PILOT GROUND SCHOOL

INSTRUCTOR'S GUIDE
(Confidential)

This guide contains materials and information for the course instructor.

Developed by: Richard D. Thompson, BVE, MA
1990

San Bernardino Valley College, Aeronautics Department
1. Course Number: Aero 122, 142
2. Course Name: Private Pilot Ground School (Airplanes)
3. Hours/Days per week: Hours: 3 Days: 2
4. Units: 6
5. Recommended Textbooks: See attached list
6. Course Objective:
The student will be able to:
1. Obtain the required aeronautical knowledge required by the FAA to pass the Private Pilot written test (Airplane).
7. DESCRIPTION: TOPICS TO BE COVERED
1. Assignments are from textbook. An Invitation to Fly.
2. Tests are constructed from the current written test questions and answer booklet.
3. See attached list for assignments in relationship to lesson number.
8. DESCRIPTION OF QUIZZES AND TESTING
1. Quizzes: Each class will normally begin with a quiz covering the material to have been read or previous material. This will be accomplished by the instructor listing ten items or highlights from the assigned reading. The lecture will be focused primarily around these items. Quizzes will constitute 15% of
the student's grade.

2. Tests: Tests are constructed to cover information covering related material from the assigned chapters (see course outline attached). Tests, to include a mid-term covering all information up to that point, will constitute 50% of the student's grade. Tests are constructed from the current Private Pilot Written Test Question and Answer booklet. The final test is the FAA written test administered by an FAA written test examiner. The final will reflect 25% of the student's total grade. The remaining 10% of the student's grade is dependent upon attendance.

3. Special Circumstances: If a student has already passed the FAA exam, a similar final may be substituted by the instructor. If a student wishes to challenge the class, a similar FAA final exam may be administered by the instructor.

9. METHODS OF INSTRUCTION:
 1. Lecture
 2. Group discussion
 3. Ground demonstration and directed discovery

10. USE OF VISUAL OR AUDIO AIDS:
 1. VCR tapes
 2. 16 mm films
 3. Flight simulators
 4. School aircraft
11. ADDITIONAL COMMENTS:

This course meets twice a week for three hours

PREPARED BY: Richard D. Thompson

DATE SUBMITTED: 08/01/90
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Stage</th>
<th>Objective/Completion Standard</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGE I</td>
<td>I.0</td>
<td></td>
</tr>
<tr>
<td>Lesson 1 Introduction:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using this guide</td>
<td>I.1</td>
<td></td>
</tr>
<tr>
<td>The course</td>
<td>I.2</td>
<td></td>
</tr>
<tr>
<td>Student's Performance</td>
<td>I.3</td>
<td></td>
</tr>
<tr>
<td>Suggestions</td>
<td>I.4</td>
<td></td>
</tr>
<tr>
<td>Lesson 2 History:</td>
<td>I.5</td>
<td></td>
</tr>
<tr>
<td>Quiz outline history</td>
<td>I.6</td>
<td></td>
</tr>
<tr>
<td>Lesson 3 Definitions/Preflight</td>
<td>I.7</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>I.8</td>
<td></td>
</tr>
<tr>
<td>Handout checklist</td>
<td>I.9</td>
<td></td>
</tr>
<tr>
<td>Handout aircraft breakdown</td>
<td>I.10</td>
<td></td>
</tr>
<tr>
<td>Lesson 4 Science of Flight</td>
<td>I.11</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>I.12</td>
<td></td>
</tr>
<tr>
<td>Give handout on aircraft axis</td>
<td>I.13</td>
<td></td>
</tr>
<tr>
<td>Lesson 5 Science of Flight Continued</td>
<td>I.14</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>I.15</td>
<td></td>
</tr>
<tr>
<td>Lesson 6 Review for Test</td>
<td>I.16</td>
<td></td>
</tr>
<tr>
<td>No quiz</td>
<td>I.17</td>
<td></td>
</tr>
<tr>
<td>Test for Stage I</td>
<td>I.18</td>
<td></td>
</tr>
<tr>
<td>STAGE II</td>
<td>I.19</td>
<td></td>
</tr>
<tr>
<td>Lesson 7 Powerplant</td>
<td>I.20</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>I.21</td>
<td></td>
</tr>
<tr>
<td>Lesson 8 Flight Instruments</td>
<td>I.22</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>I.23</td>
<td></td>
</tr>
<tr>
<td>"V" speeds</td>
<td>I.24</td>
<td></td>
</tr>
<tr>
<td>Lesson 9 Gyro Instruments/Compass</td>
<td>I.25</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>I.26</td>
<td></td>
</tr>
<tr>
<td>Lesson 10 Review for Test</td>
<td>I.27</td>
<td></td>
</tr>
<tr>
<td>No quiz</td>
<td>I.28</td>
<td></td>
</tr>
<tr>
<td>Test for Stage II</td>
<td>I.29</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS CONTINUED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE III Objectives/Completion Standards</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>Lesson 11 Weight/balance</td>
<td>IG 11.0</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 11.1</td>
<td></td>
</tr>
<tr>
<td>Handout (computation)</td>
<td>IG 11.2</td>
<td></td>
</tr>
<tr>
<td>Lesson 12 Weight/Balance</td>
<td>IG 11.3</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 12.1</td>
<td></td>
</tr>
<tr>
<td>Handout (stability)</td>
<td>IG 12.2</td>
<td></td>
</tr>
<tr>
<td>Lesson 13 Performance</td>
<td>IG 12.3</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 13.1</td>
<td></td>
</tr>
<tr>
<td>Crosswind/component</td>
<td>IG 13.2</td>
<td></td>
</tr>
<tr>
<td>Take off/landing</td>
<td>IG 13.3</td>
<td></td>
</tr>
<tr>
<td>Take off/landing</td>
<td>IG 13.4</td>
<td></td>
</tr>
<tr>
<td>Lesson 14 Review for test</td>
<td>IG 13.5</td>
<td></td>
</tr>
<tr>
<td>No quiz</td>
<td>IG 14.1</td>
<td></td>
</tr>
<tr>
<td>Test For Stage III</td>
<td>IG 14.2</td>
<td></td>
</tr>
<tr>
<td>STAGE IV Objective/Completion Standard</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>Lesson 15 Airports/airspace</td>
<td>IG 15.0</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 15.1</td>
<td></td>
</tr>
<tr>
<td>Handout (airspace)</td>
<td>IG 15.1A</td>
<td></td>
</tr>
<tr>
<td>Handout (airport)</td>
<td>IG 15.2</td>
<td></td>
</tr>
<tr>
<td>Lesson 16 Special Airspace</td>
<td>IG 15.3</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 16.1</td>
<td></td>
</tr>
<tr>
<td>Handout (communications)</td>
<td>IG 16.2</td>
<td></td>
</tr>
<tr>
<td>Lesson 17 Flight Publications</td>
<td>IG 16.3A</td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 16.3B</td>
<td></td>
</tr>
<tr>
<td>Lesson 18 Review for Test</td>
<td>IG 17.1</td>
<td></td>
</tr>
<tr>
<td>No quiz</td>
<td>IG 17.2</td>
<td></td>
</tr>
<tr>
<td>Test Stage IV</td>
<td>IG 17.3</td>
<td></td>
</tr>
<tr>
<td>STAGE V Objective/Completion Standard</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>Lesson 19 Midterm</td>
<td>IG 19.0</td>
<td></td>
</tr>
<tr>
<td>No quiz</td>
<td>IG 19.1</td>
<td></td>
</tr>
<tr>
<td>Test mid-term</td>
<td>IG 19.2</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS CONTINUED

<table>
<thead>
<tr>
<th>Lesson 30 Review for Test</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No quiz</td>
<td>IG 30.1</td>
</tr>
<tr>
<td>Test Stage VII</td>
<td>IG 30.2</td>
</tr>
<tr>
<td></td>
<td>IG 30.3</td>
</tr>
</tbody>
</table>

STAGE VIII Objectives/Completion Standards

<table>
<thead>
<tr>
<th>Lesson 31 Medical Factors/Emergencies</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>IG 31.0</td>
</tr>
<tr>
<td></td>
<td>IG 31.1</td>
</tr>
<tr>
<td></td>
<td>IG 31.2</td>
</tr>
</tbody>
</table>

STAGE IX Objectives/Completion Standards

<table>
<thead>
<tr>
<th>Lesson 32, 33 Sample FAA Test</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No quiz</td>
<td>IG 32.0</td>
</tr>
<tr>
<td>Sample FAA test (lesson 32)</td>
<td>IG 32.1</td>
</tr>
<tr>
<td>Sample FAA test (lesson 33)</td>
<td>IG 32.2</td>
</tr>
<tr>
<td></td>
<td>IG 32.3A,B,C</td>
</tr>
<tr>
<td></td>
<td>IG 33.3A,B,C</td>
</tr>
</tbody>
</table>

STAGE X Objective/Completion Standards

<table>
<thead>
<tr>
<th>Lesson 34 FAA Test</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No quiz (FAA test)</td>
<td>IG 34.0</td>
</tr>
<tr>
<td></td>
<td>IG 34.1</td>
</tr>
<tr>
<td></td>
<td>IG 34.2</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS CONTINUED

<table>
<thead>
<tr>
<th>STAGE VI Objective/Completion Standard</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 20 Basic Weather</td>
<td>IG 20.0</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 20.1</td>
</tr>
<tr>
<td></td>
<td>IG 20.2</td>
</tr>
<tr>
<td>Lesson 21 Weather Services</td>
<td>IG 21.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 21.2</td>
</tr>
<tr>
<td>Handout (weather key)</td>
<td>IG 21.3</td>
</tr>
<tr>
<td>Lesson 22 Weather Review</td>
<td>IG 22.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 22.2</td>
</tr>
<tr>
<td>Lesson 23 Review for Test</td>
<td>IG 23.1</td>
</tr>
<tr>
<td>No quiz</td>
<td>IG 23.2</td>
</tr>
<tr>
<td>Test Stage VI</td>
<td>IG 23.3</td>
</tr>
<tr>
<td>STAGE VII Objectives/Completion Standards</td>
<td>IG 24.0</td>
</tr>
<tr>
<td>Lesson 24 Regulations</td>
<td>IG 24.1</td>
</tr>
<tr>
<td>No quiz (optional)</td>
<td>IG 24.2</td>
</tr>
<tr>
<td>Handout (FARs)</td>
<td>IG 24.3A</td>
</tr>
<tr>
<td></td>
<td>IG 24.3B</td>
</tr>
<tr>
<td></td>
<td>IG 24.3C</td>
</tr>
<tr>
<td>Lesson 25 Flight Computer</td>
<td>IG 25.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 25.2</td>
</tr>
<tr>
<td>Handout computer problems</td>
<td>IG 25.3A</td>
</tr>
<tr>
<td></td>
<td>IG 25.3B</td>
</tr>
<tr>
<td></td>
<td>IG 25.3C</td>
</tr>
<tr>
<td>Lesson 26 Flight Computer</td>
<td>IG 26.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 26.2</td>
</tr>
<tr>
<td>Handout computer problems</td>
<td>IG 26.3</td>
</tr>
<tr>
<td>Lesson 27 Basic Navigation</td>
<td>IG 27.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 27.2</td>
</tr>
<tr>
<td>Handout flight plan</td>
<td>IG 27.3</td>
</tr>
<tr>
<td>Handout flight planner</td>
<td>IG 27.4A</td>
</tr>
<tr>
<td></td>
<td>IG 27.4B</td>
</tr>
<tr>
<td>Lesson 28 Radio Navigation</td>
<td>IG 28.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 28.2</td>
</tr>
<tr>
<td>Lesson 29 Composite Navigation</td>
<td>IG 29.1</td>
</tr>
<tr>
<td>Quiz</td>
<td>IG 29.2</td>
</tr>
<tr>
<td>Handout cross country</td>
<td>IG 29.3</td>
</tr>
<tr>
<td>Handout cross country format</td>
<td>IG 29.4</td>
</tr>
</tbody>
</table>
AERO 122, 142

INTRODUCTION
STAGE I

I. **STAGE I OBJECTIVE:** (18 hours) Introduce syllabus and related information and provide a history of aviation. In addition, the student will develop knowledge of FARs, theory of flight, stability, controls, axis, torque, "P" factor, trim tabs, medical requirements, load factors, and preflight.

II. **STAGE I COMPLETION STANDARDS:** The student will successfully complete STAGE I by obtaining a written test score of 70% or better.
STAGE I

Lesson 1. **Introduction:** *Introduction* *course outline*
syllabus *enrollments* *facility tour* *no quiz*

Objective:
At the conclusion of this lesson, the student should be able to:
*be knowledgeable of course criteria and grading
*have an introduction to available resources located at the facility
*have all documentation for enrollment and course information

Completion Standard:
The lesson will be considered successful when all appropriate paperwork is completed and no further questions are observed.

Format:
*Hand out and explain course introduction paper
*Hand out and explain outline paper
*Verify enrollments
*Conduct facility tour
*Answer all pertinent questions
This guide is for the instructor only. The guide contains the information and materials necessary for instructing Aero 122, 142.

Each lesson is individually planned out. The lesson contains a quiz or test, if applicable, and master handouts. If tapes or movies are to be utilized, the location of them is supplied. The aircraft and simulators are located at SBVC.

The instructor's guide is numbered with a prefix of IG. The follow-number would indicate the lesson that is to be taught.

Duplication of materials should be arranged early in the course, if not before the course begins. Arrangements for the simulators and aircraft should be coordinated with other staff at SBVC to prevent a conflict or an overlapping of scheduling.
AERO 122, 142 The Course

Aero 122, 142 is a six-unit competency-based course. The course meets twice per week for eighteen weeks. The course is an FAA-approved curriculum. The instructor must stress the importance of attendance, but should be flexible in case of an excused absence. Special consideration should be given to the student in order to help the student obtain information missed. The grading of quizzes and tests should be accomplished within the same lesson. These should be returned and then reviewed to help the student reevaluate any missed items. **No one** should leave the classroom with a question or doubt as to why they missed a quiz or test question. Every effort should be made to ensure that the instruction received is competency-based (learning by doing). The use of the aircraft simulators, charts, and graphs and the airframe and powerplant facility at SBVC should help ensure this.

Quizzes: The quizzes are normally given at the beginning of the class. The quizzes are included with each individual lesson, if applicable.

Tests: The tests are from questions in the current private pilot written test booklet. The tests are included in the individual lesson, if applicable.

Final Exam: The final exam is the FAA written test.
It will be administered and monitored by an FAA written test examiner. This will be accomplished on the day scheduled for the class final. It is imperative that each student returns a copy of that test to the instructor as soon as possible. This is done to determine the students' class grade and for the instructor to record the grades with the College.
There are a total of 100 percentage points. The percentages are broken down as indicated below:

1. Tests - 50%
2. Final - 25%
3. Quizzes - 15%
4. Attendance - 10%

100% Total

Students who come to class and complete each activity should earn full credit. The total percentage points will determine the students' grade. There is no curve to produce normal distribution. This method will ensure fairness for everyone. There is no makeup for quizzes. Tests can be made up with special provisions.

Unexcused absence will result in a lower grade. Excused absences will be handled on a one-on-one basis. It is very important that each student gains the knowledge and experience from each lesson/activity.
AERO 122, 142

Suggestions

Preparation: The instructor needs to read everything in the course syllabus and instructor's guide. This must be done to help prepare for each lesson. The instructor's guide is a guide to help the instructor present the material in a meaningful way. This instructor's guide is not printed in granite, it is a suggested outline. Some deviation may become necessary and it is the instructor's prerogative to do so.

The Instructor's Role: The role of the instructor is to be an instructional facilitator, not a lecturer. Every effort must be made to stimulate "hands-on" learning. Competency-based curriculums are based on learning by doing, not learning by merely lecture.

Attitude: The instructor's attitude must be POSITIVE AND MOTIVATIONAL. The instructor must present himself/herself in a professional manner. This includes language and dress. Give credit where credit is due. Utilize positive reinforcement to encourage higher learning. Give your students every opportunity to advance in your course even if it means extra time or a special effort on your part.
AERO 122, 142

Class Lesson 2 Plan

STAGE I

Lesson 2

History:

*History Film "We Saw It Happen"

*Complete enrollments and required paperwork *no quiz

Objective:

At the conclusion of the lesson, the student should be able to:

*Outline the development of the airplane and applications through history.

*Relate to course outline and syllabus to determine objectives and completion standards.

Completion Standard:

*The lesson will be considered completed by outlining the development of the airplane and no further questions about the course are observed.

Format:

*Show film available through Armed Forces recruiters or Dick Thompson (instructor).

*Outline history of airplane

*Answer any questions
AERO 122, 142

Class Lesson 2 Quiz

No Quiz

Students should outline history of the airplane
AERO 122, 142

Lesson 3
Lesson 3

Definitions/Preflight: *FARs *Terms/definitions
*Responsibilities *Medical

Read Chapter 1 from: Requirements *Student pilot certificate
*Preflight

Objectives:
At the conclusion of the lesson, the student should be able to:
*Understand most aviation abbreviations
*Medical requirements interpretation
*FARs (applicable)
*How to preflight

Completion Standard:
*The lesson will be considered successful when student can demonstrate a preflight inspection. Remaining information will be evaluated in Stage I test.

Format:
*Give quiz
*Hand out and explain checklist
*Preflight a school's aircraft
*Introduce FARs
*Discuss terms/definitions
*Private pilot responsibilities/requirements
*Review medical requirements
*Give handout on aircraft breakdown
QUIZ (10 Items)

*FAR - Federal Air Regulation
*CFI - Certified Flight Instructor
*Dual - Receiving flight instruction
*Solo - Only occupant in aircraft
*PIC - Pilot in command
*Cross Country - Flying beyond 50 nautical miles
*Category Class, Type - Definitions
*Medical Expiration - 24 Calendar months
*Private Pilot Requirements - Review part (G1) FAR

Additional Items to be Covered:

*Logbooks
*Night time
*Endorsements
*Aircraft lights
#1

PA-28-140/150/180 CHECK LIST

Check Owner's Handbook for Detailed Procedures!

PREFLIGHT

1. Cockpit
 A. Ignition OFF
 B. Master switch ON
 1. Check fuel quantity indicators
 2. Fuel pump ON check pressure - Green
 3. Fuel pump OFF
 4. Master switch OFF
 C. Windshield/windows clean & good condition
 D. Cabin area loose objects secure
 E. Flaps extend 40° three notches
 F. Required documents - Registration, Airworthiness, Flight Manual
 G. Circuit breakers - check
 H. For I.F.R.
 1. Nav check within 10 hours & 10 days
 2. Static check - within 24 months

2. Outside Inspection
 A. Control surfaces and flaps
 1. Security of hinges
 2. Interference of operation
 B. All surfaces
 1. Damages
 2. Interference of snow, ice, mud, etc.
 1. Quantity - intended flight
 2. Cap secure
 3. Contamination - drain sumps
 4. Fuel vents - open
 D. Landing Gear - Check
 1. Tire - inflation/condition
 2. Strut - inflation main 4", nose 3" approx.
 3. Brakes - no leaks general condition
 4. Wheel pants - secure no cracks
 E. Propeller - general condition - oil leaks
 F. Oil - quantity minimum 6 qt. - cap secure
 G. Antennas - in place and secure
 H. Pitot tube - clear of obstruction
 I. Static Port - clear of obstruction
 J. Untie aircraft and remove chocks
ENTERING AIRPLANE

1. Flaps up - (before passengers board)
2. Parking brake set
3. Seat belts fastened
4. Review aircraft performance - consider
 1. Gross weight - T.O. distance
 2. Density altitude - angle of climb
 3. Runway condition and wind
 4. Departure path - angle of climb

STARTING

1. Radio equipment OFF
2. Brakes ON
3. Fuel ON (fullest tank)
4. Mixture full rich (high density altitude leaned)
5. Carb Heat OFF
6. Master Switch ON
7. Electric fuel pump ON
8. Throttle OPEN 1/4 inch
9. CLEAR area
10. Start engine
11. CHECK oil pressure
12. Radios ON - Transponder STBY
13. Rotating Beacon ON
14. Electric Fuel Pump ON
15. For taxi clearn area and NOTE WIND
16. Check brakes

WARM UP

Avoid prolonged idling at low r.p.m.
While holding, use 800-1000 r.p.m.

TAXI

1. Taxi path - clear continuously
2. Brake check - soon as practicable
3. Instrument check - D.G. and Turn needle
4. Control speed as much as practicable with throttle. Do not ride brakes with higher power setting than is necessary for smooth operation.
5. Taxi to clear hard surface area.
#3

BEFORE TAKEOFF

1. Brakes ON
2. Fuel ON fullest tank
3. Run up engine to 2000 rpm
4. a. Check Mags (175 rpm max drop 30 rpm)
 b. Check carb heat
 c. Check engine instruments in green
 d. Check suction gauge
5. Reduce rpm to smooth idle - 300 to 1000 rpm
6. Electric fuel pump ON
7. Carb heat OFF
8. Mixture RICH (leaned at high density altitude)
9. Trim SET (stabilator and rudder)
10. Controls FREE
11. Flaps 25° maximum for type of takeoff
12. Set flight instruments - altimeter, artificial horizon & directional gyro
13. Check circuit breakers
14. Check amp meter - for charging
15. Check primer - secured
16. Radio check
17. Close and latch door
18. Clear area

TAKEOFF

1. For normal takeoff rotate 60-70 mph - let fly off
2. Retract flaps
3. Fuel pump - OFF 1,000 ft. AGL or higher

NOTE: For detailed procedure for various takeoffs refer to Owners Manual

CLIMB - Refer to Owners Manual for learning procedures

- Normal Climb Speed - 140-90/95; 180-95/100 IAS
- Best angle climb speed - 74 mph IAS
- Best rate climb speed - 85 mph IAS
NOTE: Normal and enroute climbs should be accomplished at 140-30/100 mph IAS. 180-95/100 mph IAS to facilitate cooling and visibility.

CRUISING

1. Level flight attitude - accelerate while trimming to desired T.A.S. (Refer to cruise performance chart for density altitude - Owners Handbook)
2. Power - Maximum 75% - refer to power setting in Owners Handbook
3. Lean mixture above 5,000 ft. pressure altitude. Maintain constant airspeed - lean for peak rpm then drop in rpm - then richen mixture to peak rpm. Continue to richen to slight drop in rpm. Note sound for smooth operation.

ECONOMIC CRUISE

Refer to "Range vs Density Altitude Chart" in Owners Handbook for power at altitude and range.

DESCENT - PROTECT THAT ENGINE

Plan enroute descent to avoid very lower power setting - not lower than 2,000 rpm should terrain prevent enroute descent, slow to 90 mph and reduce power in increments of 200 rpm to not lower than 1500 rpm. RICHEN MIXTURE on the way down. Full rich below 5,000 ft. pressure altitude.

APPROACH AND LANDING

1. Seat backs - erect
2. Seat belts - fastened
3. Fuel - fullest tank
4. Electric fuel pump - ON
5. Mixture - set for altitude
6. Flaps - set (115 mph IAS max)
(Approach and landing technique - refer to Owners Handbook for type of landing desired)

AFTER LANDING

Directional control is paramount
1. Flaps - UP
2. Fuel pump - OFF
3. Close your flight plan if radio contact with an FAA facility can be made.
PA-28-140/180 CHECKLIST

ENGINE SHUT-DOWN
1. Brake - ON
2. Throttle - 1,000 rpm
3. Radios - OFF
4. Switches - OFF
5. Mixture - IDLE CUT-OFF
6. Throttle - Close as engine dies
7. Master Switch - OFF
8. Ignition Switch - OFF
9. Hobbs meter - record reading
10. Remove all objects from airplane - including trash, cups and bottles
11. Tie airplane down
12. Release parking brake
13. Report malfunction of equipment

START PLANNING NEXT FLIGHT
Consider fuel requirements.
Fill tanks to prevent contamination.

CLOSE YOUR FLIGHT PLAN !!!!
BE INTIMATELY FAMILIAR WITH EMERGENCY PROCEDURES
LISTED IN THE OWNERS MANUAL.
KNOW WHERE YOU ARE AT ALL TIMES.
KNOW LOCATION OF AIRPORTS AND TERRAIN.
KNOW WIND DIRECTION AND APPROXIMATE VELOCITY.
EMERGENCY FREQUENCY 121.5.
TRANSPOUNDER 7700.
ENGINE POWER LOSS IN FLIGHT - ALTITUDE PERMITTING:

1. Airspeed - 83 mph IAS - establish while turning to landing area
2. Fuel selector - switch tanks
 (NOTE: Up to 10 seconds to restore power)
3. Electric fuel pump - ON
4. Mixture - RICH
5. Carburator heat - ON
6. Engine gauges - Check for cause
7. Ascertain fuel selector position
8. Ignition - switch to "L" - "R" - both CHECK
9. Throttle and mixture - different settings
10. Try another fuel tank - (NOTE: up to 10 seconds may be required if fuel lines empty)
11. "Our Father", etc. - MAKE SURE WELL LEARNED

Best angle of glide 83 mph IAS. Glide ratio approx. 1.6 miles per 1,000 feet - no wind.

EMERGENCY LANDING

ALL LANDINGS INTO THE WIND IF POSSIBLE

WHEN COMMITTED TO LANDING

1. Ignition switch - OFF
2. Master switch - OFF
3. Mixture - Idle cut-off
4. Fuel selector - OFF
5. Seat belts - TIGHT
6. Flaps - when desired - full flaps on final full stall landing
PA-28-140/180 CHECKLIST

EMERGENCY

FIRE: KNOW YOUR PROCEDURE IN ADVANCE!!!

1. Source of fire - check
 A. Electrical fire - smoke in cockpit
 1. Master switch - OFF
 2. Vents - OPEN
 3. Cabin Heat - OFF
 4. Land as soon as practical
 B. Engine Fire
 1. In case of engine fire in flight:
 A. Fuel selector - OFF
 B. Heater - OFF
 C. Defroster - OFF
 D. Mixture - idle cut-off
 E. Throttle - close
 F. Dive to blow out fire (if altitude permits)
 G. Proceed with emergency landing
 2. In case of fire on the ground:
 A. If engine has not started:
 1. Keep turning engine with starter
 2. Fuel selector valve - OFF
 3. Mixture - idle cut-off
 B. If engine has started:
 1. Continue running
 2. Fuel selector valve - OFF
 3. Mixture - idle cut-off

Abandon Aircraft - use available extinguisher

LOSS OF OIL PRESSURE - Turn to nearest landing area.
 1. Maintain altitude - prepare for emergency landing
 2. Don't change power settings unnecessarily
 3. Note oil temperature - if normal could be gauge malfunction - if high and rising, an emergency landing is considered eminent.

LOSS OF FUEL PRESSURE
 1. Electric fuel pump - ON
 2. Mixture - RICH
 3. Fuel selector - check on full tank
 4. Land as soon as practical

HIGH OIL TEMPERATURE
 1. Land - at appropriate airport
#8 PA-28/140/180 CHECKLIST

ALTERNATOR FAILURE

DETECTION - "O" reading on ammeter with electrical equipment on.

1. Reduce electrical load - unnecessary equipment OFF

2. Alternator circuit breakers - CHECK

3. "ALT" switch - OFF (for 30 seconds), then on

IF POWER IS NOT RESTORED

4. "ALT" switch - OFF

5. Maintain minimum electrical load - turn master switch off for "O" load in day time.

6. Land as soon as practical

ENGINE ROUGHNESS

1. Mixture - adjust for maximum smoothness

2. Electric fuel pump - ON

3. Fuel selector - change to other tank

4. Engine gauges - check for cause

5. Magneto switch - "L" then "R", then back to both. If operation is satisfactory on either magneto, proceed on that magneto at reduced power, with mixture full rich to a landing at first available airport.

If roughness persists, prepare for a precautionary landing at pilot's discretion.

OPEN DOOR IN FLIGHT

An open door will not affect normal flight characteristics, and a normal landing can be made with door open. Do not try to close door at low altitudes.

TO CLOSE DOOR IN FLIGHT

1. Slow aircraft to 100 mph IAS

2. Cabin vents - close

3. Storm window - open

4. Push door further open and then close rapidly (Note: a slip in the direction of the open door will assist in latching procedure).
CHAPTER 1 – INTRODUCTION TO THE AIRPLANE

STUDENT EXERCISE
THE AIRPLANE

Instructions: Complete this exercise using chapter 1, section A, of the text for reference.

Place a letter identifying the airplane part next to the identifying names below.

1. ________ carburetor air intake
2. ________ cowling
3. ________ right flap
4. ________ flashing beacon
5. ________ fuselage
6. ________ stabilator
7. ________ left aileron
8. ________ left fuel tank cap
9. ________ red position light
10. ________ main landing gear
11. ________ left flap
12. ________ nose landing gear
13. ________ pitot tube
14. ________ propeller
15. ________ propeller spinner
16. ________ right aileron
17. ________ right fuel tank cap
18. ________ green position light
19. ________ rudder
20. ________ static air vent
21. ________ white position light
22. ________ trim tab
23. ________ vertical stabilizer
24. ________ wing
Lesson 4
Lesson 4:
Science of Flight: Bernoulli's Principle, Newton's Laws, Lift, Controls, Axis, Four Forces, Stall
Read chapter II, up to page 42, load factors:

Objectives:
At the conclusion of this lesson, the student should be able to:
* Define science of lift
* Define stall, controls, axis, and four forces

Completion Standards:
The lesson will be considered successful when the student can demonstrate the control surfaces on the aircraft.
Remaining information will be evaluated in Stage I test.

Format:
* Give quiz
* Hand out control and axis handout
* Show control movements on aircraft
* Lecture on stalls, four forces, and principles of flight
AERO 122, 142

Class Lesson 4 Quiz

STAGE I

Quiz (10 items)

*Bernoullis' Principle
*Newton's third law
*Chamber
*Chord
*Angle of attack
*Stall
*Flight controls and axis
*Adverse yaw
*(4)Forces
*Horizontal, vertical component of lift

Additional items to be covered:
*Dihedral
*Angle of incidence
*Yoke
*Empennage
Information Sheet

Aircraft Familiarization

Axes and Fundamental Motions
Lesson 5
Lesson 5

Science of Flight:
Continued, finish reading chapter II in text
*Load factors *trimtabs *stability *Torque *Flaps *"P" factor
*Wake turbulence *Aircraft documents

Objectives:
At the conclusion of this lesson, the student should be able to:
1. Load factors
2. Trim tabs
3. Stability
4. Torque
5. Flaps
6. "P" factor
7. Wake turbulence
8. Aircraft documents

Completion Standards:
*The success of this lesson will be determined by the passing of Stage I test.

Format:
*Give quiz
*Bring into the class a yoke and propeller
AERO 122, 142 Continued

*Lecture on:

1. Load factors
2. Trim tabs
3. Stability
4. Torque
5. Flaps
6. "P" Factor
7. Wake turbulence
8. Aircraft documents
Quiz (10 items)

* Load factors
* Aircraft documents
* Trim tabs
* Stability
* Ground effect
* Wake turbulence
* Torque
* "P" factor
* Spin
* Flaps

ADDITIONAL INFORMATION TO BE COVERED

* Taxi controls
* Stall warning devices
* Slipstream effects
Lesson 6

Review/Test: *Review for Stage I test
 Stage I test

Objectives:
At the completion of this lesson, the student should be able to:
*Evaluate information previously given

Completion Standards:
*A test score of 70% would be considered a minimum score

Format:
*Conduct review
*Question/answer period
*Administer test
*Grade test
*Return test
*Review test
AERO 122, 142

Class Lesson 6 Test
STAGE I

Test Day
Stage I (No quiz)
AERO 142/122
Private Pilot Ground School
Stage Test I

Instructions:
1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1002</td>
<td>26</td>
<td>1201</td>
</tr>
<tr>
<td>02</td>
<td>1003</td>
<td>27</td>
<td>1203</td>
</tr>
<tr>
<td>03</td>
<td>1006</td>
<td>28</td>
<td>1205</td>
</tr>
<tr>
<td>04</td>
<td>1013</td>
<td>29</td>
<td>1206</td>
</tr>
<tr>
<td>05</td>
<td>1016</td>
<td>30</td>
<td>1207</td>
</tr>
<tr>
<td>06</td>
<td>1019</td>
<td>31</td>
<td>1209</td>
</tr>
<tr>
<td>07</td>
<td>1021</td>
<td>32</td>
<td>1210</td>
</tr>
<tr>
<td>08</td>
<td>1023</td>
<td>33</td>
<td>1211</td>
</tr>
<tr>
<td>09</td>
<td>1025</td>
<td>34</td>
<td>1301</td>
</tr>
<tr>
<td>10</td>
<td>1026</td>
<td>35</td>
<td>1308</td>
</tr>
<tr>
<td>11</td>
<td>1027</td>
<td>36</td>
<td>1310</td>
</tr>
<tr>
<td>12</td>
<td>1029</td>
<td>37</td>
<td>1311</td>
</tr>
<tr>
<td>13</td>
<td>1037</td>
<td>38</td>
<td>1315</td>
</tr>
<tr>
<td>14</td>
<td>1067</td>
<td>39</td>
<td>1316</td>
</tr>
<tr>
<td>15</td>
<td>1071</td>
<td>40</td>
<td>1317</td>
</tr>
<tr>
<td>16</td>
<td>1073</td>
<td>41</td>
<td>1324</td>
</tr>
<tr>
<td>17</td>
<td>1075</td>
<td>42</td>
<td>1434</td>
</tr>
<tr>
<td>18</td>
<td>1090</td>
<td>43</td>
<td>1657</td>
</tr>
<tr>
<td>19</td>
<td>1095</td>
<td>44</td>
<td>1659</td>
</tr>
<tr>
<td>20</td>
<td>1096</td>
<td>45</td>
<td>1660</td>
</tr>
<tr>
<td>21</td>
<td>1097</td>
<td>46</td>
<td>1716</td>
</tr>
<tr>
<td>22</td>
<td>1100</td>
<td>47</td>
<td>1824</td>
</tr>
<tr>
<td>23</td>
<td>1111</td>
<td>48</td>
<td>1828</td>
</tr>
<tr>
<td>24</td>
<td>1121</td>
<td>49</td>
<td>1830</td>
</tr>
<tr>
<td>25</td>
<td>1184</td>
<td>50</td>
<td>1836</td>
</tr>
</tbody>
</table>
I. STAGE II OBJECTIVE: (12 hours) The objective of Stage II is to introduce the student to various different powerplant systems and components. It will also explain the functions and characteristics of the flight and engine instruments.

II. STAGE II COMPLETION STANDARDS: The student will successfully complete Stage II by obtaining a written test score of 70% or better.
AERO 122, 142

Lesson 7
Lesson 7
Powerplant: *Fuel *Oil *Air *Ignitions *Props *Carburetor/Injection

Objective:
At the completion of this lesson, the student should be able to:
*Identify/explain aircraft powerplant operations/systems
*Determine which grade oil fuel to use
*Denote differences in carburetor/injection
*Determine who can do maintenance on aircraft

Completion Standard:
*Student will be able to identify aircraft engine components
*Determine who can do what maintenance
*Receive a passing score on STAGE II written test

Format:
*Give quiz
*Powerplant tour of facility to show:
1. props
2. fuel
3. carburetor
*Lecture on:
1. air intake/cooling
2. injection
*Show with simulator flight instruments

*Lecture on all instruments
QUIZ (10 items)

*Mechanic's license
*Inspection
*(2) Fuel grades
*Carburetor/injection
*Dual ignition
*Detonation
*Leaning an engine
*Electrical systems
*(2) Kinds of propellers
*Starting an engine

ADDITIONAL ITEMS TO BE COVERED
*Manifold pressure
*RPM
*Hand propping
*Cowl flaps
*Air worthiness directives (AD notes)
Lesson 8

Flight Instruments: *Pitot/static *Airspeeds *Altitudes *Characteristics

Read chapter IV up to compass page 111:

OBJECTIVE:

At the conclusion of this lesson, the student should be able to:

*Identify pitot/static instruments
*Adjust/interpelate instruments
*Define different airspeeds/altitudes

COMPLETION STANDARDS:

*The student will be able to determine flight altitudes from flight simulators
*Pass Stage II test with a passing score

FORMAT:

*Give quiz
*Lecture pitot/static instruments
*Demonstrate with flight simulator the flight instruments and adjustments
STAGE II QUIZ (10 Items)

*(3) Pitot static instruments
*Differential pressure instrument
*IAS - Indicated airspeed
*CAS - Calibrated airspeed
*TAS - True airspeed
*Knowllsman window
*I. Alt. - Indicated altitude
*T. Alt. - True altitude
*Pres. Alt. - Pressure altitude
*Absolute altitude

ABSOLUTE ITEMS TO BE COVERED
*Instrument errors
*Density altitude
*Standard day
*"V" speeds
*Color-coded areas airspeed indicator
DEFINITIONS

1. Indicated Air Speed is equal to the airspeed indicator reading, as installed in the airplane, without correction for airspeed indicator, position or compass errors, observed airspeed instrument reading.

2. CAS (Calibrated Air Speed) is equal to the airspeed indicator reading corrected for position and instrument errors (same as T1A previously used).

3. TAS (True Air Speed) is equal to the airspeed indicator reading corrected for position and instrument errors (same as TAS previously used).

4. VNE (Never Exceed Speed) is equal to CAS at sea level in standard atmosphere (90% of VNE).

5. Vno (Never Exceed Speed, Red Line on Airspeed Instrument) is equal to CAS at sea level in standard atmosphere (90% of VNE).

6. Vc (Design Maneuvering Speed) is equal to CAS at sea level in standard atmosphere.

7. Vmo (Design Cruising Speed) is equal to CAS at sea level in standard atmosphere, speed below which structure is good for 30 Fps/Sec Gusts.

8. VD (Design Diving Speed) is equal to CAS at sea level in standard atmosphere, speed below which structure is good for 30 Fps/Sec Gusts.

9. V_{max} (Maximum Speed with Wing Flaps in a Prescribed Extended Position) is equal to CAS at sea level in standard atmosphere.
10. \(V_{LE} \)

The **Landing Gear-Extended Speed.** Maximum speed for safe flight with landing gear extended.

11. \(V_{LO} \)

Landing Gear Operating Speed. Maximum speed for safe operation of landing gear.

12. \(V_{MC} \)

Minimum Control Speed. (Minimum flight speed at which multi-engine aircraft is satisfactorily controllable, when the critical engine is suddenly made inoperative with remaining engines at TO power.)

13. \(V_{NO} \)

Normal Operating Limit Speed. Maximum speed for normal operation. (Upper limit of green arc and lower limit of yellow arc on airspeed indicator)

14. \(V_{SO} \)

The power-off stalling speed (or, if unobtainable, the minimum steady flight speed) in the landing configuration.

15. \(V_{Sl} \)

The power-off stalling speed (or, if unobtainable, the minimum steady flight speed) in a specified configuration.

16. \(V_X \)

Speed for best angle of climb.

17. \(V_Y \)

Speed for best rate of climb.

18. \(V_{1*} \)

The **Critical Engine-Failure Speed.** (The critical speed for decision as to whether to abort takeoff or continue, when an engine fails.)

19. \(V_{2*} \)

Emergency Take-off Climb Speed. (\(V_2 \) is the speed at which the performance data, used in dispatching, are known to be obtainable.)

\(*V_1 \) and \(V_2 \) are applicable only to aircraft certificated under FAR 25 or for aircraft modified to transport category status.
Lesson 9

Flight Instruments: *Gyros *Limitations *Variation *Deviation
*Compass

Read remaining Chapter IV:

OBJECTIVE: By the end of this lesson, the student will be able to:

*Interpret/adjust gyro instruments

*Interpret compass headings and determine inherent errors

COMPLETION STANDARDS

*The student will be able to adjust, interpret, and understand inherent errors in the flight instruments

*Interpret and determine proper engine procedures/instruments

*Pass Stage II written test with a passing score

FORMAT:

*Give quiz

*Lecture/demonstrate gyros principles

*Demonstrate gyro instruments with flight simulator
AERO 122, 142

Class Lesson 9 Quiz

STAGE II

QUIZ (10 Items)

*Gyro principles
*Power to gyros
*(3) gyro instruments
*Direction gyro-usage (D.G.)
*Artificial horizon - usage
*Turr Co - coordinator - interpretation
*Variation
*Deviation
*Basic "T" formation

ADDITIONAL ITEMS TO BE COVERED
*Slip/skid
*A.N.D.S.
*Lead/lag errors
*Quality verses quantity
Lesson 10
Lesson 10

Review Test: Review for STAGE II test STAGE II test

OBJECTIVE: At the completion of this lesson the student should be able to:
* Evaluate and be tested successfully on chapters III and IV

COMPLETION STANDARDS:
* A test score of 70% would be considered minimum

FORMAT:
* Conduct review
* Question/answer period
* Administer test
* Grade test
* Return test
* Review test
TEST DAY STAGE II
(No Quiz)
AERO 142/122
Private Pilot Ground School
Stage Test II

Name: ___________________________ Date: ________________

Instructions: 1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1007</td>
<td>26</td>
<td>1268</td>
</tr>
<tr>
<td>02</td>
<td>1008</td>
<td>27</td>
<td>1270</td>
</tr>
<tr>
<td>03</td>
<td>1010</td>
<td>28</td>
<td>1271</td>
</tr>
<tr>
<td>04</td>
<td>1011</td>
<td>29</td>
<td>1272</td>
</tr>
<tr>
<td>05</td>
<td>1012</td>
<td>30</td>
<td>1273</td>
</tr>
<tr>
<td>06</td>
<td>1135</td>
<td>31</td>
<td>1274</td>
</tr>
<tr>
<td>07</td>
<td>1137</td>
<td>32</td>
<td>1275</td>
</tr>
<tr>
<td>08</td>
<td>1178</td>
<td>33</td>
<td>1276</td>
</tr>
<tr>
<td>09</td>
<td>1179</td>
<td>34</td>
<td>1278</td>
</tr>
<tr>
<td>10</td>
<td>1180</td>
<td>35</td>
<td>1279</td>
</tr>
<tr>
<td>11</td>
<td>1182</td>
<td>36</td>
<td>1283</td>
</tr>
<tr>
<td>12</td>
<td>1185</td>
<td>37</td>
<td>1284</td>
</tr>
<tr>
<td>13</td>
<td>1186</td>
<td>38</td>
<td>1286</td>
</tr>
<tr>
<td>14</td>
<td>1188</td>
<td>39</td>
<td>1287</td>
</tr>
<tr>
<td>15</td>
<td>1190</td>
<td>40</td>
<td>1389</td>
</tr>
<tr>
<td>16</td>
<td>1191</td>
<td>41</td>
<td>1391</td>
</tr>
<tr>
<td>17</td>
<td>1193</td>
<td>42</td>
<td>1393</td>
</tr>
<tr>
<td>18</td>
<td>1221</td>
<td>43</td>
<td>1394</td>
</tr>
<tr>
<td>19</td>
<td>1223</td>
<td>44</td>
<td>1651</td>
</tr>
<tr>
<td>20</td>
<td>1227</td>
<td>45</td>
<td>1652</td>
</tr>
<tr>
<td>21</td>
<td>1229</td>
<td>46</td>
<td>1653</td>
</tr>
<tr>
<td>22</td>
<td>1234</td>
<td>47</td>
<td>1654</td>
</tr>
<tr>
<td>23</td>
<td>1239</td>
<td>48</td>
<td>1655</td>
</tr>
<tr>
<td>24</td>
<td>1248</td>
<td>49</td>
<td>1656</td>
</tr>
<tr>
<td>25</td>
<td>1252</td>
<td>50</td>
<td>1719</td>
</tr>
</tbody>
</table>
AERO 122, 142

STAGE III

I. STAGE III Objective: (12 hours) The objective of STAGE III is to introduce, explain, calculate and determine safe operating procedures for both weight and balance and performance.

II. STAGE I Completion Standard: The student will successfully complete STAGE III by obtaining a written test score of 70% or better.
AERO 122, 142

Class Lesson 11 Plan
STAGE III

Lesson 11

Weight/Balance: *Computations *Limitations *Read Chapter V from text *Adverse affects *Mathematics

OBJECTIVE:
At the completion of this lesson, the student will be able to:

*Compute weight/balance
*Identify unsafe conditions
*Interpret different tables/graphs for weight/balance determination

COMPLETION STANDARDS:
*The student will be able to determine weight/balance information
*Recognize adverse loading characteristics
*Identify safety limitations
*Receive passing score on STAGE III test

FORMAT:
*Give quiz
*Introduction of terms utilized in weight/balance
*Review basic mathematics
*Work out sample problems from log books of aircraft at the facility
AERO 122, 142

Lesson 11 Quiz

STAGE III

QUIZ (10 Items)

*Gas weight
*Oil weight
*Empty weight
*Useful load
*Gross weight
*Datum line
*Arm
*Moment
*Center of gravity
*Center of gravity envelope

ADDITIONAL INFORMATION TO BE COVERED
*Center of pressure
*Stability characteristics
*Safe, acceptable operations
NAME ____________________________

STUDENT EXERCISE B-2

DETERMINATION OF CENTER OF GRAVITY (CG)

1. **Moments:** Compute the moment for each weight according to distance from the datum line. "X" (20 lbs.) represents the total weight of the oar.

POSITIVE MOMENTS (Weight x arm = moment):

A. ______ x ______ = _______ pound-inches
B. ______ x ______ = _______ pound-inches
C. ______ x ______ = _______ pound-inches
D. ______ x ______ = _______ pound-inches
E. ______ x ______ = _______ pound-inches

TOTAL _______ pound-inches

NEGATIVE MOMENTS

A. ______ x ______ = _______ pound-inches

2. **Net Moment** = _______ pound-inches (positive minus negative) (

3. **Total Weight** = _______ (include weight of bar) (?

4. **Center of Gravity (CG)** = _______ inches from datum line. (?)
AERO 122, 142

Lesson 12
AERO 122, 142

Lesson 12

Weight/Balance Continued: Review different methods of computation
Review Chapter V from text

OBJECTIVE:
By the end of the lesson, the student will be able to:
* Determine weight/balance information from several different methods of computations

COMPLETION STANDARDS:
* The instructor will pick ten questions from Private Pilot Test Book and assign them to students to do and review satisfactorily
* Receive a passing score on STAGE III test

FORMAT:
* Give quiz
* Review all previous information
* Introduce different methods of computation
* Administer ten sample questions from Private Pilot Test Booklet
* Review results from questions
QUIZ (10 Items)

*The ten quiz items will be picked by the instructor from weight/balance questions from the Private Pilot Test Booklet.

ADDITIONAL INFORMATION TO BE COVERED:

*Computation method

*Graph method

*Tables method
WEIGHT & BALANCE

(NOTES)

AIRPLANE LOADED FORWARD OF THE C.G. RANGE: UNDESIRABLE CHARACTERISTICS:
A. EXCESSIVE LOADS ON NOSE WHEEL (TENDENCY TO NOSE OVER ON TAILWHEEL TYPE AIRPLANES)
B. DECREASED PERFORMANCE
C. HIGHER STALL SPEEDS.
D. HIGHER STICK FORCES.

A NOSE HEAVY AIRPLANE IS TOO STABLE!!!

AIRPLANE LOADED AFT OF THE C.G. RANGE: UNDESIRABLE CHARACTERISTICS:
A. DECREASED STATIC & DYNAMIC STABILITY. UNDER SOME CONDITIONS THE AIRPLANE MAY BE IMPOSSIBLE TO CONTROL.
B. VERY LIGHT STICK FORCES. (EASY TO OVERSTRESS THE AIRPLANE INADVERTENTLY)
C. VERY LIGHT STICK FORCES. (EASY TO OVERSTRESS THE AIRPLANE INADVERTENTLY)

A TAIL HEAVY AIRPLANE IS VERY UNSTABLE!!!
AERO 122, 142

Lesson 13
Lesson 13

Performance: *Computations *Variables *Charts *Graphs
 *Density Altitude

Read Chapter VI in text

OBJECTIVE:

At the conclusion of this lesson, the student should be able to:

* Understand the effects of temperature and condensation on performance

* Apply variables to charts/graphs

* Determine accurately performance criteria

* Determine density altitude

COMPLETION STANDARD:

* The lesson will be considered completed when the student can work out various problems from the Private Pilot Test booklet

* Receive a passing score on STAGE III written test

FORMAT:

* Handout performance charts

* Lecture on performance characteristics

* Explain density altitude

* Work together on performance charts/graphs from Private Pilot Test booklet

* Give quiz and review
AERO 122, 142

Class Lesson 13 Quiz

STAGE III

QUIZ (10 Items)

*After lecture is completed, instructor will choose ten performance questions from the Private Pilot Test booklet.

*At the completion of the quiz, problems would be worked out together as a group.
EXAMPLE: 40 knot wind at 30° angle.

A 30° angle between wind and runway.
B 40 knots total wind velocity.
C 35 knot headwind component.
D 20 knot crosswind component.

Crosswind Component Graph.
LANDING DISTANCE

ASSOCIATED CONDITIONS:

- POWER: RETARDED TO MAINTAIN 900 FT ON FINAL APPROACH
- FLAPS: DOWN
- LANDING GEAR: DOWN
- RUNWAY: PAVED, LEVEL, DRY SURFACE
- APPROACH SPEED: IAS AS TABULATED
- BRAKING: MAXIMUM

<table>
<thead>
<tr>
<th>OAT</th>
<th>PRESSURE ALTITUDE</th>
<th>WEIGHT</th>
<th>SPEED AT 50 FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C (77°F)</td>
<td>3965 FT</td>
<td>2814 LBS</td>
<td>90 KNOTS (HEADWIND)</td>
</tr>
</tbody>
</table>

GROUND ROLL: 1080 FT
TOTAL OVER 50 FT OBSTACLE: 1700 FT
APPROACH SPEED: 68 KNOTS (78 MPH)

Figure 28. Airplane Landing Distance Graph.
IC 133

Flaps lowered to 40°, power off, hard surface runway - zero wind.

Approach speed, IAS, MPH. Ground roll, total to clear 50 ft. obs. Roll 50 ft. Obs. Ground roll, total to clear 50 ft. obs. Ground roll, total to clear 50 ft. obs.

<table>
<thead>
<tr>
<th>Gross weight (lbs)</th>
<th>Approach speed, IAS, MPH</th>
<th>Ground roll</th>
<th>Total to clear 50 ft. obs.</th>
<th>Ground roll</th>
<th>Total to clear 50 ft. obs.</th>
<th>Ground roll</th>
<th>Total to clear 50 ft. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>60</td>
<td>445</td>
<td>1075</td>
<td>470</td>
<td>1135</td>
<td>495</td>
<td>1195</td>
</tr>
</tbody>
</table>

NOTES:
1. Decrease the distances shown by 10% for each 4 knots of headwind.
2. Increase the distance by 10% for each 60°F temperature increase above standard.
3. For operation on a dry, grass runway, increase distances (both "ground roll" and "total to clear 50 ft. obstacle") by 20% of the "total to clear 50 ft. obstacle" figure.

Airplane Landing Distance Table.
Lesson 14
Lesson 14

Review/Test: *Review for STAGE III test

STAGE III test

OBJECTIVE:

At the completion of this lesson, the student should be able to:

*Evaluate information previously given

COMPLETION STANDARD:

*A test score of at least 70% would be considered a minimum score.

FORMAT:

*Conduct review
*Question/answer period
*Administer test
*Grade test
*Return test
*Review test
AERO 122, 142

Class Lesson 14 Test
STAGE III

TEST DAY

STAGE III (No quiz)
AERO 142/122

Private Pilot Ground School

Stage Test III

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1214</td>
<td>26</td>
<td>1681</td>
</tr>
<tr>
<td>02</td>
<td>1288</td>
<td>27</td>
<td>1682</td>
</tr>
<tr>
<td>03</td>
<td>1289</td>
<td>28</td>
<td>1683</td>
</tr>
<tr>
<td>04</td>
<td>1290</td>
<td>29</td>
<td>1684</td>
</tr>
<tr>
<td>05</td>
<td>1291</td>
<td>30</td>
<td>1685</td>
</tr>
<tr>
<td>06</td>
<td>1292</td>
<td>31</td>
<td>1686</td>
</tr>
<tr>
<td>07</td>
<td>1296</td>
<td>32</td>
<td>1687</td>
</tr>
<tr>
<td>08</td>
<td>1300</td>
<td>33</td>
<td>1688</td>
</tr>
<tr>
<td>09</td>
<td>1661</td>
<td>34</td>
<td>1689</td>
</tr>
<tr>
<td>10</td>
<td>1662</td>
<td>35</td>
<td>1690</td>
</tr>
<tr>
<td>11</td>
<td>1663</td>
<td>36</td>
<td>1691</td>
</tr>
<tr>
<td>12</td>
<td>1664</td>
<td>37</td>
<td>1692</td>
</tr>
<tr>
<td>13</td>
<td>1665</td>
<td>38</td>
<td>1693</td>
</tr>
<tr>
<td>14</td>
<td>1666</td>
<td>39</td>
<td>1694</td>
</tr>
<tr>
<td>15</td>
<td>1667</td>
<td>40</td>
<td>1695</td>
</tr>
<tr>
<td>16</td>
<td>1668</td>
<td>41</td>
<td>1696</td>
</tr>
<tr>
<td>17</td>
<td>1669</td>
<td>42</td>
<td>1697</td>
</tr>
<tr>
<td>18</td>
<td>1670</td>
<td>43</td>
<td>1698</td>
</tr>
<tr>
<td>19</td>
<td>1671</td>
<td>44</td>
<td>1702</td>
</tr>
<tr>
<td>20</td>
<td>1673</td>
<td>45</td>
<td>1703</td>
</tr>
<tr>
<td>21</td>
<td>1676</td>
<td>46</td>
<td>1704</td>
</tr>
<tr>
<td>22</td>
<td>1677</td>
<td>47</td>
<td>1705</td>
</tr>
<tr>
<td>23</td>
<td>1678</td>
<td>48</td>
<td>1706</td>
</tr>
<tr>
<td>24</td>
<td>1679</td>
<td>49</td>
<td>1707</td>
</tr>
<tr>
<td>25</td>
<td>1680</td>
<td>50</td>
<td>1708</td>
</tr>
</tbody>
</table>

Instructions:
1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.
AERO 122, 142

STAGE IV

I. STAGE IV OBJECTIVE: (12 hours) The objective of STAGE IV is to introduce and explain the airport environment. This includes markings, lights, communications, airspace, and special use airspace. This stage will also introduce and explain how to extract information from publications.

II. STAGE IV COMPLETION STANDARD: The student will successfully complete STAGE IV by obtaining a minimum score of 70% or better on written stage check.
AERO 122, 142

Lesson 15
Lesson 15

Airports/Airspace: Airport markings *Traffic patterns
*Lighting *Wind indicators *Basic communications *Control zones *Airport traffic area *Control areas

Read Chapter VII up to Airspace, page 201:

OBJECTIVE:

By the end of this lesson, the student will be able to:

* Determine airport/runway markings
* Identify wind indicators and traffic patterns
* Communicate basically/light signals
* Identify/explain:
 1. Control zones
 2. Airport traffic areas
 3. Unicom/multicom
 4. Airport terminal information service
 5. Light signals
 6. Special VFR clearance
 7. Transition areas
 8. Continental control area
 9. Positive control area

COMPLETION STANDARD:

* The lesson will be considered completed when the student can identify and explain control areas and communication frequencies from a chart.
* Pass STAGE IV test with a minimum score of 70% or more.
Lesson 15

FORMAT:

* Give quiz
* Lecture on traffic patterns/logs
* Lecture on wind/runway definitions
* Pass out and explain traffic pattern handout
* Pass out airspace handout and explain
* Refer to chart in text and point out various communications and control arms
* Refer to legend and chart for clarification
Quiz (10 items)

* Segmented circle
* (2) Wind indicators
* Draw traffic pattern and logs
* VASI
* Unicom/multicom
* Airport traffic area
* ATIS
* Continental control area/positive control area
* Control cones
* Runway lights/light signals

Additional items to be covered:
* 2 Bar/3 Bar VASI
* PAPI light system
* 3 Color light system
* Runway numbering
* Special airport detecting systems
Lesson 16
AERO 122, 142

Lesson 16

Special Airspace: *All lights *Special use airspace *Grenich time *VHF/UHF L.M.H. frequencies

OBJECTIVES:

At the conclusion of this lesson, the student should be able to:

*Recognize different airport lighting

*Identify/explain special use airspace to include:
 1. ARSA
 2. TCA
 3. TRSA

*Identify/explain differences in VHF/UHF frequencies to low, medium, and high frequencies

COMPLETION STANDARDS:

*The student will be able to distinguish special use airspace from a chart

*The student will know all airport lighting

*The student will identify the difference in frequencies

FORMAT:

*Give quiz

*Introduce a chart and explain different airspaces and communications

*Lecture on usage of transponders and codes

*Relate to Grenich time for position
*(3) Types of control areas
*Military training route
*VHF/UHF frequencies/low, medium, high
*Greenwich time
*Approach lights
*Runway lights
*Noise abatement areas
*Terminal control areas
*Beacon colors
*Terminal radar service area

ADDITIONAL ITEMS TO BE COVERED
*Airport radar service area
*Transponders
FEDERAL AVIATION ADMINISTRATION

FSS COMMUNICATIONS

In order for the pilot to obtain the services of the Flight Service Station, he must first establish communications. Flight Service Station frequencies can be found on Sectional and World Aeronautical Charts, as well as in the Airman's Information Manual. When contacting a Flight Service Station the pilot should remember a few items of courtesy and use proper communications technique.

1. Select the proper frequency for the service desired: Flight Watch frequency for weather information ONLY, Airport Advisory frequency for Airport Advisories, and the Discrete frequency for routine communications.

2. Monitor the frequency before transmitting.

3. On initial contact use the complete aircraft identification.

4. Advise the FSS specialist on which frequency you expect a response.

5. Give the specialist a chance to answer before repeating the call, changing frequencies, or proceeding with your message.

6. Avoid calling the FSS at 15 minutes past the hour, during the scheduled weather broadcast.

<table>
<thead>
<tr>
<th>HEAVY LINE BOX indicates Flight Service Station. Normally 122.2 and 121.5 are available. Triangles in corners of the box indicate Enroute Flight Advisory Service 122.0.</th>
<th>HEAVY LINE BOX indicates Flight Service Station. Normally 122.2 and 121.5 are available. Square, outside lower right corner, indicates Transcribed Weather Broadcast (TWEB) available on VOR frequency.</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.1R 122.5 LOS ANGELES 113.6 Ch 83 LAX ᵂˡˡ</td>
<td>122.1R 122.6 123.6 DAGGETT 113.2 Ch 79 DAG ᵂˡˡ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>122.1R (Duplex) FSS has Receiver Only. Pilot must transmit on 122.1 and listen on the VOR 113.6.</th>
<th>122.1R (Duplex) FSS has Receiver Only. Pilot must transmit on 122.1 and listen on the VOR 113.2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.5 (Simplex) FSS discrete frequency.</td>
<td>122.6 (Simplex) FSS discrete frequency.</td>
</tr>
</tbody>
</table>

When contacting Flight Watch always advise them of your position on initial contact.
LIMITED REMOTE COMMUNICATIONS OUTLET
and NAVAID. (Duplex) "Santa Catalina" is the name of the LHSO and NAVAID. Square, in lower right corner, indicates Transcribed Weather Broadcast (TWEB) available on the VOR frequency. Los Angeles is the controlling Flight Service Station.

SANTA CATALINA
109.4 Ch 31 SXC
[LOS ANGELES]

LHSOs of this type usually have receivers at the site (e.g., 122.1R); however, when FSS receivers are located close by, a receiver is not always provided at the NAVAID site. The pilot must transmit on a Los Angeles FSS frequency such as 122.1 and receive on the VOR 109.4.

LIMITED REMOTE COMMUNICATIONS OUTLET
and NAVAID. (Duplex) "Gorman" is the name of the LHSO and NAVAID. Bakersfield is the controlling Flight Service Station.

122.1R
GORMAN
116.1 Ch 108 GMN
[BAKERSFIELD]

122.1R (Duplex) FSS has Receiver Only. Pilot must transmit on 122.1 and listen on the VOR 116.1.

SIMPLEX - The pilot transmits and receives on the same frequency.
DUPLEX - The pilot transmits on one frequency and receives on a different frequency.

The above are examples ONLY, not to be used for communications or navigation.

LIMITED REMOTE COMMUNICATIONS OUTLET
(Simplex) "Winnebago" is the name of the LHSO with simplex frequency of 122.3. Lovelock is the controlling Flight Service Station.

WINNEBAGO LRCO
LOVELOCK

122.3

REMO TED ENROUTE FLIGHT ADVISORY
SERVICE. (Simplex) Flight Watch is on a common frequency of 122.0.

OAKLAND
FLIGHT WATCH

When contacting Flight Watch always advise them of your position on initial contact.

NAVAID ONLY with NO FSS communications. The underlined frequency (108.4) indicates no voice available through the VOR.

LAKE HUGHES
108.4 Ch 21 LHS

122.1R (Duplex) FSS has Receiver Only. Pilot must transmit on 122.1 and listen on the VOR 116.1.
Lesson 17

Flight Publications: *Regulatory/non-regulatory publications
*Aeronautical charts *Airman's information manual *Exam-O-Grams *NOTAMS

OBJECTIVE:
At the completion of this lesson, the student should be able to:

*Extract information from the Airman's Information Manual
*Obtain information from regulatory and non-regulatory publications
*Utilize different aeronautical charts

COMPLETION STANDARD:
*Student will know where to find information and be able to obtain it
*Receive a passing score on STAGE IV written test

FORMAT:
*Give quiz
*Show samples of regulatory and non-regulatory publications and explain
*Show samples of different aeronautical charts and explain
*Extract information from text to help utilize the Airman's Information Manual

*NOTE: If instructor has no samples of publications or charts, examples are in text.
AERO 122, 142 Class Lesson 17 Quiz STAGE IV

QUIZ (10 Items)

*Airworthiness directives - A.D.
*Advisory circulars - A.C.
*Exam-0-grams
*Notices to airman - MOTAMS
*Airman's Information Manual - AIM
*Airport Facility Directory
*(2) Charts
*Graphic notices
*National Transportation Safety Board
*Alerts/Safety Standards Pamphlets

ADDITIONAL INFORMATION TO BE COVERED:
*NOTAM (D); (L)
*FDC MOTAMS
*Advisory Circular checklist
AERO 122, 142

Lesson 18
STAGE IV

Lesson 18

Review/Test: *Review for STAGE IV test

STAGE IV Test

OBJECTIVE:

At the completion of this lesson, the student should be able to:

*Evaluate information from publications and charts

COMPLETION STANDARD:

*A test score of at least 70% would be considered minimum.

FORMAT:

*Conduct review

*Question/answer period

*Administer test

*Grade test

*Return test

*Review test
AERO 122, 142

Class Lesson 18 Test
STAGE IV

TEST DAY STAGE IV

(No Quiz)
AERO 142/122
Private Pilot Ground School
Stage Test IV

Name: ___________________________ Date: ___________________________

Instructions: 1. Write your name and date at the top.
 2. Answer only the easy questions... first.
 3. Mark your answers on this sheet first.
 4. Make any notes about the question on this sheet.
 5. Transfer your answers to the Scantron sheet after you are all done.
 6. If you elect to take a break, do so quietly.
 7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1064</td>
<td>26</td>
<td>1610</td>
</tr>
<tr>
<td>02</td>
<td>1065</td>
<td>27</td>
<td>1613</td>
</tr>
<tr>
<td>03</td>
<td>1066</td>
<td>28</td>
<td>1616</td>
</tr>
<tr>
<td>04</td>
<td>1125</td>
<td>29</td>
<td>1619</td>
</tr>
<tr>
<td>05</td>
<td>1132</td>
<td>30</td>
<td>1622</td>
</tr>
<tr>
<td>06</td>
<td>1138</td>
<td>31</td>
<td>1709</td>
</tr>
<tr>
<td>07</td>
<td>1140</td>
<td>32</td>
<td>1718</td>
</tr>
<tr>
<td>08</td>
<td>1141</td>
<td>33</td>
<td>1761</td>
</tr>
<tr>
<td>09</td>
<td>1142</td>
<td>34</td>
<td>1764</td>
</tr>
<tr>
<td>10</td>
<td>1147</td>
<td>35</td>
<td>1768</td>
</tr>
<tr>
<td>11</td>
<td>1151</td>
<td>36</td>
<td>1771</td>
</tr>
<tr>
<td>12</td>
<td>1154</td>
<td>37</td>
<td>1777</td>
</tr>
<tr>
<td>13</td>
<td>1156</td>
<td>38</td>
<td>1789</td>
</tr>
<tr>
<td>14</td>
<td>1158</td>
<td>39</td>
<td>1791</td>
</tr>
<tr>
<td>15</td>
<td>1160</td>
<td>40</td>
<td>1795</td>
</tr>
<tr>
<td>16</td>
<td>1162</td>
<td>41</td>
<td>1798</td>
</tr>
<tr>
<td>17</td>
<td>1164</td>
<td>42</td>
<td>1799</td>
</tr>
<tr>
<td>18</td>
<td>1167</td>
<td>43</td>
<td>1800</td>
</tr>
<tr>
<td>19</td>
<td>1171</td>
<td>44</td>
<td>1803</td>
</tr>
<tr>
<td>20</td>
<td>1599</td>
<td>45</td>
<td>1808</td>
</tr>
<tr>
<td>21</td>
<td>1601</td>
<td>46</td>
<td>1810</td>
</tr>
<tr>
<td>22</td>
<td>1602</td>
<td>47</td>
<td>1812</td>
</tr>
<tr>
<td>23</td>
<td>1603</td>
<td>48</td>
<td>1814</td>
</tr>
<tr>
<td>24</td>
<td>1604</td>
<td>49</td>
<td>1840</td>
</tr>
<tr>
<td>25</td>
<td>1605</td>
<td>50</td>
<td>1842</td>
</tr>
</tbody>
</table>
I. STAGE V OBJECTIVE: (3 hours) The objective of STAGE V is to evaluate learning retention from previous stages.

II. STAGE V COMPLETION STANDARD: The student will successfully complete STAGE V by obtaining a score of 70% or better on written stage test.
AERO 122, 142

Lesson 19
Lesson 19

MID-TERM: *All previous material covered

OBJECTIVE:

By the end of this lesson, the student will be able to:

* Determine if all previously learned material has been retained.

COMPLETION STANDARD:

*A minimum score of 70% is considered passing.

FORMAT:

* Conduct review
* Question/answer period
* Administer test
* Grade test
* Return test
* Review test
AERO 122, 142

TEST DAY: STAGE V (Mid-term)

No Quiz
AERO 142/122

Private Pilot Ground School
Stage Test V
Mid Term

Name: ______________________ Date: ____________________

Instructions: 1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1004</td>
<td>26</td>
<td>1612</td>
</tr>
<tr>
<td>02</td>
<td>1005</td>
<td>27</td>
<td>1614</td>
</tr>
<tr>
<td>03</td>
<td>1014</td>
<td>28</td>
<td>1623</td>
</tr>
<tr>
<td>04</td>
<td>1018</td>
<td>29</td>
<td>1658</td>
</tr>
<tr>
<td>05</td>
<td>1024</td>
<td>30</td>
<td>1674</td>
</tr>
<tr>
<td>06</td>
<td>1028</td>
<td>31</td>
<td>1675</td>
</tr>
<tr>
<td>07</td>
<td>1030</td>
<td>32</td>
<td>1693</td>
</tr>
<tr>
<td>08</td>
<td>1037</td>
<td>33</td>
<td>1704</td>
</tr>
<tr>
<td>09</td>
<td>1039</td>
<td>34</td>
<td>1707</td>
</tr>
<tr>
<td>10</td>
<td>1072</td>
<td>35</td>
<td>1715</td>
</tr>
<tr>
<td>11</td>
<td>1074</td>
<td>36</td>
<td>1763</td>
</tr>
<tr>
<td>12</td>
<td>1093</td>
<td>37</td>
<td>1772</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>38</td>
<td>1775</td>
</tr>
<tr>
<td>14</td>
<td>1121</td>
<td>39</td>
<td>1792</td>
</tr>
<tr>
<td>15</td>
<td>1133</td>
<td>40</td>
<td>1796</td>
</tr>
<tr>
<td>16</td>
<td>1159</td>
<td>41</td>
<td>1805</td>
</tr>
<tr>
<td>17</td>
<td>1169</td>
<td>42</td>
<td>1809</td>
</tr>
<tr>
<td>18</td>
<td>1183</td>
<td>43</td>
<td>1823</td>
</tr>
<tr>
<td>19</td>
<td>1282</td>
<td>44</td>
<td>1826</td>
</tr>
<tr>
<td>20</td>
<td>1295</td>
<td>45</td>
<td>1829</td>
</tr>
<tr>
<td>21</td>
<td>1307</td>
<td>46</td>
<td>1837</td>
</tr>
<tr>
<td>22</td>
<td>1309</td>
<td>47</td>
<td>1839</td>
</tr>
<tr>
<td>23</td>
<td>1314</td>
<td>48</td>
<td>1841</td>
</tr>
<tr>
<td>24</td>
<td>1338</td>
<td>49</td>
<td>1855</td>
</tr>
<tr>
<td>25</td>
<td>1608</td>
<td>50</td>
<td>1856</td>
</tr>
</tbody>
</table>
I. STAGE VI OBJECTIVE: (12 hours) The objective of STAGE VI is to teach the basics of weather and what the primary elements are. This stage will also teach students how to interpolate, identify, and make decisions regarding weather criteria, charts, and forecasts.

II. STAGE VI COMPLETION STANDARD: The student will successfully complete STAGE VI by obtaining a score of 70% or better on the written stage test.
AERO 122, 142

Lesson 20

Basic Weather: *Pressure systems *Ceiling *Clouds *Fog *Ice *Fronts *Airmass *Wind shear *Dew point *Coriolis force

OBJECTIVE:
By the end of the lesson, the student will be able to:
*Know what causes weather
*Know the effects and differences in:
1. Pressure systems
2. Clouds
3. Fog
4. Ice
5. Fronts
6. Airmasses

COMPLETION STANDARD:
*The lesson will be considered complete when the student can identify and explain basic weather aspects
*Pass STAGE VI with a minimum score of 70%

FORMAT:
*Give quiz
*Lecture on what causes weather
*Lecture on all related properties of weather
AERO 122, 142

Class Lesson 20 Quiz

STAGE VI

Quiz (10 Items)

*Causes of weather
*Dew point
*Low pressure systems
*High pressure systems
*Ceiling
*(2) Fogs
*(2) Ice
*Wind shear
*(2) Clouds
*Airmass/fronts

ADDITIONAL INFORMATION TO BE COVERED:
*Lapse rates
*Sublimation
*Inversion layers
*Thunderstorms
*Onshore/offshore winds
*Prevailary winds
*Stability
*Cloud-base formula
*Radiation
*Standard day
Lesson 21
Lesson 21

WEATHER SERVICES: *Reports *Forecasts *Charts *Flight Service Station

Read Chapter IX from information

TEXT:

OBJECTIVE:

By the end of this lesson, the student will be able to:

*Read weather charts, forecasts
*Know how to obtain weather information
*Know what a flight service station can do for weather information

COMPLETION STANDARD:

*The student will be able to read, interpret, and understand weather charts, forecasts, and relating information
*Receive a minimum score of 70% on STAGE VI written test

FORMAT:

*Review basic weather
*Give quiz
*Show samples of weather reports/forecasts
*Give out weather key
*Read reports/forecasts together
*Call on telephone and receive a weather briefing
Quiz (10 Items)

*How do you obtain a weather briefing
*Transcribed weather enroute broadcast (TWEB)
*Enroute Flight Advisory Service (EFAS)
*Pilot reports (PIREPS)
*Notices to airman (NOTAMS)
*Sigmet/airmet
*Convective outlook
*Pilots automatic weather answering service (PATWAS)
*Runway visual range (RVR)
*(2) Types of weather charts

ADDITIONAL INFORMATION TO BE COVERED:
*Terminal chart
*Aero chart
*Depiction chart
*Prognostive chart
*Radar summary chart
*Winds aloft chart
*Surface aviation chart
KEY TO AVIATION WEATHER FORECASTS

KEY TO AVIATION WEATHER OBSERVATIONS

LOCATION IDENTIFICATION TYPE AND TIME OF REPORT

<table>
<thead>
<tr>
<th>HECC BA</th>
<th>BA</th>
<th>MCI</th>
<th>DC</th>
<th>OVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M211</td>
<td>18K</td>
<td>241</td>
<td>720</td>
<td>2220</td>
</tr>
</tbody>
</table>

SKY AND CEILING

- **Skies:** Clear, Few, Slight, Moderate, Heavy, Ov., Plastic, None, Clouds
- **Ceilings:** None, Shaded

VISIBILITY

- **Visibility:** 1000 or better, 500-499, 500-999, 1000-1999, 2000-4999, 5000-9999, 10000-19999, 20000-
- **Visibility Variation:** Increase, Decrease

WEATHER AND OBSTRUCTION TO VISION SYMBOLS

- **Weather:** Rain, Snow, Sleet, Hail, Partly Cloudy
- **Obstructions:** Vegetation, Snow, Ice

SEA LEVEL PRESSURE

- **Pressure:** Normal, Slight, Moderate, Very High, Very Low

TEMPERATURE AND DEW POINT

- **Temperature:** Cold, Moderate, Warm
- **Dew Point:** Cold, Moderate, Warm

WEATHER FORECAST

- **Forecast:** Clear, Partial Cloudy, Overcast

ALTIMETER SETTING

- **Setting:** Standard, Corrected

REMARKS AND COOLED DATA

- **Remarks:** None, Precipitation, Condition of runway, Visibility

RUNWAY VISUAL RANGE (RVR)

- **RVR:** Reported from same station. Extreme values during 60 minutes prior to observation are given in hundreds of feet. Runway identification precedes RVR report.

PILOT REPORTS (PIREPS)

- **PIREPS:** Weather reports, PIREPS, in fixed format are appended to weather observations. The PIREP is designated by WP.

DECoded REPORT

- **KANSAS CITY: 1700Z 24 MAY 1992**

TYPE OF REPORT

- **Final unconditional special observation indicating a significant change in one or more elements.**

EXAMPLES OF TERMINAL FORECASTS

- **5/22 2100Z**

EXAMPLES OF WEATHER FORECASTS

- **5/22 2100Z**

KEY TO AVIATION WEATHER FORECASTS

- **Terminal Forecasts:** Contain information for specific airports on expected visual and surface wind. They are issued 1 hour, and observations and forecasts to 24 hours. The last six hours of each forecast can be given in the forecast format.

Ceiling: By the letter "C" followed by an integer or fraction, followed by "m" and "h". Ceiling forecasts for stations with no ceiling will be indicated by "C" followed by "m" and "h". Runway forecasts for stations with no ceiling will be indicated by "C" followed by "m" and "h".

Wind and Temperature aloft (CT forecasts): Are 24-hour forecasts of wind and temperature aloft, given for selected levels of flight. These forecasts may be obtained from the National Weather Service in Kansas City for the continental U.S. This format consists of three columns containing observations of temperature, wind direction, and wind speed at each level for the 24-hour forecast period.

Runway Visual Range (RVR): Is reported from same station. Extreme values during 60 minutes prior to observation are given in hundreds of feet. Runway identification precedes RVR report.

Pilot Reports (PIREPS): Weather reports, PIREPS, in fixed format are appended to weather observations. The PIREP is designated by WP.
AERO 122, 142

Lesson 22
Lesson 22

Review Weather: *All aspects, terms, definitions, charts, forecasts.

Review chapters VIII and IX

OBJECTIVE:

By the end of this lesson, the student will be able to:

*Explain, determine, and predict weather criteria

COMPLETION STANDARD:

*The student will be able to extract information from various charts/forecasts

*Pass STAGE VI written test with a minimum of 70%

FORMAT:

*Show weather tapes. Tapes are located at SBVC Film Library. Volume 4, A and B. An Invitation to Fly Private Course.

*Instructor will pick ten questions from Private Pilot Test Guide Booklet

*Give quiz

*Review quiz and tapes
AERO 122, 142 Class Lesson 22 Quiz

Quiz (10 Items)

*The instructor will pick ten questions from the Private Pilot Test Booklet.
Lesson 23

Review/Test: *Review for STAGE VI test.

STAGE VI Test

OBJECTIVE:

At the completion of this lesson, the student will be able to:

*Evaluate previously given information

COMPLETION STANDARD:

*A test score of at least 70% would be considered minimum.

FORMAT:

*Conduct review
*Question/answer period
*Administer test
*Grade test
*Return test
*Review test
AERO 122, 142

Class Lesson 23 Test
STAGE VI

TEST DAY STAGE VII

No Quiz
AERO 142/122
Private Pilot Ground School
Final Test VI

Instructions: 1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1075</td>
<td>26</td>
<td>1454</td>
</tr>
<tr>
<td>02</td>
<td>1108</td>
<td>27</td>
<td>1458</td>
</tr>
<tr>
<td>03</td>
<td>1115</td>
<td>28</td>
<td>1473</td>
</tr>
<tr>
<td>04</td>
<td>1130</td>
<td>29</td>
<td>1479</td>
</tr>
<tr>
<td>05</td>
<td>1155</td>
<td>30</td>
<td>1485</td>
</tr>
<tr>
<td>06</td>
<td>1157</td>
<td>31</td>
<td>1505</td>
</tr>
<tr>
<td>07</td>
<td>1161</td>
<td>32</td>
<td>1514</td>
</tr>
<tr>
<td>08</td>
<td>1175</td>
<td>33</td>
<td>1520</td>
</tr>
<tr>
<td>09</td>
<td>1186</td>
<td>34</td>
<td>1534</td>
</tr>
<tr>
<td>10</td>
<td>1198</td>
<td>35</td>
<td>1538</td>
</tr>
<tr>
<td>11</td>
<td>1215</td>
<td>36</td>
<td>1550</td>
</tr>
<tr>
<td>12</td>
<td>1218</td>
<td>37</td>
<td>1586</td>
</tr>
<tr>
<td>13</td>
<td>1224</td>
<td>38</td>
<td>1596</td>
</tr>
<tr>
<td>14</td>
<td>1233</td>
<td>39</td>
<td>1601</td>
</tr>
<tr>
<td>15</td>
<td>1238</td>
<td>40</td>
<td>1614</td>
</tr>
<tr>
<td>16</td>
<td>1247</td>
<td>41</td>
<td>1671</td>
</tr>
<tr>
<td>17</td>
<td>1251</td>
<td>42</td>
<td>1683</td>
</tr>
<tr>
<td>18</td>
<td>1260</td>
<td>43</td>
<td>1695</td>
</tr>
<tr>
<td>19</td>
<td>1266</td>
<td>44</td>
<td>1719</td>
</tr>
<tr>
<td>20</td>
<td>1297</td>
<td>45</td>
<td>1781</td>
</tr>
<tr>
<td>21</td>
<td>1318</td>
<td>46</td>
<td>1787</td>
</tr>
<tr>
<td>22</td>
<td>1418</td>
<td>47</td>
<td>1810</td>
</tr>
<tr>
<td>23</td>
<td>1424</td>
<td>48</td>
<td>1828</td>
</tr>
<tr>
<td>24</td>
<td>1427</td>
<td>49</td>
<td>1840</td>
</tr>
<tr>
<td>25</td>
<td>1428</td>
<td>50</td>
<td>1856</td>
</tr>
</tbody>
</table>
I. STAGE VII OBJECTIVE: (3 hours) The objective of STAGE VII is to locate, identify, interpret, and explain the FARs applicable to a Private Pilot. Teach student how to use flight computer, plotter, navigate with reference to pilotage dead reckoning and radio navigation.

II. STAGE VII COMPLETION STANDARD: The student will be continually tested throughout the course on FARs. Passing FAR questions on stage tests will be considered satisfactory. Passing STAGE VII written test with a minimum grade of 70% or more.
Lesson 24
Lesson Plan 24 Plan
STAGE VII

Lesson 24
Regulations: *Parts 61, 91, 830 of FARs
Read Chapter XI
In text:
OBJECTIVE:
By the end of this lesson, the student will be able to:
*Locate, identify, and explain various FARs

COMPLETION STANDARD:
*The student has been introduced to FARs continually through the course.
*New FARs will be identified and explained.

FORMAT:
*Give out (3) page hand-out FARs.
*Use text, and look up various FARs from handout.
*Lecture and explain all applicable FARs.
*Review

NOTE: (No stage test on STAGE VII)
NOTE: No quiz on regulations (optional)
FEDERAL AVIATION REGULATIONS
PRIVATE
AND
COMMERCIAL
PILOTS

BE PREPARED TO GIVE A DEFINITION OF EACH OF THE FOLLOWING FAR'S.

FAR TOPIC
 61.17 TEMPORARY CERTIFICATES
 61.19 DURATION OF CERTIFICATES
 61.23 DURATION OF MEDICAL CERTIFICATES
 61.51 PILOT LOGBOOKS
 61.57 RECENT FLIGHT EXPERIENCE
 61.60 CHANGE OF ADDRESS
 61.11B PRIVATE PILOT PRIVILEGES AND LIMITATIONS
 61.139 COMMERCIAL PILOT PRIVILEGES AND LIMITATIONS
 91.3 RESPONSIBILITY AND AUTHORITY OF PILOT IN COMMAND
 91.5 PREFLIGHT ACTION (REO'D)
 91.9 CARELESS OR RECKLESS OPERATION
 91.11 LIQUOR AND DRUGS
 91.13 DROPPING OBJECTS
 91.14 FASTENING OF SEAT BELTS
 91.19 PORTABLE ELECTRONIC DEVICES (COMM)
 91.21 FLIGHT INSTRUCTION: SIMULATED INSTRUMENT FLIGHT
91.24 ATC TRANSPONDER EQUIPMENT
91.27 CIVIL AIRCRAFT: CERTIFICATIONS REQUIRED
91.29 CIVIL AIRCRAFT AIRWORTHINESS
91.31 CIVIL AIRCRAFT OPERATING LIMITATIONS AND MARKING
91.32 SUPPLEMENTAL OXYGEN
91.39 RESTRICTED CATEGORY CIVIL AIRCRAFT (COMM)
91.40 LIMITED CATEGORY CIVIL AIRCRAFT (COMM)
91.41 PROVISIONALLY CERTIFICATED CIVIL AIRCRAFT (COMM)
91.42 EXPERIMENTAL AIRCRAFT
91.52 EMERGENCY LOCATOR TRANSMITTER
91.65 OPERATING NEAR OTHER AIRCRAFT
91.67 RIGHT OF WAY RULES
91.70 AIRCRAFT SPEED
91.71 ACROMATIC FLIGHT
91.73 AIRCRAFT LIGHTS
<table>
<thead>
<tr>
<th>FAK</th>
<th>TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.75</td>
<td>COMPLIANCE WITH ATC CLEARANCES AND INSTRUCTIONS</td>
</tr>
<tr>
<td>91.77</td>
<td>ATC LIGHT SIGNALS</td>
</tr>
<tr>
<td>91.79</td>
<td>MINIMUM SAFE ALTITUDES</td>
</tr>
<tr>
<td>91.81</td>
<td>ALTIMETER SETTINGS</td>
</tr>
<tr>
<td>91.85</td>
<td>OPERATING ON OR IN THE VICINITY OF AN AIRPORT</td>
</tr>
<tr>
<td>91.87</td>
<td>OPERATION AT AIRPORTS WITH OPERATING CONTROL TOWERS</td>
</tr>
<tr>
<td>91.89</td>
<td>OPERATION AT AIRPORTS WITHOUT OPERATING CONTROL TOWERS</td>
</tr>
<tr>
<td>91.90</td>
<td>TERMINAL CONTROL AREAS</td>
</tr>
<tr>
<td>91.105</td>
<td>BASIC VFR WEATHER MINIMUMS</td>
</tr>
<tr>
<td>91.107</td>
<td>SPECIAL VFR WEATHER MINIMUMS</td>
</tr>
<tr>
<td>91.109</td>
<td>VFR CRUISING ALTITUDE OR FLIGHT LEVEL</td>
</tr>
<tr>
<td>91.163</td>
<td>MAINTENANCE (GENERAL)</td>
</tr>
<tr>
<td>91.167</td>
<td>CARRYING PERSONS (AFTER REPAIRS OR ALTERATIONS)</td>
</tr>
<tr>
<td>91.169</td>
<td>INSPECTIONS</td>
</tr>
<tr>
<td>91.170</td>
<td>ALTIMETER SYSTEM TESTS (COMM)</td>
</tr>
</tbody>
</table>
AERO 122, 142

Lesson 25
STAGE VII

Lesson 25

Flight Computer: *Computation side of flight computer (Computation Side)

Read Chapter XII
Pages 458-472

OBJECTIVE:

By the end of this lesson, the student will be able to:

*Utilize the computation side of the computer to compute:
 1. True airspeed
 2. Time and distance
 3. Fuel calculations
 4. Conversions
 5. Off course corrections
 6. True altitude
 7. Density altitude

COMPLETION STANDARD:

*The lesson will be complete when student can utilize the computer to answer sample problems from handouts

*Pass STAGE VII with a minimum score of 70%

FORMAT:

*Give out (3) page hand-out of sample problems
*Explain with large classroom computer procedures
*Instructor will pick 10 problems for quiz
*Review problems/and or questions
The instructor will pick (10) problems from handouts for the quiz. This will be done after lecture and demonstrations on the usage of the flight computer.

ADDITIONAL ITEMS TO BE COVERED:

*Electronic calculators

*FAA approved calculators
TIME SPEED DISTANCE PROBLEMS

If you know the speed, set the \(\Delta \) on it immediately. Your answer will be opposite either TIME or DISTANCE.

If you know both TIME and DISTANCE, place them together. Your SPEED answer will be at the \(\Delta \).

<table>
<thead>
<tr>
<th>GIVEN</th>
<th>GIVEN</th>
<th>FIND</th>
<th>ANSWERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. distance 84</td>
<td>speed 139</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>2. speed 105</td>
<td>distance 78</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>3. distance 38</td>
<td>speed 111</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>4. speed 159</td>
<td>distance 138</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>5. distance 128</td>
<td>speed 98</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>6. speed 105</td>
<td>distance 3.5</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>7. speed 88</td>
<td>distance 212</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>8. distance 216</td>
<td>speed 113</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>9. speed 126</td>
<td>distance 174</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>10. speed 85</td>
<td>time :51</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>11. time 2:13</td>
<td>speed 128</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>12. speed 147</td>
<td>time :28</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>13. time 1:07</td>
<td>speed 107</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>14. speed 126</td>
<td>time :06</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>15. time 4:10</td>
<td>speed 93</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>16. speed 102</td>
<td>time :33</td>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>17. time :25</td>
<td>distance 47</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>18. distance 73</td>
<td>time :13</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>19. time :58</td>
<td>distance 136</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>20. distance 208</td>
<td>time 1:06</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>21. time 1:13</td>
<td>distance 155</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>22. distance 11</td>
<td>time :05</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>23. distance 46</td>
<td>time 29</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>24. time 1:48</td>
<td>distance 183</td>
<td>speed</td>
<td></td>
</tr>
<tr>
<td>25. distance 93</td>
<td>time :52</td>
<td>speed</td>
<td></td>
</tr>
</tbody>
</table>
GAS PROBLEMS

If you know the gallons per hour, set the \(\Delta \) on the outer gallon scale immediately. Your answer will be opposite the engine time or gallons.

If you do not know the gallons per hour, place your engine time next to the gallons used. The \(\Delta \) will then indicate the gallons per hour.

<table>
<thead>
<tr>
<th>GIVEN</th>
<th>GIVEN</th>
<th>FIND</th>
<th>ANSWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. gal per hr. 17</td>
<td>gallons</td>
<td>39</td>
<td>time</td>
</tr>
<tr>
<td>2. gallons 29</td>
<td>gal per hr. 16.4</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>3. gal per hr. 16.5</td>
<td>gallons 58</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>4. gal per hr. 26</td>
<td>gallons 126</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>5. gal per hr. 23</td>
<td>gallons 49</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>6. gallons 38</td>
<td>gal per hr. 10.6</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>7. gal per hr. 13.4</td>
<td>gallons 34</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>8. gallons 37</td>
<td>gal per hr. 13</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>9. gal per hr. 13</td>
<td>gallons 47</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>10. gal per hr. 9.3</td>
<td>time 1:27</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>11. time 1:34</td>
<td>gal per hr. 7.8</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>12. gal per hr. 9.8</td>
<td>time 3:22</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>13. gal per hr. 31.0</td>
<td>time 3:14</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>14. time 3:14</td>
<td>gal per hr. 19</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>15. time 3:47</td>
<td>gal per hr. 9.4</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>16. time 1:42</td>
<td>gal per hr. 33</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>17. time 2:13</td>
<td>gallons 32</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>18. gallons 52</td>
<td>time 3:18</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>19. time 3:55</td>
<td>gallons 48</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>20. time 2:48</td>
<td>gallons 74</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>21. gallons 43.5</td>
<td>time 2:17</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>22. gallons 29</td>
<td>time 2:11</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>23. gallons 43</td>
<td>time 2:13</td>
<td>gal per hr.</td>
<td></td>
</tr>
<tr>
<td>24. gallons 36</td>
<td>time 2:57</td>
<td>gal per hr.</td>
<td></td>
</tr>
</tbody>
</table>
TRUE AIR SPEED PROBLEMS

Use the AIR SPEED CORRECTION scale of your computer and place AIR TEMPERATURE alongside ALTITUDE number.

Use the minute numbers on the TIME scale as your (IAS) indicated air speed.

The true air speed answers (TAS) will appear on the outside stationary scale, alongside the indicated air speed.

If temperature is given in FAHRENHEIT, use conversion scale and change it to CENTIGRADE.

<table>
<thead>
<tr>
<th></th>
<th>ALT</th>
<th>TEMP</th>
<th>IAS</th>
<th>TAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000</td>
<td>0° C</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>103</td>
<td>6000</td>
<td>-10° C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40° F</td>
<td>115</td>
<td>11000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12000</td>
<td>10° C</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>106</td>
<td>3000</td>
<td>-16° F</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20° C</td>
<td>118</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7000</td>
<td>-25° F</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>5000</td>
<td>10° C</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>76° F</td>
<td>121</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8000</td>
<td>-5° C</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>124</td>
<td>5000</td>
<td>-40° F</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20° C</td>
<td>112</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5000</td>
<td>0° F</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>147</td>
<td>-15° C</td>
<td>8600</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5000</td>
<td>125</td>
<td>10° C</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-12° F</td>
<td>9000</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>13500</td>
<td>-4° C</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17000</td>
<td>109</td>
<td>22° F</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>31° C</td>
<td>134</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11000</td>
<td>-23° C</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>121</td>
<td>7500</td>
<td>-17° F</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>15° C</td>
<td>113</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>143</td>
<td>-1° C</td>
<td>19000</td>
<td></td>
</tr>
</tbody>
</table>
Lesson 26
Lesson 26

Flight Computer: *Review Computation side
(wind face side) *Work wind face side
Read Chapter XII
Pages 472-474

OBJECTIVE:

By the end of this lesson, the student will be able to:

*Compute:
 1. Ground speeds
 2. Wind correction angles
 3. True headings

COMPLETION STANDARD:

*The student will be able to successfully work out sample problems from hand-out.

*Pass STAGE VII written test with a minimum score of 70%.

FORMAT:

*Review computation side

*Introduce wind side of computer with large in-class computer.

*Distribute hand-out and work sample problems.

*Pick (10) sample problems from all hand-outs given for quiz.

*Review quiz.
The instructor will pick (10) problems from all hand-out computer problems for quiz. This will be done after review of computation side and lecture and demonstration of wind face side.

ADDITIONAL ITEMS TO BE COVERED:

* Electronic computers
* FAA approved calculators
GROUND SPEED-TRUE HEADING PROBLEMS

1. Turn protractor ring to (WD) wind direction.
2. Write pencil cross vertically above center round mark.
 Its distance from round mark is based on wind speed.
3. Turn protractor ring to (TC) true course.
4. Slide board in pencil cross is on air speed line.
5. Position of round mark indicates (GS) ground speed.
6. Amount pencil cross is to right or left of center.
 Vertical line indicates wind correction crab angle.
 Apply crab to TC and get (TH) true heading. If cross is on right, add crab to TC and get TH. If cross is on left, subtract from TC.

<table>
<thead>
<tr>
<th>WD</th>
<th>WS</th>
<th>TC</th>
<th>TAS</th>
<th>GS</th>
<th>TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>050</td>
<td>146</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>025</td>
<td>283</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>030</td>
<td>036</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>080</td>
<td>035</td>
<td>257</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>025</td>
<td>063</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>030</td>
<td>300</td>
<td>211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>358</td>
<td>150</td>
<td>020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>194</td>
<td>035</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>280</td>
<td>155</td>
<td>030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>045</td>
<td>040</td>
<td>035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>385</td>
<td>289</td>
<td>060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>090</td>
<td>017</td>
<td>020</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>084</td>
<td>025</td>
<td>140</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>240</td>
<td>093</td>
<td>050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>155</td>
<td>182</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>030</td>
<td>073</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>005</td>
<td>122</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>165</td>
<td>243</td>
<td>023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>106</td>
<td>118</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>007</td>
<td>213</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>025</td>
<td>127</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>300</td>
<td>235</td>
<td>017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>133</td>
<td>359</td>
<td>045</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson 27

Basic Navigation: *Plotter *Computer *Variation *Deviation *Latitude and longitude *Time zones and flight plans

Read Chapter XII from text.

OBJECTIVE:

By the end of this lesson, the student will be:

*Use latitude and longitude lines
*Plot courses
*Utilize plotter and computer operations
*Determine wind effects
*Know how to file a flight plan

COMPLETION STANDARDS:

*The student will be able to plot a cross-country utilizing all aspects introduced.
*Pass the written stage test with a minimum score of 70% or better.

FORMAT:

*Give quiz
*Hand out flight plan and lecture
*Lecture on proper cross-country procedures
*Explain latitude and longitude
*Explain usage of plotter
*From chart in text, work out sample cross-countrys
Quiz (10 Items)

*(3) Different types of navigation
*Latitude
*Longitude
*Time zones
*Greenwich time (Zulu time)
*(2) Charts and scale
*Bracketing
*(3) Flight plan information
*Variation
*Deviation

ADDITIONAL ITEMS TO BE COVERED:
*Different types of plotters
*Reviewing computer
*Studying chart legends
*Plotting a cross country
Flight Plan

U.S. Department of Transportation
Federal Aviation Administration

Flight Plan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Route of Flight

9. Destination (Name of airport and city)

10. EST. Time Enroute

<table>
<thead>
<tr>
<th>Hours</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Fuel On Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Alternate Airport(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Pilot's Name, Address & Telephone Number & Aircraft Home Base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Number Aboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Civil Aircraft Pilots: FAR Part 91 requires you file an IFR flight plan to operate under instrument flight rules in controlled airspace. Failure to file could result in a civil penalty not to exceed $1,000 for each violation (Section 901 of the Federal Aviation Act of 1958, as amended). Filing of a VFR flight plan is recommended as a good operating practice. See also Part 95 for requirements concerning DVFR flight plans.

FAA Form 7233-1 (8-82)
CLOSE VFR FLIGHT PLAN WITH FSS ON ARRIVAL
FLIGHT PLANNER

PREFLIGHT

<table>
<thead>
<tr>
<th>DEPARTURE PT</th>
<th>ROUTE</th>
<th>ESTIMATED</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK POINTS</td>
<td>VIA</td>
<td>CRS</td>
<td>DIST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EN ROUTE

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUEL MANAGEMENT

<table>
<thead>
<tr>
<th>TIME MANAGEMENT</th>
<th>TIME EN ROUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>TOUCH DOWN</td>
</tr>
<tr>
<td>ON</td>
<td>TAKE OFF</td>
</tr>
<tr>
<td></td>
<td>ATE</td>
</tr>
</tbody>
</table>

CLEARANCES/RADIO FREQUENCIES

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL EQUIPMENT

- A: QNE, TRANSPONDER WITH ALTITUDE ENCODING
- B: QNE, TRANSPONDER WITH NO ALTITUDE ENCODING
- C: RNAV, TRANSPONDER WITH NO ALTITUDE ENCODING
- D: QNE, NO TRANSPONDER
- E: RNAV, TRANSPONDER WITH ALTITUDE ENCODING
- F: RNAV, NO TRANSPONDER
- G: NO TRANSPONDER
- H: RNAV, NO TRANSPONDER
- I: RNAV, NO TRANSPONDER
- J: RNAV, NO TRANSPONDER
- K: RNAV, NO TRANSPONDER
- L: RNAV, NO TRANSPONDER
- M: RNAV, NO TRANSPONDER
- N: RNAV, NO TRANSPONDER
- O: RNAV, NO TRANSPONDER
- P: RNAV, NO TRANSPONDER
- Q: RNAV, NO TRANSPONDER
- R: RNAV, NO TRANSPONDER
- S: RNAV, NO TRANSPONDER
- T: RNAV, NO TRANSPONDER
- U: RNAV, NO TRANSPONDER
- V: RNAV, NO TRANSPONDER
- W: RNAV, NO TRANSPONDER
- X: RNAV, NO TRANSPONDER
- Y: RNAV, NO TRANSPONDER
- Z: RNAV, NO TRANSPONDER

USE OF FAA FORM 7212

1. A cooperative project by the Federal Aviation Administration
2. This form is for pilots' use only.
AERO 122, 142

Lesson 28
Lesson 28

Radio Navigation: *VOR *NDB *RMI *Testing equipment

Read chapter XIII

From text:

OBJECTIVE:

By the end of this lesson, the student will be able to:

*Utilize, operate, test, and differentiate between different radio navigational equipment.

COMPLETION STANDARD:

*The student will apply cross-country operations utilizing radio navigation.

*Pass the written test score on STAGE VII with a minimum score of 70%.

FORMAT:

*Give quiz

*Lecture on different types of radio navigation

*Lecture on pros and cons of each

*Lay out sample cross country using radio navigation from charting text.
Quiz (10 Items)

*(1) Advantage/disadvantage of VHF/UHF versus low, medium, and high frequencies.

*Omni/bearing

*Radial

*Parts of a VOR

*MDB

*ADF

*RMI

*DME

*Test a VOR (VOT)

*(2) Transponder for known codes

OTHER INFORMATION TO BE COVERED:

*Way point

*VOR/vortec

*Radar vectors

*R. NAV.
Lesson 29
Lesson 29

Composite Navigations: *Combination of basic Nav. and radio Nav.

Read Chapter XIV in text:

OBJECTIVE:

By the end of this lesson, the student will be able to:

*Plot cross-country operations utilizing a combination of both basic and radio navigation.

STANDARD OBJECTIVE:

*Student will be resourceful and utilize all methods available for cross-country operations.

*Pass the written test on STAGE VII with a 70% minimum score.

FORMAT:

*Review cross-country operations

*Divide into groups and hand out cross-country to be accomplished (quiz).

*Review the cross-country.

*Monitor a simulator on a cross-country trip.
STAGE VII

QUIZ

Each group of students will be evaluated on their performance on the sample cross-country operation handout.

NOTE: Instructor may want to utilize a different cross-country of their choice.
PRIVATE AND COMMERCIAL PILOT
SAMPLE CROSS-COUNTRY

DIRECTIONS: Your mission is to plan a flight from Fresno to the marvelous San Francisco airport (possibly to catch a flight to Japan). The stipulated conditions of weather, aircraft, and Notams should (or may) affect your choice of routes and equipment. It may also determine whether you can make it. Do as much of the planning as possible on another sheet of paper since there is little room on the bottom of this. Note: "this is an exercise in cross-country planning, not a test. Ask me if you have any problems or questions".

AIRCRAFT: Lizard Licker 215, CAS= 130kt. GPH= 8.2 Fuel= 32 useable Fixed gear, fixed pitch propeller.

Weather: SFO 1442 8SCT 20SCT 450VC 38K 130/58/55/3218/987 VIRGA ALQD
FAT 1448 20SCT 580VC 4H 133/64/60/3128/978

FD 30 60 90 120
SFO 2825 2938 3145 8110
FAT 2515 3699 2725 2740

NOTAM: SFO rwy 10R-28L closed
PXD OTS

Flight Log

<table>
<thead>
<tr>
<th>LEG</th>
<th>TC</th>
<th>WCA</th>
<th>TH</th>
<th>VAR</th>
<th>MH</th>
<th>DEV</th>
<th>CH</th>
<th>DIST</th>
<th>GS</th>
<th>TIME</th>
<th>FUEL</th>
<th>(Nav Freq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Fuel remaining = Flight time (remaining) =

SFO Wind at 12,000 = direction speed

What Sectional chart do you use? (name)

What is the highest elevation along the route?
AERO 122, 142

Lesson 30
Lesson 30

Review/Test *Review for STAGE VII test:

STAGE VII test

OBJECTIVE:
At the completion of this lesson, the student should be able to:

*Evaluate information previously given

COMPLETION STANDARD:
*A test score of at least 70% is considered to be minimum

FORMAT:
*Conduct review
*Question/answer period
*Administer test
*Grade test
*Return test
*Review test
Test Day: STAGE VII
No Quiz
AERO 142/122
Private Pilot Ground School
Stage Test VII

Name: ___________________________ Date: _______________________

Instructions: 1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1032</td>
<td>26</td>
<td>1573</td>
</tr>
<tr>
<td>02</td>
<td>1098</td>
<td>27</td>
<td>1574</td>
</tr>
<tr>
<td>03</td>
<td>1102</td>
<td>28</td>
<td>1577</td>
</tr>
<tr>
<td>04</td>
<td>1105</td>
<td>29</td>
<td>1579</td>
</tr>
<tr>
<td>05</td>
<td>1113</td>
<td>30</td>
<td>1580</td>
</tr>
<tr>
<td>06</td>
<td>1119</td>
<td>31</td>
<td>1582</td>
</tr>
<tr>
<td>07</td>
<td>1176</td>
<td>32</td>
<td>1585</td>
</tr>
<tr>
<td>08</td>
<td>1529</td>
<td>33</td>
<td>1588</td>
</tr>
<tr>
<td>09</td>
<td>1532</td>
<td>34</td>
<td>1593</td>
</tr>
<tr>
<td>10</td>
<td>1535</td>
<td>35</td>
<td>1597</td>
</tr>
<tr>
<td>11</td>
<td>1539</td>
<td>36</td>
<td>1598</td>
</tr>
<tr>
<td>12</td>
<td>1544</td>
<td>37</td>
<td>1624</td>
</tr>
<tr>
<td>13</td>
<td>1550</td>
<td>38</td>
<td>1625</td>
</tr>
<tr>
<td>14</td>
<td>1551</td>
<td>39</td>
<td>1627</td>
</tr>
<tr>
<td>15</td>
<td>1552</td>
<td>40</td>
<td>1629</td>
</tr>
<tr>
<td>16</td>
<td>1559</td>
<td>41</td>
<td>1631</td>
</tr>
<tr>
<td>17</td>
<td>1560</td>
<td>42</td>
<td>1634</td>
</tr>
<tr>
<td>18</td>
<td>1562</td>
<td>43</td>
<td>1636</td>
</tr>
<tr>
<td>19</td>
<td>1564</td>
<td>44</td>
<td>1638</td>
</tr>
<tr>
<td>20</td>
<td>1565</td>
<td>45</td>
<td>1639</td>
</tr>
<tr>
<td>21</td>
<td>1567</td>
<td>46</td>
<td>1641</td>
</tr>
<tr>
<td>22</td>
<td>1569</td>
<td>47</td>
<td>1643</td>
</tr>
<tr>
<td>23</td>
<td>1570</td>
<td>48</td>
<td>1815</td>
</tr>
<tr>
<td>24</td>
<td>1571</td>
<td>49</td>
<td>1818</td>
</tr>
<tr>
<td>25</td>
<td>1572</td>
<td>50</td>
<td>1822</td>
</tr>
</tbody>
</table>
AERO 122, 142

STAGE VIII

I. STAGE VIII OBJECTIVE: (3 hours) The objective of STAGE VIII is to introduce, explain, and give solutions to medical aspects and to emergency procedures.

II. STAGE VIII COMPLETION STANDARD: The stage will be completed satisfactorily by oral quizzing in the classroom. This quiz will be at the instructor's option. No test on this stage of training. Information will be evaluated on final exam.
Lesson 31

Medical Factors/Emergencies:

(A) *Medical aspects of flight.
(B) *Symptoms
*Corrections
*Emergency procedures
*Emergency notification

Read Chapters XV and XVI in text.

OBJECTIVE:

By the end of the class, the student will be able to:

(A) *Recognize different medical symptoms.
*Know what corrective action to take.
*Be more knowledgeable about their own body.

(B) *Teach emergency systems, operations, communications, and how to avoid an emergency.

COMPLETION STANDARD:

(A) *The student will know the effects and symptoms of various medical conditions and know what to do.

(B) *The student will know what to do in case of an emergency and the proper procedures involved along with it.

FORMAT:

*Quiz will be administered for both A and B.
*Review
*Emergency operations used by the instructor.
*Oral quiz
AERO 122, 142
Class Lesson 31 Quiz
STAGE VIII

Quiz (10 Items)

*Vertigo
*Hypoxia
*Hyperventilation
*Carbon monoxide
*(3) Causes of fear/anxiety
*(4) "G"
*D.F. steer
*Flight following
*Emergency information where?
*Emergency transponder and radio frequency

OTHER ITEMS TO BE COVERED:
*Scanning
*Valsalva technique
*Flicker vertigo
*Preflight
*Fly the aircraft
*Take charge
*Follow check list
*Know your aircraft
*Know yourself

FORMAT:
*Administer quiz
*Review quiz and lecture on remaining items.
I. STAGE IX OBJECTIVE: (6 hours) The objective of STAGE IX is to administer a sample FAA exam in a testing environment.

II. STAGE IX COMPLETION STANDARD: To obtain a minimum of 70% on the practice tests.
AERO 122, 142

Lesson 32, 33
AERO 122, 142

Class Lesson 32 and 33 Plan

STAGE IX

Lesson 32 and 33

Sample FAA Test: *Review *Sample Test

OBJECTIVE:

By the end of the class, the student will be able to:

* Determine any weak areas.
* Be able to review individually.
* Review with class

COMPLETION STANDARD:

*A score of 70% or more on the stage test would be considered minimum.

FORMAT:

* Review
* Question/answer
* Administer test
* Grade test
* Return test
* Review
* Give additional tests to take home
AERO 122, 142 Class Lesson 32 and 33 Test
STAGE IX

NO Quiz - Sample FAA test
AERO 142/122
Private Pilot Ground School
Final Test I

Name: ___________________________ Date: ___________________________

Instructions: 1. Write your name and date at the top.
 2. Answer only the easy questions... first.
 3. Mark your answers on this sheet first.
 4. Make any notes about the question on this sheet.
 5. Transfer your answers to the Scantron sheet after you are all done.
 6. If you elect to take a break, do so quietly.
 7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1001</td>
<td>26</td>
<td>1540</td>
</tr>
<tr>
<td>02</td>
<td>1015</td>
<td>27</td>
<td>1547</td>
</tr>
<tr>
<td>03</td>
<td>1031</td>
<td>28</td>
<td>1561</td>
</tr>
<tr>
<td>04</td>
<td>1041</td>
<td>29</td>
<td>1575</td>
</tr>
<tr>
<td>05</td>
<td>1069</td>
<td>30</td>
<td>1595</td>
</tr>
<tr>
<td>06</td>
<td>1076</td>
<td>31</td>
<td>1607</td>
</tr>
<tr>
<td>07</td>
<td>1079</td>
<td>32</td>
<td>1620</td>
</tr>
<tr>
<td>08</td>
<td>1083</td>
<td>33</td>
<td>1628</td>
</tr>
<tr>
<td>09</td>
<td>1094</td>
<td>34</td>
<td>1633</td>
</tr>
<tr>
<td>10</td>
<td>1107</td>
<td>35</td>
<td>1642</td>
</tr>
<tr>
<td>11</td>
<td>1177</td>
<td>36</td>
<td>1672</td>
</tr>
<tr>
<td>12</td>
<td>1195</td>
<td>37</td>
<td>1692</td>
</tr>
<tr>
<td>13</td>
<td>1281</td>
<td>38</td>
<td>1713</td>
</tr>
<tr>
<td>14</td>
<td>1302</td>
<td>39</td>
<td>1769</td>
</tr>
<tr>
<td>15</td>
<td>1304</td>
<td>40</td>
<td>1776</td>
</tr>
<tr>
<td>16</td>
<td>1313</td>
<td>41</td>
<td>1785</td>
</tr>
<tr>
<td>17</td>
<td>1390</td>
<td>42</td>
<td>1789</td>
</tr>
<tr>
<td>18</td>
<td>1462</td>
<td>43</td>
<td>1811</td>
</tr>
<tr>
<td>19</td>
<td>1467</td>
<td>44</td>
<td>1816</td>
</tr>
<tr>
<td>20</td>
<td>1492</td>
<td>45</td>
<td>1825</td>
</tr>
<tr>
<td>21</td>
<td>1495</td>
<td>46</td>
<td>1838</td>
</tr>
<tr>
<td>22</td>
<td>1502</td>
<td>47</td>
<td>1844</td>
</tr>
<tr>
<td>23</td>
<td>1517</td>
<td>48</td>
<td>1848</td>
</tr>
<tr>
<td>24</td>
<td>1523</td>
<td>49</td>
<td>1850</td>
</tr>
<tr>
<td>25</td>
<td>1531</td>
<td>50</td>
<td>1853</td>
</tr>
</tbody>
</table>
AERO 142/122
Private Pilot Ground School
Final Test II

Name: ___________________________ Date: _________________________

Instructions: 1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1003</td>
<td>26</td>
<td>1526</td>
</tr>
<tr>
<td>02</td>
<td>1038</td>
<td>27</td>
<td>1542</td>
</tr>
<tr>
<td>03</td>
<td>1077</td>
<td>28</td>
<td>1566</td>
</tr>
<tr>
<td>04</td>
<td>1085</td>
<td>29</td>
<td>1578</td>
</tr>
<tr>
<td>05</td>
<td>1099</td>
<td>30</td>
<td>1606</td>
</tr>
<tr>
<td>06</td>
<td>1110</td>
<td>31</td>
<td>1618</td>
</tr>
<tr>
<td>07</td>
<td>1123</td>
<td>32</td>
<td>1630</td>
</tr>
<tr>
<td>08</td>
<td>1128</td>
<td>33</td>
<td>1640</td>
</tr>
<tr>
<td>09</td>
<td>1139</td>
<td>34</td>
<td>1673</td>
</tr>
<tr>
<td>10</td>
<td>1150</td>
<td>35</td>
<td>1678</td>
</tr>
<tr>
<td>11</td>
<td>1166</td>
<td>36</td>
<td>1694</td>
</tr>
<tr>
<td>12</td>
<td>1181</td>
<td>37</td>
<td>1711</td>
</tr>
<tr>
<td>13</td>
<td>1187</td>
<td>38</td>
<td>1714</td>
</tr>
<tr>
<td>14</td>
<td>1202</td>
<td>39</td>
<td>1762</td>
</tr>
<tr>
<td>15</td>
<td>1222</td>
<td>40</td>
<td>1771</td>
</tr>
<tr>
<td>16</td>
<td>1245</td>
<td>41</td>
<td>1777</td>
</tr>
<tr>
<td>17</td>
<td>1280</td>
<td>42</td>
<td>1780</td>
</tr>
<tr>
<td>18</td>
<td>1386</td>
<td>43</td>
<td>1782</td>
</tr>
<tr>
<td>19</td>
<td>1416</td>
<td>44</td>
<td>1793</td>
</tr>
<tr>
<td>20</td>
<td>1456</td>
<td>45</td>
<td>1817</td>
</tr>
<tr>
<td>21</td>
<td>1465</td>
<td>46</td>
<td>1832</td>
</tr>
<tr>
<td>22</td>
<td>1474</td>
<td>47</td>
<td>1835</td>
</tr>
<tr>
<td>23</td>
<td>1483</td>
<td>48</td>
<td>1845</td>
</tr>
<tr>
<td>24</td>
<td>1501</td>
<td>49</td>
<td>1852</td>
</tr>
<tr>
<td>25</td>
<td>1509</td>
<td>50</td>
<td>1854</td>
</tr>
</tbody>
</table>
AERO 142/122

Private Pilot Ground School

Final Test III

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1006</td>
<td>26</td>
<td>1497</td>
</tr>
<tr>
<td>02</td>
<td>1029</td>
<td>27</td>
<td>1511</td>
</tr>
<tr>
<td>03</td>
<td>1070</td>
<td>28</td>
<td>1545</td>
</tr>
<tr>
<td>04</td>
<td>1081</td>
<td>29</td>
<td>1568</td>
</tr>
<tr>
<td>05</td>
<td>1104</td>
<td>30</td>
<td>1581</td>
</tr>
<tr>
<td>06</td>
<td>1120</td>
<td>31</td>
<td>1600</td>
</tr>
<tr>
<td>07</td>
<td>1129</td>
<td>32</td>
<td>1621</td>
</tr>
<tr>
<td>08</td>
<td>1144</td>
<td>33</td>
<td>1635</td>
</tr>
<tr>
<td>09</td>
<td>1149</td>
<td>34</td>
<td>1667</td>
</tr>
<tr>
<td>10</td>
<td>1172</td>
<td>35</td>
<td>1689</td>
</tr>
<tr>
<td>11</td>
<td>1189</td>
<td>36</td>
<td>1708</td>
</tr>
<tr>
<td>12</td>
<td>1208</td>
<td>37</td>
<td>1710</td>
</tr>
<tr>
<td>13</td>
<td>1220</td>
<td>38</td>
<td>1712</td>
</tr>
<tr>
<td>14</td>
<td>1226</td>
<td>39</td>
<td>1717</td>
</tr>
<tr>
<td>15</td>
<td>1235</td>
<td>40</td>
<td>1766</td>
</tr>
<tr>
<td>16</td>
<td>1244</td>
<td>41</td>
<td>1773</td>
</tr>
<tr>
<td>17</td>
<td>1261</td>
<td>42</td>
<td>1777</td>
</tr>
<tr>
<td>18</td>
<td>1268</td>
<td>43</td>
<td>1786</td>
</tr>
<tr>
<td>19</td>
<td>1280</td>
<td>44</td>
<td>1788</td>
</tr>
<tr>
<td>20</td>
<td>1303</td>
<td>45</td>
<td>1794</td>
</tr>
<tr>
<td>21</td>
<td>1312</td>
<td>46</td>
<td>1801</td>
</tr>
<tr>
<td>22</td>
<td>1404</td>
<td>47</td>
<td>1819</td>
</tr>
<tr>
<td>23</td>
<td>1440</td>
<td>48</td>
<td>1827</td>
</tr>
<tr>
<td>24</td>
<td>1453</td>
<td>49</td>
<td>1834</td>
</tr>
<tr>
<td>25</td>
<td>1490</td>
<td>50</td>
<td>1851</td>
</tr>
</tbody>
</table>
Name: ____________________________ Date: ____________________________

Instructions: 1. Write your name and date at the top.
 2. Answer only the easy questions... first.
 3. Mark your answers on this sheet first.
 4. Make any notes about the question on this sheet.
 5. Transfer your answers to the Scantron sheet after you are all done.
 6. If you elect to take a break, do so quietly.
 7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1011</td>
<td>26</td>
<td>1447</td>
</tr>
<tr>
<td>02</td>
<td>1027</td>
<td>27</td>
<td>1468</td>
</tr>
<tr>
<td>03</td>
<td>1067</td>
<td>28</td>
<td>1490</td>
</tr>
<tr>
<td>04</td>
<td>1078</td>
<td>29</td>
<td>1503</td>
</tr>
<tr>
<td>05</td>
<td>1106</td>
<td>30</td>
<td>1516</td>
</tr>
<tr>
<td>06</td>
<td>1116</td>
<td>31</td>
<td>1522</td>
</tr>
<tr>
<td>07</td>
<td>1126</td>
<td>32</td>
<td>1541</td>
</tr>
<tr>
<td>08</td>
<td>1134</td>
<td>33</td>
<td>1549</td>
</tr>
<tr>
<td>09</td>
<td>1136</td>
<td>34</td>
<td>1576</td>
</tr>
<tr>
<td>10</td>
<td>1157</td>
<td>35</td>
<td>1583</td>
</tr>
<tr>
<td>11</td>
<td>1200</td>
<td>36</td>
<td>1594</td>
</tr>
<tr>
<td>12</td>
<td>1212</td>
<td>37</td>
<td>1611</td>
</tr>
<tr>
<td>13</td>
<td>1232</td>
<td>38</td>
<td>1617</td>
</tr>
<tr>
<td>14</td>
<td>1237</td>
<td>39</td>
<td>1626</td>
</tr>
<tr>
<td>15</td>
<td>1246</td>
<td>40</td>
<td>1637</td>
</tr>
<tr>
<td>16</td>
<td>1252</td>
<td>41</td>
<td>1687</td>
</tr>
<tr>
<td>17</td>
<td>1264</td>
<td>42</td>
<td>1698</td>
</tr>
<tr>
<td>18</td>
<td>1267</td>
<td>43</td>
<td>1765</td>
</tr>
<tr>
<td>19</td>
<td>1277</td>
<td>44</td>
<td>1778</td>
</tr>
<tr>
<td>20</td>
<td>1294</td>
<td>45</td>
<td>1797</td>
</tr>
<tr>
<td>21</td>
<td>1298</td>
<td>46</td>
<td>1802</td>
</tr>
<tr>
<td>22</td>
<td>1306</td>
<td>47</td>
<td>1820</td>
</tr>
<tr>
<td>23</td>
<td>1410</td>
<td>48</td>
<td>1833</td>
</tr>
<tr>
<td>24</td>
<td>1426</td>
<td>49</td>
<td>1846</td>
</tr>
<tr>
<td>25</td>
<td>1436</td>
<td>50</td>
<td>1849</td>
</tr>
</tbody>
</table>
Instructions:
1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1017</td>
<td>26</td>
<td>1298</td>
</tr>
<tr>
<td>02</td>
<td>1026</td>
<td>27</td>
<td>1317</td>
</tr>
<tr>
<td>03</td>
<td>1041</td>
<td>28</td>
<td>1411</td>
</tr>
<tr>
<td>04</td>
<td>1084</td>
<td>29</td>
<td>1443</td>
</tr>
<tr>
<td>05</td>
<td>1091</td>
<td>30</td>
<td>1449</td>
</tr>
<tr>
<td>06</td>
<td>1103</td>
<td>31</td>
<td>1476</td>
</tr>
<tr>
<td>07</td>
<td>1109</td>
<td>32</td>
<td>1481</td>
</tr>
<tr>
<td>08</td>
<td>1122</td>
<td>33</td>
<td>1498</td>
</tr>
<tr>
<td>09</td>
<td>1127</td>
<td>34</td>
<td>1513</td>
</tr>
<tr>
<td>10</td>
<td>1131</td>
<td>35</td>
<td>1516</td>
</tr>
<tr>
<td>11</td>
<td>1146</td>
<td>36</td>
<td>1530</td>
</tr>
<tr>
<td>12</td>
<td>1163</td>
<td>37</td>
<td>1543</td>
</tr>
<tr>
<td>13</td>
<td>1173</td>
<td>38</td>
<td>1548</td>
</tr>
<tr>
<td>14</td>
<td>1174</td>
<td>39</td>
<td>1563</td>
</tr>
<tr>
<td>15</td>
<td>1182</td>
<td>40</td>
<td>1592</td>
</tr>
<tr>
<td>16</td>
<td>1194</td>
<td>41</td>
<td>1609</td>
</tr>
<tr>
<td>17</td>
<td>1199</td>
<td>42</td>
<td>1632</td>
</tr>
<tr>
<td>18</td>
<td>1204</td>
<td>43</td>
<td>1669</td>
</tr>
<tr>
<td>19</td>
<td>1213</td>
<td>44</td>
<td>1679</td>
</tr>
<tr>
<td>20</td>
<td>1241</td>
<td>45</td>
<td>1686</td>
</tr>
<tr>
<td>21</td>
<td>1243</td>
<td>46</td>
<td>1716</td>
</tr>
<tr>
<td>22</td>
<td>1254</td>
<td>47</td>
<td>1760</td>
</tr>
<tr>
<td>23</td>
<td>1262</td>
<td>48</td>
<td>1813</td>
</tr>
<tr>
<td>24</td>
<td>1269</td>
<td>49</td>
<td>1821</td>
</tr>
<tr>
<td>25</td>
<td>1293</td>
<td>50</td>
<td>1847</td>
</tr>
</tbody>
</table>
AERO 142/122

Private Pilot Ground School

Final Test VI

Name: ___________________________ Date: __________________________________

Instructions: 1. Write your name and date at the top.
2. Answer only the easy questions... first.
3. Mark your answers on this sheet first.
4. Make any notes about the question on this sheet.
5. Transfer your answers to the Scantron sheet after you are all done.
6. If you elect to take a break, do so quietly.
7. When finished you may leave, after you have reviewed your Test Results.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
<th>ITEM NO.</th>
<th>QUESTION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1075</td>
<td>26</td>
<td>1454</td>
</tr>
<tr>
<td>02</td>
<td>1108</td>
<td>27</td>
<td>1458</td>
</tr>
<tr>
<td>03</td>
<td>1115</td>
<td>28</td>
<td>1473</td>
</tr>
<tr>
<td>04</td>
<td>1130</td>
<td>29</td>
<td>1479</td>
</tr>
<tr>
<td>05</td>
<td>1155</td>
<td>30</td>
<td>1485</td>
</tr>
<tr>
<td>06</td>
<td>1157</td>
<td>31</td>
<td>1505</td>
</tr>
<tr>
<td>07</td>
<td>1161</td>
<td>32</td>
<td>1514</td>
</tr>
<tr>
<td>08</td>
<td>1175</td>
<td>33</td>
<td>1520</td>
</tr>
<tr>
<td>09</td>
<td>1186</td>
<td>34</td>
<td>1534</td>
</tr>
<tr>
<td>10</td>
<td>1198</td>
<td>35</td>
<td>1538</td>
</tr>
<tr>
<td>11</td>
<td>1215</td>
<td>36</td>
<td>1550</td>
</tr>
<tr>
<td>12</td>
<td>1218</td>
<td>37</td>
<td>1586</td>
</tr>
<tr>
<td>13</td>
<td>1224</td>
<td>38</td>
<td>1596</td>
</tr>
<tr>
<td>14</td>
<td>1233</td>
<td>39</td>
<td>1601</td>
</tr>
<tr>
<td>15</td>
<td>1238</td>
<td>40</td>
<td>1614</td>
</tr>
<tr>
<td>16</td>
<td>1247</td>
<td>41</td>
<td>1671</td>
</tr>
<tr>
<td>17</td>
<td>1251</td>
<td>42</td>
<td>1683</td>
</tr>
<tr>
<td>18</td>
<td>1260</td>
<td>43</td>
<td>1695</td>
</tr>
<tr>
<td>19</td>
<td>1266</td>
<td>44</td>
<td>1719</td>
</tr>
<tr>
<td>20</td>
<td>1297</td>
<td>45</td>
<td>1781</td>
</tr>
<tr>
<td>21</td>
<td>1318</td>
<td>46</td>
<td>1787</td>
</tr>
<tr>
<td>22</td>
<td>1418</td>
<td>47</td>
<td>1810</td>
</tr>
<tr>
<td>23</td>
<td>1424</td>
<td>48</td>
<td>1828</td>
</tr>
<tr>
<td>24</td>
<td>1427</td>
<td>49</td>
<td>1840</td>
</tr>
<tr>
<td>25</td>
<td>1428</td>
<td>50</td>
<td>1856</td>
</tr>
</tbody>
</table>
AERO 122, 142

STAGE X

I. STAGE X OBJECTIVE: (4 hours) The objective of STAGE X is to see whether or not the student has retained, satisfactorily, the necessary information to pass the FAA written test for Private Pilot Airplane.

II. COMPLETION STANDARD: Will be a minimum of 70% on the FAA written test.

NOTE: Student will supply calculator, plotter, computer. Test, scrap paper, pencils, plastic overlays will be supplied by the examiner.

NOTE: Bring pictured identification.
Lesson 34
Help if requested in preparation for the FAA Private Pilot written test (airplane). This will primarily be administered and monitored by an FAA written test examiner.
AERO 122, 142
Class Lesson 34 Test
STAGE X

NO QUIZ - FAA TEST