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Abstract

In this project, we searched for new constructions and symmetric presenta-

tions of important groups, nonabelian simple groups, their automorphism groups, or

groups that have these as their factor groups. My target non-abelian simple groups

included sporadic groups, linear groups, and alternating groups. In addition, we dis-

covered finite groups as homomorphic images of progenitors and proved some of their

isomorphism type and original symmetric presentations. In this thesis we found origi-

nal symmeric presentations of M12, J1 and the simplectic groups S(4, 4) and S(3, 4) on

various control groups. Using the technique of double coset enumeration we constucted

J2 as a homomorphic image of the permutation progenitor 2∗10 : (10 × 2). From our

monomial progenitor 11∗4 : (2 : 4) we found a homomorphic image of M11. In the follow-

ing chapters we will discuss how we went about obtaining homomorphic images, some

constructions of the Cayley Diagrams, and how we solved some extension problems.
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Introduction

We will begin our discussion of control groups and how a progenitor of infi-

nite order is constructed from a control group N . We used the computer based program

MAGMA to help facilitate the construction of such progenitors to obtain homomorphic

images of varios interesting groups, and thus to research these groups in more detail.

With the help of MAGMA we performed double coset enumeration on groups such as

S6 : C2 over our control group 2∗10:2×(5:4)
[y−1∗x−1∗t]6,[x−1∗y−1∗x∗t]4,[x2∗t]8,[x∗t]5 . We also proved the

isomorphism types of some groups such as G ∼= 34 : ·(S5 × 2). We discuss monomial

progenitors in more detail, and finally overview all homomorphic images obtained from

our progenitors.

We begin by defining the progenitor. A progenitor is a semi-direct product

of the following form: P ∼= 2∗n : N = {π w | π ∈ N , w a reduced word in the ti},
where 2∗n denotes the free product of n copies of the cyclic group of order 2 generated

by involutions ti for i = 1, ..., n; and N is a transitive permutation group of degree n

which acts on the free product by permuting the involutory generators. We refer to the

subgroup N as the control subgroup and to the involutory generators of the free product

as the symmetric generators. The unique progenitor is then factored by the appropriate

relations that produce finite homomorphic images. In the continuing section, I will

demonstrate how the process is done.

Definition 0.1. [Led87] A symmetric presentation of a group G is a definition of G of

the form:

G ∼= 2∗n:N
π1ω1,π2ω2,...

where 2∗n denotes a free product of n copies of the cyclic group of order 2, N is transitive



2

permutation group of degree n which permutes the n generators of the cyclic group by

conjugation, thus defining semi-direct product, and the relators π1ω1, π2ω2, ... have been

factored out.

Before factoring the progenitor m∗n : N , where m is the order of ti′s, n is the

number of ti′s, and N is the control group, by necessary relations, we need to write a

permutation progenitor. Since the progenitor m∗n : N is infinite we write a permutation

progenitor where we take N to be transitive on n letters. So we have a general form of

a permutation progenitor in the following form:

< x, y, t| < x, y >∼= N, tm, (t,N i) >,where N i is the stabiliser of i in N

Since t commutes with the stabiliser of i in N , (t,N i), we can obtain the num-

ber of conjugates of t. Using the definition we have that [G : Cg(a)] is the number of

conjugates of H in G. So to find the index of the centraliser of N and t also denoted

as Centraliser[N, t], we are going to calculate [G : Cg(a)]. Note that the index of the

Centraliser[N, t] is equal to the number of conjugates of t and also equal to the sta-

biliser of a single point in N . Applying this concept we are going to find the permutation

progenitor of the following example, 2∗10 : (52 : 2).

EXAMPLE: In this example, we will illustrate how to write a progenitor for

the infinite progenitor 2∗10 : (52 : 2). Our control group N = (52 : 2) is transitive on 10

letters and (52 : 2) =< (2, 4, 6, 8, 10), (1, 6)(2, 7)(3, 8)(4, 9)(5, 10) > where the generators

of N are x ∼ (2, 4, 6, 8, 10) and y ∼ (1, 6)(2, 7)(3, 8)(4, 9)(5, 10). Then the presentation

of (52 : 2) is

< x, y|x5, y2, x−1 ∗ y ∗ x−1 ∗ y ∗ x ∗ y ∗ x ∗ y >

Now we let t be a symmetric generator where t ∼ t1 and is of order 2. Since

we let t be t1 we must compute the stabiliser of the single point 1 in N , denoted N1. So

N1 =< (2, 4, 6, 8, 10) > . Notice that this element that fixes 1 is the generator x. Then

we write (t,N i) = (t, x) to denote that N commutes with x our point stabiliser. Thus,
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our permutation progenitor of 2∗10 : (52 : 2) is given as follows:

< x, y, t|x5, y2, x−1 ∗ y ∗ x−1 ∗ y ∗ x ∗ y ∗ x ∗ y, t2, (t, x) >

In the continuing chapters we will apply this procedure to find permutation

progenitors for the progenitors of the form m∗n : N . In the next example we will show

how to facor the above progenitor by first order relations.
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Chapter 1

Definitions, Theorems, and

Lemmas

1.1 Preliminaries

1.1.1 Definitions

Definition 1.1. [Rot95] A group G (G, ∗) is a nonempty collection of elements with

an associative operation ∗, such that:

• there exists an identity element, e ∈ G such that e ∗ a = a ∗ e for all a ∈ G;

• for every a ∈ G, there exists an element b ∈ G such that a ∗ b = e = b ∗ a.

Definition 1.2. [Rot95] Let G be a set. A (binary) operation on G is a function that

assigns each ordered pair of elements og G an element on G.

Definition 1.3. [Rot95] For group G, a subgroup S of G is a nonempty subset where

s ∈ G implies s−1 ∈ G and s, t ∈ G imply st ∈ G. We denote subgroup S of G as

S ≤ G.

Definition 1.4. [Rot95] Let H be a subgroup of group G. H is a proper subgroup of

G if H 6= G. We denote this as H < G.

Definition 1.5. [Rot95] A symmetric group, SX , is the group of all permutations of

X, where X ∈ N. SX is a group under compositions.
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Definition 1.6. [Rot95] If X is a nonempty set, a permutation of X is a bijection

φ : X −→ X.

Definition 1.7. [Rot95] A semigroup (G, ∗) is a nonempty set G equipped with an

associative operation *.

Definition 1.8. [Rot95] If x ∈ X and φ ∈ SX , then φ fixes x if φ(x) = x and φ moves

x if φ(x) 6= x.

Definition 1.9. [Rot95] For permutations α, β ∈ SX , α and β are disjoint if every

element moved by one permutation is fixed by the other. Precisely,

if α(x) 6= x, then β(a) = a and if α(y) = y, then β(y) 6= y.

Definition 1.10. [Rot95] A permutation which interchanges a pair of elements is a

transposition.

Definition 1.11. [Rot95] In group G, if a,b ∈ G, a and b commute if a ∗ b = b ∗ a.

Definition 1.12. [Rot95] A group G is abelian if every pair of elements in G commutes

with one another.

Definition 1.13. [Rot95] Let X be a set and ∆ be a family of words on X. A group

G has generators X and relations ∆ if G ∼= F/R, where F is a free group with

basis X and R is the normal subgroup of F generated by ∆. We say < X|∆ > is a

presentation of G.

Definition 1.14. [Cur07] Let G be a group and T = t1, t2, ..., tn be a symmetric gen-

erating set for G with |ti| = m. Then if N = NG(T̄ ), we define the progenitor to be

the semi-direct product m∗n : N , where m∗n is the free product of n copies of the cyclic

group Cn.

Definition 1.15. [Rot95] Let G be a group. If H ≤ G, the normalizer of H in G is

defined by NG(H) = {a ∈ G|aHa−1 = H}

Definition 1.16. [Rot95] Let G be a group. If H ≤ G, the centralizer of H in G is:

CG(H) = {x ∈ G : [x, h] = 1 for all h ∈ H}.
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Definition 1.17. [Rot95] Let p be prime. If G ∼= Zp × Zp × · · · × Zp, then we say G is

elementary abelian.

Definition 1.18. [Rot95] Let (G, ∗) and (H, ◦) be groups. The function φ : G → H

is a homomorphism if φ(a ∗ b) = φ(a) ◦ φ(b), for all a,b ∈ G. An isomorphism is

a bijective homomorphism. We say G is isomorphic to H, G ∼= H, if there exists an

isomorphism f : G→ H.

Definition 1.19. [Rot95] Let f : G → H be a homomorphism. The kernel of a

homomorphism is the set {x ∈ G|f(x) = 1}, where 1 is the identity in H. We denote

the kernel of f as ker f .

Definition 1.20. [Rot95] Let X be a nonempty subset of a group G. Let w ∈ G where

w = xe11 x
e2
2 . . . xenn , with xi ∈ X and ei = ±1. We say that w is a word on X.

Definition 1.21. [Rot95] Let a ∈ G, where G is a group. The conjugacy class of a

is given by aG = {ag|g ∈ G} = {g−1ag|g ∈ G}

Definition 1.22. [Rot95] The Dihedral Group Dn, n even and greater than 2, groups

are formed by two elements, one of order n
2 and one of order 2. A presentation for a

Dihedral Group is given by < a, b|a
n
2 , b2, (ab)2 >.

Definition 1.23. [Rot95] A general linear group, GL(n,F) is the set of all n × n
matrices with nonzero determinant over field F.

Definition 1.24. [Rot95] A special linear group, SL(n,F) is the set of all n × n
matrices with determinant 1 over field F.

Definition 1.25. [Rot95] A projective special linear group, PSL(n,F) is the set

of all n× n matrices with determinant 1 over field F factored by its center:

PSL(n,F) = Ln(F) =
SL(n,F)

Z(SL(n,F)
.

Definition 1.26. [Rot95] A projective general linear group, PGL(n,F) is the set

of all n× n matrices with nonzero determinant over field F factored by its center:

PGL(n,F) =
GL(n,F)

Z(GL(n,F)
.
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Definition 1.27. [Led87](Monomial Character) Let G be a finite group and H ≤ G.

The character X of G is monomial if X = λG, where λ is a linear character of H.

Definition 1.28. [Led87](Character) Let A(x) = (Aij(x)) be a matrix representation

of G of degree m. We consider the character polynomial of A(x), namely

det(λI −A(x)) =


λ− a11(x) −a12(x) · · · −a1m(x)

λ− a11(x) −a12(x) · · · −a1m(x)

· · · · · · · · · · · ·
λ− am1(x) −am2(x) · · · −amm(x)


This is a polynomial of degree m in λ, and inspection shows that the coefficient of −λm−1

is equal to

φ = a11(x) + a22(x) + ...+ amm(x)

It is customary to call the right-hand side of this equation the trace of A(x), abbreviated

to trA(x), so that

φ(x) = trA(x)

We regard φ(x) as a function on G with values in K, and we call it the character of

A(x).

Definition 1.29. [Led87] The sun of squares of the degrees of the s=distinct irreducible

characters of G is equal to |G|. The degree of a character χ is χ(1). Note that a

character whose degree is 1 is called a linear character.

Definition 1.30. [Led87] (Lifting Process) Let N be a normal subgroup of G and

suppose that A0(Nx) is a representation of degree m of the group G/N . Then A(x) =

A0(N(x) defines a representation of G/N lifted from G/N . If φ0(Nx) is a character

of A0(Nx), then φ(x) = φ0(Nx) is the lifted character of A(x). Also, if u ∈ N , then

A(u) = Im, φ(u) = m = φ(1). Then the lifting process preserves irreducibility.

Definition 1.31. [Led87] (Induced Character) Let H ≤ G and φ(u) be a character

of H and defined φ(x) = 0 if x ∈ H, then
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φG(x) =

 φ(x) x ∈ H
0 x /∈ H

is an induced character of G.

Definition 1.32. [Led87] Let G be a finite group and H be a subgroup such that

[G : H] = n. Let Cα, α = 1, 2, ...,m be the conjugacy classes of G with |Cα| = hα, α =

1, 2, 3, ...,m. Let φ be a character of H and φG be the character of G induced from the

character φ of H up to G. The values of φG on the m classes of G are given by:

φGα =
n

hα

∑
w∈H∩Cα

φ(w), α = 1, 2, 3, ...,m.

Definition 1.33. [Rot95] Let G be a group. The order of G is the number of elements

contained in G. We denote the order of G by |G|.

Definition 1.34. [Rot95] Let G be a group such that K ≤ G. K is normal in G if

gKg−1 = K, for every g ∈ G. We will use K CG to denote K as being normal in G.

Definition 1.35. [Rot95] Let G be a group and S ⊆ G. For t ∈ G, a right coset of S

in G is the subset of G such that St = {st : s ∈ G}. We say t is a representative of

the coset St.

Definition 1.36. [Rot95] Let G be a group. The index of H ≤ G, denoted [G : H], is

the number of right cosets of H in G.

Definition 1.37. [Rot95] Let G be a group and H and K be subgroups of G. A double

coset of H and K of the form HgK = {HgK|k ∈ K} is determined by g ∈ G.

Definition 1.38. [Rot95] Let N be a group. The point stabiliser of w in N is given

by:

Nw = {n ∈ N |wn = w}, where w is a word in the ti’s.

Definition 1.39. [Rot95] Let N be a group. The coset stabiliser of Nw in N is given

by:

N (w) = {n ∈ N |Nwn = Nw}, where w is a word of the ti’s.

Definition 1.40. [Rot95] Let G be a group. The center of G, Z(G), is the set of all

elements in G that commute with all elements of G.
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1.1.2 Theorems

Theorem 1.41. [Led87] The number of irreducible character of G is equal to the number

of conjugacy classes of G

Theorem 1.42. [Rot95] Let φ : G → H be a homomorphism with kernel K. Then K

is a normal subgroup of G and G/K ∼= imφ.

Theorem 1.43. [Rot95] Let N and T be subgroups of G with N normal. Then N ∩ T
is normal in T and T/(N ∩ T ) ∼= NT/N .

Theorem 1.44. [Rot95] Every permutation α ∈ Sn is either a cycle or a product of

disjoint cycles.

Theorem 1.45. [Rot95] Let f : (G, ∗) → (G′, ◦) be a homomorphism. The following

hold true:

• f(e) = e′, where e′ is the identity in G′,

• If a ∈ G, then f(a−1) = f(a)−1,

• If a ∈ G and n ∈ Z, then f(an) = f(a)n.

Theorem 1.46. [Rot95] The intersection of any family of subgroups of a group G is

again a subgroup of G.

Theorem 1.47. [Rot95] If S ≤ G, then any two right (or left) cosets of S in G are

either identical or disjoint.

Theorem 1.48. [Rot95] If G is a finite group and H ≤ G, then |H| divides |G| and

[G : H] = |G|/|H|.

Theorem 1.49. [Rot95] If S and T are subgroups of a finite group G, then

|ST ||S ∩ T | = |S||T |.

Theorem 1.50. [Rot95] If N CG, then the cosets of N in G form a group, denoted by

G/N , of order [G : N ].
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Theorem 1.51. [Rot95] The commutator subgroup G′ is a normal subgroup of G. More-

over, if H CG, then G/H is abelian if and only if G′ ≤ H.

Theorem 1.52. [Rot95] Let G be a group with normal subgroups H and K. If HK = G

and H ∩K = 1, then G ∼= H ×K.

Theorem 1.53. [Rot95] If a ∈ G, the number of conjugates of a is equal to the index

of its centeralizer:

|aG| = [G : CG(a)],

and this number is a divisor of |G| when G is finite.

Theorem 1.54. [Rot95] If H ≤ G, then the number c of conjugates of H in G is equal

to the index of its normalizer: c = [G : NG(H)], and c divides |G| when G is finite.

Moreover, aHa−1 = bHb−1 if and only if b−1a ∈ NG(H).

Theorem 1.55. [Rot95] Every group G can be imbedded as a subgroup of SG. In

particular, if |G| = n, then G can be imbedded in Sn.

Theorem 1.56. [Rot95] If H ≤ G and [G : H] = n, then there is a homomorphism

ρ : G→ Sn with kerρ ≤ H. The homomorphism ρ is called the representation of G on

the cosets of H.

Theorem 1.57. [Rot95] If X is a G-set with action α, then there is a homomorphism

α̃ : SX given by α̃ : x 7→ gx = α(g, x). Conversely, every homomorphism ϕ : G → SX

defines an action, namely, gx = ϕ(g)x, which makes X into a G-set.

Theorem 1.58. [Rot95] Every two composition series of a group G are equivalent.

We will refer to this Theorem as the Jordan-Hölder Theorem.

Theorem 1.59. [Rot95] Let X be a faithful primitive G-set of degree n ≥ 2. If H CG

and if H 6= 1, then X is a transitive H-set. Also, n divides |H|.

1.1.3 Lemmas

Lemma 1.60. [Rot95] Let X be a G-set, and let xy ∈ X.

• If H ≤ G, then Hx ∩Hy 6= ∅ implies Hx = Hy.
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• If H CG, then the subsets Hx are blocks of X.

Lemma 1.61. (Curtis Lemma)

[Rot95] N∩ < ti, tj >≤ CN (N ij) where Nij denotes the stabilizer in N of the

two points i and j.

Note:

If the |ti| = 2, |tj | = 2, and |titj |=n, then < ti, tj >= D2n. The Dihedral group of order

2n. We also know the center of D2n:

Center(D2n) =

1, if n is odd

< (ti, tj)
n
2 >, if n is even.

Lemma 1.62. [Rot95]

(i) If g belongs to N and ig = i and jg = j then we should factor the progenitor by the

relation (titj)
k = g for any positive integer k. .

(ii) if g belongs to N and ig = j and jg = i then we should factor the progenitor by the

relation (gti)
k = 1 for any odd positive integer k.

In other words we have:

=

(titj)
k = g where k is even and fixes 1 and 2

(gti)
k = 1 where k is odd and g sends 1 to 2
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Chapter 2

Methods on Finding Progenitors

2.1 Permutation Progenitors

2.2 Factoring m∗ : N by the First Order Relations

In order to factor the progenitor, m∗n : N , by all the first order relations, first,

we compute the conjugacy classes of our group N . Then we compute the centralisers

of representatives of each non-identity class. Lastly, we determine the orbits for each

representative. The detailed work for factoring a progenitor by the first order relations

is shown in this section.

EXAMPLE In order to factor 2∗10 : (52 : 2) by first order relations we must

follow a series of steps. We will demonstrate the procedure here; we begin by using the

following codes in MAGMA.

S:=Sym(10);
xx:=S!(2, 4, 6, 8, 10);
yy:=S!(1, 6)(2, 7)(3, 8)(4, 9)(5, 10);
N:=sub<S|xx,yy>;
#N;
/*50*/
FPGroup(N);
Finitely presented group on 2 generators

Relations
Relations
.1ˆ5 = Id
.2ˆ2 = Id



13

.1ˆ-1 * .2 * .1ˆ-1 * .2 * .1 * .2 * .1 * .2 = Id

We must convert this in terms of x and y to get the presentation of 2∗10 : (52 : 2).

< x, y|x5, y2, x−1 ∗ y ∗ x−1 ∗ y ∗ x ∗ y ∗ x ∗ y >

We now have to find the conjugacy classes of our control group N . We can find the

conjugacy classes of N by taking any element k of N and conjugating it by all elements

of N . We do this for all elements, but since we sometimes have to compute these

conjugacy classes for large groups we use the assistance of MAGMA. We do this in

MAGMA as follows:

C:=Classes(N);
#C;
20
for i in [2..20] do
i, Orbits(Centraliser(N,C[i][3]));
end for;
for j in [2..20] do
C[j][3];
for i in [1..50] do if ArrayP[i] eq C[j][3] then Sch[i];
end if; end for; end for;

This information is given in the following table.
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Table 1.1: Conjugacy Classes of N = 52 : 2

Class Representative of the
class

# of elements
in the class

Orbits

C1 Identity 1
{1},{2},{3},{4},
{5},{6},...,{10}

C2

(y)=(1, 6)(2, 7)(3, 8)(4,
9)(5, 10) 5

{1, 6, 10, 5, 9,
4, 8, 3, 7, 2 }

C3

(xy)2=(1, 3, 5, 7, 9)(2,
4, 6, 8, 10) 1

{1, 6, 8, 10, 3,
2, 5, 4, 7, 9 }

C4

(x2y)2=(1, 5, 9, 3, 7)(2,
6, 10, 4, 8) 1

{1, 6, 8, 10, 3,
2, 5, 4, 7, 9 }

C5
(yx−2)2 =(1, 7, 3, 9,
5)(2, 8, 4, 10, 6)

1
{1, 6, 8, 10, 3,
2, 5, 4, 7, 9}

C6
(yx−1)2=(1, 9, 7, 5,
3)(2, 10, 8, 6, 4)

1
{1, 6, 8, 10, 3,
2, 5, 4, 7, 9 }

C7
(yxy)=(1, 3, 5, 7, 9)

2
{1, 3, 5, 7, 9
},{2, 10, 8, 6,
4 }

C8
(yx2y)=(1, 5, 9, 3, 7)

2
{ 1, 5, 9, 3, 7 },
{2, 10, 8, 6, 4}

C9
(yx−2y)=(1, 7, 3, 9, 5)

2
{1, 7, 3, 9, 5},
{2, 10, 8, 6, 4}

C10
(yx−1y)=(1, 9, 7, 5, 3)

2
{ 1, 9, 7, 5, 3
}, {2, 10, 8, 6,
4 }

To find all first order relations we take a representative from each class C2, ..

C20 (since C1 is the identity class) and right multiply it by a representative from each

orbit until we complete all twenty classes. Let us illustrate an example of obtaining the

first order relation for C2. From table (1.1) we see the representative for this class is y

and the representative of the first orbit is {1, 6, 10, 5, 9, 4, 8, 3, 7, 2 }. We will right

multiply by 6 in this case, but any representative would have worked. We have y ∗ t
where t ∼ t1. Now we find a permutation in terms of x and y that takes t1 to get t6

and that is y. So we get the first relation to be (yt)a. Following the same process we

are able to obtain all possible first order relations which are:
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Table 1.1: Conjugacy Classes of N = 52 : 2

Class Representative of the
class

# of elements
in the class

Orbits

C11

(xyx−1y)=(1, 9, 7, 5,
3)(2, 4, 6, 8, 10) 2

{1, 9, 7, 5,
3},{2, 4, 6, 8,
10}

C12

(x2yx−2y)=(1, 7, 3, 9,
5)(2, 6, 10, 4, 8) 2

{1, 7, 3, 9,
5},{2, 6, 10, 4,
8 }

C13

(xyx2y)2=(1, 5, 9, 3,
7)(2, 4, 6, 8, 10) 2

{1, 5, 9, 3,
7},{2, 4, 6, 8,
10}

C14

(x2yx−1y)2=(1, 9, 7, 5,
3)(2, 6, 10, 4, 8) 2

{1, 9, 7, 5, 3},
{2, 6, 10, 4, 8}

C15
(yxyx−2)2 =(1, 3, 5, 7,
9)(2, 8, 4, 10, 6)

2
{1, 3, 5, 7, 9},
{2, 8, 4, 10, 6}

C16
(yx−2yx−1)2=(1, 7, 3,
9, 5)(2, 10, 8, 6, 4)

2
{1, 7, 3, 9, 5},
{2, 10, 8, 6, 4}

C17
(yx)=(1, 8, 3, 10, 5, 2,
7, 4, 9, 6)

5
{1, 8, 3, 10, 5,
2, 7, 4, 9, 6}

C18
(xyx2)=(1, 10, 7, 6, 3,
2, 9, 8, 5, 4)

5
{ 1, 10, 7, 6, 3,
2, 9, 8, 5, 4},

C19
(x−2yx−1)=(1, 4, 5, 8,
9, 2, 3, 6, 7, 10)

5
{1, 4, 5, 8, 9, 2,
3, 6, 7, 10}

C20
(x−1y)=(1, 6, 9, 4, 7, 2,
5, 10, 3, 8)

5
{1, 6, 9, 4, 7, 2,
5, 10, 3, 8}

((x ∗ y)2 ∗ t)b, ((x2 ∗ y)2 ∗ t)c, ((y ∗ x−2)2 ∗ t)d, ((y ∗ x−1)2 ∗ t)e, (y ∗ x ∗ y ∗ t)f , (y ∗ x2 ∗
y ∗ t)g, (y ∗ x−2 ∗ y ∗ t)h, (y ∗ x−1 ∗ y ∗ t)i, (x ∗ y ∗ x−1 ∗ y ∗ t)j , (x2 ∗ y ∗ x−2 ∗ y ∗ t)k, (x ∗
y ∗ x2 ∗ y ∗ t)l, (x2 ∗ y ∗ x−1 ∗ y ∗ t)u, (y ∗ x ∗ y ∗ x−2 ∗ t)n, (y ∗ x−2 ∗ y ∗ x−1 ∗ t)o, (y ∗ x ∗
t)p, (x ∗ y ∗ x2 ∗ t)q, (x−2 ∗ y ∗ x−1 ∗ t)r, (x−1 ∗ y ∗ t)s .

To obtain finite homomorphic images, we use MAGMA to run a, ..., s for numerical

values we choose, for example up to 10. In other words, the highest value for a, ..., s we

will see is 10. An example of a finite group given through MAGMA with this progenitor

is as follows:

a:=0;b:=0;c:=0;d:=0;e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=0;l:=0;
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m:=0;n:=0;o:=0;p:=0; q:=0;r:=0;s:=4;

G<x,y,t>:=Group<x,y,t| xˆ5,yˆ2,xˆ-1*y*xˆ-1*y*x*y*x*y,
(t,x), tˆ2,
(y*t)ˆa,
((x * y)ˆ2*t)ˆb,
((xˆ2 * y)ˆ2*t)ˆc,
((y * xˆ-2)ˆ2*t)ˆd,
((y * xˆ-1)ˆ2*t)ˆe,
(y * x * y*t)ˆf,
(y * xˆ2 * y*t)ˆg,
(y * xˆ-2 * y*t)ˆh,
(y * xˆ-1 * y*t)ˆi,
(x * y * xˆ-1 * y*t)ˆj,
(xˆ2 * y * xˆ-2 * y*t)ˆk,
(x * y * xˆ2 * y*t)ˆl,
(xˆ2 * y * xˆ-1 * y*t)ˆm,
(y * x * y * xˆ-2*t)ˆn,
(y * xˆ-2 * y * xˆ-1*t)ˆo,
(y * x*t)ˆp,
(x * y * xˆ2*t)ˆq,
(xˆ-2 * y * xˆ-1*t)ˆr,
(xˆ-1 * y*t)ˆs
>;
G;
1000
f, G1, k:=CosetAction(G,sub<G|x,y>);
k;
1

CompositionFactors(G1);
G

| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(5)

*
| Cyclic(5)

*
| Cyclic(5)
1
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This group of order 1000 is isomorphic to 53 : D8. Likewise we find many more finite

homomorphic images. A complete list can be found under Chapter 8.

We will now demonstrate how to write progenitors using other methods and

factoring these progenitors by first order relations. Particularly, monomial progenitors

and the Curtis Lemma progenitors.

2.3 Curtis Lemma Progenitors

In order to find a finite homomorphic image we take a progenitor of the form

m∗n : N and factor by relations. However, finding simple groups factor by relators can be

difficult since we want to produce interesting groups. To help find such images, Robert

Curtis discovered a lemma where the elements of the control group of N can be written

in terms of symmetric generators. In this section we are going to use the Curtis Lemma

to generate symmetric presentations for progenitors to find homomorphic images. We

find the stabilizer of two elements say 1 and 2 and we determine the centralizer of the

two elements. Note: The relations found with the Curtis Lemma are considered as

additional relations.

Example Factoring 2∗36 : (32 : 23) by Curtis Lemma Relations:

A presentation for G is given by: < v2, w4, x2, y3, z3, w−2 ∗ x, (w−1 ∗ v)2, (x ∗ y−1)2, v ∗
z−1 ∗ v ∗ z, (x ∗ z−1)2, (y, z), w ∗ y−1 ∗ w−1 ∗ y ∗ z−1 > As before, we let t ∼ t1 where t

is of order 2, and find the permutation that stabilises the subgroup < t1 > and write it

this permutation in terms of v, w, x, y, z.

S:=Sym(36);
vv:=S!(1, 5)(2, 6)(3, 7)(4, 8)(9, 17)(10, 19)(11, 18)(12, 20)
(13, 16)(21, 29)(22, 30)(23, 31)(24, 32)(25, 28)(33, 36);
ww:=S!(1, 6, 9, 19)(2, 5, 10, 17)(3, 8, 11, 20)(4, 7, 12, 18)
(13, 14, 16,15)(21, 34, 29, 27)(22, 36, 31, 28)(23, 33, 30, 25)
(24, 35, 32, 26);
xx:=S!(1, 9)(2, 10)(3, 11)(4, 12)(5, 17)(6, 19)(7, 18)(8, 20)
(13, 16)(14,15)(21, 29)(22, 31)(23, 30)(24, 32)(25, 33)
(26, 35)(27, 34)(28, 36);
yy:=S!(1, 13, 12)(2, 14, 11)(3, 15, 10)(4, 16, 9)(5, 24, 25)
(6, 22, 26)(7, 23, 27)(8, 21, 28)(17, 33, 32)(18, 34, 30)
(19, 35, 31)(20, 36, 29);
zz:=S!(1, 17, 21)(2, 18, 22)(3, 19, 23)(4, 20, 24)(5, 9, 29)
(6, 11, 30)(7, 10, 31)(8, 12, 32)(13, 33, 28)(14, 34, 26)
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(15, 35, 27)(16, 36, 25);
N:=sub<S|vv,ww,xx,yy,zz>;
#N;
NN<v,w,x,y,z>:=Group<v,w,x,y,z|vˆ2,wˆ4,xˆ2,yˆ3,zˆ3,
wˆ-2*x,(wˆ-1*v)ˆ2,(x*yˆ-1)ˆ2,v*zˆ-1*v*z,(x*zˆ-1)ˆ2,
(y,z),w*yˆ-1*wˆ-1*y*zˆ-1>;
N:=sub<S|vv,ww,xx,yy,zz>;
N;
N1:=Stabiliser(N,1);
(2, 3)(6, 7)(9, 29)(10, 30)(11, 31)(12, 32)(13, 28)(14, 27)
(15, 26)(16, 25)(17, 21)(18, 23)(19, 22)(20, 24)(34, 35) =
v * x * zˆ-1

Therefore we have, N1 = {(2, 3)(6, 7)(9, 29)(10, 30)(11, 31)(12, 32)(13, 28)

(14, 27)(15, 26)(16, 25)(17, 21)(18, 23)(19, 22)(20, 24)(34, 35)} = {v ∗ x ∗ z−1}. Since this

permutation stabilises one, t1 will commute with this relation. We now add this to our

presentation of G: < v,w, x, y, z, t|v2, w4, x2, y3, z3, w−2 ∗ x, (w−1 ∗ v)2, (x ∗ y−1)2, v ∗
z−1 ∗ v ∗ z, (x ∗ z−1)2, (y, z), w ∗ y−1 ∗ w−1 ∗ y ∗ z−1, t2, (t, v ∗ x ∗ z−1) > .

Now, according to the Curtis Lemma, we need to find the centraliser of the

two point stabiliser. Let the point stabiliser of the two elements 1 and 2 be N t1t2 , which

we will denote as N (12). Keep in mind we can always stabilise any two points, such as

one and three for example.

We compute the centraliser of the stabiliser of N (12) as follows:

N12:=Stabiliser(N,[1,2]);
Cent:=Centraliser(N,N12);

If we find that no permutation centralises N (12), then we look for a permutation that

normalises the point stabiliser, which happens to be our case. In this case we find that

(1, 2)(3, 4)(5, 19)(6, 17)(7, 20)(8, 18)(9, 10)(11, 12)(13, 14)(15, 16)(21, 34)(22, 33)(23, 36)

(24, 35)(25, 31)(26, 32)(27, 29)(28, 30) normalises N (12). Again, we now add this relation

to our progenitor, which we do after we convert to terms of v, w, x, y, z. This relation is:

v ∗w−1 and will be labeled as the letter m. This relation is the relation that is required

to produce homomorphic images according to Curtis. If this special relation produces

even numbers when ran in MAGMA, this progenitor is promising. If we obtain odd

numbers, we will not produce homomorphic images. Our progenitor now looks like

this: < v,w, x, y, z, t|v2, w4, x2, y3, z3, w−2 ∗ x, (w−1 ∗ v)2, (x ∗ y−1)2, v ∗ z−1 ∗ v ∗ z, (x ∗
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z−1)2, (y, z), w ∗ y−1 ∗ w−1 ∗ y ∗ z−1, t2, (t, v ∗ x ∗ z−1), (v ∗ w−1 ∗ t)m >. We complete

our progenitor by adding necessary relations to our progenitor as we normally do by

finding the classes of our control group and following the process as discussed in section

2.2. We have: < v,w, x, y, z, t|v2, w4, x2, y3, z3, w−2 ∗ x, (w−1 ∗ v)2, (x ∗ y−1)2, v ∗ z−1 ∗
v ∗ z, (x ∗ z−1)2, (y, z), w ∗ y−1 ∗w−1 ∗ y ∗ z−1, t2, (t, v ∗ x ∗ z−1), (v ∗w−1 ∗ t)m, (v ∗ y−1 ∗
z−1 ∗ t)a, (v ∗ w ∗ t)b, (x ∗ t)c, (y ∗ t)d, (z ∗ t)e, (w ∗ t)f , (y ∗ v ∗ t)g, (v ∗ w ∗ z ∗ t)h >;

With this progenitor we obtain interesting groups such as 4· : S4. A complete

list of homomorphic images for this progenitor can be found in chapter 8.

2.4 Monomial Progenitor 11∗2 :m D10

We will demonstrate how to construct a monomial presentation of

11∗2 :m D10. A presentation for D10 is given by the following:

< x, y|y2, (x−1 ∗ y)2, x5 >.

To construct a monomial presentation we first must induce an irreducible linear char-

acter from a subgroup H of G. To obtain an irreducible character we choose a subgroup

H of G with an index equal to the degree of an irreducible character of G. Consider the

character table of G = D10 in Table 1 and note G has characters χ.1, χ.2, ..., χ.4. We

proceed using χ.4 which has a degree of 2 and look for a subgroup of order 5 so that
|G|
|H| = 2. Thus we get the following index:

[G : H] = [D10 : C5] = 2

If a matrix representation exists it will be represented by 2×2 matrices, since the index

of our two groups is 2.

Verifying the Induction

We produce a character table for C5 in Table 2. We will verify the induction

χ.2 of C5 to χ.3 of D10 by considering the irreducible characters φ (of H) and φG (of

G). G = D10 is generated by xx and yy where xx = (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) and yy =

(1, 4)(2, 3)(5, 10)(6, 9)(7, 8). Using our definition of induction along with the following
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equivalencies: 1 = 1, Z1#1 = 4, Z1#2 = 5, Z1#3 = 9, Z1#4 = 3, we can reproduce φG

using φ (of H).

φGα = n
hα

∑
w∈H∩Cα φ(w), where n = |G|

|H| = 10
5 = 2.

φG1 = 2
1

∑
w∈H∩C1

φ(w)

which implies φG1 = 2
1(φ(1)) = 2(1) = 10.

φG2 = 2
5

∑
w∈H∩C2

φ(w)

φG2 = 2
5

∑
w∈H∩C2

φ

which implies φG2 = 2
5(φ(0)) = 2

5(0) = 0.

φG3 = 2
2

∑
w∈H∩C3

φ(w)

φG3 = 1
∑

w∈H∩C3
(φ(1, 3, 5, 7, 9)(2, 4, 6, 8, 10) + φ(1, 9, 7, 5, 3)(2, 10, 8, 6, 4))

which implies φG3 = 1(−3− 4− 1) = 1(−7) = −7 ≡ 4 (mod 11).

φG4 = 2
2

∑
w∈H∩C4

φ(w)

φG4 = 2
2

∑
w∈H∩C4

(φ(1, 5, 9, 3, 7)(2, 6, 10, 4, 8) + φ(1, 7, 3, 9, 5)(2, 8, 4, 10, 6))

which implies φG4 = 1(−5− 9− 1) = 1(−15) = −15 ≡ 7 (mod 11).

Therefore, φ ↑GH = 2, 0, 4, 7 and we have verified that

χ.2 of C5 induces χ.3 of D10.
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Table 1.2: Character Table of G

χ C1 C2 C3 C4

χ.1 1 1 1 1
χ.2 1 -1 1 1
χ.3 2 0 Z1 Z1#2
χ.4 2 0 Z1#2 Z1

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 1.3: Character Table of H

χ D1 D2 D3 D4 D5

χ.1 1 1 1 1 1
χ.2 1 Z1 Z1#2 Z1#3 Z1#4
χ.3 1 Z1#2 Z1#4 Z1 Z1#3
χ.4 1 Z1#3 Z1 Z1#4 Z1#2
χ.5 1 Z1#4 Z1#3 Z1#2 Z1

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 1.4: χ.3 of G

φG Class Size Class Representative

2 C1 1 Id(G)

0 C2 5 (1, 4)(2, 3)(5, 10)(6, 9)(7, 8)

Z1 C3 2 (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)

Z1#2 C4 2 (1, 5, 9, 3, 7)(2, 6, 10, 4, 8)

Table 1.5: χ.2 of H

φ Class Size Class Representative

1 D1 1 Id(H)

Z1#1 D2 1 (1, 7, 3, 9, 5)(2, 8, 4, 10, 6)

Z1#2 D3 1 (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)

Z1#3 D4 1 (1, 9, 7, 5, 3)(2, 10, 8, 6, 4)

Z1#4 D5 1 (1, 5, 9, 3, 7)(2, 6, 10, 4, 8)
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Through induction, we now verify the monomial representation has the follow-

ing generators:

A(xx) =

5 0

0 9

 ,

A(yy) =

0 1

1 0

.

Verifying the Monomial Representation

G =< e, (1, 4)(2, 3)(5, 10)(6, 9)(7, 8), (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) > and

H =< e, (1, 7, 3, 9, 5)(2, 8, 4, 10, 6) >. Since H is a subgroup of G whose index is equal

to the degree of G, we have that: G = H ∪ Ht1 ∪ Ht2, where the t′is are transver-

sals of G acting on H. The transversals of G are labeled as follows: t1 = e, and

t2 = (1, 4)(2, 3)(5, 10)(6, 9)(7, 8).

We will now use the following formula to verify the matrices:

A(xx) =

 φ(t1xt
−1
1 ) φ(t1xt

−1
2 )

φ(t2xt
−1
1 ) φ(t2xt

−1
2 )



a11 : φ(t1xt
−1
1 ) = φ(xt1) = φ(xe) = φ(x) = φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10)) = 4

a12 : φ(t1xt
−1
2 ) = φ(ext−12 ) =

φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗ (1, 4)(2, 3)(5, 10)(6, 9)(7, 8)) =

φ((1, 2)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

a21 : φ(t2xt
−1
1 ) = φ(t2xe) = φ((1, 4)(2, 3)(5, 10)(6, 9)(7, 8) ∗

(1, 3, 5, 7, 9)(2, 4, 6, 8, 10)) = φ(1, 6)(2, 5)(3, 4)(7, 10)(8, 9) = 0

a22 : φ(t2xt
−1
2 ) = φ(xt2) = φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10)(1,4)(2,3)(5,10)(6,9)(7,8))

= φ((3, 1, 9, 7, 5)(4, 2, 10, 8, 6)) = 9
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Likewise for A(yy):

A(yy) =

 φ(t1yt
−1
1 ) φ(t1yt

−1
2 )

φ(t2yt
−1
1 ) φ(t2yt

−1
2 )



a11 : φ(t1yt
−1
1 ) = φ(yt1) = φ(ye) = φ(y) = φ((1, 4)(2, 3)(5, 10)(6, 9)(7, 8)) = 0

a12 : φ(t1yt
−1
2 ) =

φ(eyt−12 ) = φ(e ∗ (1, 4)(2, 3)(5, 10)(6, 9)(7, 8) ∗ (1, 4)(2, 3)(5, 10)(6, 9)(7, 8))

= φ((1, 4)(2, 3)(5, 10)(6, 9)(7, 8)) = 1

a21 : φ(t2yt
−1
1 ) = φ((1, 4)(2, 3)(5, 10)(6, 9)(7, 8) ∗ y ∗ e) =

φ((1, 4)(2, 3)(5, 10)(6, 9)(7, 8) ∗ (1, 4)(2, 3)(5, 10)(6, 9)(7, 8)) = 1

a22 : φ(t2yt
−1
2 ) = φ(yt2) = φ((1, 4)(2, 3)(5, 10)(6, 9)(7, 8)(1,4)(2,3)(5,10)(6,9)(7,8))

= φ(y) = 0

Each φ of H corresponded with a conjugacy class of either H or G. If the element be-

longed in a conjugacy class from H (seen in table 5.4) we wrote the value of φ for that

class, otherwise, we obtained 0. Therefore the matrix representation of A(xx) and A(yy)

respectively are as follows:

A(xx) =

 5 0

0 9


A(yy) =

 1 0

0 1


To prove the faithful representation of D10 = < x, y|y2, (x−1∗y)2, x5 >, where

|D10| = 10, we simply check the order of each matrix representation: |A(x)| = 5, and

|A(y)| = 2, then |A(x)||A(y)| = 10. which is the order of our index. We con now

conclude that G = < x, y > ∼= < A(x), A(y) > . Now, to finalize the process, all we

need is to construct a permutation representation to build a monomial progenitor in



24

hopes of obtaining homomorphic images of interesting groups.

Constructing a Permutation Representation

We worked in Z11 on matrices of degree 2×2, which implies we are working with

2 ti′s of order 11. Since we have a semi-direct product in our progenitor, the elements

of D10 will act as an automorphism on < t1 > ∗ < t2 >. So, ai,j = a ⇐⇒ ti → taj ,

since this is an automorphism. Therefore, for our A(xx) we have:

A(xx) =

 a11 a12

a21 a22


where t1 corresponds to column 1 and t2 to column 2 We will label the entries of the

matrix as follows: a12 = a, a22 = b, a21 = c, and a22 = d. Then,

a11 = a ⇐⇒ t1 → ta1 a12 = a ⇐⇒ t1 → tb2

a21 = a ⇐⇒ t1 → tc1 a22 = a ⇐⇒ t1 → td2

We can now construct a table with our ti′s with nonzero entries to obtain the permu-

tation representation. Keep in mind we are working Z11. We will have a total of 20 ti′s

for A(xx).

For a11
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t11 → t51

t21 → (t51)
2 = t101

t31 → (t51)
3 = t151 = t41

t41 → (t51)
4 = t201 = t91

t51 → (t51)
5 = t251 = t31

t61 → (t51)
6 = t301 = t81

t71 → (t51)
7 = t351 = t31

t81 → (t51)
8 = t401 = t71

t91 → (t51)
9 = t451 = t11

t101 → (t51)
10 = t501 = t61

Likewise, for

For a22

t12 → t92

t22 → (t92)
2 = t182 = t72

t32 → (t92)
3 = t272 = t52

t42 → (t92)
4 = t362 = t32

t52 → (t92)
5 = t452 = t12

t62 → (t92)
6 = t542 = t102

t72 → (t92)
7 = t632 = t82

t82 → (t92)
8 = t722 = t62

t92 → (t92)
9 = t812 = t42

t102 → (t92)
10 = t902 = t22

Now we are ready to find our permutations from the following table:

Therefore, our permutation representation is the following:

A(xx) = < (1, 9, 5, 7, 17)(2, 18, 8, 6, 10)(3, 19, 11, 15, 13)(4, 14, 16, 12, 20) > .
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Table 1.6: Permutation Table of A(xx)

# ti Mapping to taj Element of Permutation

1 t1 t51 9

2 t2 t92 18

3 t21 t92 19

4 t22 t92 14

5 t31 t92 7

6 t32 t92 10

7 t41 t92 17

8 t42 t92 6

9 t51 t92 5

10 t52 t92 2

11 t61 t92 15

12 t62 t92 20

13 t71 t92 3

14 t72 t92 16

15 t81 t92 13

16 t82 t92 12

17 t91 t92 1

18 t92 t92 8

19 t101 t92 11

20 t102 t92 4

For our A(yy) we would have:

t1 → t12

t2 → t1

Thus, we would apply the same process and our permutation representation would be:

A(yy) = < (1, 2)(3, 4)(6, 5)(8, 7)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20) >.
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This demonstrates that our presentation is correct since we have

|A(xx) ∗A(yy)| = 10 = |G|.

The Monomial Progenitor:

To build the monomial progenitor, we simply need to compute the sta-

biliser (N, t1, t
2
1)

We are looking for what element in N fix our t1′s. The work is as follows:

S:=Sym(20);
xx:=S!(1,9,5,7,17)(2,18,8,6,10)(3,19,11,15,13)
(4,14,16,12,20);
yy:=S!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)
(15,16)(17,18)(19,20);
N:=sub<S|xx,yy>;

Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

Normaliser:=Stabiliser(N,{1,3,5,7,9,11,13,15,17,19});
Stabiliser(N,{1,3,5,7,9,11,13,15,17,19});
A:=Normaliser!(1, 17, 7, 5, 9)(2, 10, 6, 8, 18)
(3, 13, 15, 11, 19)(4, 20, 12, 16,14);
Normaliser eq sub<N|A>;
for i in [1..#N] do if ArrayP[i] eq A then Sch[i];
end if; end for;
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/*xˆ-1*/
FPGroup(Normaliser);
/* $.1ˆ-5 = Id($)*/

Normaliser eq sub<N|xx,xxˆ-5>;

This original progenitor for G is the following:

G<x,y>:=Group<x,y|yˆ2,(xˆ-1*y)ˆ2,xˆ5>;

New progenitor for monomial presentation of G:
G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2,xˆ-5,tˆ11,
(t,xˆ-2),tˆx=tˆ5,(t,tˆy)>;
#G;
/*10*/

To verify that our progenitor is correct, we use the Grindstaff Lemma as

follows:

G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2,xˆ-5,tˆ11,(t,xˆ-2),(t,tˆy)>;
#G;
1210
Index(G,sub<G|x,y>);

121

This proves we have the right progenitor since the index of G is 121 which

is the index of the group we are working with 11∗2. Also, our order of G = 10

and the index of (G)| × |G| = 1210. Thus, we have successfully constructed a

monomial progenitor of D10. We then factor our progenitor by the appropriate

relations in hopes of obtaining homomorphic images.

2.4.1 Factoring 11∗2 :m D10 by First Order Relations

To factor our monomial progenitor by first order relations, we begin by

using our new permutation representation obatined from the process mentioned

above.

S:=Sym(20);
xx:=S! (1, 9, 17, 5, 13)(2, 14, 6, 18, 10)(3, 11, 19, 7, 15)
(4, 16, 8, 20, 12);
yy:=S!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)
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(17,18)(19,20);
N:=sub<S|xx,yy>;

As in the process of any other progenitor, we run the Schreier System to convert

our permutations into words.

Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

In a permutation progenitor we need only to fix or stabilise one element, usually

t1, but in a monomial progenitor, we fix the set of ti, in other words we can

fix any of the following sets: < t1 >,< t2 >, ... < t10 >. Recall that x ∼
(1, 9, 17, 5, 13)(2, 14, 6, 18, 10)(3, 11, 19, 7, 15)(4, 16, 8, 20, 12), and

y ∼ (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20). We let t ∼
t1, and we will fix < t1 >= {1, 9, 17, 5, 13}.

Normaliser:=Stabiliser(N,{1, 9, 17, 5, 13});
/*(1, 5, 9, 13, 17)(2, 18, 14, 10, 6)(3, 7, 11, 15, 19)
(4, 20, 16, 12, 8)*/
Stabiliser(N, {1, 9, 17, 5, 13});
A:=Normaliser! (1, 5, 9, 13, 17)(2, 18, 14, 10, 6
)(3, 7, 11, 15, 19)(4, 20, 16, 12, 8);
Normaliser eq sub<N|A>;
true

Since we need to add the stabiliser of our group < t1 > in our presentation, we

must convert it into words.

for i in [1..#N] do if ArrayP[i] eq A then Sch[i]; end if;
end for;
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/*xˆ-2
tˆ(xˆ-2);

Therefore we will add this to our presentation. Note we must also let MAGMA

know how we labeled our ti′s. Notice that if we conjugate t(x
−2) =

t(1,5,9,13,17)(2,18,14,10,6)(3,7,11,15,19)(4,20,16,12,8) = 5. We have:

G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2,xˆ5,tˆ11,tˆ(xˆ-2)=
tˆ3,(t,tˆ(y))>;
#G;
/*1210*/
Index(G,sub<G|x,y>);
/*121*/

This confirms that our progenitor is correct. Now we find the orbits of each

conjugacy class of N as with our other progenitors. The following gives us our

first order relations:

Classes(N);
/*Conjugacy Classes of group N
----------------------------
[1] Order 1 Length 1

Rep Id(N)

[2] Order 2 Length 5
Rep (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)

[3] Order 5 Length 2
Rep (1, 9, 17, 5, 13)(2, 14, 6, 18,

10)(3, 11, 19, 7, 15)(4, 16, 8, 20,12)

[4] Order 5 Length 2
Rep (1, 17, 13, 9, 5)(2, 6, 10,

14, 18)(3, 19, 15, 11, 7)(4, 8, 12, 16, 20)
#C;
/*4*/
for i in [2..4] do
i,Orbits(Centralizer(N,C[i][3]));
end for;

/*2 [
GSet{@ 1, 2 @},
GSet{@ 3, 4 @},



31

GSet{@ 5, 6 @},
GSet{@ 7, 8 @},
GSet{@ 9, 10 @},
GSet{@ 11, 12 @},
GSet{@ 13, 14 @},
GSet{@ 15, 16 @},
GSet{@ 17, 18 @},
GSet{@ 19, 20 @}

]
3

GSet{@ 1, 9, 17, 5, 13 @},
GSet{@ 2, 14, 6, 18, 10 @},
GSet{@ 3, 11, 19, 7, 15 @},
GSet{@ 4, 16, 8, 20, 12 @}

]
4 [

GSet{@ 1, 17, 13, 9, 5 @},
GSet{@ 2, 6, 10, 14, 18 @},
GSet{@ 3, 19, 15, 11, 7 @},
GSet{@ 4, 8, 12, 16, 20 @}*/

for j in [2..4] do
C[j][3];
for i in [1..10] do if ArrayP[i] eq C[j][3]
then Sch[i]; end if;
end for; end for;

/*(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)
(13, 14)(15, 16)(17, 18)(19, 20)
y
(1, 9, 17, 5, 13)(2, 14, 6, 18, 10)
(3, 11, 19, 7, 15)(4, 16, 8, 20, 12)
x
x * t
(1, 17, 13, 9, 5)(2, 6, 10, 14, 18)
(3, 19, 15, 11, 7)(4, 8, 12, 16, 20)
xˆ2*/

Notice, we need to account for each set of orbits. For this progenitor, we have not

inserted all of the first order relations.

for a,b,c,d,e,f,g,h,i in [0..10] do
G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2,xˆ-5,
tˆ11,tˆ(xˆ-2)=tˆ3,
(y*t)ˆa,
(y*tˆ2)ˆb,
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(y*tˆ3)ˆc,
(y*tˆ4)ˆd,
(y*tˆ5)ˆe,
(y*tˆ6)ˆf,
(y*tˆ8)ˆg,
(y*tˆ9)ˆh,
(y*tˆ10)ˆi>;
if #G gt 10 then a,b,c,d,e,f,g,h,i;
#G;
end if;
end for;

Notice we used t, .., t10 since from our labeling we have t ∼ 1, t2 ∼ 3, ...t10 ∼ 19.

You can find all homomorphic images obtained from the progenitors created with

the above methods in Chapter 7.
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Chapter 3

Isomorphism Types of Some

Groups

In Chapter 3 we will solve some extension problems, meaning we will

determine the isomorphism type of some groups. To prove that one group is

isomorphic to another, we not only have to look at the order of the group, but

also consider its structure. For example consider the composition factors of two

groups both of order 3916800:

G1
| C(2, 4) = S(4, 4)

*
| Cyclic(2)

*
| Cyclic(2)
1

and

G2
| Cyclic(2)

*
| C(2, 4) = S(4, 4)

*
| Cyclic(2)
1
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We would be tempted to say that the groups are isomorphic to each other because

they have the same order, but after investigating their composition factors, we

find that group 1 is isomorphic to 4·S4 and group 2 is isomorphic to 2·(S4 :

2). We will demonstrate the process required to solve these extension problems,

namely 4 types: direct products, semi-direct products, central extensions and

mixed extensions.

3.1 Preliminaries

G = H0 ≥ H1 · · ·Hm = 1

is a refinement of a normal series

G = H0 ≥ H1 · · ·Hm = 1

if G0, G1, ..., Gn is a subsequence of H0, H1, ..., Hm. A composition series is a

normal series

G = G0 ≥ G1 · · ·Gn = 1

in which, for all i either Gi+1 is a maximal normal subgroup of Gi or Gi+1 = G1.

Jordan Hölder Theorem: Every two composition series of a group G are equiv-

alent.

If G has a composition series, then the factor groups of this series are called the

composition factors of G.

If K ≥ G, then a (right) transversal of K in G is a subset T of G consisting

of one element from each right coset of K in G. If K and Q are groups, then an

extension of K by Q is a group G having a normal subgroup K1
∼= K with G/K1

∼= Q. If H and K are groups, then their direct product, denoted by H × K, is

the group with all elements ordered pairs (h, k), where h ∈ H and k ∈ K and with
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operations

(h, k)(h′, k′) = (hh′, kk′)

A group G is a semi− direct product of the subgroups K by the subgroups Q,

denoted by G = K : Q, if K is normal in G and K has a complement Q1
∼= Q.

There are other another two extensions we need to consider. For instance, a

central extension of K by Q is an extension G of K by Q with K ≤ Z(G).

A mixed extension combines the properties of both a semi-direct product and

central extension, where G = NK and N is a normal subgroup of a group G but

is not central. The dihedral group D2n, for 2n ≥ 4, is a group of order 2n which

is generated by two elements of order 2.

3.2 Direct Products

Let us begin with this simple extension problem. We will solve the exte-

sion problem for a control groupN of order 120 given by the following presentation:

< x, y, z|x3, y2, z5, x−1 ∗ y ∗ x ∗ y, y ∗ z−1 ∗ y ∗ z, (z−1 ∗ x)3, (x−1 ∗ z−2)2 >. Notice

here we do not mention any type of relations, since our control groups are simply

presentations of finite groups. In our case, N is generated by x, y and z. We begin

by finding the compostion factors of N which are:

G
| Alternating(5)

*
| Cyclic(2)
1

Now we must look at the normal lattice ofN , this gives us all the normal subgroups

of N .

Normal subgroup lattice
-----------------------

[4] Order 120 Length 1 Maximal Subgroups: 2 3
---
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[3] Order 60 Length 1 Maximal Subgroups: 1
---
[2] Order 2 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

This is one of the most significant pieces of information we can obtain. Notice

that our normal lattice is telling us that we have a subgroup of order 1, order

2, order 60 and lastly G is the order of our group which is 120. From here, we

apply our definitions. We know that if there are two normal subgroups such that

their product equals the order of our group in question, then we most likely have

a direct product. In this case notice that subgroup [2] and subgroup [3] are of

order 2 and 60 respectively. Therefore we verify with MAGMA if N ∼= 2× A5:

IsIsomorphic(N,DirectProduct(AlternatingGroup(5),
CyclicGroup(2)));
true Homomorphism of GrpPerm: N, Degree 10,
Order 2ˆ3 * 3 * 5

into GrpPerm: $, Degree 7, Order 2ˆ3 * 3 * 5 induced by
(2, 4, 10)(5, 7, 9) |--> (2, 4, 5)
(1, 6)(2, 7)(3, 8)(4, 9)(5, 10) |--> (6, 7)
(1, 3, 5, 7, 9)(2, 4, 6, 8, 10) |--> (1, 3, 5, 2, 4)

We are given the corresponding mappings above that confirm that N ∼=
2× A5. Next we investigate central extensions.

3.3 Central Extensions with Minimal Degree Permutation

Representation

3.3.1 Isomorphism Type of G ∼= 2∗60:S5

(v∗w−1∗t)2,(v∗w∗z∗t)3

.

From our control group N =< v,w, x, y, z|v2, w4, x2, y3, z3, w−2∗x, (w−1∗
v)2, (x∗y−1)2, v∗z−1∗v∗z, (x∗z−1)2, (y, z), w∗y−1∗w−1∗y∗z−1 >∼= S5 factored by

the relations: (v∗w−1∗t)2, (v∗w∗z∗t)3, we found the following finite homomorphic
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image: 0 0 0 0 0 0 0 0 3 2 , 1440. This group G is of order 1440, and the numbers

3 and 2 are the first order relations mentioned above, to obtain this finite group

G. This group G factored by the above relations looks as follows:

G < v,w, x, y, z, t >:= Group < v,w, x, y, z, t|v2, w4, x2, y3, z3, w−2 ∗ x,

(w−1 ∗ v)2,(x ∗ y−1)2, v ∗ z−1 ∗ v ∗ z, (x ∗ z−1)2, (y, z), w ∗ y−1 ∗ w−1 ∗ y ∗ z−1,

(t, v ∗ x ∗ z−1), t2, (v ∗ w−1 ∗ t)2, (v ∗ w ∗ z ∗ t)3 >;

We use the following command in MAGMA, where f is the mapping from the

presentation of G given above, k is the kernel of f , and G1 is the name we give the

permutation group image. f,G1, k := CosetAction(G, sub < G|v, w, x, y, z >).

This mapping gives us a permutation representation, but not necessarily one of

minimal degree. For example, we have the following generators of G1 without

using minimal degree representation:

Permutation group G1 acting on a set of cardinality 20
Order = 1440 = 2ˆ5 * 3ˆ2 * 5

(2, 3)(4, 6)(7, 10)(8, 14)(12, 15)(13, 17)
(2, 3, 4, 6)(7, 11, 10, 9)(8, 15, 12, 14)(13, 18, 17, 16)
(2, 4)(3, 6)(7, 10)(8, 12)(9, 11)(13, 17)(14, 15)(16, 18)
(2, 5, 4)(3, 7, 9)(6, 11, 10)(8, 13, 16)(12, 18, 17)(14,
19, 15)(2, 6, 7)(3, 4, 10)(5, 11, 9)(8, 15, 17)(12, 13,
14)(16, 19, 18)(1, 2)(3, 8)(4, 5)(6, 12)(7, 13)(9, 10)
(11, 18)(14, 20)(15, 19)(16, 17)

Now, to obtain a permutation representation of G1 of the minimal degree, we use

the following code in MAGMA which finds a subgroup H in G1 whose generators

produce all G1 on less letters.

SL := Subgroups(G1);
T := {X‘subgroup: X in SL};
#T;
194
TrivCore := {H:H in T| #Core(G1,H) eq 1};
mdeg := Min({Index(G1,H):H in TrivCore});
Good := {H: H in TrivCore| Index(G1,H) eq mdeg};
#Good;
/*4*/
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H := Rep(Good);
#H;

/*120*/
f,G1,K := CosetAction(G1,H);

G1;
/*Permutation group G1 acting on a set of cardinality 12
Order = 1440 = 2ˆ5 * 3ˆ2 * 5

(1, 2)(3, 9)(4, 7)(5, 11)(6, 8)(10, 12)
(1, 3, 4, 8)(2, 6, 7, 9)(5, 12)(10, 11)
(1, 4)(2, 7)(3, 8)(6, 9)
(1, 4, 10)(5, 9, 6)
(1, 4, 10)(2, 7, 12)(3, 8, 11)(5, 9, 6)
(1, 5)(2, 8)(3, 7)(4, 11)(6, 12)(9, 10)*/

Notice now the cardinality of our group is reduced from 20 to 12. We will now

prove the isomorphism type of G.

Proof. The composition factors of G are:

G
| Cyclic(2)

*
| Alternating(6)

*
| Cyclic(2)
1

The composition series for G is:

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 = 1.

The composition factors are:

G = (G0/G1)(G1/G2)(G2/G3)

= (G0/G1)(G1/G2)G3

= C2A5C2

We will investigate the normal subgroup lattice of G to get an idea of the isomor-

phism type.

Normal subgroup lattice
-----------------------
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[7] Order 1440 Length 1 Maximal Subgroups: 4 5 6
---
[6] Order 720 Length 1 Maximal Subgroups: 3
[5] Order 720 Length 1 Maximal Subgroups: 2 3
[4] Order 720 Length 1 Maximal Subgroups: 3
---
[3] Order 360 Length 1 Maximal Subgroups: 1
---
[2] Order 2 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

We usually begin an extension problem by factoring G by the largest abelian

subgroup. In this case, G has a center, which also happens to be the largest

abelian group of G. Our center is NL[2] which by the normal subgroup lattice we

see that it is of order 2. Thus, our center is isomorphic to C2. Now, we factor G

by the center.

q,ff:=quo<G1|NL[2]>;
q;

/*Permutation group q acting on a set of cardinality 10
Order = 720 = 2ˆ4 * 3ˆ2 * 5

(2, 3)(4, 6)(7, 8)
(2, 3, 4, 6)(7, 9, 8, 10)
(2, 4)(3, 6)(7, 8)(9, 10)
(2, 5, 4)(3, 7, 10)(6, 9, 8)
(2, 6, 7)(3, 4, 8)(5, 9, 10)
(1, 2)(4, 5)(8, 10)*/

We are left with a group of order 720 with the generators shown above.

We denote this factor group q. We have an idea of what q might be

isomorphic to, S6 since this group is of order 720 as well. We verify:

IsIsomorphic(q,SymmetricGroup(6));
/*true*/

We can now begin to construct the presentation of G with the information

obtained. We will write the presentation of q with the generators: a,b,c,d,e,f. The
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central element will be represented as z. Since we know that the center commutes

with all elements of the group, we write the presentation as follows:

H<a,b,c,d,e,f,z>:=Group<a,b,c,d,e,f,z| aˆ2, bˆ4, cˆ2, dˆ3, eˆ3,
fˆ2, bˆ-2*c, (bˆ-1*a)ˆ2, (c*dˆ-1)ˆ2, a*eˆ-1*a*e, (c*eˆ-1)ˆ2,
(d,e), b*dˆ-1*bˆ-1*d*eˆ-1, (bˆ-1*f*a)ˆ2, (c*f*dˆ-1)ˆ2,
eˆ-1*f*e*b*f*bˆ-1, f*bˆ-1*f*b*f*a,
dˆ-1*f*dˆ-1*a*bˆ-1*f*dˆ-1*f, zˆ2, (z,a),(z,b),(z,c),
(z,d),(z,e),(z,f)>;

We now verify that our presentation is isomorphic to G.

f,H1,k:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(G1,H1);
s;
/*true*/

Thus, we have G ∼= 2∗S6.

Next, we investigate a more complicated isomorphism type, namely semi-

direct produts.

3.4 Semi-Direct Products

3.4.1 Isomorphism Type of G ∼= 2∗10:(5×10)
(x−2∗y∗x−1∗t)5,(x−1∗y∗t)5

.

Our control groupN =< x, y|x5, y2, x−1∗y∗x−1∗y∗x∗y∗x∗y >∼= Z5×D10.

We constructed the following infinite progenitor G =< x, y, t|x5, y2, x−1 ∗ y ∗x−1 ∗
y∗x∗y∗x∗y, (t, x), t2 >, which when factored by the following necessary relations:

(x−2∗y∗x−1∗t)5, (x−1∗y∗t)5 produces a group G of order 6250. Note: we will use

the following loop to give us a permutation representation of G of the minimal

degree which is originally of cardinality 125. We use this loop when we have

groups of large cardinality, in order to work with the best presentation of that

group G.
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SL := Subgroups(G1);
T := {X‘subgroup: X in SL};
#T;

/*228*/
TrivCore := {H:H in T| #Core(G1,H) eq 1};
mdeg := Min({Index(G1,H):H in TrivCore});
Good := {H: H in TrivCore| Index(G1,H) eq mdeg};
#Good;

/*5*/
H := Rep(Good);
#H;

/*250*/
f,G1,K := CosetAction(G1,H);

G1;
/* Originally Permutation group G1 acting on a set of
cardinality 125

Order = 6250 = 2 * 5ˆ5 , now
Permutation group G1 acting on a set of cardinality 25
Order = 6250 = 2 * 5ˆ5

(1, 2, 4, 8, 5)(3, 6, 9, 13, 10)(7, 11, 14, 18, 15)
(12, 16, 19, 22, 20),
(2, 5)(3, 7)(4, 8)(6, 11)(9, 14)(10, 15)(12, 17)
(13, 18)(16, 21)(19, 23)(20,24)(22, 25),
(1, 3)(2, 6)(4, 9)(5, 10)(7, 12)(8, 13)(11, 16)(14, 19)
(15, 20)(18, 22)(21,24)(23, 25)*/

We will now prove the isomorphism type of G.

Proof. The composition factors of G are:

G
| Cyclic(2)

*
| Cyclic(5)

*
| Cyclic(5)

*
| Cyclic(5)

*
| Cyclic(5)

*
| Cyclic(5)
1
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The composition series for G is:

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊇ G5 ⊇ G6 where G6 = 1.

The composition factors are:

G = (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/1)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)G5

= C2C5C5C5C5C5

The normal lattice of G1 is

NL:=NormalLattice(G1);
NL;

Normal subgroup lattice
-----------------------

[9] Order 6250 Length 1 Maximal Subgroups: 7 8
---
[8] Order 3125 Length 1 Maximal Subgroups: 5 6
[7] Order 1250 Length 1 Maximal Subgroups: 5
---
[6] Order 625 Length 1 Maximal Subgroups: 4
[5] Order 625 Length 1 Maximal Subgroups: 4
---
[4] Order 125 Length 1 Maximal Subgroups: 3
---
[3] Order 25 Length 1 Maximal Subgroups: 2
---
[2] Order 5 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

We take the largest abelian group which we find through running the following

loop:

for i in [1..#NL] do
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if IsAbelian(NL[i]) then i;
end if; end for;
1
2
3
4
6

Here we see that the largest abelian group is 6, which refers to NL[6] of order

625 from our normal lattice of G1. We first need to find the isomorphism type of

NL[6], which has several possibilities, such as 53 × 5, 54, etc. We check and find

the following:

NL[6];
/*Permutation group H acting on a set of cardinality 25
Order = 625 = 5ˆ4
Generators are:
C:(3, 9, 10, 6, 13)(12, 22, 16, 20, 19),
D:(3, 10, 13, 9, 6)(7, 18, 11, 15, 14)(12, 20, 22, 19, 16),
E:(1, 8, 2, 5, 4)(7, 11, 14, 18, 15)(12, 22, 16, 20, 19)

(17, 24, 25, 23, 21),
F:(1, 4, 5, 2, 8)(3, 9, 10, 6, 13)(7, 11, 14, 18, 15)

(12, 16, 19, 22, 20)*/
X:=[5,5,5,5];
IsIsomorphic(NL[6],AbelianGroup(GrpPerm,X));

/*true Mapping from: GrpPerm: H to GrpPerm: $, Degree 20,
Order 5ˆ4
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 20, Order 5ˆ48*/

We find that it is 54. We have that, G2 = 54. Since the order of G is 6250,

and we have that the order of NL[6] is 625, then (G0/G1) must be of order 10.

This composition factor, we call q. Let us investigate the composition factors and

normal subgroups of q to find what q is isomorphic to.

CompositionFactors(q);
G
| Cyclic(2)

*
| Cyclic(5)
1
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and
Normal subgroup lattice
-----------------------

[3] Order 10 Length 1 Maximal Subgroups: 2
---
[2] Order 5 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

q;
Generators: A:(2, 3)(4, 5),

B:(1, 2)(3, 4)
Order 10

Notice that the only normal subgroup of q is of order 5, since we do not have a

normal subgroup of order 2, we will not have a direct product of C2 × C5. Also,

since C5 is not the center of q, then we will most likely have a semidirect product

of 5 : 2. We ask MAGMA if q is abelian:

IsAbelian(q);
/*false*/

Therefore, q must be the nonabelian group D10. We verify our assumption:

IsIsomorphic(DihedralGroup(5),q);
/*true Mapping from: GrpPerm: $, Degree 5,
Order 2 * 5 to GrpPerm: q

Composition of Mapping from: GrpPerm: $, Degree 5,
Order 2 * 5 to
GrpPC andMapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: q*/

We find that q is isomorphic to D10. We now have that this is either a mixed

extension or a semidirect product. We determined this by studying our normal

lattice. There is no normal subgroup of order 10 in G that intersects with NL[6]

of order 625; therefore, we do not have a direct product. Also, our q is not the

center of G, so we do not have a central extension. We are not sure if we have a

mixed extension, but we will investigate this possibility if a semi- direct product

is not the case. To complete our work, we must now find a presentation for the

action of D10 on the generators of 54, which is done as follows:
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<c,d,e,f,a,b|cˆ5,dˆ5,eˆ5,fˆ5, (c,d),(c,e),(c,f),
(d,e),(d,f), (e,f),aˆ2,bˆ2,(a*b)ˆ5, cˆa?,dˆa?,
eˆa?,fˆa?,cˆb?,dˆb,eˆb,fˆb?>

Here c,d,e and f represent elements of NL[6], and a and b represent elements

of D10. We need to find the action of D10 on NL[6], in other words, what is

CA, ..., FA, and CB, ..., FB? Since Q is not normal in G, we do not know how the

elements of Q act on the elements of the normal subgroup K. We need to find

which permutations of our normal subgroup K map to the elements of Q to find

the action. This is done by using the transversals of G over K and fnding which

transversals map to the generators of Q.

T:=Transversal(G1,NL[6]);
ff(T[2]) eq q.2;

/*true*/

T[2] = (2, 5)(3, 7)(4, 8)(6, 11)(9, 14)(10, 15)(12, 17)
(13, 18)(16, 21)(19, 23)(20, 24)(22, 25)

q.2 = (2, 3)(4, 5)

ff(T[3]) eq q.3;
/*true*/

T[3] = (1, 3)(2, 6)(4, 9)(5, 10)(7, 12)(8, 13)(11, 16)
(14, 19)(15, 20)(18, 22)(21,24)(23, 25)

q.3 = (1, 2)(3, 4)

Therefore T [2] maps to the first generator of Q and T [3] maps to the second

generator of Q. Now, we must verify if the relations of Q match the relations of

the transversals. The relations of Q are:

aˆ2 = Id($)
bˆ2 = Id($)
(b * a)ˆ5 = Id($)

The order of the transversals match:
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Order(T[2]);
/*2*/
Order(T[3]);
/*2*/
Order(T[2]*T[3]);

/*5*/

We now have verified that we have a semi - direct product of K by Q. If the

relations did not match, we would have a mixed extension. To complete the

presentation of our group, we run the following loop to find CA, CB, DA, ..., FA

and FB as follows:

for i,j,k,l in [1..5] do if CˆA eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;
1 2 5 5
CˆA eq C*Dˆ2;

true
for i,j,k,l in [1..5] do if CˆB eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

1 5 5 5
CˆB eq C;
true
for i,j,k,l in [1..5] do if DˆA eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

5 4 5 5
for i,j,k,l in [1..5] do if DˆB eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

5 4 5 2
for i,j,k,l in [1..5] do if EˆA eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

5 5 2 4
for i,j,k,l in [1..5] do if EˆB eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

5 5 4 2
for i,j,k,l in [1..5] do if FˆA eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

5 5 3 3
for i,j,k,l in [1..5] do if FˆB eq Cˆi*Dˆj*Eˆk*Fˆl then
i,j,k,l; end if; end for;

5 5 5 1

The numbers represent C,D,E and F . The generators of K are of order 5,

therefore any 5 on the loop means the identity element and the action of Q on
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that element of K does not affect our presentation. For example, the first loop

produced 1, 2, 5, 5 which means C ∗D2 since E and F are of order 5. Finally, we

have our new presentation of our group which we label as H. We check the order

and check if it is isomorphic to our original group G.

H<c,d,e,f,a,b>:=Group<c,d,e,f,a,b| aˆ5,bˆ5,cˆ5,dˆ5,(a,b),(a,c),
(a,d),(b,c),(b,d),(c,d),eˆ2,fˆ2,(e*f)ˆ5, aˆe=aˆ4*b*c,
aˆf=aˆ4*cˆ2, bˆe=bˆ2*cˆ3,bˆf=bˆ4*cˆ4,cˆe=bˆ4*cˆ3,
cˆf=c,dˆe=a*bˆ2*cˆ2*d,dˆf=aˆ4*c*d>;

#H;
6250
f,g,k:=CosetAction(H,sub<H|Id(H)>);
s:=IsIsomorphic(G1,g);
s;

true

Therefore, the isomorphism type of our group G is 54 : D10.

Finally, we investigate the last extension problem type, mixed extensions.

3.5 Mixed Extensions

3.5.1 Isomorphism Type of G ∼= 2∗10:(2×(5:4)
(x∗t)3

From our control group N =< x, y|y4, y−2 ∗ x−1 ∗ y2 ∗ x−1, y−1 ∗ x3 ∗ y ∗ x−1 >∼=
2 × (C5 : 4) we construct the following progenitor: G < x, y, t >:= Group <

x, y, t|y4, y−2 ∗ x−1 ∗ y2 ∗ x−1, y−1 ∗ x3 ∗ y ∗ x−1, t2, (t, x−1 ∗ y−1 ∗ x) > which when

factored by the realtion (x ∗ t)3 we obtain a finite homomorphic image of a group

|G| = 600. When we use the following command:

f,G1,k:=CosetAction(G,sub<G|x,y>);

we obtain the permutation representation of degree 15, whose generators are:

(2, 3, 6, 7, 13, 8, 4, 9, 10, 5)(11, 15)(12, 14)
(2, 4, 10, 6)(3, 7, 9, 8)(11, 12, 15, 14)
(1, 2)(3, 5)(4, 11)(6, 12)(7, 9)(10, 14)(13, 15)

We will now prove the isomorphism type of G.
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Proof. The composition factors of G are:

G
| Cyclic(2)

*
| Cyclic(3)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(5)

*
| Cyclic(5)
1

The composition series for G is:

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊇ G5 ⊇ G6 where G6 = 1.

The composition factors are:

G = (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/1)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)G5

= C2C3C2C2C5C5

The normal lattice of G1 is

NL:=NormalLattice(G1);
NL;

Normal subgroup lattice
-----------------------

[12] Order 600 Length 1 Maximal Subgroups: 9 10 11
---
[11] Order 300 Length 1 Maximal Subgroups: 7
[10] Order 300 Length 1 Maximal Subgroups: 6 7 8
[ 9] Order 300 Length 1 Maximal Subgroups: 5 7
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---
[ 8] Order 150 Length 1 Maximal Subgroups: 4
[ 7] Order 150 Length 1 Maximal Subgroups: 3 4
[ 6] Order 150 Length 1 Maximal Subgroups: 4
[ 5] Order 100 Length 1 Maximal Subgroups: 3
---
[ 4] Order 75 Length 1 Maximal Subgroups: 2
[ 3] Order 50 Length 1 Maximal Subgroups: 2
---
[ 2] Order 25 Length 1 Maximal Subgroups: 1
[ 1] Order 1 Length 1 Maximal Subgroups:

We take the largest abelian group which we find through running the following

loop:

for i in [1..#NL] do
if IsAbelian(NL[i]) then i;
end if; end for;
1
2

Here we see that the largest abelian group is 2, which refers to NL[2] of order

25 from our normal lattice of G1. From the definition of mixed extension, NL[2]

would be our K). We first need to find the isomorphism type of NL[2].

NL[2];
Permutation group H acting on a set of cardinality 25
Order = 25 = 5ˆ2*/
X:=[5,5];
IsIsomorphic(NL[2],AbelianGroup(GrpPerm,X));

true Mapping from: GrpPerm: H to GrpPerm: $, Degree 10,
Order 5ˆ2
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 10,
Order 5ˆ2

We find that it is 52. We have that (G4/G5)(G5/G6) = 52. Since the order

of G is 600, and we have that the order of NL[2] is 25, then (G0/G1)(G1/G2)

(G2/G3)(G3/G4) must be of order 24. This composition factor we call q, which

would be our Q from the definition.
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#G1;
600
#q;

24
IsAbelian(q);

false

In order to determine what the isomorphism type of q may be we will

look at the normal lattice. We see that there is a normal subgroup of order 6 and

of order 4 and also a normal subgroup of order 12 and of order 2. Therefore we

will check if we have a direct product.

Normal subgroup lattice
-----------------------

[11] Order 24 Length 1 Maximal Subgroups: 8 9 10
---
[10] Order 12 Length 1 Maximal Subgroups: 6
[ 9] Order 12 Length 1 Maximal Subgroups: 4 6
[ 8] Order 12 Length 1 Maximal Subgroups: 5 6 7
---
[ 7] Order 6 Length 1 Maximal Subgroups: 3
[ 6] Order 6 Length 1 Maximal Subgroups: 2 3
[ 5] Order 6 Length 1 Maximal Subgroups: 3
[ 4] Order 4 Length 1 Maximal Subgroups: 2
---
[ 3] Order 3 Length 1 Maximal Subgroups: 1
[ 2] Order 2 Length 1 Maximal Subgroups: 1
---
[ 1] Order 1 Length 1 Maximal Subgroups:

IsIsomorphic(q, DirectProduct(DihedralGroup(3),CyclicGroup(4)));
true Mapping from: GrpPerm: q to GrpPerm: $, Degree 7,
Order 2ˆ3 * 3

Composition of Mapping from: GrpPerm: q to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 7,
Order 2ˆ3 * 3

We find that q is isomorphic to the direct product of the Dihedral group

6, denoted D6, and the Cyclic group 4 denoted C4. Now, we must determine
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the action of (D6 × C4) on 52. We will check if we have a mixed extension or a

semi-direct product. For either a mixed extension or a semi - direct product, we

need to find the transversals of the normal subgroup K to relate the elements of

q to K since q is not normal in G.

Let us check which transversals map to the three elements of q.

T:=Transversal(G1,NL[2]);
ff(T[2]) eq q.1
true
ff(T[3]) eq q.2
true
ff(T[4]) eq q.3
true

Therefore we will use T [2], T [3] and T [4] to represent q.1, q.2 and q.3. From our

relations we check the orders of the generators of q as follows:

FPGroup(q);
/*Finitely presented group on 3 generators
Relations

$.1ˆ2 = Id($)
$.2ˆ4 = Id($)
$.3ˆ2 = Id($)
$.2ˆ-1 * $.1 * $.2 * $.1 = Id($)
$.2ˆ-1 * $.3 * $.2 * $.3 = Id($)
($.3 * $.1)ˆ3 = Id($)*/

Now, we will check if the order of the relations of q match when we map the

transversals of K in G.

Order(T[2]ˆ2); /*5*/ change
Order(T[3]ˆ4); /*1*/ match
Order(T[4]ˆ2); /*1*/ match
Order(T[3]ˆ-1*T[2]*T[3]*T[2]);
/*5*/ change
Order(T[3]ˆ-1*T[4]*T[3]*T[4]);

/*5*/ change
Order((T[4]*T[2])ˆ3); /*1*/ match

The only relations that changed above were:
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Order(T[2]ˆ2); /*5*/
Order(T[3]ˆ-1*T[2]*T[3]*T[2]);
/*5*/
Order(T[3]ˆ-1*T[4]*T[3]*T[4]);

/*5*/

Now we know that we will have a mixed extension. To complete a presentation

for a mixed extension we need to complete two steps: 1) Find the action of the

generators of q on the generators of NL[2].

2) Write the elements of q as products of the elements of NL[2].

We will label the generators of NL[2] below as A and B to begin step 1:

Generators(NL[2]);
A:=G1!(1, 11, 12, 14, 15)(2, 6, 13, 4, 10)(3, 9, 7, 5, 8);
B:=G1!(2, 10, 4, 13, 6)(3, 5, 9, 8, 7);

We named the transversals as follows for our presentation:

T[2] = c
T[3] = d
T[4] = e

To complete step 1), we find the action of the generators of q on the

generators of NL[2].

for i,j in [1..5] do if AˆT[2] eq Aˆi*Bˆj then i,j; end if;
end for; /*4 1*/
for i,j in [1..5] do if AˆT[3] eq Aˆi*Bˆj then i,j; end if;
end for; /*2 5*/
for i,j in [1..5] do if AˆT[4] eq Aˆi*Bˆj then i,j; end if;
end for; /*2 4*/

for i,j in [1..5] do if BˆT[2] eq Aˆi*Bˆj then i,j; end if;
end for; /*5 1*/

for i,j in [1..5] do if BˆT[3] eq Aˆi*Bˆj then i,j; end if;
end for; /*5 2*/
for i,j in [1..5] do if BˆT[4] eq Aˆi*Bˆj then i,j; end if;

end for; /*3 3*/

Our presentation of step 1) is the following:

ac = a4 ∗ b,
ad = a2,
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bc = b,

bd = b2,

ae = a2 ∗ b4,
be = a3 ∗ b3

The following loop determines how to represent the generators of q as

products of NL[2] from step 2:

for i,j in [1..5] do if T[2]ˆ2 eq Aˆi*Bˆj then i,j; end if;
end for;

/*5 4*/
for i,j in [1..5] do if T[3]ˆ-1*T[2]*T[3]*T[2] eq
Aˆi*Bˆj then i,j; end if; end for;
/*5 1*/
for i,j in [1..5] do if T[3]ˆ-1*T[4]*T[3]*T[4]

eq Aˆi*Bˆj then i,j; end if; end for;
/*1 4*/

The presentation of the generators of q as products of NL[2] will therefore

be:

c2 = b4,

d4 = id,

e2 = id,

d−1 ∗ c ∗ d ∗ c = b,

d−1 ∗ e ∗ d ∗ e = a ∗ b4,
(e ∗ c)3 = id

Now we can complete our presentation as follows:

H < c, d, e, a, b >:= Group < c, d, e, a, b|a5, b5, (a, b), c2 = b4, d4, e2, d−1 ∗ c ∗ d ∗ c =

b, d−1 ∗e∗d∗e = a∗ b4, (e∗ c)3, ac = a4 ∗ b, ad = a2, bc = b, bd = b2, ae = a2 ∗ b4, be =

a3 ∗ b3 >;

Then we check to make sure that our new presentation matches our G1

#H;
/*600*/
f2,G2,k2:=CosetAction(H,sub<H|Id(H)>);
#G2;

600
IsIsomorphic(G2,G1);

/*true Mapping from: GrpPerm: G2 to GrpPerm: G1
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Composition of Mapping from: GrpPerm: G2 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: G1*/

Therefore we have a mixed extension of 52 :· D6 × Z4
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3.5.2 Isomorphism Type of G ∼= 2∗60:S5

(y2∗t)2,(y∗x∗t)6,(y∗t)6

.

From our control group N =< x, y|x2, y6, (y∗x∗y−1∗x)2, (x∗y−1)5 >∼= S5

we found the following finite homomorphic image 0 0 2 0 6 6 2, 19440 when N is

factored by the following necessary relations:(y2 ∗ t)2, (y ∗ x ∗ t)6, (y ∗ t)6 and the

additional relation (y2 ∗ x ∗ y−2)2. A presentation of G looks like: G < x, y >:=

Group < x, y, t|x2, y6, (y ∗ x ∗ y−1 ∗ x)2, (x ∗ y−1)5, (t, xy), t2, (y2 ∗ x ∗ y−2)2, (y2 ∗
t)2, (y ∗ x ∗ t)6, (y ∗ t)6 > We now express thesymmetric presentation above from

words to permutations of degree 162 with the command:

f, G1, k:=CosetAction(G,sub<G|x,y>);

We will now prove the isomorphism type of G.

Proof. The composition factors of G are:

G
| Cyclic(2)

*
| Cyclic(2)

*
| Alternating(5)

*
| Cyclic(3)

*
| Cyclic(3)

*
| Cyclic(3)

*
| Cyclic(3)
1

The composition series for G is:

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊇ G5 ⊇ G6 ⊇ G7 where G7 = 1.
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The composition factors are:

G = (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)(G6/G7)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)(G6/1)

= (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)(G5/G6)G7

= C2C2A5C3C3C3C3

The normal lattice of G is

NL:=NormalLattice(G);
NL;

Normal subgroup lattice
-----------------------

[8] Order 19440 Length 1 Maximal Subgroups: 5 6 7
---
[7] Order 9720 Length 1 Maximal Subgroups: 4
[6] Order 9720 Length 1 Maximal Subgroups: 4
[5] Order 9720 Length 1 Maximal Subgroups: 3 4
---
[4] Order 4860 Length 1 Maximal Subgroups: 2
---
[3] Order 162 Length 1 Maximal Subgroups: 2
---
[2] Order 81 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

It is ideal to begin an extension problem by factoring G by the largest abelian

group if possible or factoring by the center. In this case, G does not have a center,

thus we take the largest abelian group which we find through running the following

loop:

for i in [1..#NL] do
if IsAbelian(NL[i]) then i;
end if; end for;
1
2
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Here we see that the largest abelian group is 2, which refers to NL[2] of order 81

from our normal lattice of G. We first need to find the isomorphism type of NL[2],

which has several possibilities, such as 33 × 3, 32 × 32, 34, etc. We check and find

the following:

NL[2];
Permutation group acting on a set of cardinality 162
Order = 81 = 3ˆ4
X:=[3,3,3,3];
IsIsomorphic(NL[2],AbelianGroup(GrpPerm,X));

/*true Mapping from: GrpPerm: H to GrpPerm: $, Degree 12,
Order 3ˆ4
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 12,
Order 3ˆ4*/

We find that NL[2] is isomorphic to the abelian group 3× 3× 3× 3 or 34. Thus,

we have that G3 = 34. Since the order of G is 19440, and we have that the order

of NL[2] is 81, then (G0/G1)(G1/G2)(G2/G3) must be of order 240. We confirm

this when we factor G by NL[2] as follows:

q,ff:=quo<G1|NL[2]>;
q;

/*Permutation group q acting on a set of cardinality 24
Order = 240 = 2ˆ4 * 3 * 5

This composition factor we call q. Since we do not have an idea of what q might

be isomorphic to, we must check the normal lattice for q.

nl:=NormalLattice(q);
nl;
Normal subgroup lattice
-----------------------

[7] Order 240 Length 1 Maximal Subgroups: 4 5 6
---
[6] Order 120 Length 1 Maximal Subgroups: 3
[5] Order 120 Length 1 Maximal Subgroups: 2 3
[4] Order 120 Length 1 Maximal Subgroups: 3
---
[3] Order 60 Length 1 Maximal Subgroups: 1
---
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[2] Order 2 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

The most convenient method to approach this type of problem is to first check

if we have a direct product. Direct products are easily found by simply studying

our normal lattice. Recall that a direct product of G = K × Q requires both K

and Q to be normal in G. In our case, we want to see if q is composed of a direct

product. Since we a have a normal subgroup of order 2, and three subgroups of

order 120, we find we most likely have a direct product. We check as follows:

E:=DirectProduct(nl[2],nl[4]);
IsIsomorphic(E,q);

/*true*/

We see that nl[2] × nl[4] gives us q. We need to find what nl[2] and nl[4] are

ismorphic to. Recall that S5 is a group of order 120, so we check the following:

IsIsomorphic(nl[4],SymmetricGroup(5));
/*true*/

IsIsomorphic(nl[2],CyclicGroup(2));

/*true Mapping from: GrpPerm: $, Degree 24, Order 2 to GrpPerm:
Degree 2, Order 2

Composition of Mapping from: GrpPerm: $, Degree 24, Order 2 to
GrpPC and Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: $, Degree 2, Order 2*/

We find that q ∼= S5 × 2. Now we need to write a presentation for q.

Since we know that nl[4] ∼= S5 and nl[2] ∼= C2, we run the following in MAGMA

to give us a presentation for each, so that we may complete the presentation of q.

FPGroup(SymmetricGroup(5));
Finitely presented group on 2 generators
Relations

$.1ˆ5 = Id($)
$.2ˆ2 = Id($)
($.1ˆ-1 * $.2)ˆ4 = Id($)
($.1 * $.2 * $.1ˆ-2 * $.2 * $.1)ˆ2 = Id($)

and FPGroup(nl[2]);
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Finitely presented group on 2 generators
Relations

$.2ˆ2 = Id($)
$.1 = Id($)

A presentation for S5 is : S < e, f >:= Group < e, f |e5, f 2, (e−1 ∗f)4, (e∗f ∗e−2 ∗
f ∗ e)2 >, and a presentation for C2 is: C < g, h >:= Group < g, h|h2, g >. We

know that since we have a direct product, the elements of S5 will commute with

the elements of C2 as follows: D < e, f, g, h >:= Group < e, f, g, h|e5, f 2, (e−1 ∗
f)4, (e ∗ f ∗ e−2 ∗ f ∗ e)2, h2, g, (g, e), (g, f), (h, e), (h, f) >.

We check to make sure we have the correct presentation for q:

D < e, f, g, h >:= Group < e, f, g, h|e5, f 2, (e−1∗f)4, (e∗f∗e−2∗f∗e)2, h2, g, (g, e),
(g, f), (h, e), (h, f) >

ff2,dd,kk2:=CosetAction(D,sub<D|Id(D)>);
s,t:=IsIsomorphic(q,dd);

s;
true

Now that we have a presentation for q, let us write a presentation for NL[2] since

this will be needed in the future. We run the following command in MAGMA:

FPGroup(NL[2]);
Finitely presented group on 5 generators
Relations

$.2ˆ3 = Id($)
$.3ˆ3 = Id($)
$.4ˆ3 = Id($)
$.5ˆ3 = Id($)
($.2, $.3) = Id($)
($.2, $.4) = Id($)
($.3, $.4) = Id($)
($.2, $.5) = Id($)
($.3, $.5) = Id($)
($.4, $.5) = Id($)
$.1 = Id($)

Our presentation is: NL[2] =< w, x, y, z|w3, x3, y3, z3, (w, x), (w, y), (x, z), (w, z),

(x, z), (y, z) >. Now, our final task is to find the action of Q = S5 × 2 on K,

which in this case is 34. We can easily rule out a central extension since we had
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no center in G, and a direct product as well since we have no normal subgroup of

order 240. We determine that we must have a semi - direct product or a mixed

extension. If the transversals of G/NL[2] can be written as products of elements

of K, then we will have a mixed extension, or if this is not the case, we will simply

have a semi - direct product.

T:=Transversal(G1,NL[2]);
ff(T[2]) eq q.1;

/*true*/
ff(T[3]) eq q.2;

/*true*/
ff(T[4]) eq q.3;

/*true*/

Notice we need the transversals of G over NL[2]. This will help us write the

elements of q in terms of NL[2]. We check if the mapping from transversals

T [2], T [3] and T [4] map to our elements of our group q. They indeed do, therefore

we can write the transversals as elements of q, which we will show later on. For

now, we find the action of these transversals of G on NL[2].

Generators(NL[2]);

A:=G1!(1, 161, 155)(2, 143, 162)(3, 144, 146)
(4, 149, 147)(5, 145, 123)(6,119, 156)(7, 134,
140)(8, 122, 158)(9, 96, 157)(10, 80, 56)(11,111,
74)(12, 101, 77)(13, 120, 151)(14, 108, 63)

(15, 154, 114)(16,105, 76)(17, 81, 98)(18, 82,
70)(19, 33, 110)(20, 79, 57)(21, 51,138)(22, 55,
127)(23, 153, 115)(24, 159, 87)(25, 39, 136)(26,
160, 88)(27, 141, 139)(28, 102, 75)(29, 53, 131)

(30, 103, 97)(31, 73, 112)(32, 45, 113)(34, 109,
35)(36, 148, 47)(37, 126, 92)(38, 125, 66)(40,

118, 68)(41, 124, 59)(42, 142, 137)(43, 106,
85)(44, 116,150)(46, 83, 133)(48, 117, 152)(49,
60, 130)(50, 52, 128)(54, 72,129)(58, 135,

69)(61, 121, 100)(62, 91, 99)(64, 107, 67)(65,
94,89)(71, 104, 86)(78, 90, 93)(84, 95, 132);

B:=G1!(1, 153, 151)(2, 144, 152)(3, 117, 162)(4,
126, 133)(5, 135, 109)(6, 80, 78)(7, 107, 129)(8,
108, 89)(9, 105, 104)(10, 93, 156)(11,154, 84)
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(12, 75, 106)(13, 161, 115)(14, 94, 158)(15, 132,
74)(16,71, 157)(17, 57, 124)(18, 159, 61)(19, 38,
137)(20, 59, 81)(21, 148, 53)(22, 136, 45)(23,
120, 155)(24, 100, 70)(25, 113, 55)(26, 99, 97)

(27, 73, 130)(28, 85, 101)(29, 138, 36)(30, 160,
62)(31,60, 139)(32, 127, 39)(33, 125, 42)(34,
123, 58)(35, 145, 69)(37, 83, 147)(40, 150, 50)

(41, 98, 79)(43, 77, 102)(44, 52, 118)(46,149,
92)(47, 131, 51)(48, 143, 146)(49, 141, 112)(54,
134, 67)(56, 90, 119)(63, 65, 122)(64, 72, 140)

(66, 142, 110)(68, 116, 128)(76,86, 96)(82, 87,
121)(88, 91, 103)(95, 111, 114);

C:=G1!(1, 154, 158)(2, 149, 139)(3, 126, 112)(4, 141,
162)(5, 125, 127)(6, 81, 100)(7, 118, 138)(8, 161, 114)

(9, 101, 99)(10, 57, 82)(11, 94,151)(12, 91, 157)(13,
111, 89)(14, 153, 84)(15, 122, 155)(16, 75,103)(17,

121, 156)(18, 56, 79)(19, 113, 34)(20, 70, 80)(21,
134, 68)(22, 145, 66)(23, 132, 63)(24, 78, 59)(25,
58, 137)(26, 104,85)(27, 143, 147)(28, 97, 105)(29,
129, 52)(30, 76, 102)(31, 144,92)(32, 109, 33)(35,

110, 45)(36, 107, 44)(37, 73, 146)(38, 55,123)(39,
135, 42)(40, 51, 140)(41, 159, 90)(43, 160, 86)(46,
60,152)(47, 64, 150)(48, 83, 130)(49, 117, 133)

(50, 131, 72)(53, 54,128)(61, 119, 98)(62, 96, 77)
(65, 120, 74)(67, 116, 148)(69, 142,
136)(71, 106, 88)(87, 93, 124)(95, 108, 115);

D:=G1!(1, 159, 157)(2, 145, 150)(3, 135, 128)(4, 125,
148)(5, 116, 162)(6,102, 132)(7, 130, 113)(8, 124, 99)
(9, 161, 87)(10, 85, 111)(11,56, 106)(12, 154, 90)(13,
82, 104)(14, 98, 103)(15, 78, 77)(16,153, 61)(17, 97,
108)(18, 71, 151)(19, 138, 83)(20, 160, 65)(21,133,
33)(22, 64, 139)(23, 100, 76)(24, 96, 155)(25, 129, 73)
(26,89, 57)(27, 55, 107)(28, 95, 156)(29, 37, 137)(30,
63, 81)(31,136, 72)(32, 134, 49)(34, 118, 48)(35, 40,
152)(36, 147, 38)(39,54, 112)(41, 91, 158)(42, 53,

126)(43, 74, 80)(44, 143, 123)(45,140, 60)(46, 110,
51)(47, 149, 66)(50, 144, 69)(52, 146, 58)(59,62,
122)(67, 141, 127)(68, 117, 109)(70, 86, 120)(75,
84, 119)(79,88, 94)(92, 142, 131)(93, 101, 114)

(105, 115, 121);

T[2];
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H:=G1!(2, 3)(6, 10)(8, 14)(9, 16)(11, 15)(13, 23)(18, 24)
(21, 36)(22, 39)(25,45)(26, 30)(27, 49)(29, 51)(32, 55)(33,
38)(35, 58)(37,46)(40, 52)(42,66)(44, 68)(47, 53)(54, 64)

(56, 78)(57, 81)(59, 79)(60, 73)(61, 87)(62, 88)(63, 89)
(71, 96)(75, 101)(76, 104)(77, 106)(82, 100)(84, 114)(85,
102)(93, 119)(94, 122)(98, 124)(99, 103)(107, 134)(109,
123)(110,137)(111, 132)(112, 139)(117, 143)(126, 149)
(128, 150)(129, 140)(133,147)(135, 145)(146, 152)
(151, 155)(153, 161);

T[3];

I:=G1!(2, 4)(3, 5, 7)(6, 11, 9, 17, 13, 12)(8, 15)(10,18,20)
(14, 24, 43, 23, 41, 26)(16, 28, 30)(19, 33, 32, 45, 35, 34)
(21, 37, 22, 40, 31, 38)(25, 46,47)(29, 52, 50, 72, 54, 53)
(36, 58, 83, 64, 39, 60)(42, 49, 44, 69, 48,67)(51, 73, 55)
(56, 79, 57, 82, 70, 80)(59, 85, 63)(61, 65, 62)(66, 68, 92)
(71, 95, 93)(74, 99, 98, 89, 77, 100)(75, 102, 76, 105, 97,
103)(78,106, 132, 124, 104, 108)(81, 111, 101)(84, 87,
86, 115, 90, 88)(91, 119, 94, 96, 121, 120)(107, 135,

130)(109, 113, 110)(112, 123, 138, 146, 127,140)(116,
142, 117)(118, 144, 125, 134, 126, 145)(128, 131, 129)
(133,150, 136, 152, 148, 137)(139, 147)(141, 143)(151,
157, 156)(153, 159,160)(154, 161)(155, 158);

T[4];

J:=G1!(1, 2)(3, 6)(4, 8)(5, 9)(7, 13)(10, 19)(11, 21)(12, 22)
(14, 25)(15, 27) (16,29)(17, 31)(18, 32)(20, 35)(23, 42)(24,
44)(26, 48)(28, 50)(30, 54)(33,56)(34, 57)(36, 59)(37, 61)
(38, 62)(39, 63)(40, 65)(41, 47)(43, 46)(45,70)(49, 71)(51,
74)(52, 75)(53, 76)(55, 77)(58, 84)(60, 86)(64, 90)(66,91)

(67, 93)(68, 94)(69, 95)(72, 97)(73, 98)(78, 107)(79, 109)
(80,110)(81, 112)(82, 113)(83, 85)(87, 116)(88, 117)(89,
118)(92, 121)(96,123)(99, 125)(100, 126)(101, 127)(102,
128)(103, 129)(104, 130)(105,131)(106, 133)(108, 136)

(111, 138)(114, 141)(115, 142)(119, 146)(120,140)(122,
147)(124, 148)(132, 135)(134, 151)(137, 153)(139, 154)

(143,155)(144, 156)(145, 157)(149, 158)(150, 159)(152,
160)(161, 162);

The following code tells MAGMA to give us the action of the transversals on

the generators NL[2] which are of order 3. The numbers we obtain represent the
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action of the transversals of G/NL[2] on NL[2], which are in order of A, B, C and

D. For example, in the first set we would obtain that AH = B since A, C and D

are order 3 which is the identity.

for i,j,k,l in [1..3] do if AˆH eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;

3 1 3 3
for i,j,k,l in [1..3] do if AˆI eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
3 3 1 3
for i,j,k,l in [1..3] do if AˆJ eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
2 3 3 3
for i,j,k,l in [1..3] do if BˆH eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;

1 3 3 3
for i,j,k,l in [1..3] do if BˆI eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;

3 3 3 1
for i,j,k,l in [1..3] do if BˆJ eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
1 1 1 1
for i,j,k,l in [1..3] do if CˆH eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
3 3 1 3
for i,j,k,l in [1..3] do if CˆI eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;

1 3 3 3
for i,j,k,l in [1..3] do if CˆJ eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
3 3 2 3
for i,j,k,l in [1..3] do if DˆH eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
3 3 3 1
for i,j,k,l in [1..3] do if DˆI eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
2 2 2 2
for i,j,k,l in [1..3] do if DˆJ eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;
3 3 3 2

Therefore, we have this presentation so far: Group < w, x, y, z, e, f, g|w3,

x3, y3, z3, (w, x), (w, y), (x, z), (w, z), (x, z), (y, z), e2, f 6, g2, (f−1 ∗ g)2, f−2 ∗ e ∗ f 2 ∗
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g ∗ e ∗ g, (f ∗ e ∗ f−1 ∗ e)2, e ∗ f−3 ∗ e ∗ f−1 ∗ g ∗ e ∗ f−1 ∗ g, (e ∗ f−1)5, we = x,wf =

y, wg = w2, xe = w, xf = z, xg = w ∗ x ∗ y ∗ z, ye = y, yf = w, yg = y2, ze = z, zf =

w2 ∗ x2 ∗ y2 ∗ z2, zg = z2 > Here A,B,C,D are represented by w, x, y, z and H,I,J

are e, f, g.

We have completed the semi - direct part of our presentation. A charac-

teristic of a mixed extension is that the elements of Q may be written as products

of the elements of the normal subgroup K. We will test the elements of Q and

their relations. When writing the elements of Q as the transversals of G/NL[2]

we may have that the order of the relation changes. If this is the case, we must

find what element of the normal subgroup of NL[2] this is, which shows that we

indeed have a mixed extension.

Recall that T [2]→ q.1, T [3]→ q.2 and T [4]→ q.3. We check by running

the following in MAGMA:

FPGroup(q);
Finitely presented group on 3 generators
Relations

$.1ˆ2 = Id($)
$.2ˆ6 = Id($)
$.3ˆ2 = Id($)
($.1 * $.2ˆ-1)ˆ5 = Id($)
($.2ˆ-1 * $.3)ˆ2 = Id($)
($.2 * $.1 * $.2ˆ-1 * $.1)ˆ2 = Id($)
$.2ˆ-2 * $.1 * $.2ˆ2 * $.3 * $.1 * $.3 = Id($)
$.1 * $.2ˆ-3 * $.1 * $.2ˆ-1 * $.3 * $.1 * $.2ˆ-1 * $.3
= Id($)

Order(T[2]ˆ-1*T[3]);
Order is 5, same as in q, thus does not change.

Order(T[3]ˆ-1*T[4])ˆ2;
/*36, changes, then run code*/

for i,j,k,l in [1..3] do
if (T[3]ˆ-1*T[4])ˆ2 eq Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;
end if; end for;

1 3 2 3
Thus, (fˆ-1*g)ˆ2=w*yˆ2
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Order(T[3]*T[2]*T[3]ˆ-1*T[2]);
The order is 2, the same as in the presentation of q.
Then, nothing changes.

Order(T[3]ˆ-2*T[2]*T[3]ˆ2*T[4]*T[2]*T[4]);
/* Order is 3. It changes, so run code */

for i,j,k,l in [1..3] do
if (T[3]ˆ-2*T[2]*T[3]ˆ2*T[4]*T[2]*T[4]) eq
Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end for;
2 1 1 1

Thus, fˆ-2*e*fˆ2*g*e*g=wˆ2*x*y*z.

Order(T[2]*T[3]ˆ-3*T[2]*T[3]ˆ-1*T[4]*T[2]*T[3]ˆ-1*T[4]);
/* Order is 3. It changes, therefore, we run the code. */

for i,j,k,l in [1..3] do
if T[2]*T[3]ˆ-3*T[2]*T[3]ˆ-1*T[4]*T[2]*T[3]ˆ-1*T[4] eq
Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l; end if; end for;
1 2 3 3

Thus, e*fˆ-3*e*fˆ-1*g*e*fˆ-1*g=w*xˆ2.

Now we have the complete presentation of G, which we verify using MAGMA:

H<w,x,y,z,e,f,g>:=Group<w,x,y,z,e,f,g|
wˆ3,xˆ3,yˆ3,zˆ3,(w,x),(w,y),(x,z),(w,z),(x,z),(y,z),
eˆ2,fˆ6,gˆ2,(fˆ-1*g)ˆ2=w*yˆ2,fˆ-2*e*fˆ2*g*e*g=wˆ2*x*y*z,
(f*e*fˆ-1*e)ˆ2,e*fˆ-3*e*fˆ-1*g*e*fˆ-1*g=w*xˆ2,(e*fˆ-1)ˆ5,
wˆe=x,wˆf=y,wˆg=wˆ2,xˆe=w,xˆf=z,xˆg=w*x*y*z,
yˆe=y,yˆf=w,yˆg=yˆ2,zˆe=z,zˆf=wˆ2*xˆ2*yˆ2*zˆ2,zˆg=zˆ2>;
#H;
19440
#G1;
19440
f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);
s:=IsIsomorphic(G1,H1);
s;
true

We have successfully solved the extension problem for G, in which we

found that G ∼= 34 :· (S5 × 2).
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Chapter 4

Double Coset Enumeration

Definition 4.1. [Cur07] Let H and K be subgroups of the group G and define a

relation on G as follows:

x ∼ y ⇐⇒ ∃h ∈ H and k ∈ K such that y = hxk

where ∼ is an equivalence relation and the equivalence classes are the sets of the

following form

HxK = {hxk|h ∈ H, k ∈ K} = ∪k∈KHxk = ∪h∈HhxK

Such a subset of G is called a double coset. Now we consider the double coset

of the form NxN , where x = πw for some n ∈ N and w is a reduced word in the

ti′s. Thus NxN = NπwN = NwN = [w].

Definition 4.2. [Rot95] Let N be a group. The point stabiliser of w in N is

given by:

Nw = {n ∈ N |wn = w}, where w is a word in the ti’s.

Definition 4.3. [Rot95] Let N be a group. The coset stabiliser of Nw in N is

given by:

N (w) = {n ∈ N |Nwn = Nw}, where w is a word of the ti’s.
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Since we usually work with large groups, double coset enumeration is a

quicker way to determine the number of single cosets in a group G. Once we find

the number of single cosets in G, we can determine that the order of G is at least

the product of the number of single cosets and the order of our control group N .

Let us begin with a simple example:

4.1 Construction of G ∼= S6 : C2

Consider the infinite group G represented by < x, y, t|y4, y−2 ∗ x−1 ∗ y2 ∗
x−1, y−1 ∗ x3 ∗ y ∗ x−1, t2, (t, x−1 ∗ y−1 ∗ x) > obtained from our control group

N = 2 × (5 : 4). N is generated by x ∼ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and y ∼
(1, 7, 9, 3)(2, 4, 8, 6). Recall that our ti′s are of order 2. When we factor G by

the following relations: (y−1 ∗ x−1 ∗ t)6, (x−1 ∗ y−1 ∗ x ∗ t)4, (x2 ∗ t)8, (x ∗ t)5, we

obtain a finite homomorphic image of order 1440. We will now demonstrate how

we construct double coset enumeration on G.

We begin the process of double coset enumeration by first getting an idea

of how many double cosets we can expect to obtain. This is an easy check as
|G|
|N | = the number of single cosets. In our case we should have |G||N | = 1440/36 = 36

single cosets. Before we continue, it is important to mention that we found that

t1 ∼ t6, t2 ∼ t7, t3 ∼ t8, t4 ∼ t9, and t5 ∼ t10. The relations are verified as follows:

ts[6] eq(2, 10)(3, 9)(4, 8)(5, 7)t_1,
ts[7] eq (1, 3)(4, 10)(5, 9)(6, 8)t_2,
ts[8] eq (1, 4, 5, 2)(3, 8)(6, 9, 10, 7)t_3,
ts[9] eq (1, 7)(2, 6)(3, 5)(8, 10)t_4,
ts[10] eq (1, 9)(2, 8)(3, 7)(4, 6)t_5

Therefore instead of working on 10 t′s or 10 letters, we will be working with 5.

Consider the double coset denoted as [∗] is NeN = N . The number

of singles cosets in [∗] can be determined by the number of elements in N that

fix the coset NeN . Since every element of N fixes the coset NeN (since N

is transitive), we find the number of distinct single cosets in NeN = |N |
|N(e)| =

40
40

= 1. In order to move forward, we choose a representative from the orbit
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{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In this case we will choose 1. There are ten elements

in the orbit {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, therefore, all ten symmetric generators will

move forward.

Next we will investigate the double coset Nt1N denoted as [1]. Con-

jugating our coset Nt1 by all elements of N gives us all the single cosets that

live in [1]. Those are: {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9, Nt10}. We

find the point stabiliser N1 =< (2, 10)(3, 9)(4, 8)(5, 7), (2, 4, 10, 8)(3, 7, 9, 5) > and

|N1| = 4. However, consider the following relation: t6 = (2, 10)(3, 9)(4, 8)(5, 7)t1.

This implies that Nt6 = N(2, 10)(3, 9)(4, 8)(5, 7)t1 = Nt1. So any permutation

that sends t1 to t6 will be in the coset stabilizing group N (1). Thus, our coset sta-

biliser may increase. This implies N (1) ≥< N1, (1, 6)(2, 3, 10, 9)(4, 7, 8, 5) >. We

find |N (1)| = 8. The number of distinct singles cosets in [1] are |N |
|N(1)| = 40

8
= 5. The

orbits of N (1) on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} are {1, 6} and {2, 10, 4, 9, 3, 5, 7, 8}. Now

choosing a representative from each orbit, we have two possible new double cosets,

but, Nt1t1 = NeN which lives in [∗] since our order of ti′s is 2, and since there

are two elements in orbit {1, 6}, two symmetric generators will return to [∗]. We

have one potential new double coset Nt1t2N from the orbit {2, 10, 4, 9, 3, 5, 7, 8}.
Therefore eight symmetric generators will move forward to this new double coset

we denote as [12].

Consider the new double coset Nt1t2N ∈ [1, 2]. We find N12 =< e >,

since no element in N fixes the two points (1, 2). However, if we conjugate

Nt1t2 by all elements of N we get all the single cosets that live in [1, 2]. There

are a total of 40 single cosets in [1, 2], but we find the following: Nt1t2 =

Nt8t7. Thus, any element that sends Nt1t2 to Nt8t7 will be in the coset sta-

bilizing group N (12). We find (Nt1t2)
(1,8)(2,7)(3,6)(4,5)(9,10) = Nt8t7. So N (12) ≥<

N12, (1, 8)(2, 7)(3, 6)(4, 5)(9, 10) >. We find |N (12)| = 2. Then number of distinct

singles cosets in [12] are |N |
|N(12)| = 40

2
= 20. The orbits of N12 on

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} are {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}. Therefore, we have

five possible new double cosets, but we find the following: Nt1t2t1 = Nt1t2t3 =

Nt1t2 ∈ [12]. Therefore, four symmetric generators will loop back into [12]. Also

Nt1t2t2 = Nt1 ∈ [1], this implies that two symmetric generators will return to [1].
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Therefore the only remaining possible new double cosets are: Nt1t2t4 and Nt1t2t5.

This implies that four elements will advance to a new double coset, but we find

that the two single cosets Nt1t2t4 = Nt1t2t5, therefore we will only consider one

of these new double cosets. We will work with Nt1t2t4N ∈ [124].

Consider the new double coset Nt1t2t4N . We find N124 =< e >. However, con-

sider we find that Nt1t2t4 = Nt5t2t6. Any element that sends t1t2t4 to t5t2t6 would

be in the coset stabilizing group N (124). We find (Nt1t2t4)
(1,5,3,9)(4,6,10,8) = Nt5t2t6.

So N (124) ≥< N124, (1, 5, 3, 9)(4, 6, 10, 8) >. We find |N (124)| = 4. The number

of distinct singles cosets in [124] are |N |
|N(124)| = 40

4
= 10. The orbits of N124 are:

{1, 5, 3, 9}, {2}, {4, 6, 10, 8}, {7}. Then, we have four possible new double cosets,

but we find: Nt1t2t4t1 = Nt1t2t4t4 = Nt1t2 ∈ [12], and Nt1t2t4t2 = Nt1t2t4t7 =

Nt1t2t4 ∈ [124]. Then eight symmetric generators will return to [12] and two

symmetric generators will loop back into [124]. Since there are no possible new

double cosets to investigate, our group is closed under right multiplication of t′is.

Since the order of G over N is 36, this implies we must have 36 single cosets all

together. The following Cayley Diagram illustrates the correct result.

Figure 4.1: Cayley graph of 2∗10 : (S6 : C2)
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4.2 Construction of 54 : D10

We will construct a Caley Diagram of the group G ∼= 54 : D10. Consider

the group:

G < x, y, t >:= Group < x, y, t|x5, y2, x−1 ∗ y ∗ x−1 ∗ y ∗ x ∗ y ∗ x ∗ y, (t, x), t2,

(x−2 ∗ y ∗ x−1 ∗ t)5, (x−1 ∗ y ∗ t)5 > .

obtained from our control group N ∼= C5 × D10. N =< x, y > where x =

(2, 4, 6, 8, 10), and y = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10). We will let t ∼ t1.

The double coset denoted as [∗] isNeN = N, whereN = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10} The number of single cosets in [∗] is the number of right cosets which can

be determined by |N ||N | = 50
50

= 1 In order to move forward, we choose a representa-

tive from the orbit {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In this case we will choose 1.There

are 10 elements in the orbit {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, therefore, ten symmetric

generators will move forward.

Consider the new double coset Nt1N denoted as [1]. Now the point

stabilizer, denoted N1 is equal to < (2, 4, 6, 8, 10) >, and |N1| = 5. Any ele-

ment that fixes 1 or in other words, sends 1 to itself, will be in the coset sta-

bilizing group denoted N (1). We find only four elements that do so, therefore

N (1) ≥< N1, e, (2, 10, 8, 6, 4), (2, 6, 10, 4, 8), (2, 8, 4, 10, 6) > . We find |N (1)| = 5.

The number of distinct singles cosets in [1] are |N |
|N(1)| = 50

5
= 10. The orbits of N (1)

are: {1},{3},{5},{7},{9} and {2, 4, 6, 8, 10}. Choosing a representative from each

orbit, we have six possible new double cosets, but, Nt1t1 = NeN which lives in

[∗], and since there is only one element in orbit {1}, one symmetric generator will

return to [∗]. Thus, we have five possible new double cosets to investigate. Since

none of these double cosets were equal to each other or to Nt1 they are indeed

new double cosets, so we proceed. We now choose one representative from their

respective orbits:{3},{5},{7},{9} and {2, 4, 6, 8, 10}. In this case we chose Nt1t3,

Nt1t5, Nt1t7, Nt1t9 and Nt1t2. Therefore, nine symmetric generators will move

forward.

Consider the new double coset Nt1t2N denoted by [12]. Now, we have
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that N12 =< e > . We find that Nt1t2 is only equal to itself, and since the only ele-

ment in the point stabiliser is the identity, the coset stabilizer N (12) = N12 =< e >

. Then |N (12)| = 1. The number of distinct singles cosets in [12] are |N |
|N(12)| = 50

1
=

50. The orbits of N (12) are: {1},{2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}. Choos-

ing a representative from each orbit, we have ten possible new double cosets, but

after further investigation we find that : Nt1t2t2 = Nt1, therefore one orbit will go

back to [1]. We also found that Nt1t2t1, Nt1t2t3, Nt1t2t5, Nt1t2t7, Nt1t2t9 = Nt1t2,

which means that five orbits loop back into [12]. Then four single orbits move for-

ward to the new double cosets Nt1t2t4N,Nt1t2t6N,Nt1t2t8N, and Nt1t2t10.

Consider the new double coset Nt1t3N denoted as [13]. Now, N13 =<

e >. Consider the relation Nt1t3 = Nt3t5 = Nt5t7 = Nt7t9 = Nt9t1. These

double cosets are equal to each other, and are known as equal names. Any element

that sends Nt1t3 to any of the following: Nt3t5, Nt5t7, Nt7t9 or Nt9t1, will be

in the coset stabilizing group N (13). We find twenty four elements that do so,

therefore N (13) ≥< N13, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)... >. Then |N (13)| = 25. The

number of distinct single cosets in [13] are |N |
|N(13)| = 50

25
= 2. The orbits of N (13) are:

{1, 3, 9, 5, 7}, and {2, 4, 10, 6, 8}. Then, we have two possible new double cosets,

but after further investigation we find the following: Nt1t3t1 = Nt1. Therefore,

five orbits go back to [1] and Nt1t3t2 = Nt1t2t10, then the double coset [132]

collapses. Thus, the double coset [13] does not expand any further.

Consider the new double coset Nt1t5N denoted by [15]. Now, we have

that N15 =< e >. Consider the relation Nt1t5 = Nt5t9 = Nt9t3 = Nt3t7 = Nt7t1.

Any element that sends Nt1t5 to any of the following: Nt5t9, Nt9t3, Nt3t7 or Nt7t1,

will be in the coset stabilizing group N (15). We find twenty four elements that do

so, therefore N (15) ≥< N15, (1, 5, 9, 3, 7)(2, 4, 6, 8, 10)... >. Then |N (15)| = 25.

The number of singles cosets in [15] are |N |
|N(15)| = 50

25
= 2. The orbits of N (15) are:

{1, 5, 9, 3, 7} and {2, 4, 10, 6, 8}. Choosing a representative from each orbit we

have two possible new double cosets, but we find that:Nt1t5t1 = Nt1, therefore

5 orbits will go back to [1]. We also found that Nt1t5t2 = Nt1t2t8, which means

that this double coset will collapse. Since there are no more orbits left to check,

the double coset [15] ends here.
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Consider the new double coset Nt1t7N denoted by [17]. We have that

N17 =< e >. However, we have the following relation: Nt1t7 = Nt3t9 = Nt5t1 =

Nt7t3 = Nt9t5. Any element that sends Nt1t7 to any of the following Nt3t9, Nt5t1,

Nt7t3, or Nt9t5 will be in the coset stabilizing group N (17). We find twenty four

elements that do so, therefore N (17) ≥< N17, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)... >. Then

|N (17)| = 25.The number of distinct singles cosets in [17] are |N |
|N(17)| = 50

25
= 2.

The orbits of N (17) are: {1, 3, 5, 7, 9} and {2, 4, 10, 6, 8}. Choosing a representa-

tive from each orbit, we have two possible new double cosets, but we find that:

Nt1t7t1 = Nt1, therefore, 5 orbits will go back to [1]. Also, Nt1t7t2 = Nt1t2t6,

which means that this double coset will collapse. Since there are no more orbits

left to check, the double coset [17] ends here.

Consider the new double coset Nt1t9 denoted by [19]. We have that

N19 =< e > . Consider the relation Nt1t9 = Nt3t1 = Nt5t3 = Nt7t5 = Nt9t7.

Any element that sends Nt1t9 to any of the following: Nt3t1, Nt5t3, Nt7t5 or Nt9t7.

, will be in the coset stabilizing group N (19). We find twenty four elements that

do so, therefore N (19) ≥< N19, (1, 5, 9, 3, 7)(2, 4, 6, 8, 10)... >. Then |N (19)| = 25.

The number of singles cosets in [19] are |N |
|N(19)| = 50

25
= 2. The orbits of N (19)

are: {1, 5, 3, 9, 7} and {2, 4, 10, 6, 8}. Choosing a representative from each orbit,

we have two possible new double cosets, but after further investigation we find

that: Nt1t9t1 = Nt1, therefore 5 orbits will go back to [1]. We also find that

Nt1t9t2 = Nt1t2t4, which means that this double coset will collapse. Since there

are no more orbits left to check, the double coset [19] ends here.

We now go back to the new double cosets that extended from [12]. Con-

sider Nt1t2t4N denoted as [124]. N124 =< e > . Consider the relation Nt1t2t4 =

Nt1t4t6 = Nt1t6t8 = Nt1t8t10 = Nt1t10t2. Any element that sends Nt1t2t4 to

any of the following: Nt1t4t6, Nt1t6t8, Nt1t8t10 or Nt1t10t2 will be in the coset

stabilizing group N (124). We find a total of four elements that do so. For example

Nt1t2t
(2,10,8,6,4)
4 = Nt1t10t2, therefore N (124) ≥< N124, (2, 4, 6, 8, 10), (2, 6, 10, 4, 8),

(2, 8, 4, 10, 6), (2, 10, 8, 6, 4) >. The number of single cosets in [124] are |N |
|N(124)| =

50
5

= 10. The orbits of [124] are:{1}, {3}, {5}, {9}, {2, 4, 6, 8, 10}. After inves-

tigating, we find that Nt1t2t4t2 = Nt1t2, so five orbits go back to [12]. Also
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Nt1t2t4t5 = Nt1t2t10t7, and Nt1t2t4t3 = Nt1t9 therefore two of these double

cosets collapse. We have three new double cosets extending from [124] which

are: Nt1t2t4t1, Nt1t2t4t7 and Nt1t2t4t9, each extending with a single orbit from

[124].

Consider Nt1t2t6N denoted as [126] which extended from [12]. Now,

N126 =< e > . Consider the relation Nt1t2t6 = Nt1t4t8 = Nt1t6t10 = Nt1t8t2

= Nt1t10t4. Any element that sends Nt1t2t6 to any of the following: Nt1t4t8,

Nt1t6t10, Nt1t8t2 or Nt1t10t4 will be in the coset stabilizing group N (126). We find

four elements that do so, therefore N (126) ≥< N126, (2, 4, 6, 8, 10)... >. The

number of single cosets in [126] are |N |
|N(126)| = 50

5
= 10. The orbits of [126]

are:{1}, {3}, {5}, {9}, {2, 4, 6, 8, 10}. After investigating we find that Nt1t2t6t2 =

Nt1t2, so five orbits go back to [12]. Also Nt1t2t6t3 = Nt1t2t4t9, Nt1t2t6t5 =

Nt1t7, Nt1t2t6t7 = Nt1t2t10t5 and Nt1t2t6t9 = Nt1t2t8t3 therefore four double

cosets collapse. We have only one new double coset extending from [126], Nt1t2t4t1

which extends with a single orbit of {1}.
Consider Nt1t2t8N denoted as [128] which extended from [12]. Now,

N128 =< e > . Consider the relation Nt1t2t8 = Nt1t4t10 = Nt1t6t2 = Nt1t8t4 =

Nt1t10t6. Any element that sendsNt1t2t8 to any of the following: Nt1t4t10, Nt1t6t2,

Nt1t8t4 or Nt1t10t6 will be in the coset stabilizing group N (128). We find four ele-

ments that do so, therefore N (128) ≥< N128, (2, 4, 6, 8, 10)... >. The number of sin-

gle cosets in [128] are |N |
|N(128)| = 50

5
= 10. The orbits of [128] are:{1}, {3}, {5}, {7},

{9}, {2, 4, 6, 8, 10}. After investigating we find that Nt1t2t8t2 = Nt1t2, so five or-

bits go back to [12]. Also Nt1t2t8t5 = Nt1t2t4t7, and Nt1t2t8t7 = Nt1t5 therefore

two of these double cosets collapse. We have three new double cosets extending

from [128] which are: Nt1t2t8t1, Nt1t2t8t3 and Nt1t2t8t9, each extending with a

single orbit of {1}, {3} and {9}.
Consider Nt1t2t10N denoted as [1210] which extended from [12]. Now,

N1210 =< e > . Consider the relation Nt1t2t10 = Nt1t4t2 = Nt1t6t4 = Nt1t8t6 =

Nt1t10t8. Any element that sendsNt1t2t10 to any of the following: Nt1t4t2, Nt1t6t4,

Nt1t8t6 or Nt1t10t8 will be in the coset stabilizing group N (1210). We find four el-

ements that do so, therefore N (1210) ≥< N1210, (2, 4, 6, 8, 10)... >. The number of
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single cosets in [1210] are |N |
|N(1210)| = 50

5
= 10. The orbits of [1210] are:{1}, {3}, {5},

{9}, {2, 4, 6, 8, 10}. After investigating, we find that Nt1t2t10t2 = Nt1t2, so five or-

bits go back to [12]. Also, Nt1t2t10t3 = Nt1t2t8t9, and Nt1t2t10t9 = Nt1t3 therefore

two of these double cosets collapse. We have three new double cosets extending

from [1210] which are: Nt1t2t10t1, Nt1t2t10t5 and Nt1t2t10t7, each extending with

a single orbit of {1}, {5} and {7}.
Consider Nt1t2t4t1N denoted as [1241] which extended from [124]. Now,

N1241 =< e > . We find fourty nine equal names of Nt1t2t4t1. Any element that

sends Nt1t2t4t1 to any of the forty nine equal names found will be in the coset

stabilizing group N (1241). For example, consider the relation Nt1t2t4t1 = Nt1t4t6t1.

Conjugation by the following element gives the desired result: Nt1t2t4t
(2,4,6,8,10)
1 =

Nt1t4t6t1. Simililarly we can find the the other forty eight elements that give us

the remaining relations. Then, N (1241) ≥< N1241, (2, 4, 6, 8, 10)... >. Therefore the

number of single cosets in [1241] are |N |
|N(1241)| = 50

50
= 1. The orbits of [1241] are:

{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}. After investigating we find that Nt1t2t4t1 = Nt1t2t4,

and Nt1t2t4t2 = Nt1t2t4, so ten orbits go back to [124]. Therefore, the double

coset [1241] does not continue.

Consider Nt1t2t4t7N denoted as [1247] which extended from [124]. Now,

N1247 =< e > . We find twenty four equal names of Nt1t2t4t7. Any element

that sends Nt1t2t4t7 to any of the twenty four equal names found will be in

the coset stabilizing group N (1247). We find twenty four elements that do so.

Therefore, N (1241) ≥< N1241, (1, 9, 7, 5, 3)(2, 4, 6, 8, 10)... >. The number of single

cosets in [1241] are |N |
|N(1247)| = 50

25
= 2. The orbits of [1247] are:{1, 3, 5, 7, 9} and

{2, 4, 6, 8, 10}. After investigating, we find that Nt1t2t4t7t1 = Nt1t2t4, therefore

five orbits return to [124]. Also, Nt1t2t4t7t2 = Nt1t2t8, which implies that the

double coset Nt1t2t4t7t2 collapses.

Consider Nt1t2t4t9N denoted as [1249] which extended from [124]. Now,

N1249 =< e > . We find twenty four equal names of Nt1t2t4t9. Any element

that sends Nt1t2t4t9 to any of the twenty four equal names found will be in the

coset stabilizing group N (1249). We find twenty four elements that do so. Then,

N (1249) ≥< N1249, (2, 4, 6, 8, 10)... >. Therefore, the number of single cosets in
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[1249] are |N |
|N(1249)| = 50

25
= 2. The orbits of [1249] are:{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}.

After investigating, we find that Nt1t2t4t9t1 = Nt1t2t4, therefore five orbits re-

turn to [124]. Also, Nt1t2t4t9t2 = Nt1t2t6, which implies that the double coset

Nt1t2t4t9t2 collapses. Since there are no more possible new double cosets to inves-

tigate, [124] does not expand any further. Now we continue to the double coset

[126] and investigate further.

Consider Nt1t2t6t1N denoted as [1261] which extended from [126]. Now,

N1261 =< e > . We find forty nine equal names of Nt1t2t6t1. Any element that

sends Nt1t2t6t1 to any of the forty nine equal names found will be in the coset

stabilizing group N (1261). We find forty nine elements that do so. Then, N (1261) ≥<
N1261, (1, 7, 3, 9, 5)(2, 10, 8, 6, 4)... >. Therefore, the number of single cosets in

[1261] are |N |
|N(1261)| = 50

50
= 1. The orbits of [1261] are:{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}.

After investigating, we find that Nt1t2t6t1t1 = Nt1t2t6, and Nt1t2t6t1t2 = Nt1t2t6.

Therefore, all ten orbits return to [126] and thus the double coset [1261] does not

extend any further.

Consider Nt1t2t8t1N denoted as [1281] which extended from [128]. Now,

N1281 =< e > . We find forty nine equal names of Nt1t2t8t1. Any element

that sends Nt1t2t8t1 to any of the forty nine equal names found will be in the

coset stabilizing group N (1281). We found forty nine elements that do so. Then,

N (1281) ≥< N1281, (2, 4, 6, 8, 10)... >. Therefore, the number of single cosets in

[1281] are |N |
|N(1281)| = 50

50
= 1. The orbits of [1281] are:{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}.

After investigating, we find that Nt1t2t8t1t1 = Nt1t2t8, and Nt1t2t8t1t2 = Nt1t2t8.

Therefore, all ten orbits return to [128] and thus the double coset [1281] does not

extend any further.

Consider Nt1t2t8t3N denoted as [1283] which extended from [128]. Now,

N1283 =< e > . We find twenty four equal names of Nt1t2t8t3. Any element that

sendsNt1t2t8t3 to any of the twenty four equal names found will be in the coset sta-

bilizing group N (1283). We find twenty four elements that do so, then, N (1283) ≥<
N1283, (1, 3, 5, 7, 9)... >. Therefore, the number of single cosets in [1283] are
|N |

|N(1283)| = 50
25

= 2. The orbits of [1283] are: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9},
{10}. After investigating we find that Nt1t2t8t3t1 = Nt1t2t8t3t3 = Nt1t2t8t3t5 =
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Nt1t2t8t3t7 = Nt1t2t8t3t9 = Nt1t2t8 andNt1t2t8t3t2 = Nt1t2t8t3t4 = Nt1t2t8t3t6 =

Nt1t2t8t3t8 = Nt1t2t8t3t10 = Nt1t2t6. Therefore five orbits return to [128] and the

remaining five double cosets collapse, respectively.

Consider Nt1t2t8t9N denoted as [1289] which extended from [128]. Now,

N1289 =< e > . We find twenty four equal names of Nt1t2t8t9. Any element

that sends Nt1t2t8t9 to any of the twenty four equal names found will be in the

coset stabilizing group N (1289). We find twenty four elements that do so, then,

N (1289) ≥< N1289, (1, 3, 5, 7, 9)... >. Therefore the number of single cosets in [1289]

are |N |
|N(1289)| = 50

25
= 2. The orbits of [1289] are:{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9},

{10}. After investigating, we find that Nt1t2t8t3t1 = Nt1t2t8t3t3 = Nt1t2t8t3t5 =

Nt1t2t8t3t7 = Nt1t2t8t3t9 = Nt1t2t8 andNt1t2t8t3t2 = Nt1t2t8t3t4 = Nt1t2t8t3t6 =

Nt1t2t8t3t8 = Nt1t2t8t3t10 = Nt1t2t10. Therefore five orbits return to [128] and the

remaining five double cosets collapse.

Consider Nt1t2t10t1N denoted as [12101] which extended from [1210].

Now, N12101 =< e > . We find forty nine equal names of Nt1t2t10t1. Any el-

ement that sends Nt1t2t10t1 to any of the forty nine equal names found will

be in the coset stabilizing group N (12101). We find forty nine elements that do

so, then, N (12101) ≥< N12101, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)... >. Therefore the num-

ber of single cosets in [12101] are |N |
|N(12101)| = 50

50
= 1. The orbits of [12101]

are:{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}. After investigating we find that

Nt1t2t10t1t1 = Nt1t2t10t1t2 = Nt1t2t10t1t3 = Nt1t2t10t1t4 = Nt1t2t10t1t5

= Nt1t2t10t1t6 = Nt1t2t10t1t7 = Nt1t2t10t1t8 = Nt1t2t10t1t9 = Nt1t2t10t1t10 =

Nt1t2t10. Therefore, all ten orbits return to [1210].

Consider Nt1t2t10t5N denoted as [12105] which extended from [1210].

Now, N12105 =< e > . We find twenty four equal names of Nt1t2t10t5. Any element

that sends Nt1t2t10t5 to any of the twenty four equal names found will be in the

coset stabilizing group N (12105). We find twenty four elements that do so, then,

N (12105) ≥< N12105, (2, 8, 4, 10, 6)... >. Therefore the number of single cosets in

[12105] are |N |
|N(12105)| = 50

25
= 2. The orbits of [12105] are:{1}, {2}, {3}, {4}, {5}, {6},

{7}, {8}, {9}, {10}. After investigating we find that Nt1t2t10t5t1 = Nt1t2t10t5t3 =

Nt1t2t10t5t5 = Nt1t2t10t5t7 = Nt1t2t10t5t9 = Nt1t2t10. and Nt1t2t10t5t2
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= Nt1t2t10t5t4 = Nt1t2t10t5t6 = Nt1t2t10t5t8 = Nt1t2t10t5t10 = Nt1t2t6. Therefore

five orbits return to [1210] and the remaining five double cosets collapse.

Consider Nt1t2t10t7N denoted as [12107] which extended from [1210].

Now, N12107 =< e > . We find twenty four equal names of Nt1t2t10t7. Any el-

ement that sends Nt1t2t10t7 to any of the twenty four equal names found will

be in the coset stabilizing group N (12107). We find twenty four elements that do

so, then, N (12107) ≥< N12107, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)... >. Therefore, the num-

ber of single cosets in [12107] are |N |
|N(12107)| = 50

25
= 2. The orbits of [12107] are:

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}. After investigating we find that

Nt1t2t10t7t1 = Nt1t2t10t7t3 = Nt1t2t10t7t5 = Nt1t2t10t7t7 = Nt1t2t10t7t9 =

Nt1t2t10. and Nt1t2t10t7t2 = Nt1t2t10t7t4 = Nt1t2t10t7t6 = Nt1t2t10t7t8 =

Nt1t2t10t7t10 = Nt1t2t4. Therefore five orbits return to [1210] and the remaining

five double cosets collapse. Since there are no new possible new double cosets to

investigate, our group is closed under right multiplication of t′is. The construc-

tion of this Caley Diagram is complete. The order of G over N is 125, which is

verified through adding the number of single cosets found in the double cosets as

illustrated in our Caley Diagram below:
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Figure 4.2: Cayley graph of 54 : D10
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Chapter 5

Double Coset Enumeration Over

Maximal Subgroups

5.1 Construction of U(3, 4) over M = A5 : C5

Definition 5.1. (Maximal Subgroup): A subgroup M 6= 1 ≤ G is a maximal

normal subgroup of G if there is no normal subgroup N of G with M < N < G.

A symmetric presentation for the group G = 2∗10 : (A5 : C5) is given by:

< x, y, t|x5, y2, x−1∗y∗x−1∗y∗x∗y∗x∗y, t3, (t, x), (y∗x−2∗y∗x−1∗t)2, (x−2∗y∗x−1∗
t)5 >, where N =< x, y >, x ∼ (2, 4, 6, 8, 10), y ∼ (1, 6)(2, 7)(3, 8)(4, 9)(5, 10),

and t ∼ t1. We will prove that the above progenitor factored by the following

relations: (y ∗ x−2 ∗ y ∗ x−1 ∗ t)2 and (x−2 ∗ y ∗ x−1 ∗ t)5, gives U(3, 4). Note

that our ti′s will be of order 3 in this case, but the process of double coset enu-

meration is the same. Normally we would perform double coset enumeration

of G over N , but this would result in a Caley diagram with 34 double cosets

in our case. Therefore to complete the process of double coset enumeration on

such a large group, we find a maximal subgroup, such that N < M < G. We

found a maximal subgroup M generated by our control group N = 52 : 2 where

M = f(x), f(y), f(t−1 ∗ y ∗ x−1 ∗ t−1 ∗ y ∗ t−1 ∗ y ∗ x ∗ y ∗ t−1 ∗ y ∗ t ∗ y ∗ t) which is

isomorphic to A5 : C5.
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Double Coset Enumeration To construct a manual double coset enu-

meration of G over the maximal subgroup M and N , we denote [w] to be the

double coset MwN = {Mwn|n ∈ N}, where w is a word in ti′s.

MeN

We begin with the double coset MeN , denoted [∗], which is equal to

{Men|e ∈ N} = {Me|e ∈ N} = {M}. Here the coset representative for [∗] is M .

Since N is transitive on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, it contains a single orbit:

O = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The number of distinct single cosets in [∗] is determined by dividing the number

of N by the coset stabiliser of MeN , which is all N . Thus, |N ||N | = 50
50

= 1 We right

multiply M by a representative of the single orbit, and in this case we chose 1.

Thus we have a new double coset Mt1N , which we will denote as [1].

Mt1N

Next we will investigate the double coset [1] = {Mtn1 |n ∈ N} = {Mt1,Mt2,

Mt3,Mt4,Mt5,Mt6,Mt7,Mt8,Mt9,Mt10}. The coset stabiliser group N (1) is

equal to the point stabiliser of N , denoted N1. The point stabiliser is all such

elements that fix 1. In this case, N (1) = N1 =< (2, 4, 6, 8, 10) >. Thus, the

number of single cosets of Mt1N is at most |N |
|N(1)| = 50

5
= 10. Therefore, 10 single

cosets live in [1]. Now, the orbits of [1] are:

O = {{1}, {3}, {5}, {7}, {9}, {2, 4, 6, 8, 10}},

which were found by looking at the genertaors of N (1). Now, as in the normal

process of double coset enumeration, we must find where these orbits go by right

multiplying Mt1N by a representative from each orbit.We find that Mt1t5 = Id,

Mt1t7N = Mt1t3 and Mt1t9N = Mt1t1 = Mt1N . Therefore two symmetric

generators will loop back into [1], one will return to [∗]. Two symmetric generators

move forward to the new double cosets Mt1t3N , and five symmetric generators

move forward to Mt1t2N .
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Mt1t3N

Consider the double coset [13] = Mt1t3N = {M(t1t3)
n|n ∈ N} = {Mt1t3,Mt6t8,

Mt8t10,Mt10t2,Mt3t5,Mt2t4,Mt5t7,Mt4t6,Mt7t9,Mt9t1}. The coset stabiliser of

the double coset Mt1t3, which we will denote [13] is : N13 ≥ N (13) = {e, (2, 4, 6, 8,
10)}. Thus, the number of single cosets of Mt1t3N is at most |N |

|N(13)| = 50
5

= 10.

Now, the orbits of [13] are:

O = {{1}, {3}, {5}, {7}, {9}, {2, 4, 6, 8, 10}},

which were found by looking at the generators of N (13) = (2, 4, 6, 8, 10). Choosing

a representative from each orbit and right multiplying to Mt1t3, we have 6 possible

new double cosets, but we find the following:

Mt1t3t1 = Mt1 ∈ [1]

Mt1t3t3 = Mt1t3 ∈ [13]

Mt1t3t5 = Mt1t3 ∈ [13]

Mt1t3t7 = Mt1 ∈ [1]

Based on the information found, two symmetric generators return to [1] and two

loop back into [13]. Now the remaining orbits form two new double cosets which

are: Mt1t3t2 and Mt1t3t9.

Mt1t3t2N

Consider the double coset [132] = Mt1t3t2N = {M(t1t3t2)
n|n ∈ N} =

{Mt1t3t2,Mt1t3t4,Mt6t8t7,Mt1t3t6,Mt6t8t9,Mt8t10t7,Mt1t3t8,Mt6t8t1,Mt8t10t9,

Mt10t2t7,Mt10t2t7,Mt3t5t2,Mt1t3t10,Mt6t8t3,Mt8t10t1,Mt10t2t9,Mt3t5t4,

Mt2t4t7,Mt5t7t2,Mt6t8t5,Mt8t10t3,Mt10t2t1,Mt3t5t6,Mt2t4t9,Mt5t7t4,Mt4t6t7,

Mt7t9t2,Mt8t10t5,Mt10t2t3,Mt3t5t8,Mt2t4t1,Mt5t7t6,Mt4t6t9,Mt7t9t4,Mt9t1t2,

Mt10t2t5,Mt3t5t10,Mt2t4t3,Mt5t7t8,Mt4t6t1,Mt7t9t6,Mt9t1t4,Mt2t4t5,Mt5t7t10,

Mt4t6t3,Mt7t9t8,Mt9t1t6,Mt4t6t5,Mt7t9t10,Mt9t1t8,Mt9t1t10}. We find there ex-

ists a relation that sends Mt1t3t2 = Mt6t8t7. Thus the coset stabiliser will

increase since any relation that sends t1 → t6, t3 → t8, and t2 → t7 will be
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in the coset stabiliser. The coset stabiliser of the double coset Mt1t3t2 is :

N132 ≥ N (132) = {e, (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)}. Thus the number of single

cosets of Mt1t3t2N is at most |N |
|N(132)| = 50

2
= 25. Now, the orbits of [132] are:

O = {{1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}},

which were found by looking at the generators of N (132) = (1, 6)(2, 7)(3, 8)(4, 9)

(5, 10). Choosing a representative from each orbit and right multiplying toMt1t3t2,

we have 5 possible new double cosets, but we find the following using MAGMA:

Mt1t3t2t1 = Mt1t3 ∈ [13]

Mt1t3t2t2 = Mt1t3t2 ∈ [132]

Mt1t3t2t3 = Mt1t2t5 ∈ [125]

Mt1t3t2t4 = Mt1t2t5 ∈ [125]

Mt1t3t2t5 = Mt1t3t2 ∈ [132]

Based on the information found, two symmetric generators return to [13]

and four loop back into [132]. The remaining double cosets collapse, since they

live in another double coset not connected to this branch. Since there are no new

possible double cosets to investigate we stop here and investigate other branches.

Mt1t3t9N

Consider the double coset [139] = Mt1t3t9N = {M(t1t3t9)
n|n ∈ N} =

{Mt1t3t9,Mt6t8t4,Mt8t10t6,Mt10t2t8,Mt3t5t1,Mt2t4t10,Mt5t7t3,Mt4t6t2,Mt7t9t5,

Mt9t1t7}. We find that Mt1t3t9 = Mt3t5t1 = Mt5t7t3 = Mt7t9t5 = Mt9t1t7.

Thus, the coset stabiliser will increase since any relation that, for example, sends

t1 → t3, t3 → t5, and t9 → t1 will be in the coset stabiliser. Likewise, this will

occur for the other double cosets that Mt1t3t9 is equal to. The coset stabiliser of

the double coset Mt1t3t9 is : N139 ≥ N (139) = {e, (2, 4, 6, 8, 10), (1, 3, 5, 7, 9)

...(1, 3, 5, 7, 9)(2, 4, 6, 8, 10)}. Thus the number of single cosets of Mt1t3t9N is at

most |N |
|N(139)| = 50

25
= 2. Now the orbits of [139] are:
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O = {{1, 3, 5, 7, 9}, {2, 4, 10, 6, 8}}.

Choosing a representative from each orbit and right multiplying to Mt1t3t9, we

have 2 possible new double cosets, but we find there exists a relation that shows:

Mt1t3t9t9 = Mt1t3 ∈ [13]

Mt1t3t9t2 = Mt1t3t9 ∈ [139]

Based on the information found, five symmetric generators return to [13]

and five symmetric generators loop back into [139]. Since there are no more

symmetric generators, this branch ends here.

Mt1t2N

Consider the double coset [12] = Mt1t2N = {M(t1t2)
n|n ∈ N} =

{Mt1t2,Mt1t4, ...Mt9t10}. Here we omit to list the 50 single cosets that live in-

side this double coset Mt1t2. The coset stabiliser of the double coset Mt1t2 is

: N12 ≥ N (12) = {e}. Thus, the number of single cosets of Mt1t2N is at most
|N |
|N(12)| = 50

1
= 50. Now the orbits of [12] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}},

Choosing a representative from each orbit and right multiplying to Mt1t2, we have

10 possible new double cosets, but we find the following:

Mt1t2t2 = Mt1t2 ∈ [12]

Mt1t2t6 = Mt1 ∈ [1]

Mt1t2t7 = Mt1t2 ∈ [12]

Mt1t2t10 = Mt1t2 ∈ [12]

Mt1t2t3 = Mt1t2t1 ∈ [123]

Mt1t2t8 = Mt1t2t4 ∈ [124]

Mt1t2t9 = Mt1t2t5 ∈ [125]
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Based on the information found, one symmetric generator returns to [1]

and three symmetric generators loop back into [12]. The information above results

in three new double cosets Mt1t2t1,Mt1t2t4 and Mt1t2t5 in which two symmetric

generators will move forward to each double coset.

Mt1t2t1N

Consider the double coset [121] = {M(t1t2t1)
n|n ∈ N} = {Mt1t2t1,

Mt1t4t1, ...Mt9t10t9}. We omit the complete list of 50 single cosets that live in

[121]. We find that Mt1t2t1 = Mt10t3t10. Thus, the coset stabiliser will increase

since any relation that sends t1 → t10, t2 → t3, and t9 → t10 will be in the coset

stabiliser. The coset stabiliser of the double coset Mt1t2t1 is : N121 ≥ N (121) =

{e, (1, 10)(2, 3)(4, 5)(6, 7)(8, 9)}. Thus the number of single cosets of Mt1t2t1N is

at most |N |
|N(121)| = 50

2
= 25. Now, the orbits of [121] are:

O = {{1, 10}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1, we

have 5 possible new double cosets, but we find there exists a relation that verifies

the following:

Mt1t2t1t1 = Mt1t2t1t2 = Mt1t2t5 ∈ [125]

Mt1t2t1t4 = Mt1t2 ∈ [12]

Mt1t2t1t6 = Mt1t2t1 ∈ [121]

Mt1t2t1t8 = Mt1t2 ∈ [12]

Based on the information found above, two symmetric generators loop

back into [121] and four return to [12]; the rest collapse. Since there are no more

symmetric generators to investigate, this branch ends here.

Mt1t2t4N

Consider the double coset [124] = {M(t1t2t4)
n|n ∈ N} = {Mt1t2t4,

Mt1t4t6, ...Mt9t10t2}. We omit the complete list of 50 single cosets that live in
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[124]. We find there exists a relation that sends Mt1t2t4 = Mt6t7t9. Thus, the

coset stabiliser will increase since any relation that sends t1 → t6, t2 → t7, and

t4 → t9 will be in the coset stabiliser. The coset stabiliser of the double coset

Mt1t2t4 is : N124 ≥ N (124) = {e, (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)}. Thus the number

of single cosets of Mt1t2t4N is at most |N |
|N(124)| = 50

2
= 25. Now the orbits of [124]

are:

O = {{1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t4, we

have five possible new double cosets, but we find the following:

Mt1t2t4t1 = Mt1t2t4t4 = Mt1t2t4 ∈ [124]

Mt1t2t4t2 = Mt1t2t4t3 = Mt1t2 ∈ [12]

Based on the information found above, four symmetric generators loop

back into [124], and four return to [12]. Mt1t2t4t5N is a new double coset, therefore

two symmetric generators move forward.

Mt1t2t5N

Consider the double coset [125] = {M(t1t2t5)
n|n ∈ N} = {Mt1t2t5,

...Mt9t10t3}. We omit the complete list of single the single cosets that live in

[125], but there exist a total of 50 of these. The coset stabiliser of the double

coset Mt1t2t1 is : N125 ≥ N (125) = {e}. Thus, the number of single cosets of

Mt1t2t5N is at most |N |
|N(125)| = 50

1
= 50. Now, the orbits of [125] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t5, we
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have 10 possible new double cosets, but we find the following:

Mt1t2t5t1 = Mt1t2t5t9 = Mt1t2 ∈ [12]

Mt1t2t5t2 = Mt1t2t5t8 = Mt1t3t2 ∈ [132]

Mt1t2t5t3 = Mt1t2t5t7 = Mt1t2t1 ∈ [121]

Mt1t2t5t4 = Mt1t2t5t5 = Mt1t2t5t6 = Mt1t2t5 ∈ [125]

Mt1t2t5t10 = Mt1t2t4t5 ∈ [1245]

Based on the information found above, 3 symmetric generators loop back

into [125], and two return to [12]. The remaining double cosets collapse. Thus,

this branch ends here.

Mt1t2t4t5N

Consider the double coset [1245] = Mt1t2t4t5N = {M(t1t2t4t5)
n|n ∈ N} =

{Mt1t2t4t5, ...Mt9t10t2t3}. The coset stabiliser of the double coset Mt1t2t4t5 is :

N1245 ≥ N (1245) = {e, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10), (1, 5, 9, 3, 7)(2, 6, 10, 4, 8), (1, 7, 3, 9, 5)

(2, 8, 4, 10, 6), (1, 9, 7, 5, 3)(2, 10, 8, 6, 4)}. We find that Mt1t2t4t5 = Mt3t4t6t7 =

Mt5t6t8t9 = Mt7t8t10t1 = Mt9t10t2t3. Thus the coset stabiliser will increase since

any relation that, for example, sends t1 → t3, t2 → t4, t4 → t6 and t5 → t7 will be

in the coset stabiliser. Thus, the number of single cosets of Mt1t2t4t5N is at most
|N |

|N(1245)| = 50
5

= 10. Now, the orbits of [1245] are:

O = {{1, 3, 5, 7, 9}, {2, 4, 10, 6, 8}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t4t5, we

have two possible new double cosets, but we find the following:

Mt1t2t4t5t1 = Mt1t2t4 ∈ [124]

Mt1t2t4t5t2 = Mt1t2t5 ∈ [125]
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Based on the information found, five symmetric generators return to [124]

and five loop back into [1245]. Since there are no more orbits to investigate, this

branch ends here. Thus we have shown that this group is closed under right

multiplication since the index of |G||M | tells us we should have 208 single cosets all

together. Summing up all the single cosets in each double coset yields the desired

result. A Caley graph illustrating the results is provided below:

Figure 5.1: Cayley graph of U(3, 4) over A5 : C5
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5.2 Construction of J2 over M = (10 : 2) : A5

Definition 5.2. (Maximal Subgroup): A subgroup M 6= 1 ≤ G is a maximal

normal subgroup of G if there is no normal subgroup N of G with M < N < G.

A presentation for the group G = 2∗10 : ((10 : 2) : A5) is given by:

G < x, y, t >:= Group < x, y, t|x5, y2, x−1 ∗ y ∗ x−1 ∗ y ∗ x ∗ y ∗ x ∗ y, (t, x), t2,

(y ∗ x−2 ∗ y ∗ x−1 ∗ t)3, (x−1 ∗ y ∗ t)6 >,

where N =< x, y >, x ∼ (2, 4, 6, 8, 10), y ∼ (1, 6)(2, 7)(3, 8)(4, 9)(5, 10), and

t ∼ t1. We will prove that the above progenitor factored by the following relations:

(y ∗ x−2 ∗ y ∗ x−1 ∗ t)3, and (x−1 ∗ y ∗ t)6, gives J2 of order 1209600.

Let φ = (y ∗ x−2 ∗ y ∗ x−1) = (1, 7, 3, 9, 5)(2, 10, 8, 6, 4), then we have (φt1)
3 =

(1, 9, 7, 5, 3)(2, 6, 10, 4, 8). Likewise, we let β = (x−1∗y∗t) = (1, 6, 9, 4, 7, 2, 5, 10, 3, 8),

then we obtain (βt1)
6 = (1, 5, 9, 3, 7)(2, 6, 10, 4, 8).

Now each relation will be expanded as follows:

1 = (φ ∗ t1)3

1 = φ3tφ
2

1 t
φ
1 t1

1 = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3t7t1

t1 = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3t7
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We will denote t1 = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3t7 as relation (1). Likewise,

1 = (β ∗ t1)6

1 = β6tβ
5

1 t
β4

1 t
β3

1 t
β2

1 t
β
1 t1

1 = (1, 6, 9, 4, 7, 2, 5, 10, 3, 8)t2t7t4t9t6t1

t1t6t9 = (1, 6, 9, 4, 7, 2, 5, 10, 3, 8)t2t7t4

t1t6t9 = (1, 6, 9, 4, 7, 2, 5, 10, 3, 8)t2t7t4 will be denoted as relation (2). Normally

we would perform double coset enumeration of G over N , but this would re-

sult in a Caley diagram with 512 double cosets in our case. Therefore to com-

plete the process of double coset enumeration on such a large group, we find

a maximal subgroup, such that N < M < G. We found a maximal sub-

group M of order 1200 generated by our control group N = 52 : 2 where

M = f(x), f(y), f(y ∗ t ∗ y ∗ x ∗ t ∗ y ∗ t ∗ y ∗ x−1 ∗ y ∗ t ∗ x−2 ∗ y ∗ x ∗ t ∗ y ∗ t) which

is isomorphic to ((10 : 2) : A5).

Double Coset Enumeration To construct a manual double coset enu-

meration of G over the maximal subgroup M and N , we denote [w] to be the

double coset MwN = {Mwn|n ∈ N}, where w is a word in ti′s.

MeN

We begin with the double coset MeN , denoted [∗], which is equal to

{Men|e ∈ N} = {Me|e ∈ N} = {M}. Here the coset representative for [∗] is M .

Since N is transitive on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, it contains a single orbit:

O = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The number of distinct single cosets in [∗] is determined by dividing the number

of N by the coset stabiliser of MeN , which is all N . Thus, |N ||N | = 50
50

= 1 We right

multiply M by a representative of the single orbit, and in this case we chose 1.

Thus we have a new double coset Mt1N , which we will denote as [1].
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Mt1N

Next we will investigate the double coset [1] = {Mtn1 |n ∈ N} = {Mt1,Mt2,

Mt3,Mt4,Mt5,Mt6,Mt7,Mt8,Mt9,Mt10}. The coset stabiliser group N (1) is

equal to the point stabiliser of N , denoted N1. The point stabiliser is all such el-

ements that fix 1. In this case, N (1) = N1 =< (2, 4, 6, 8, 10) >. Thus the number

of single cosets of Mt1N is at most |N |
|N(1)| = 50

5
= 10. Therefore 10 single cosets

live in [1]. Now, the orbits of [1] are:

O = {{1}, {3}, {5}, {7}, {9}, {2, 4, 6, 8, 10}},

which were found by looking at the generators of N (1). Now as in the normal

process of double coset enumeration, we must find where these orbits go by right

multiplying Mt1N by a representative from each orbit. Since our ti′s are of order

2, we find that Mt1t1N = N ∈ [∗], and one symmetric generator goes back to [∗].
Now by using the relations expanded above, namely (1), if we right mul-

tiply both sides of this relation by t7 we have: t1t7 = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3.

This implies that Mt1t7 = Mt3 since (1, 9, 7, 5, 3)(2, 6, 10, 4, 8) gets absorbed by

N , but Mt3 is ∈ [1] as we saw above, therefore the symetric generator {7}
will return to [1]. We also find that Mt1t5 = Mt1N . To prove this, we will

demonstrate the example for this case in particular. To prove that there ex-

ists a relation that sends Mt1t5 to Mt1, we begin by conjugating our relation
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e = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3t7t1 by one of the transversals of [1], which were:

{e,

(1, 6)(2, 7)(3, 8)(4, 9)(5, 10),

(1, 8, 3, 10, 5, 2, 7, 4, 9, 6),

(1, 4, 9, 2, 7, 10, 5, 8, 3, 6),

(1, 10, 5, 4, 9, 8, 3, 2, 7, 6),

(1, 3, 5, 7, 9),

(1, 9, 7, 5, 3),

(1, 2, 7, 8, 3, 4, 9, 10, 5, 6),

(1, 5, 9, 3, 7),

(1, 7, 3, 9, 5)}

.

We do this to try to find a new relation that sends t3t7 to t1t5 to show that

Mt1t5 = Mt1. We find that conjugation by (1, 9, 7, 5, 3) to our relation (1) yields

the desired result. We will demonstrate the process here:

e = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3t7t1

t1 = (1, 9, 7, 5, 3)(2, 6, 10, 4, 8)t3t7

(1, 9, 7, 5, 3)(2, 6, 10, 4, 8)((1,9,7,5,3)t
((1,9,7,5,3)
3 t

((1,9,7,5,3)
7 = t

((1,9,7,5,3)
1

(9, 7, 5, 3, 1)t1t5 = t9

We know that Mt9 ∈ [1], though, so therefore we have shown that Mt1t5 = Mt1.

Now, we find the Mt1t3N = Mt1t9N,Mt1t5 = Mt1t7N = Mt1N , which implies

that two symmetric generators loop back into [1]. Finally we find that both

Mt1t9N and Mt1t2N are new double cosets.
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Mt1t9N

Consider the double coset [19] = Mt1t9N = {M(t1t9)
n|n ∈ N} = {Mt1t9,Mt6t4,

Mt8t6,Mt10t8,Mt3t1,Mt2t10,Mt5t3,Mt4t2,Mt7t5,Mt9t7}. The coset stabiliser of

the double coset Mt1t9, which we will denote [19] is : N19 ≥ N (19) = {e, (2, 4, 6, 8,
10)}. Thus the number of single cosets of Mt1t9N is at most |N |

|N(19)| = 50
5

= 10.

Now the orbits of [19] are:

O = {{1}, {3}, {5}, {7}, {9}, {2, 4, 6, 8, 10}},

which were found by looking at the generators of N (19) = (2, 4, 6, 8, 10). Choosing

a representative from each orbit and right multiplying to Mt1t9, we have 6 possible

new double cosets, but we find the following using the techinique of conjugation

by the transversals of [19] from above:

Mt1t9t3 = Mt1 ∈ [1]

Mt1t9t5 = Mt1t9 ∈ [19]

Mt1t9t7 = Mt1t9 ∈ [19]

Also, Mt1t9t9 = Mt1 ∈ [1] since our ti′s are of order 2. Based on the information

found, two symmetric generators return to [1] and two loop back into [19]. Now

the remaining orbits form two new double cosets which are: Mt1t9t2 and Mt1t9t1.

Mt1t9t1N

Consider the double coset [191] = Mt1t9t1N = {M(t1t9t1)
n|n ∈ N} =

{Mt1t9t1,Mt6t4t6,Mt8t6t8,Mt10t8t10,Mt3t1t3,Mt2t10t2,Mt5t3t5,Mt4t2t4,Mt7t5t7,

Mt9t7t9}. We find through MAGMA that Mt1t9t1 = Mt3t1t3 = Mt5t3t5 =

Mt7t5t7 = Mt9t7t9. Thus, the coset stabiliser will increase since any relation that,

for example, sends t1 → t3, t9 → t1, and t1 → t3, will be in the coset stabiliser.

We find that there exists 25 such relations that show why the single cosets found

in MAGMA are equal. The coset stabiliser of the double coset Mt1t9t1 is :

N191 ≥ N (191) = {e, (2, 4, 6, 8, 10), (1, 3, 5, 7, 9), ...
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(1, 9, 7, 5, 3)(2, 8, 4, 10, 6)}. Thus the number of single cosets of Mt1t9t1N is at

most |N |
|N(191)| = 50

25
= 2. Now, the orbits of [191] are:

O = {{1, 3, 5, 7, 9}, {2, 4, 10, 6, 8}},

which were found by looking at the generators ofN (191) = (1, 3, 5, 7, 9)(2, 10, 8, 6, 4),

...(1, 7, 3, 9, 5)(2, 10, 8, 6, 4). Choosing a representative from each orbit and right

multiplying to Mt1t9t1, we have two possible new double cosets, but we find the

following using MAGMA:

Mt1t9t1t1 = Mt1t9 ∈ [19]

Mt1t9t1t2 = Mt1t9t1 ∈ [191]

Based on the information found, one symmetric generator returns to [19]

and one loops back into [191]. Since there are no new possible double cosets to

investigate we stop here and ivestigate other branches.

Mt1t9t2N

Consider the double coset [192] = Mt1t9t2N = {M(t1t9t2)
n|n ∈ N} =

{Mt1t9t2,Mt1t9t4,Mt6t4t7,Mt1t9t6,Mt6t4t9,Mt8t6t7,Mt1t9t8,Mt6t4t1,Mt8t6t9,

Mt10t8t7,Mt3t1t2,Mt1t9t10,Mt6t4t3,Mt8t6t1,Mt10t8t9,Mt3t1t4,Mt2t10t7,Mt5t3t2,

Mt6t4t5,Mt8t6t3,Mt10t8t1,Mt3t1t6,Mt2t10t9,Mt5t3t4,Mt4t2t7,Mt7t5t2,Mt8t6t5,

Mt10t8t3t,Mt3t1t8,Mt2t10t1,Mt5t3t6,Mt4t2t9,Mt7t5t4,Mt9t7t2,Mt10t8t5,

Mt3t1t10,Mt2t10t3,Mt5t3t8,Mt4t2t1,Mt7t5t6,Mt9t7t4,Mt2t10t5,Mt5t3t10,Mt4t2t3,

Mt7t5t8,Mt9t7t6,Mt4t2t5,Mt7t5t10,Mt9t7t8,Mt9t7t10}.
The coset stabiliser of the double coset Mt1t9t2 is : N192 ≥ N (192) = {e}.

Thus the number of single cosets of Mt1t9t2N is at most |N |
|N(192)| = 50

1
= 50. Now

the orbits of [192] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t9t2, we
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have 10 possible new double cosets, but we find the following using MAGMA:

Mt1t9t2t2 = Mt1t9 ∈ [19]

Mt1t9t2t3 = Mt1t9t2 ∈ [192]

Mt1t9t2t4 = Mt1t9t2t10 ∈ [192]

Mt1t9t2t5 = Mt1t2t1t10 ∈ [12110]

Mt1t9t2t6 = Mt1t9t2 ∈ [192]

Mt1t9t2t7 = Mt1t2t1t10 ∈ [12110]

Mt1t9t2t8 = Mt1t9t2 ∈ [192]

Mt1t9t2t9 = Mt1t9t2 ∈ [192]

Based on the information found, one symmetric generator returns to [19]

and four symmetric generators loop back into [192]. The remaining generators

will collapse. The new double cosets found for [192] are Mt1t9t2t1 and Mt1t9t2t10.

Mt1t9t2t1N

Consider the double coset [192] = Mt1t9t2t1N = {M(t1t9t2t1)
n|n ∈ N}

= {Mt1t9t2t1,Mt1t9t4t1,Mt6t4t7t6,Mt1t9t6t1,Mt6t4t9t6,Mt8t6t7t8,Mt1t9t8t1,

Mt6t4t1t6,Mt8t6t9t8,Mt10t8t7t10,Mt3t1t2t3,Mt1t9t10t1,Mt6t4t3t6,Mt8t6t1t8,

Mt10t8t9t10,Mt3t1t4t3,Mt2t10t7t2,Mt5t3t2t5,Mt6t4t5t6,Mt8t6t3t8,Mt10t8t1t10,

Mt3t1t6t3,Mt2t10t9t2,Mt5t3t4t5,Mt4t2t7t4,Mt7t5t2t7,Mt8t6t5t8,Mt10t8t3t10,

Mt3t1t8t3,Mt2t10t1t2,Mt5t3t6t5,Mt4t2t9t4,Mt7t5t4t7,Mt9t7t2t9,Mt10t8t5t10,

Mt3t1t10t3,Mt2t10t3t2,Mt5t3t8t5,Mt4t2t1t4,Mt7t5t6t7,Mt9t7t4t9,Mt2t10t5t2,

Mt5t3t10t5,Mt4t2t3t4,Mt7t5t8t7,Mt9t7t6t9,Mt4t2t5t4,Mt7t5t10t7,Mt9t7t8t9,

Mt9t7t10t9}.
The coset stabiliser of the double coset Mt1t9t2t1 is : N1921 ≥ N (1921) =

{e}. Thus the number of single cosets of Mt1t9t2t1N is at most |N |
|N(1921)| = 50

1
= 50.

Now the orbits of [1921] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.
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Choosing a representative from each orbit and right multiplying to Mt1t9t2t1, we

have 10 possible new double cosets, but we find the following using MAGMA:

Mt1t9t2t1t1 = Mt1t9t2 ∈ [192]

Mt1t9t2t1t3 = Mt1t2t1t10t7 ∈ [12110]

Mt1t9t2t1t4 = Mt1t2t7 ∈ [127]

Mt1t9t2t1t5 = Mt1t2t1t10 ∈ [12110]

Mt1t9t2t1t6 = Mt1t2t5t8 ∈ [1258]

Mt1t9t2t1t7 = Mt1t2t1t10 ∈ [12110]

Mt1t9t2t1t8 = Mt1t2t7t6 ∈ [1276]

Mt1t9t2t1t9 = Mt1t2t1t10t7 ∈ [121107]

Mt1t9t2t1t10 = Mt1t2t5 ∈ [125]

Based on the information found, one symmetric generator returns to [192]

and the 8 symmetric generators shown above collapse. Thus, only one symmetric

generator moves forward to Mt1t9t2t1t2.

Mt1t9t2t1t2N

Consider the double coset [19212] = Mt1t9t2t1t2N = {M(t1t9t2t1t2)
n|n ∈

N} = {Mt1t9t2t1t2,Mt1t9t4t1t4,Mt6t4t7t6t7,Mt1t9t6t1t6,Mt6t4t9t6t9,Mt8t6t7t8t7,

Mt1t9t8t1t8,Mt6t4t1t6t1,Mt8t6t9t8t9,Mt10t8t7t10t7,Mt3t1t2t3t2,Mt1t9t10t1t10,

Mt6t4t3t6t3,Mt8t6t1t8t1,Mt10t8t9t10t9,Mt3t1t4t3t4,Mt2t10t7t2t7,Mt5t3t2t5t2,

Mt6t4t5t6t5,Mt8t6t3t8t3,Mt10t8t1t10t1,Mt3t1t6t3t6,Mt2t10t9t2t9,Mt5t3t4t5t4,

Mt4t2t7t4t7,Mt7t5t2t7t2,Mt8t6t5t8t5,Mt10t8t3t10t3,Mt3t1t8t3t8,Mt2t10t1t2t1,

Mt5t3t6t5t6,Mt4t2t9t4t9,Mt7t5t4t7t4,Mt9t7t2t9t2,Mt10t8t5t10t2,Mt3t1t10t3t10,

Mt2t10t3t2t3,Mt5t3t8t5t8,Mt4t2t1t4t1,Mt7t5t6t7t6,Mt9t7t4t9t4,Mt2t10t5t2t5,

Mt5t3t10t5t10,Mt4t2t3t4t3,Mt7t5t8t7t8,Mt9t7t6t9t6,Mt4t2t5t4t5,Mt7t5t10t7t10,

Mt9t7t8t9t8,Mt9t7t10t9t10}.
The coset stabiliser of the double cosetMt1t9t2t1t2 is : N19212 ≥ N (19212) =

{e}. Thus the number of single cosets of Mt1t9t2t1t2N is at most |N |
|N(19212)| = 50

1
=

50. Now the orbits of [19212] are:
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O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t9t2t1t2,

we have 10 possible new double cosets, but we find the following using MAGMA:

Mt1t9t2t1t2t1 = Mt1t9t2t1t2 ∈ [19212]

Mt1t9t2t1t2t2 = Mt1t9t2t1 ∈ [1921]

Mt1t9t2t1t2t3 = Mt1t9t2t1t2 ∈ [19212]

Mt1t9t2t1t2t4 = Mt1t2t1t2t9 ∈ [12129]

Mt1t9t2t1t2t5 = Mt1t9t2t1t2 ∈ [19212]

Mt1t9t2t1t2t6 = Mt1t2t7t6 ∈ [1276]

Mt1t9t2t1t2t7 = Mt1t9t2t1t2 ∈ [19212]

Mt1t9t2t1t2t8 = Mt1t2t5t8 ∈ [1258]

Mt1t9t2t1t2t9 = Mt1t9t2t1t2 ∈ [19212]

Mt1t9t2t1t2t10 = Mt1t2t1t2t3 ∈ [12123]

Based on the information found, one symmetric generator returns to

[1921] and the 5 symmetric generators loop back into [19212]. The remaining

symmetric generators shown above collapse. Since there are no new double cosets

to investigate, this branch ends here.

Mt1t9t2t1t10N

Consider the double coset [192110] = Mt1t9t2t1t10N = {M(t1t9t2t1t10)
n|

n ∈ N} = {Mt1t9t2t10,Mt1t9t4t2,Mt6t4t7t5,Mt1t9t6t4,Mt6t4t9t7,Mt8t6t7t5,

Mt1t9t8t6,Mt6t4t1t9,Mt8t6t9t7,Mt10t8t7t5,Mt3t1t2t10,Mt1t9t10t8,Mt6t4t3t1,

Mt8t6t1t9,Mt10t8t9t7,Mt3t1t4t2,Mt2t10t7t5,Mt5t3t2t10,Mt6t4t5t3,Mt8t6t3t1,

Mt10t8t1t9,Mt3t1t6t4,Mt2t10t9t7,Mt5t3t4t2,Mt4t2t7t5,Mt7t5t2t10,Mt8t6t5t3,

Mt10t8t3t1,Mt3t1t8t6,Mt2t10t1t9,Mt5t3t6t4,Mt4t2t9t7,Mt7t5t4t2,Mt9t7t2t10,

Mt10t8t5t3,Mt3t1t10t8,Mt2t10t3t1,Mt5t3t8t6,Mt4t2t1t9,Mt7t5t6t4,Mt9t7t4t2,
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Mt2t10t5t3,Mt5t3t10t8,Mt4t2t3t1,Mt7t5t8t6,Mt9t7t6t4,Mt4t2t5t3,Mt7t5t10t8,

Mt9t7t8t6,Mt9t7t10t8}.
The coset stabiliser of the double coset Mt1t9t2t10 is : N19210 ≥ N (19210) =

{e}. Thus the number of single cosets of Mt1t9t2t10N is at most |N |
|N(19210)| = 50

1
=

50. Now the orbits of [19210] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t9t2t10, we

have 10 possible new double cosets, but we find the following using MAGMA:

Mt1t9t2t10t1 = Mt1t2t1t9t2 ∈ [12192]

Mt1t9t2t10t2 = Mt1t2t1t8t1 ∈ [12181]

Mt1t9t2t10t3 = Mt1t2t1t9t2 ∈ [12192]

Mt1t9t2t10t4 = Mt1t9t2 ∈ [192]

Mt1t9t2t10t5 = Mt1t2t5t8 ∈ [1258]

Mt1t9t2t10t6 = Mt1t9t2t10 ∈ [19210]

Mt1t9t2t10t7 = Mt1t9t2t10 ∈ [19210]

Mt1t9t2t10t8 = Mt1t9t2t10 ∈ [19210]

Mt1t9t2t10t9 = Mt1t2t7t6 ∈ [1276]

Mt1t9t2t10t10 = Mt1t9t2 ∈ [192]

Based on the information found, two symmetric generators return to [192]

and the three symmetric generators loop back into [19210]. The remaining sym-

metric generators shown above cause those double cosets to collapse. Since there

are no new double cosets to investigate, this branch ends here.
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Mt1t2N

Consider the double coset [12] = Mt1t2N = {M(t1t2)
n|n ∈ N} = {Mt1t2,

Mt1t4,Mt6t7,Mt1t6,Mt6t9,Mt8t7,Mt1t8,Mt6t1,Mt8t9,Mt10t7,Mt3t2,Mt1t10,

Mt6t3,Mt8t1,Mt10t9,Mt3t4,Mt2t7,Mt5t2,Mt6t5,Mt8t3,Mt10t1,Mt3t6,Mt2t9,

Mt5t4,Mt4t7,Mt7t2,Mt8t5,Mt10t3,Mt3t8,Mt2t1,Mt5t6,Mt4t9,Mt7t4,Mt9t2,

Mt10t5,Mt3t10,Mt2t3,Mt5t8,Mt4t1,Mt7t6,Mt9t4,Mt2t5,Mt5t10,Mt4t3,Mt7t8,

Mt9t6,Mt4t5,Mt7t10,Mt9t8,Mt9t10}. The coset stabiliser of the double coset

Mt1t2 is : N12 ≥ N (12) = {e)}. Thus, the number of single cosets of Mt1t2N is

at most |N |
|N(12)| = 50

1
= 50. Now, the orbits of [12] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2, we have

10 possible new double cosets, but we find the following using MAGMA :

Mt1t2t2 = Mt1 ∈ [1]

Mt1t2t3 = Mt1t2t9 ∈ [129]

Mt1t2t4 = Mt1t2t1t10 ∈ [12110]

Mt1t2t6 = Mt1t2 ∈ [12]

Mt1t2t8 = Mt1t2 ∈ [12]

Mt1t2t10 = Mt1t2t1t8 ∈ [1218]

Based on the information found, one symmetric generator returns to [1]

and two loop back into [12]. The symmetric generators mentioned above cause

those double cosets to collapse. Now the remaining orbits form five new double

cosets which are: Mt1t2t1,Mt1t2t5,Mt1t2t7,Mt1t2t9, and Mt1t2t1t8. Since the

double coset Mt1t2t10 = Mt1t2t1t8, two symmetric generators will move forward

to Mt1t2t1t8.

Mt1t2t1N

Consider the double coset [121] = Mt1t2t1N = {M(t1t2t1)
n|n ∈ N} = {Mt1t2t1,

Mt1t4t1,Mt6t7t6,Mt1t6t1,Mt6t9t6,Mt8t7t8,Mt1t8t1,Mt6t1t6,Mt8t9t8,Mt10t7t10,
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Mt3t2t3,Mt1t10t1,Mt6t3t6,Mt8t1t8,Mt10t9t10,Mt3t4t3,Mt2t7t2,Mt5t2t5,Mt6t5t6,

Mt8t3t8,Mt10t1t10,Mt3t6t3,Mt2t9t2,Mt5t4t5,Mt4t7t4,Mt7t2t7,Mt8t5t8,Mt10t3t10,

Mt3t8t3,Mt2t1t2,Mt5t6t5,Mt4t9t4,Mt7t4t7,Mt9t2t9,Mt10t5t10,Mt3t10t3,Mt2t3t2,

Mt5t8t5,Mt4t1t4,Mt7t6t7,Mt9t4t9,Mt2t5t2,Mt5t10t5,Mt4t3t4,Mt7t8t7,Mt9t6t9,

Mt4t5t4,Mt7t10t7,Mt9t8t9,Mt9t10t9}. The coset stabiliser of the double coset

Mt1t2t1 is : N121 ≥ N (121) = {e)}. Thus the number of single cosets of Mt1t2t1N

is at most |N |
|N(121)| = 50

1
= 50. Now the orbits of [121] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1, we

have 10 possible new double cosets, but we find the following using MAGMA :

Mt1t2t1t1 = Mt1t2 ∈ [12]

Mt1t2t1t3 = Mt1t2t1t9 ∈ [1219]

Mt1t2t1t4 = Mt1t2t1t10 ∈ [12110]

Mt1t2t1t5 = Mt1t2t7 ∈ [127]

Mt1t2t1t6 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t7 = Mt1t2t5 ∈ [125]

Based on the information found, two symmetric generators move forward

to Mt1t2t1t10 and two move forward to Mt1t2t1t9. The symmetric generators

mentioned above cause those double cosets to collapse. Now, the remaining orbits

form four new double cosets which are: Mt1t2t1t2,Mt1t2t1t8,Mt1t2t1t9,Mt1t2t1t10.

Mt1t2t1t2N

Consider the double coset [1212] = Mt1t2t1t2N = {M(t1t2t1t2)
n|n ∈ N} =

{Mt1t2t1t2,Mt1t4t1t4,Mt6t7t6t7,Mt1t6t1t6,Mt6t9t6t9,Mt8t7t8t7,Mt1t8t1t8,

Mt6t1t6t1,Mt8t9t8t9,Mt10t7t10t7,Mt3t2t3t2,Mt1t10t1t10,Mt6t3t6t3,Mt8t1t8t1,

Mt10t9t10t9,Mt3t4t3t4,Mt2t7t2t7,Mt5t2t5t2,Mt6t5t6t5,Mt8t3t8t3,Mt10t1t10t1,

Mt3t6t3t6,Mt2t9t2t9,Mt5t4t5t4,Mt4t7t4t7,Mt7t2t7t2,Mt8t5t8t5,Mt10t3t10t3,

Mt3t8t3t8,Mt2t1t2t1,Mt5t6t5t6,Mt4t9t4t9,Mt7t4t7t4,Mt9t2t9t2,Mt10t5t10t5,
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Mt3t10t3t10,Mt2t3t2t3,Mt5t8t5t8,Mt4t1t4t1,Mt7t6t7t6,Mt9t4t9t4,Mt2t5t2t5,

Mt5t10t5t10,Mt4t3t4t3,Mt7t8t7t8,Mt9t6t9t6,Mt4t5t4t5,Mt7t10t7t10,Mt9t8t9t8,

Mt9t10t9t10}. The coset stabiliser of the double coset Mt1t2t1t2

is : N1212 ≥ N (1212) = {e)}. Thus the number of single cosets of Mt1t2t1t2N is at

most |N |
|N(1212)| = 50

1
= 50. Now the orbits of [1212] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t2, we

have 10 possible new double cosets, but we find the following using MAGMA :

Mt1t2t1t2t2 = Mt1t2 ∈ [12]

Mt1t2t1t2t4 = Mt1t2t1t2 ∈ [1212]

Mt1t2t1t2t5 = Mt1t2t5t2 ∈ [1252]

Mt1t2t1t2t6 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t2t7 = Mt1t2t7t2 ∈ [1272]

Mt1t2t1t2t8 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t2t10 = Mt1t2t1t2 ∈ [1212]

Based on the information found, two symmetric generators loop back to

[1212] and one returns to [121]. The symmetric generators mentioned above cause

those double cosets to collapse. Now, the remaining orbits form three new double

cosets which are: Mt1t2t1t2t1,Mt1t2t1t2t9 and Mt1t2t1t2t3

Mt1t2t1t2t3N

Consider the double coset [12123] = Mt1t2t1t2t3N = {M(t1t2t1t2t3)
n|n ∈ N}

= {Mt1t2t1t2t3,Mt1t4t1t4t3,Mt6t7t6t7t8,Mt1t6t1t6t3,Mt6t9t6t9t8,Mt8t7t8t7t10,

Mt1t8t1t8t3,Mt6t1t6t1t8,Mt8t9t8t9t10,Mt10t7t10t7t2,Mt3t2t3t2t5,Mt1t10t1t10t3,

Mt6t3t6t3t8,Mt8t1t8t1t10,Mt10t9t10t9t2,Mt3t4t3t4t5,Mt2t7t2t7t4,Mt5t2t5t2t7,

Mt6t5t6t5t8,Mt8t3t8t3t10,Mt10t1t10t1t2,Mt3t6t3t6t5,Mt2t9t2t9t4,Mt5t4t5t4t7,

Mt4t7t4t7t6,Mt7t2t7t2t9,Mt8t5t8t5t10,Mt10t3t10t3t2,Mt3t8t3t8t5,Mt2t1t2t1t4,

Mt5t6t5t6t7,Mt4t9t4t9t6,Mt7t4t7t4t9,Mt9t2t9t2t1,Mt10t5t10t5t2,Mt3t10t3t10t5,
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Mt2t3t2t3t4,Mt5t8t5t8t7,Mt4t1t4t1t6,Mt7t6t7t6t9,Mt9t4t9t4t1,Mt2t5t2t5t4,

Mt5t10t5t10t7,Mt4t3t4t3t6,Mt7t8t7t8t9,Mt9t6t9t6t1,Mt4t5t4t5t6,Mt7t10t7t10t9,

Mt9t8t9t8t1,Mt9t10t9t10t1}. We find through MAGMA that Mt1t2t1t2t3 =

Mt1t2t1t2t4. Therefore the coset stabiliser of the double coset Mt1t2t1t2t3 is :

N12123 ≥ N (12123) = {e, (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)}, since this element in N sends

t1 → t2, t2 → t1, t1 → t2, t2 → t1, and t3 → t4. Thus the number of single cosets

of Mt1t2t1t2t3N is at most |N |
|N(12123)| = 50

2
= 25. Now the orbits of [12123] are:

O = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t2t3, we

have five possible new double cosets, but we find the following using MAGMA :

Mt1t2t1t2t3t1 = Mt1t9t2t1t2 ∈ [19212]

Mt1t2t1t2t3t3 = Mt1t2t1t2 ∈ [1212]

Mt1t2t1t2t3t5 = Mt1t2t7t6 ∈ [1276]

Mt1t2t1t2t3t7 = Mt1t2t1t2t9 ∈ [12129]

Mt1t2t1t2t3t9 = Mt1t2t7t2 ∈ [1272]

Based on the information found, two symmetric generators return to

[1212]. The symmetric generators mentioned above cause those double cosets

to collapse. Since there are no more possible new double cosets to investigate,

this branch ends here.

Mt1t2t1t2t9N

Consider the double coset [12129] = Mt1t2t1t2t9N = {M(t1t2t1t2t9)
n|n ∈ N}

= {Mt1t2t1t2t9,Mt1t4t1t4t9,Mt6t7t6t7t4,Mt1t6t1t6t9,Mt6t9t6t9t4,Mt8t7t8t7t6,

Mt1t8t1t8t9,Mt6t1t6t1t4,Mt8t9t8t9t6,Mt10t7t10t7t8,Mt3t2t3t2t1,Mt1t10t1t10t9,

Mt6t3t6t3t4,Mt8t1t8t1t6,Mt10t9t10t9t8,Mt3t4t3t4t1,Mt2t7t2t7t10,Mt5t2t5t2t3,

Mt6t5t6t5t4,Mt8t3t8t3t6,Mt10t1t10t1t8,Mt3t6t3t6t1,Mt2t9t2t9t10,Mt5t4t5t4t3,

Mt4t7t4t7t2,Mt7t2t7t2t5,Mt8t5t8t5t6,Mt10t3t10t3t8,Mt3t8t3t8t1,Mt2t1t2t1t10,

Mt5t6t5t6t3,Mt4t9t4t9t2,Mt7t4t7t4t5,Mt9t2t9t2t7,Mt10t5t10t5t8,Mt3t10t3t10t1,
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Mt2t3t2t3t10,Mt5t8t5t8t3,Mt4t1t4t1t2,Mt7t6t7t6t5,Mt9t4t9t4t7,Mt2t5t2t5t10,

Mt5t10t5t10t3,Mt4t3t4t3t2,Mt7t8t7t8t5,Mt9t6t9t6t7,Mt4t5t4t5t2,Mt7t10t7t10t5,

Mt9t8t9t8t7,Mt9t10t9t10t7}. We find that Mt1t2t1t2t9 = Mt1t2t1t2t10. Therefore

the coset stabiliser of the double coset Mt1t2t1t2t9 is : N12129 ≥ N (12129) =

{e, (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)}, since this element in N sends t1 → t2, t2 →
t1, t1 → t2, t2 → t1, and t9 → t10. Thus the number of single cosets of Mt1t2t1t2t9N

is at most |N |
|N(12129)| = 50

2
= 25. Now the orbits of [12129] are:

O = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t2t9,

we have 5 possible new double cosets, but we find the following using MAGMA :

Mt1t2t1t2t9t1 = Mt1t9t2t1t2 ∈ [19212]

Mt1t2t1t2t9t3 = Mt1t9t2t1t2 ∈ [19212]

Mt1t2t1t2t9t5 = Mt1t2t5t2 ∈ [1252]

Mt1t2t1t2t9t7 = Mt1t2t5t8 ∈ [1258]

Mt1t2t1t2t9t9 = Mt1t2t1t2 ∈ [1212]

Based on the information found, two symmetric generators return to

[1212]. The symmetric generators mentioned above cause those double cosets

to collapse. Since there are no more possible new double cosets to investigate,

this branch ends here.

Mt1t2t1t2t1N

Consider the double coset [12121] = Mt1t2t1t2t1N = {M(t1t2t1t2t1)
n|n ∈ N}

= {Mt1t2t1t2t1,Mt1t4t1t4t1,Mt6t7t6t7t6,Mt1t6t1t6t1,Mt6t9t6t9t6,Mt8t7t8t7t8,

Mt1t8t1t8t1,Mt6t1t6t1t6,Mt8t9t8t9t8,Mt10t7t10t7t10,Mt3t2t3t2t3,Mt1t10t1t10t1,

Mt6t3t6t3t6,Mt8t1t8t1t8,Mt10t9t10t9t10,Mt3t4t3t4t3,Mt2t7t2t7t2,Mt5t2t5t2t5,

Mt6t5t6t5t6,Mt8t3t8t3t8,Mt10t1t10t1t10,Mt3t6t3t6t3,Mt2t9t2t9t2,Mt5t4t5t4t5,

Mt4t7t4t7t4,Mt7t2t7t2t7,Mt8t5t8t5t8,Mt10t3t10t3t10,Mt3t8t3t8t3,Mt2t1t2t1t2,

Mt5t6t5t6t5,Mt4t9t4t9t4,Mt7t4t7t4t7,Mt9t2t9t2t9,Mt10t5t10t5t10,Mt3t10t3t10t3,
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Mt2t3t2t3t2,Mt5t8t5t8t5,Mt4t1t4t1t4,Mt7t6t7t6t7,Mt9t4t9t4t9,Mt2t5t2t5t2,

Mt5t10t5t10t5,Mt4t3t4t3t4,Mt7t8t7t8t7,Mt9t6t9t6t9,Mt4t5t4t5t4,Mt7t10t7t10t7,

Mt9t8t9t8t9,Mt9t10t9t10t9}.
We find that Mt1t2t1t2t1 = Mt2t1t2t1t2. Therefore the coset stabiliser of the

double coset Mt1t2t1t2t1 is : N12121 ≥ N (12121) = {e, (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)},
since this element in N only sends t1 → t2. Thus the number of single cosets of

Mt1t2t1t2t1N is at most |N |
|N(12121)| = 50

2
= 25. Now the orbits of [12121] are:

O = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t2t1,

we have five possible new double cosets, but we find the following:

Mt1t2t1t2t1t1 = Mt1t2t1t2 ∈ [1212]

Mt1t2t1t2t1t3 = Mt1t2t5 ∈ [125]

Mt1t2t1t2t1t5 = Mt1t2t7t2 ∈ [1272]

Mt1t2t1t2t1t7 = Mt1t2t5t2 ∈ [1252]

Mt1t2t1t2t1t9 = Mt1t2t7 ∈ [127]

Based on the information found, two symmetric generators return to

[1212]. The symmetric generators mentioned above cause those double cosets

to collapse. Since there are no more possible new double cosets to investigate,

this branch ends here.

Mt1t2t1t9N

Consider the double coset [1219] = Mt1t2t1t9N = {M(t1t2t1t9)
n|n ∈ N} =

{Mt1t2t1t9,Mt1t4t1t9,Mt6t7t6t4,Mt1t6t1t9,Mt6t9t6t4,Mt8t7t8t6,Mt1t8t1t9,

Mt6t1t6t4,Mt8t9t8t6,Mt10t7t10t8,Mt3t2t3t1,Mt1t10t1t9,Mt6t3t6t4,Mt8t1t8t6,

Mt10t9t10t8,Mt3t4t3t1,Mt2t7t2t10,Mt5t2t5t3,Mt6t5t6t4,Mt8t3t8t6,Mt10t1t10t8,

Mt3t6t3t1,Mt2t9t2t10,Mt5t4t5t3,Mt4t7t4t2,Mt7t2t7t5,Mt8t5t8t6,Mt10t3t10t8,

Mt3t8t3t1,Mt2t1t2t10,Mt5t6t5t3,Mt4t9t4t2,Mt7t4t7t5,Mt9t2t9t7,Mt10t5t10t8,

Mt3t10t3t1,Mt2t3t2t10,Mt5t8t5t3,Mt4t1t4t2,Mt7t6t7t5,Mt9t4t9t7,Mt2t5t2t10,
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Mt5t10t5t3,Mt4t3t4t2,Mt7t8t7t5,Mt9t6t9t7,Mt4t5t4t2,Mt7t10t7t5,Mt9t8t9t7,

Mt9t10t9t7}. The coset stabiliser of the double coset Mt1t2t1t9N is : N1219 ≥
N (1219) = {e)}. Thus the number of single cosets of Mt1t2t1t9N is at most
|N |

|N(1219)| = 50
1

= 50. Now the orbits of [1219] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t9, we

have 10 possible new double cosets, but we find the following:

Mt1t2t1t9t1 = Mt1t2t1 ∈ [121]

Mt1t2t1t9t3 = Mt1t2t7 ∈ [127]

Mt1t2t1t9t4 = Mt1t2t1t9t2 ∈ [12192]

Mt1t2t1t9t5 = Mt1t2t1t9 ∈ [1219]

Mt1t2t1t9t6 = Mt1t2t1t9t2 ∈ [12192]

Mt1t2t1t9t7 = Mt1t2t5 ∈ [125]

Mt1t2t1t9t8 = Mt1t2t1t9t1 ∈ [12191]

Mt1t2t1t9t9 = Mt1t2t1 ∈ [121]

Mt1t2t1t9t10 = Mt1t2t1t9 ∈ [1219]

Based on the information found, three symmetric generators loop back to

[1219] and two return to [121]. The symmetric generators mentioned above cause

those double cosets to collapse. Now, the remaining orbit forms one new double

coset which is: Mt1t2t1t9t2.

Mt1t2t1t9t2N

Consider the double coset [12192] = Mt1t2t1t9t2N = {M(t1t2t1t9t2)
n|n ∈ N}

= {Mt1t2t1t9t2,Mt1t4t1t9t4,Mt6t7t6t4t7,Mt1t6t1t9t6,Mt6t9t6t4t9,Mt8t7t8t6t7,

Mt1t8t1t9t8,Mt6t1t6t4t1,Mt8t9t8t6t9,Mt10t7t10t8t7,Mt3t2t3t1t2,Mt1t10t1t9t10,

Mt6t3t6t4t3,Mt8t1t8t6t1,Mt10t9t10t8t9,Mt3t4t3t1t4,Mt2t7t2t10t7,Mt5t2t5t3t2,
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Mt6t5t6t4t5,Mt8t3t8t6t3,Mt10t1t10t8t1,Mt3t6t3t1t6,Mt2t9t2t10t9,Mt5t4t5t3t4,

Mt4t7t4t2t7,Mt7t2t7t5t2,Mt8t5t8t6t5,Mt10t3t10t8t3,Mt3t8t3t1t8,Mt2t1t2t10t1,

Mt5t6t5t3t6,Mt4t9t4t2t9,Mt7t4t7t5t4,Mt9t2t9t7t2,Mt10t5t10t8t5,Mt3t10t3t1t10,

Mt2t3t2t10t3,Mt5t8t5t3t8,Mt4t1t4t2t1,Mt7t6t7t5t6,Mt9t4t9t7t4,Mt2t5t2t10t5,

Mt5t10t5t3t10,Mt4t3t4t2t3,Mt7t8t7t5t8,Mt9t6t9t7t6,Mt4t5t4t2t5,Mt7t10t7t5t10,

Mt9t8t9t7t8,Mt9t10t9t7t10}. Therefore the coset stabiliser of the double coset

Mt1t2t1t9t2N is : N12192 ≥ N (12192) = {e}. Thus the number of single cosets of

Mt1t2t1t9t2N is at most |N |
|N(12192)| = 50

1
= 50. Now the orbits of [12192] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t9t2,

we have ten possible new double cosets, but we find the following:

Mt1t2t1t9t2t1 = Mt1t2t1t10t7t10 ∈ [12110710]

Mt1t2t1t9t2t2 = Mt1t2t1t9 ∈ [1219]

Mt1t2t1t9t2t3 = Mt1t9t2t10 ∈ [19210]

Mt1t2t1t9t2t4 = Mt1t2t1t9t2 ∈ [12192]

Mt1t2t1t9t2t5 = Mt1t2t5t8 ∈ [1258]

Mt1t2t1t9t2t6 = Mt1t2t1t9 ∈ [1219]

Mt1t2t1t9t2t7 = Mt1t9t2t10 ∈ [19210]

Mt1t2t1t9t2t8 = Mt1t2t1t9t2 ∈ [12192]

Mt1t2t1t9t2t9 = Mt1t2t5t2 ∈ [1252]

Mt1t2t1t9t2t10 = Mt1t2t1t9 ∈ [1219]

Based on the information found, three symmetric generators return to

[1219], and two loop back into [12192]. The remaining symmetric generators

mentioned above cause those double cosets to collapse. Since there are no more

possible new double cosets to investigate, this branch ends here.
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Mt1t2t1t10N

Consider the double coset [12110] = Mt1t2t1t10N = {M(t1t2t1t10)
n|n ∈ N}

= {Mt1t2t1t10,Mt1t4t1t2,Mt6t7t6t5,Mt1t6t1t4,Mt6t9t6t7,Mt8t7t8t5,Mt1t8t1t6,

Mt6t1t6t9,Mt8t9t8t7,Mt10t7t10t5,Mt3t2t3t10,Mt1t10t1t8,Mt6t3t6t1,Mt8t1t8t9,

Mt10t9t10t7,Mt3t4t3t2,Mt2t7t2t5,Mt5t2t5t10,Mt6t5t6t3,Mt8t3t8t1,Mt10t1t10t9,

Mt3t6t3t4,Mt2t9t2t7,Mt5t4t5t2,Mt4t7t4t5,Mt7t2t7t10,Mt8t5t8t3,Mt10t3t10t1,

Mt3t8t3t6,Mt2t1t2t9,Mt5t6t5t4,Mt4t9t4t7,Mt7t4t7t2,Mt9t2t9t10,Mt10t5t10t3,

Mt3t10t3t8,Mt2t3t2t1,Mt5t8t5t6,Mt4t1t4t9,Mt7t6t7t4,Mt9t4t9t2,Mt2t5t2t3,

Mt5t10t5t8,Mt4t3t4t1,Mt7t8t7t6,Mt9t6t9t4,Mt4t5t4t3,Mt7t10t7t8,Mt9t8t9t6,

Mt9t10t9t8}. The coset stabiliser of the double coset Mt1t2t1t10 is : N12110 ≥
N (12110) = {e}. Thus the number of single cosets of Mt1t2t1t10N is at most
|N |

|N(12110)| = 50
1

= 50. Now the orbits of [12110] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t10, we

have 10 possible new double cosets, but we find the following using MAGMA :

Mt1t2t1t10t1 = Mt1t9t2t1 ∈ [1921]

Mt1t2t1t10t2 = Mt1t2t1t10 ∈ [12110]

Mt1t2t1t10t3 = Mt1t9t2t1[1921]

Mt1t2t1t10t4 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t10t5 = Mt1t9t2 ∈ [192]

Mt1t2t1t10t6 = Mt1t2t1t10 ∈ [12110]

Mt1t2t1t10t8 = Mt1t2t1 ∈ [121]

Mt1t2t1t10t9 = Mt1t9t2 ∈ [192]

Mt1t2t1t10t10 = Mt1t2t1 ∈ [121]

Based on the information found, two symmetric generators return to [121]

and two loop back into [12110]. The symmetric generators mentioned above cause

those double cosets to collapse. Now, the remaining orbit forms one new double

coset which is: Mt1t2t1t10t7.
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Mt1t2t1t10t7N

Consider the double coset [121107] = Mt1t2t1t10t7N = {M(t1t2t1t10t7)
n|n ∈ N}

= {Mt1t2t1t10t7,Mt1t4t1t2t7,Mt6t7t6t5t2,Mt1t6t1t4t7,Mt6t9t6t7t2,Mt8t7t8t5t4,

Mt1t8t1t6t7,Mt6t1t6t9t2,Mt8t9t8t7t4,Mt10t7t10t5t6,Mt3t2t3t10t9,Mt1t10t1t8t7,

Mt6t3t6t1t7,Mt8t1t8t9t2,Mt10t9t10t7t4,Mt3t4t3t2t6,Mt2t7t2t5t8,Mt5t2t5t10t1,

Mt6t5t6t3t2,Mt8t3t8t1t4,Mt10t1t10t9t6,Mt3t6t3t4t9,Mt2t9t2t7t8,Mt5t4t5t2t1,

Mt4t7t4t5t10,Mt7t2t7t10t3,Mt8t5t8t3t4,Mt10t3t10t1t6,Mt3t8t3t6t9,Mt2t1t2t9t8,

Mt5t6t5t4,Mt4t9t4t7,Mt7t4t7t2t3,Mt9t2t9t10t5,Mt10t5t10t3t6,Mt3t10t3t8t9,

Mt2t3t2t1t8,Mt5t8t5t6t1,Mt4t1t4t9t10,Mt7t6t7t4t3,Mt9t4t9t2t5,Mt2t5t2t3t8,

Mt5t10t5t8t1,Mt4t3t4t1t10,Mt7t8t7t6t3,Mt9t6t9t4t5,Mt4t5t4t3t10,Mt7t10t7t8t3,

Mt9t8t9t6t5,Mt9t10t9t8t5}. The coset stabiliser of the double coset Mt1t2t1t10t7 is

: N121107 ≥ N (121107) = {e}. Thus the number of single cosets of Mt1t2t1t10t7N is

at most |N |
|N(121107)| = 50

1
= 50. Now the orbits of [121107] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t10t7,

we have ten possible new double cosets, but we find the following using MAGMA :

Mt1t2t1t10t7t1 = Mt1t9t2t1 ∈ [1921]

Mt1t2t1t10t7t2 = Mt1t2t7t6 ∈ [1276]

Mt1t2t1t10t7t3 = Mt1t9t2t1 ∈ [1921]

Mt1t2t1t10t7t4 = Mt1t2t1t10t7 ∈ [12110]

Mt1t2t1t10t7t5 = Mt1t2t1t10t7 ∈ [121107]

Mt1t2t1t10t7t6 = Mt1t2t5t8 ∈ [1258]

Mt1t2t1t10t7t7 = Mt1t2t1t10 ∈ [12110]

Mt1t2t1t10t7t8 = Mt1t2t1t10t7t10 ∈ [12110710]

Mt1t2t1t10t7t9 = Mt1t2t1t10t7 ∈ [121107]

Based on the information found, one symmetric generator returns to

[12110] and three loop back into [121107]. The symmetric generators mentioned
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above cause those double cosets to collapse. Now, the remaining orbit forms one

new double coset which is: Mt1t2t1t10t7t10, but since Mt1t2t1t10t7t8 =

Mt1t2t1t10t7t10, two symmetric generators advance to this new double coset.

Mt1t2t1t10t7t10N

Consider the double coset [12110710] = Mt1t2t1t10t7t10N = {M(t1t2t1t10t7t10)
n|

n ∈ N} = {Mt1t2t1t10t7t10,Mt1t4t1t2t7t2,Mt6t7t6t5t2t5,Mt1t6t1t4t7t4,

Mt6t9t6t7t2t7,Mt8t7t8t5t4t5,Mt1t8t1t6t7t6,Mt6t1t6t9t2t9,Mt8t9t8t7t4t7,

Mt10t7t10t5t6t5,Mt3t2t3t10t9t10,Mt1t10t1t8t7t8,Mt6t3t6t1t7t1,Mt8t1t8t9t2t9,

Mt10t9t10t7t4t7,Mt3t4t3t2t9t2,Mt2t7t2t5t8t5,Mt5t2t5t10t1t10,Mt6t5t6t3t2t3,

Mt8t3t8t1t4t1,Mt10t1t10t9t6t9,Mt3t6t3t4t9t4,Mt2t9t2t7t8t7,Mt5t4t5t2t1t2,

Mt4t7t4t5t10t5,Mt7t2t7t10t3t10,Mt8t5t8t3t4t3,Mt10t3t10t1t6t1,Mt3t8t3t6t9t6,

Mt2t1t2t9t8t9,Mt5t6t5t4t1t4,Mt4t9t4t7t10t7,Mt7t4t7t2t3t2,Mt9t2t9t10t5t10,

Mt10t5t10t3t6t3,Mt3t10t3t8t9t8,Mt2t3t2t1t8t1,Mt5t8t5t6t1t6,Mt4t1t4t9t10t9,

Mt7t6t7t4t3t4,Mt9t4t9t2t5t2,Mt2t5t2t3t8t3,Mt5t10t5t8t1t8,Mt4t3t4t1t10t1,

Mt7t8t7t6t3t6,Mt9t6t9t4t5t4,Mt4t5t4t3t10t3,Mt7t10t7t8t3t8,Mt9t8t9t6t5t6,

Mt9t10t9t8t5t8}. We find that Mt1t2t1t10t7t10 = Mt10t3t10t1t6t1, thus the coset sta-

biliser of the double coset Mt1t2t1t10t7t10 is : N12110710 ≥ N (12110710) = {e, (1, 10)

(2, 3)(4, 5)

(6, 7)(8, 9)}, since this element in N sends t1 → t10, t2 → t3, t1 → t10, t10 →
t1, t7 → t6 and t10 → t1. Thus the number of single cosets of Mt1t2t1t10t7t10N is

at most |N |
|N(12110710)| = 50

2
= 25. Now the orbits of [12110710] are:

O = {{1, 10}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t10t7,
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we have 10 possible new double cosets, but we find the following:

Mt1t2t1t10t7t10t1 = Mt1t2t1t10t7 ∈ [121107]

Mt1t2t1t10t7t10t2 = Mt1t2t7t6 ∈ [1276]

Mt1t2t1t10t7t10t4 = Mt1t2t5t8 ∈ [1258]

Mt1t2t1t10t7t10t6 = Mt1t2t1t10t7 ∈ [121107]

Mt1t2t1t10t7t10t8 = Mt1t2t1t9t2 ∈ [12192]

Based on the information found, four symmetric generators return to

[121107] and the remaining collapse. Since there are no possible new double

cosets, this branch ends here.

Mt1t2t1t8N

Consider the double coset [1218] = Mt1t2t1t8N = {M(t1t2t1t8)
n|n ∈ N}

= {Mt1t2t1t8,Mt1t4t1t10,Mt6t7t6t3,Mt1t6t1t2,Mt6t9t6t5,Mt8t7t8t3,Mt1t8t1t4,

Mt6t1t6t7,Mt8t9t8t5,Mt10t7t10t3,Mt3t2t3t8,Mt1t10t1t6,Mt6t3t6t9,Mt8t1t8t7,

Mt10t9t10t5,Mt3t4t3t10,Mt2t7t2t3,Mt5t2t5t8,Mt6t5t6t1,Mt8t3t8t9,Mt10t1t10t7,

Mt3t6t3t2,Mt2t9t2t5,Mt5t4t5t10,Mt4t7t4t3,Mt7t2t7t8,Mt8t5t8t1,Mt10t3t10t9,

Mt3t8t3t4,Mt2t1t2t7,Mt5t6t5t2,Mt4t9t4t5,Mt7t4t7t10,Mt9t2t9t8,Mt10t5t10t1,

Mt3t10t3t6,Mt2t3t2t9,Mt5t8t5t4,Mt4t1t4t7,Mt7t6t7t2,Mt9t4t9t10,Mt2t5t2t1,

Mt5t10t5t6,Mt4t3t4t9,Mt7t8t7t4,Mt9t6t9t2,Mt4t5t4t1,Mt7t10t7t6,

Mt9t8t9t4,Mt9t10t9t6}. The coset stabiliser of the double coset Mt1t2t1t8 is :

N1218 ≥ N (1218) = {e}. Thus the number of single cosets of Mt1t2t1t8N is at

most |N |
|N(1218)| = 50

1
= 50. Now the orbits of [1218] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t8, we
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have 10 possible new double cosets, but we find the following:

Mt1t2t1t8t2 = Mt1t2t1t10 ∈ [12110]

Mt1t2t1t8t3 = Mt1t2 ∈ [12]

Mt1t2t1t8t4 = Mt1t2t1t2 ∈ [1212]

Mt1t2t1t8t5 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t8t6 = Mt1t2t1 ∈ [121]

Mt1t2t1t8t7 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t8t8 = Mt1t2t1 ∈ [121]

Mt1t2t1t8t9 = Mt1t2 ∈ [12]

Mt1t2t1t8t10 = Mt1t2t1t2 ∈ [1212]

Based on the information found, two symmetric generators loop back to

[1218] and two return to [121]. The symmetric generators mentioned above cause

those double cosets to collapse. Now, the remaining orbit forms one new double

coset which is: Mt1t2t1t8t1.

Mt1t2t1t8t1N

Consider the double coset [12181] = Mt1t2t1t8t1N = {M(t1t2t1t8t1)
n|n ∈ N}

= {Mt1t2t1t8t1,Mt1t4t1t10t1,Mt6t7t6t3t6,Mt1t6t1t2t1,Mt6t9t6t5t6,Mt8t7t8t3t8,

Mt1t8t1t4t1,Mt6t1t6t7t6,Mt8t9t8t5t8,Mt10t7t10t3t10,Mt3t2t3t8t3,Mt1t10t1t6t1,

Mt6t3t6t9t6,Mt8t1t8t7t8,Mt10t9t10t5t10,Mt3t4t3t10t3,Mt2t7t2t3t2,Mt5t2t5t8t5,

Mt6t5t6t1t6,Mt8t3t8t9t8,Mt10t1t10t7t10,Mt3t6t3t2t3,Mt2t9t2t5t2,Mt5t4t5t10t5,

Mt4t7t4t3t4,Mt7t2t7t8t7,Mt8t5t8t1t8,Mt10t3t10t9t10,Mt3t8t3t4t3,Mt2t1t2t7t2,

Mt5t6t5t2t5,Mt4t9t4t5t4,Mt7t4t7t10t7,Mt9t2t9t8t9,Mt10t5t10t1t10,Mt3t10t3t6t3,

Mt2t3t2t9t2,Mt5t8t5t4t5,Mt4t1t4t7t4,Mt7t6t7t2t7,Mt9t4t9t10t9,Mt2t5t2t1t2,

Mt5t10t5t6t5,Mt4t3t4t9t4,Mt7t8t7t4t7,Mt9t6t9t2t9,Mt4t5t4t1t4,Mt7t10t7t6t7,

Mt9t8t9t4t9,Mt9t10t9t6t9}. We find that Mt1t2t1t8t1 = Mt3t4t3t10t3

= Mt5t6t5t2t5 = Mt7t8t7t4t7 = Mt9t10t9t6t9. Thus the coset stabiliser of the
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double coset Mt1t2t1t8t1 is : N12181 ≥ N (12181) = {e, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10),

(1, 5, 9, 3, 7)(2, 6, 10, 4, 8), (1, 7, 3, 9, 5)(2, 8, 4, 10, 6), (1, 9, 7, 5, 3)(2, 10, 8, 6, 4)}.
Thus the number of single cosets of Mt1t2t1t8t1N is at most |N |

|N(12181)| = 50
5

= 10.

Now the orbits of [12181] are:

O = {{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t1t8t1,

we have two possible new double cosets, but we find the following:

Mt1t2t1t8t1t1 = Mt1t2t1t8 ∈ [1218]

Mt1t2t1t8t1t1 = Mt1t9t2t10 ∈ [19210]

Based on the information found, five symmetric generators return to

[1218]. The other symmetric generator collapses, thus this branch ends here.

Mt1t2t7N

Consider the double coset [127] = Mt1t2t7N = {M(t1t2t7)
n|n ∈ N} = {Mt1t2t7,

Mt1t4t7,Mt6t7t2,Mt1t6t7,Mt6t9t2,Mt8t7t4,Mt1t8t7,Mt6t1t2,Mt8t9t4,Mt10t7t6,

Mt3t2t9,Mt1t10t7,Mt6t3t2,Mt8t1t4,Mt10t9t6,Mt3t4t9,Mt2t7t8,Mt5t2t1,Mt6t5t2,

Mt8t3t4,Mt10t1t6,Mt3t6t9,Mt2t9t8,Mt5t4t1,Mt4t7t10,Mt7t2t3,Mt8t5t4,Mt10t3t6,

Mt3t8t9,Mt2t1t8,Mt5t6t1,Mt4t9t10,Mt7t4t3,Mt9t2t5,Mt10t5t6,Mt3t10t9,Mt2t3t8,

Mt5t8t1,Mt4t1t10,Mt7t6t3,Mt9t4t5,Mt2t5t8,Mt5t10t1,Mt4t3t10,Mt7t8t3,

Mt9t6t5,Mt4t5t10,Mt7t10t7,Mt9t8t9,Mt9t10t9}. The coset stabiliser of the double

coset Mt1t2t1 is : N127 ≥ N (127) = {e}. Thus the number of single cosets of

Mt1t2t7N is at most |N |
|N(127)| = 50

1
= 50. Now the orbits of [127] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t7, we
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have 10 possible new double cosets, but we find the following:

Mt1t2t7t1 = Mt1t2t9 ∈ [129]

Mt1t2t7t3 = Mt1t2t1 ∈ [121]

Mt1t2t7t4 = Mt1t2t5 ∈ [125]

Mt1t2t7t5 = Mt1t2t5 ∈ [125]

Mt1t2t7t7 = Mt1t2 ∈ [12]

Mt1t2t7t8 = Mt1t2t1t2 ∈ [1212]

Mt1t2t7t9 = Mt1t2t1t9 ∈ [1219]

Mt1t2t7t10 = Mt1t9t2t1 ∈ [1921]

Based on the information found, one symmetric generator returns to [12]

and two symmetric generators move forward to two new double cosets Mt1t2t7t6

and Mt1t2t7t2 respectively. The remaining double cosets collapse.

Mt1t2t7t2N

Consider the double coset [1272] = Mt1t2t7t2N = {M(t1t2t7t2)
n|n ∈ N}

= {Mt1t2t7t2,Mt1t4t7t4,Mt6t7t2t7,Mt1t6t7t6,Mt6t9t2t9,Mt8t7t4t7,Mt1t8t7t8,

Mt6t1t2t1,Mt8t9t4t9,Mt10t7t6t7,Mt3t2t9t2,Mt1t10t7t10,Mt6t3t2t3,Mt8t1t4t8,

Mt10t9t6t9,Mt3t4t9t4,Mt2t7t8t7,Mt5t2t1t2,Mt6t5t2t5,Mt8t3t4t3,Mt10t1t6t1,

Mt3t6t9t6,Mt2t9t8t9,Mt5t4t1t4,Mt4t7t10t7,Mt7t2t3t2,Mt8t5t4t5,Mt10t3t6t3,

Mt3t8t9t8,Mt2t1t8t1,Mt5t6t1t6,Mt4t9t10t9,Mt7t4t3t4,Mt9t2t5t2,Mt10t5t6t5,

Mt3t10t9t10,Mt2t3t8t3,Mt5t8t1t8,Mt4t1t10t1,Mt7t6t3t6,Mt9t4t5t4,Mt2t5t8t5,

Mt5t10t1t10,Mt4t3t10t3,Mt7t8t3t8,Mt9t6t5t6,Mt4t5t10t5,Mt7t10t7t10,

Mt9t8t9t8,Mt9t10t9t10}. We find through MAGMA that Mt1t2t7t2 = Mt8t5t4t5.

Therefore the coset stabiliser of the double coset Mt1t2t7t2 is : N1272 ≥ N (1272) =

{e, (1, 8)(2, 5)(3, 10)(4, 7)(6, 9)}. Since this element in N sends t1 → t8, t2 →
t5, t7 → t4, and t2 → t5. Thus the number of single cosets of Mt1t2t7t2N is at

most |N |
|N(1272)| = 50

2
= 50. Now the orbits of [1272] are:
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O = {{1, 8}, {2, 5}, {3, 10}, {4, 7}, {6, 9}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t7t2, we

have 5 possible new double cosets, but we find the following:

Mt1t2t7t2t1 = Mt1t2t7t6 ∈ [1276]

Mt1t2t7t2t2 = Mt1t2t7 ∈ [127]

Mt1t2t7t2t3 = Mt1t2t1t2 ∈ [1212]

Mt1t2t7t2t4 = Mt1t2t1t2t3 ∈ [12123]

Mt1t2t7t2t6 = Mt1t2t1t2t1 ∈ [12121]

Based on the information found, two symmetric generators return to [127]

and the remaining double cosets collapse. Thus, we research Mt1t2t7t6.

Mt1t2t7t6N

Consider the double coset [1276] = Mt1t2t7t6N = {M(t1t2t7t6)
n|n ∈ N}

= {Mt1t2t7t6,Mt1t4t7t8,Mt6t7t2t1,Mt1t6t7t10,Mt6t9t2t3,Mt8t7t4t1,Mt1t8t7t2,

Mt6t1t2t5,Mt8t9t4t3,Mt10t7t6t1,Mt3t2t9t6,Mt1t10t7t4,Mt6t3t2t7,Mt8t1t4t5,

Mt10t9t6t3,Mt3t4t9t8,Mt2t7t8t1,Mt5t2t1t6,Mt6t5t2t9,Mt8t3t4t7,Mt10t1t6t5,

Mt3t6t9t10,Mt2t9t8t3,Mt5t4t1t8,Mt4t7t10t1,Mt7t2t3t6,Mt8t5t4t9,Mt10t3t6t7,

Mt3t8t9t2,Mt2t1t8t5,Mt5t6t1t10,Mt4t9t10t3,Mt7t4t3t8,Mt9t2t5t6,Mt10t5t6t9,

Mt3t10t9t4,Mt2t3t8t7,Mt5t8t1t2,Mt4t1t10t5,Mt7t6t3t10,Mt9t4t5t8,Mt2t5t8t9,

Mt5t10t1t4,Mt4t3t10t7,Mt7t8t3t2,Mt9t6t5t10,Mt4t5t10t9,Mt7t10t3t4,Mt9t8t5t2,

Mt9t10t5t4}. The coset stabiliser of the double coset Mt1t2t7t6N is : N1276 ≥
N (1276) = {e}. Thus the number of single cosets of Mt1t2t7t6N is at most |N |

|N(1276)| =
50
1

= 50. Now the orbits of [1276] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t7t6, we
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have ten possible new double cosets, but we find the following:

Mt1t2t7t6t1 = Mt1t9t2t10 ∈ [19210]

Mt1t2t7t6t1 = Mt1t9t2t1 ∈ [1921]

Mt1t2t7t6t1 = Mt1t2t1t10t7t10 ∈ [12110710]

Mt1t2t7t6t1 = Mt1t2t1t2t3 ∈ [12123]

Mt1t2t7t6t1 = Mt1t2t5t8 ∈ [1258]

Mt1t2t7t6t1 = Mt1t2t7 ∈ [127]

Mt1t2t7t6t1 = Mt1t2t1t9t2 ∈ [12192]

Mt1t2t7t6t1 = Mt1t9t2t1t2 ∈ [19212]

Mt1t2t7t6t1 = Mt1t2t1t10t7 ∈ [121107]

Mt1t2t7t6t1 = Mt1t2t7t2 ∈ [1272]

Based on the information found, one symmetric generator returns to [127]

and the remaining double cosets collapse. Thus this branch ends here. We next

investigate Mt1t2t5N

Mt1t2t5N

Consider the double coset [125] = Mt1t2t5N = {M(t1t2t5)
n|n ∈ N} = {Mt1t2t5,

Mt1t4t5,Mt6t7t10,Mt1t6t5,Mt6t9t10,Mt8t7t2,Mt1t8t5,Mt6t1t10,Mt8t9t2,Mt10t7t4,

Mt3t2t7,Mt1t10t5,Mt6t3t10,Mt8t1t2,Mt10t9t4,Mt3t4t7,Mt2t7t6,Mt5t2t9,Mt6t5t10,

Mt8t3t2,Mt10t1t4,Mt3t6t7,Mt2t9t6,Mt5t4t9,Mt4t7t8,Mt7t2t1,Mt8t5t2,Mt10t3t4,

Mt3t8t7,Mt2t1t6,Mt5t6t9,Mt4t9t8,Mt7t4t1,Mt9t2t3,Mt10t5t4,Mt3t10t7,Mt2t3t6,

Mt5t8t9,Mt4t1t8,Mt7t6t1,Mt9t4t3,Mt2t5t6,Mt5t10t9,Mt4t3t8,Mt7t8t1,Mt9t6t3,

Mt4t5t8,Mt7t10t1,Mt9t8t3,Mt9t10t3}. The coset stabiliser of the double coset

Mt1t2t5 is : N125 ≥ N (125) = {e}. Thus the number of single cosets of Mt1t2t5N

is at most |N |
|N(125)| = 50

1
= 50. Now the orbits of [125] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.
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Choosing a representative from each orbit and right multiplying to Mt1t2t5, we

have ten possible new double cosets, but we find the following:

Mt1t2t5t1 = Mt1t2t9 ∈ [129]

Mt1t2t5t3 = Mt1t2t1t9 ∈ [1219]

Mt1t2t5t4 = Mt1t9t2t1 ∈ [1921]

Mt1t2t5t5 = Mt1t2 ∈ [12]

Mt1t2t5t6 = Mt1t2t1t2 ∈ [1212]

Mt1t2t5t7 = Mt1t2t7 ∈ [127]

Mt1t2t5t9 = Mt1t2t1 ∈ [121]

Mt1t2t5t10 = Mt1t2t7 ∈ [127]

Based on the information found, one symmetric generator returns to [12]

and two symmetric generators move forward to two new double cosets Mt1t2t5t2

and Mt1t2t5t8 respectively. The remaining double cosets collapse.

Mt1t2t5t2N

Consider the double coset [1252] = Mt1t2t5t2N = {M(t1t2t5t2)
n|n ∈ N}

= {Mt1t2t5t2,Mt1t4t5t4,Mt6t7t10t7,Mt1t6t5t6,Mt6t9t10t9,Mt8t7t2t7,Mt1t8t5t8,

Mt6t1t10t1,Mt8t9t2t9,Mt10t7t4t7,Mt3t2t7t2,Mt1t10t5t10,Mt6t3t10t3,Mt8t1t2t1,

Mt10t9t4t9,Mt3t4t7t4,Mt2t7t6t7,Mt5t2t9t2,Mt6t5t10t5,Mt8t3t2t3,Mt10t1t4t1,

Mt3t6t7t6,Mt2t9t6t9,Mt5t4t9t4,Mt4t7t8t7,Mt7t2t1t2,Mt8t5t2t5,Mt10t3t4t3,

Mt3t8t7t8,Mt2t1t6t1,Mt5t6t9t6,Mt4t9t8t9,Mt7t4t1t4,Mt9t2t3t2,Mt10t5t4t5,

Mt3t10t7t10,Mt2t3t6t3,Mt5t8t9t8,Mt4t1t8t1,Mt7t6t1t6,Mt9t4t3t4,Mt2t5t6t5,

Mt5t10t9t10,Mt4t3t8t3,Mt7t8t1t8,Mt9t6t3t6,Mt4t5t8t5,Mt7t10t1t10,Mt9t8t3t8,

Mt9t10t3t10}. We find that Mt1t2t5t2 = Mt6t7t10t7. Therefore the coset stabiliser

of the double coset Mt1t2t5t2N is : N1252 ≥ N (1252) = {e, (1, 6)(2, 7)(3, 8)(4, 9)

(5, 10)}, since this element in N sends t1 → t6, t2 → t7, t5 → t10, and t2 → t7.

Thus the number of single cosets of Mt1t2t5t2N is at most |N |
|N(1252)| = 50

2
= 25.

Now the orbits of [1252] are:

O = {{1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}}.
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Choosing a representative from each orbit and right multiplying to Mt1t2t5t2, we

have five possible new double cosets, but we find the following:

Mt1t2t5t2t1 = Mt1t2t5t8 ∈ [1258]

Mt1t2t5t2t2 = Mt1t2t5 ∈ [125]

Mt1t2t5t2t3 = Mt1t2t1t2t1 ∈ [12121]

Mt1t2t5t2t4 = Mt1t2t1t2 ∈ [1212]

Mt1t2t5t2t5 = Mt1t2t1t2t9 ∈ [12129]

Based on the information found, two symmetric generators return to [125]

and the remaining double cosets collapse. Thus this branch ends here. We next

investigate Mt1t2t5t8N

Mt1t2t5t8N

Consider the double coset [1258] = Mt1t2t5t8N = {M(t1t2t5t8)
n|n ∈ N} =

{Mt1t2t5t8,Mt1t4t5t10,Mt6t7t10t3,Mt1t6t5t2,Mt6t9t10t5,Mt8t7t2t3,Mt1t8t5t4,

Mt6t1t10t7,Mt8t9t2t5,Mt10t7t4t3,Mt3t2t7t8,Mt1t10t5t6,Mt6t3t10t9,Mt8t1t2t7,

Mt10t9t4t5,Mt3t4t7t10,Mt2t7t6t3,Mt5t2t9t8,Mt6t5t10t1,Mt8t3t2t9,Mt10t1t4t7,

Mt3t6t7t2,Mt2t9t6t5,Mt5t4t9t10,Mt4t7t8t3,Mt7t2t1t8,Mt8t5t2t1,Mt10t3t4t9,

Mt3t8t7t4,Mt2t1t6t7,Mt5t6t9t2,Mt4t9t8t5,Mt7t4t1t10,Mt9t2t3t8,Mt10t5t4t1,

Mt3t10t7t6,Mt2t3t6t9,Mt5t8t9t4,Mt4t1t8t7,Mt7t6t1t2,Mt9t4t3t10,Mt2t5t6t1,

Mt5t10t9t6,Mt4t3t8t9,Mt7t8t1t4,Mt9t6t3t2,Mt4t5t8t1,Mt7t10t1t6,Mt9t8t3t4,

Mt9t10t3t6}. The coset stabiliser of the double coset Mt1t2t5t8N is : N1258 ≥
N (1258) = {e}, since this element The number of single cosets of Mt1t2t5t8N is at

most |N |
|N(1258)| = 50

1
= 50. Now the orbits of [1258] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt1t2t5t8, we
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have ten possible new double cosets, but we find the following using MAGMA :

Mt1t2t5t8t1 = Mt1t9t2t10 ∈ [19210]

Mt1t2t5t8t2 = Mt1t9t2t1 ∈ [1921]

Mt1t2t5t8t3 = Mt1t2t1t10t7 ∈ [121107]

Mt1t2t5t8t4 = Mt1t2t5t2 ∈ [1252]

Mt1t2t5t8t5 = Mt1t2t1t9t2 ∈ [12192]

Mt1t2t5t8t6 = Mt1t9t2t1t2 ∈ [19212]

Mt1t2t5t8t7 = Mt1t2t7t6 ∈ [1276]

Mt1t2t5t8t8 = Mt1t2t5 ∈ [125]

Mt1t2t5t8t9 = Mt1t2t1t10t7t10 ∈ [12110710]

Mt1t2t5t8t4 = Mt1t2t1t2t9 ∈ [12129]

Based on the information found, one symmetric generator returns to [125]

and the remaining double cosets collapse. Thus this branch ends here. We next

investigate Mt1t2t9N

Mt1t2t9N

Consider the double coset [129] = Mt1t2t9N = {M(t1t2t9)
n|n ∈ N} = {Mt1t2t9,

Mt1t4t9,Mt6t7t4,Mt1t6t9,Mt6t9t4,Mt8t7t6,Mt1t8t9,Mt6t1t4,Mt8t9t6,Mt10t7t8,

Mt3t2t1,Mt1t10t9,Mt6t3t4,Mt8t1t6,Mt10t9t8,Mt3t4t1,Mt2t7t10,Mt5t2t3,Mt6t5t4,

Mt8t3t6,Mt10t1t8,Mt3t6t1,Mt2t9t10,Mt5t4t3,Mt4t7t2,Mt7t2t5,Mt8t5t6,Mt10t3t8,

Mt3t8t1,Mt2t1t10,Mt5t6t3,Mt4t9t2,Mt7t4t5,Mt9t2t7,Mt10t5t8,Mt3t10t1,

Mt2t3t10,Mt5t8t3,Mt4t1t2,Mt7t6t5,Mt9t4t7,Mt2t5t10,Mt5t10t3,Mt4t3t2,Mt7t8t5,

Mt9t6t7,Mt4t5t2,Mt7t10t5,Mt9t8t7,Mt9t10t7}. We find that Mt1t2t9 = Mt10t3t8,

thus the coset stabiliser of the double coset Mt1t2t9N is : N129 ≥ N (129) =

{e, (1, 10)(2, 3)(4, 5)(6, 7)(8, 9)}. Thus, the number of single cosets of Mt1t2t9N is

at most |N |
|N(129)| = 50

2
= 25. Now, the orbits of [129] are:

O = {{1, 10}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}.
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Choosing a representative from each orbit and right multiplying to Mt1t2t9, we

have five possible new double cosets, but we find the following:

Mt1t2t9t1 = Mt1t2t9 ∈ [129]

Mt1t2t9t2 = Mt1t2t5 ∈ [125]

Mt1t2t9t4 = Mt1t2t9 ∈ [129]

Mt1t2t9t6 = Mt1t2t7 ∈ [127]

Mt1t2t9t8 = Mt1t2 ∈ [12]

Based on the information found, two symmetric generators return to [12]

and two symmetric generators loop back into [129]. The remaining collapse, there-

fore this branch ends here.

We have the index of |G||M | = 1008. Therefore we have that G is the union

of the 28 double cosets found above, illustrated as follows:

G = MeN ∪Mt1N ∪Mt1t2N ∪Mt1t9N ∪Mt1t2t7N ∪Mt1t2t7t2N ∪Mt1t2t7t6N

∪Mt1t2t5N ∪Mt1t2t5t2N ∪Mt1t2t5t8N ∪Mt1t9t1N ∪Mt1t9t2N

∪Mt1t9t2t10N ∪Mt1t9t2t1N ∪Mt1t9t2t1t2N ∪Mt1t2t1N

∪Mt1t2t1t8N ∪Mt1t2t1t8t1N ∪Mt1t2t1t10N ∪Mt1t2t1t10t7N

∪Mt1t2t1t10t7t10N ∪Mt1t2t1t2N ∪Mt1t2t1t2t1N ∪Mt1t2t1t2t3N

∪Mt1t2t1t2t7t9N ∪Mt1t2t1t9N ∪Mt1t2t1t9t2NcupMt1t2t1t2t9N

Adding the number of singles cosets in each double cosets yields the

desiired result.

|G| ≤ |N |+ |N |
|N (1)|

+
|N |
|N (12)|

+
|N |
|N (19)|

+
|N |
|N (127)|

+
|N |

|N (1272)|
+
|N |

|N (1276)|
+
|N |
|N (125)|

+
|N |

|N (1252)|
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+
|N |

|N (1258)|
+
|N |
|N (191)|

+
|N |
|N (192)|

+
|N |

|N (19210)|
+
|N |

|N (1921)|
+

|N |
|N (19212)|

+
|N |
|N (121)|

+
|N |

|N (1218)|

+
|N |

|N (12181)|
+

|N |
|N (12110)|

+
|N |

|N (121107)|
+

|N |
|N (12110710)|

+
|N |

|N (1212)|
+

|N |
|N (12121)|

+

|N |
N (12123)|

+
|N |

|N (121279)|
+

|N |
|N (1219)|

+
|N |

|N (12192)|
+

|N |
|N (12129)|

which equals:

|G| ≤ (1+10+50+10+50+25+50+50+25+50+2+50+50+50+50+

50+50+10+50+50+25+50+25+25+25+50+50+25)×1200 = |G| = 1209600.
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Figure 5.2: Cayley graph of J2 over (10 : 2) : A5
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Next we will briefly show the process of factoring a large group by the

center. We do this to attempt to perform double coset enumeration of G over N .

In this particular case, the group was still too large.

5.2.1 Factoring S(4, 4) by the Center Z(G)

A presentation for S(4, 4) is given by:

G=<v,w,x,y,z,t|vˆ2,wˆ4,xˆ2,yˆ3,zˆ3,wˆ-2*x,
(wˆ-1*v)ˆ2,(x*yˆ-1)ˆ2,
v*zˆ-1*v*z,(x*zˆ-1)ˆ2,(y,z),w*yˆ-1*wˆ-1*y*zˆ-1,
(t,v*x*zˆ-1),tˆ2,(v*wˆ-1*t)ˆ2, (v*w*z*t)ˆ5>

We verify that the order of G is correct and check if this group has a center, with

the following code:

#G;
/*3916800*/
f, G1, k:=CosetAction(G,sub<G|v,w,x,y,z>);
#k;
CompositionFactors(G1);
G

| C(2, 4) = S(4, 4)

*
| Cyclic(2)

*
| Cyclic(2)
1

Center(G1);
/*Permutation group acting on a set of cardinality 54400
Order = 4 = 2ˆ2*/
C:=Center(G1);
/*Order 4*/
D:=C.1;
E:=C.2;

Here the center is generated by two permutations, which are of order two,

but too large to show here. Thus we divide our center into two parts, D and E

from above.

Now to write these permutations into words, we use the Schrierer System.

We need to write these permutations into words to include these relations into

our progenitor.
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N:=G1;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#G]];

for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=f(v); end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=f(w); end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=f(wˆ-1); end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=f(x); end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=f(y); end if;
if Eltseq(Sch[i])[j] eq -4 then P[j]:=f(yˆ-1); end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=f(z); end if;
if Eltseq(Sch[i])[j] eq -5 then P[j]:=f(zˆ-1); end if;
if Eltseq(Sch[i])[j] eq 6 then P[j]:=f(t); end if;
if Eltseq(Sch[i])[j] eq -6 then P[j]:=f(tˆ-1); end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq D then Sch[i]; end if;
end for;
for i in [1..#N] do if ArrayP[i] eq E then Sch[i]; end if;
end for;

MAGMA gives us these relations:

(v * t * w * t * x * t * x * t)ˆ3,
(w * t * w * t * x * t * z * t * x * t * x * t *
x * t * w * t * yˆ-1 * t * x * t* x * z * t * x * t)

We can now include these relations into our progenitor and check the new

order of G:

G<v,w,x,y,z,t>:=Group<v,w,x,y,z,t|vˆ2,wˆ4,xˆ2,yˆ3,zˆ3,
wˆ-2*x,(wˆ-1*v)ˆ2,(x*yˆ-1)ˆ2,
v*zˆ-1*v*z,(x*zˆ-1)ˆ2,(y,z),w*yˆ-1*wˆ-1*y*zˆ-1,
(t,v*x*zˆ-1),tˆ2,(v*wˆ-1*t)ˆ2,
(v*yˆ-1*zˆ-1*t)ˆ0,(v*w*t)ˆ0,(x*t)ˆ0,(y*t)ˆ0,
(z*t)ˆ4,(w*t)ˆ0,(y*v*t)ˆ0,
(v*w*z*t)ˆ5, (v * t * w * t * x * t * x * t)ˆ3,
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(w * t * w * t * x * t * z * t * x * t * x * t *
x * t * w * t * yˆ-1 * t * x * t * x * z * t * x * t)>;
#G;
979200

Thus, we obtain the desired result, though the order of G is still to large

to perfrom double coset enumeration.
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Chapter 6

Monomial Progenitors: Creating

Character Table of G from H and

Monomial Progenitor Produces

Sporadic Group M11

Definition 6.1. [Rot95] Kernel of χ = {g ∈ G|χ(g) = χ(1)}

Theorem 6.2. [Led87] Let N be a normal saubgroup of G and suppose that

A0(Nx) is a representation of degree m of the group G/N . Then A(x) = A0(Nx)

defines a representation of G LIFTED from G/N . If φ0(Nx) is the character of

A0(Nx), then φ(x) = φ0(Nx) is the LIFTED character of A(x). Also, if u ∈ N ,

then A(u) = Im, φ(u) = m = φ(1). The LIFTING PROCESS preserves irre-

ducibility.

Construction of Character Table of C5 : C4

We will demonstrate how to construct the character table of C5 : C4 from a normal

subgroup H.

To construct the character table of G we first need to find a normal subgroup H.

Gh:=DerivedGroup(G);
Gh;
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Permutation group Gh acting on a set of cardinality 10
Order = 5
H:=(1, 3, 5, 7, 9)(2, 4, 6, 8, 10);

Thus H =< (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) >, and H ∼= D5. We will let

H =< (2, 10)(3, 9)(4, 8)(5, 7), (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) >, such that |G||H| = 4. This group

G/H ∼= C4. We now investigate the structure of the group C4 =< e, a4, b >. We know

that there will be four transversals of C4 in G, which create the set:

{H(Id),H(1, 2, 9, 8)(3, 6, 7, 4)(5, 10),
H(1, 9)(2, 8)(3, 7)(4, 6),H(1, 8, 9, 2)(3, 4, 7, 6)(5, 10)}

We will need to construct the character table of C4, which we begin by obtain-

ing the conjugacy classes. The conjugacy classes of C4 are labeled as follows:

Table 6.1: Conjugacy Classes of C4

Class Perm Rep

D1 e a0b0

D2 (1, 3)(2, 4) a2b0

D3 (1, 2, 3, 4) ab0

D4 (1, 4, 3, 2) a3b0

Since we are working with C4, we know that we most likely have a fourth

root of unity. To verify, we use the formula: z = 1
1
4 = [cos(2πk4 ) + isin(2πk4 )] =

[cos(πk2 ) + isin(πk2 )]. If we look at the unit circle, the values of z will be found at every

π
2 interval. This means that z = 1, I,−1 and −I. We have i0 = 1, i = I, i2 = −1, and

i3 = −I for our character table of C4. We will now compute:

for x·.1

i0 = (i0)0(i0)0 = 1 · 1 = 1

i = (i1)0(i1)0 = 1 · 1 = 1

i2 = (i2)0(i2)0 = 1 · 1 = 1

i3 = (i3)0(i3)0 = 1 · 1 = 1

for x·.2

i = (i)0(i)0 = 1 · 1 = 1
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i = (i)2(i2)0 = −1 · 1 = −1

i = (i)(i)0 = I · 1 = I

i = (i)3(i)0 = −I · 1 = −I

for x·.3

i2 = (i2)0(i)0 = 1 · 1 = 1

i2 = (i2)2(i2)0 = i4· = 1

i2 = (i2)(i)0 = −1 · 1 = −1

i2 = (i2)3(i)0 = i6 · 1 = −1

for x·.4

i3 = (i3)0(i)0 = 1 · 1 = 1

i3 = (i3)2(i2)0 = i6 · 1 = −1

i3 = (i3)(i)0 = i3 · 1 = −I
i3 = (i3)3(i)0 = i9 · 1 = I

The complete character table of C4 is as follows:

Table 6.2: Character Table of C4

Class D1 D2 D3 D4

Rep a0b0 a2b0 ab0 a3b0

x·.1 1 1 1 1

x·.2 1 -1 I -I

x·.3 1 1 -1 -1

x·.4 1 -1 -I I

The same process will be applied to the construction of the character table of

G. The generators of G =< e,A4, B−5, (A−1 ∗ B−2 ∗ A ∗ B−1) >. We need to find all

the class representatives of G to find which class in C4 they live in to be able to perfrom

the lifting process.

S:=Set(Gh);
q:=[{Id(G)},{},{},{}];
for i in [1..#T] do for g in S do
q[i]:=q[i] join {g*T[i]}; end for; end for;
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q;

{
B (1, 3, 5, 7, 9)(2, 4, 6, 8, 10),

Bˆ4 (1, 9, 7, 5, 3)(2, 10, 8, 6, 4),
Bˆ3 (1, 7, 3, 9, 5)(2, 8, 4, 10, 6),
Bˆ2 (1, 5, 9, 3, 7)(2, 6, 10, 4, 8),

Id(G)
},
{
A*Bˆ3 (1, 8, 7, 10)(2, 5, 6, 3)(4, 9),
A*B (1, 4, 5, 2)(3, 8)(6, 9, 10, 7),
A*Bˆ2 (1, 6)(2, 3, 10, 9)(4, 7, 8, 5),
A*Bˆ4 (1, 10, 3, 4)(2, 7)(5, 8, 9, 6),

A (1, 2, 9, 8)(3, 6, 7, 4)(5, 10)

Aˆ2*Bˆ2 (1, 3)(4, 10)(5, 9)(6, 8),
Aˆ2*Bˆ4 (1, 7)(2, 6)(3, 5)(8, 10),
Aˆ2*B (2, 10)(3, 9)(4, 8)(5, 7),
Aˆ2*Bˆ3 (1, 5)(2, 4)(6, 10)(7, 9),

Aˆ2 (1, 9)(2, 8)(3, 7)(4, 6)

{
Aˆ3*B (1, 10, 7, 8)(2, 3, 6, 5)(4, 9),
Aˆ3 (1, 8, 9, 2)(3, 4, 7, 6)(5, 10),

Aˆ3*Bˆ3; (1, 4, 3, 10)(2, 7)(5, 6, 9, 8),
Aˆ3*Bˆ4 (1, 6)(2, 9, 10, 3)(4, 5, 8, 7),
Aˆ3*Bˆ2 (1, 2, 5, 4)(3, 8)(6, 7, 10, 9)

For example, any element of B,B4, B3, orB2 will live in Id(G) of the character

table of C4. Likewise all elements A ∗B3, ..., A will live in the class representative of A

in the character table of C4, etc.

The conjugacy classes and their representatives are given in the following table

for an easier read:

We begin the lifting process as follows:

for x.1

x.1(e) = x·.1(e) = 1

x.1(a
2) = x·.1(a

2) = 1

x.1(a) = x·.1(a) = 1
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Table 6.3: Character Table of C4

Class Rep Permutation Length

C1 Id(G) e 1

C2 A2 (1, 9)(2, 8)(3, 7)(4, 6) 5

C3 A (1, 9)(2, 8)(3, 7)(4, 6) 5

C4 A3 (1, 8, 9, 2)(3, 4, 7, 6)(5, 10) 5

C5 B (1, 8, 9, 2)(3, 4, 7, 6)(5, 10) 5

x.1(a
3) = x·.1(a

3) = 1

x.1(b) = x·.1(b) = 1

for x.2

x.2(e) = x·.2(e) = 1

x.2(a
2) = x·.2(a

2) = −1

x.2(a) = x·.2(a) = I

x.2(a
3) = x·.2(a

3) = −I
x.2(b) = x·.2(b) = 1

for x.3

x.3(e) = x·.3(e) = 1

x.3(a
2) = x·.3(a

2) = 1

x.3(a) = x·.3(a) = −1

x.3(a
3) = x·.3(a

3) = −1

x.3(b) = x·.3(b) = 1

for x.4

x.4(e) = x·.4(e) = 1

x.4(a
2) = x·.4(a

2) = −1

x.4(a) = x·.4(a) = −I
x.4(a

3) = x·.4(a
3) = I

x.4(b) = x·.4(b) = 1
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The character table of G is the following.

Table 6.4: Character Table of G

Class C1 C2 C3 C4 C5

Rep e a2 a a3 b

x.1 1 1 1 1 1

x.2 1 -1 I -I 1

x.3 1 1 -1 -1 1

x.4 1 -1 -I I 1

x.5 α β γ δ ε

Notice that we have an unknown row, namely x.5. We will now demonstrate

how to complete the table of the unknown values α, β, γ, δ, and ε. We know by Theorem

1.87 the sum of the squares of degrees of our irreducible linear characters is equal to the

|G| of the character x.1. In this case, we have 12 + 12 + 12 + 12 = 4. Therefore α = 4.

To obtain the remaining unknown values, we will use definition 1.61, in which we take

the dot product of two columns. The condition is

k∑
i=1

X(i)
α X

(j)
β = 0.

k∑
i=1

X
(1)
.5 X

(2)
.5 = 1 ∗ 1 + 1 ∗ −1 + 1 ∗ 1 + 1 ∗ −1 + 4 ∗ β = 0 =⇒ β = 0.

k∑
i=1

X
(1)
.5 X

(3)
.5 = 1 ∗ 1 + 1 ∗ I + 1 ∗ −1 + 1 ∗ −I + 4 ∗ γ = 0 =⇒ γ = 0.

k∑
i=1

X
(1)
.5 X

(4)
.5 = 1 ∗ 1 + 1 ∗ −I + 1 ∗ −1 + 1 ∗ I + 4 ∗ δ = 0 =⇒ δ = 0.

k∑
i=1

X
(1)
.5 X

(5)
.5 = 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 + 4 ∗ ε = 0 =⇒ ε = 1.

Therefore we have successfully completed the character table of G from H.

This process can be applied to all monomial representatives, but the simple

case is illustrated above for an easier read.
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Table 6.5: Character Table of G

Class C1 C2 C3 C4 C5

Rep e a2 a a3 b

x.1 1 1 1 1 1

x.2 1 -1 I -I 1

x.3 1 1 -1 -1 1

x.4 1 -1 -I I 1

x.5 4 0 0 0 1

6.0.2 Monomial Progenitor 11∗4 :m (C5 : C4)

We will demonstrate how to construct a monomial presentation of

11∗4 :m (C5 : C4). A presentation for (C5 : C4) is given by the following:

G < a, b, c|a5, b4, c, ab = a2 >. Here the order G is 20.

To construct a monomial presentation we first must induce an irreducible linear char-

acter from a subgroup H of G. To obtain an irreducible character we choose a subgroup

H of G with an index equal to the degree of an irreducible character of G. Consider the

character table of G = (C5 : C4) in Table 1 and note G has characters χ.1, χ.2, ..., χ.5.

We proceed using χ.5 which has a degree of four and look for a subgroup of order 5 so

that |G||H| = 4. Thus we get the following index:

[G : H] = [(C5 : C4) : C5] = 4

Since the index of the two groups is 4, if a matrix representation exists it will be

represented by 4× 4 matrices.

Verifying the Induction

We produce a character table for C5 in table 2. We will verify the induction

χ.2 of C5 to χ.5 of (C5 : C4) by considering the irreducible characters φ (of H) and φG

(of G). G = (C5 : C4) is generated by xx and yy where xx = (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)

and yy = (1, 2, 9, 8)(3, 6, 7, 4)(5, 10). Using our definition of induction along with the

following equivalencies: 1 = 1, Z1#1 = 4, Z1#2 = 5, Z1#3 = 9, Z1#4 = 3, we can

reproduce φG using φ (of H).
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φGα = n
hα

∑
w∈H∩Cα φ(w), where n = |G|

|H| = 20
5 = 4.

φG1 = 4
1

∑
w∈H∩C1

φ(w)

which implies φG1 = 4
1(φ(1)) = 4(1) = 4.

φG2 = 4
5

∑
w∈H∩C2

φ(w)

φG2 = 4
5

∑
w∈H∩C2

φ

which implies φG2 = 4
5(φ(0)) = 4

5(0) = 0.

φG3 = 4
5

∑
w∈H∩C3

φ(w)

φG3 = 4
5

∑
w∈H∩C3

φ

which implies φG3 = 4
5(φ(0)) = 4

5(0) = 0.

φG4 = 4
5

∑
w∈H∩C4

φ(w)

which implies φG4 = 4
5(φ(0)) = 4

5(0) = 0.

φG5 = 4
4

∑
w∈H∩C5

φ(w)

φG5 = 4
4

∑
w∈H∩C2

φ

which implies φG4 = 4
5(φ(1, 3, 5, 7, 9)(2, 4, 6, 8, 10) = 4

5(−1) = −1.

Therefore, φ ↑GH = 4, 0, 0, 0,−1 and we have verified that

χ.3 of C5 induces χ.5 of (5 : C4).
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Table 6.6: Character Table of G

χ C1 C2 C3 C4 C5

χ.1 1 1 1 1 1
χ.2 1 1 -1 -1 1
χ.3 1 -1 −I I 1
χ.4 1 -1 I −I 1

χ.5 4 0 0 0 -1

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 6.7: Character Table of H

χ D1 D2 D3 D4 D5

χ.1 1 1 1 1 1
χ.2 1 Z1 Z1#2 Z1#3 Z1#4
χ.3 1 Z1#2 Z1#4 Z1 Z1#3
χ.4 1 Z1#3 Z1 Z1#4 Z1#2
χ.5 1 Z1#4 Z1#3 Z1#2 Z1

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 6.8: χ.5 of G

φG Class Size Class Representative

4 C1 1 Id(G)

0 C2 5 (1,9)(2,8)(3,7)(4,6)

0 C3 5 (1,2,9,8)(3,6,7,4)(5,10)

0 C4 5 (1,8,2,9)(2,4,7,6)(5,10)

-1 C5 4 (1,3,5,7,9)(2,4,6,8,10)

Through induction, we now verify the monomial representation has the follow-

ing generators:

A(xx) =


4 0 0 0

0 9 0 0

0 0 3 0

0 0 0 5

 ,
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Table 6.9: χ.2 of H

φ Class Size Class Representative

1 D1 1 Id(H)

4 D2 1 (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)

5 D3 1 (1, 5, 9, 3, 7)(2, 6, 10, 4, 8)

9 D4 1 (1, 7, 3, 9, 5)(2, 8, 4, 10, 6)

3 D5 1 (1, 9, 7, 5, 3)(2, 10, 8, 6, 4)

A(yy) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

.

Verifying the Monomial Representation

G =< e, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10), (1, 2, 9, 8)(3, 6, 7, 4)(5, 10) > and

H =< e, (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) >. Since H is a subgroup of G whose index is equal

to the degree of G, we have that: G = H ∪Ht1 ∪Ht2H ∪Ht3H ∪Ht4, where the t′is

are transversals of G acting on H. The transversals of G are labeled as follows:

t1 = e,

t2 = (1, 2, 9, 8)(3, 6, 7, 4)(5, 10),

t3 = (1, 9)(2, 8)(3, 7)(4, 6),

t4 = (1, 8, 9, 2)(3, 4, 7, 6)(5, 10). We will now use the following formula to verify the

matrices: Recall that G is generated by x ∼ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) and

y ∼ (1, 2, 9, 8)(3, 6, 7, 4)(5, 10). Here, φ of a permutation results in 0 when that permu-

tation does not live in H.

A(xx) =


φ(t1xt

−1
1 ) φ(t1xt

−1
2 ) φ(t1xt

−1
3 ) φ(t1xt

−1
4 )

φ(t2xt
−1
1 ) φ(t2xt

−1
2 ) φ(t2xt

−1
3 ) φ(t2xt

−1
4 )

φ(t3xt
−1
1 ) φ(t3xt

−1
2 ) φ(t3xt

−1
3 ) φ(t3xt

−1
4 )

φ(t4xt
−1
1 ) φ(t4xt

−1
2 ) φ(t4xt

−1
3 ) φ(t4xt

−1
4 )


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a11 : φ(t1xt
−1
1 ) = φ(xt1) = φ(x) = φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10)) = 4

a12 : φ(t1xt
−1
2 ) = φ(ext−12 ) =

φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗ (1, 8, 9, 2)(3, 4, 7, 6)(5, 10)) =

φ((1, 4, 3, 10)(2, 7)(5, 6, 9, 8)) = 0

a13 : φ(t1xt
−1
3 ) = φ(ext−13 ) = φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 9)(2, 8)(3, 7)(4, 6)) = φ(1, 7)(2, 6)(3, 5)(8, 10) = 0

a14 : φ(t1xt
−1
4 ) = φ(ext−14 ) = φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 2, 9, 8)(3, 6, 7, 4)(5, 10) = φ((1, 6)(2, 3, 10, 9)(4, 7, 8, 5)) = 0

a21 : φ(t2xt
−1
1 ) = φ((1, 2, 9, 8)(3, 6, 7, 4)(5, 10)xe) =

φ((1, 2, 9, 8)(3, 6, 7, 4)(5, 10) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)) =

φ((1, 4, 5, 2)(3, 8)(6, 9, 10, 7)) = 0

a22 : φ(t2xt
−1
2 ) = φ(x(1,8,9,2)(3,4,7,6)(5,10)) = φ((1, 7, 3, 9, 5)(2, 8, 4, 10, 6)) = 9

a23 : φ(t2xt
−1
3 ) = φ((1, 2, 9, 8)(3, 6, 7, 4)(5, 10) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 9)(2, 8)(3, 7)(4, 6) = φ((1, 6)(2, 9, 10, 3)(4, 5, 8, 7)) = 0

a24 : φ(t2xt
−1
4 ) = φ((1, 2, 9, 8)(3, 6, 7, 4)(5, 10) ∗

(1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗ (1, 2, 9, 8)(3, 6, 7, 4)(5, 10) =

φ((1, 3)(4, 10)(5, 9)(6, 8)) = 0

a31 : φ(t3xt
−1
1 ) = φ((1, 9)(2, 8)(3, 7)(4, 6) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)e) =

φ((2, 10)(3, 9)(4, 8)(5, 7)) = 0

a32 : φ(t3xt
−1
2 ) = φ((1, 9)(2, 8)(3, 7)(4, 6) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 8, 9, 2)(3, 4, 7, 6)(5, 10)) = φ((1, 8, 7, 10)(2, 5, 6, 3)(4, 9)) = 0
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a33 : φ(t3xt
−1
3 ) = φ(x(1,9)(2,8)(3,7)(4,6)) = φ((1, 9, 7, 5, 3)(2, 10, 8, 6, 4)) = 3

a34 : φ(t3xt
−1
4 ) = φ((1, 9)(2, 8)(3, 7)(4, 6) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 2, 9, 8)(3, 6, 7, 4)(5, 10)) = φ((1, 2, 5, 4)(3, 8)(6, 7, 10, 9)) = 0

a41 : φ(t4xt
−1
1 ) = φ((1, 8, 9, 2)(3, 4, 7, 6)(5, 10) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗ e) =

φ((1, 10, 7, 8)(2, 3, 6, 5)(4, 9)) = 0

a42 : φ(t4xt
−1
2 ) = φ((1, 8, 9, 2)(3, 4, 7, 6)(5, 10) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 8, 9, 2)(3, 4, 7, 6)(5, 10)) = φ((1, 5)(2, 4)(6, 10)(7, 9)) = 0

a43 : φ(t4xt
−1
3 ) = φ((1, 8, 9, 2)(3, 4, 7, 6)(5, 10) ∗ (1, 3, 5, 7, 9)(2, 4, 6, 8, 10) ∗

(1, 9)(2, 8)(3, 7)(4, 6)) = φ((1, 10, 3, 4)(2, 7)(5, 8, 9, 6)) = 0

a44 : φ(t4xt
−1
4 ) = φ((1, 3, 5, 7, 9)(2, 4, 6, 8, 10)(1,8,9,2)(3,4,7,6)(5,10)) =

φ((1, 5, 9, 3, 7)(2, 6, 10, 4, 8)) = 5

We then follow the same procedure for A(yy) and find that the matrix is cor-

rect. Therefore the matrix representation of A(xx) and A(yy) respectively are as follows:

A(xx) =


4 0 0 0

0 9 0 0

0 0 3 0

0 0 0 5



A(yy) =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


To prove the faithful representation of (C5 : C4) generated by < x5, y4, z, xy =

x2 >, where |(C5 : C4| = 20, we simply check the order of each matrix representation:

|A(xx)| = 5, and |A(yy)| = 4, then |A(x)||A(y)| = 20. which is the order of our index.
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We can now conclude that G = < x, y > ∼= < A(x), A(y) > . Now, to finalize the

process, we factor our progenitor by necessary relations. We verify we have the correct

progenitor by using the Grindstaff Lemma which verifies the index of our progenitor is

the order of 11∗4.

G<x,y,t>:=Group<x,y,t|yˆ4,(xˆ-5),(yˆ-1*xˆ-2*y*xˆ-1),tˆ11,
tˆx=tˆ4,(t,tˆy),(t,tˆ(yˆ2)),(t,tˆ(yˆ3))>;
#G;

292820
Index(G,sub<G|x,y>);

14641
11ˆ4;
14641
14641*20 = 292820 = |G|.

The homomorphic images obtained from this progenitor can be found in chapter 8.

Constructing a Permutation Representation

We worked in Z11 on matrices of degree 4 × 4, which implies we are working

with 4 ti′s of order 11. Since we have a semi-direct product in our progenitor, the ele-

ments of C5 : C4 will act as an automorphism on < t1 > ∗ < t2 > ∗ < t3 > ∗ < t4 >. So,

ai,j = a ⇐⇒ ti → taj , since this is an automorphism. Therefore, for our A(xx) we have:

A(xx) =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


where t1 corresponds to column 1, t2 to column 2, and so on. We will label the entries

of the matrix as follows: a12 = a, a22 = b, a21 = c, and a22 = d. Then,

a11 = a ⇐⇒ t1 → ta1

a22 = a ⇐⇒ t1 → tb2

a33 = a ⇐⇒ t1 → tc3

a44 = a ⇐⇒ t1 → td4
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a11 = a ⇐⇒ t1 → tc1 a22 = a ⇐⇒ t1 → td2

We can now construct a table with our ti′s with nonzero entries to obtain the permu-

tation representation. Keep in mind we are working in Z11. We will have a total of 40

ti′s for A(xx).

For a11

t11 → t41

t21 → (t41)
2 = t81

t31 → (t41)
3 = t121 = t1

t41 → (t41)
4 = t161 = t51

t51 → (t41)
5 = t201 = t91

t61 → (t41)
6 = t241 = t21

t71 → (t41)
7 = t281 = t61

t81 → (t41)
8 = t481 = t101

t91 → (t41)
9 = t361 = t31

t101 → (t41)
10 = t401 = t71
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For a22

t12 → t92

t22 → (t92)
2 = t182 = t72

t32 → (t92)
3 = t272 = t52

t42 → (t92)
4 = t362 = t32

t52 → (t92)
5 = t452 = t12

t62 → (t92)
6 = t542 = t102

t72 → (t92)
7 = t632 = t82

t82 → (t92)
8 = t722 = t62

t92 → (t92)
9 = t812 = t42

t102 → (t92)
10 = t902 = t22

For a33

t13 → t33

t23 → (t33)
2 = t63 = t63

t33 → (t33)
3 = t93 = t93

t43 → (t33)
4 = t123 = t13

t53 → (t33)
5 = t153 = t43

t63 → (t33)
6 = t183 = t73

t73 → (t33)
7 = t213 = t103

t83 → (t33)
8 = t243 = t23

t93 → (t33)
9 = t273 = t53

t103 → (t33)
10 = t303 = t83
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For a44

t14 → t54

t24 → (t54)
2 = t104 = t140

t34 → (t54)
3 = t154 = t44

t44 → (t54)
4 = t204 = t94

t54 → (t54)
5 = t254 = t34

t64 → (t54)
6 = t304 = t84

t74 → (t54)
7 = t354 = t24

t84 → (t54)
8 = t404 = t74

t94 → (t54)
9 = t454 = t14

t104 → (t54)
10 = t504 = t64

To find our permutations, we used tables 6.1 and 6.2:
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Table 6.10: Permutation Table of A(xx)

# ti Mapping to taj Element of Permutation

1 t1 t41 13

2 t2 t92 34

3 t3 t33 11

4 t4 t54 20

5 t21 t81 29

6 t22 t72 26

7 t23 t63 23

8 t24 t104 40

9 t31 t11 1

10 t32 t52 18

11 t33 t93 35

12 t34 t44 16

13 t41 t51 17

14 t42 t32 10

15 t43 t13 3

16 t44 t94 36

17 t51 t91 33

18 t52 t12 2

19 t53 t43 15

20 t54 t34 12

Therefore, our permutation representation is the following:

A(xx) = < (1, 13, 17, 33, 9)(2, 34, 14, 10, 18)(3, 11, 35, 19, 15)(4, 20, 12, 16, 36)

(5, 29, 37, 25, 21)(6, 26, 30, 22, 38)(7, 23, 27, 39, 31)(8, 40, 24, 32, 28) > .
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Table 6.10: Permutation Table of A(xx)

# ti Mapping to taj Element of Permutation

21 t61 t21 5

22 t62 t102 38

23 t63 t73 27

24 t64 t84 32

25 t71 t61 21

26 t72 t82 30

27 t73 t103 39

28 t74 t24 8

29 t81 t101 37

30 t82 t62 22

31 t83 t23 7

32 t84 t74 28

33 t91 t31 9

34 t92 t42 14

35 t93 t53 19

36 t94 t14 4

37 t101 t71 25

38 t102 t22 6

39 t103 t83 31

40 t104 t64 24

For our A(yy) we would have:

t1 → t12

t2 → t13

t3 → t14

t4 → t11
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Thus, we would apply the same process and our permutation representation would be:

A(yy) = < (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)(17, 18, 19, 20)

(21, 22, 23, 24)(25, 26, 27, 28)(29, 30, 31, 32)(33, 34, 35, 36)(37, 38, 39, 40) >.

This demonstrates that our presentation is correct since we have

|A(xx)×A(yy)| = 20 = |G|.

The Monomial Progenitor:

To build the monomial progenitor, we simply need to compute the sta-

biliser (N, t1, t
2
1, t

3
1, t

4
1)

We are looking for what element in N fixes our t1′s. The work is as follows:

S:=Sym(40);
yy:=S!(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)
(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)
(33,34,35,36)(37,38,39,40);
xx:=S!(1,13,17,33,9)(2,34,14,10,18)(3,11,35,19,15)
(4,20,12,16,36)(5,29,37,25,21)(6,26,30,22,38)(7,23,
27,39,31)(8,40,24,32,28);
N<x,y>:=Group<x,y|yˆ4,(xˆ-5),(yˆ-1*xˆ-2*y*xˆ-1)>;
Normaliser:=Stabiliser(N,{1,5,9,13,17,21,25,29,33,37});
Stabiliser(N,{1,5,9,13,17,21,25,29,33,37});

NN<x,y>:=Group<x,y|yˆ4,(xˆ-5),(yˆ-1*xˆ-2

*y*xˆ-1)>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..40]];
for i in [2..20] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
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ArrayP[i]:=PP;
end for;

Normaliser:=Stabiliser(N,{1,3,5,7,9,11,13,15,
17,19});

Stabiliser(N,{1,3,5,7,9,11,13,15,17,19});

A:=N! (1, 13, 17, 33, 9)(2, 34, 14, 10, 18)(3,
11, 35, 19, 15)(4, 20, 12, 16,36)(5, 29, 37,

25, 21)(6, 26, 30, 22, 38)(7, 23, 27, 39, 31)
(8, 40, 24, 32, 28);

Normaliser eq sub<N|A>;

/*true*/

for i in [1..#N] do if ArrayP[i] eq A then Sch[i];
end if; end for;

/*x*/

The original progenitor for G was:

G<x,y>:=Group<x,y|yˆ4,(xˆ-5),(yˆ-1*
xˆ-2*y*xˆ-1)>;

The new monomial progenitor:

G<x,y,t>:=Group<x,y,t|yˆ4,(xˆ-5),
(yˆ-1*xˆ-2*y*xˆ-1),tˆ11,tˆx=tˆ4,
(t,tˆy),(t,tˆ(yˆ2)),(t,tˆ(yˆ3))>;
#G;
/*292820*/

This is verfied by the Grindstaff Lemma as follows:

Index(G,sub<G|x,y>);
14641

Since we are working with 11∗4, which equals 14641, and the index of G× |G| =
292820, as desired, we have proved we have correctly constructed a monomial

progenitor for G.
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Chapter 7

Finding Generators PGL2(13) : 2

Consider:

G ∼= 2∗12:S4

<x,y,z,t|t2=1,[t(x∗y)]=1,[(x∗y−1∗(z(y−2))∗t)]7=1,[y∗t]2=1>
, where our control group N =

2∗12 : S4 and G is the homomorphic image of N factored by the relations: [x ∗ y−1 ∗
(z(y

−2) ∗ t)]7, [y ∗ t]2 and the action of N = 2∗12 : S4 on the 12 symmetric generators

given by:

x ∼ (1, 4)(2, 5)(3, 6)(8, 9)(10,∞), y ∼ (1, 7, 4)(2, 8, 6)(3, 9, 5)(10,∞, 0) and

z ∼ (1, 6)(2, 5)(3, 4)(7, 0)(8, 10)(9,∞).We will show that G ∼= PGL2(13).

The PGL2(13) : 2 group is composed of 2×2 matrices over a field q such that q = pn. Ev-

ery finite field is of order pn where p is a prime. L2(13) = {x 7→ a+b(x)
c+d(x) , where a, b, c, d ∈

F13, x ∈ F13∪{∞}|ad−bc = 1 or a nonzero square.} =< α, β, γ, δ >. Note: α, β, γ and

δ (will represent an automorphism) are our generators of PGL2(13) we will be defining.

Therefore we will be working on a field of order 13 where

F = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and F13∪{∞} over 13 letters. Note: 0 = 13, and

∞ = 14. To begin the process, let us first define our maps:

α : x 7→ x+ 1.

β : x 7→ kx, where k is a generator of all nonzero squares.

γ : x 7→ − 1
x .

aut : x 7→ 2
x

Let us begin with α : x 7→ x+ 1 We begin with the element 0.
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0 7→ 0 + 1 = 1

1 7→ 1 + 1 = 2

2 7→ 2 + 1 = 3

3 7→ 3 + 1 = 4

4 7→ 4 + 1 = 5

5 7→ 5 + 1 = 6

6 7→ 6 + 1 = 7

7 7→ 7 + 1 = 8

8 7→ 8 + 1 = 9

9 7→ 9 + 1 = 10

10 7→ 10 + 1 = 11

11 7→ 11 + 1 = 12

∞ 7→ ∞+ 1 =∞
Therefore, we obtain the following permutation:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(∞). For β : x 7→ kx. To find k, we need to find an

element that produces all nonzero squares using modulus 13. The non zero squares of

F13 = {12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122}. If we take every square in the set

mod 13, we will obtain the nonzero squares: {1, 3, 4, 9, 10, 12}. Therefore, we must find

a k such that it produces this set of non zero squares. We find that 4 works as follows.

41 = 4, 42 = 3, 43 = 12, 44 = 9, 45 = 10, 46 = 1, 47 = 4, 48 = 3, 49 = 12, 410 = 9, 411 =

10, 412 = 1. Then our mapping for β is β : x 7→ 4x.

0 7→ 4(0) = 0

1 7→ 4(1) = 4

4 7→ 4(4) = 16 = 3mod13

3 7→ 4(3) = 12

12 7→ 4(12) = 48 = 9mod13

9 7→ 4(9) = 36 = 10mod13

10 7→ 4(10) = 40 = 1mod13

2 7→ 4(2) = 8

8 7→ 4(8) = 32 = 6mod13

6 7→ 4(6) = 24 = 11mod13
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11 7→ 4(11) = 44 = 5mod13

5 7→ 4(5) = 20 = 7mod13

7 7→ 4(7) = 28 = 2mod13

∞ 7→ 4(∞) =∞
Then our permutation is: (∞)(1, 4, 3, 12, 9, 10)(2, 8, 6, 11, 5, 7).

Now, for γ we have:

γ : x 7→ − 1
x 0 7→ −1

0 =∞
∞ 7→ − 1

∞ = 0

1 7→ −1
1 = −1 = 12mod13

12 7→ − 1
12 = −1(12−1)

To find the inverse of 12, we need to find a number such that the product of it and 12

is 1 mod 13. Thus, the inverse of 12 is 12. Then:

12 7→ −1(12) = −12 = 1mod13

. Likewise, we find the other mappings:

2 7→ −1
2 = −1(2−1) = −1(7) = −7 = 6mod13

6 7→ −1
6 = −1(6−1) = −1(11) = −11 = 2mod13

3 7→ −1
3 = −1(3−1) = −1(9) = −9 = 4mod13

4 7→ −1
4 = −1(4−1) = −1(10) = −10 = 3mod13

5 7→ −1
5 = −1(5−1) = −1(8) = −8 = 5mod13

7 7→ −1
7 = −1(7−1) = −1(2) = −2 = 11mod13

11 7→ − 1
11 = −1(11−1) = −1(6) = −6 = 7mod13

8 7→ −1
8 = −1(8−1) = −1(5) = −5 = 8mod13

9 7→ −1
9 = −1(9−1) = −1(3) = −3 = 10mod13

10 7→ − 1
10 = −1(10−1) = −1(4) = −4 = 9mod13

Since we have PGL2(13) : 2 we must create an automorphism for the element

of order two not normal in our group. Note: If we did not have this element of order

two, we would simply have a PSL2(13). For the automorphism we find a map that

produces a nonzero entry that is not a perfect square. We find the following mapping:

δ : x 7→ 2
x . Since a(x)+b

c(x)+d = 2+0x
0+1x = 2. Thus the equation ad− bc = 2 produces a nonzero

square. δ : x 7→ 2
x
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Like before, we work with finding inverses of our elements and obtain the following

permutation for δ: (1, 2)(3, 5)(4, 7)(6, 9)(8, 10)(11, 12)(0,∞).

We verify in MAGMA that our permutations are correct:

S:=Sym(14);
alpha:=S!(13,1,2,3,4,5,6,7,8,9,10,11,12);
beta:=S!(1,4,3,12,9,10)(2,8,6,11,5,7);
gamma:=S!(13,14)(1,12)(2,6)(3,4)(7,11)(9,10);
#sub<S|alpha,beta,gamma>;

/*1092*/
aut:=S!(1,2)(3,5)(4,7)(6,9)(8,10)(11,12)(13,14);
PGL:=sub<S|alpha,beta,gamma,aut>;

s,t:=IsIsomorphic(G1,PGL);
s;

/*true*/

We obtain the mapping from MAGMA that show how elements of G1 of cardinality

91 are mapped to elements of PGL2(13) : 2 of cardinaliy 14:

Homomorphism of GrpPerm: G1, Degree 91,
Order 2ˆ3 * 3 * 7 * 13 into

GrpPerm: PGL, Degree 14, Order 2ˆ3 * 3 * 7 * 13 induced by
(4, 6)(5, 8)(9, 11)(12, 20)(13, 22)(14, 18)(15, 17)(16, 26)(19,
23)(21, 28)(24, 31)(27, 37)(29, 32)(30, 41)(33, 49)(34, 53)(35,
47)(38, 59)(39, 61)(40, 57)(42, 51)(43, 50)(44, 65)(45, 67)(46,
63)(48, 54)(52, 69)(55, 56)(58, 62)(60, 72)(64, 68)(66, 76)(70,
71)(73, 75)(74, 80)(77, 79)(78, 82)(81, 85)(83, 86)(84, 91)(87,
90)(88, 89)
|--> (1, 14)(2, 12)(3, 13)(4, 9)(5, 7)(6, 11)(8, 10)
(3, 4, 6)(5, 8, 7)(9, 12, 14)(10, 15, 17)(11, 18, 20)(13, 23,
21)(16, 26, 25)(19, 22, 28)(24, 33, 35)(27, 38, 40)(29, 42,
43)(30, 44, 46)(31, 47, 49)(32, 50, 51)(34, 54, 52)(36, 55,
56)(37, 57, 59)(39, 62, 60)(41, 63, 65)(45, 68, 66)(48, 53,
69)(58, 61, 72)(64, 67, 76)(73, 81, 82)(74, 83, 79)(75, 78,
85)(77, 86, 80)(84, 88, 90)(87, 89, 91)
|--> (1, 7, 6)(2, 10, 9)(4, 8, 12)(5, 14, 11),

(2, 3)(4, 6)(5, 9)(7, 10)(8, 11)(12, 17)(13, 24)(14, 18)(15, 20)
(16,27)(19, 29)(21, 30)(22, 31)(23, 32)(25, 36)(26, 37)(28, 41)
(33,46)(34, 52)(35, 50)(38, 56)(39, 45)(40, 57)(42, 65)(43, 47)
(44,51)(48, 70)(49, 63)(53, 69)(54, 71)(55, 59)(58, 73)(60, 74)
(61,67)(62, 75)(64, 77)(66, 78)(68, 79)(72, 80)(76, 82)(81, 86)
(83, 85)(84, 87)(90, 91)
|--> (1, 13)(2, 12)(3, 11)(4, 10)(5, 9)(6, 8)
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(1, 2)(3, 5)(4, 7)(6, 8)(9, 13)(10, 16)(11, 19)(12, 21)(14, 23)
(15,25)(17, 26)(18, 28)(20, 22)(24, 34)(27, 39)(29, 43)(30, 45)
(31,48)(33, 52)(35, 54)(36, 55)(37, 58)(38, 60)(40, 62)(41, 64)
(44,66)(46, 68)(47, 69)(49, 53)(50, 51)(57, 72)(59, 61)(63, 76)
(65,67)(73, 82)(74, 84)(77, 87)(78, 85)(79, 88)(80, 89)(83, 90)
(86,91)
|--> (1, 12)(2, 5)(3, 13)(4, 6)(7, 8)(9, 14)(10, 11)

Now we will construct the homomorphic map which proves that G ∼= PGL2(13) : 2 from

our progenitor N . Note: the automorphism was only needed for our element of order

2 not normal in PGL2(13) : 2. Since the permutations above are the homomorphic

images of PGL2(13) : 2, we will have:

φ(x) = (1,∞)(2, 12)(3, 0)(4, 9)(5, 7)(6, 11)(8, 10),

φ(y) = (1, 7, 6)(2, 10, 9)(4, 8, 12)(5,∞, 11),

φ(z) = (1, 0)(2, 12)(3, 11)(4, 10)(5, 9)(6, 8), and

φ(t) = (1, 12)(2, 5)(3, 0)(4, 6)(7, 8)(9,∞)(10, 11). Recall: we replaced 0 for 13 and

∞ for14 in our permutations defined above. For the mappings, we must find vari-

ables a(x)+b
c(x)+d that satisfy each set of homomorphic mappings from above. For φ(x) =

(1,∞)(2, 12)(3, 0)(4, 9)(5, 7)(6, 11)(8, 10), we construct the following map:

1 7→ ∞
a(x)+b
c(x)+d =∞
a(1)+b
c(1)+d =∞
a+b
c+d =∞
=⇒ c+ d = 0

=⇒ c = −d.

∞ 7→ 1
a(∞)+b
c(∞)+d = 1

a
c = 1

=⇒ a = c

0 7→ 3

=⇒ b
d = 3

=⇒ b = 3d.
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Here, since we already have two variables in terms of c we will attempt to write b in

terms of c.

3 7→ 0

3a+b
3c+d = 0

=⇒ b = −3a

=⇒ b = −3c since a = c

=⇒ b = 10c(mod13).

Now we have all variables in terms of c, therefore we write the following map.
c(x)+10c
c(x)−c

=⇒ c(x+10)
c(x−1) .

We now verify we have the correct map:

x+10
x−1

Does 2 7→ 12?
(2+10)
(2−1) = 12

1 = 12.

12+10
(12−1) = 22

11 = 2.

Likewise, we verify the remaining elements in φ(x). Similarly, we construct the remain-

ing maps for φ(y) = 11x
x+8 , φ(z) = 6x+4

x+7 and t∞ = 9x+12
x+4 .

Now, |N | = 12 implies we have 12 symmetric generators which must be defined in terms

of our homomorphism. To do this we conjugate φ(t) denoted t = (1, 12)(2, 5)(3, 0)(4, 6)

(7, 8)(9, 14)(10, 11) (where t ∼ t1) by an element of our homomorphism we will denote

as:

φ(x) = X := S!(1, 14)(2, 12)(3, 13)(4, 9)(5, 7)(6, 11)(8, 10),

φ(y) = Y := S!(1, 7, 6)(2, 10, 9)(4, 8, 12)(5, 14, 11),

φ(z) = Z := S!(1, 11)(2, 9)(3, 10)(4, 12)(6, 14)(8, 13) which will produce the twelve sym-

metric generators. Recall from our N we have

x ∼ (1, 4)(2, 5)(3, 6)(8, 9)(10, 12),

y ∼ (1, 7, 4)(2, 8, 6)(3, 9, 5)(10, 12, 11)

and z ∼ (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(9, 12).

tX = (1, 4)(2, 14)(3, 13)(5, 10)(6, 8)(7, 12)(9, 11) = t4

t(Y
2)∗Z)−1

= (1, 10)(2, 14)(3, 7)(4, 11)(5, 8)(6, 13)(9, 12) = t2

t = (1, 12)(2, 5)(3, 13)(4, 6)(7, 8)(9, 14)(10, 11) = t1

tZ = (1, 3)(2, 6)(4, 11)(5, 9)(7, 13)(8, 10)(12, 14) = t6
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tY = (1, 8)(2, 11)(3, 13)(4, 7)(5, 9)(6, 12)(10, 14) = t7

t(X∗Z) = (1, 2)(3, 5)(4, 7)(6, 9)(8, 10)(11, 12)(13, 14) = t3

tZ∗Y
−1

= (1, 13)(2, 4)(3, 6)(5, 8)(7, 9)(10, 11)(12, 14) = t8

tX2 = (1, 12)(2, 4)(3, 11)(5, 13)(6, 9)(7, 10)(8, 14) = t5

tY3 = (1, 2)(3, 14)(4, 5)(6, 8)(7, 10)(9, 12)(11, 13) = t9

tZ8 = (1, 3)(2, 7)(4, 6)(5, 13)(8, 11)(9, 12)(10, 14) = t10

tZ7 = (1, 9)(2, 5)(3, 6)(4, 14)(7, 12)(8, 10)(11, 13) = t11

tZ9 = (1, 8)(2, 4)(3, 7)(5, 12)(6, 10)(9, 11)(13, 14) = t12

Therefore, we have defined our 12 ti′s in terms of our progenitor N by conju-

gation as the group L2(13) given by:

x ∼ (t1, t4)(t2, t5)(t3, t6)(t8, t9)(t10, t12)

y ∼ (t1, t7, t4)(t2, t8, t6)(t3, t9, t5)(t10, t12, t11)

z ∼ (t1, t6)(t2, t5)(t3, t4)(t7, t0)(t8, t10)(t9, t12)

Finally, the additional relations given by: (x ∗ y−1 ∗ (z(y
−2)) ∗ t)7 = 1 and

(y ∗ t)2 = 1 hold, since |X ∗ Y −1 ∗ (Z(Y −2) ∗ T | = 7 and |Y ∗ T | = 2 as desired.

Therefore we have shown that |G| ≥ |PGL2(13)|, but |G| ≤ |PGL2(13)| by double coset

enumeration. Thus, G ∼= PGL2(13).
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7.0.3 Double Coset Enumeration of PGL2(13)

Figure 7.1: DCE of PGL2(13) [Lun18]
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Chapter 8

Progenitors and Their

Homomorphic Images

Table 7.1: 2∗10 : (52 : C2)
Note: For the following table, we have relations labeled a, ..., s, and will only include
the relations used to find each group G. For Progenitor:

G =< a, b, t|b4, b−2 ∗a−1 ∗b2 ∗a−1, b−1 ∗a3 ∗b∗a−1, t2, (t, a−1 ∗b−1 ∗a), (a5 ∗ t)c, ((a∗b)2 ∗
t)d, (b∗a∗b∗t)e, (a∗b∗t)f , (b−1∗a−1∗t)g, (a2∗b∗t)h, (a−1∗b−1∗a∗t)i, (a2∗t)j , (a∗t)k >;

n o p q r s G ∼= #G

0 3 0 0 0 6 2× J2 1209600

0 5 0 6 18 8 10× J2 6048000

0 0 0 0 5 5 54 : D10 6250

0 0 0 0 0 4 53 : D8 1000

0 0 0 0 0 5 53 : (52 : D10) 31250

0 4 4 0 6 6 2× (212 : (52 : C6)) 1228800
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Table 7.2: 2∗10 : (52 : C2)
Note: For the following table, we used the same progenitor as above, but here our ti′s
were of order 3.

n o p q r s G ∼= #G

0 3 5 0 5 5 A5 60

0 2 0 0 5 0 U(3, 4) 62400

0 0 0 0 5 5 54 : D10 6250

0 0 0 0 0 4 58 : A5 23437500

0 0 0 0 0 5 53 : (52 : D10) 31250

0 4 4 0 6 6 2× (212 : (52 : C6)) 1228800

Table 7.3: 2∗60 : (S5) Famous Lemma
For progenitor:

G < x, y, t|x2, y6, (y ∗ x ∗ y−1 ∗ x)2, (x ∗ y−1)5, (t, xy), t2, (y2 ∗ x ∗ y−2)m, (y3 ∗ t)a, ((y ∗
x ∗ y)2 ∗ t)b, (y2 ∗ t)c, (y ∗ x ∗ y ∗ t)d, (y ∗ x ∗ t)e, (y ∗ t)f >

a b c d e f m G ∼= #G

0 0 0 2 5 0 4 24 : S5 1920

0 0 0 2 0 5 6 S6 720

0 0 2 0 0 4 4 25 : S5 3840

0 0 2 0 6 6 2 34 :· S5 × 2 19440

0 0 2 0 7 0 2 2 : L2(49) 11760

0 2 0 0 0 3 4 3 : S5 2160

0 0 4 3 6 5 6 26 : S5 7680

0 3 0 0 0 3 2 L2(25) 7800

2 4 0 0 0 5 2 2 : M12 190080

0 0 0 4 0 3 0 25 : S6 23040



154

Table 7.4: 2∗36 : (32) :· D8 Famous Lemma
For Progenitor:
G < v,w, x, y, z, t|v2, w4, x2, y3, z3, w−2 ∗ x, (w−1 ∗ v)2, (x ∗ y−1)2, v ∗ z−1 ∗ v ∗ z, (x ∗
z−1)2, (y, z), w∗y−1 ∗w−1 ∗y ∗z−1, (t, v ∗x∗z−1), t2, (v ∗w−1 ∗ t)m, (v ∗y−1 ∗z−1 ∗ t)a, (v ∗
w ∗ t)b, (x ∗ t)c, (y ∗ t)d, (z ∗ t)e, (w ∗ t)f , (y ∗ v ∗ t)g, (v ∗ w ∗ z ∗ t)h >

a b c d e f g h m G ∼= #G

0 0 0 0 4 0 0 5 2 4∗S(4, 4) 3916800

0 0 0 0 0 0 0 3 2 2∗S6 1440

0 0 0 0 0 0 3 5 3 34 :∗ S6 58320

0 0 0 0 0 0 5 3 4 4 : PGL(3, 4) 368640

0 0 0 0 0 0 4 3 4 4∗PGL(3, 4) 161280

0 0 0 0 0 0 5 3 4 29 : S6 368640

0 0 0 0 6 3 4 0 0 26 : 6× S6 276480

0 0 0 0 6 6 0 4 2 212 : S6 1474560

0 0 0 0 6 8 5 0 2 PSL(4, 3) : 2 24261120

0 0 0 0 6 6 6 8 2 4∗(U(4, 3) : 4) 52254720

0 0 0 0 6 8 5 0 2 23 : (U(4, 3) : 4) 104509440

Table 7.5: 2∗10 : Alt5
For Progenitor: G < x, y, t|x2, y5, (x∗y−1)3, t2, (t, y−1∗x), (y∗x∗y−1∗t)a, (y∗x∗t)b, (y∗
t)c, (y2 ∗ t)d >

a b c d G ∼= #G

0 4 6 5 6 : (Alt6 : S6) 1555200

0 5 5 6 210 : L(2, 11) 675840

0 6 4 0 2·((Alt6 ×Alt6) : 2) 14400

0 6 5 5 214 : Alt5 983040

4 0 4 0 2 : L(2, 16) 8160

4 0 5 5 28 : Alt5 15360

6 4 6 6 3 : (Alt6 : Sym6) 777600

8 0 5 5 218 : Alt5 15728640
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Table 7.6: 2∗10 : (24 : 5)
For Progenitor:
G < x, y, t|x5, y2, (x ∗ y ∗ x−1 ∗ y)2, (y ∗ x−1)5, (t, y), (x2 ∗ y ∗ x−2 ∗ t)a, (x2 ∗ y ∗ x−2 ∗ y ∗
t)b, (x2 ∗ y ∗ x−1 ∗ y ∗ x−1 ∗ t)c, (x ∗ t)d, (x2 ∗ t)e, (x−2 ∗ t)f , (x−1 ∗ t)g >

a b c d e f g G ∼= #G

0 0 0 0 0 3 2 29 : Alt5 30720

0 0 2 0 3 9 10 25 : Alt5 1920

0 0 2 3 0 5 3 28 : Alt5 15360

0 0 2 3 5 5 6 213 : Alt5 491520

0 0 2 4 4 4 4 210 : (24 : 10) 163840

0 0 0 0 0 3 2 34 : (24 : 10) 38880

0 0 0 0 0 3 2 211 : Alt5 245760

0 0 0 0 0 3 2 210 : Alt6 368640

0 0 0 0 0 3 2 29 : Alt6 184320

Table 7.7: 2∗10 : (2×A5)
For Progenitor:
G < x, y, z, t|x3, y2, z5, x−1 ∗ y ∗x ∗ y, y ∗ z−1 ∗ y ∗ z, (z−1 ∗x)3, (x−1 ∗ z−2)2, t2, (t, x), (y ∗
t)a, (x∗z2∗t)b, (x∗y∗z2∗t)c, (x∗t)d, (z∗t)e, (z2∗t)f , (x∗y∗t)g, (y∗z∗t)h, (y∗z−2∗t)i >

a b c d e f g h i G ∼= #G

0 0 0 0 0 0 0 4 4 22 : PSL(2, 16) 32640

0 0 0 0 3 0 6 8 8 2 : Alt12 479001600

0 0 0 0 4 4 3 0 0 6 : S(4, 4) 5875200

0 0 0 6 0 8 6 4 4 PGL(2, 16) 16320

0 0 3 0 0 0 3 0 10 2 : M12 190080

0 0 3 0 0 4 0 0 0 3 : PSL(2, 16) 24480

0 0 4 0 0 4 6 6 10 2∗ : (2 : S(4, 4)) 3916800

0 0 4 6 4 4 0 0 0 6∗S(4, 4) 7833600

0 0 5 0 0 8 3 0 5 4 : PSL(3, 4) 161280

0 0 5 0 3 5 0 0 0 J1 175560
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Table 7.8: 11∗2 : D10

For Progenitor:
G < x, y, t >:= Group < x, y, t|y2, (x−1 ∗ y)2, x−5, t11, t(x−2) = t3, (y ∗ t)a, (y ∗ t2)b, (y ∗
t3)c, (y ∗ t4)d, (y ∗ t5)e, (y ∗ t6)f , (y ∗ t8)g, (y ∗ t9)h, (y ∗ t10)i >

a b c d e f g h i G ∼= #G

0 0 0 0 0 0 0 0 3 PSL(2, 11) 660

0 0 0 0 0 0 0 0 4 5 : PSL(2, 11) 6600

0 0 0 0 0 0 0 5 0 PSL(2, 11)× PSL(2, 11) 435600

0 0 0 6 0 8 6 4 4 211 : PSL(2, 11) 1351680

0 0 3 0 0 0 3 0 10 210 : PSL(2, 11) 675840

Table 7.9: 11∗4 : C5 : C4

For Progenitor:
G < x, y, t >:= Group < x, y, t|y4, x−5, y−1 ∗ x−2 ∗ y ∗ x−1, t11, t(x2) = t5, (y ∗ t)a, (y ∗
t2)b, (y ∗ t3)c, (y ∗ t4)d, (y ∗ t5)e, (y ∗ t6)f , (y ∗ t8)g, (y ∗ t9)h, (y ∗ t10)i >

a b c d e f g h i G ∼= #G

0 0 0 0 0 0 0 0 3 M11 7920

Table 7.10: 31∗2 : (3× 5) : 2
For Progenitor:
G < x, y, t >:= Group < x, y, t|y2, (x−1∗y)2, x15, t31, t(x4) = t28, (y∗t21)a, (y∗t22)b, (y∗
t23)c, (y ∗ t24)d, (y ∗ t25)e, (y ∗ t26)f , (y ∗ t27)g, (y ∗ t28)h, (y ∗ t29)i, (y ∗ t30)j >;

a b c d e f g h i j G ∼= #G

0 0 0 0 0 0 0 0 0 3 PSL2(31) 14880

0 0 0 0 0 0 0 0 4 0 15 : (2× L2(31) 446400
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Appendix A

MAGMA Code

A.1 Building a Progenitor for 2∗10 : 2× A5

/*NumberOfTransitiveGroups(10);
N:=TransitiveGroup(10,11);
#N;
/*60*/
Generators(N);
/* (2, 4, 10)(5, 7, 9),

(1, 6)(2, 7)(3, 8)(4, 9)(5, 10),
(1, 3, 5, 7, 9)(2, 4, 6, 8, 10)

*/

S:=Sym(10);
xx:=S!(2, 4, 10)(5, 7, 9);
yy:=S!(1, 6)(2, 7)(3, 8)(4, 9)(5, 10);
zz:=S!(1, 3, 5, 7, 9)(2, 4, 6, 8, 10);

N:=sub<S|xx,yy,zz>;
#N;
/*120*/
FPGroup(N);

NN<x,y,z>:=Group<x,y,z|xˆ3,yˆ2,zˆ5,
xˆ-1*y*x*y,y*zˆ-1*y*z,(zˆ-1*x)ˆ3,
(xˆ-1*zˆ-2)ˆ2>;
#NN;
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/*120*/
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..120]];

for i in [2..120] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=zz; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=zzˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;

end for;
N1:=Stabiliser(N,1);
#N1;
/*10*/
N1;

/* Permutation group N1 acting
on a set of cardinality 10
Order = 12 = 2ˆ2 * 3

(2, 4, 10)(5, 7, 9)
(2, 8, 10)(3, 5, 7)

*/

for i in [1..120] do if ArrayP[i] eq
N!(2, 4, 10)(5, 7, 9)
then Sch[i]; end if; end for;
/* x */
G<x,y,z,t>:=Group<x,y,z,t|xˆ3,yˆ2,zˆ5,
xˆ-1*y*x*y,y*zˆ-1*y*z,(zˆ-1*x)ˆ3,
(xˆ-1*zˆ-2)ˆ2,tˆ2,(t,x)>;

#G;
/*0*/
N12:=Stabiliser(N,[1,2]);
Cent:=Centraliser(N,N12);
Cent;

/* Permutation group Cent acting on\
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a set of cardinality 10
Order = 6 = 2 * 3
(3, 9, 5)(4, 10, 8)
(1, 6)(2, 7)(3, 8)(4, 9)(5, 10)

*/
C:=Classes(N);
#C;
C;
/*10*/
for i in [2..10] do
i, Orbits(Centraliser(N,C[i][3]));
end for;

for j in [2..10] do
C[j][3];
for i in [1..120] do if ArrayP[i] eq
C[j][3] then Sch[i]; end if; end for;
end for;

/*(1, 6)(2, 7)(3, 8)(4, 9)(5, 10)
y
(1, 5)(2, 8)(3, 7)(6, 10)
x * zˆ2
(1, 10)(2, 3)(4, 9)(5, 6)(7, 8)
x * y * zˆ2
(2, 4, 10)(5, 7, 9)
x
(1, 3, 5, 7, 9)(2, 4, 6, 8, 10)
z
(1, 5, 9, 3, 7)(2, 6, 10, 4, 8)
zˆ2
(1, 6)(2, 9, 10, 7, 4, 5)(3, 8)
x * y
(1, 8, 5, 2, 9, 6, 3, 10, 7, 4)
y * z
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
y * zˆ-2

*/
/*FIRST ORDER RELATIONS:*/
for a,b,c,d,e,f,g,h,i in [0..10] do
G<x,y,z,t>:=Group<x,y,z,t|xˆ3,yˆ2,zˆ5,
xˆ-1*y*x*y,y*zˆ-1*y*z,(zˆ-1*x)ˆ3,
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(xˆ-1*zˆ-2)ˆ2,tˆ2,(t,x),
(y*t)ˆa,
(x*zˆ2*t)ˆb,
(x * y * zˆ2*t)ˆc,
(x*t)ˆd,
(z*t)ˆe,
(zˆ2*t)ˆf,
(x*y*t)ˆg,
(y*z*t)ˆh,
(y*zˆ-2*t)ˆi
>;
if #G gt 100 then a,b,c,d,e,f,g,h,i;
#G;
end if;
end for;

A.2 MAGMA Code for Building Monomial Progenitor

11∗4 :m C5 : C4

G:=TransitiveGroup(10,4);
IsAbelian(G);
G;
xx:=G! (1, 3, 5, 7, 9)(2, 4, 6, 8, 10);
yy:=G! (1, 2, 9, 8)(3, 6, 7, 4)(5, 10);
S:=Subgroups(G);
CG:=CharacterTable(G);
/* Class | 1 2 3 4 5
Size | 1 5 5 5 4
Order | 1 2 4 4 5
-----------------------
p = 2 1 1 2 2 5
p = 5 1 2 3 4 1
-----------------------
X.1 + 1 1 1 1 1
X.2 + 1 1 -1 -1 1
X.3 0 1 -1 -I I 1
X.4 0 1 -1 I -I 1
X.5 + 4 0 0 0 -1

Explanation of Character Value Symbols
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--------------------------------------

I = RootOfUnity(4)*/
for i in [1..#S] do if Index (G,S[i]‘subgroup) eq 4 then i;
end if; end for;

/*3 Pick SB 3 and label those generators for your H group*/

x1:=G!(1, 3, 5, 7, 9)(2, 4, 6, 8, 10);
H:=sub<G|x1>;
CH:=CharacterTable(H);
I:=Induction(CH[2],G);
I eq CG[5];
CH;
/*
Character Table of Group H
--------------------------

-------------------------------
Class | 1 2 3 4 5
Size | 1 1 1 1 1
Order | 1 5 5 5 5
-------------------------------
p = 5 1 1 1 1 1
-------------------------------
X.1 + 1 1 1 1 1
X.2 0 1 Z1 Z1#2 Z1#3 Z1#4
X.3 0 1 Z1#2 Z1#4 Z1 Z1#3
X.4 0 1 Z1#3 Z1 Z1#4 Z1#2
X.5 0 1 Z1#4 Z1#3 Z1#2 Z1

Explanation of Character Value Symbols
--------------------------------------

# denotes algebraic conjugation, that is,
#k indicates replacing the root of unity w by wˆk

Z1 = (CyclotomicField(5: Sparse := true)) ! [ RationalField()
| 0, 1, 0, 0 ]*/

CH[2];
T:=Transversal(G,H);
C:=CyclotomicField(5);
GG:=GL(4,C);
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A:=[[C.1,0,0,0]: i in [1..4]];
for i,j in [1..4] do A[i,j]:=0; end for;
B:=[[C.1,0,0,0]: i in [1..4]];
for i,j in [1..4] do B[i,j]:=0; end for;
for i,j in [1..4] do if T[i]*xx*T[j]ˆ-1 in H then
A[i,j]:=CH[2]( T[i]*xx*T[j]ˆ-1); end if; end for;
for i,j in [1..4] do if T[i]*yy*T[j]ˆ-1 in H then
B[i,j]:=CH[2]( T[i]*yy*T[j]ˆ-1); end if; end for;
Order(GG!A);
Order(GG!B);

GG!A;
/*
[zeta_5 0 0 0]
[0 zeta_5ˆ3 0 0]
[0 0 -zeta_5ˆ3 - zeta_5ˆ2 - zeta_5 - 1 0]
[0 0 0 zeta_5ˆ2]*/
GG!B;
/*
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
[1 0 0 0]*/
/* We notice that the highest power of Zeta used is 3
in this case. We are in Cyclotomic field 5 which mean

s there are values for C.1, C.1ˆ2, ..., c.1ˆ5.
However, we are not required to label each C in this
instance because we only use 3 values of C.1.
Namely, C.1, C.1ˆ2, and C.1ˆ3 (Look at the 2
matrices and notice the powers of Zeta). So when
we do the mat function in a second, rather than
putting all 5 elements, only label C.1, C.1ˆ2,

and C.1ˆ3 and their opposites. */
T:=Transversal(G,H);
C:=CyclotomicField(5);
/*To find your C.1...C.1ˆn, all you do is pick
your bease, it will always be 2 or 3,

then in magma you do 2 mod your field,
which here we are using 11 since 5|11-1.

Then you do 2ˆ1 mod 11 = 2,
then 2ˆ2 mod 11 = 4, ect*/
mat := function(n,p,D,k)



163

for i,j in [1..k] do if T[i]*p*T[j]ˆ-1 in H then
if CH[n](T[i]*p*T[j]ˆ-1) eq C.1
then D[i,j]:=4; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq -C.1
then D[i,j]:=-4; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq C.1ˆ2
then D[i,j]:=5; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq -C.1ˆ2
then D[i,j]:=-5; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq C.1ˆ3
then D[i,j]:=9; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq -C.1ˆ3
then D[i,j]:=-9; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq C.1ˆ4
then D[i,j]:=3; end if;

if CH[n](T[i]*p*T[j]ˆ-1) eq -C.1ˆ4
then D[i,j]:=-3; end if;

if CH[n](T[i]*p*T[j]ˆ-1) in {1}
then D[i,j]:=CH[n](T[i]*p*T[j]ˆ-1); end if;

end if; end for;
return D;
end function;
GG:=GL(4,11);
A:=[[0,0,0,0]: i in [1..4]];
mat(2,xx,A,4);
AA:=GG!mat(2,xx,A,4);
Order(GG!AA);
/*5*/
B:=[[0,0,0,0]: i in [1..4]];
mat(2,yy,B,4);
BB:=GG!mat(2,yy,B,4);
Order(GG!BB);
/*4*/
HH:=sub<GG|AA,BB>;
IsIsomorphic(HH,G);
/*true*/
C:=CyclotomicField(10);
A:=[[C.1,0,0,0] : i in [1..4]];
for i ,j in [1..4] do A[i,j]:=0; end for;
for i,j in [1..4] do if T[i]*xx*T[j]ˆ-1
in H then A[i,j]:=CH[2](T[i]*xx*T[j]ˆ-1);

end if; end for;
B:=[[C.1,0,0,0] : i in [1..4]];
for i ,j in [1..4] do B[i,j]:=0; end for;
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for i,j in [1..4] do if T[i]*yy*T[j]ˆ-1 in
H then B[i,j]:=CH[2](T[i]*yy*T[j]ˆ-1);
end if; end for;

perm := function(n, p, mat)
/* Return the matrix converted to
permutation of S_{n*p}.

*/
C<u>:=CyclotomicField(p);
Z:=Integers ();
s:=[];

for i in [1..n] do
s[i]:=i;

end for;
z:=Matrix(C,1,n,s)*mat;
w:=[];
for i in [1..n] do
j:=0; done:=0;
repeat
if z[1,i]/uˆj in Z then
if Z!(z[1,i]/uˆj) ge 0 then

w[i]:=n*j+Z!(z[1,i]/uˆj);
done:=1;

end if; end if;
j:=j+1;
until done eq 1 or j eq p;
end for;
for i in [1..(p-1)] do
for a in [1..n] do
w[a+i*n]:=(Z!w[a]+i*n-1) mod (p*n) + 1;

end for; end for;
S:=Sym(n*p);
w:=S!w;

return w;
end function;
GG:=GL(4,C);
AA:=GG!A;
AA;
/* [ 4 0 0 0]
[ 0 9 0 0]
[ 0 0 3 0]
[ 0 0 0 5]
t1, t1ˆ5, t1ˆ10, t1ˆ4, */
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BB:=GG!B;
/* BB;
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
[1 0 0 0]*/
perm(4,10,AA);
/* (1, 9, 17, 25, 33)(2, 26, 10, 34, 18
)(3, 35, 27, 19, 11)(4, 20, 36, 12, 28)
(5,13, 21, 29, 37)(6, 30, 14, 38, 22)
(7, 39, 31, 23, 15)(8, 24, 40, 16, 32)*/
perm(4,10,BB);

/*(1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11, 10)
(13, 16, 15, 14)(17, 20, 19, 18)(21, 24,

23, 22)(25, 28, 27, 26)(29, 32,
31, 30)(33, 36, 35, 34)(37, 40, 39, 38)*/

G;
FPGroup(G);
Finitely presented group on 2 generators
Relations

$.2ˆ4 = Id($)
$.1ˆ-5 = Id($)
$.2ˆ-1 * $.1ˆ-2 * $.2 * $.1ˆ-1 = Id($)

G<x,y>:=Group<x,y|yˆ4,xˆ-5,
yˆ-1*xˆ-2*y*xˆ-1>;
S:=Sym(40);
xx:=S! (1, 9, 17, 25, 33)(2, 26, 10, 34, 18)
(3, 35, 27, 19, 11)(4, 20, 36, 12, 28)(5,13,
21, 29, 37)(6, 30, 14, 38, 22)(7, 39, 31,
23, 15)(8, 24, 40, 16, 32);

yy:=S! (1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11,
10)(13, 16, 15, 14)(17, 20, 19, 18)(21, 24,

23, 22)(25, 28, 27, 26)(29, 32, 31, 30)
(33, 36, 35, 34)(37, 40, 39, 38);
N:=sub<S|xx,yy>;

Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
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if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;

end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

Normaliser:=Stabiliser(N,{1, 9, 17, 25, 33});
Generators(Normaliser);
/* (1, 17, 33, 9, 25)(2, 10, 18, 26, 34)(3, 27, 11, 35, 19)
(4, 36, 28, 20, 12)(5, 21, 37, 13, 29)(6, 14, 22, 30, 38)
(7, 31, 15, 39, 23)(8, 40, 32, 24, 16)*/
Stabiliser(N, {1, 9, 17, 25, 33});
A:=Normaliser! (1, 17, 33, 9, 25)(2, 10, 18, 26, 34)
(3, 27, 11, 35, 19)(4, 36, 28, 20, 12)(5, 21, 37, 13, 29)
(6, 14, 22, 30, 38)(7, 31, 15, 39, 23)(8, 40, 32, 24, 16);
Normaliser eq sub<N|A>;
for i in [1..#N] do if ArrayP[i] eq A then Sch[i]; end if; end for;
/*xˆ2
tˆ(xˆ2);

*/
Normaliser eq sub<N|xx,xxˆ2>;

/*this is my old progenitor for group G:*/

G<x,y>:=Group<x,y|yˆ2,(xˆ-1*y)ˆ2,xˆ5>;

/*Now check Progenitor for mon presentation*/
G<x,y,t>:=Group<x,y,t|yˆ4,xˆ-5,yˆ-1*xˆ-2*y*xˆ-1,
tˆ11,tˆ(xˆ2)=tˆ5,(t,tˆ(y)),(t,tˆ(yˆ2)),(t,tˆ(yˆ3))>;
#G;
/* 292820*/
Index(G,sub<G|x,y>);
/*14641*/
C:=Classes(N);

#C;
/*4*/
for i in [2..5] do
i,Orbits(Centralizer(N,C[i][3]));
end for;
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for j in [2..5] do
C[j][3];
for i in [1..20] do if ArrayP[i] eq C[j][3]
then Sch[i]; end if;
end for; end for;

/* yˆ2
(1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11, 10)
(13, 16, 15, 14)(17, 20, 19, 18)(21, 24,

23, 22)(25, 28, 27, 26)(29, 32,
31, 30)(33, 36, 35, 34)(37, 40, 39, 38)
y
(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)
(13, 14, 15, 16)(17, 18, 19, 20)(21, 22,

23, 24)(25, 26, 27, 28)(29, 30, 31,
32)(33, 34, 35, 36)(37, 38, 39, 40)

yˆ-1
(1, 9, 17, 25, 33)(2, 26, 10, 34, 18)
(3, 35, 27, 19, 11)(4, 20, 36, 12, 28)
(5, 13, 21, 29, 37)(6, 30, 14, 38, 22)
(7, 39, 31, 23, 15)(8, 24, 40, 16, 32)
x*/
for a,b,c,d,e,f,g,h,i in [0..10] do
G<x,y,t>:=Group<x,y,t|yˆ4,xˆ-5,
yˆ-1*xˆ-2*y*xˆ-1,tˆ11,tˆ(xˆ2)=tˆ5,
(yˆ2*t)ˆa,
(yˆ2*tˆ2)ˆb,
(yˆ2*tˆ3)ˆc,
(yˆ2*tˆ4)ˆd,
(yˆ2*tˆ5)ˆe,
(yˆ2*tˆ6)ˆf,
(yˆ2*tˆ8)ˆg,
(yˆ2*tˆ9)ˆh,
(yˆ2*tˆ10)ˆi>;
if #G gt 10 then a,b,c,d,e,f,g,h,i;
#G;
end if;
end for;
Mon1041
for a,b,c,d,e,f,g,h,i in [0..10] do
G<x,y,t>:=Group<x,y,t|yˆ4,xˆ-5,
yˆ-1*xˆ-2*y*xˆ-1,tˆ11,tˆ(xˆ2)=tˆ5,
(y*t)ˆa,
(y*tˆ2)ˆb,
(y*tˆ3)ˆc,
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(y*tˆ4)ˆd,
(y*tˆ5)ˆe,
(y*tˆ6)ˆf,
(y*tˆ8)ˆg,
(y*tˆ9)ˆh,
(y*tˆ10)ˆi>;
if #G gt 10 then a,b,c,d,e,f,g,h,i;
#G;
end if;
end for;
Mon1042
/*0 0 0 0 0 0 0 0 3 7920*/
for a,b,c,d,e,f,g,h,i in [0..10] do
G<x,y,t>:=Group<x,y,t|yˆ4,xˆ-5,
yˆ-1*xˆ-2*y*xˆ-1,tˆ11,
tˆ(xˆ2)=tˆ5, (y*tˆ10)ˆ3>;
/*CompositionFactors(G1);

G
| M11
1*/

A.3 Double Coset of J2 over M = A5 : C5

G<x,y,t>:=Group<x,y,t| xˆ5,yˆ2,
xˆ-1*y*xˆ-1*y*x*y*x*y,tˆ3,(t,x),
(y * xˆ-2 * y * xˆ-1*t)ˆ2,

(xˆ-2 * y * xˆ-1*t)ˆ5>;
#G;
S:=Sym(10);
xx:=S!(2, 4, 6, 8, 10);
yy:=S!(1, 6)(2, 7)(3, 8)(4, 9)(5, 10);
N:=sub<S|xx,yy>;
#N;
Set(N);
HH:=sub<G| x,y,y * xˆ-1 * t * y * x * y * t * yˆ2

* xˆ2 * y * t * yˆ3 * xˆ2 * y * x * y * t * yˆ4 *
xˆ2 * yˆ3 * xˆ2 * y * x * y * t * yˆ4 * xˆ2 * y

* x * y * t * yˆ2 * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 *
yˆ3 * xˆ2 * y * x * y * t * yˆ2 * t * yˆ4 * xˆ2 * y

* x * y * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 * y * x * y *
t * yˆ4 * xˆ2 * y * x * y * t * yˆ2 * t * yˆ4 *
xˆ2 * y * x * y * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 *
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y * xˆ-1>;
#HH;
f,G1,k:=CosetAction(G,sub<G|x,y>);
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|f(x),f(y),f(y * xˆ-1 * t * y * x * y *
t * yˆ2 * xˆ2 * y * t * yˆ3 * xˆ2 * y * x * y * t

* yˆ4 * xˆ2 * yˆ3 * xˆ2 * y * x * y * t * yˆ4 *
xˆ2 * y * x * y * t * yˆ2 * t * yˆ3 * xˆ2 * yˆ3

* xˆ2 * yˆ3 * xˆ2 * y * x * y * t * yˆ2 * t * yˆ4 *
xˆ2 * y * x * y * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 * y * x

* y * t * yˆ4 * xˆ2 * y * x * y * t * yˆ2 * t * yˆ4 *
xˆ2 * y * x * y * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 * y *
xˆ-1)>;

#IM/#IN;
ts := [ Id(G1): i in [1 .. 10] ];
ts[1]:=f(t); ts[2]:=f(tˆ(yˆxˆ3)); ts[3]:=f(tˆ(xˆy));
ts[4]:=f(tˆ(yˆxˆ4));ts[5]:=f(tˆ(y*xˆ2*y*xˆ-2));
ts[6]:=f(tˆ(yˆxˆ5)); ts[7]:=f(tˆ(y*xˆ-2)ˆ2);

ts[8]:=f(tˆ(yˆx)); ts[9]:=f(tˆ(y*xˆ-1*y*xˆ-2));
ts[10]:=f(tˆ(yˆxˆ2));
/*This tells me how many of each type of DC I will have.
In other words how many double cosets of 1 t, of two ts,

three ts, ect. */
#DoubleCosets(G, sub<G|x,y,y * xˆ-1 * t * y * x * y * t *
yˆ2 * xˆ2 * y * t * yˆ3 * xˆ2 * y * x * y * t * yˆ4 * xˆ2

* yˆ3 * xˆ2 * y * x * y * t * yˆ4 * xˆ2 * y * x * y * t *
yˆ2 * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 * yˆ3 * xˆ2 * y * x

* y * t * yˆ2 * t * yˆ4 * xˆ2 * y * x * y * t * yˆ3 * xˆ2

* yˆ3 * xˆ2 * y * x * y * t * yˆ4 * xˆ2 * y * x * y * t *
yˆ2 * t * yˆ4 * xˆ2 * y * x * y * t * yˆ3 * xˆ2 * yˆ3 *
xˆ2 * y * xˆ-1>, sub<G|x,y>);

DoubleCosets(G, sub<G|x,y,y * xˆ-1 * t * y * x * y * t

* yˆ2 * xˆ2 * y * t * yˆ3 * xˆ2 * y * x * y * t * yˆ4

* xˆ2 * yˆ3 * xˆ2 * y * x * y * t * yˆ4 * xˆ2 * y * x *
y * t * yˆ2 * t * yˆ3 * xˆ2 * yˆ3 * xˆ2 * yˆ3 * xˆ2 *
y * x * y * t * yˆ2 * t * yˆ4 * xˆ2 * y * x * y * t * yˆ3

* xˆ2 * yˆ3 * xˆ2 * y * x * y * t * yˆ4 * xˆ2 * y * x *
y * t * yˆ2 * t * yˆ4 * xˆ2 * y * x * y * t * yˆ3 * xˆ2

* yˆ3 * xˆ2 * y * xˆ-1>, sub<G|x,y>);
/*
{ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * y * tˆ-1 *
y * x * y * tˆ-1,GrpFP>, <GrpFP, t * y * t * y * tˆ-1,
GrpFP>, <GrpFP, t * y * t * y * t, GrpFP>,<GrpFP, t *
y * t, GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t * y * x *
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y * tˆ-1,GrpFP>, <GrpFP, t * y * x * y * tˆ-1 * y * t,
GrpFP>, <GrpFP, t * y * t * y * x* y * tˆ-1, GrpFP>,
<GrpFP, t * y * t * y * tˆ-1 * y * tˆ-1, GrpFP> }*/
Index(G,HH); /*208*/
#G/#IN; /*1248*/
prodim := function(pt, Q, I)
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];

for i := 1 to 10 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;
for i in [1..1248] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*10*/
Orbits(N);
/* GSet{@ 1, 6, 8, 10, 3, 2, 5, 4, 7, 9 @}*/

N1:=Stabiliser(N,1);
SSS:={[1]}; SSS:=SSSˆN;
Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do if ts[1] eq
n*ts[Rep(Seqq[i])[1]]
then print Rep(Seqq[i]);
end if; end for; end for;
N1;
/* Permutation group N1 acting on a set of
cardinality 10
Order = 5

(2, 4, 6, 8, 10)*/
#N1;
#N/#N1;
T1:=Transversal(N,N1);
T1; /* These are the transversals,
for which you conjugate Mt1N by:

Id(N),
(1, 6)(2, 7)(3, 8)(4, 9)(5, 10),
(1, 8, 3, 10, 5, 2, 7, 4, 9, 6),
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(1, 4, 9, 2, 7, 10, 5, 8, 3, 6),
(1, 10, 5, 4, 9, 8, 3, 2, 7, 6),
(1, 3, 5, 7, 9),
(1, 9, 7, 5, 3),
(1, 2, 7, 8, 3, 4, 9, 10, 5, 6),
(1, 5, 9, 3, 7),
(1, 7, 3, 9, 5) since t1 goes to all elements 1..10*/

for i in [1..#T1] do
ss:=[1]ˆT1[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N1);
/* GSet{@ 1 @},

GSet{@ 3 @},
GSet{@ 5 @},
GSet{@ 7 @},
GSet{@ 9 @},
GSet{@ 2, 4, 6, 8, 10 @}*/

for g in IM do for h in IN do if ts[1]*ts[9] eq
g*(ts[1])ˆh
then g,h; break; end if; end for; end for;

N12:=Stabiliser(N,[1,2]);
SSS:={[1,2]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N12; #N12;
#N/#N12;
T12:=Transversal(N,N12);
for i in [1..#T12] do ss:=[1,2]ˆT12[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
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N13:=Stabiliser(N,[1,3]);
SSS:={[1,3]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[3] eq n*ts[Rep(Seqq[i])[1]]*

ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N13;
/* (2, 4, 6, 8, 10)*/
#N13;

#N/#N13;
T13:=Transversal(N,N13);
for i in [1..#T13] do ss:=[1,3]ˆT13[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

N15:=Stabiliser(N,[1,5]);
SSS:={[1,5]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[5] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 5 ]
[ 6, 10 ]
[ 8, 2 ]
[ 10, 4 ]
[ 3, 7 ]
[ 2, 6 ]
[ 5, 9 ]
[ 4, 8 ]
[ 7, 1 ]
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[ 9, 3 ]*/
for g in N do if [1,5]ˆg eq [6,10] then
N15:=sub<N|N15,g>; end if; end for;

for g in N do if [1,5]ˆg eq [8,2] then
N15:=sub<N|N15,g>; end if; end for;

for g in N do if [1,5]ˆg eq [10,4] then
N15:=sub<N|N15,g>; end if; end for;

for g in N do if [1,5]ˆg eq [3,7] then
N15:=sub<N|N15,g>; end if; end for;

for g in N do if [1,5]ˆg eq [2,6] then
N15:=sub<N|N15,g>; end if; end for;

for g in N do if [1,5]ˆg eq [5,9] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]ˆg eq [4,8] then
N15:=sub<N|N15,g>; end if; end for;

for g in N do if [1,5]ˆg eq [7,1] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]ˆg eq [9,3] then
N15:=sub<N|N15,g>; end if; end for;

N15; #N15;
#N/#N15;
T15:=Transversal(N,N15);
for i in [1..#T15] do ss:=[1,5]ˆT15[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

N17:=Stabiliser(N,[1,7]);
SSS:={[1,7]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[7] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N17; #N17;
#N/#N17;
/*10*/
T17:=Transversal(N,N17);
for i in [1..#T17] do ss:=[1,7]ˆT17[i];
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cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IM do for h in IN do if ts[1]

*ts[7] eq g*(ts[1]*ts[3])ˆh
then g,h; break; end if; end for; end for;

******************[1,2]*********************************
Orbits(N12); /*1 .. 10*/

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[2] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[3] eq g*(ts[1]*ts[2]*ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4] eq g*(ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5] eq g*(ts[1]*ts[2]*ts[4])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[6] eq g*(ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[7] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[8] eq g*(ts[1]*ts[2]*ts[4])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[9] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[10] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

N121:=Stabiliser(N,[1,2,1]);
SSS:={[1,2,1]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
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if ts[1]*ts[2]*ts[1] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 2, 1 ]
[ 10, 3, 10 ]*/
for g in N do if [1,2,1]ˆg eq [10,3,10] then
N121:=sub<N|N121,g>; end if; end for;

N121; #N121;
#N/#N121;
/*25*/
T121:=Transversal(N,N121);
for i in [1..#T121] do ss:=[1,2,1]ˆT121[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
N124:=Stabiliser(N,[1,2,4]);
SSS:={[1,2,4]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[4] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 2, 4 ]
[6, 7, 9]*/
for g in N do if [1,2,4]ˆg eq [6,7,9] then
N124:=sub<N|N124,g>; end if; end for;

N124; #N124;
#N/#N124;
/*25*/
T124:=Transversal(N,N124);
for i in [1..#T124] do ss:=[1,2,4]ˆT124[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

N125:=Stabiliser(N,[1,2,5]);
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SSS:={[1,2,5]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[5] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 2, 5] */
N125; #N125;
#N/#N125;
/*50*/
T125:=Transversal(N,N125);
for i in [1..#T125] do ss:=[1,2,5]ˆT125[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

****************************[1,3]***
Orbits(N13);
/* GSet{@ 1 @},

GSet{@ 3 @},
GSet{@ 5 @},
GSet{@ 7 @},
GSet{@ 9 @},
GSet{@ 2, 4, 6, 8, 10 @}*/

for g in IM do for h in IN do if ts[1]*
ts[3]*ts[1] eq g*(ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[3]*ts[2] eq g*(ts[1]*ts[3]*ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[3]*ts[3] eq g*(ts[1]*ts[3])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[3]*ts[5] eq g*(ts[1]*ts[3])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[3]*ts[7] eq g*(ts[1])ˆh
then g,h; break; end if; end for;

end for;
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for g in IM do for h in IN do if ts[1]

*ts[3]*ts[9] eq g*(ts[1]*ts[3]*ts[2])ˆh
then g,h; break; end if; end for; end for;

N132:=Stabiliser(N,[1,3,2]);
SSS:={[1,3,2]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[3]*ts[2] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 3, 2]
[6,8,7] */
for g in N do if [1,3,2]ˆg eq [6,8,7] then
N132:=sub<N|N132,g>; end if; end for;

N132; #N132;
#N/#N132;
/*25*/
T132:=Transversal(N,N132);
for i in [1..#T132] do ss:=[1,3,2]ˆT132[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
N139:=Stabiliser(N,[1,3,9]);
SSS:={[1,3,9]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[3]*ts[9] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 3, 9 ]
[ 3, 5, 1 ]
[ 5, 7, 3 ]
[ 7, 9, 5 ]
[ 9, 1, 7 ]*/
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for g in N do if [1,3,9]ˆg eq [3,5,1]
then N139:=sub<N|N139,g>; end if; end for;
for g in N do if [1,3,9]ˆg eq [5,7,3]
then N139:=sub<N|N139,g>; end if; end for;

for g in N do if [1,3,9]ˆg eq [7,9,5]
then N139:=sub<N|N139,g>; end if; end for;

for g in N do if [1,3,9]ˆg eq [9,1,7]
then N139:=sub<N|N139,g>; end if; end for;

N139; #N139;
#N/#N139;
/*2*/
T139:=Transversal(N,N139);
for i in [1..#T139] do ss:=[1,3,9]ˆT139[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

**********************[1,5]*************

Orbits(N15);
/* GSet{@ 1, 6, 8, 10, 3, 2, 5, 4, 7, 9 @}*/

for g in IM do for h in IN do if ts[1]

*ts[5]*ts[1] eq g*(ts[1])ˆh
then g,h; break; end if; end for; end for;

*********************[1,3,2]*********
Orbits(N132);
/* GSet{@ 1, 6 @},

GSet{@ 2, 7 @},
GSet{@ 3, 8 @},
GSet{@ 4, 9 @},
GSet{@ 5, 10 @}*/

for g in IM do for h in IN do if ts[1]*ts[3]

*ts[2]*ts[1] eq g*(ts[1]*ts[3])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[3]

*ts[2]*ts[2] eq g*(ts[1]*ts[3]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[3]

*ts[2]*ts[3] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[3]
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*ts[2]*ts[4] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[3]

*ts[2]*ts[5] eq g*(ts[1]*ts[3]*ts[2])ˆh
then g,h; break; end if; end for; end for;

***************************[1,3,9]****
Orbits(N139);
/* GSet{@ 1, 3, 5, 7, 9 @},

GSet{@ 2, 4, 10, 6, 8 @}*/
for g in IM do for h in IN do if ts[1]*ts[3]

*ts[9]*ts[1] eq g*(ts[1]*ts[3])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[3]

*ts[9]*ts[2] eq g*(ts[1]*ts[3]*ts[9])ˆh
then g,h; break; end if; end for; end for;

**************************[121]*******
Orbits(N121);
for g in IM do for h in IN do if ts[1]*ts[3]*
ts[9]*ts[2] eq g*(ts[1]*ts[3]*ts[9])ˆh
then g,h; break; end if; end for; end for;

**********************************

N121:=Stabiliser(N,[1,2,1]);
SSS:={[1,2,1]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[1] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 2, 5][10,3,10] */
for g in N do if [1,2,1]ˆg eq [10,3,10] then
N121:=sub<N|N121,g>; end if; end for;

N121; #N121;
#N/#N121;
/*50*/
T121:=Transversal(N,N121);
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for i in [1..#T121] do ss:=[1,2,1]ˆT121[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

for g in IM do for h in IN do if ts[1]*
ts[2]*ts[1]*ts[1] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[2]*ts[1]*ts[2] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[2]*ts[1]*ts[4] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[2]*ts[1]*ts[6] eq g*(ts[1]*ts[2]*ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]

*ts[2]*ts[1]*ts[8] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

***************************[124]***
Orbits(N124);
for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[1] eq g*(ts[1]*ts[2]*ts[4])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[2] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[3] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[4] eq g*(ts[1]*ts[2]*ts[4])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[5] eq g*(ts[1]*ts[5])ˆh
then g,h; break; end if; end for; end for;

*********************[125*********
N125:=Stabiliser(N,[1,2,5]);
SSS:={[1,2,5]};
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SSS:=SSSˆN;
Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[5] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 2, 5] */
N125; #N125;
#N/#N125;
/*50*/
T125:=Transversal(N,N125);
for i in [1..#T125] do ss:=[1,2,5]ˆT125[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N125);
for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[1] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[2] eq g*(ts[1]*ts[3]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[3] eq g*(ts[1]*ts[2]*ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[4] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[5] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[6] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[7] eq g*(ts[1]*ts[2]*ts[1])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[8] eq g*(ts[1]*ts[3]*ts[2])ˆh
then g,h; break; end if; end for; end for;
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for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[9] eq g*(ts[1]*ts[2])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[5]*ts[10] eq g*(ts[1]*ts[2]*ts[4]*ts[5])ˆh
then g,h; break; end if; end for; end for;

**************************[1245]******
N1245:=Stabiliser(N,[1,2,4,5]);
SSS:={[1,2,4,5]};
SSS:=SSSˆN;

Seqq:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[4]*ts[5] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]] *ts[Rep(Seqq[i])[3]] *
ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

/* [ 1, 2, 4, 5 ]
[ 3, 4, 6, 7 ]
[ 5, 6, 8, 9 ]
[ 7, 8, 10, 1 ]
[ 9, 10, 2, 3 ]*/
for g in N do if [1,2,4,5]ˆg eq [3,4,6,7]
then N1245:=sub<N|N1245,g>; end if; end for;

for g in N do if [1,2,4,5]ˆg eq [5,6,8,9]
then N1245:=sub<N|N1245,g>; end if; end for;

for g in N do if [1,2,4,5]ˆg eq [7,8,10,1]
then N1245:=sub<N|N1245,g>; end if; end for;

for g in N do if [1,2,4,5]ˆg eq [9,10,2,3]
then N1245:=sub<N|N1245,g>; end if; end for;

N1245; #N1245;
#N/#N1245;
/*10*/
T1245:=Transversal(N,N1245);
for i in [1..#T1245] do ss:=[1,2,4,5]

ˆT1245[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne
[] then m:=m+1; end if; end for; m;
Orbits(N1245);
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for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[5]*ts[1] eq g*(ts[1]*ts[2]*ts[4])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]

*ts[4]*ts[5]*ts[2] eq g*(ts[1]*ts[2]*ts[5])ˆh
then g,h; break; end if; end for; end for;

G<x,y>:=Group<x,y,t|xˆ2,yˆ6,(y*x*yˆ-1*x)ˆ2
,(x*yˆ-1)ˆ5,
(t,xˆy),tˆ2,(yˆ2*x*yˆ-2)ˆ2,
(yˆ3*t)ˆ0,((y * x * y)ˆ2*t)ˆ0,(yˆ2*t)ˆ2
,(y*x*y*t)ˆ0,(y*x*t)ˆ6,(y*t)ˆ6>;
#G;
/*19440*/
f, G1, k:=CosetAction(G,sub<G|x,y>);
#k;

/*1*/
CompositionFactors(G1);

/* G
| Cyclic(2)

*
| Cyclic(2)

*
| Alternating(5)

*
| Cyclic(3)

*
| Cyclic(3)

*
| Cyclic(3)

*
| Cyclic(3)
1*/

NL:=NormalLattice(G1);
NL;

IsAbelian(NL[2]);
/*true*/

H:=NL[2];
q,ff:=quo<G1|NL[2]>;



184

q;
/*Permutation group q acting on a set of cardinality 24
Order = 240 = 2ˆ4 * 3 * 5
(1, 2)(3, 5)(4, 6)(7, 11)(8, 13)(9, 15)(10, 17)(12, 18)(14, 21)(16,
22)(19, 24)(20, 23)
(1, 3, 4, 7, 12, 2)(5, 8, 14, 21, 24, 18)(6, 9, 15, 11, 16, 10)(13,
19, 22, 20, 23, 17)
(1, 3)(2, 4)(5, 8)(6, 10)(7, 12)(9, 16)(11, 15)(13, 20)(14, 18)(17,

23)(19, 22)(21, 24)*/

X:=[3,3,3,3];

IsIsomorphic(NL[2],AbelianGroup(GrpPerm,(X)));
/*true Mapping from: GrpPerm: H to GrpPerm: $, Degree 12,
Order 3ˆ4
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 12, Order 3ˆ4*/

nl:=NormalLattice(q);
nl;

E:=DirectProduct(nl[2],nl[4]);
IsIsomorphic(E,q);

/*true Homomorphism of GrpPerm: E, Degree 48, Orde
r 2ˆ4 * 3 * 5 into
GrpPerm: q, Degree 24, Order 2ˆ4 * 3 * 5 induced by

Id(E) |--> Id(q)
(1, 23)(2, 20)(3, 17)(4, 13)(5, 10)(6, 8)(7, 19)(9, 14)(11, 24)(12,
22)(15, 21)(16, 18) |--> (1, 23)(2, 20)(3, 17)(4, 13)(5, 10)(6,
8)(7, 19)(9, 14)(11, 24)(12, 22)(15, 21)(16, 18)
(25, 44)(26, 47)(27, 34)(28, 32)(29, 41)(30, 37)(31, 48)(33, 45)(35,
43)(36, 40)(38, 39)(42, 46) |--> (1, 18)(2, 12)(3, 10)(4, 15)(5,
17)(6, 9)(7, 24)(8, 14)(11, 19)(13, 21)(16, 23)(20, 22)

(25, 30, 33, 42, 29, 41)(26, 37, 43, 35, 45, 36)(27, 47, 32, 38, 40,
34)(28, 31, 48, 39, 46, 44) |--> (1, 3, 4, 7, 12, 2)(5, 8, 14, 21,
24, 18)(6, 9, 15, 11, 16, 10)(13, 19, 22, 20, 23, 17)*/

IsIsomorphic(nl[2],CyclicGroup(2));

/*true Mapping from: GrpPerm: $, Degree 24, Order 2
to GrpPerm: $, Degree 2,

Order 2
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Composition of Mapping from: GrpPerm: $, Degree 24,
Order 2 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 2, Order 2*/

IsIsomorphic(nl[4],SymmetricGroup(5));
/*true Homomorphism of GrpPerm: $, Degree 24,
Order 2ˆ3 * 3 * 5 into
GrpPerm: $, Degree 5, Order 2ˆ3 * 3 * 5 induced by

(1, 20)(2, 23)(3, 10)(4, 8)(5, 17)(6, 13)(7, 24)
(9, 21)(11, 19)(12,

16)(14, 15)(18, 22) |--> (1, 2)
(1, 6, 9, 18, 5, 17)(2, 13, 19, 11, 21, 12)

(3, 23, 8, 14, 16, 10)(4,
7, 24, 15, 22, 20) |--> (1, 3, 5)(2, 4)*/

FPGroup(SymmetricGroup(5));

S<a,b>:=Group<a,b|aˆ5,bˆ2,(aˆ-1*b)ˆ4,
(a*b*aˆ-2*b*a)ˆ2>;
ff,ss,kk:=CosetAction(S,sub<S|Id(S)>);
s,t:=IsIsomorphic(ss,nl[4]);
s;
/*true*/

FPGroup(nl[2]);
C<c,d>:=Group<c,d|dˆ2,c>;

ff1,cc,kk1:=CosetAction(C,sub<C|Id(C)>);

s,t:=IsIsomorphic(nl[2],cc);

s;
/*true*/

/*Here e and f will be a and b from S respectively
and g,h will be c,d from

C respectively*/

D<e,f,g,h>:=Group<e,f,g,h|eˆ5,fˆ2,(eˆ-1*f)ˆ4,
(e*f*eˆ-2*f*e)ˆ2,hˆ2,g, (g,e),
(g,f),(h,e),(h,f)>;
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ff2,dd,kk2:=CosetAction(D,sub<D|Id(D)>);
s,t:=IsIsomorphic(q,dd);

s;

T:=Transversal(G1,NL[2]);
ff(T[2]) eq q.1;

/*true*/
ff(T[3]) eq q.2;

/*true*/
ff(T[4]) eq q.3;

/*true*/

Order(T[2]);
2
Order(T[3]);

6
Order(T[4]);

2
Order(q.1);
2
Order(q.2);

6
Order(q.3);

2

/*T[2] = q.1, T[3] = q.2, T[4] = q.3.
The transversals of NL[2] and the generators of q match up,
therefore we might have
a semidirect product or a mixed extension if we can write
the elements of q as products of elements of K*/

Generators(NL[2]);

A:=G1!
(1, 161, 155)(2, 143, 162)(3, 144, 146)(4, 149, 147)(5, 145,
123)(6,119, 156)(7, 134, 140)(8, 122, 158)(9, 96, 157)(10,
80, 56)(11,
111, 74)(12, 101, 77)(13, 120, 151)(14, 108, 63)(15, 154,

114)(16,
105, 76)(17, 81, 98)(18, 82, 70)(19, 33, 110)(20, 79, 57)
(21, 51,
138)(22, 55, 127)(23, 153, 115)(24, 159, 87)(25, 39, 136)
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(26, 160,
88)(27, 141, 139)(28, 102, 75)(29, 53, 131)(30, 103, 97)
(31, 73,
112)(32, 45, 113)(34, 109, 35)(36, 148, 47)(37, 126, 92)
(38, 125,
66)(40, 118, 68)(41, 124, 59)(42, 142, 137)(43, 106, 85)

(44, 116,
150)(46, 83, 133)(48, 117, 152)(49, 60, 130)(50, 52, 128)

(54, 72,
129)(58, 135, 69)(61, 121, 100)(62, 91, 99)(64, 107, 67)

(65, 94, 89)(71, 104, 86)(78, 90, 93)(84, 95, 132);

B:=G1!(1, 153, 151)(2, 144, 152)(3, 117, 162)(4, 126, 133)
(5, 135, 109)(6,
80, 78)(7, 107, 129)(8, 108, 89)(9, 105, 104)(10, 93, 156)(11,
154, 84)(12, 75, 106)(13, 161, 115)(14, 94, 158)(15, 132,
74)(16,

71, 157)(17, 57, 124)(18, 159, 61)(19, 38, 137)(20, 59,
81)(21,

148, 53)(22, 136, 45)(23, 120, 155)(24, 100, 70)(25,
113, 55)(26,

99, 97)(27, 73, 130)(28, 85, 101)(29, 138, 36)(30,
160, 62)(31,

60, 139)(32, 127, 39)(33, 125, 42)(34, 123, 58)(35
, 145, 69)(37,

83, 147)(40, 150, 50)(41, 98, 79)(43, 77, 102)(44,
52, 118)(46,

149, 92)(47, 131, 51)(48, 143, 146)(49, 141, 112)
(54, 134, 67)(56,

90, 119)(63, 65, 122)(64, 72, 140)(66, 142, 110)
(68, 116, 128)(76,

86, 96)(82, 87, 121)(88, 91, 103)(95, 111, 114);
C:=G1!(1, 154, 158)(2, 149, 139)(3, 126, 112)(4,

141, 162)(5, 125, 127)(6,
81, 100)(7, 118, 138)(8, 161, 114)(9, 101, 99)(10,

57, 82)(11, 94,
151)(12, 91, 157)(13, 111, 89)(14, 153, 84)(15,

122, 155)(16, 75,
103)(17, 121, 156)(18, 56, 79)(19, 113, 34)(20,

70, 80)(21, 134,
68)(22, 145, 66)(23, 132, 63)(24, 78, 59)(25, 58

, 137)(26, 104,
85)(27, 143, 147)(28, 97, 105)(29, 129, 52)(30,

76, 102)(31, 144,
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92)(32, 109, 33)(35, 110, 45)(36, 107, 44)(37,
73, 146)(38, 55,

123)(39, 135, 42)(40, 51, 140)(41, 159, 90)(43,
160, 86)(46, 60,

152)(47, 64, 150)(48, 83, 130)(49, 117, 133)(50,
131, 72)(53, 54,

128)(61, 119, 98)(62, 96, 77)(65, 120, 74)(67,
116, 148)(69, 142,

136)(71, 106, 88)(87, 93, 124)(95, 108, 115);
D:=G1!(1, 159, 157)(2, 145, 150)(3, 135, 128)(4,

125, 148)(5, 116, 162)(6,
102, 132)(7, 130, 113)(8, 124, 99)(9, 161, 87)

(10, 85, 111)(11,
56, 106)(12, 154, 90)(13, 82, 104)(14, 98, 103)

(15, 78, 77)(16,
153, 61)(17, 97, 108)(18, 71, 151)(19, 138, 83)

(20, 160, 65)(21,
133, 33)(22, 64, 139)(23, 100, 76)(24, 96, 155)

(25, 129, 73)(26,
89, 57)(27, 55, 107)(28, 95, 156)(29, 37, 137)

(30, 63, 81)(31,
136, 72)(32, 134, 49)(34, 118, 48)(35, 40,

152)(36, 147, 38)(39,
54, 112)(41, 91, 158)(42, 53, 126)(43, 74, 80)

(44, 143, 123)(45,
140, 60)(46, 110, 51)(47, 149, 66)(50, 144,

69)(52, 146, 58)(59,
62, 122)(67, 141, 127)(68, 117, 109)(70, 86,

120)(75, 84, 119)(79,
88, 94)(92, 142, 131)(93, 101, 114)(105, 115,

121);

NL[2] eq sub<G1|A,B,C,D>;
/*q,ff:=quo<G1|NL[2]>;
q;*/

/*Write the transversals as elements of q*/
FPGroup(q);

/*Finitely presented group on 3 generators
Relations

$.1ˆ2 = Id($)
$.2ˆ6 = Id($)
$.3ˆ2 = Id($)
($.2ˆ-1 * $.3)ˆ2 = Id($)
$.2ˆ-2 * $.1 * $.2ˆ2 * $.3 * $.1 * $.3 = Id($)
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($.2 * $.1 * $.2ˆ-1 * $.1)ˆ2 = Id($)
$.1 * $.2ˆ-3 * $.1 * $.2ˆ-1 * $.3 * $.1 *

$.2ˆ-1 * $.3 = Id($)
($.1 * $.2ˆ-1)ˆ5 = Id($)*/

/*The above presentation of q can be given by
Q<e,f,g>:=Group<e,f,g|eˆ2,fˆ6,gˆ2,(fˆ-1*g)ˆ2,
fˆ-2*e*fˆ2*g*e*g, (f*e*fˆ-1*e)ˆ2,
e*fˆ-3*e*fˆ-1*g*e*fˆ-1*g,(e*fˆ-1)ˆ5>;
ff,Q1,kk:=CosetAction(Q,sub<Q|Id(Q)>); */

Generators(q);

EE:=q! (1, 2)(3, 6)(4, 9)(5, 10)(7, 11)(8, 12);

FF:=q! (1, 3, 7, 6, 11, 2)(4, 5, 9, 10, 12, 8);

GG:=q! (1, 4)(2, 5)(3, 8)(6, 10)(7, 12)(9, 11);

q eq sub<q|EE,FF,GG>;

/*true*/
T[2];

H:=G1!(2, 3)(6, 10)(8, 14)(9, 16)(11, 15)(13, 23)
(18, 24)(21, 36)(22, 39)(25,

45)(26, 30)(27, 49)(29, 51)(32, 55)(33, 38)(35,
58)(37, 46)(40, 52)(42,

66)(44, 68)(47, 53)(54, 64)(56, 78)(57, 81)(59,
79)(60, 73)(61, 87)(62,

88)(63, 89)(71, 96)(75, 101)(76, 104)(77, 106)
(82, 100)(84, 114)(85,

102)(93, 119)(94, 122)(98, 124)(99, 103)(107,
134)(109, 123)(110,

137)(111, 132)(112, 139)(117, 143)(126, 149)
(128, 150)(129, 140)(133,

147)(135, 145)(146, 152)(151, 155)(153, 161);
T[3];

I:=G1!(2, 4)(3, 5, 7)(6, 11, 9, 17, 13, 12)(8, 15)
(10, 18, 20)(14, 24, 43, 23, 41,

26)(16, 28, 30)(19, 33, 32, 45, 35, 34)(21, 37,
22, 40, 31, 38)(25, 46,
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47)(29, 52, 50, 72, 54, 53)(36, 58, 83, 64, 39,
60)(42, 49, 44, 69, 48,

67)(51, 73, 55)(56, 79, 57, 82, 70, 80)(59, 85,
63)(61, 65, 62)(66, 68,

92)(71, 95, 93)(74, 99, 98, 89, 77, 100)(75, 102,
76, 105, 97, 103)(78,

106, 132, 124, 104, 108)(81, 111, 101)(84, 87,
86, 115, 90, 88)(91, 119,

94, 96, 121, 120)(107, 135, 130)(109, 113, 110)
(112, 123, 138, 146, 127,

140)(116, 142, 117)(118, 144, 125, 134, 126,
145)(128, 131, 129)(133,

150, 136, 152, 148, 137)(139, 147)(141, 143)
(151, 157, 156)(153, 159,

160)(154, 161)(155, 158);
T[4];

J:=G1!(1, 2)(3, 6)(4, 8)(5, 9)(7, 13)(10, 19)(11,
21)(12, 22)(14, 25)(15, 27)(16,

29)(17, 31)(18, 32)(20, 35)(23, 42)(24, 44)(26,
48)(28, 50)(30, 54)(33,

56)(34, 57)(36, 59)(37, 61)(38, 62)(39, 63)(40,
65)(41, 47)(43, 46)(45,

70)(49, 71)(51, 74)(52, 75)(53, 76)(55, 77)(58,
84)(60, 86)(64, 90)(66,

91)(67, 93)(68, 94)(69, 95)(72, 97)(73, 98)(78,
107)(79, 109)(80,

110)(81, 112)(82, 113)(83, 85)(87, 116)(88,
117)(89, 118)(92, 121)(96,

123)(99, 125)(100, 126)(101, 127)(102, 128)
(103, 129)(104, 130)(105,

131)(106, 133)(108, 136)(111, 138)(114, 141)
(115, 142)(119, 146)(120,

140)(122, 147)(124, 148)(132, 135)(134, 151)
(137, 153)(139, 154)(143,

155)(144, 156)(145, 157)(149, 158)(150, 159)
(152, 160)(161, 162);

/*Now, a presentation of NL[2]=<A,B,C,D> is
<w,x,y,z|wˆ3,xˆ3,yˆ3,zˆ3,(w,x),(w,y),(x,z),
(w,z),(x,z),(y,z)> becuase of
/*FPGroup(NL[2]);
Finitely presented group on 5 generators
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Relations
$.2ˆ3 = Id($)
$.3ˆ3 = Id($)
$.4ˆ3 = Id($)
$.5ˆ3 = Id($)
($.2, $.3) = Id($)
($.2, $.4) = Id($)
($.3, $.4) = Id($)
($.2, $.5) = Id($)
($.3, $.5) = Id($)
($.4, $.5) = Id($)
$.1 = Id($)*/

and a presentation of q=<EE,FF,GG> is
<e,f,g|eˆ2,fˆ6,gˆ2,(fˆ-1*g)ˆ2,fˆ-2*e*
fˆ2*g*e*g, (f*e*fˆ-1*e)ˆ2,
e*fˆ-3*e*fˆ-1*g*e*fˆ-1*g,(e*fˆ-1)ˆ5>;
from above*/

/*Need to find the action of q on NL[2], since
this is the semi direct part*/

for i,j,k,l in [1..3] do if AˆH eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

3 1 3 3

for i,j,k,l in [1..3] do if AˆI eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

3 3 1 3

for i,j,k,l in [1..3] do if AˆJ eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

2 3 3 3

for i,j,k,l in [1..3] do if BˆH eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

1 3 3 3

for i,j,k,l in [1..3] do if BˆI eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;



192

3 3 3 1

for i,j,k,l in [1..3] do if BˆJ eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

1 1 1 1

for i,j,k,l in [1..3] do if CˆH eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

3 3 1 3

for i,j,k,l in [1..3] do if CˆI eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

1 3 3 3

for i,j,k,l in [1..3] do if CˆJ eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

3 3 2 3

for i,j,k,l in [1..3] do if DˆH eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

3 3 3 1

for i,j,k,l in [1..3] do if DˆI eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

2 2 2 2

for i,j,k,l in [1..3] do if DˆJ eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end
for;

3 3 3 2

/* Writing q=<EE,FF,GG> in terms of NL[2]=
<A,B,C,D>, by pulling up:
> FPGroup(q);
Finitely presented group on 3 generators
Relations

$.1ˆ2 = Id($)
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$.2ˆ6 = Id($)
$.3ˆ2 = Id($)
($.2ˆ-1 * $.3)ˆ2 = Id($)
$.2ˆ-2 * $.1 * $.2ˆ2 * $.3 * $.1 * $.3 =

Id($)
($.2 * $.1 * $.2ˆ-1 * $.1)ˆ2 = Id($)
$.1 * $.2ˆ-3 * $.1 * $.2ˆ-1 * $.3 * $.1 *

$.2ˆ-1 * $.3 = Id($)
($.1 * $.2ˆ-1)ˆ5 = Id($) */

T:=Transversal(G1,NL[2]);
ff(T[2]) eq EE;
/* true */
ff(T[3]) eq FF;
/* true */
ff(T[4]) eq GG;
/* true */
Order(T[2]);
/* 2 */
Order(T[3]);
/* 6 */
Order(T[4]);
/* 2 */
Order(T[2]ˆ-1*T[3]); /*this is (FFˆ-1*EE)ˆ5,
($.1 * $.2ˆ-1)ˆ5 = Id($)*/
/* 5 */
/*Order is 5, does not change, so leave alone*/

Order(T[3]ˆ-1*T[4])ˆ2;
/*36, changes so run code*/
/*T[3]ˆ-1*T[4] in NL[2]; true*/

for i,j,k,l in [1..3] do
if (T[3]ˆ-1*T[4])ˆ2 eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end for;

/*(FFˆ-1*GG)ˆ2*/
/* 1 3 2 3*/

/* Thus, (fˆ-1*g)ˆ2=w*xˆ3*yˆ2*zˆ3=
w*yˆ2 */

Order(T[3]*T[2]*T[3]ˆ-1*T[2]);
/*($.2 * $.1 * $.2ˆ-1 * $.1)ˆ2 = Id($),
leave alone*/
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/* 2 */

/* Thus, (f*e*fˆ-1*e)ˆ2=identity
(does not change)) */

Order(T[3]ˆ-2*T[2]*T[3]ˆ2*T[4]*T[2]*T[4]);
/*$.2ˆ-2 * $.1 * $.2ˆ2 * $.3 * $.1 * $.3 =

Id($)*/

/* 3, changes, so run code */
T[3]ˆ-2*T[2]*T[3]ˆ2*T[4]*T[2]*T[4] in NL[2];

/*true*/

for i,j,k,l in [1..3] do
if (T[3]ˆ-2*T[2]*T[3]ˆ2*T[4]*T[2]*T[4]) eq
Aˆi*Bˆj*Cˆk*Dˆl then i,j,k,l;

end if; end for;

/* 2 1 1 1*/

/* Thus, fˆ-2*e*fˆ2*g*e*g=wˆ2*x*y*z */

Order((T[3]*T[2]*T[3]ˆ-1*T[2])ˆ2);

/* 1 */

/* Thus, (f*e*fˆ-1*e)ˆ2=identity remains
unchanged. */

Order(T[2]*T[3]ˆ-3*T[2]*T[3]ˆ-1

*T[4]*T[2]*T[3]ˆ-1*T[4]);

/* 3 */

for i,j,k,l in [1..3] do
if T[2]*T[3]ˆ-3*T[2]*T[3]ˆ-1*T[4]*T[2]*
T[3]ˆ-1*T[4] eq Aˆi*Bˆj*Cˆk*Dˆl
then i,j,k,l; end if; end for;

/* 1 2 3 3 */

/* Thus, e*fˆ-3*e*fˆ-1*g*e*fˆ-1*g=w*xˆ2 */
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Order((T[2]*T[3]ˆ-1)ˆ5);

/* 1 */
/* Thus, (e*fˆ-1)ˆ5 =
identity remains unchanged. */

/* The following shows that G1 is isomorphic
to 3ˆ4:ˆ{\cdot}(S_5x2) */

/*w,x,y,z is for 3ˆ4, and e, f, g is q*/

H<w,x,y,z,e,f,g>:=Group<w,x,y,z,e,f,g|
wˆ3,xˆ3,yˆ3,zˆ3,(w,x),(w,y),(x,z),(w,z),(x,z),(y,z),
eˆ2,fˆ6,gˆ2,(fˆ-1*g)ˆ2=w*yˆ2,fˆ-2*e*fˆ2*g*e*g=
wˆ2*x*y*z, (f*e*fˆ-1*e)ˆ2,
e*fˆ-3*e*fˆ-1*g*e*fˆ-1*g=w*xˆ2,(e*fˆ-1)ˆ5,
wˆe=x,wˆf=y,wˆg=wˆ2,xˆe=w,xˆf=z,xˆg=w*x*y*z,
yˆe=y,yˆf=w,yˆg=yˆ2,zˆe=z,zˆf=wˆ2*xˆ2*yˆ2*zˆ2
,zˆg=zˆ2>;
#H;
/* 19440 */
#G1;
/* 19440 */
f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);
s:=IsIsomorphic(G1,H1);
s;
/* true */
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