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ABSTRACT

In this project, we searched for new constructions and symmetric presenta-
tions of important groups, nonabelian simple groups, their automorphism groups, or
groups that have these as their factor groups. My target non-abelian simple groups
included sporadic groups, linear groups, and alternating groups. In addition, we dis-
covered finite groups as homomorphic images of progenitors and proved some of their
isomorphism type and original symmetric presentations. In this thesis we found origi-
nal symmeric presentations of Mz, J; and the simplectic groups S(4,4) and S(3,4) on
various control groups. Using the technique of double coset enumeration we constucted
Jo as a homomorphic image of the permutation progenitor 2*! : (10 x 2). From our
monomial progenitor 11*4 : (2 : 4) we found a homomorphic image of Mj;. In the follow-
ing chapters we will discuss how we went about obtaining homomorphic images, some

constructions of the Cayley Diagrams, and how we solved some extension problems.
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Introduction

We will begin our discussion of control groups and how a progenitor of infi-
nite order is constructed from a control group N. We used the computer based program
M AG M A to help facilitate the construction of such progenitors to obtain homomorphic
images of varios interesting groups, and thus to research these groups in more detail.

With the help of M AGM A we performed double coset enumeration on groups such as

2*10:2x(5:4)
—Lag—1xt]6 [z~ Ly~ Lxaxt]d,[22xt]8,[xxt]®

Sg : Ca over our control group 0 We also proved the
isomorphism types of some groups such as G = 3* : (S5 x 2). We discuss monomial
progenitors in more detail, and finally overview all homomorphic images obtained from

our progenitors.

We begin by defining the progenitor. A progenitor is a semi-direct product
of the following form: P = 2" : N = {7 w | 7 € N, w a reduced word in the ¢;},
where 2*" denotes the free product of n copies of the cyclic group of order 2 generated
by involutions ¢; for ¢ = 1,...,n; and N is a transitive permutation group of degree n
which acts on the free product by permuting the involutory generators. We refer to the
subgroup N as the control subgroup and to the involutory generators of the free product
as the symmetric generators. The unique progenitor is then factored by the appropriate
relations that produce finite homomorphic images. In the continuing section, I will

demonstrate how the process is done.

Definition 0.1. [Led87] A symmetric presentation of a group G is a definition of G of
the form:

Q*TL.N
TIW1,T2W,...

G

I

where 2*™ denotes a free product of n copies of the cyclic group of order 2, N is transitive



permutation group of degree n which permutes the n generators of the cyclic group by
conjugation, thus defining semi-direct product, and the relators mw1, mows, ... have been

factored out.

Before factoring the progenitor m*" : N, where m is the order of t;5, n is the
number of ¢, and N is the control group, by necessary relations, we need to write a
permutation progenitor. Since the progenitor m*" : N is infinite we write a permutation
progenitor where we take N to be transitive on n letters. So we have a general form of

a permutation progenitor in the following form:
<z y,t| <z oy >= N, t" (t,N') > where N' is the stabiliser of i in N

Since t commutes with the stabiliser of 7 in N, (¢, N*), we can obtain the num-
ber of conjugates of ¢. Using the definition we have that [G : Cy4(a)] is the number of
conjugates of H in G. So to find the index of the centraliser of N and ¢ also denoted
as Centraliser|N,t], we are going to calculate [G : Cy4(a)]. Note that the index of the
Centraliser|N,t] is equal to the number of conjugates of ¢ and also equal to the sta-
biliser of a single point in N. Applying this concept we are going to find the permutation

progenitor of the following example, 2*10 : (52 : 2).

EXAMPLE: In this example, we will illustrate how to write a progenitor for
the infinite progenitor 2*1° : (52 : 2). Our control group N = (52 : 2) is transitive on 10
letters and (52 : 2) =< (2,4,6,8,10),(1,6)(2,7)(3,8)(4,9)(5,10) > where the generators
of N are x ~ (2,4,6,8,10) and y ~ (1,6)(2,7)(3,8)(4,9)(5,10). Then the presentation
of (5%:2) is

1 1

<zyl® P r b kysa tky sy ko ry >

Now we let ¢ be a symmetric generator where ¢t ~ t; and is of order 2. Since
we let ¢ be £ we must compute the stabiliser of the single point 1 in N, denoted N'. So
N! =< (2,4,6,8,10) > . Notice that this element that fixes 1 is the generator z. Then

we write (t, N*) = (t,x) to denote that N commutes with o our point stabiliser. Thus,



our permutation progenitor of 2*10 : (52 : 2) is given as follows:
<z tled e b xy kT b xysa vy s xy, 12 (tx) >

In the continuing chapters we will apply this procedure to find permutation
progenitors for the progenitors of the form m*" : N. In the next example we will show

how to facor the above progenitor by first order relations.



Chapter 1

Definitions, Theorems, and

Lemmas

1.1 Preliminaries

1.1.1 Definitions

Definition 1.1. [Rot95] A group G (G, *) is a nonempty collection of elements with

an associative operation *, such that:
e there exists an identity element, e € G such that exa = a*e for all a € G;
o for every a € G, there exists an element b € G such that axb=e =0bx*a.

Definition 1.2. [Rot95] Let G be a set. A (binary) operation on G is a function that

assigns each ordered pair of elements og G an element on G.

Definition 1.3. [Rot95] For group G, a subgroup S of G is a nonempty subset where
s € G implies s~ € G and s,t € G imply st € G. We denote subgroup S of G as
S<G.

Definition 1.4. [Rot95] Let H be a subgroup of group G. H is a proper subgroup of
G if H # G. We denote this as H < G.

Definition 1.5. [Rot95] A symmetric group, Sy, is the group of all permutations of

X, where X € N. Sx is a group under compositions.



Definition 1.6. [Rot95] If X is a nonempty set, a permutation of X is a bijection
¢p: X — X.

Definition 1.7. [Rot95] A semigroup (G, x) is a nonempty set G equipped with an

associative operation *.

Definition 1.8. [Rot95] If x € X and ¢ € Sx, then ¢ fixes z if ¢(x) = x and ¢ moves
v if $(x) £

Definition 1.9. [Rot95] For permutations o, € Sx, a and [ are disjoint if every

element moved by one permutation is fixed by the other. Precisely,

if a(x) # z, then B(a) = a and if a(y) =y, then B(y) # y.

Definition 1.10. [Rot95] A permutation which interchanges a pair of elements is a

transposition.
Definition 1.11. [Rot95] In group G, if a,b € G, a and b commute if a xb = b*a.

Definition 1.12. [Rot95] A group G is abelian if every pair of elements in G commutes

with one another.

Definition 1.13. [Rot95] Let X be a set and A be a family of words on X. A group
G has generators X and relations A if G = F/R, where F is a free group with
basis X and R is the normal subgroup of F generated by A. We say < X|A > is a

presentation of G.

Definition 1.14. [Cur07] Let G be a group and T = t1,to,...,t, be a symmetric gen-
erating set for G with |t;| = m. Then if N = Ng(T), we define the progenitor to be
the semi-direct product m*™ : N, where m*™ is the free product of n copies of the cyclic

group C,,.

Definition 1.15. [Rot95] Let G be a group. If H < G, the normalizer of H in G is
defined by Ng(H) = {a € GlaHa™' = H}

Definition 1.16. [Rot95] Let G be a group. If H < G, the centralizer of H in G is:

Co(H)={x€G:[z,h] =1 forallh € H}.



Definition 1.17. [Rot95] Let p be prime. If G = Zy, X Zyp X -+ - X Ly, then we say G is

elementary abelian.

Definition 1.18. [Rot95] Let (G,*) and (H,o) be groups. The function ¢ : G — H
is a homomorphism if ¢(a *x b) = ¢(a) o ¢(b), for all a,b € G. An isomorphism is
a bijective homomorphism. We say G is isomorphic to H, G = H, if there exists an

isomorphism f: G — H.

Definition 1.19. [Rot95] Let f : G — H be a homomorphism. The kernel of a
homomorphism is the set {x € G|f(xz) = 1}, where 1 is the identity in H. We denote
the kernel of f as ker f .

Definition 1.20. [Rot95] Let X be a nonempty subset of a group G. Let w € G where

€1 .€2

w=zx]'xy’ ... x5, with x; € X and e; = £1. We say that w is a word on X.

s

Definition 1.21. [Rot95] Let a € G, where G is a group. The conjugacy class of a
is given by a® = {a%g € G} = {9 'ag|g € G}

Definition 1.22. [Rot95] The Dihedral Group D,,, n even and greater than 2, groups
are formed by two elements, one of order 5 and one of order 2. A presentation for a

Dihedral Group is given by < a, b|a%, b2, (ab)? >.

Definition 1.23. [Rot95] A general linear group, GL(n,F) is the set of all n X n

matrices with nonzero determinant over field IF.

Definition 1.24. [Rot95] A special linear group, SL(n,F) is the set of all n x n

matrices with determinant 1 over field F.

Definition 1.25. [Rot95] A projective special linear group, PSL(n,F) is the set

of all n X n matrices with determinant 1 over field F factored by its center:

PSL(n,F) = Ly, (F) = m.

Definition 1.26. [Rot95] A projective general linear group, PGL(n,TF) is the set

of all n X n matrices with nonzero determinant over field F factored by its center:

_ GL(n,F)
PGL(LT) = 5o



Definition 1.27. [Led87/(Monomial Character) Let G be a finite group and H < G.

The character X of G is monomial if X = A&, where X is a linear character of H.

Definition 1.28. [Led87](Character) Let A(x) = (A;i;j(x)) be a matriz representation

of G of degree m. We consider the character polynomial of A(x), namely

[ — ain(z) —ap(x) -+ —aim(z) ]
det(\ — A(x) = | 7)) e ()
| A—ami(z) —am2(x) 0 —amm(T) |

This is a polynomial of degree m in X\, and inspection shows that the coefficient of —\™ 1

s equal to

¢ =ay1(z) + age(x) + ... + amm(z)

It is customary to call the right-hand side of this equation the trace of A(x), abbreviated
to trA(x), so that

o(x) = trA(x)

We regard ¢(x) as a function on G with values in K, and we call it the character of

A(z).

Definition 1.29. [Led87] The sun of squares of the degrees of the s=distinct irreducible
characters of G is equal to |G|. The degree of a character x is x(1). Note that a

character whose degree is 1 is called a linear character.

Definition 1.30. [Led87] (Lifting Process) Let N be a normal subgroup of G and
suppose that Ay(N,) is a representation of degree m of the group G/N. Then A(x) =
Ao(N(z) defines a representation of G/N lifted from G/N. If ¢o(Nz) is a character
of Ag(Nz), then ¢p(x) = ¢o(Nx) is the lifted character of A(z). Also, if u € N, then
A(u) = L, ¢p(u) = m = ¢(1). Then the lifting process preserves irreducibility.

Definition 1.31. [Led87] (Induced Character) Let H < G and ¢(u) be a character
of H and defined ¢(x) =0 if x € H, then



gbG(x): o(x) ze€H
0 v¢ H

s an induced character of G.

Definition 1.32. [Led87] Let G be a finite group and H be a subgroup such that
[G: H| =n. Let Cy, a = 1,2,...,m be the conjugacy classes of G with |Cy| = he, a0 =
1,2,3,...,m. Let ¢ be a character of H and ¢ be the character of G induced from the
character ¢ of H up to G. The values of ¢© on the m classes of G are given by:

¢§ = hﬁ Z o(w),a=1,2,3,...,m.

@ weHNCq
Definition 1.33. [Rot95] Let G be a group. The order of G is the number of elements

contained in G. We denote the order of G by |G).

Definition 1.34. [Rot95] Let G be a group such that K < G. K is normal in G if
gKg™' = K, for every g € G. We will use K <G to denote K as being normal in G.

Definition 1.35. [Rot95] Let G be a group and S C G. Fort € G, a right coset of S
in G is the subset of G such that St = {st: s € G}. We say t is a representative of
the coset St.

Definition 1.36. [Rot95] Let G be a group. The index of H < G, denoted [G : H|, is
the number of right cosets of H in G.

Definition 1.37. [Rot95] Let G be a group and H and K be subgroups of G. A double
coset of H and K of the form HgK = {HgK|k € K} is determined by g € G.

Definition 1.38. [Rot95] Let N be a group. The point stabiliser of w in N is given
by:
N¥ ={n € Njw" = w}, where w is a word in the t;’s.
Definition 1.39. [Rot95] Let N be a group. The coset stabiliser of Nw in N is given
by:
N®) = {n € N|Nw" = Nw}, where w is a word of the t;’s.

Definition 1.40. [Rot95] Let G be a group. The center of G, Z(G), is the set of all

elements in G that commute with all elements of G.



1.1.2 Theorems

Theorem 1.41. [Led87] The number of irreducible character of G is equal to the number

of conjugacy classes of G

Theorem 1.42. [Rot95] Let ¢ : G — H be a homomorphism with kernel K. Then K
is a normal subgroup of G and G/K = im¢.

Theorem 1.43. [Rot95] Let N and T be subgroups of G with N normal. Then NNT
is normal in T and T/(NNT) = NT/N.

Theorem 1.44. [Rot95] Every permutation o € S, is either a cycle or a product of

disjoint cycles.

Theorem 1.45. [Rot95] Let f : (G,*) — (G',0) be a homomorphism. The following
hold true:

o f(e) =€, where € is the identity in G,
e Ifac G, then f(a™!) = f(a)™!,
e Ifae G andn € Z, then f(a™) = f(a)™.

Theorem 1.46. [Rot95] The intersection of any family of subgroups of a group G is
again a subgroup of G.

Theorem 1.47. [Rot95] If S < G, then any two right (or left) cosets of S in G are

either identical or disjoint.

Theorem 1.48. [Rot95] If G is a finite group and H < G, then |H| divides |G| and
(G H] = |G|/|H].

Theorem 1.49. [Rot95] If S and T are subgroups of a finite group G, then
|ST||SNT|=|S||T|.

Theorem 1.50. [Rot95] If N < G, then the cosets of N in G form a group, denoted by
G/N, of order [G : NJ.
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Theorem 1.51. [Rot95] The commutator subgroup G’ is a normal subgroup of G. More-
over, if H<1G, then G/H is abelian if and only if G' < H.

Theorem 1.52. [Rot95] Let G be a group with normal subgroups H and K. If HK = G
and HNK =1, then G =2 H x K.

Theorem 1.53. [Rot95] If a € G, the number of conjugates of a is equal to the index

of its centeralizer:
|a% =[G : Ca(a)],
and this number is a diwvisor of |G| when G is finite.

Theorem 1.54. [Rot95] If H < G, then the number ¢ of conjugates of H in G is equal
to the index of its normalizer: ¢ = [G : Ng(H)|, and ¢ divides |G| when G is finite.
Moreover, aHa™' = bHb~ ' if and only if b*a € Ng(H).

Theorem 1.55. [Rot95] Every group G can be imbedded as a subgroup of Sg. In
particular, if |G| = n, then G can be imbedded in S,,.

Theorem 1.56. [Rot95] If H < G and |G : H| = n, then there is a homomorphism
p: G — S, with kerp < H. The homomorphism p is called the representation of G on
the cosets of H.

Theorem 1.57. [Rot95] If X is a G-set with action o, then there is a homomorphism
& : Sy giwven by & : x — gxr = a(g,x). Conversely, every homomorphism ¢ : G — Sx

defines an action, namely, gr = p(g)x, which makes X into a G-set.

Theorem 1.58. [Rot95] Every two composition series of a group G are equivalent.

We will refer to this Theorem as the Jordan-Holder Theorem.

Theorem 1.59. [Rot95] Let X be a faithful primitive G-set of degree n > 2. If H <G
and if H # 1, then X is a transitive H-set. Also, n divides |H]|.

1.1.3 Lemmas

Lemma 1.60. [Rot95] Let X be a G-set, and let xy € X.

e IfH <G, then Hx N Hy # () implies Hxr = Hy.
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o If H <G, then the subsets Hx are blocks of X.

Lemma 1.61. (Curtis Lemma)
[Rot95] NN < t;,t; >< Cn(NY) where Ni; denotes the stabilizer in N of the

two points i and j.

Note:
If the |t;| = 2, |t;| = 2, and |¢;tj|=n, then < t;,t; >= Dy,. The Dihedral group of order

2n. We also know the center of Ds,:

1, if n is odd
Center(Day,) =

< (tit;)2 >, ifnis even.

Lemma 1.62. [Rot95]

(2) If g belongs to N and i9 =i and j9 = j then we should factor the progenitor by the

relation (t;t;)* = g for any positive integer k. .

(ii) if g belongs to N and i9 = j and j9 =i then we should factor the progenitor by the
relation (gt;)* =1 for any odd positive integer k.

In other words we have:

(titj)* =g where k is even and fizes 1 and 2

(gt:)¥ =1  where k is odd and g sends 1 to 2
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Chapter 2

Methods on Finding Progenitors

2.1 Permutation Progenitors

2.2 Factoring m* : N by the First Order Relations

In order to factor the progenitor, m*" : N, by all the first order relations, first,
we compute the conjugacy classes of our group N. Then we compute the centralisers
of representatives of each non-identity class. Lastly, we determine the orbits for each
representative. The detailed work for factoring a progenitor by the first order relations
is shown in this section.

EXAMPLE In order to factor 2*!° : (52 : 2) by first order relations we must
follow a series of steps. We will demonstrate the procedure here; we begin by using the

following codes in MAGMA.

S:=Sym(10);
xx:=S!(2, 4, 6, 8, 10);
yy:=S! (1, 6) (2, 7)(3, 8) (4, 9)(5, 10);
N:=sub<S|xx,yy>;
#N;
/*50%/
FPGroup (N) ;
Finitely presented group on 2 generators

Relations
Relations
.1°5 = 1Id

272 = 1Id
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171 0« .2 % 0171 % L2« .1 % 02 x .1 % .2 = 1Id
We must convert this in terms of x and y to get the presentation of 2*10 : (52 : 2).

1 1

<zylad P r b xy s b xyxrry sy >

We now have to find the conjugacy classes of our control group N. We can find the
conjugacy classes of N by taking any element k of N and conjugating it by all elements
of N. We do this for all elements, but since we sometimes have to compute these

conjugacy classes for large groups we use the assistance of M AGM A. We do this in
MAGMA as follows:

C:=Classes (N);

#C;

20

for 1 in [2..20] do

i, Orbits (Centraliser (N,C[i][31));

end for;

for j in [2..20] do

Cl31I[3]1;

for i in [1..50] do if ArrayP[i] eq C[3J][3] then Schlil];
end i1if; end for; end for;

This information is given in the following table.



Table 1.1: Conjugacy Classes of N =52 : 2

Class | Representative of the | # of elements | Orbits
class in the class
: 1},{2},{3},{4}
C Identit 1 {1} ’ !
! M {5},{6},...,{10}
(y):(l, 6)(27 7)(37 8)(47 {17 67 107 57 9;
Cy 9)(5, 10) 5 4,8,3,7,2}
(zy)?=(1, 3, 5, 7, 9)(2, {1, 6, 8, 10, 3,
Cs 4,6, 8, 10) 1 2,5,4,7,9}
(22y)?=(1, 5, 9, 3, 7)(2, {1, 6, 8, 10, 3,
C, 6, 10, 4, 8) 1 2,5,4,7,9}
o (yz=2)?% =(1, 7, 3, 9, 1 {1, 6, 8, 10, 3,
5 5)(2, 8, 4, 10, 6) 2,5,4,7,9}
o (yo~H2%=(1, 9, 7, 5, 1 {1, 6, 8, 10, 3,
6 3)(2, 10, 8, 6, 4) 2,5,4,7,9}
C (ywy):(]‘7 37 57 77 9) 2 {17 37 57 77 9
7 1.{2, 10, 8, 6,
4}
C (y"BQy):(l? 57 97 37 7) 2 { 17 5’ 9’ 37 7 }’
8 {2, 10, 8, 6, 4}
o (y2~%y)=(1,7,3,9,5) |, {1,7,3,9,5},
9 {2, 10, 8, 6, 4}
o (yr—1y)=(1, 9, 7, 5, 3) 5 {1,9,7,5,3
10 1, {2, 10, 8, 6,
4}

14

To find all first order relations we take a representative from each class Cy, ..

Cy (since C is the identity class) and right multiply it by a representative from each

orbit until we complete all twenty classes. Let us illustrate an example of obtaining the

first order relation for Cy. From table (1.1) we see the representative for this class is y

and the representative of the first orbit is {1, 6, 10, 5, 9, 4, 8, 3, 7, 2 }. We will right

multiply by 6 in this case, but any representative would have worked. We have y x ¢

where t ~ t1. Now we find a permutation in terms of x and y that takes t; to get tg

and that is y. So we get the first relation to be (yt)®. Following the same process we

are able to obtain all possible first order relations which are:
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Table 1.1: Conjugacy Classes of N =52 : 2

Class | Representative of the | # of elements | Orbits
class in the class
(zyz~ty)=(1, 9, 7, 5, {1, 9, 7, 5,
Ci | 3)(2,4,6,8, 10) 2 31{2, 4, 6, 8,
10}
(z?yz—?y)=(1, 7, 3, 9, {1, 7, 3, 9,
Cia | 5)(2,6,10, 4, 8) 2 51,42, 6, 10, 4,
8}
(zya®y)®=(1, 5, 9, 3, {1, 5, 9, 3,
Cis | 7)(2,4,6,8, 10) 2 7342, 4, 6, 8,
10}
(z?ya~'y)*=(1, 9, 7, 5, {1,9, 7,5, 3},
Cu | 3)(2,6,10,4,8) 2 {2, 6, 10, 4, 8}
C (yxyl,72)2 :(17 37 57 77 2 {17 37 5a 77 9}7
1 9)(2, 8, 4, 10, 6) {2, 8, 4, 10, 6}
o (yz~2yx=1)%2=(1, 7, 3, 5 {1,7,3,9, 5},
1619, 5)(2, 10, 8, 6, 4) {2, 10, 8, 6, 4}
o (y2)=(1, 8, 3,10, 5,2, | {1, 8, 3, 10, 5,
T 17,4,9,6) 2,7,4,9, 6}
o (zyx?)=(1, 10, 7, 6, 3, i {1,10,7,6, 3,
120,85 4) 2,9,8,5,4},
o (x2yx~1)=(1, 4, 5, 8, : {1,4,5,8,9, 2,
9 19,2 3,67, 10) 3,6, 7, 10}
o (x=1y)=(1,6,9, 4,7, 2, . {1,6,9,4,7, 2,
215,10, 3, 8) 5, 10, 3, 8}

(@xy)? ) (2% xy)?* ), ((y 22+ ) ((yx a7 1)+ )%, (g wx y + 1)), (y + 27 %
yxt), (yxa2xyx ) (yxa L xyxt), (xryrxac txyxt), (@2 xyxax 2 xyxt)k (zx
yraZryxt) (@2 xyralxyx ) (yxoxyraz 2 xt), (yrr 2xy Tl x1)°, (y* 1z *
P (rxy*xa? )9, (x 2 xyxa Lxt) (7 xyxt)s

To obtain finite homomorphic images, we use M AGM A to run a,...,s for numerical
values we choose, for example up to 10. In other words, the highest value for a, ..., s we
will see is 10. An example of a finite group given through M AGM A with this progenitor

is as follows:

a:=0;b:=0;c:=0;d:=0;e:=0;£:=0;9g:=0;h:=0;1:=0;j:=0;k:=0;1:=0;



G<x,vy,
(t,x),

(yxt) "a

t>:=Group<x,y,t| x5,y 2, x -1 y*xx " —1lxy*xx*yxxX*y,

t°2,

((x x y) "2xt) " b,
((x72 % y) "2%t) "c
((y = x°=2)72%t) "d,

y * x
y * x

(
(
(
(
(
(
(x
(

*
X * Yy
(x~2 «*
(y » x
(y = x

(y = x7=1)72xt) "

"2 o« yxt) g,
"=2 % yx*t) "h,

"-1 % yxt) "1,

* x°=1 % yxt) "7,

y * x°=2 *x y*t) "k,
* X2 x yxt) "1,

y * x =1 % y*t)'m
* Y ok x"-2*t) "

=2 x y x» x"—1%t) "o,

(y = x*t)"p,

X *x Yy

~.

O N

00
4 Gll

14

(
(
(
>,
G;
1
f
k;
1

* x"2%t) "q,

X"=2 x y * X —l*t)
x"=1 % yxt)”~

k:=CosetAction (G, sub<G|x,vy>);

CompositionFactors (Gl);

G

= — %k — % — ¥ — % — % —

Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic (5)
Cyclic (5)

Cyclic (5)

16
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This group of order 1000 is isomorphic to 5% : Dg. Likewise we find many more finite
homomorphic images. A complete list can be found under Chapter 8.

We will now demonstrate how to write progenitors using other methods and
factoring these progenitors by first order relations. Particularly, monomial progenitors

and the Curtis Lemma progenitors.

2.3 Curtis Lemma Progenitors

In order to find a finite homomorphic image we take a progenitor of the form
m*™ . N and factor by relations. However, finding simple groups factor by relators can be
difficult since we want to produce interesting groups. To help find such images, Robert
Curtis discovered a lemma where the elements of the control group of N can be written
in terms of symmetric generators. In this section we are going to use the Curtis Lemma
to generate symmetric presentations for progenitors to find homomorphic images. We
find the stabilizer of two elements say 1 and 2 and we determine the centralizer of the
two elements. Note: The relations found with the Curtis Lemma are considered as
additional relations.

Example Factoring 2*36 : (32 : 23) by Curtis Lemma Relations:

A presentation for G is given by: < v? w?*, 2?2, y3, 23 Zxm, (whx0)2 (zry )2 v
vz, (x 22 (g, 2), wry

b w_
«w sy * 271 > As before, we let t ~ t; where t
is of order 2, and find the permutation that stabilises the subgroup < t; > and write it

this permutation in terms of v, w, z,y, 2.

S:=Sym(36);

vv:=S! (1, 5) (2, 6)(3, 7) (4, 8) (9, 17) (10, 19) (11, 18) (12, 20)
(13, 16) (21, 29) (22, 30) (23, 31) (24, 32) (25, 28) (33, 306);
ww:=S!(1, 6, 9, 19) (2, 5, 10, 17) (3, 8, 11, 20) (¢4, 7, 12, 18)
(13, 14, 16,15) (21, 34, 29, 27) (22, 36, 31, 28) (23, 33, 30, 25)
(24, 35, 32, 26);

xx:=S!(1, 9) (2, 10) (3, 11) (4, 12) (5, 17) (6, 19) (7, 18) (8, 20)
(13, 16) (14,15) (21, 29) (22, 31) (23, 30) (24, 32) (25, 33)

(26, 35) (27, 34) (28, 36);

yy:=3!(1, 13, 12) (2, 14, 11) (3, 15, 10) (4, 16, 9) (5, 24, 25)
(6, 22, 26) (7, 23, 27)(8, 21, 28) (17, 33, 32) (18, 34, 30)
(19, 35, 31) (20, 36, 29);

zz:=S!'(1, 17, 21) (2, 18, 22) (3, 19, 23) (4, 20, 24) (5, 9, 29)
(6, 11, 30) (7, 10, 31) (8, 12, 32) (13, 33, 28) (14, 34, 26)
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(15, 35, 27) (16, 36, 25);

N:=sub<S|vv,ww, XxX,Vyy, 22>;

#N;

NN<v,w, X,y, z>:=Group<v,w,X,y,z|v 2, w 4,x"2,y"3,2"3,

W =2%x, (W =1xv) "2, (xxy " =1) "2, vxz " =1lxv*z, (xxz"=-1) "2,
(v,2z),wrxy —1lsxw =1xy*xz"—1>;

N:=sub<S|vv,ww, XX,VY, 2Z2>;

N;

Nl:=Stabiliser (N, 1);

(2, 3)(6, 7)(9, 29) (10, 30) (11, 31) (12, 32) (13, 28) (14, 27)
(15, 26) (16, 25) (17, 21) (18, 23) (19, 22) (20, 24) (34, 35) =

v x X * z -1

Therefore we have, N' = {(2,3)(6,7)(9,29)(10,30)(11,31)(12,32)(13, 28)
(14,27)(15,26)(16,25)(17, 21)(18, 23)(19, 22)(20, 24)(34, 35)} = {v * 2 2~ 1}. Since this

permutation stabilises one, ¢; will commute with this relation. We now add this to our

presentation of G: < v,w,z,y, 2, t|v?, wh 22 y3, 23 w2 x 2, (W * V)% (zxy 20 *
e xwnz, (ox 22, (g, 2), w0y

YW
sw b xyx 2712 (LoxzxzTl) >,

Now, according to the Curtis Lemma, we need to find the centraliser of the
two point stabiliser. Let the point stabiliser of the two elements 1 and 2 be N2 which
we will denote as N(!2). Keep in mind we can always stabilise any two points, such as
one and three for example.

(12)

We compute the centraliser of the stabiliser of NV as follows:

N12:=Stabiliser (N, [1,2]);
Cent :=Centraliser (N,N12);

(12)

If we find that no permutation centralises N'*<), then we look for a permutation that

normalises the point stabiliser, which happens to be our case. In this case we find that
(1,2)(3,4)(5,19)(6,17)(7,20)(8,18)(9,10)(11,12)(13,14)(15,16)(21, 34)(22, 33)(23, 36)

(24,35)(25, 31)(26, 32)(27, 29)(28, 30) normalises N(1?). Again, we now add this relation
to our progenitor, which we do after we convert to terms of v, w, z,y, z. This relation is:
vxw~ 1 and will be labeled as the letter m. This relation is the relation that is required
to produce homomorphic images according to Curtis. If this special relation produces
even numbers when ran in M AGM A, this progenitor is promising. If we obtain odd
numbers, we will not produce homomorphic images. Our progenitor now looks like

4 3 2 2 1

this: < v,w,z,y, 2, tv2, wh 22 y3, 23 w2 s 2, (W *0)?, (zxy D2 vx 27 xvxz, (T *
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22 (g, 2),wry txw b xyx2zT 2 (ks z7h), (kw1 xt)™ >. We complete

our progenitor by adding necessary relations to our progenitor as we normally do by

finding the classes of our control group and following the process as discussed in section

4 BSwxa, (wlsv)? (wxy )2 vx 7«

1

2.2. We have: < v,w,x,v, 2, tjv?, wt 22,93, 2

1

7w_

vz, (xxz2 D2 (g, 2),wry L rxw T xyx 2T 2 (Luro k2T, (vxwT L), (v y T x
2 t) (vrw 1)l (xx1)S (yx 1), (25 1)C, (wxt), (yxv*t)9, (v w* zxt)" >;
With this progenitor we obtain interesting groups such as 4' : Sy. A complete

list of homomorphic images for this progenitor can be found in chapter 8.

2.4 Monomial Progenitor 11*? :,, Dy

We will demonstrate how to construct a monomial presentation of

11*2 :,, D1g. A presentation for D is given by the following:
< x,yly?, (27 1*y)% 2d >.

To construct a monomial presentation we first must induce an irreducible linear char-
acter from a subgroup H of G. To obtain an irreducible character we choose a subgroup
H of G with an index equal to the degree of an irreducible character of G. Consider the
character table of G = Dy in Table 1 and note G has characters x.1, x.2,..., X.4. We
proceed using .4 which has a degree of 2 and look for a subgroup of order 5 so that

% = 2. Thus we get the following index:

[G:H]:[D10205]:2

If a matrix representation exists it will be represented by 2 x 2 matrices, since the index

of our two groups is 2.
Verifying the Induction

We produce a character table for C5 in Table 2. We will verify the induction
x.2 of C5 to x.3 of Dig by considering the irreducible characters ¢ (of H) and ¢ (of
G). G = Dy is generated by xz and yy where zz = (1,3,5,7,9)(2,4,6,8,10) and yy =
(1,4)(2,3)(5,10)(6,9)(7,8). Using our definition of induction along with the following
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equivalencies: 1 =1, Z1#1 =4, Z1#2 =5, Z1#3 =9, Z1#4 = 3, we can reproduce ¢¢

using ¢ (of H).

(bg = % WEHNCo ¢(w), where n = =5 = 2.

¢1G = % ZweHﬂ(Jl P(w)

which implies ¢¢ = 2(¢(1)) = 2(1) = 10.

(bg = % ZweHmCQ P(w)

¢2G = % ZweHmCQ ¢

which implies ¢5 = 2(¢(0)) = 2(0) = 0.

¢35 = % ZweHng, p(w)

0§ =13 pennc, (0(1,3,5,7,9)(2,4,6,8,10) + ¢(1,9,7,5,3)(2,10,8,6,4))
which implies ¢§ = 1(—3 —4 — 1) = 1(=7) = =7 =4 (mod 11).

@? = % ZweHma; P(w)

0§ =3 wennc, (6(1,5,9,3,7)(2,6,10,4,8) + ¢(1,7,3,9,5)(2,8,4,10,6))
which implies ¢§ = 1(=5 -9 — 1) = 1(—15) = =15 = 7 (mod 11).

Therefore, ¢ Tg = 2,0,4,7 and we have verified that
X.2 of 05 induces X.3 of D10~



Table 1.2: Character Table of G

x C1 Cy (s Cy
i 11 1 1
Yo 1 -1 1 1
x3 2 0 Z1 Z1#2
X4 2 0 Zi#2 7

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 1.3: Character Table of H

X D1 Do D3 Dy D5
x1 1 1 1 1 1
X2 1 2y Z1#2 h#H3 Zh1#4
X3 1 Z1#2 Zv#4 21 Z1#3
X4 1 Zi#3  Zv Zh#4 Z1#2
X5 1 Z1#4 #3 Z#2 74h

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 1.4: x 3 of G
#@ | Class | Size Class Representative
2 Ch 1 Id(G)

0 Co 5 1 (1,4)(2, 3)(5, 10)(6, 9)(7, 8)
A Cs 2 (1,3,5,7,9)(2, 4, 6, 8, 10)
Z1#2 | Cy 2 (1, 5,9, 3, 7)(2, 6, 10, 4, 8)
Table 1.5: xo of H
0} Class | Size Class Representative

1 Dy 1 Id(H)
Zh\#1 | Dy 1 1(1,7,3,9,5)(2, 8,4, 10, 6)
Z\#2 | Ds 1 1(1,3,5,7,9)(2, 4,6, 8, 10)
Z1\#3 | Dy 1 1(1,9,7,5,3)(2, 10, 8, 6, 4)
Z1#4 | Ds 1 |(1,5,9, 3,7)(2,6, 10, 4, 8)
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Through induction, we now verify the monomial representation has the follow-

ing generators:

5 0
A(zzx) = ,

09

0 1
Alyy) = :

1 0

Verifying the Monomial Representation

G =<e,(1,4)(2,3)(5,10)(6,9)(7,8),(1,3,5,7,9)(2,4,6,8,10) > and

H=<¢,(1,7,3,9,5)(2,8,4,10,6) >. Since H is a subgroup of G whose index is equal
to the degree of G, we have that: G = H U Ht; U Hty, where the t/s are transver-

sals of G acting on H. The transversals of G are labeled as follows: t;

to = (1,4)(2,3)(5,10)(6,9)(7,8).

We will now use the following formula to verify the matrices:

Alaz) = <z>(t1xti) ¢<t1xt§)
(Z)(tgl’tl ) ¢(t2xt2 )

aii - Qs(tlSUt;l) = ¢($t1) = ¢(xe) = ¢(I) = (z)((lv 3,5,7, 9)(2747 6,8, 10)) =4

aiz : p(tiaty ') = plexty!) =
6((1,3,5,7,9)(2,4,6,8,10) * (1,4)(2,3)(5,10)(6,9)(7,8)) =
¢((1a 2)(3a 10)(47 9)(57 8)(67 7)) =0

ag1 : Ptaxt ) = d(taze) = ((1,4)(2,3)(5,10)(6,9)(7,8) *
(1,3,5,7,9)(2,4,6,8,10)) = ¢(1,6)(2,5)(3,4)(7,10)(8,9) = 0

az2 - ¢(t2$t51) = ¢(xt2) = ¢((17 3,5,7, 9)(2a 4,6,8, 10)(174)(2’3)(5’10)(6’9)(7’8))
= ¢((3a 1,9,7, 5)(47 2,10,8, 6)) =9

e, and
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Likewise for A(yy):

o(tiyty")  o(tiytyh)

A —
N e e

111 o(tiyt ) = oY) = 6(y°) = d(y) = ¢((1,4)(2,3)(5,10)(6,9)(7,8)) = 0

ais : qﬁ(tlyt;l) =
Sleyty ") = dlex (1,4)(2,3)(5,10)(6,9)(7,8)  (1,4)(2,3)(5,10)(6,9)(7,8))
= o((1,4)(2,3)(5, 10)( 9)(7,8)) =1

21 - ¢(t2yt1_1) = ¢((17 4)(2, 3)(5, 10)(67 9)(77 8) *Y ok 6) =
S((1,4)(2,3)(5,10)(6,9)(7, 8) * (1,4)(2, 3)(5, 10)(6,9)(7, 8)) = 1

azs : P(tayts ") = d(y'?) = ¢((1,4)(2,3)(5,10)(6,9)(7,8)1DE3GA0E9(T8))
=o(y) =

Each ¢ of H corresponded with a conjugacy class of either H or G. If the element be-
longed in a conjugacy class from H (seen in table 5.4) we wrote the value of ¢ for that
class, otherwise, we obtained 0. Therefore the matrix representation of A(zx) and A(yy)

respectively are as follows:

Azz) = °
0 9
Alyy) = LY

To prove the faithful representation of Dig = < x,y|y?, (v~ 1*y)?, 2° >, where
|D1o| = 10, we simply check the order of each matrix representation: |A(x)| = 5, and
|A(y)| = 2, then |A(x)||A(y)] = 10. which is the order of our index. We con now
conclude that G = < z,y > = < A(x), A(y) > . Now, to finalize the process, all we

need is to construct a permutation representation to build a monomial progenitor in
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hopes of obtaining homomorphic images of interesting groups.

Constructing a Permutation Representation

We worked in Z11 on matrices of degree 2x 2, which implies we are working with
2 tys of order 11. Since we have a semi-direct product in our progenitor, the elements
of Dqp will act as an automorphism on < t; > x <13 >. So, a;; = a <= t; — t;-l,

since this is an automorphism. Therefore, for our A(xz) we have:

a a
A(mc) _ 11 12

a1 a2
where t1 corresponds to column 1 and ¢2 to column 2 We will label the entries of the

matrix as follows: a2 = a,a99 = b, as1 = ¢, and a9y = d. Then,

a11:a<:>t1—>t‘11 a12:a<:>t1—>tg

(121:(1<:>t1—>t(1: a22:a<:>t1—>t‘21

We can now construct a table with our t;;; with nonzero entries to obtain the permu-

tation representation. Keep in mind we are working Zi,. We will have a total of 20 t;/4
for A(zz).

For all



A(zz

t—t

7 - (@) =
- (@) =t =l
o (@) = =
£ (P = =
# o (@) = =
= ()7 = =)
8o (@) =0 =]
- () =t =4
G

Likewise, for

For aso

ty — 13

B ()7 = = 1
B () = = 8
o () =i =
I
B () =13t = 1
B () =1 = 8
B () =i =
B () =15 = o
B - () = =

Now we are ready to find our permutations from the following table:
Therefore, our permutation representation is the following:

) =< (1,9,5,7,17)(2,18,8,6,10)(3,19, 11, 15,13)(4, 14, 16, 12, 20) > .

25



Table 1.6: Permutation Table of A(xx)

# | t; | Mapping to t7 | Element of Permutation
1|t 9 9
2 | to t9 18
3|t t9 19
4 | t3 £ 14
51t t9 7
6 | t3 t9 10
G £ 17
8 | t3 t9 6
9 | 9 5
10 | 5 t5 2
11 | 9 t9 15
12 | 4§ 9 20
13 | t] £ 3
14 | tf t9 16
15| 8§ t9 13
16 | 5 t9 12
17|48 t9 1
18| 1 t9 8
19 | 19 t9 11
20 | ti° t9 4

For our A(yy) we would have:

t — t3

to — 11

26

Thus, we would apply the same process and our permutation representation would be:

Alyy) = <

(1,2)(3,4)(6,5)(8,7)(9,10)(11,12)(13,14)(15,16)(17, 18)(19, 20) >.
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This demonstrates that our presentation is correct since we have

|A(zz) * A(yy)| = 10 = |G].

The Monomial Progenitor:

To build the monomial progenitor, we simply need to compute the sta-
biliser (N, t,12)

We are looking for what element in N fix our ¢1,,. The work is as follows:

S:=Sym(20) ;

xx:=S8!(1,9,5,7,17) (2,18,8,6,10) (3,19,11,15,13)
(4,14,16,12,20);

yy:=S!(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14)
(15,16) (17,18) (19,20);

N:=sub<S|xx,yy>;

Sch:=SchreierSystem (G, sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do

P:=[Id(N): 1 in [1..#Sch[i]]];

for 7 in [1..#Sch[i]] do

if Eltseg(Sch[i])[J] eqg 1 then P[j]:=xx; end if;
if Eltseqg(Sch[i])[j] eq -1 then P[]J]l:=xx"-1; end if;
if Eltseg(Sch[i])[]J] eq 2 then P[j]:=yy; end if;
end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PPxP[k]; end for;

ArrayP[1i] :=PP;

end for;

Normaliser:=Stabiliser (N, {1,3,5,7,9,11,13,15,17,19});
Stabiliser (N, {1,3,5,7,9,11,13,15,17,19});

A:=Normaliser! (1, 17, 7, 5, 9) (2, 10, o6, 8, 18)

(3, 13, 15, 11, 19) (4, 20, 12, 16,14);

Normaliser eq sub<N|A>;

for i in [1..#N] do if ArrayP[i] eq A then Sch[i];
end if; end for;



28

/*xx"=1%/
FPGroup (Normaliser) ;
/x  $.17°=5 = Id($)*/

Normaliser eq sub<N|xx,xx " —-5>;
This original progenitor for G is the following:
G<x,y>:=Group<x,y|ly 2, (x"=1xy) "2,x"5>;

New progenitor for monomial presentation of G:
G<x,y,t>:=Group<x,y,tly 2, (x"-1xy) "2,x"-5,t"11,
(t,x"=2),t"x=t"5, (t,t7y)>;

#G;

/*10%/

To verify that our progenitor is correct, we use the Grindstaff Lemma as
follows:
G<x,y,t>:=Group<x,y,t|y 2, (x"-1xy) "2,x"=-5,t"11, (t,x"-2), (t,t7y)>;
#G;

1210

Index (G, sub<G|x,y>);
121

This proves we have the right progenitor since the index of G is 121 which
is the index of the group we are working with 11*2. Also, our order of G = 10
and the index of (G)| x |G| = 1210. Thus, we have successfully constructed a
monomial progenitor of Dig. We then factor our progenitor by the appropriate

relations in hopes of obtaining homomorphic images.

2.4.1 Factoring 11*? :,, D1y by First Order Relations

To factor our monomial progenitor by first order relations, we begin by
using our new permutation representation obatined from the process mentioned

above.

S:=Sym(20) ;

xx:=S! (1, 9, 17, 5, 13) (2, 14, o, 18, 10) (3, 11, 19, 7, 15)
(4, 16, 8, 20, 12);

yy:=3S!(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14) (15,16)
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(17,18) (19, 20);
N:=sub<S|xx,yy>;

As in the process of any other progenitor, we run the Schreier System to convert
our permutations into words.
Sch:=SchreierSystem (G, sub<G|Id(G)>);

ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do

P:=[Id(N): 1 in [1..#Sch[i]117;

for 7 in [1..#Sch[i]] do

if Eltseg(Sch[i])[J] eqg 1 then P[j]:=xx; end if;

if Eltseqg(Sch[i])[]j] eq -1 then P[]J]l:=xx"-1; end if;
if Eltseq(Sch[i]) [J] eq 2 then P[]j]:=yy; end if;

end for;

PP:=Id(N);

for k in [1..#P] do
PP:=PPxP[k]; end for;
ArrayP[1i] :=PP;

end for;

In a permutation progenitor we need only to fix or stabilise one element, usually
t1, but in a monomial progenitor, we fix the set of ¢;, in other words we can
fix any of the following sets: < t; >, < ty >,... < t;p >. Recall that x ~
(1,9,17,5,13)(2,14,6,18,10)(3,11,19,7,15)(4, 16, 8,20, 12), and

y ~ (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20). We let t ~
t1, and we will fix < t; >={1,9,17,5,13}.

Normaliser:=Stabiliser (N, {1, 9, 17, 5, 13});

/+«(1, 5, 9, 13, 17) (2, 18, 14, 10, 6) (3, 7, 11, 15, 19)

(4, 20, 16, 12, 8)=*/

Stabiliser (N, {1, 9, 17, 5, 13});

A:=Normaliser! (1, 5, 9, 13, 17) (2, 18, 14, 10, ©

) (3, 7, 11, 15, 19) (4, 20, 16, 12, 8);

Normaliser eq sub<N|A>;
true

Since we need to add the stabiliser of our group < t; > in our presentation, we

must convert it into words.

for 1 in [1..#N] do if ArrayP[i] eg A then Sch[i]; end if;
end for;
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/xx" =2
tT(x"=-2);

Therefore we will add this to our presentation. Note we must also let MAGM A

know how we labeled our t;,. Notice that if we conjugate t&*) =
#(1,5,9,13,17)(2,18,14,10,6)(3,7,11,15,19)(4,20,16,12,8) _ 5 \We have:

G<x,y,t>:=Group<x,y,tly 2, (x"-1xy) "2,x"5,t711,t"(x"-2)=
73, (t, 7 (y))>;

#G;

/*1210x/

Index (G, sub<G|x,y>);

/*121%/

This confirms that our progenitor is correct. Now we find the orbits of each
conjugacy class of N as with our other progenitors. The following gives us our

first order relations:

Classes (N);
/+Conjugacy Classes of group N

[1] Order 1 Length 1
Rep Id(N)
[2] Order 2 Length 5

Rep (1, 2) (3, 4) (5, 6) (7, 8) (9, 10)
(11, 12) (13, 14) (15, 1e6) (17, 18) (19, 20)

[3] Order 5 Length 2
Rep (1, 9, 17, 5, 13) (2, 14, 6, 18,
10) (3, 11, 19, 7, 15) (4, 16, 8, 20,12)

[4] Order 5 Length 2
Rep (1, 17, 13, 9, 5) (2, 6, 10,
14, 18) (3, 19, 15, 11, 7) (4, 8, 12, 1o, 20)
#C;
/ x4/
for i in [2..4] do
i,0Orbits (Centralizer (N,C[i][3]));
end for;
/*2 [
GSet{@ 1, 2 @},
GSet{@ 3, 4 @},
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GSet{@ 5, 6 @},
GSet{@ 7, 8 @},
GSet{@ 9, 10 @},
GSet{@ 11, 12 @},
GSet{@ 13, 14 @},
GSet{@ 15, 16 @},
GSet{@ 17, 18 @},
GSet{@ 19, 20 @}

3
GSet{@ 1, 9, 17, 5, 13 @},
GSet{@ 2, 14, 6, 18, 10 @},
GSet{@ 3, 11, 19, 7, 15 @},
GSet{@ 4, 16, 8, 20, 12 @}

]

4
GSet{@ 1, 17, 13, 9, 5 @},
GSet{@ 2, 6, 10, 14, 18 @},
GSet{@ 3, 19, 15, 11, 7 @},
GSet{@ 4, 8, 12, 16, 20 @}«*/

for 7 in [2..4] do

C[J1I[31;

for i in [1..10] do if ArrayP[i] eq C[3][3]
then Sch[i]; end if;

end for; end for;

/*(1, 2)(3, 4)(5, 6) (7, 8) (9, 10) (11, 12)
(13, 14) (15, 16) (17, 18) (19, 20)
Yy

(1, 9, 17, 5, 13) (2, 14, 6, 18, 10)

(3, 11, 19, 7, 15) (4, 16, 8, 20, 12)
X
X x t

(1, 17, 13, 9, 5) (2, o6, 10, 14, 18)

(3, 19, 15, 11, 7) (4, 8, 12, 16, 20)
X" 2/

Notice, we need to account for each set of orbits. For this progenitor, we have not

inserted all of the first order relations.

for a,b,c,d,e,f,g9,h,1 in [0..10] do
G<x,y,t>:=Group<x,y,tly 2, (x"-1xy) "2,x" -5,
t711l,t7(x"=-2)=t"3,

(y*t) "a,

(y*t~2) Db,
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(y*t~9) "h,

(y*t~10) "1i>;

if #G gt 10 then a,b,c,d,e,f,qg,h,i;
#G;

end 1if;

end for;

Notice we used t, .., t'" since from our labeling we have t ~ 1.t ~ 3,...t10 ~ 19.
You can find all homomorphic images obtained from the progenitors created with

the above methods in Chapter 7.
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Chapter 3

Isomorphism Types of Some

Groups

In Chapter 3 we will solve some extension problems, meaning we will
determine the isomorphism type of some groups. To prove that one group is
isomorphic to another, we not only have to look at the order of the group, but
also consider its structure. For example consider the composition factors of two
groups both of order 3916800:

Gl

| C(2, 4) = S(4, 4)
*
| Cyclic(2)
*
| Cyclic(2)
1

and
G2
| Cyclic(2)
*
| C(2, 4) = S (4, 4)
*
| Cyclic(2)
1
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We would be tempted to say that the groups are isomorphic to each other because
they have the same order, but after investigating their composition factors, we
find that group 1 is isomorphic to 4'S; and group 2 is isomorphic to 2'(Sy :
2). We will demonstrate the process required to solve these extension problems,
namely 4 types: direct products, semi-direct products, central extensions and

mixed extensions.

3.1 Preliminaries

is a refinement of a normal series
G=Hy>H,---H,=1

if Go, Gy, ...,G, is a subsequence of Hy, Hy,..., H,,. A composition series is a

normal series
G=Gy>G,---G,=1

in which, for all 7 either GG;;; is a maximal normal subgroup of G; or G411 = G;.
Jordan Holder Theorem: Every two composition series of a group G are equiv-
alent.

If G has a composition series, then the factor groups of this series are called the
composition factors of G.

If K > G, then a (right) transversal of K in G is a subset T of G consisting
of one element from each right coset of K in G. If K and Q are groups, then an
extension of K by Q is a group G having a normal subgroup K; = K with G/K;
= Q. If H and K are groups, then their direct product, denoted by H x K is
the group with all elements ordered pairs (h, k), where h € H and k € K and with
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operations
(h,k)(h', k") = (hD', kE")

A group G is a semi — direct product of the subgroups K by the subgroups Q,
denoted by G = K : Q, if K is normal in G and K has a complement )1 = Q.

There are other another two extensions we need to consider. For instance, a
central extension of K by Q is an extension G of K by Q with K < Z(G).
A mixed extension combines the properties of both a semi-direct product and
central extension, where G = NK and N is a normal subgroup of a group G but
is not central. The dihedral group D, for 2,, > 4, is a group of order 2n which

is generated by two elements of order 2.

3.2 Direct Products

Let us begin with this simple extension problem. We will solve the exte-

sion problem for a control group N of order 120 given by the following presentation:

5 1 1

<my, 2zl yt S e b xy s xy,yx 2z xyxz, (27 x2)?, (27 % 272)? >, Notice
here we do not mention any type of relations, since our control groups are simply
presentations of finite groups. In our case, N is generated by z,y and z. We begin

by finding the compostion factors of N which are:

Alternating (5)

Cyclic(2)

= — % — @

Now we must look at the normal lattice of N, this gives us all the normal subgroups
of N.

Normal subgroup lattice

[4] Order 120 Length 1 Maximal Subgroups: 2 3
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[3] Order 60 Length 1 Maximal Subgroups: 1
[2] Order 2 Length 1 Maximal Subgroups: 1

[1] Order 1 Length 1 Maximal Subgroups:

This is one of the most significant pieces of information we can obtain. Notice
that our normal lattice is telling us that we have a subgroup of order 1, order
2, order 60 and lastly G is the order of our group which is 120. From here, we
apply our definitions. We know that if there are two normal subgroups such that
their product equals the order of our group in question, then we most likely have
a direct product. In this case notice that subgroup [2] and subgroup [3] are of
order 2 and 60 respectively. Therefore we verify with MAGMA if N = 2 x As:

IsIsomorphic (N,DirectProduct (AlternatingGroup (5),
CyclicGroup(2)));
true Homomorphism of GrpPerm: N, Degree 10,
Order 273 = 3 % 5
into GrpPerm: $, Degree 7, Order 2°3 * 3 % 5 induced by

<2I 41 10) (51 7/ 9) |77> (21 4/ 5)
(1, 6) (2, 7)(3, 8) (4, 9)(5, 10) |-—> (6, 7)
(11 3/ 5/ 7/ 9)(21 4/ 6/ 8/ ]—O) |__> (11 3/ 5/ 2/ 4)

We are given the corresponding mappings above that confirm that N =

2 x As. Next we investigate central extensions.

3.3 Central Extensions with Minimal Degree Permutation

Representation

2*60:S5
vkw~ Lxt)2 (vewxzxt)d

3.3.1 Isomorphism Type of G = i

_ 2 4,2 .3 .3 -2 -1
From our control group N =< v, w, z,y, z|v*, w*, x*,y°, z°, w sz, (w ' *

v)? (rxy )2 vz I xvkz, (zx27)2, (y, 2), wxy T xw xyx 27 > S5 factored by

the relations: (vxw™'xt)?, (vxw*2z*t)3, we found the following finite homomorphic
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image: 0000000032, 1440. This group G is of order 1440, and the numbers
3 and 2 are the first order relations mentioned above, to obtain this finite group

G. This group G factored by the above relations looks as follows:

G <v,w,z,y,2,t >= Group < v,w,z,y, z, t|v*, wh, 2%,y 22, w2 % x,

-1 1 -1

(s v) (@ y ) vx 2T wvsz, (wx ) (y,2), way T ww T wy R 2T

(tvsa*xz 1), 2 (vxw  *t)? (Vrw*z*t)

We use the following command in MAGM A, where f is the mapping from the
presentation of G given above, k is the kernel of f, and G'1 is the name we give the
permutation group image. f,G1,k := CosetAction(G,sub < Glv,w,x,y,z >).
This mapping gives us a permutation representation, but not necessarily one of
minimal degree. For example, we have the following generators of G1 without

using minimal degree representation:

Permutation group Gl acting on a set of cardinality 20
Order = 1440 = 275 % 372 « 5

(2, 3) (4, 6) (7, 10) (8, 14) (12, 15) (13, 17)

(2, 3, 4, 6)(7, 11, 10, 9) (8, 15, 12, 14) (13, 18, 17, 16)

(2, 4)(3, 6) (7, 10)(8, 12)(9, 11) (13, 17) (14, 15) (16, 18)

(2, 5, 4)(3, 7, 9) (6, 11 10) (8, 13, 16) (12, 18, 17) (14,

19, 15)(2, 6, 7)(3, 4, 10)(5, 11, 9)(8, 15, 17) (12, 13,
(4

14) (16, 19, 18) (1, 2)(3, ) 5) (6, 12) (7, 13) (9, 10)
(11, 18) (14, 20) (15, 19) (16, 17)

Now, to obtain a permutation representation of G1 of the minimal degree, we use
the following code in M AGM A which finds a subgroup H in G1 whose generators

produce all GG1 on less letters.

SL := Subgroups (Gl) ;

T := {X‘subgroup: X in SL};

#T;

194
TrivCore := {H:H in T| #Core(Gl,H) eq 1};

mdeg := Min ({Index(Gl,H) :H in TrivCore});

Good := {H: H in TrivCore| Index(Gl,H) eq mdeg};
#Good;

/ x4/
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H := Rep (Good);

#H;

/*120«/

f,G1,K := CosetAction(Gl,H);
Gl;

/+*Permutation group Gl acting on a set of cardinality 12
Order = 1440 = 275 % 372 = 5

(1, 2)(3, 9) (4, 7)(5, 11) (6, 8) (10, 12)
(L, 3, 4, 8)(2, 6, 7, 9)(5, 12) (10, 11)
4)(2, 7) (3, 8) (6, 9)

1, 4, 10) (5, 9, 6)
1, 4, 10) (2, 7, 12)(3, 8, 11) (5, 9, 6)
1

(1
(
(
(1, 5)(2, 8) (3, 7)(4, 11) (6, 12) (9, 10)x*/

Notice now the cardinality of our group is reduced from 20 to 12. We will now

prove the isomorphism type of G.

Proof. The composition factors of G are:

|
*
| Alternating(6)
*
|
1

The composition series for G is:
G=Gy2G,2G,2G3=1.

The composition factors are:

= (Go/G1)(G1/G2)(G2/G3)
= (Go/G1)(G1/G2)G3
— 02A502

We will investigate the normal subgroup lattice of G to get an idea of the isomor-

phism type.

Normal subgroup lattice
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[7] Order 1440 Length 1 Maximal Subgroups: 4 5 6

[6] Order 720 Length 1 Maximal Subgroups: 3
[5] Order 720 Length 1 Maximal Subgroups: 2 3
[4] Order 720 Length 1 Maximal Subgroups: 3

[3] Order 360 Length 1 Maximal Subgroups: 1
[2] Order 2 Length 1 Maximal Subgroups: 1
[1] Order 1 Length 1 Maximal Subgroups:

We usually begin an extension problem by factoring G by the largest abelian
subgroup. In this case, G has a center, which also happens to be the largest
abelian group of G. Our center is N L[2] which by the normal subgroup lattice we
see that it is of order 2. Thus, our center is isomorphic to Cy. Now, we factor G
by the center.

g, ff:=quo<Gl|NL[2]>;

a7

/+*Permutation group gq acting on a set of cardinality 10
Order = 720 = 274 x 372 * 5
(2, 3) (4, o) (7, 8)

(2, 3, 4, 6)((7, 9, 8, 10)
(2, 4) (3, 6) (7, 8)(9, 10)
(2, 5, 4)(3, 7, 10) (6, 9, 8)
(2, 6, 7)(3, 4, 8) (5, 9, 10)
(1, 2) (4, 5)(8, 10)«/

We are left with a group of order 720 with the generators shown above.

We denote this factor group q. We have an idea of what ¢ might be
isomorphic to, Sg since this group is of order 720 as well. We verify:
IsIsomorphic (g, SymmetricGroup (6));

/*truex/
We can now begin to construct the presentation of G with the information

obtained. We will write the presentation of ¢ with the generators: a,b,c,d,e,f. The
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central element will be represented as z. Since we know that the center commutes
with all elements of the group, we write the presentation as follows:

H<a,b,c,d,e, £, z>:=Group<a,b,c,d,e,f,z| a2, b"4, c~2, d°3, 73,
£72, b"=2+c, (b"=1xa)”2, (c*xd"-1)"2, axe"—-lxaxe, (cxe"-1)72,
(d,e), bxd"-1+xb"-1xd*e”"-1, (b"-1xfxa) 2, (cxfxd"-1)"2,

e’ —1xfrexbxfxb"-1, f+xb " -1lxfxbxfxa,

d-1+f+xd " —1lxaxb " -1lxfxd"-1+x£f, z°2, (z,a), (z,b), (z,c),

(z,d), (z,e), (z,£)>;

We now verify that our presentation is isomorphic to G.

f,Hl,k:=CosetAction (H, sub<H|Id(H)>);
s,t:=IsIsomorphic(Gl,H1);
Sy

/*truex/

Thus, we have G = 2*S. O]

Next, we investigate a more complicated isomorphism type, namely semi-

direct produts.

3.4 Semi-Direct Products

2*10:(5x10)
(x*%qg*z*l*t)‘r’,(z*l*y*t)s)

3.4.1 Isomorphism Type of G =

1 1

Our control group N =< z,y|z°, y?, = xysx~Lxyszxy*rxy > Z5x Dy,

Ly

We constructed the following infinite progenitor G =< z,y, t|2°, y*, 2 L xyx 2~
yxx*kyxx*y, (t,7),t* >, which when factored by the following necessary relations:
(x72xyxz 1 *t), (7 xy*t)® produces a group G of order 6250. Note: we will use
the following loop to give us a permutation representation of G of the minimal
degree which is originally of cardinality 125. We use this loop when we have
groups of large cardinality, in order to work with the best presentation of that

group G.



SL := Subgroups (Gl);
T := {X‘'subgroup: X in SL};
#T;
/ %228/
TrivCore := {H:H in T| #Core(Gl,H) eq 1};
mdeg := Min({Index(Gl,H):H in TrivCore});
Good := {H: H in TrivCore| Index(Gl,H) eq mdeg};
#Good;
/*5%/
H := Rep (Good);
#H;
/ %250/
f,G1,K := CosetAction(Gl,H);
Gl;

/+ Originally Permutation group Gl acting on a set of
cardinality 125
Order = 6250 = 2 * 575 , now
Permutation group Gl acting on a set of cardinality 25
Order = 6250 = 2 % 575
(1, 2, 4, 8, 5)(3, 6, 9, 13, 10) (7, 11, 14, 18, 15)
(12, 16, 19, 22, 20),
(2, 5)(3, 7)((4, 8) (6, 11) (9, 14) (10, 15) (12, 17)
(13, 18) (16, 21) (19, 23) (20,24) (22, 25),
(1, 3)(2, 6) (4, 9) (5, 10) (7, 12) (8, 13) (11, 16) (14,
(15, 20) (18, 22) (21,24) (23, 25)%*/

We will now prove the isomorphism type of G.

Proof. The composition factors of G are:

Cyclic (5)
Cyclic (5)
Cyclic (5)
Cyclic (5)

Cyclic (5)

19)

41
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The composition series for G is:
G:G()QGl2G22G32G42G52G6Wh6reG6:1.

The composition factors are:

G = (Go/G1)(G1/G2)(Go/G3)(G3/Ga)(Ga/G5)(G5/Ge)
= (Go/G1)(G1/G2)(G2/G3)(G3/Ga)(Ga/G5)(G5/Gs)
= (Go/G1)(G1/G2)(G2/G3)(G3/Ga)(Ga/G5)(Gs/1)

= (Go/G1)(G1/G2)(G2/G3)(G3/Ga)(Ga/G5)Gs

= CyC5C5C5C5C

The normal lattice of G1 is

NL:=NormallLattice (Gl);
NL;

Normal subgroup lattice

[9] Order 6250 Length 1 Maximal Subgroups: 7 8

[8] Order 3125 Length 1 Maximal Subgroups: 5 6
[7] Order 1250 Length 1 Maximal Subgroups: 5

[6] Order 625 Length 1 Maximal Subgroups: 4
[5] Order 625 Length 1 Maximal Subgroups: 4

[4] Order 125 Length 1 Maximal Subgroups: 3

[3] Order 25 Length 1 Maximal Subgroups: 2
[2] Order 5 Length 1 Maximal Subgroups: 1
[1] Order 1 Length 1 Maximal Subgroups:

We take the largest abelian group which we find through running the following
loop:
for i in [1..#NL] do



43

if IsAbelian(NL[i]) then i;
end i1if; end for;

o w N

Here we see that the largest abelian group is 6, which refers to NL[6] of order
625 from our normal lattice of G1. We first need to find the isomorphism type of
NL[6], which has several possibilities, such as 5% x 5,5%, etc. We check and find
the following:

NL[6];
/+*Permutation group H acting on a set of cardinality 25
Order = 625 = 574
Generators are:
c:(3, 9, 10, 6, 13) (12, 22, 16, 20, 19),
D:(3, 10, 13, 9, 6) (7, 18, 11, 15, 14) (12, 20, 22, 19, 16),
E:(1, 8, 2, 5, 4)«(7, 11, 14, 18, 15) (12, 22, lo6, 20, 19)
(17, 24, 25, 23, 21),
F:(1, 4, 5, 2, 8)«((3, 9, 10, 6, 13) (7, 11, 14, 18, 15)
(12, 16, 19, 22, 20)=*/
X:=[5,5,5,5];
IsIsomorphic (NL[6],AbelianGroup (GrpPerm, X)) ;
/*true Mapping from: GrpPerm: H to GrpPerm: $, Degree 20,
Order 574
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 20, Order 5748x/

We find that it is 5*. We have that, G5 = 5% Since the order of G is 6250,
and we have that the order of NL[6] is 625, then (G¢/G1) must be of order 10.
This composition factor, we call q. Let us investigate the composition factors and
normal subgroups of ¢ to find what ¢ is isomorphic to.

CompositionFactors(q);
G
Cyclic(2)

|
*
| Cyclic (5)
1
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and
Normal subgroup lattice

[3] Order 10 Length 1 Maximal Subgroups: 2

[2] Order 5 Length 1 Maximal Subgroups: 1

[1] Order 1 Length 1 Maximal Subgroups:

o)
Generators: A: (2, 3) (4, 5),

B: (1, 2) (3, 4)
Order 10

Notice that the only normal subgroup of ¢ is of order 5, since we do not have a
normal subgroup of order 2, we will not have a direct product of Cy x C5. Also,
since C'5 is not the center of ¢, then we will most likely have a semidirect product
of 5:2. We ask MAGM A if q is abelian:

IsAbelian(q);
/+~falsex/
Therefore, ¢ must be the nonabelian group D;5. We verify our assumption:

IsIsomorphic (DihedralGroup (5),q);

/*true Mapping from: GrpPerm: $, Degree 5,

Order 2 % 5 to GrpPerm: g
Composition of Mapping from: GrpPerm: $, Degree 5,
Order 2 x 5 to
GrpPC andMapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: g=*/
We find that q is isomorphic to D;y. We now have that this is either a mixed
extension or a semidirect product. We determined this by studying our normal
lattice. There is no normal subgroup of order 10 in G that intersects with N L[6]
of order 625; therefore, we do not have a direct product. Also, our g is not the
center of G, so we do not have a central extension. We are not sure if we have a
mixed extension, but we will investigate this possibility if a semi- direct product
is not the case. To complete our work, we must now find a presentation for the

action of Dj on the generators of 5*, which is done as follows:
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<c,d,e,f,a,bl|c"5,d°5,e"5,£"5, (c,d), (c,e), (c,f),

(d,e), (d,£), (e,f),a"2,b"2, (axb) "5, c"a?,d"a?,
e"a?,f"a?,c’b?,d"b,e"b, £ b?>
Here c,d,e and f represent elements of NL[6], and a and b represent elements
of Dyg. We need to find the action of Dyy on NL[6], in other words, what is
CA,...,FA and CB, ..., FB? Since @ is not normal in G, we do not know how the
elements of () act on the elements of the normal subgroup K. We need to find
which permutations of our normal subgroup K map to the elements of () to find
the action. This is done by using the transversals of G over K and fnding which
transversals map to the generators of Q.

T:=Transversal (G1,NL[6]);
f£(T[2]) eq g.2;
/xtruex/

T[2] = (2, 5)(3, 7) (4, 8) (6, 11) (9, 14) (10, 15) (12, 17)
(13, 18)(le, 21) (19, 23) (20, 24) (22, 25)

q.2 = (2, 3)(4, 5)

f£(T[3]) eq g.3;

/*truex/

T[3] = (1, 3) (2, 6) (4, 9) (5, 10) (7, 12) (8, 13) (11, 16)
(14, 19) (15, 20) (18, 22) (21,24) (23, 25)

g.3 = (1, 2)(3, 4)

Therefore T'[2] maps to the first generator of @ and 7'[3] maps to the second
generator of (). Now, we must verify if the relations of () match the relations of
the transversals. The relations of () are:

a2 = Id($)
b"2 = Id($)
(b * a)~5 = Id(3%)

The order of the transversals match:
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Order (T[2]);

/*2%/
Order (T[3]);
/*2%/
Order (T[2]+*T[3]);
/*5%/

We now have verified that we have a semi - direct product of K by Q. If the
relations did not match, we would have a mixed extension. To complete the
presentation of our group, we run the following loop to find C4,C? D4, ... FA

and F'Z as follows:

for i,3,k,1 in [1..5] do if C"A eq C"i*D"jxE"kxF"1 then
i,3,k,1; end if; end for;

1 255
C"A eq CxD"2;
true

for i,3,k,1 in [1..5] do if C"B eq C i*D"j*xE"kxF"1 then
i,3,k,1; end if; end for;

1555

C"B eq C;

true
for i,3,%k,1 in [1..5] do if DA eqg C"ixD"Jj*E"k«F"1 then
i,3,%k,1; end if; end for;

5455
for i,3J,k,1 in [1..5] do if D"B eq C i*D"j*xE"kxF"1 then
i, j,k,1; end if; end for;

545 2
for i,3,k,1 in [1..5] do if E"A eq C i*D"j*xE"kxF"1 then
i,3,k,1; end if; end for;

552 4
for i,3,%k,1 in [1..5] do if E"B eq C"ixD"Jj*E"k*F"1 then
i,3,k,1; end if; end for;

5542
for i,3J,k,1 in [1..5] do if F'A eq C i*D"jxE"kxF"1 then
i, j,k,1; end if; end for;

55 33
for i,73,%k,1 in [1..5] do if F'B eq C"ixD"J*xE"k«F"1 then
i,3,%k,1; end if; end for;

5551

The numbers represent C, D, E and F. The generators of K are of order 5,

therefore any 5 on the loop means the identity element and the action of ) on
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that element of K does not affect our presentation. For example, the first loop
produced 1,2,5,5 which means C * D? since E and F' are of order 5. Finally, we
have our new presentation of our group which we label as H. We check the order
and check if it is isomorphic to our original group G.

H<c,d,e, f,a,b>:=Group<c,d,e,f,a,b| a"5,b"5,c~5,d"5, (a,b), (a,c),
(a,d), (b,c), (b,d), (c,d),e”2,£72, (exf) "5, a“e=a"4xbxc,
a“f=a"4+xc”2, bTe=b"2+xc"3,b " f=b"4xc"4,c"e=b"4xc" 3,

c " f=c,d"e=a*b " 2xc"2xd,d " f=a"4*xc*xd>;

#H;

6250
f,g,k:=CosetAction (H, sub<H|Id(H)>);
s:=IsIsomorphic (Gl,qg);

S
true

Therefore, the isomorphism type of our group G is 5% : Dyq.
O

Finally, we investigate the last extension problem type, mixed extensions.

3.5 Mixed Extensions

3.5.1 Isomorphism Type of G = %

1

From our control group N =< z, ylyt,y 2 *xx b sy s oLy txad sy x a7l >

2 x (C5 : 4) we construct the following progenitor: G < x,y,t >:= Group <

Vs y~' % x) > which when

VI 1 TR e Ve e VR R e BT i Sl
factored by the realtion (z *t)> we obtain a finite homomorphic image of a group
|G| = 600. When we use the following command:

f,Gl,k:=CosetAction (G, sub<G|x,y>);

we obtain the permutation representation of degree 15, whose generators are:

(2, 3, 6, 7, 13, 8, 4, 9, 10, 5) (11, 15) (12, 14)
(2, 4, 10, 6) (3, 7, 9, 8) (11, 12, 15, 14)
(1, 2) (3, 5) (4, 11) (6, 12) (7, 9) (10, 14) (13, 15)

We will now prove the isomorphism type of G.



Proof. The composition factors of G are:

G
Cyclic(2)

Cyclic (3)
Cyclic(2)
Cyclic(2)
Cyclic (5)

Cyclic (5)

o — ok — o — ok — ok — ok —

The composition series for G is:
G:G()QGl2G22G32G42G5QGGWheI‘eGﬁzl.

The composition factors are:

G = (Go/G1)(G1/G2)(G2/G3)(G3/Ga)(Ga/G5) (G5 / Ge)
= (Go/G1)(G1/G2)(G2/G3)(G3/Ga)(Ga/G5)(G5/Gs)
= (Go/G1)(G1/G2)(G2/G3)(G3/G4)(Ga/Gs)(G5/1)

= (Go/G1)(G1/G2)(G2/G5)(G3/Ga)(Ga/G5) G5

= (,030,C5C5C5

The normal lattice of G1 is

NL:=Normallattice (Gl);
NL;

Normal subgroup lattice

[12] Order 600 Length 1 Maximal Subgroups: 9 10 11

[11] Order 300 Length 1 Maximal Subgroups: 7
[10] Order 300 Length 1 Maximal Subgroups: 6 7 8
[ 9] Order 300 Length 1 Maximal Subgroups: 5 7

48
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[ 8] Order 150 Length 1 Maximal Subgroups: 4
[ 71 Order 150 Length 1 Maximal Subgroups: 3 4
[ 6] Order 150 Length 1 Maximal Subgroups: 4
[ 5] Order 100 Length 1 Maximal Subgroups: 3
[ 4] Order 75 Length 1 Maximal Subgroups: 2

[ 3] Order 50 Length 1 Maximal Subgroups: 2

[ 2] Order 25 Length 1 Maximal Subgroups: 1
[ 1] Order 1 Length 1 Maximal Subgroups:

We take the largest abelian group which we find through running the following
loop:

for 1 in [1..#NL] do

if IsAbelian(NL[i]) then i;

end i1if; end for;

1
2

Here we see that the largest abelian group is 2, which refers to NL[2] of order
25 from our normal lattice of G1. From the definition of mixed extension, NL[2]

would be our K). We first need to find the isomorphism type of NL[2].

NL[2];
Permutation group H acting on a set of cardinality 25
Order = 25 = 572/
X:=[5,5];

IsIsomorphic (NL[2],AbelianGroup (GrpPerm, X)) ;
true Mapping from: GrpPerm: H to GrpPerm: $, Degree 10,
Order 572
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 10,

Order 572

We find that it is 5>. We have that (G4/G5)(G5/Ge) = 5. Since the order
of G is 600, and we have that the order of NL[2] is 25, then (Go/G1)(G1/Gs)
(G2/G3)(G3/Gy) must be of order 24. This composition factor we call q, which

would be our Q) from the definition.



50

#G1;
600

#aq;
24

IsAbelian(q);
false

In order to determine what the isomorphism type of ¢ may be we will

look at the normal lattice. We see that there is a normal subgroup of order 6 and
of order 4 and also a normal subgroup of order 12 and of order 2. Therefore we

will check if we have a direct product.

Normal subgroup lattice

[11] Order 24 Length 1 Maximal Subgroups: 8 9 10
[10] Order 12 ©Length 1 Maximal Subgroups: 6

[ 9] Order 12 Length 1 Maximal Subgroups: 4 6

[ 8] Order 12 Length 1 Maximal Subgroups: 5 6 7
[ 71 Order 6 Length 1 Maximal Subgroups: 3

[ 6] Order 6 Length 1 Maximal Subgroups: 2 3

[ 5] Order 6 Length 1 Maximal Subgroups: 3

[ 4] Order 4 Length 1 Maximal Subgroups: 2

[ 3] Order 3 Length 1 Maximal Subgroups:

[ 2] Order 2 Length 1 Maximal Subgroups: 1

[ 1] Order 1 Length 1 Maximal Subgroups:

IsIsomorphic (g, DirectProduct (DihedralGroup (3),CyclicGroup(4)));
true Mapping from: GrpPerm: g to GrpPerm: $, Degree 7,
Order 273 x 3
Composition of Mapping from: GrpPerm: g to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 7,
Order 273 % 3

We find that q is isomorphic to the direct product of the Dihedral group
6, denoted Dg, and the Cyclic group 4 denoted Cj. Now, we must determine
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the action of (Dg x Cy) on 52. We will check if we have a mixed extension or a
semi-direct product. For either a mixed extension or a semi - direct product, we
need to find the transversals of the normal subgroup K to relate the elements of
q to K since ¢ is not normal in G.

Let us check which transversals map to the three elements of q.

T:=Transversal (G1,NL[2]);
f£(T[2]) eqg g.1

true
f£(T[3]) eqg g.2
true
f£f(T[4]) eq g.3
true

Therefore we will use T[2], T[3] and T[4] to represent ¢.1,¢.2 and ¢.3. From our

relations we check the orders of the generators of ¢ as follows:

FPGroup (qd) ;

/+*Finitely presented group on 3 generators

Relations
$.17°2

Id(S)

$.274 Id($)

$.372 Id($)

S.27-1 % $.1 x $.2 % $.1 = Id(
$

(

Ur
—

27-1 % $.3 x $.2 x $.3 = Id(
S.3 % $.1)7°3 = Id(S) =/

Ur
—

Now, we will check if the order of the relations of ¢ match when we map the

transversals of K in G.

Order (T[2]"2); /*5%/ change
Order (T[3]74); /*1x/ match
Order (T[4]"2); /*1x/ match
Order (T[3]"-1+«T[2]*T[3]1*T[2]);

/+*5x/ change

Order (T[3] " —-1+T[4]+T[3]*T[4]);
/+«5%/ change
Order ((T[4]+*T[2])"3); /*1x/ match

The only relations that changed above were:
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Order (T[2]72); /*5x/
Order (T[3] " —-1+T[2]*T[3]1*T[2]);
/*5%/
Order (T[3] "-1+xT[4]1+T[3]+T[4]);
/*5%/
Now we know that we will have a mixed extension. To complete a presentation
for a mixed extension we need to complete two steps: 1) Find the action of the
generators of q on the generators of NL[2].

2) Write the elements of q as products of the elements of NL[2].

We will label the generators of NL[2] below as A and B to begin step 1:

Generators (NL[2]);
A:=Gl!'(1, 11, 12, 14, 15) (2, 6, 13, 4, 10) (3, 9, 7, 5, 8);
B:=Gl! (2, 10, 4, 13, 6)(3, 5, 9, 8, 7);

We named the transversals as follows for our presentation:

T[2] = ¢
T[3] = d
T[4] = e

To complete step 1), we find the action of the generators of q on the
generators of NL[2].

for i,J in [1..5] do if A"T[2] eq A"i*B"j then i, Jj; end if;
end for; /x4 1%/
for i,Jj in [1..5] do if A"T[3] eq A"i*B"j then i, Jj; end 1if;
end for; /%2 5%/
for i, in [1..5] do if A"T[4] eqg A"ixB"j then 1i,7j; end if;
end for; /%2 4x/

for i, in [1..5] do if B"T[2] eqg A"ixB"j then 1i,7j; end if;
end for; /%5 1x/

for i,j in [1..5] do if B"T[3] eqg A"ixB"j then 1i,3j; end if;
end for; /%5 2%/

for i,J in [1..5] do if B"T[4] eq A"ixB"j then 1i,3j; end if;
end for; /*3 3%/

Our presentation of step 1) is the following:

a®=a* b,
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b = b,
b= 12,
a® = a® x b*,
b = a3 * b3

The following loop determines how to represent the generators of q as
products of NL[2] from step 2:

for i, in [1..5] do if T[2]"2 eqg A"ixB"j then 1i,7j; end if;
end for;

/x5 4x/

for i,J in [1..5] do if T[3] " -1xT[2]xT[3]1*T[2] eqg

A"ixB"j then 1i,7j; end if; end for;

/x5 1%/
for i,J in [1..5] do if TI[3] " -1xT[4]1xT[3]1*xT[4]

eq A"1i%B"j then i,Jj; end if; end for;

/x1 4x/

The presentation of the generators of ¢ as products of NL[2] will therefore

be:
= b
d* = id,
e? = id,

d'xcxdxc=0,

d'sxexdxe=axb,

(e*c)® =1id
Now we can complete our presentation as follows:
H < c¢,d,e,a,b>:= Group < c¢,d,e,a,bla®,b°, (a,b),c® = b*,d* e, dxcxdxc=
bydtxexdxe =axb* (exc)® a® = a*xba’ = a?,b° = b, b = 1, a® = a® xb*, b° =
a’ x b® >;

Then we check to make sure that our new presentation matches our G'1

#H;

/*600x/

£f2,G2,k2:=CosetAction (H, sub<H|Id (H)>);

#G2;

600

IsIsomorphic(G2,Gl);
/+true Mapping from: GrpPerm: G2 to GrpPerm: G1
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Composition of Mapping from: GrpPerm: G2 to GrpPC and

Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: Glx/

Therefore we have a mixed extension of 52 : Dg X Z4
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2*60:35
y2ut)? (yxwnt)® (yxt)©

3.5.2 Isomorphism Type of G = (

From our control group N =< x, y|z?, 8, (y*xx*y~ 1xz)?, (zxy~1)° > S
we found the following finite homomorphic image 0 0 2 0 6 6 2, 19440 when N is
factored by the following necessary relations:(y? * t)2, (y * x * 1), (y * )% and the
additional relation (y? * z * y~2)% A presentation of G looks like: G < z,y >:=
Group < z,y,t|lz2, y8 (yx x x y= L x 2)? (zxy™1)5, (£, 2Y), 1%, (y* * v * y=2)%, (v* *
)2 (y*xx*t)° (y %)% > We now express thesymmetric presentation above from

words to permutations of degree 162 with the command:

f, Gl, k:=CosetAction (G, sub<G|x,y>);
We will now prove the isomorphism type of G.

Proof. The composition factors of G are:

G
Cyclic(2)

Cyclic(2)
Alternating (5)
Cyclic (3)
Cyclic (3)
Cyclic (3)

Cyclic (3)

2 — ok — % — ok — ok — % — % —

The composition series for G is:
G:GOQGl2G22G32G42G5QG62G7WhereG7:1.



The composition factors are:

G = (Go/G1)(G1/G2)(G2/G3)(G3/Ga)(Ga/G5)(G5/Ge ) (G / Gr)
= (Go/G1)(G1/Ga)(Ga/G3)(G3/Ga)(Ga/G5)(Gs/Ge) (Ge/ 1)

= (Go/G1)(G1/G2)(G2/G3)(Gs/Ga)(G4/G5)(G5/Ge)Gr

= (0 A5C3C3C3C7

The normal lattice of G is

NL:=Normallattice (G) ;

NL;

Normal subgroup lattice

[8] Order 19440
[7] Order 9720
[6] Order 9720
[5] Order 9720
[4] Order 4860
[3] Order 162

[2] Order 81

[1] Order 1

Length
Length
Length
Length
Length
Length

Length

Length

1

Maximal

Maximal

Maximal

Maximal

Maximal

Maximal

Maximal

Maximal

Subgroups:
Subgroups:
Subgroups:
Subgroups:
Subgroups:
Subgroups:

Subgroups:

Subgroups:

W D

6 7

o6

It is ideal to begin an extension problem by factoring GG by the largest abelian

group if possible or factoring by the center. In this case, G does not have a center,

thus we take the largest abelian group which we find through running the following

loop:

for i in [1..#NL]

if IsAbelian (NL[i])

end 1f; end for;
1
2

do

then i;
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Here we see that the largest abelian group is 2, which refers to NL[2] of order 81
from our normal lattice of G. We first need to find the isomorphism type of NL[2],
which has several possibilities, such as 3% x 3,32 x 32,3%, etc. We check and find
the following:

NL[Z2];
Permutation group acting on a set of cardinality 162
Order = 81 = 374
X:=[3,3,3,31;

IsIsomorphic (NL[2],AbelianGroup (GrpPerm, X)) ;

/*true Mapping from: GrpPerm: H to GrpPerm: $, Degree 12,
Order 374
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 12,
Order 374/

We find that N L[2] is isomorphic to the abelian group 3 x 3 x 3 x 3 or 3*. Thus,
we have that G5 = 3*. Since the order of G is 19440, and we have that the order
of NL[2] is 81, then (Gy/G1)(G1/G2)(G2/G3) must be of order 240. We confirm
this when we factor G by NL[2] as follows:

g, ff:=quo<Gl|NL[2]>;

ar

/+*Permutation group g acting on a set of cardinality 24
Order = 240 = 274 x 3 % 5

This composition factor we call q. Since we do not have an idea of what ¢ might

be isomorphic to, we must check the normal lattice for q.

nl:=Normallattice(q);
nl;
Normal subgroup lattice

[7] Order 240 Length 1 Maximal Subgroups: 4 5 6
[6] Order 120 Length 1 Maximal Subgroups: 3

[5] Order 120 Length 1 Maximal Subgroups: 2 3
[4] Order 120 Length 1 Maximal Subgroups: 3

[3] Order 60 Length 1 Maximal Subgroups: 1
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[2] Order 2 Length 1 Maximal Subgroups: 1

[1] Order 1 Length 1 Maximal Subgroups:

The most convenient method to approach this type of problem is to first check
if we have a direct product. Direct products are easily found by simply studying
our normal lattice. Recall that a direct product of G = K x @ requires both K
and ) to be normal in GG. In our case, we want to see if ¢ is composed of a direct
product. Since we a have a normal subgroup of order 2, and three subgroups of
order 120, we find we most likely have a direct product. We check as follows:

:=DirectProduct (nl1[2],nl[4]);

IsIsomorphic (E, q);
/*xtruex/
We see that nl[2] x nl[4] gives us q. We need to find what nl[2] and nl[4] are
ismorphic to. Recall that Ss is a group of order 120, so we check the following:

IsIsomorphic(nl[4],SymmetricGroup(5));
/*xtruex/

IsIsomorphic(nl[2],CyclicGroup(2));

/*true Mapping from: GrpPerm: $, Degree 24, Order 2 to GrpPerm:
Degree 2, Order 2

Composition of Mapping from: GrpPerm: $, Degree 24, Order 2 to
GrpPC and Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: $, Degree 2, Order 2%/

We find that ¢ = S5 x 2. Now we need to write a presentation for q.
Since we know that ni[4] = S5 and nl[2] = C5, we run the following in M AGM A
to give us a presentation for each, so that we may complete the presentation of q.

FPGroup (SymmetricGroup (5));
Finitely presented group on 2 generators

Relations
$.17°5 = Id($)
$.272 = Id(%)
($.17-1 » $.2)74 = Id(S)

($.1 *« $.2 % $.17-2 % S$.2 % $.1)72 = Id(S)
and FPGroup(nl[2]);

4
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Finitely presented group on 2 generators

Relations
$.272 = Id($)
$.1 = 1Id($)

A presentation for S5 is: S < e, f >:= Group < e, f|e, f2, (e x f) (ex fxe 2%
f*e€)? >, and a presentation for Cy is: C' < g,h >:= Group < g,hlh* g >. We
know that since we have a direct product, the elements of S5 will commute with
the elements of Cy as follows: D < e, f,g,h >:= Group < e, f,g,h|e>, f2, (e7!
Nh(ex fre?xfxe) h? g, (g,e),(g, 1), (h,e), (b, f) >.

We check to make sure we have the correct presentation for g¢:
(9, f), (hse), (h, f) >

ff2,dd, kk2:=CosetAction (D, sub<D|Id (D) >);
s,t:=IsIsomorphic (g, dd);

Sy

true

Now that we have a presentation for ¢, let us write a presentation for N L[2] since
this will be needed in the future. We run the following command in M AGM A:

FPGroup (NL[2]);
Finitely presented group on 5 generators

Relations

$.2°3 = Id(S)
$.373 = 1d($)
$.473 = Id(9)
$.5°3 = 1Id($)
($.2, $.3) = Id($)
($.2, $.4) = Id($)
($.3, $.4) = Id($)
($.2, $.5) = Id($)
($.3, $.5) = Id($)
($.4, $.5) = Id($)
$.1 = Id(9)

Our presentation is: NL[2] =< w, z,y, z|w?, 23,43, 23, (w, ), (w,y), (z, 2), (w, 2),
(x,2),(y,z) >. Now, our final task is to find the action of Q = S5 x 2 on K,

which in this case is 3. We can easily rule out a central extension since we had
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no center in GG, and a direct product as well since we have no normal subgroup of
order 240. We determine that we must have a semi - direct product or a mixed
extension. If the transversals of G/NL[2] can be written as products of elements
of K, then we will have a mixed extension, or if this is not the case, we will simply

have a semi - direct product.

T:=Transversal (G1,NL[2]);
ff(T[2]) eq g.1;

/*truex/

f£f(T[3]) eq g.2;
/*truex/

f£(T[4]) eq g.3;
/*xtruex/

Notice we need the transversals of G over NL[2]. This will help us write the
elements of ¢ in terms of NL[2]. We check if the mapping from transversals
T[2], T[3] and T'[4] map to our elements of our group ¢g. They indeed do, therefore
we can write the transversals as elements of ¢, which we will show later on. For

now, we find the action of these transversals of G on NL[2].

Generators (NL[2]);

A:=Gl! (1, 161, 155) (2, 143, 162) (3, 144, 146)

(4, 149, 147) (5, 145, 123) (6,119, 156) (7, 134,
140) (8, 122, 158) (9, 96, 157) (10, 80, 56) (11,111,
74) (12, 101, 77) (13, 120, 151) (14, 108, 63)

(15, 154, 114) (16,105, 76) (17, 81, 98) (18, 82,
70) (19, 33, 110) (20, 79, 57) (21, 51,138) (22, 55,
127) (23, 153, 115) (24, 159, 87) (25, 39, 136) (26,
160, 88) (27, 141, 139) (28, 102, 75) (29, 53, 131)
(30, 103, 97) (31, 73, 112) (32, 45, 113) (34, 109,
35) (36, 148, 47) (37, 126, 92) (38, 125, 66) (40,
118, 68) (41, 124, 59) (42, 142, 137) (43, 106,

85) (44, 116,150) (46, 83, 133) (48, 117, 152) (49,
60, 130) (50, 52, 128) (54, 72,129) (58, 135,

69) (61, 121, 100) (62, 91, 99) (64, 107, 67) (65,
94,89) (71, 104, 86) (78, 90, 93) (84, 95, 132);

B:=G1l! (1, 153, 151) (2, 144, 152) (3, 117, 162) (4,
126, 133) (5, 135, 109) (6, 80, 78) (7, 107, 129) (8,
108, 89) (9, 105, 104) (10, 93, 156) (11,154, 84)



(12, 75, 106) (13, 161, 115) (14, 94, 158) (15, 132,
74) (16,71, 157) (17, 57, 124) (18, 159, 61) (19, 38,
137) (20, 59, 81) (21, 148, 53) (22, 136, 45) (23,
120, 155) (24, 100, 70) (25, 113, 55) (26, 99, 97)
(27, 73, 130) (28, 85, 101) (29, 138, 36) (30, 160,
62) (31,60, 139) (32, 127, 39) (33, 125, 42) (34,
123, 58) (35, 145, 69) (37, 83, 147) (40, 150, 50)
(41, 98, 79) (43, 77, 102) (44, 52, 118) (46,149,
92) (47, 131, 51) (48, 143, 146) (49, 141, 112) (54,
134, 67) (56, 90, 119) (63, 65, 122) (64, 72, 140)
(66, 142, 110) (68, 116, 128) (76,86, 96) (82, 87,
121) (88, 91, 103) (95, 111, 114);

C:=G1l! (1, 154, 158) (2, 149, 139) (3, 126, 112) (4, 141,
162) (5, 125, 127) (6, 81, 100) (7, 118, 138) (8, 161, 114)
(9, 101, 99) (10, 57, 82) (11, 94,151) (12, 91, 157) (13,
111, 89) (14, 153, 84) (15, 122, 155) (16, 75,103) (17,
121, 156) (18, 56, 79) (19, 113, 34) (20, 70, 80) (21,
134, 68) (22, 145, 66) (23, 132, 63) (24, 78, 59) (25,

58, 137) (26, 104,85) (27, 143, 147) (28, 97, 105) (29,
129, 52) (30, 76, 102) (31, 144,92) (32, 109, 33) (35,
110, 45) (36, 107, 44) (37, 73, 146) (38, 55,123) (39,
135, 42) (40, 51, 140) (41, 159, 90) (43, 160, 86) (46,
60,152) (47, 64, 150) (48, 83, 130) (49, 117, 133)

(50, 131, 72) (53, 54,128) (61, 119, 98) (62, 96, 77)
(65, 120, 74) (67, 1le6, 148) (69, 142,

136) (71, 106, 88) (87, 93, 124) (95, 108, 115);

—_— o~~~

D:=G1! (1, 159, 157) (2, 145, 150) (3, 135, 128) (4, 125,
148) (5, 116, 162) (6,102, 132) (7, 130, 113) (8, 124, 99)
(9, 161, 87) (10, 85, 111) (11,56, 106) (12, 154, 90) (13,
82, 104) (14, 98, 103) (15, 78, 77) (16,153, 61) (17, 97,
108) (18, 71, 151) (19, 138, 83) (20, 160, 65) (21,133,
33) (22, 64, 139) (23, 100, 76) (24, 96, 155) (25, 129, 73)
(26,89, 57) (27, 55, 107) (28, 95, 156) (29, 37, 137) (30,
63, 81) (31,136, 72) (32, 134, 49) (34, 118, 48) (35, 40,
152) (36, 147, 38) (39,54, 112) (41, 91, 158) (42, 53,
126) (43, 74, 80) (44, 143, 123) (45,140, 60) (46, 110,
51) (47, 149, 66) (50, 144, 69) (52, 146, 58) (59,62,
122) (67, 141, 127) (68, 117, 109) (70, 86, 120) (75,
84, 119) (79,88, 94) (92, 142, 131) (93, 101, 114)
(105, 115, 121);

T[2];

61
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H:=G1!(2, 3) (6, 10) (8, 14)(9, 16) (11, 15) (13, 23) (18, 24)
(21, 36) (22, 39) (25,45) (26, 30) (27, 49) (29, 51) (32, 55) (33,
38) (35, 58) (37,46) (40, 52) (42,66) (44, 68) (47, 53) (54, 64)
(56, 78) (57, 81) (59, 79) (60, 73) (61, 87) (62, 88) (63, 89)
(71, 96) (75, 101) (76, 104) (77, 106) (82, 100) (84, 114) (85,

102) (93, 119) (94, 122) (98, 124) (99, 103) (107, 134) (109,

123) (110,137) (111, 132) (112, 139) (117, 143) (126, 149)

(128, 150) (129, 140) (133,147) (135, 145) (146, 152)

(151, 155) (153, 161);

T[3];

=Gl! (2, 4) (3, 5, 7)(6
24, 43, 23, 41,

, 11, 9, 17, 13, 12)(8, 15)(10,18,20)
(14 6)
(21, 37, 22, 40, 31, 38)
0)
0)

(16, 28, 30) (19, 33, 32, 45, 35, 34)
(25, 46,47) (29, 52, 50, 72, 54, 53)
(36, 58, 83, 64, 39, (42, 49, 44, 69, 48,67) (51, 73, 55)
(56, 79, 57, 82, 170, (59, 85, 63) (61, 65, 62) (66, 68, 92)
(71, 95, 93) (74, 99, 98, 89, 77, 100) (75, 102, 76, 105, 97,
103) (78,106, 132, 124, 104, 108) (81, 111, 101) (84, 87,

86, 115, 90, 88) (91, 119, 94, 96, 121, 120) (107, 135,

130) (109, 113, 110) (112, 123, 138, 146, 127,140) (116,

142, 117) (118, 144, 125, 134, 126, 145) (128, 131, 129)
(133,150, 136, 152, 148, 137) (139, 147) (141, 143) (151,

157, 156) (153, 159,160) (154, 161) (155, 158);

Ti4];

J:=G1! (1, 2)(3, 6) (4, 8) (5, 9) (7, 13) (10, 19) (11, 21) (12, 22)

(14, 25) (15, 27) (16,29) (17, 31) (18, 32) (20, 35) (23, 42) (24,
4) (26, 48) (28, 50) (30, 54) (33,56) (34, 57) (36, 59) (37, 61)

(38, 62) (39, 63) (40, 65) (41, 47) (43, 46) (45,70) (49, 71) (51,
4) (52, 75) (53, 76) (55, 77) (58, 84) (60, 86) (64, 90) (66,91)

(67, 93) (68, 94) (69, 95) (72, 97) (73, 98) (78, 107) (79, 109)

(80,110) (81, 112) (82, 113) (83, 85) (87, 116) (88, 117) (89,

118) (92, 121) (96,123) (99, 125) (100, 126) (101, 127) (102,

128) (103, 129) (104, 130) (105,131) (106, 133) (108, 136)

(111, 138) (114, 141) (115, 142) (119, 146) (120,140) (122,

147) (124, 148) (132, 135) (134, 151) (137, 153) (139, 154)

(143,155) (144, 156) (145, 157) (149, 158) (150, 159) (152,

160) (161, 162);

The following code tells MAGM A to give us the action of the transversals on

the generators N L[2] which are of order 3. The numbers we obtain represent the
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action of the transversals of G/NL[2] on N L[2], which are in order of A, B, C and
D. For example, in the first set we would obtain that Af = B since A, C and D

are order 3 which is the identity.

for i,3j,k,1 in
end 1f; end for;
3133

i,3,k,1
if; end
13

i,3,k,1
if;
33
i, 3,k,1 in
end for;

for in
end
33
for
end
2 3
for
end 1f;
1333
for i,3J,k,1 in
end 1f;
3331
for
end
11
for
end
3 3
for
end 1f;
1333
i,3,k,1
if;
2 3
i,3,k,1
if; end
31
i,3,k,1
if;
2 2
i,3,k,1
end if;
3332

for;

in

end for;

end for;
i, 3,k,1 in
if;
11
i,3,k,1
if; end
13

i,3,k,1 in

end for;
in
for;

end for;
for in
end end
3 3
for
end
3 3
for
end
2 2

for

for;

in
for;

in
end for;
in

end for;

[1.

[1..

[1..

[1..

[1..

[1..

[1..

[1..

[1..

[1..

[1..

[1..

. 3]

do

do

do

do

do

do

do

do

do

do

do

do

if

if

if

if

if

if

if

if

if

if

if

if

eq AT1ixB"j*xC"kxD"1 then

eq

eq

eq

€q

eq

eq

eq

eq

eq

eq

eq

ATi*B " J*C kD" 1

A"ixB"jxC"k*D"1

A"ixB"j*xC"k*D"1

ATi*B " J*C kD" 1

A"ixB"JxC"k*D"1

ATi*B " j*C kD" 1

ATi*B " J*C kD" 1

A"ixB"j*xC"k*D"1

ATi*B " J*C kD" 1

ATixB " jxC kxD"1

A"ixB"J*xC"k*D"1

then

then

then

then

then

then

then

then

then

then

then

il j’kll;

il jlkll;

i,3,k,1;

il jlkll;

il jlkll;

ilj/kll;

il jlkll;

iljlkll;

il j’kll;

il jlkll;

i, J,k, 1;

il j’kll;

Therefore, we have this presentation so far: Group < w,z,y, 2, e, f, glw?,
x37 y37 237 (w7 x)? (w7 y)? (‘T’.? Z)’ (w7 Z)? (:C7 Z)? (y? Z)? 627 f67 927 (f_l *9)27 f_2 * € * f2 *
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grexg, (frexflxe) exf3xexflagrex flxg (ex f1) w =aw =
yw! =w? 2t =w,af =z, 09 =wxrxyxz,y° =y, yf =w,yd =y 2° = 2,25 =
w? * 2% x y? *x 22,29 = 22 > Here A,B,C,D are represented by w, z,y, z and H,I,J
are e, f, g.

We have completed the semi - direct part of our presentation. A charac-
teristic of a mixed extension is that the elements of () may be written as products
of the elements of the normal subgroup K. We will test the elements of () and
their relations. When writing the elements of ) as the transversals of G/NL|2]
we may have that the order of the relation changes. If this is the case, we must
find what element of the normal subgroup of N L[2] this is, which shows that we
indeed have a mixed extension.

Recall that T'[2] — ¢.1,T[3] — ¢.2 and T[4] — ¢.3. We check by running
the following in M AGM A:

FPGroup (qd) ;
Finitely presented group on 3 generators

Relations
$.1°2 = 1d($)
$.276 Id($S)
$.372 = Id(9)
($.1 « $.2°-1)"5 = Id(9)
($.27-1 % $.3)72 = Id($)
($.2 * $.1 « $.2°-1 % $.1)"°2 = Id4d($)
$.27-2 % S.1 x $.272 x $.3 * $.1 * $.3 = Id(S)
S.1 x $.27-3 % $.1 % $.27-1 % $.3 » $.1 » $.27-1 % $.3
= Id (%)

Order (T[2]"-1%T[31);
Order is 5, same as in g, thus does not change.

Order (T[3]"-1%xT[4])"2;
/%36, changes, then run codex/

for i,3j,k,1 in [1..3] do
if (T[3]17-1%T[4])"2 eq A"i+B " JjxC"kxD"1 then i, J,k,1;
end i1if; end for;
1323
Thus, (£7-1xg) "2=wxy~2
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Order (T[3]*T[2]*T[3] " -1xT[2]);
The order is 2, the same as in the presentation of g.
Then, nothing changes.

Order (T[3] "-2+T[2]+T[3] " 2+xT[4]1+xT[2]*T[4]);
/+ Order is 3. It changes, so run code */

for i,3j,k,1 in [1..3] do

if (T[3] 7 -2+T[2]*T[3]"2xT[4]1+xT[2]*T[4]) eq
A"ixB"jxC"k*D"1

then i, j,k,1; end if; end for;

2111
Thus, £ -2xexf 2xgrxe*xg=w 2xX*y*xZ.

Order (T[2]*T[3]"-3+«T[2]*T[3] " -1+«T[4]+«T[2]*«T[3]"-1+T[4]);
/+ Order is 3. It changes, therefore, we run the code. */

for i,3,%,1 in [1..3] do
if T[2]*T[3]1 -3+T[2]*T[3] " -1*T[4]*T[2]*T[3]1"-1+xT[4] eq
A"i*B"jxC"k«D"1 then i, Jj,k,1; end if; end for;
1233
Thus, exf " -3xexf " —1lxgrexf -1l g=w*x"2.

Now we have the complete presentation of GG, which we verify using M AGM A:

H<w, x,vy,z,e,f,g9>:=Group<w,x,v,z,e,£,9]
w'3,x"3,vy"°3,z2"°3, (wWw,x), (W,y), (x,2), (wWw,2), (x,2), (y,2),
e"2,£76,972, (£f7-1%qg) "2=wxy 2, £ -2xexf " 2xgxexg=w 2%xX*xy*2Z,
(frxexf"—1xe) "2,exf " -3xexf " —1lxgrexf " —-1xg=w*x"2, (exf"-1) "5,
wie=x,w f=y,w g=w"2,x"e=w,x" f=z, X g=wrx*y* 2z,
ye=y, v f=w,y g=y 2,z e=z,z " f=w"2xx" 2%y " 2x2"2,2"g=2"2>;
#H;

19440
#G1;

19440

f1,H1,k1l:=CosetAction (H, sub<H|Id(H)>);

s:=IsIsomorphic (Gl,H1);

S
true

We have successfully solved the extension problem for G, in which we
found that G = 3% : (S5 x 2).
]
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Chapter 4

Double Coset Enumeration

Definition 4.1. [Cur07] Let H and K be subgroups of the group G and define a

relation on G as follows:

x~y <= dhe€ H and k € K such that y = hzk

where ~ is an equivalence relation and the equivalence classes are the sets of the

following form
HxK ={hzklh € H,k € K} = Ugex Hxk = Upeghax K

Such a subset of G is called a double coset. Now we consider the double coset
of the form NxN, where x = mw for some n € N and w is a reduced word in the
tirs. Thus NeN = NmwN = NwN = [w].

Definition 4.2. [Rot95] Let N be a group. The point stabiliser of w in N is
given by:

NY ={n € N|w" = w}, where w is a word in the t;’s.

Definition 4.3. [Rot95] Let N be a group. The coset stabiliser of Nw in N is
given by:

N® = {n € N|Nw" = Nw}, where w is a word of the t;’s.
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Since we usually work with large groups, double coset enumeration is a
quicker way to determine the number of single cosets in a group G. Once we find
the number of single cosets in G, we can determine that the order of GG is at least
the product of the number of single cosets and the order of our control group N.

Let us begin with a simple example:

4.1 Construction of G = Sg: (Y

Consider the infinite group G represented by < x,y, t|y*, y=2 * 271 x y? %
rhy txadxy ka2 (4,7 x y71 % 2) > obtained from our control group
N = 2x (5 :4). N is generated by x ~ (1,2,3,4,5,6,7,8,9,10) and y ~
(1,7,9,3)(2,4,8,6). Recall that our tys are of order 2. When we factor G by
the following relations: (y=' s 27t « )6 (7' syt sz x )4 (22 % )8, (z *x £)°, we
obtain a finite homomorphic image of order 1440. We will now demonstrate how
we construct double coset enumeration on G.

We begin the process of double coset enumeration by first getting an idea
of how many double cosets we can expect to obtain. This is an easy check as
% = the number of single cosets. In our case we should have % = 1440/36 = 36
single cosets. Before we continue, it is important to mention that we found that

ty ~ tg,to ~ t7, 13 ~ tg,t4 ~ tg, and t5 ~ t19. The relations are verified as follows:

ts[6] eg(2, 10) (3, 9) (4, 8) (5, 7)t_1,
ts[7] eq (1, 3) (4, 10) (5, 9)(6, 8)t_2,
ts[8] eq (1, 4, 5, 2) (3, 8) (6, 9, 10, 7)t_3,
ts[9] eq (1, 7) (2, 6) (3, 5)(8, 10)t_4,
ts[10] eq (1, 9) (2, 8) (3, 7) (4, 6)t_5

Therefore instead of working on 10 #'s or 10 letters, we will be working with 5.

Consider the double coset denoted as [*] is NeN = N. The number
of singles cosets in [x| can be determined by the number of elements in N that

fix the coset NeN. Since every element of N fixes the coset NeN (since N

is transitive), we find the number of distinct single cosets in NeN = % =
3—8 = 1. In order to move forward, we choose a representative from the orbit
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{1,2,3,4,5,6,7,8,9,10}. In this case we will choose 1. There are ten elements
in the orbit {1,2,3,4,5,6,7,8,9,10}, therefore, all ten symmetric generators will
move forward.

Next we will investigate the double coset Nt;N denoted as [1]. Con-
jugating our coset Nt; by all elements of N gives us all the single cosets that
live in [1]. Those are: {Nty, Nty, Nt3, Nty, Nts, Ntg, Nt7, Ntg, Ntg, Ntipo}. We
find the point stabiliser N1 =< (2,10)(3,9)(4,8)(5,7),(2,4,10,8)(3,7,9,5) > and
|N'!| = 4. However, consider the following relation: tg = (2,10)(3,9)(4,8)(5, 7)t;.
This implies that Ntg = N(2,10)(3,9)(4,8)(5,7)t; = Nt;. So any permutation
that sends 1 to tg will be in the coset stabilizing group N®™. Thus, our coset sta-
biliser may increase. This implies N >< N (1,6)(2,3,10,9)(4,7,8,5) >. We
find [N(W| = 8. The number of distinct singles cosets in [1] are |1‘v]?71|)\ =2 =5 The
orbits of N on {1,2,3,4,5,6,7,8,9,10} are {1,6} and {2,10,4,9,3,5,7,8}. Now

choosing a representative from each orbit, we have two possible new double cosets,

but, Ntit; = NeN which lives in [*]| since our order of ti's is 2, and since there
are two elements in orbit {1,6}, two symmetric generators will return to [*]. We
have one potential new double coset Nt;to N from the orbit {2,10,4,9,3,5,7,8}.
Therefore eight symmetric generators will move forward to this new double coset
we denote as [12].

Consider the new double coset Nt toN € [1,2]. We find N2 =< ¢ >,
since no element in N fixes the two points (1,2). However, if we conjugate
Ntqty by all elements of N we get all the single cosets that live in [1,2]. There
are a total of 40 single cosets in [1,2], but we find the following: Ntity =
Ntgt;. Thus, any element that sends Nt t, to Ntgt; will be in the coset sta-
bilizing group NU2. We find (Nt t,)I8)EDE6OESO10) — Ntgt, So NI ><
N2 (1,8)(2,7)(3,6)(4,5)(9,10) >. We find [N®?| = 2. Then number of distinct
singles cosets in [12] are % = 22 = 20. The orbits of N2 on
{1,2,3,4,5,6,7,8,9,10} are {1,6},{2,7},{3, 8}, {4,9}, {5, 10}. Therefore, we have
five possible new double cosets, but we find the following: Nt tot; = Nttots =
Ntyty € [12]. Therefore, four symmetric generators will loop back into [12]. Also

Ntytatos = Nty € [1], this implies that two symmetric generators will return to [1].
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Therefore the only remaining possible new double cosets are: Nt toty and Nt tots.
This implies that four elements will advance to a new double coset, but we find
that the two single cosets Nt toty = Ntqtots, therefore we will only consider one
of these new double cosets. We will work with Nt toty N € [124].

Consider the new double coset Nt tot4N. We find N'?* =< e >. However, con-
sider we find that Nt toty = Nitstots. Any element that sends tqtot4 to tstats would
be in the coset stabilizing group N2, We find (Nt tot,) 153 6108) — Nt ot
So N2 >« N'24 (1,53,9)(4,6,10,8) >. We find [N!*)| = 4. The number
of distinct singles cosets in [124] are % = 2 = 10. The orbits of N124 are:
{1,5,3,9},{2}, {4,6,10,8},{7}. Then, we have four possible new double cosets,
but we find: Ntitotst1 = Niitotsty = Ntqty € [12], and Nt totsty = Ntqtotyt; =
Ntytaty € [124]. Then eight symmetric generators will return to [12] and two
symmetric generators will loop back into [124]. Since there are no possible new
double cosets to investigate, our group is closed under right multiplication of ¢:s.

Since the order of G over N is 36, this implies we must have 36 single cosets all

together. The following Cayley Diagram illustrates the correct result.

awawawe
VARVIRV,

112 (124)

Figure 4.1: Cayley graph of 2*10 : (S5 : C3)
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4.2 Construction of 5*: Dy

We will construct a Caley Diagram of the group G = 5% : Dy,. Consider
the group:

1

G<uxuyt>= Group<x,y,t]x5,y2,:c_ *y*x_l*y*x*y*z*y,(t,x),tz,

(2 xy*xa " xt)’ (27 xyxt) >

obtained from our control group N = C5 x Dyg. N =< z,y > where x =
(2,4,6,8,10), and y = (1,6)(2,7)(3,8)(4,9)(5,10). We will let t ~ ¢;.
The double coset denoted as [*] is NeN = N, where N = {1,2,3,4,5,6,7,

8,9,10} The number of single cosets in [*] is the number of right cosets which can

INI _ 50
IN| — 50

tive from the orbit {1,2,3,4,5,6,7,8,9,10}. In this case we will choose 1.There
are 10 elements in the orbit {1,2,3,4,5,6,7,8,9,10}, therefore, ten symmetric

be determined by = 1 In order to move forward, we choose a representa-

generators will move forward.

Consider the new double coset Nt; N denoted as [1]. Now the point
stabilizer, denoted N'! is equal to < (2,4,6,8,10) >, and |N!'| = 5. Any ele-
ment that fixes 1 or in other words, sends 1 to itself, will be in the coset sta-
bilizing group denoted N. We find only four elements that do so, therefore
N® >< N' e, (2,10,8,6,4),(2,6,10,4,8),(2,8,4,10,6) > . We find |[NV| = 5.
The number of distinct singles cosets in [1] are | ]l[](vll)l = % = 10. The orbits of NV
are: {1}.{3},{5},{7},{9} and {2,4,6,8,10}. Choosing a representative from each

orbit, we have six possible new double cosets, but, Nt;t; = NeN which lives in

[*], and since there is only one element in orbit {1}, one symmetric generator will
return to [x]. Thus, we have five possible new double cosets to investigate. Since
none of these double cosets were equal to each other or to Nt; they are indeed
new double cosets, so we proceed. We now choose one representative from their
respective orbits:{3},{5},{7},{9} and {2,4,6,8,10}. In this case we chose Nt;t3,
Ntits, Ntit7, Ntitg and Ntity. Therefore, nine symmetric generators will move
forward.

Consider the new double coset Nt1ta N denoted by [12]. Now, we have
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that N2 =< e > . We find that Ntt, is only equal to itself, and since the only ele-
ment in the point stabiliser is the identity, the coset stabilizer N2 = N2 =< ¢ >
. Then [N(?)| = 1. The number of distinct singles cosets in [12] are \1\|7](\1[|2)\ =0 =

50. The orbits of N2 are: {1},{2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}. Choos-

ing a representative from each orbit, we have ten possible new double cosets, but

after further investigation we find that : Nt toto = Ntq, therefore one orbit will go
back to [1]. We also found that Ntitatq, Ntitots, Ntitots, Ntitot7, Ntitatg = Nitqto,
which means that five orbits loop back into [12]. Then four single orbits move for-
ward to the new double cosets Nt toty N, Ntitotg N, Ntitotg N, and Ntitatqg.

Consider the new double coset Nt;t3N denoted as [13]. Now, N3 =<
e >. Consider the relation Nt t3 = Nitsts = Ntst; = Ntytg = Ntgt;. These
double cosets are equal to each other, and are known as equal names. Any element
that sends Ntit3 to any of the following: Ntsts, Ntst7, Ntstg or Ntgty, will be
in the coset stabilizing group N3, We find twenty four elements that do so,
therefore N(13) >< N3 (1,3,5,7,9)(2,4,6,8,10)... >. Then |[N!3| = 25. The
number of distinct single cosets in [13] are | ]\‘/](\LL)' = % = 2. The orbits of NU3) are:
{1,3,9,5,7}, and {2,4,10,6,8}. Then, we have two possible new double cosets,
but after further investigation we find the following: Nt t3t; = Nt;. Therefore,
five orbits go back to [1] and Ntitsta = Ntitatig, then the double coset [132]
collapses. Thus, the double coset [13] does not expand any further.

Consider the new double coset Nt t5 N denoted by [15]. Now, we have
that N =< e >. Consider the relation Nt;t5 = Ntstg = Ntots = Ntst; = Ntrt;.
Any element that sends Nt t5 to any of the following: Ntstg, Ntgts, Ntst; or Nt7ty,

will be in the coset stabilizing group N, We find twenty four elements that do
so, therefore N9 >< N (1,5,9,3,7)(2,4,6,8,10)... >. Then |[N1?)| = 25.

The number of singles cosets in [15] are ‘N‘(Llé)l = 50 = 2. The orbits of N!* are:
{1,5,9,3,7} and {2,4,10,6,8}. Choosing a representative from each orbit we
have two possible new double cosets, but we find that:Nt,t5t; = Ntq, therefore
5 orbits will go back to [1]. We also found that Ntjtsty = Ntjtats, which means
that this double coset will collapse. Since there are no more orbits left to check,

the double coset [15] ends here.
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Consider the new double coset Nt1t;N denoted by [17]. We have that
N =< e >. However, we have the following relation: Nt t; = Ntstg = Ntst; =
Ntst3 = Nitgts. Any element that sends Nt t; to any of the following Ntstg, Ntstq,
Ntsts, or Ntots will be in the coset stabilizing group N7, We find twenty four
elements that do so, therefore N(1") >< N7 (1,3,5,7,9)(2,4,6,8,10)... >. Then
INUT| = 25.The number of distinct singles cosets in [17] are % =22 =2
The orbits of N7 are: {1,3,5,7,9} and {2,4,10,6,8}. Choosing a representa-
tive from each orbit, we have two possible new double cosets, but we find that:
Ntyitst; = Nty, therefore, 5 orbits will go back to [1]. Also, Ntjt;te = Nitytats,
which means that this double coset will collapse. Since there are no more orbits
left to check, the double coset [17] ends here.

Consider the new double coset Ntitg denoted by [19]. We have that
N =< e > . Consider the relation Ntitg = Ntst; = Ntsts = Ntsts = Ntotr.
Any element that sends Nttg to any of the following: Ntsty, Ntsts, Nt7ts or Ntgts.
, will be in the coset stabilizing group N(¥). We find twenty four elements that
do so, therefore N9 >< N (1,5,9,3,7)(2,4,6,8,10)... >. Then |[N(?| = 25.
The number of singles cosets in [19] are % = 2 = 2. The orbits of NU9
are: {1,5,3,9,7} and {2,4,10,6,8}. Choosing a representative from each orbit,
we have two possible new double cosets, but after further investigation we find
that: Ntitot; = Nty, therefore 5 orbits will go back to [1]. We also find that
Ntitgts = Ntytoty, which means that this double coset will collapse. Since there
are no more orbits left to check, the double coset [19] ends here.

We now go back to the new double cosets that extended from [12]. Con-
sider Ntitot,N denoted as [124]. N'** =< ¢ > . Consider the relation Nt toty =
Ntitsts = Ntitgts = Ntytgtip = Ntitipts. Any element that sends Ntitoty to
any of the following: Ntitytg, Ntitgts, Nt1tst1g or Ntitioto will be in the coset
stabilizing group N1?%. We find a total of four elements that do so. For example
Nttt F1O5Y = Nt t10ts, therefore N2V >< N124 (2,4, 6,8,10), (2,6, 10,4, 8),
(2,8,4,10,6),(2,10,8,6,4) >. The number of single cosets in [124] are % =
% = 10. The orbits of [124] are:{1},{3},{5},{9},{2,4,6,8,10}. After inves-
tigating, we find that Nt totsts = Ntite, so five orbits go back to [12]. Also
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Ntitotyts = Ntitotioty, and Ntitotyts = Ntitg therefore two of these double
cosets collapse. We have three new double cosets extending from [124] which
are: Ntytotyty, Ntitotst; and Ntitotsty, each extending with a single orbit from
[124].

Consider Ntjtaotg N denoted as [126] which extended from [12]. Now,
N126 —< ¢ > . Consider the relation Nt tots = Ntitats = Ntitgtio = Ntitsts
= Ntitiot4. Any element that sends Nt totg to any of the following: Ntit4ts,
Ntitgtio, Ntitsts or Ntitiots will be in the coset stabilizing group N126). We find
four elements that do so, therefore NU20) >< N126 (24 6,8,10)... >. The
number of single cosets in [126] are % = % = 10. The orbits of [126]
are:{1}, {3}, {5},{9},{2,4,6,8,10}. After investigating we find that Nt totete =
Ntqty, so five orbits go back to [12]. Also Ntytotgts = Ntytotyty, Ntitatets =
Ntity, Ntitotgt; = Ntytotiots and Ntytotgtg = Ntitotgts therefore four double
cosets collapse. We have only one new double coset extending from [126], Nt1tat,tq
which extends with a single orbit of {1}.

Consider Ntjtots N denoted as [128] which extended from [12]. Now,
N'28 —< ¢ > . Consider the relation Nt tots = Ntitatig = Ntitgts = Ntitgty =
Ntitipte. Any element that sends Ntitots to any of the following: Nt t4t19, Ntiteto,
Ntitgty or Ntytiotg will be in the coset stabilizing group N (128) We find four ele-
ments that do so, therefore NU28) >< N2 (2 4 6,8,10)... >. The number of sin-
gle cosets in [128] are % = 20 = 10. The orbits of [128] are:{1}, {3}, {5}, {7},
{9},{2,4,6,8,10}. After investigating we find that Nt totsts = Ntyto, so five or-
bits go back to [12]. Also Ntitotsts = Ntqtatsts, and Ntytotst; = Ntqts therefore
two of these double cosets collapse. We have three new double cosets extending
from [128] which are: Ntjtotgty, Ntitotsts and Nitqtotgte, each extending with a
single orbit of {1}, {3} and {9}.

Consider NtqtotioN denoted as [1210] which extended from [12]. Now,
N1210 —< ¢ > _ Consider the relation Ntitotig = Nt1tats = Ntitgty = Ntitsts =
Ntitiots. Any element that sends Nt tot1g to any of the following: Nt tyts, Nt tgts,
Ntitsts or Ntitiots will be in the coset stabilizing group N9 We find four el-

ements that do so, therefore N0 >< N1210 (2 4 6 8 10)... >. The number of
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single cosets in [1210] are % = 20 = 10. The orbits of [1210] are:{1}, {3}, {5},
{9},{2,4,6,8,10}. After investigating, we find that Nt tot19te = Ntits, so five or-
bits go back to [12]. Also, Ntytatigts = Ntqtatste, and Nitqtatiote = Ntqts therefore
two of these double cosets collapse. We have three new double cosets extending
from [1210] which are: Ntitotiot1, Ntitatiots and Ntjtotiot7, each extending with
a single orbit of {1}, {5} and {7}.

Consider Ntqtatyt; N denoted as [1241] which extended from [124]. Now,
N2 —< ¢ > . We find fourty nine equal names of Nt totst;. Any element that
sends Ntqtotst; to any of the forty nine equal names found will be in the coset

(1241) For example, consider the relation Ntitotst; = Ntitatets.

(2,4,6,8,10)
1 =

stabilizing group NV
Conjugation by the following element gives the desired result: Nt tot,t
Ntitytgt,. Simililarly we can find the the other forty eight elements that give us
the remaining relations. Then, N(1241) >< N1241 (2 4 6,8 10)... >. Therefore the
number of single cosets in [1241] are % = 28 = 1. The orbits of [1241] are:
{1,3,5,7,9},{2,4,6,8,10}. After investigating we find that Nt totst; = Ntilaty,
and Ntitotyty = Ntitoty, so ten orbits go back to [124]. Therefore, the double
coset [1241] does not continue.

Consider Nt tatstz N denoted as [1247] which extended from [124]. Now,
N7 —< ¢ > . We find twenty four equal names of Nt totst;. Any element
that sends Ntitotyt; to any of the twenty four equal names found will be in

1247) We find twenty four elements that do so.

the coset stabilizing group N
Therefore, NU24D >< N1241 (1,9 75 3)(2,4,6,8,10)... >. The number of single
cosets in [1241] are % = 22 = 2. The orbits of [1247] are:{1,3,5,7,9} and
{2,4,6,8,10}. After investigating, we find that Nt totstst; = Ntytaty, therefore
five orbits return to [124]. Also, Ntitotytsty = Ntytots, which implies that the
double coset Ntitotst7to collapses.

Consider NtytotstgN denoted as [1249] which extended from [124]. Now,
NP2 —< ¢ > . We find twenty four equal names of Nt tatstg. Any element
that sends Ntitotytg to any of the twenty four equal names found will be in the

1249

coset stabilizing group NU2%). We find twenty four elements that do so. Then,

NO249) > N1249 (2.4 6,8,10)... >. Therefore, the number of single cosets in
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[1249] are % = 20 = 2. The orbits of [1249] are:{1,3,5,7,9},{2,4,6,8, 10}.
After investigating, we find that Nt totytet; = Ntqtoty, therefore five orbits re-
turn to [124]. Also, Ntitatstots = Ntitots, which implies that the double coset
Ntitotstgts collapses. Since there are no more possible new double cosets to inves-
tigate, [124] does not expand any further. Now we continue to the double coset
[126] and investigate further.

Consider Ntytatgt; N denoted as [1261] which extended from [126]. Now,
N2l —< ¢ > . We find forty nine equal names of Nt totst;. Any element that
sends Ntqtotgt; to any of the forty nine equal names found will be in the coset
stabilizing group N1261) We find forty nine elements that do so. Then, N(1261) >«
N1261(1,7,3,9,5)(2,10,8,6,4)... >. Therefore, the number of single cosets in
[1261] are % = 3 — 1. The orbits of [1261] are:{1,3,5,7,9},{2,4,6,8,10}.
After investigating, we find that Nt totgt1t; = Nitqtats, and Nitilotgtita = Nitqtats.
Therefore, all ten orbits return to [126] and thus the double coset [1261] does not
extend any further.

Consider Ntytotgt1 N denoted as [1281] which extended from [128]. Now,
N2l —< ¢ > . We find forty nine equal names of Nt totgt;. Any element
that sends Ntitotgt; to any of the forty nine equal names found will be in the

1281) We found forty nine elements that do so. Then,

coset stabilizing group N
NO2BD > N1281 (24 6,8 10)... >. Therefore, the number of single cosets in
[1281] are % = % = 1. The orbits of [1281] are:{1,3,5,7,9},{2,4,6,8,10}.
After investigating, we find that Nt totgt1t; = Ntqtots, and Ntqtotgtito = Ntqtots.
Therefore, all ten orbits return to [128] and thus the double coset [1281] does not
extend any further.

Consider Nt totsts N denoted as [1283] which extended from [128]. Now,
N283 —< ¢ > . We find twenty four equal names of Nt totsts. Any element that
sends Ntytotgts to any of the twenty four equal names found will be in the coset sta-
bilizing group N12%3) We find twenty four elements that do so, then, N(12%3) ><
N128(1,3,5,7,9)... >. Therefore, the number of single cosets in [1283] are
sy = 3¢ = 2 The orbits of [1283] are: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9},
{10}. After investigating we find that Ntitotstst; = Ntytotststs = Nitytotststs =
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Ntytotatst: = Ntytotatsto = Ntitots and Nt totatsty = Nt totatsty = Nt totststs =
Ntqtotststs = Ntytotststio = Ntitats. Therefore five orbits return to [128] and the
remaining five double cosets collapse, respectively.

Consider Nt totgtoN denoted as [1289] which extended from [128]. Now,
N2 —< ¢ > . We find twenty four equal names of Nt totstg. Any element
that sends Nt totgty to any of the twenty four equal names found will be in the
(1289) We find twenty four elements that do so, then,
NO289) > N1289 (1.3 5 7.9)... >. Therefore the number of single cosets in [1289]
are iy = ¢ = 2. The orbits of [1289] are:{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9},
{10}. After investigating, we find that Nt totststy = Nitqtotststs = Ntytatststs =
Nt totstst; = Ntitotstato = Ntitots and Ntitotstats = Ntitotststs = Nt totststs =
Ntqtatgtsts = Ntytotststio = Ntitat1o. Therefore five orbits return to [128] and the
remaining five double cosets collapse.

Consider Ntytot10t1N denoted as [12101] which extended from [1210].

Now, N2 —< ¢ > _ We find forty nine equal names of Nt;totiot;. Any el-

coset stabilizing group N

ement that sends Ntitot1gt; to any of the forty nine equal names found will

12101) “We find forty nine elements that do

be in the coset stabilizing group N
so, then, NU2100) >~ N12101 (135 7 9)(2,4,6,8,10)... >. Therefore the num-
ber of single cosets in [12101] are % = 3 = 1. The orbits of [12101]
are:{1},{2}, {3}, {4}, {5},{6}. {7}, {8}, {9}, {10}. After investigating we find that
Ntytotiot1ty = Nititotigtito = Nitqtotigtits = Nititotigtits = Nitqtotqotits
= Ntytotiotite = Ntilatiotity = Nititaliolits = Niatatiolity = Niqtatiotitin =
Ntqtatig. Therefore, all ten orbits return to [1210].

Consider Ntytot10ts N denoted as [12105] which extended from [1210].

N12105

Now, =< e > . We find twenty four equal names of Nt tot1ot5. Any element

that sends Ntitotiots to any of the twenty four equal names found will be in the

(12105) " We find twenty four elements that do so, then,

coset stabilizing group N
NO2105) > N12105 (98 4 10,6)... >. Therefore the number of single cosets in
[12105] are % = 50 = 2. The orbits of [12105] are:{1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10} After investigating we find that Nt1t2t10t5t1 = Nt1t2t10t5t3 =

Ntltgtwtg,tg, - Nt1t2t10t5t7 - Ntltgtlotg,tg == Ntltgtlo. and Ntltgtl[)tg,tg
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= Nt1t2t10t5t4 = Nt1t2t10t5t6 = Nt1t2t10t5t8 = Nt1t2t10t5t10 = Ntltth. Therefore
five orbits return to [1210] and the remaining five double cosets collapse.
Consider Ntytot10t7N denoted as [12107] which extended from [1210].

N12107

Now, =< e > . We find twenty four equal names of Nt totiot;. Any el-

ement that sends Ntitot19t7 to any of the twenty four equal names found will

(12107 We find twenty four elements that do

be in the coset stabilizing group N
so, then, N(12107) > N12107 (1 357 9)(2,4,6,8,10)... >. Therefore, the num-
ber of single cosets in [12107] are % = 32 = 2. The orbits of [12107] are:
{1}, {2}, {3}. {4}, {5}, {6}, {7}, {8}, {9}, {10}. After investigating we find that
Ntytotigtrty = Nititotiot7ts = Nitqtatigtrts = Niitotiot7t; = Ntqtatigtitg =

Ntitotio. and Ntitotiotote = Ntitotiotrts = Ntitotiotrte = Nt tot otrts =

Ntqtatigtstio = Ntqtaty. Therefore five orbits return to [1210] and the remaining
five double cosets collapse. Since there are no new possible new double cosets to
investigate, our group is closed under right multiplication of ¢/s. The construc-
tion of this Caley Diagram is complete. The order of G over N is 125, which is
verified through adding the number of single cosets found in the double cosets as

illustrated in our Caley Diagram below:



(1283

1247

[1249]

Figure 4.2: Cayley graph of 5% : Dyg
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Chapter 5

Double Coset Enumeration Over

Maximal Subgroups

5.1 Construction of U(3,4) over M = A5 : C5

Definition 5.1. (Mazimal Subgroup): A subgroup M # 1 < G is a maximal
normal subgroup of G if there is no normal subgroup N of G with M < N < G.

A symmetric presentation for the group G = 2*1%: (45 : C5) is given by:

Ly

< @,y t2®, 2, o bxyxa T Iy karyxaxy, 83, (8 x), (yxo 2 xyxax Tk t)? (2 2k ykn T
t)° >, where N =< z,y >, ~ (2,4,6,8,10),y ~ (1,6)(2,7)(3,8)(4,9)(5, 10),
and t ~ t;. We will prove that the above progenitor factored by the following
relations: (y * 272y x 27t t)? and (272 xy x 27! * 1)5, gives U(3,4). Note
that our t;4 will be of order 3 in this case, but the process of double coset enu-
meration is the same. Normally we would perform double coset enumeration
of G over N, but this would result in a Caley diagram with 34 double cosets
in our case. Therefore to complete the process of double coset enumeration on
such a large group, we find a maximal subgroup, such that N < M < G. We
found a maximal subgroup M generated by our control group N = 52 : 2 where
M= f(x), fly), fE P xyxa st txystTxysxaoxy*xt ™t xyxtxyxt) which is

isomorphic to As : Cs.
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Double Coset Enumeration To construct a manual double coset enu-
meration of G over the maximal subgroup M and N, we denote [w] to be the

double coset MwN = {Mw"|n € N}, where w is a word in ;.
MeN

We begin with the double coset MeN, denoted [*], which is equal to
{Me"|le € N} = {Me|e € N} = {M}. Here the coset representative for [*| is M.

Since N is transitive on {t1, ¢, t3, t4, t5, tg, t7, ts, to, t10}, it contains a single orbit:
0 =1{1,2,3,4,5,6,7,8,9,10}

The number of distinct single cosets in [#] is determined by dividing the number
of N by the coset stabiliser of MeN, which is all N. Thus, % = % = 1 We right
multiply M by a representative of the single orbit, and in this case we chose 1.

Thus we have a new double coset Mt; N, which we will denote as [1].
Mt N

Next we will investigate the double coset [1] = {Mt}|n € N} = {Mty, Mt,,
Mtsy, Mty, Mts, Mtg, Mty, Mtg, Mtg, Mt} The coset stabiliser group N is
equal to the point stabiliser of IV, denoted N'. The point stabiliser is all such
elements that fix 1. In this case, NV = N' =< (2,4,6,8,10) >. Thus, the
number of single cosets of M¢; N is at most % = % = 10. Therefore, 10 single
cosets live in [1]. Now, the orbits of [1] are:

0= {{1}7 {3}7 {5}7 {7}7 {9}7 {2’ 4,6,8, 10}}7

which were found by looking at the genertaors of N, Now, as in the normal
process of double coset enumeration, we must find where these orbits go by right
multiplying Mt; N by a representative from each orbit.We find that Mt t5 = Id,
Mtit;N = Mtits and MtitgN = Mtit; = Mty N. Therefore two symmetric
generators will loop back into [1], one will return to [*]. Two symmetric generators
move forward to the new double cosets Mt t3N, and five symmetric generators

move forward to Mt taN.
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Mt tsN

Consider the double coset [13] = Mt tsN = {M (t1t3)"|n € N} = {Mtits, Mtgts,
Mtgtyg, Mtiote, Mtsts, Mtaty, Mtsty, Mtyte, Mtrtg, Mtgty}. The coset stabiliser of
the double coset Mt,ts, which we will denote [13] is : N3 > N3 = {e (2,4,6,8,
10)}. Thus, the number of single cosets of Mt t3N is at most IVl — 50 — 1,

NG =
Now, the orbits of [13] are:

0= {{1}7 {3}7 {5}7 {7}a {9}’ {2’ 4,6,8, 10}}7

which were found by looking at the generators of N3 = (2,4, 6,8, 10). Choosing
a representative from each orbit and right multiplying to Mt,t3, we have 6 possible

new double cosets, but we find the following;:

Mtitst; = Mty € [1]
Mtytsts = Mtyts € [13]
Mtytsts = Mtyts € [13]
Mtytst; = Mty € [1]

Based on the information found, two symmetric generators return to [1] and two
loop back into [13]. Now the remaining orbits form two new double cosets which

are: Mt1t3t2 and Mtltgtg.
Mt tstaN

Consider the double coset [132] = Mt tstaN = {M(t1tst2)"|n € N} =
{Mtltth, Mtqtsty, Mtgtstsy, Mt tste, Mitgtsty, Mitstiot7, Mt tsts, Mtgtst, Mtgtioly,
Mtygtaty, Mtygtaty, Mtstste, Mttst10, Mtgtsts, Mtstioty, Mtigtaty, Mtststy,
Mtotyty, Mtstrte, Mtgtsts, Mitgtiots, Mtiotat,, Mitststs, Mtotstg, Mtstrts, Mtstets,
Mtrtots, Mtgtiots, Mtiogtats, Mtststs, Mtotsty, Mtstrtg, Mtatety, Mtrtoty, Mtgtits,
Mtygtats, Mtststig, Mtotats, Mitstrts, Mtytet,, Mtrtots, Mtotity, Mitotsts, Mtststyg,
Mtytets, Mtrtgts, Mitgtitg, Mtstets, Mtrtot1g, Mtgotits, Mtgtltlo}. We find there ex-
ists a relation that sends Mt tst, = Mtgtgt;. Thus the coset stabiliser will

increase since any relation that sends t; — tg,t3 — tg, and t5 — t; will be
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in the coset stabiliser. The coset stabiliser of the double coset Mttty is :
N2 > NU32) = fe (1,6)(2,7)(3,8)(4,9)(5,10)}. Thus the number of single

cosets of Mt tstaN is at most % = 2 = 25. Now, the orbits of [132] are:

0= {{17 6}’ {2’ 7}7 {37 8}7 {4’ 9}’ {5’ 10}}’

which were found by looking at the generators of N32 = (1,6)(2,7)(3,8)(4,9)
(5,10). Choosing a representative from each orbit and right multiplying to Mt tsts,
we have 5 possible new double cosets, but we find the following using MAGMA:

Mtytstaty = Mtyts € [13]

Mt ytstato = Mtytsty € [132]
Mt ytstats = Mtytots € [125]
Mttstoty = Mtityts € [125]
Mttstots = Mttsty € [132]

Based on the information found, two symmetric generators return to [13]
and four loop back into [132]. The remaining double cosets collapse, since they
live in another double coset not connected to this branch. Since there are no new

possible double cosets to investigate we stop here and investigate other branches.
Mt tstoN

Consider the double coset [139] = Mt tstgN = {M(t1tstg)"|n € N} =
{Mtytstg, Mtgtsty, Mtstiote, Mtiotats, Mtststy, Mitotstig, Mistrts, Mtytets, Mtrtots,
Mtotit:}. We find that Mtitsty = Mtstst, = Mtstits = Mitgtots = Mtgtits.
Thus, the coset stabiliser will increase since any relation that, for example, sends
ti — t3,t3 — t5, and tg — t; will be in the coset stabiliser. Likewise, this will
occur for the other double cosets that Mtitstg is equal to. The coset stabiliser of
the double coset Mt tstyis : N3 > NU3) = e (2/4,6,8,10),(1,3,5,7,9)
.(1,3,5,7,9)(2,4,6,8,10)}. Thus the number of single cosets of Mt tstoN is at

|V

most e = 20 = 2. Now the orbits of [139] are:
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O = {{1,3,5,7,9},{2,4, 10,6, 8}}.

Choosing a representative from each orbit and right multiplying to Mt tstg, we

have 2 possible new double cosets, but we find there exists a relation that shows:

Mtytstgtg = Mtits € [13]
Mtytstgto = Mtytsty € [139]

Based on the information found, five symmetric generators return to [13]
and five symmetric generators loop back into [139]. Since there are no more

symmetric generators, this branch ends here.
Mt toN

Consider the double coset [12] = MtitoaN = {M(t1t2)"In € N} =
{Mtity, Mtity, ... Mtgtip}. Here we omit to list the 50 single cosets that live in-
side this double coset Mt t,. The coset stabiliser of the double coset Mt t, is
: N2 > N2 = fe}. Thus, the number of single cosets of Mtt,N is at most

Nl = 50 — 50. Now the orbits of [12] are:

NG| T 1
O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}},

Choosing a representative from each orbit and right multiplying to Mt,t,, we have

10 possible new double cosets, but we find the following;:

Mtitoty = Mtyity € [12]
Mtitots = Mty € [1]
Mtitoty; = Mtqty € [12]
Mtitot1g = Mgty € [12]
Mtitots = Mttty € [123]
Mttots = Mtitoty € [124]
Mtytotg = Mtytots € [125)]
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Based on the information found, one symmetric generator returns to [1]
and three symmetric generators loop back into [12]. The information above results
in three new double cosets Mt toty, Mt toty and Mtqtots in which two symmetric

generators will move forward to each double coset.
Mttt N

Consider the double coset [121] = {M (t1tot1)"|n € N} = {Mtytat,
Mtqtyty, ... Mtgtiote}. We omit the complete list of 50 single cosets that live in
[121]. We find that Mt tot; = Mtqgtstio. Thus, the coset stabiliser will increase
since any relation that sends t; — tqg,to — t3, and t9 — t19 will be in the coset
stabiliser. The coset stabiliser of the double coset Mtitot; is : N2t > N(121) —
{e,(1,10)(2,3)(4,5)(6,7)(8,9)}. Thus the number of single cosets of Mttt N is

at most % = 20 = 25. Now, the orbits of [121] are:

O = {{1,10}, {2,3},{4,5}, {6, 7}, {8, 9}}.

Choosing a representative from each orbit and right multiplying to Mt tot,, we
have 5 possible new double cosets, but we find there exists a relation that verifies

the following:

Mtyitotity = Mitqtat ity = Mtytots € [125]
Mtytotity = Mgty € [12]

Mtitatits = Mtitot, € [121]

Mtytatits = Mtyity € [12]

Based on the information found above, two symmetric generators loop
back into [121] and four return to [12]; the rest collapse. Since there are no more

symmetric generators to investigate, this branch ends here.
Mttt 4N

Consider the double coset [124] = {M (t1tot4)"|n € N} = {Mtytoly,
Mtqtyts, ... Mtgtiota}. We omit the complete list of 50 single cosets that live in
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[124]. We find there exists a relation that sends Mttty = Mtgtstg. Thus, the
coset, stabiliser will increase since any relation that sends t; — tg,to — t7, and

ty — tg will be in the coset stabiliser. The coset stabiliser of the double coset
Mtytoty is : N > NU2Y) = Le (1,6)(2,7)(3,8)(4,9)(5,10)}. Thus the number

of single cosets of Mt tot4N is at most % = % = 25. Now the orbits of [124]

are:

O = {{1,6},{2,7},{3,8},{4,9},{5,10}}.

Choosing a representative from each orbit and right multiplying to Mt toty, we

have five possible new double cosets, but we find the following:

Mt1t2t4t1 == Mt1t2t4t4 = Mt1t2t4 S [124]
Mtitotsty = Mtitotsts = Mtity € [12]

Based on the information found above, four symmetric generators loop
back into [124], and four return to [12]. Mt tatsts N is a new double coset, therefore

two symmetric generators move forward.
Mtqtots N

Consider the double coset [125] = {M (t1tat5)"|n € N} = {Mttots,
..Mtgtipts}. We omit the complete list of single the single cosets that live in
[125], but there exist a total of 50 of these. The coset stabiliser of the double
coset Mttt is : N'?° > NU2) —= fel. Thus, the number of single cosets of

Mtitots N is at most % = 22 = 50. Now, the orbits of [125] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tots, we
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have 10 possible new double cosets, but we find the following:

Mtitotsty = Mitqtatsty = Mtyty € [12]

Mtytotsty = Mitqtatsts = Mtytsty € [132]

Mtytotsts = Mtitotst; = Mtitot, € [121]

Mtytotsty = Mtitotsts = Mtytotsts = Mtitots € [125]
Mtytotstig = Mt totyts € [1245]

Based on the information found above, 3 symmetric generators loop back
into [125], and two return to [12]. The remaining double cosets collapse. Thus,

this branch ends here.
Mt tot tsN

Consider the double coset [1245] = Mttatgts N = {M(t1tatyts)"In € N} =
{Mtitotyts, ... Mtgtiotats}. The coset stabiliser of the double coset Mt tatyts is :
N5 > NO245) — fe (1,3,5,7,9)(2,4,6,8,10),(1,5,9,3,7)(2,6,10,4,8),(1,7,3,9,5)
(2,8,4,10,6),(1,9,7,5,3)(2,10,8,6,4)}. We find that Mt tatsts = Mistytet; =
Mtstetstg = Mtrtstiot; = Mtotigtats. Thus the coset stabiliser will increase since
any relation that, for example, sends t; — t3,ty — t4,t4 — tg and t5 — t; will be

in the coset stabiliser. Thus, the number of single cosets of Mt totst5 N is at most
% = %0 =10. Now, the orbits of [1245] are:

O =1{{1,3,5,7,9},{2,4,10,6,8}}.
Choosing a representative from each orbit and right multiplying to Mt tot4ts5, we

have two possible new double cosets, but we find the following:

Mt1t2t4t5t1 - Mt1t2t4 S [124]
Mt totytsty = Mtityts € [125]
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Based on the information found, five symmetric generators return to [124]
and five loop back into [1245]. Since there are no more orbits to investigate, this
branch ends here. Thus we have shown that this group is closed under right
multiplication since the index of % tells us we should have 208 single cosets all
together. Summing up all the single cosets in each double coset yields the desired

result. A Caley graph illustrating the results is provided below:

[1245]

Figure 5.1: Cayley graph of U(3,4) over A5 : Cs
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5.2 Construction of J; over M = (10:2) : Aj

Definition 5.2. (Mazimal Subgroup): A subgroup M # 1 < G is a mazimal
normal subgroup of G if there is no normal subgroup N of G with M < N < G.

A presentation for the group G'= 2*19: ((10: 2) : Aj) is given by:

G<uzyt>= Group<x,y,t|x5,y2,m_1*y*x_1*y*x*y*x*y,(t,x),tQ,

(yxax2xyxatxt)® (27 xy )0 >,

where N =< z,y >,z ~ (2,4,6,8,10),y ~ (1,6)(2,7)(3,8)(4,9)(5, 10), and

t ~ t1. We will prove that the above progenitor factored by the following relations:
(yxax2xy*xztxt)3 and (27 xy % 1)8, gives Jo of order 1209600.

Let ¢ = (yxx 2 xy*xat) = (1,7,3,9,5)(2,10,8,6,4), then we have (¢t;)® =
(1,9,7,5,3)(2,6,10,4,8). Likewise, we let 8 = (z 7 xyxt) = (1,6,9,4,7,2,5,10,3,8),
then we obtain (8t;)% = (1,5,9,3,7)(2,6,10,4,8).

Now each relation will be expanded as follows:

1= (p*t)?

1= %0 t0t
1=(1,9,7,5,3)(2,6,10,4, 8)tst:t;
t, = (1,9,7,5,3)(2,6,10, 4, 8)t5tr
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We will denote t; = (1,9,7,5,3)(2,6, 10,4, 8)tst; as relation (1). Likewise,

1= (Bxt)°

1= g5 40,
1=(1,6,9,4,7,2,5,10,3,8)tsttatolsts
titete = (1,6,9,4,7,2,5,10,3,8)tatsts

titety = (1,6,9,4,7,2,5,10, 3, 8)tst7t4 will be denoted as relation (2). Normally
we would perform double coset enumeration of G over N, but this would re-
sult in a Caley diagram with 512 double cosets in our case. Therefore to com-
plete the process of double coset enumeration on such a large group, we find
a maximal subgroup, such that N < M < G. We found a maximal sub-
group M of order 1200 generated by our control group N = 52 : 2 where

2

M = f(x), fly), flyxtxyxzxtxystxysxax xyxt*xax 2xy*x*t*yxt) which

is isomorphic to ((10 : 2) : A5).

Double Coset Enumeration To construct a manual double coset enu-
meration of G over the maximal subgroup M and N, we denote [w] to be the

double coset MwN = {Mw"|n € N}, where w is a word in ty.
MeN

We begin with the double coset MeN, denoted [x|, which is equal to
{Me"le € N} = {Mele € N} = {M}. Here the coset representative for [] is M.

Since N is transitive on {ti, to, 3, t4, t5, tg, t7, s, to, t10}, it contains a single orbit:
O =1{1,2,3,4,5,6,7,8,9,10}

The number of distinct single cosets in [#] is determined by dividing the number
of N by the coset stabiliser of MeN, which is all N. Thus, % = % = 1 We right
multiply M by a representative of the single orbit, and in this case we chose 1.

Thus we have a new double coset Mt; N, which we will denote as [1].
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Mt N

Next we will investigate the double coset [1] = {Mt}|n € N} = {Mty, Mts,
Mts, Mty, Mts, Mtg, Mt;, Mtg, Mty, Mtip}. The coset stabiliser group NO g
equal to the point stabiliser of N, denoted N!. The point stabiliser is all such el-

ements that fix 1. In this case, N(Y) = N' =< (2,4,6,8,10) >. Thus the number

[N _ 50 _
NO| — 5

of single cosets of Mt N is at most 10. Therefore 10 single cosets

live in [1]. Now, the orbits of [1] are:

0= {{1}7 {3}7 {5}7 {7}7 {9}7 {2’ 4,6,8, 10}}7

which were found by looking at the generators of N(V'. Now as in the normal
process of double coset enumeration, we must find where these orbits go by right
multiplying Mt; N by a representative from each orbit. Since our ¢;¢ are of order
2, we find that Mt,t;N = N € [], and one symmetric generator goes back to [x].

Now by using the relations expanded above, namely (1), if we right mul-
tiply both sides of this relation by t; we have: t1t; = (1,9,7,5,3)(2,6, 10,4, 8)t3.
This implies that Mtt; = Mts since (1,9,7,5,3)(2,6,10,4,8) gets absorbed by
N, but Mty is € [1] as we saw above, therefore the symetric generator {7}
will return to [1]. We also find that Mtit; = Mt;N. To prove this, we will
demonstrate the example for this case in particular. To prove that there ex-

ists a relation that sends Mt t; to Mt,, we begin by conjugating our relation
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e=1(1,9,7,5,3)(2,6,10,4, 8)tst:t; by one of the transversals of [1], which were:

{e,
(1,6)(2,7)(3,8)(4,9)(5, 10),
(1,8,3,10,5,2,7,4,9,6),
(1,4,9,2,7,10,5,8,3,6),
(1,10,5,4,9,8,3,2,7,6),
(1,3,5,7,9),

(1,9,7,5,3),
(1,2,7,8,3,4,9,10,5,6),
(1,5,9,3,7),

(1,7,3,9,5)}

We do this to try to find a new relation that sends t3t; to tit5 to show that
Mtits; = Mt;. We find that conjugation by (1,9,7,5,3) to our relation (1) yields

the desired result. We will demonstrate the process here:

e =(1,9,7,5,3)(2,6,10,4, 8)t5t:t,

ty = (1,9,7,5,3)(2,6, 10,4, 8)t5t

(1,9,7,5,3)(2, 6, 10,4,8)((1’9’7’5’3)t§,(1’9’7’5’3)t;(1’9’7’5’3) _ t§(1’9’7’5’3)
(9,7,5,3, 1)t1ts = to

We know that Mtg € [1], though, so therefore we have shown that Mt ts = Mt;.
Now, we find the Mt tsN = MtitgN, Mtits = Mt1t;N = Mt;N, which implies
that two symmetric generators loop back into [1]. Finally we find that both
MtitgN and Mt t;N are new double cosets.
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Mt toN

Consider the double coset [19] = Mt tgN = {M (t1t9)"|n € N} = {Mtity, Mtgt,
Mtgts, Mtiots, Mitsty, Mtotio, Mtsts, Mtyta, Mitrts, Mtgtz}. The coset stabiliser of
the double coset Mt,tg, which we will denote [19] is : N** > N9 = {¢ (2,4,6,8,
10)}. Thus the number of single cosets of Mt;toN is at most % = % = 10.

Now the orbits of [19] are:

0= {{1}7 {3}7 {5}7 {7}a {9}’ {2’ 4,6,8, 10}}7

which were found by looking at the generators of N = (2,4, 6,8, 10). Choosing
a representative from each orbit and right multiplying to Mt,tg, we have 6 possible
new double cosets, but we find the following using the techinique of conjugation

by the transversals of [19] from above:

Mtytgts = Mty € [1]
Mtytots = Mtqtg € [19]
Mtytot; = Mtqtg € [19]

Also, Mttty = Mty € [1] since our tys are of order 2. Based on the information
found, two symmetric generators return to [1] and two loop back into [19]. Now

the remaining orbits form two new double cosets which are: Mt tgts and Mt tgt;.
Mt tgt;IN

Consider the double coset [191] = Mt tgt; N = {M(t1tot1)"|n € N} =
{Mtytoty, Mtgtsts, Mtstats, Mtiotstio, Mitstits, Mistigts, Miststs, Mtstots, Miststs,
Mtgtrtg}. We find through MAGMA that Mtitety = Mtstits = Miststs =
Mttst; = Mtgtstg. Thus, the coset stabiliser will increase since any relation that,
for example, sends t; — t3,tg — t1, and t; — t3, will be in the coset stabiliser.
We find that there exists 25 such relations that show why the single cosets found
in MAGMA are equal. The coset stabiliser of the double coset Mt tgt; is :
N9 > N — fe (2.4,6,8,10),(1,3,5,7,9), ...



93

(1,9,7,5,3)(2,8,4,10,6)}. Thus the number of single cosets of Mt tgt; N is at

most % = 22 = 2. Now, the orbits of [191] are:

O =1{{1,3,5,7,9},{2,4,10,6,8}},

which were found by looking at the generators of N = (1,3,5,7,9)(2, 10,8, 6,4),
.(1,7,3,9,5)(2,10,8,6,4). Choosing a representative from each orbit and right
multiplying to Mt tgt;, we have two possible new double cosets, but we find the
following using MAGMA':

Mtltgtltl - Mtltg S [19]
Mtytgtity = Mtytet, € [191]

Based on the information found, one symmetric generator returns to [19]
and one loops back into [191]. Since there are no new possible double cosets to

investigate we stop here and ivestigate other branches.
Mt tgtoN

Consider the double coset [192] = Mt tgta N = {M(t1tot2)"|n € N} =
{Mtltgtg, Mtitoty, Mtgtaty, Mtitots, Mtgtaty, Mistety, Mtitots, Mtgtst,, Mtststy,
Mtygtgty, Mtstite, Mtitgtig, Mtgtats, Migtet,, Mtigtsty, Mtstity, Mtotigty, Mtststs,
Mtgtyats, Mtgtgts, Mtigtsty, Mtstits, Mtotigtg, Mtststy, Mtatoty, Mtrtsts, Migtets,
Mtyotstst, Mtstits, Mtotigt,, Mtstste, Mtytoty, Mit;tsty, Mtotste, Mtigtsts,
Mtstitig, Mtotigts, Mtststs, Mtatot,, Mirtste, Mtot-ty, Mtotigts, Mtststig, Mtstats,
Mtotstg, Mtgtrtg, Mtytots, Mtitst g, Mtgtsts, Mt9t7t10}.

The coset stabiliser of the double coset Mttty is : N192 > N(192) = fe},
Thus the number of single cosets of Mt tgtoN is at most % = 5—10 = 50. Now
the orbits of [192] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mtitgts, we
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have 10 possible new double cosets, but we find the following using MAGMA:

Mt itotats = Mtity € [19]

Mt ytotats = Mtitgty € [192]
Mtytototy = Mtitgtotiy € [192]
Mttgtats = Mttot ity € [12110]
Mttgtots = Mtitgts € [192]
Mtitgtot; = Mtityt ity € [12110]
Mttgtots = Mtitgts € [192]
Mtitgtoty = Mtitgts € [192]

Based on the information found, one symmetric generator returns to [19]
and four symmetric generators loop back into [192]. The remaining generators

will collapse. The new double cosets found for [192] are Mt tgtaty and Mitytgtatqg.
Mt tgtot; N

Consider the double coset [192] = Mtitotat) N = { M (t1tgtat1)"|n € N}
= {Mtytototy, Mtitotsty, Mtgtatste, Mititotsts, Mtststots, Mtstststs, Mtqtotsty,
Mtgtatits, Mtstetots, Mtiotstrtio, Mtstitats, Mt totiot:, Mtstatsts, Mtststits,
Mtygtstotig, Mtstitats, Mtotigtrta, Mitststaots, Mtgtatsts, Mistetsts, Mtiotstitio,
Mtstitets, Mtotiotota, Mtststyts, Mtytotsty, Mitrtstots, Mistststs, Mtigtststio,
Mtstitgts, Mitotigtite, Mtststets, Mtatototy, Mitrtststy, Mitgttoty, Mitiotststyio,
Mtstitiots, Miatiogtste, Mtstststs, Mtytotity, Mirtstets, Mtotrtate, Mitotqgtsta,
Mtststiots, Mtatotsts, Mtrtststr, Mtotrtete, Mttotsts, Mitztstiots, Mtotrtsto,

Mt9t7t10t9}.
The coset stabiliser of the double coset Mt totot, is : N1921 > N(1921) —
{e}. Thus the number of single cosets of Mt tgtot; N is at most W(‘ILQLIH = ? = 50.

Now the orbits of [1921] are:

O = {{1},{2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.
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Choosing a representative from each orbit and right multiplying to Mt tgtot;, we

have 10 possible new double cosets, but we find the following using MAGMA:

Mtitgtot t; = Mttty € [192]
Mtitgtot ts = Mt tot it gty € [12110]
Mtitgtot ity = Mt tot; € [127]
Mtitgtotits = Mttt ity € [12110]
Mtitotatite = Mtitotsts € [1258]
Mtitgtot ity = Mttt ity € [12110]
Mtitotatits = Mtyitotrts € [1276]

Mt tgtot ity = Mttt ity € [121107]
Mtytgtatitig = Mtytats € [125]

Based on the information found, one symmetric generator returns to [192]
and the 8 symmetric generators shown above collapse. Thus, only one symmetric

generator moves forward to Mt tgtatts.
Mt tgtatit,IN

Consider the double coset [19212] = Mt tgtat1taN = { M (t1totatits)™|n €
N} = {Mtytgtatita, Mitytotstity, Mitstatrtets, Mtitotetits, Mtstatoteto, Mitststrtsty,
Mtitgtstits, Mtgtatitets, Migtetotste, Mtigtstrtioty, Mtst tatsts, Mtitotiotitio,
Mtgtatstets, Migtetitst,, Mtigtstotioty, Mitstitatsty, Mitotigtrtaty, Mtststotsts,
Mtgtatstets, Mtgtetststs, Mtigtgtitioty, Mistitetsts, Mitotiototaty, Mitststststy,
Mtytotststy, Mitrtstot te, Migtetststs, Mtigtststiots, Mitstitststs, Mitotigtitaty,
Mtststetste, Mtytototat, Mtststatsty, Mitgtrtotots, Mtigtststiote, Mtstitiotstio,
Mtotqgtstats, Miststststs, Mtstot1tat,, Mirtstgtrte, Mtot7titots, Mitotiotstats,
Mtststiotstig, Mtytatstyts, Mtrtststrts, Mtotrtetots, Mtatotstats, Mtrtstigtztio,
Mtgtrtstots, Mtotrtiototio}

The coset stabiliser of the double coset Mt totat ity is: N19212 > N(19212) —
{e}. Thus the number of single cosets of Mt tgtot o N is at most % = % =
50. Now the orbits of [19212] are:
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O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt tgtat ts,
we have 10 possible new double cosets, but we find the following using MAGMA.:

Mtitgtotitat; = Mtitotatits € [19212]
Mtitgtotitaty = Mt tgtot, € [1921]

Mt tgtotitats = Mtitetat ity € [19212]
Mt tgtotitaty = Mt totitaty € [12129]
Mt tgtotitots = Mtitetat ity € [19212]
Mtytotatitats = Mitqtatsts € [1276]

Mt tgtotitot; = Mt totat ity € [19212]
Mt tgtotitats = Mt totsts € [1258]

Mttgtotitaty = Mtytotat ity € [19212]
Mtitgtotitatiy = Mtytotitats € [12123]

Based on the information found, one symmetric generator returns to
[1921] and the 5 symmetric generators loop back into [19212]. The remaining
symmetric generators shown above collapse. Since there are no new double cosets

to investigate, this branch ends here.
MtltgtztltloN

Consider the double coset [192110] = Mtitotat1t10N = { M (t1totat1t10)"|
n € NV = { Mtitototig, Mtrtotats, Mttststs, Mtitotsts, Mtgtatots, Mtstetots,
Mttotsgts, Mitgtstity, Mtgtetoty, Mtigtstrts, Mtstitot g, Mtitgtiots, Mitetststy,
Mtgtgtite, Mtiotstots, Mtstitate, Mitotigtrts, Mitststatig, Mitgtatsts, Mtgtetsty,
Mtigtstityg, Mtstitety, Mtotiototy, Mitststate, Mtytotsts, Mtrtstotig, Mtgtetsts,
Mtyotststy, Mitstitste, Mtotiotity, Mtststets, Mitstototy, Mitststats, Mitgtstotqg,
Mtygtgtsts, Mtstitiots, Mitotiotst,, Mtststste, Mtytotite, Mitststets, Mtot tsts,
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Mtatiotsts, Mtststiots, Mtatatsty, Mitqtstste, Mitgtrtets, Mistotsts, Mirtstiots,
Mtgtitsts, Mtgtﬂflotg}.

The coset stabiliser of the double coset Mt tototyg is : N19210 > N(19210) —

{e}. Thus the number of single cosets of Mt tgtat19/N is at most % =30 —

1
50. Now the orbits of [19210] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tgtotig, we

have 10 possible new double cosets, but we find the following using MAGMA:

Mttototioty = Mtitotitets € [12192]
Mt tototiots = Mtitotitst; € [12181]
Mtytototiolts = Mtytotitety € [12192]
Mtytotatigty = Mtytoty € [192]
Mtytotatiots = Mtytotsts € [1258]
Mtytototiote = Mtytgtatyy € [19210]
Mtytototioty = Mtytgtatyy € [19210]
Mtytototiots = Mtytgtatyy € [19210]
Mtytototioty = Mtitotsts € [1276]
Mt tototiotio = Mtitety € [192]

Based on the information found, two symmetric generators return to [192]
and the three symmetric generators loop back into [19210]. The remaining sym-
metric generators shown above cause those double cosets to collapse. Since there

are no new double cosets to investigate, this branch ends here.
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Mt t.N

Consider the double coset [12] = Mt to N = {M(t1t5)"|n € N} = {Mtts,

Mtity, Mtgty, Mtitg, Mtgtg, Mtgty, Mt ts, Mtgt,, Mtgty, Mtigt7, Mitsts, Mtitqg,
Mtgts, Mtgty, Mtigtg, Mtsty, Mtoty, Mtsty, Mtgts, Mtgts, Mtigt,, Mtste, Mtoty,
Mtsty, Mtyty, Mitsty, Mtgts, Mtiots, Mtsts, Mtoty, Mtsts, Mtytg, Mtity, Mtgts,
Mtygts, Mtstig, Mitots, Mitsts, Mityt, Mitrte, Mitgty, Mitots, Mtstig, Mtyts, Mt;tg,
Mtgts, Mtyts, Mtrtig, Mitots, Mtotip}. The coset stabiliser of the double coset
Mtity is : N'2 > N2 = {e)}. Thus, the number of single cosets of Mt,t,N is

at most |]\|f]<\{‘2>| = 22 = 50. Now, the orbits of [12] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt;t,, we have
10 possible new double cosets, but we find the following using MAGMA :

Mtitoty = Mty € [1]

Mt toty = Mtityty € [129]
Mtitaty = Mtytot ity € [12110]
Mtyitots = Mtqty € [12]
Mtitotys = Mtyty € [12]
Mtitotyg = Mt tot tg € [1218]

Based on the information found, one symmetric generator returns to [1]
and two loop back into [12]. The symmetric generators mentioned above cause
those double cosets to collapse. Now the remaining orbits form five new double
cosets which are: Mt taty, Mtitots, Mtitoty, Mtitotg, and Mt totitg. Since the
double coset Mt tot1g = Mtqtatits, two symmetric generators will move forward
to Mtytotts.

Mt tot; N

Consider the double coset [121] = Mtitot1 N = { M (t1tat1)"|n € N} = { Mt toty,
Mtitaty, Mtgtrte, Mtitet:, Mtstots, Mitsgtrts, Mtitsty, Mtstits, Mitstots, Mtiotrtio,
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Mtstots, Mtitigt1, Mtgtste, Migtits, Mtigtotio, Mitststs, Miotsto, Mtstots, Mtgtsts,
Mtgtsts, Mtigtitig, Mtstets, Mtotots, Mtstats, Mtytty, Mtrtoty, Mtgtsts, Mtiotstio,
Mtstgts, Mtotite, Mitstets, Mitytoty, Mitrtsty, Mtototg, Mtigtstio, Mitstigts, Mitotsts,
Mtstgts, Mtstits, Mtotsts, Mtotsto, Mtotste, Mtstiots, Mtatsts, Mtststs, Mtoteto,
Mtytsty, Mtrtiotz, Mtgtste, Mtotiote}. The coset stabiliser of the double coset
Mtityty is : N2 > NU2D = L&)}, Thus the number of single cosets of Mt tyt; N

is at most % = 2 = 50. Now the orbits of [121] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tot,, we

have 10 possible new double cosets, but we find the following using MAGMA :

Mttt t, = Mtyty € [12]
Mtytotits = Mttt te € [1219]
Mtytotity = Mtytatityy € [12110]
Mtytotits = Miitat; € [127]
Mtytotite = Mttt ts € [1218]
Mttt t; = Mtitots € [125]

Based on the information found, two symmetric generators move forward
to Mtytatitp and two move forward to Mt tstitg. The symmetric generators
mentioned above cause those double cosets to collapse. Now, the remaining orbits

form four new double cosets which are: Mt tot to, Mititotits, Mt tatite, Mtitotitig.
Mt tattaIN

Consider the double coset [1212] = Mtytotita N = {M(t1tatits)*n € N} =
{Mtitotta, Mitytytity, Migtrtts, Mititetits, Mtglotet, Mitstststy, Mtqtstits,
Mtgtitgty, Mitgtotsty, Mtigtrtiot7, Mtstotste, Mt tigt1t19, Mtgtstets, Migtitsty,
Mtigtotigty, Mtstatsty, Miotrtoty, Mtstotste, Mitgtstets, Mtgtststs, Mtigtitioti,
Mtstgtste, Mtotototy, Mtstatsty, Mtatrtsts, Mtstotsts, Migtststs, Mtiotstiots,
Mtstgtsts, Mitotitoty, Mtstetsts, Mtastotstg, Mitrtytrty, Mitototots, Mtiotstiots,
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Mtstigtstig, Mitotstots, Mitstststs, Mtstitat,, Mirtetste, Mtotstots, Miotstats,
Mtstiotstio, Mtatstats, Mtstgtrts, Mitgtetots, Mitststats, Mtrti0t7t19, Mtgtstots,
Mtgtiptotip}. The coset stabiliser of the double coset Mtitotts

is 1 N'212 > NU212) — fe)) Thus the number of single cosets of Mttt toN is at

most % = 20 = 50. Now the orbits of [1212] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.

Choosing a representative from each orbit and right multiplying to Mt tot s, we

have 10 possible new double cosets, but we find the following using MAGMA :

Mtitotitaty = Mtits € [12]

Mtitotitaty = Mtitotits € [1212

Mtyitotitats = Mtyitotsts € [1252
[

]
]
Mttt tats = Mtytotyts € [1218]
Mttt tats; = Mt totsts € [1272]
Mtytotitats = Mtytotits € [1218]

Mtitotitatio = Mttt ity € [1212]

Based on the information found, two symmetric generators loop back to
[1212] and one returns to [121]. The symmetric generators mentioned above cause
those double cosets to collapse. Now, the remaining orbits form three new double

cosets which are: Mt taotitaty, Mtitotitaty and Mt tatitats
Mt tatitatsN

Consider the double coset [12123] = Mt tot tats N = { M (t1tatqtats)"|n € N}
= {Mtltgtltgtg, Mttt tats, Mitgtrtgtrts, Mtitetitets, Mtgtotetots, Migttst-t1o,
Miytstitsts, Migtitetats, Mitstotstotio, Mtiotrtiotrta, Mitstatstats, Mtitioti1tiots,
Mtgtstetsts, Mtgtitstitig, Mtigtotiotets, Mtststststs, Mitottotsty, Mtstotstoty,
Mtgtstetsts, Mtgtstgtstio, Mtigtitiotite, Mitstetstets, Mtotgtatets, Mitstststaty,
Mtytrtytote, Mtrtotrtoty, Mitgtstststig, Mtiotstiotste, Mtststststs, Mtot tot ty,
Mtstetstetr, Mtytotatote, Mitrtatrtstyg, Mitgtotgtoty, Mtiotstiotste, Mtstiotstiots,



101

Mtotstotsty, Mitststststy, Mtstitastite, Mtstgtrteto, Migtatotst, Mitotstatsty,
Mtstiotstiots, Mtytstatste, Mitstgtrtsty, Mitgtgtotet:, Mtatstatsts, Mtrti0t7t10to,
Mitgtstotsts, Mtotiototiot: . We find through MAGMA that Mttt tats =
Mtitatitaty. Therefore the coset stabiliser of the double coset Mttt tats is :
N12123 > NO2123) — Lo (1,2)(3,4)(5,6)(7,8)(9,10)}, since this element in N sends
ty — to,tyg — ty1,t; — to,ty — t1, and t3 — t4. Thus the number of single cosets

of Mt taotitats N is at most % = % = 25. Now the orbits of [12123] are:

O = {{1,2},{3,4}, {5,6},{7.8}, {9, 10}}.

Choosing a representative from each orbit and right multiplying to Mttt tots, we
have five possible new double cosets, but we find the following using MAGMA :

Mttt tatsty = Miytotatit, € [19212]
Mtytotytotsts = Mttt ity € [1212]
Mtytotytotsts = Miitaotrts € [1276]
Mittotitatst; = Miytatytoty € [12129]
Mt totytotsty = Mtitatsty € [1272]

Based on the information found, two symmetric generators return to
[1212]. The symmetric generators mentioned above cause those double cosets
to collapse. Since there are no more possible new double cosets to investigate,

this branch ends here.
Mt totitateN

Consider the double coset [12129] = Mt totytatg N = { M (t1tat taty)"|n € N}
= {Mtqtotytaty, Mttt taty, Mitgtrtatsty, Mitqtetitsly, Mtgtotstots, Mtstrtststs,
Mtitgtitsty, Mtgtitgtits, Mtgtotstote, Mtigtrti0t7ts, Mtstotstoty, Mtitiot1ti0te,
Mtgtstetsty, Mtgtitstite, Mtigtotiotets, Mitstatststy, Mitotrtotzt g, Mitstotstots,
Mtgtstetsts, Mtgtststste, Mtigt1tiotits, Mitstgtstets, Miotgtatotio, Mitstststats,
Mtytrtytote, Mtrtotrtots, Mitgtstststs, Mtiotstiotsts, Mtstststst,, Mtotitot g,
Mtstetstets, Mtytotatote, Mitrtatrtsts, Mtototgtots, Mitiotstiotsts, Mtstiotstioty,
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Mtotstotstig, Mitststststs, Mtytitatito, Mitqtgtrtets, Mtgtstotsty, Mitotstatsty,
Mtstiotstiots, Mtytstatste, Mitqtgtrtsts, Mitotgtotety, Mtatstatsts, Mtiti0t7t10ts,
Mtgtstotsts, Mtotiototiot7}. We find that Mtitotitoty = Mtitatitatiy. Therefore
the coset stabiliser of the double coset Mtitot toty is : N12129 > N(12129) —
{e,(1,2)(3,4)(5,6)(7,8)(9,10)}, since this element in N sends t; — fy,t9 —
t1,t; — to,t9 — t1, and t9g — t1o. Thus the number of single cosets of Mt tottatg N
is at most —lol— — 2 = 25. Now the orbits of [12129] are:

[N(12129)]
O = {{1,2},{3,4},{5,6}, {7, 8}, {9, 10} }.

Choosing a representative from each orbit and right multiplying to Mt tot toty,
we have 5 possible new double cosets, but we find the following using MAGMA :

Mtytotitotelty = Miytelotity € [19212]
Mtytotitotels = Miytelotity € [19212]
Mtytotytotets = Miitotsty € [1252]
Mtytotytotety; = Miitatsts € [1258]
Mty totytototy = Mtitatity € [1212]

Based on the information found, two symmetric generators return to
[1212]. The symmetric generators mentioned above cause those double cosets
to collapse. Since there are no more possible new double cosets to investigate,

this branch ends here.
Mttt tat{IN

Consider the double coset [12121] = Mt totytati N = { M (t1tat 1tat1)"|n € N}
= {Mtltgtltgtl, Mtitytitat,, Mitgtrtgtrte, Mtitetitgt,, Mtgtotetote, Mitgtrtstrts,
Miytstitsty, Migtitetits, Mitstotstots, Mtiotrtiotstin, Mitstatstats, Mtitiotitiot,
Mtgtstetste, Mtgtitstits, Mtigtotiotetio, Mtstatststs, Mitotstotste, Mitstotstots,
Mtgtstetsts, Mtgtstsgtsts, Mtigt1tioti1t1g, Mitstetstets, Mtotgtatets, Mitstststats,
Mtytrtytoty, Mtytotstoty, Mitgtstststs, Mtiotstiotstio, Mtststststs, Mtot tot ts,
Mistststets, Mtatotatots, Mtztstrtats, Migtatolaty, Mtiotstiotstio, Mistiotstiots,
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Mtotstotsty, Mitstetststs, Mtytitatity, Mtstgtrtets, Migtstotsty, Mitotstatsto,
Mtstiotstiots, Mtststatsty, Mitstgttsty, Mitgtgtoteto, Mtatstatsty, Mtiti0t7t10t7,
Mtgtstotste, Mtotigtotiote}.

We find that Mt totitaty = Mistitatita. Therefore the coset stabiliser of the
double coset Mt tyt tyt; is : N12121 > NO212D) — fe (1,2)(3,4)(5,6)(7,8)(9,10)},
since this element in N only sends ¢; — t5. Thus the number of single cosets of

Mtytatitat; N is at most ‘N(‘ULJQD' = % = 25. Now the orbits of [12121] are:

O = {{1,2},{3,4}, {5,6},{7.8}, {9, 10}}.

Choosing a representative from each orbit and right multiplying to Mt tot toty,

we have five possible new double cosets, but we find the following:

Mtytotytotity = Miitytity € [1212]
Mtytotytotits = Miytsts € [125]
Mtytotytot ts = Miitytsty € [1272]
Mtytotytot t; = Miitotsty € [1252]
Mtytotitotity = Mtitst; € [127]

Based on the information found, two symmetric generators return to
[1212]. The symmetric generators mentioned above cause those double cosets
to collapse. Since there are no more possible new double cosets to investigate,

this branch ends here.
Mt totitoN

Consider the double coset [1219] = Mtytot1tgN = { M (t1tat1te)"|n € N} =
{Mtytatitg, Mttt ty, Mtgtrtets, Mtitetitg, Mtgtotsts, Mtstststs, Mtitstito,
Mtgtitets, Migtotsts, Mtigtrtiots, Mitstotsty, Mtitigtite, Mtgtstets, Mtstitsts,
Mtyototiots, Mitstatsty, Mitotrtotig, Mitstotsts, Miststets, Mitstststs, Mtiotitiols,
Mtstgtsty, Mtotgtotig, Mitstatsts, Mtstrtate, Mitrtotsts, Mitgtststs, Mtotstiots,
Mtstgtsty, Mtotitatig, Mtstetsts, Mtytotate, Mitrtytrts, Mtgtaotets, Mtigtstiots,
Mtstiotsty, Mitotstotio, Mtstststs, Mtstitats, Mitztetrts, Mtotatots, Mtotstatio,
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Mtstiotsts, Mitytstate, Mitrtststs, Mitotstots, Mtststats, Mitrtiotrts, Mtgtstoty,

Mtgtigtots}. The coset stabiliser of the double coset MtitotitgN is : N9 >

N(219) — fe)}. Thus the number of single cosets of Mt tot tgN is at most
Nl - = 59 = 50. Now the orbits of [1219] are:

W] = T
O = {{1},{2}, {3}, {4}, {6}, {6}, {7}, {8}, {9}, {10} }

Choosing a representative from each orbit and right multiplying to Mt tot1ty, we

have 10 possible new double cosets, but we find the following:

Mtitotitgt; = Mttt € [121]
Mtitotitgts = Mttty € [127]
Mtitotitgty = Mt totitgty € [12192]
Mt totitgts = Mt tot ity € [1219]
Mt totitots = Mt totitgty € [12192]
Mttt tgty; = Mt tots € [125]
Mt tot tgts = Mt tot gt € [12191]
Mtitotitoty = Mtyitot; € [121]

Mt totitgtig = Mtytat ity € [1219)]

Based on the information found, three symmetric generators loop back to
[1219] and two return to [121]. The symmetric generators mentioned above cause
those double cosets to collapse. Now, the remaining orbit forms one new double

coset which is: Mt tatitots.
Mt tatitotaIN

Consider the double coset [12192] = Mttotytgto N = { M (t1tatqtots)"|n € N}
= [ Mttotstots, Mtstatitots, Mtgtottats, Mtitatitots, Mtstotstate, Mtsttstots,
Mttgtitgts, Mtgtitetat,, Mtgtotststy, Mtigt7ti0tsty, Mtstotstite, Mt tiot1tgtyo,
Mtgtstetats, Mitgtitgtets, Mtigtgtiotste, Mitstatstity, Miotrtotiot7, Mitstotststs,
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Mtgtstetats, Mtgtststets, Mtigt1tiotst1, Mitstgtstite, Miotgtatigty, Mitststststy,
Mtytrtytots, Mtytotstste, Mitgtstststs, Mtiotstiotsts, Mtstststits, Mtotitot gty
Mtstgtstste, Mitgtotstoty, Mitstatrtsty, Mtotototste, Mitiotstiotsts, Mtstigtstitio,
Mtotstotiots, Mtststststs, Mtytitatot,, Miqtgtrtste, Mtgtatotsty, Mtotstotiots,
Mtstiotststio, Mtgtstatots, Mitstgtrtsts, Mitgtgtotste, Mtatstatots, Mtiti0t7tst10,
Mtgtgtotrts, Mtotigtotstio}. Therefore the coset stabiliser of the double coset
MtytotitgtyN is : N12192 > N(2192) — Lol Thus the number of single cosets of

Mtitatitgta N is at most ‘N(‘DLJQQ)' = % = 50. Now the orbits of [12192] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt totitgts,

we have ten possible new double cosets, but we find the following:

Mtytotitotat; = Mitqtatitigtstip € [12110710]
Mttt totaty = Mt tot ity € [1219]
Mtytotitotats = Mitytgtatiy € [19210]

Mttt tototy = Mt totitoty € [12192]
Mtitotytotats = Mt totsts € [1258]
Mtitottotats = Mt ittty € [1219]

Mttt totat; = Mtytotatiy € [19210]
Mtitottotats = Mtitot oty € [12192]
Mttt totaty = Mt totsty € [1252]

Mt totitotatiy = Mtytatity € [1219]

Based on the information found, three symmetric generators return to
[1219], and two loop back into [12192]. The remaining symmetric generators
mentioned above cause those double cosets to collapse. Since there are no more

possible new double cosets to investigate, this branch ends here.



106

MtltztltloN

Consider the double coset [12110] = Mt tot1t190N = { M (t1tat1t10)"|n € N}
= {Mtltgtltlo, Mtytytite, Mitgtrtets, Mttt ty, Mitgtotets, Mtgtrtsts, Mt tst te,
Mtgtitety, Migtotsty, Mtigtrtiots, Mtstotstig, Mtitiotits, Migtstet, Mtgtitsty,
Mtygtotioty, Mitstatste, Mtotrtots, Mistotstig, Mitgtstets, Mtgtststy, Mtigtitiote,
Mtstgtsty, Mitotototy, Mitstytste, Mtytrtsts, Mitstot 19, Mitgtststs, Mtigtstiots,
Mtstgtste, Mtot totg, Mtstetsts, Mitstotsty, Mtitstrts, Mitgtotgtig, Mtigtstiots,
Mtstiotsts, Mitotstot,, Mtststste, Mtstitatg, Mitstgtrty, Mitgtstots, Mitotstsats,
Mtstigtsts, Mtytstat,, Mtrtgtrte, Mtgtetots, Mitststats, Mtstiot7ts, Migtstots,
Mtgtigtots}. The coset stabiliser of the double coset Mt tot ity is : N0 >
N2110) — £l Thus the number of single cosets of Mt tot t;0N is at most
N = 2 = 50. Now the orbits of [12110] are:

O = {{1},{2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tot1t19, We

have 10 possible new double cosets, but we find the following using MAGMA :

Mt totitigty = Mtytgtat; € [1921]
Mtitotitigts = Mtytot ity € [12110]
Mtytotitiots = Mtitgtat,[1921]
Mtitotitigty = Mtytotits € [1218]
Mtitotitiots = Mitqtgts € [192]
Mtitotitigte = Mtitat ity € [12110]
Mttt tigts = Mitqtaty € [121]
Mttt tigty = Mitqtgts € [192]
Mtytot tiotig = Mtitot, € [121]

Based on the information found, two symmetric generators return to [121]
and two loop back into [12110]. The symmetric generators mentioned above cause
those double cosets to collapse. Now, the remaining orbit forms one new double

coset which is: Mt tatitigty.
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Mt1t2t1t10t7N

Consider the double coset [121107] = Mt tot 19tz N = { M (t1tat1tiot7)"|n € N}
= {Mt1t2t1t10t7, Mttt toty, Mitgtitgtsta, Mt teti1taty, Mtgtotetsta, Migtrtststy,
Mttgtitets, Mtgtitgtote, Mtgtotststy, Mtigt7ti0tsts, Mistotstiote, Mtitiot1tsty,
Mtgtstetity, Mitgtitstots, Mtigtotiot7ts, Mtstatstots, Mitot totsts, Mitstatstioty,
Mtgtstetsto, Mtgtststity, Mtigtitiotots, Mtstgtataty, Miotgtotsts, Mtstatstoty,
Mtytrtytstio, Mitstott1ots, Mitgtstststy, Mtiotstiotits, Mtstststete, Mitotitotgts,
Mtstetsty, Mitytotsty, Mttt trtots, Mitgtototiots, Mtigtstiotste, Mtstiotststo,
Mtotstotits, Mtstststet:, Mtytitatotig, Mitqtgtrtats, Mitotstotats, Miotstotsts,
Mtstiotststy, Mitytstatitig, Mitrtgtrtels, Mtgtgtotats, Mtaststatst g, Mitrti0t7lsts,
Mtgtgtotsts, Mtotiptotsts}. The coset stabiliser of the double coset Mtitotytigty is
o N1207 > y(121107) — fel Thus the number of single cosets of Mt totitigty N is

at most WO‘QLAO?)' = 20 = 50. Now the orbits of [121107] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mttot t1ot7,
we have ten possible new double cosets, but we find the following using MAGMA :

Mt tot tigtsty = Mtytgtot; € [1921]

Mttt tigtrta = Mtytotqte € [1276]

Mttt tigtsts = Mttgtot; € [1921]

Mt tot tigtsty = Mtitotitioty € [12110]
Mtytotitigtsts = Mtitotitiot; € [121107]
Mttt tigtsts = Mtytatsts € [1258]

Mttt tigtst; = Mtytat ity € [12110]

Mttt tigtsts = Mtytotitiotstio € [12110710]
Mttt tigtsty = Mtitotitioty € [121107]

Based on the information found, one symmetric generator returns to

[12110] and three loop back into [121107]. The symmetric generators mentioned
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above cause those double cosets to collapse. Now, the remaining orbit forms one
new double coset which is: Mt tot1t1gt7t10, but since Mt tot tgtrts =

Mtqtotitiot7tio, two symmetric generators advance to this new double coset.
Mt1t2t1t10t7t10N

Consider the double coset [12110710] = Mtytot1tiot7t10N = { M (t1tat1t10t7t10)"|
n e N} = {Mt1t2t1t10t7t10, Mtitatitotsts, Mitgtrtetstots, Mt tgtitatoty,
Mtgtotgtrtaty, Migtrtststats, Mt tst tetrte, Mtgtitetotate, Mitsgtotstrtaty,
Mtyotrtiotstets, Mistatstiotetio, Mirtiotitstrts, Migtstetitrty, Mistitstotato,
Mtygtotiotrtaty, Mitstatstotots, Mitotrtotststs, Mitstotstigtitig, Mtgtstetstats,
Mtgtststitaty, Mtiogtitiototete, Mitstetstatoty, Miotgtatststs, Mitstatstat s,

Mt ytrtatstiots, Miztatztiotstio, Miststststats, Mtiotstiotitets, Mistststetots,

Mot totgtsty, Mistetstatits, Mitgtotat-t1ot7, Mitstytrtotsts, Mtgtotototstio,
Mtqotstiotstets, Mistiolststots, Miatstatitsts, Mitstststetite, Mtstitatoliole,
Mtrtetrtatsty, Mtgtatototsts, Miotstotststs, Mtstigtststits, Mtstststitiot,
Mtrtgtrtetsts, Mtotgtotatsts, Mtatstatstiots, Mitrtigtrtststs, Mtgtstotetsts,
Mtgtiptotststs}. We find that Mtytatitigtztio = Mtyotstiotitets, thus the coset sta-
biliser of the double coset Mt tot totrtyg is : N12HOTI0 > N(2110710) — £ (110)
(2,3)(4,5)

(6,7)(8,9)}, since this element in N sends t; — ty0,t2 — t3,t1 — tio,t10 —
t1,t7 = tg and t19 — t;. Thus the number of single cosets of Mttt ti9t7t10N is

at most % = % = 25. Now the orbits of [12110710] are:

O = {{1,10},{2,3},{4,5},{6,7},{8,9}}.

Choosing a representative from each orbit and right multiplying to Mt tstitiot7,
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we have 10 possible new double cosets, but we find the following;:

Mtytotitigtrtioty = Mitqtatitioty € [121107]
Mtytotitigtrtiote = Mititatyte € [1276]
Mtytot tiotrtioty = Mt totsts € [1258]
Mttt tigtstiote = Mtytatitiot; € [121107]
Mtytotitigtstiots = Mtytatitots € [12192]

Based on the information found, four symmetric generators return to
[121107] and the remaining collapse. Since there are no possible new double

cosets, this branch ends here.
Mt tot;tsN

Consider the double coset [1218] = Mtytot1ts N = { M (t1tat1ts)"|n € N}

= {Mtltgtltg, Mtitatitig, Mtgtrtets, Mtitetits, Mitgtotsts, Mtgtrtsts, Mt tgt ty,
Mtgtitets, Mitgtotsts, Mtigt7tiots, Mtstotsts, Mt tiotite, Mitgtstely, Mtgtitsty,
Mtygtotqots, Mitstatstio, Mtotrtots, Mistotsts, Mitgtstet,, Mtgtststy, Mtigtitiots,
Mtstgtste, Mitotgtats, Mitstatstio, Mitstrtats, Mitstatsts, Mitgtststy, Mtigtstioty,
Mtstgtsty, Mtot toty, Mtstetste, Mtstotsts, Mt tstrtg, Mitgtotgts, Mtqgtstioty,
Mtstiotste, Mitotstotg, Mtstststy, Mtstitsts, Mitstgtzto, Mtotstotig, Miststoty,
Mtstigtste, Mtaytstaty, Mitqtgtrts, Mtotetots, Mitststat, Mtstigtrts,

Mtgtgtoty, Mtotiotots}. The coset stabiliser of the double coset Mtitatqts is :
N28 > NO218) — Lol Thus the number of single cosets of MtitytitgN is at

most % = 20 = 50. Now the orbits of [1218] are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tstts, we
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have 10 possible new double cosets, but we find the following:

Mttt tgty = Mttt ity € [12110]
Mtytotitgts = Mtits € [12]

Mtytot tgty = Mt tot ity € [1212]
Mttt tgts = Mtitotytg € [1218]
Mttty tsts = Mtitot, € [121]
Mttty tgty; = Mtitot tg € [1218]
Mttt tgts = Mtitot, € [121]
Mtytotitgty = Mtity € [12]
Mtitotitstiy = Mtytot ity € [1212)]

Based on the information found, two symmetric generators loop back to
[1218] and two return to [121]. The symmetric generators mentioned above cause
those double cosets to collapse. Now, the remaining orbit forms one new double

coset which is: Mt tat tsty.
Mt tot tgt, N

Consider the double coset [12181] = Mt totytgti N = { M (t1tatqtst,)"|n € N}
= {Mtqtotytgty, Mty tigty, Mitgtrtetsts, Mt tetitat, Migtotetsts, Mistrtststs,
Mtitgtitaty, Mitgtitgtrte, Migtgtststs, Mtiogt-tiotstio, Mtstotststs, Mtitiot1tety,
Mtgtstetots, Mtgtitstrts, Mtigtotiotstio, Mitstatstiots, Mitotstotsts, Mitstotststs,
Mtgtstetitg, Mitgtststots, Mtigtitiot7tig, Mitstetstots, Mitotgtatsts, Mitstststiots,
Mtytrtytsty, Mtrtotrtsty, Mtgtststits, Mtigtstiototio, Mitststststs, Mitotitotsts,
Mtstetstats, Mitstotatsts, Mtrtstrtioty, Mitgtatotste, Mtiotstiotitio, Mistiotstets,
Mtotstotots, Mitstgtstats, Mtstitat-ty, Mitstgtrtoty, Mitotstotioty, Mitotstatits,
Mtstiotstets, Mtytstatoty, Mtstgtrtaty, Mitotgtototy, Mtatstytity, Mt tiot7tety,
Mtotstotsty, Mtotiototstet. We find that Mtitotitst; = Mtstatstiots

= Mtstgtstats = Mtqtgtetat; = Mitgtigtgtety. Thus the coset stabiliser of the
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double coset Mt tyt tgty is : N'2181 > NU218D) — fe (1,35 7,9)(2,4,6,8, 10),
(1,5,9,3,7)(2,6,10,4,8),(1,7,3,9,5)(2,8,4,10,6), (1,9,7,5,3)(2, 10,8,6,4) }.
Thus the number of single cosets of Mt totitst1 N is at most % = % = 10.
Now the orbits of [12181] are:

O ={{1,3,5,7,9},{2,4,6,8,10}}.

Choosing a representative from each orbit and right multiplying to Mt tot tsty,

we have two possible new double cosets, but we find the following:

Mtitotitstit, = Mttt ts € [1218]
Mtltgtltgtltl == Mtltgtgtlo < [19210]

Based on the information found, five symmetric generators return to

[1218]. The other symmetric generator collapses, thus this branch ends here.
Mt tat7IN

Consider the double coset [127] = Mt tot; N = { M (t1tat7)"|n € N} = { Mt totr,
Mttyty, Mtgtzto, Mt tety, Mitgtots, Mtgtsty, Mt tgty, Mtgtite, Migtgty, Mtiot7te,
Mtstotg, Mt tioty, Mtgtste, Migtity, Mtiotots, Mtststy, Miotsts, Mistoty, Mtgtsts,
Mtgtsty, Mtigtite, Mtstety, Mitotots, Mitstste, Mtstrt1g, Mtrtots, Mtgtsty, Mtigtsts,
Mtstgty, Mtottg, Mtstety, Mtytotig, Mitrtats, Mtgtots, Mtiotste, Mtstigty, Mtststs,
Mtststy, Mtytit g, Mtrtgts, Mtgtats, Miotsts, Mtstioty, Mtastst g, Mtrtsts,
Mtgtgts, Mtytstig, Mtrtiots, Mtotste, Mtotigte}. The coset stabiliser of the double
coset Mtitot; is : N'27 > NU2D = e} Thus the number of single cosets of
IN

Mtitst7 N is at most m = 30 = 50. Now the orbits of [127] are:

O = {{1},{2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tot7, we
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have 10 possible new double cosets, but we find the following:

Mtytotrty = Mitytaty € [129]

[
Mtytotrts = Mitytat, € [121]
Mtytotsty = Mtitots € [125]
Mtitotsts = Mtitots € [125]
Mtytotst; = Mty € [12]
Mtitotsty = Mtitot ity € [1212]
Mtitotsty = Mtitot ity € [1219]

Mt1t2t7t10 = Mtltgtztl € [1921]

Based on the information found, one symmetric generator returns to [12]
and two symmetric generators move forward to two new double cosets Mt tsttg

and Mt tot;ts respectively. The remaining double cosets collapse.
Mt tot7taN

Consider the double coset [1272] = Mt tat7ta N = { M (t1lat7ts)"In € N}

= {Mtitotsty, Mtitatots, Mttotaty, Mt tetsts, Mtgtotato, Mtstrtats, Mt tstots,
Mtgtitat,, Mitgtotste, Mtiotrtets, Mtstotots, Mt tiot7t1g, Mitgtstots, Mtgtitsts,
Mtyototsto, Mtstatots, Mtototsts, Mtstotite, Mtgtstols, Mtststats, Mtiotitets,
Mtststots, Mtototste, Mtstatits, Mtststiots, Mtstatste, Mtststats, Mtiotstets,
Mtstatots, Mtotitsty, Mtststits, Mtatotiote, Mtotststs, Mtototsts, Mtiotstets,
Mtstiototio, Mtotststs, Mtststits, Mtstitioty, Mtstststs, Mtotststs, Mtotststs,
Mtstiotitio, Mtatstiots, Mistststs, Migtetsts, Mtatstiots, Miztiotrtio,

Mtgtstots, Mtotiototio}. We find through MAGMA that Mttotsts = Miststats.
Therefore the coset stabiliser of the double coset Mtytotsty is : N1272 > N(1272) —
{e,(1,8)(2,5)(3,10)(4,7)(6,9)}. Since this element in N sends t; — tg,to —
ts,t; — t4, and ty — t5. Thus the number of single cosets of Mt tot7toN is at

most % = 20 = 50. Now the orbits of [1272] are:
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O = {{1,8},{2,5},{3,10},{4,7},{6,9}}.

Choosing a representative from each orbit and right multiplying to Mt tst7ts, we

have 5 possible new double cosets, but we find the following:

Mtytotrtaty = Mtytotsts € [1276]
Mttotrtaty = Mtytot; € [127]
Mtytotrtats = Mtytotits € [1212]
Mttotrtaty = Mtytotitots € [12123]
Mttotrtats = Mtytotitot, € [12121]

Based on the information found, two symmetric generators return to [127]

and the remaining double cosets collapse. Thus, we research Mt tottg.
Mt totrtgN

Consider the double coset [1276] = Mtytot7tg N = { M (t1tat7ts)"|n € N}

= {Mtqtotrte, Mt tytrts, Mtgtrtoty, Mtitetrtio, Mitgtotats, Mistrtat,, Mtqtstrts,
Mtgtitots, Mtgtotats, Mtiotrtets, Mtstotots, Mtitiotrty, Mitgtstots, Mtstitats,
Mtyototets, Mtstatots, Miotrtsty, Mitstotits, Mtgtstate, Miststaty, Mtigtitsts,
Mtstetotig, Mtotgtsts, Mitstatits, Mtstrti0t1, Mitrtotsts, Miststate, Mtyotstety,
Mtststota, Miotitsts, Mtstetitio, Mitatotiots, Mtrtatsts, Mtototsts, Mtiotstety,
Mtstiototy, Mtotststs, Miststite, Mtstitiots, Mitrtetstio, Mtotststs, Mitotststy,
Mtstiotity, Mitytstioty, Mitrtgtsts, Mitgtetstio, Mtststiote, Mitrti0tsty, Mtgtststs,
Mtgtigtsts}. The coset stabiliser of the double coset MtitotrtgN is : N1276 >
N(276) — fe) Thus the number of single cosets of Mt,tyttgN is at most % =
2 = 50. Now the orbits of [1276] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt tstrts, we
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have ten possible new double cosets, but we find the following:

Mtitotrtgty = Mtytotatiy € [19210]

Mt totrtgt, = Mtitgtot, € [1921]
Mtytotstgty = Mtitat tigtstio € [12110710]
Mtytotstgty = Mttt tats € [12123]
Mtytotstgty = Mtitotsts € [1258]
Mtitotrtgty = Mttty € [127]

Mtitotatgty = Mt totitgty € [12192]
Mtitotrtgty = Mtitgtot ity € [19212]
Mtitotstgt, = Mttt tioty € [121107]

Mt totrtgty = Mt totsty € [1272]

Based on the information found, one symmetric generator returns to [127]
and the remaining double cosets collapse. Thus this branch ends here. We next

investigate Mt tots N
Mt totsIN

Consider the double coset [125] = Mt tats N = { M (t1tats)"|n € N} = {Mtitots,
Mtityts, Mtgtrtig, Mt tgts, Mtetotig, Miststo, Mt tsts, Mtgtit1g, Mtgtots, Mtiogtsty,
Mtstoty, Mt tiots, Mtgtst g, Mitgtite, Mtigtoty, Mtststy, Mitotsts, Mistoty, Migtstyo,
Mtgtste, Mtigtity, Mistets, Miotote, Mitstste, Mtstrts, Mtrtot,, Migtste, Mtigtsty,
Mtststy, Mot ts, Mtstety, Mtatots, Mtrtsty, Mtgtots, Mtigtsty, Mtstioty, Mtststs,
Mtstgtg, Mtytits, Mtrtet, Mtgtats, Mitotste, Mitstiote, Mitststs, Mtstgty, Mtotsts,
Mtytsts, Mtstioty, Migtsts, Mtotigts}. The coset stabiliser of the double coset
Mtitots is : N2 > NU2) = fel Thus the number of single cosets of Mt tyts N
[N

] = % = 50. Now the orbits of [125] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

1s at most
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Choosing a representative from each orbit and right multiplying to Mt tots, we

have ten possible new double cosets, but we find the following:

Mtitotsty = Mtitoty € [129]
Mtitotsts = Mtitot ity € [1219]
Mtitotsty = Mtitgtot, € [1921]
Mtitotsts = Mgty € [12]
Mtitotste = Mitytatits € [1212]
Mtytotst; = Mtytaty € [127]
Mtytotste = Mtytot, € [121]
Mtitotstig = Mttty € [127]

Based on the information found, one symmetric generator returns to [12]
and two symmetric generators move forward to two new double cosets Mttotsts

and Mt totsts respectively. The remaining double cosets collapse.
Mt totstaN

Consider the double coset [1252] = Mt totsto N = { M (t1totsts)"|n € N}

= {Mtytotsta, Mitytytsty, Migtrtioty, Mtqtetste, Migtotiote, Mistrtats, Mititststs,
Mtgtitioty, Mitgtototyg, Mtigtrtaty, Mistotyte, Mt totstig, Mtgtstiots, Mistitaty,
Mtygtotaty, Mtstytrty, Mitotrtety, Mtstotots, Mitgtstigts, Mtgtstots, Mtigtitaty,
Mtstetrte, Mitototety, Mtstatoty, Mitatstgts, Mtstot to, Migtstots, Mtigtstats,
Mtstgtrts, Mitottety, Mitstetots, Mtatotsto, Mtstat ty, Migtotsts, Mt otstats,
Mtstiotrtig, Mitotstets, Mitststots, Mtytitst,, Mirtetits, Mtotststy, Miotstets,
Mtstiototio, Mitatststs, Mtitgtits, Mtgtetste, Mitstststs, Mtrti9t1t19, Mtgtststs,
Mtgtiptstip}. We find that Mtytatsto = Mtgtstiot;. Therefore the coset stabiliser
of the double coset Mt totstaN is 1 N1292 > N(1252) = Lo (1,6)(2,7)(3,8)(4,9)
(5,10)}, since this element in N sends t; — tg,t2 — t7,t5 — ti9, and to — t7.
Thus the number of single cosets of Mt totsto /N is at most % = % = 25.
Now the orbits of [1252] are:

O ={{1,6},{2,7},{3,8},{4,9},{5,10}}.
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Choosing a representative from each orbit and right multiplying to Mttst5ts, we

have five possible new double cosets, but we find the following:

Mtitotstot; = Mt totsts € [1258]
Mtitotstoty = Mt tots € [125]

Mt totstots = Mt tot ot € [12121]
Mtytotstaty = Mtitotits € [1212]
Mt totstots = Mt tot oty € [12129]

Based on the information found, two symmetric generators return to [125]
and the remaining double cosets collapse. Thus this branch ends here. We next

investigate Mt totsts N
Mt totstsN

Consider the double coset [1258] = Mt totsts N = { M (t1tatsts)"|n € N} =
{Mttotsts, Mtytytstig, Mtgtrtiots, Mt tetsta, Mtgtotiots, Mtstrtats, Mtqtststy,
Mtgtitioty, Mitgtotots, Mtigtrtats, Mtstotsts, Mt tigtste, Mtgtstioty, Mtgtitots,
Mtygtotats, Mtstytrt g, Miotrtgts, Mtstotgts, Mitgtstiot1, Mitststoty, Mtigtitaty,
Mtstgtrte, Mtotgtets, Mtstatotig, Mitstrtsts, Mtrtot ts, Migtstoty, Mtigtstato,
Mtstgtsty, Mitot tets, Mtstetots, Mtatotsts, Mitrtst 1t g, Mtgtatsts, Mtigtstaty,
Mtstigtrte, Mitotstety, Mtststots, Mtytitsty, Mitstgtito, Mtotststio, Miotstety,
Mtstiotots, Mitatstst, Mtstgtity, Migtetste, Mitstststy, Mt;ti9t1tg, Mtgtststy,
Mtgtigtsts}. The coset stabiliser of the double coset MtitotstgN is : N8 >
N(128) — fe) since this element The number of single cosets of Mt tytstsN is at

most % = 20 = 50. Now the orbits of [1258] are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} }.

Choosing a representative from each orbit and right multiplying to Mt totsts, we
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have ten possible new double cosets, but we find the following using MAGMA :

Mtitotststy = Mtitotatiy € [19210]

Mt totstaty = Mtitgtot, € [1921]
Mtytotststs = Mtitattioty € [121107]
Mtytotststy = Mtitotsty € [1252]

Mt totststs = Mt tot gty € [12192]

Mt totststs = Mtitgtot ity € [19212]

Mt totstst; = Mt totsts € [1276]

Mt totststs = Mt tots € [125]

Mtytotststy = Mtytotitiotstig € [12110710]
Mt totstaty = Mt tot oty € [12129]

Based on the information found, one symmetric generator returns to [125]
and the remaining double cosets collapse. Thus this branch ends here. We next

investigate Mt totg N
Mt tatgIN

Consider the double coset [129] = Mt tatgN = { M (t1taty)™|n € N} = {Mtitato,
Mtityteg, Migtsty, Mt tety, Mtgtoty, Mtsgtrts, Mt tsty, Mtgtity, Migtots, Mtiotts,
Mtstoty, Mtitiote, Mtgtsty, Mtstits, Mtigtots, Mtstaty, Mitotrtig, Mtstots, Migtsty,
Mtgtste, Mtigtits, Mtstety, Mtototig, Mtstats, Mtatrts, Mitrtots, Mtststs, Mtiotsts,
Mtstgty, Mot tig, Mitstets, Mtytots, Mitrtats, Mtototy, Mtiotsts, Mtstioty,
Mtotstyg, Mtststs, Mttt ts, Mitrtets, Mitotyts, Mitotstig, Mitstiots, Mtatsts, Mitrtsts,
Mtotats, Mtytsts, Mtrtiots, Mtotsts, Mtotiotz}. We find that Mtitaty = Mtiotsts,
thus the coset stabiliser of the double coset Mt totgN is : N'29 > N(29) —
{e, (1,10)(2,3)(4,5)(6,7)(8,9)}. Thus, the number of single cosets of Mt tatgN is

% = 22 = 25. Now, the orbits of [129] are:

O = {{1,10}, {2,3},{4,5}, {6, 7}, {8,9}}.

at most



118

Choosing a representative from each orbit and right multiplying to Mt toty, we

have five possible new double cosets, but we find the following:

Mtitotgt; = Mtitoty € [129]
Mtitotgty = Mtitots € [125]
Mtitototy = Mtitoty € [129]
Mtytotgte = Mtytaty € [127]

Mtytotgts = Mtits € [12]

Based on the information found, two symmetric generators return to [12]
and two symmetric generators loop back into [129]. The remaining collapse, there-
fore this branch ends here.

We have the index of % = 1008. Therefore we have that GG is the union

of the 28 double cosets found above, illustrated as follows:

G =MeNUMt;NUMtitoN U MtitgN U Mtytoty N U Mtytotzto N U Mitytotrts N

UMt tots N U Mtqtotsto N U Mtqtotsts N U Mtgtet; N U Mtitgta N
UMt tgtatioN U Mtitgtata N U Mtitotatita N U Mt toty N
UMt tot1ts N U Mtqtat1tsti N U Mtitotit10N U Mt tatit1ot7 N
UMt taot1tiotrtioN U Mitgtat1to N U Mitgtotitoti N U Mtqtat tots N
UMtitot totrtgN U Mtqtot1tg N U Mtitotitoto NcupMt totitatg N

Adding the number of singles cosets in each double cosets yields the

desiired result.

NL L INL L INL N INL NN ]
\N(l)] ‘N(lZ)‘ |N(19)] ]N(127)\ |N(1272)| ’N(1276)| ]N(125)\ |N(1252)\

|G| < N[+
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LN [V [V |V [V [V [NV [V

| N(1258)] + |N(9D)] + | N(192)] + | N(19210)] + | N(1921)] + | N(19212)] + |N(21)] + |N(218)]

V]
| N(12181)

[V [V |V [V

V]
|N(2110)| T y(21107)| | N(12110710) + |N(212)]

+ | N(12121)

+

+ +

Nl NN NN
N(@2123)| N (21279)| T N(219) TN (2192)] T | N (12129

which equals:
|G| < (1+10450+10450+25+50450+25+50+ 2+ 50450+ 50+ 50 +
504504 10+50450+25450+25+425+25+50+50425) x 1200 = |G| = 1209600.
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Next we will briefly show the process of factoring a large group by the
center. We do this to attempt to perform double coset enumeration of G over N.

In this particular case, the group was still too large.

5.2.1 Factoring S(4,4) by the Center Z(G)

A presentation for S(4,4) is given by:

G=<v,w,%X,y,z,tlv’2,w4,x"2,y°3,z2"3,w -2+x,
(wi=1xv) "2, (xxy~=1) "2,

vkz =1*xv*z, (xxz2"=1) "2, (y,z),wxy —lxw —1xy*z"-1,
(t,vrxxz"=1),t "2, (vxw =1xt) "2, (v+wxzxt) 5>

We verify that the order of G is correct and check if this group has a center, with

the following code:

#G;

/%3916800x*/

f, Gl, k:=CosetAction (G, sub<G|v,w,x,y,z>);
#k;

CompositionFactors (Gl);

G

Center (Gl);
/+*Permutation group acting on a set of cardinality 54400
Order = 4 = 272%/
C:=Center (G1) ;
/*0Order 4%/
D:=C.1;
E:=C.2;
Here the center is generated by two permutations, which are of order two,
but too large to show here. Thus we divide our center into two parts, D and E
from above.
Now to write these permutations into words, we use the Schrierer System.

We need to write these permutations into words to include these relations into

our progenitor.
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N:=G1;
Sch:=SchreierSystem (G, sub<G|Id(G)>);
ArrayP:=[Id(N): 1 in [1..#G]1;
for i in [2..#N] do

=[Id(N): 1 in
for j in

[1

[1 Schli]
if Eltseq(Sch[ 1)[3J] eg 1 then P[j]l:=f(v); end if;
if Eltseqg(Sch([i])[j] eq 2 then P[j]l:=f(w); end if;
if Eltseq(Sch[i]) []j] eq -2 then P[j]l:=f(w"-1); end if;
if Eltseq(Sch[i])[]j] eq 3 then P[j]l:=f(x); end if;
if Eltseqg(Sch[i])[]J] eq 4 then P[j]:=f(y); end if;
if Eltseq(Sch[i]) []j] eq -4 then P[J]l:=f(y"-1); end if;
if Eltseg(Sch[i])[]J] egq 5 then P[j]:=f(z); end if;
if Eltseq(Sch[i])[]j] eq -5 then P[]J]l:=f(z"-1); end if;
if Eltseg(Sch[i])[]J] eq 6 then P[j]:=f(t); end if;
if Eltseq(Sch[i])[]j] eq -6 then P[]J]l:=f(t"-1); end if;
end for;
PP:=Id (N);

for k in [1..#P] do
PP:=PPxP[k]; end for;
ArrayP[i] :=PP;
end for;

for 1 in [1..#N] do if ArrayP[i] eg D then Sch[i]; end if;
end for;
for 1 in [1..#N] do if ArrayP[i] eg E then Sch[i]; end if;
end for;

MAGMA gives us these relations:

(Vv » £ « w Tt « X » t « x x t) 3,
(W T  w * t » Xt 2 xt xx x t x x  t =*
X x t xw st x y -1l xt xx x tx X * 2z %t xx xt)

We can now include these relations into our progenitor and check the new
order of G:

G<v,w,x,V¥,2z,t>:=Group<v,w,x,y,z,t|v'2,w'4,x"2,y"3,2"3,
W =2%x, (W =1xVv) "2, (xxy"=1) "2
vz =1xvxz, (xxz2"-1) "2, (y,z),wxy —1lxw" =1lxyxz"-1,
(t,vex+xz"=1),t 2, (vxw —=1xt) "
(vxy " =1xz"=1%t) "0, (vswxt) "0,
(zxt) "4, (wxt) "0, (yxvxt) "0,
(vxwxz*t) "5, (v » £t » w £t = X » t » x * t)~3,

2,
(x*t) "0, (yxt) "0,
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(W T  w* t » Xt 2 xt xxXx x t x x  t =*

X x bt *wxt *y -1l xt xx *xt *xxx 2z %t x X & t)>;
#G;

979200

Thus, we obtain the desired result, though the order of G is still to large

to perfrom double coset enumeration.
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Chapter 6

Monomial Progenitors: Creating
Character Table of G from H and
Monomial Progenitor Produces

Sporadic Group M

Definition 6.1. [Rot95] Kernel of x = {g € G|x(g9) = x(1)}

Theorem 6.2. [Led87] Let N be a normal saubgroup of G and suppose that
Ao(N,) is a representation of degree m of the group G/N. Then A(z) = Ao(N,)
defines a representation of G LIFTED from G/N. If ¢o(N,) is the character of
Ao(N,), then ¢(x) = ¢po(N,) is the LIFTED character of A(x). Also, if u € N,
then A(u) = IL,,¢(u) = m = ¢(1). The LIFTING PROCESS preserves irre-
ducibility.

Construction of Character Table of (s : (4

We will demonstrate how to construct the character table of C5 : Cy from a normal
subgroup H.
To construct the character table of G we first need to find a normal subgroup H.

Gh:=DerivedGroup (G) ;
Gh;
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Permutation group Gh acting on a set of cardinality 10
Order = 5
H:=(1, 3, 5, 7, 9)(2, 4, 6, 8, 10);

Thus H =< (1,3,5,7,9)(2,4,6,8,10) >, and H = D5. We will let

H =< (2,10)(3,9)(4,8)(5,7),(1,3,5,7,9)(2,4,6,8,10) >, such that % = 4. This group
G/H = C;. We now investigate the structure of the group Cy =< e,a* b >. We know
that there will be four transversals of C4 in G, which create the set:

{g(1d),H€H(1, 2, 9, 8)(3, 6, 7, 4)(5, 10),

H(l, 9)(2, 8)(3, 7)(4, 6),H(1, 8, 9, 2)(3, 4, 7, 6) (5, 10)}

We will need to construct the character table of Cy4, which we begin by obtain-

ing the conjugacy classes. The conjugacy classes of Cy are labeled as follows:

Table 6.1: Conjugacy Classes of Cy

Class Perm Rep
D1 (§ aobo
Dy | (1,3)(2,4) | a®t°
Dy | (1,2,3,4) | ab®
Dy | (1,4,3,2) | a®t?

Since we are working with Cy, we know that we most likely have a fourth

root of unity. To verify, we use the formula: z = 11 = [cos(#) + zsm(%)] =

[cos(ZE) +isin(Z)]. If we look at the unit circle, the values of z will be found at every

5 interval. This means that z = 1,1, 1 and —I. We have i"=1,i=1,i>=—1, and
i3 = —I for our character table of Cy. We will now compute:
for ',

0= ("% =1-1=1
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The complete character table of Cy is as follows:

Table 6.2: Character Table of Cy

Class D1 D2 D3 D4
Rep | a%° | a?80 | ab® | a®bY
Ty 1 1 1 1
Tg 1 -1 I -I
T3 1 1 -1 -1
Ty 1 -1 -I I

The same process will be applied to the construction of the character table of
G. The generators of G =< e, A*, B (A7' x B=2 % Ax B~!) >. We need to find all
the class representatives of G to find which class in Cy they live in to be able to perfrom
the lifting process.
S:=Set (Gh)
q:=[{Id(G)}, {},{}, {}];

}
for 1 in [1..#T] do for g in S do
gli]l:=ql[i] Jjoin {gxT[i]}; end for; end for;



A"2%B"2
A"2+B"4
A" 2xB
AT2xB"3
A”2

(1,

(1,

(2,
(1,

(1,

A" 3%B
A”3

A" 3%B"3;
A"3xB"4
A"3%B"2

(1,
(1/ 8/
(1,

9,
4,
(1,
(1,

10) (

9) (2,

10,

3, 10,

8) (3, 6,

3)
7)

(4, 10)
(2,

3,
5) (2,
8) (3,

7!
2) (3, 4,
3, 10) (2,
6) (2, 9,
2, 5, 4)

6) (3,
9) (4,
4) (6,
7) (4,

8) (2,

(5, 9) (6,
5) (8,
8) (5,
10) (7,

6)

3,
7, 6) (5,
7) (5, 6,
10, 3) (4,
(3, 8) (6,

6,

5) (4,
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8),
10),

7).

9),

9)’
10),

9, 8),
5, 8,
7, 10,

7)
9)

For example, any element of B, B* B3, orB? will live in 1d(G) of the character

table of Cy. Likewise all elements A % B3, ..., A will live in the class representative of A

in the character table of CYy, etc.

The conjugacy classes and their representatives are given in the following table

for an easier read:

We begin the lifting process as follows:

for x 1

zi(e) =xz,(e) =1
z1(a®) =271 (a®) = 1
z1(a) =z(a) =1



Table 6.3: Character Table of Cy

Permutation Length
e 1
(1, 9)(2, 8)(3, 7)(4, 6 5
(1,9)(2, 8)(3, 7)(4, 6 5
,8,9,2)(3,4,7,6)(5, 5
8,9,2)(3,4,7,6)(5, 5
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The character table of G is the following.

Table 6.4: Character Table of G

Class | Cy | Cy | C5 | Cy | C5
Rep | e 2l a |a®] b
X1 1 1 1 1 1
T2 1| -1 1 -1 1
T3 1 1 ]-1]-1 1
x4 1 (-1 -1 ]I 1
x5 a | B | v |6 €

Notice that we have an unknown row, namely z 5. We will now demonstrate
how to complete the table of the unknown values «, 3,7, J, and €. We know by Theorem
1.87 the sum of the squares of degrees of our irreducible linear characters is equal to the
|G| of the character x 1. In this case, we have 12 + 12 + 12 + 12 = 4. Therefore a = 4.
To obtain the remaining unknown values, we will use definition 1.61, in which we take

the dot product of two columns. The condition is

ZX'(;)X_(?):1*1—1—1*74—1*—71—#1*—7[—%4*&:0 = v=0.
zzl -
ZX%I)X_(;Q:1*T+1*?I+1*j1+1*j+4*520 = §=0.
i=1

k -

ZX.(;)X.(;):1*T+1*T+1*T—|—1*T+4*€:O = e=1.

i=1

Therefore we have successfully completed the character table of G from H.
This process can be applied to all monomial representatives, but the simple

case is illustrated above for an easier read.
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Table 6.5: Character Table of G

Class Cl CQ Cg 04 05
Rep e 2l a |a®]| b
T 1 1 1 1 1
T2 1| -1 I -1 1
T3 1 1 ]-1)-1 1
T4 1 -1 -1 I 1
T 5 4 0 0 0 1

6.0.2 Monomial Progenitor 11*:,, (C5: Cy)

We will demonstrate how to construct a monomial presentation of

11*4 :,, (C5 : Cy). A presentation for (Cs : Cy) is given by the following:
G < a,b,cla®,b*, ¢, a® = a® >. Here the order G is 20.

To construct a monomial presentation we first must induce an irreducible linear char-
acter from a subgroup H of G. To obtain an irreducible character we choose a subgroup
H of G with an index equal to the degree of an irreducible character of G. Consider the
character table of G = (C5 : Cy) in Table 1 and note G has characters x.1, x.2, .-, X.5-
We proceed using x5 which has a degree of four and look for a subgroup of order 5 so

that % = 4. Thus we get the following index:

[GH]:[(C5C4)C5}:4

Since the index of the two groups is 4, if a matrix representation exists it will be

represented by 4 x 4 matrices.
Verifying the Induction

We produce a character table for C5 in table 2. We will verify the induction
X.2 of C5 to x5 of (Cs : C4) by considering the irreducible characters ¢ (of H) and ¢&
(of G). G = (C5 : Cy) is generated by xx and yy where zz = (1,3,5,7,9)(2,4,6,8,10)
and yy = (1,2,9,8)(3,6,7,4)(5,10). Using our definition of induction along with the
following equivalencies: 1 = 1, Z1#1 = 4, Z1\#2 = 5, Z1#3 = 9, Z1#4 = 3, we can
reproduce ¢© using ¢ (of H).



G = e Dwennc, P(w), where n = m=%5=4%

¢1G = %ZwEHﬂCﬁ ¢(w)

which implies ¢f = 1(¢(1)) = 4(1) = 4.
¢§ = % ZwEHﬂCQ ¢(w)

¢2G = % EweHmCQ ¢

which implies ¢§ = 2(¢(0)) = 2(0) = 0.
¢ = 5 Dwernc, (W)

¢3G = % ZweHmcg ¢

which implies ¢§ = 2(¢(0)) = 2(0) = 0.
¢F = & Dwernc, (W)

which implies ¢§ = 2(¢(0)) = 3(0) = 0.
¢5G = % ngHﬂ&, ¢(w)

G _ 4
¢5 - ZZwEHﬁ02¢

which implies ¢§ = 2(¢(1,3,5,7,9)(2,4,6,8,10) = 3(—1) = —1.

Therefore, ¢ Tg = 4,0,0,0,—1 and we have verified that

X.3 of C5 induces x5 of (5: Cy).
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Table 6.6: Character Table of G
X Cl 02 C3 04 C5

x1 1 1 1 1 1
Yo 1 1 -1 -1 1
s 1 -1 —-I I 1
ya 1 -1 I -1 1

s 4 0 0 0 -1

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 6.7: Character Table of H

X D1 Do D3 Dy Ds

11 1 1 1
X2 1 Zy Ii#2 Zh#3 Z1#4
x3 1 Z1#2 Zv#4 Z1 Z1#3
X4 1 Z1#3  Zv Zi#4 Z1#2
X5 1 Z1#4 Z21#3 #2274y

# denotes algebraic conjugation.
Z1 is the primitive fifth root of unity.

Table 6.8: x5 of G

% | Class | Size | Class Representative

1] G 1d(G)

0] O (1,9)(2,8)(3,7)(4,6)

0| C, (1,8,2,9)(2,4,7,6)(5,10)

1
5

0 Cs | 5 |(1,298)(3,6,7,4)(5,10)
5
4

1| Cs (1,3,5,7,9)(2,4,6,8,10)
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Through induction, we now verify the monomial representation has the follow-

ing generators:

00 0]
9 0 0
030
0 0 5

A(zzx) =

S O O =
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Table 6.9: x2 of H

¢ | Class | Size Class Representative
1| D 1 Id(H)
41 Dy 1 (1, 3,5,7,9)(2, 4, 6, 8, 10)
51| Ds 1 (1, 5,9, 3, 7)(2, 6, 10, 4, 8)
9| Dy 1 (1,7,3,9,5)(2, 8, 4, 10, 6)
3| Ds 1 (1,9, 7,5, 3)(2, 10, 8, 6, 4)
01 0 0]
Alyy) = A
0 0 01
1 0 0 0]

Verifying the Monomial Representation

G =<e,(1,3,57,9)(2,4,6,8,10),(1,2,9,8)(3,6,7,4)(5,10) > and

H =<¢,(1,3,5,7,9)(2,4,6,8,10) >. Since H is a subgroup of G whose index is equal
to the degree of G, we have that: G = H U Ht; U HtoH U HtsH U Hty, where the t.s
are transversals of G acting on H. The transversals of G are labeled as follows:

ty

e,
(1,2,9,8)(3,6,7,4)(5,10),
(1,9)(2,8)(3,7)(4,6),

ty = (1,8,9,2)(3,4,7,6)(5,10). We will now use the following formula to verify the
matrices: Recall that G is generated by = ~ (1,3,5,7,9)(2,4,6,8,10) and

y~(1,2,9,8)(3,6,7,4)(5,10). Here, ¢ of a permutation results in 0 when that permu-

tation does not live in H.

¢(taty ') p(taty!) oltaty') dltiwty’)
Alze) = dtaxt ') (taxty') ¢(tamts') @(tamt; ")
o(tswty ) otawtyt) oltsaty')  dtaatyh)
O(tawty) p(tanty') G(taxts’) ¢(tawty") |
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ai1 : (it ) = p(ah) = ¢(z) = ¢((1,3,5,7,9)(2,4,6,8,10)) = 4

aiz : p(haty ') = pleaty ') =
(;5((1, 3,5,7, 9)(2, 4,6,8, 10) * (1, 8,9, 2)(3, 4,7, 6)(5, 10)) =
(b((l, 4,3, 10)(2, 7)(5, 6,9, 8)) =0

a3 : p(tiwtz ) = dlexts') = ¢((1,3,5,7,9)(2,4,6,8,10) *
(17 9)(27 8)(37 7)(47 6)) = ¢(1,7)(2,6)(3,5)(8, 10) =0

ag s d(tiaty ) = dlextt) = ¢((1,3,5,7,9)(2,4,6,8,10)
(1,2,9,8)(3,6,7,4)(5,10) = ¢((1,6)(2,3,10,9)(4,7,8,5)) = 0

agr : dtaxty ) = ¢((1,2,9,8)(3,6,7,4)(5,10)ze) =
¢((1,2,9,8)(3,6,7,4)(5,10) * (1 3,5,7,9)(2,4,6,8,10)) =
#((1,4,5,2)(3,8)(6,9,10,7)) =

ass : p(taaty ") = p(a18IDEATOGL0) = ((1,7,3,9,5)(2,8,4,10,6)) = 9

as : d(tawts") = $((1,2,9,8)(3,6,7,4)(5,10) * (1,3,5,7,9)(2,4,6,8, 10) *
(1,9)(2,8)(3,7)(4,6) = ¢((1,6)(2,9,10,3)(4,5,8,7)) = 0

agy : P(taxtyh) = 6((1,2,9,8)(3,6,7,4)(5,10) *
(1,3,5,7,9)(2,4,6,8,10) * (1,2,9,8)(3,6,7,4)(5,10) =
d)((la 3)(4a 10)(57 9)(67 8)) =0

az1 : d(tzwtyh) = o((1,9)(2,8)(3,7)(4,6) * (1,3,5,7,9)(2,4,6,8,10)e) =
#((2,10)(3,9)(4,8)(5,7)) =0

asy : d(tswty ') = 6((1,9)(2,8)(3,7)(4,6) * (1,3,5,7,9)(2,4,6,8,10) *
(1,8,9,2)(3,4,7,6)(5,10)) = ¢((1,8,7,10)(2,5,6,3)(4,9)) = 0
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ags : d(tzwty ') = p(aWIEHENEO) = 6((1,9,7,5,3)(2,10,8,6,4)) = 3

ass : d(tsrtyh) = B((1,9)(2,8)(3,7)(4,6) * (1,3,5,7,9)(2,4,6,8, 10) *
(1,2,9,8)(3,6,7,4)(5,10)) = ¢((1,2,5,4)(3,8)(6,7,10,9)) = 0

an : Bltazty ') = 6((1,8,9,2)(3,4,7,6)(5,10) * (1,3,5,7,9)(2,4,6,8,10) x ¢) =
$((1,10,7,8)(2,3,6,5)(4,9)) = 0

age : d(taxtyt) = ¢((1,8,9,2)(3,4,7,6)(5,10) = (1,3,5,7,9)(2,4,6,8,10) *
(1,8,9,2)(3,4,7,6)(5,10)) = #((1,5)(2,4)(6,10)(7,9)) = 0

asz : P(taxtst) = 6((1,8,9,2)(3,4,7,6)(5,10) = (1,3,5,7,9)(2,4,6,8,10) *
(1,9)(2,8)(3,7)(4,6)) = ¢((1,10,3,4)(2,7)(5,8,9,6)) = 0

aas s $(tarty") = ¢((1,3,5,7,9)(2,4,6,8,10) 192 CATHEI0) =
#((1,5,9,3,7)(2,6,10,4,8)) =5

We then follow the same procedure for A(yy) and find that the matrix is cor-

rect. Therefore the matrix representation of A(xx) and A(yy) respectively are as follows:

4000

0900
Azz) =

0030

(000 5

(001 0 0]

0010
A(yy) =

100 0

(000 1

To prove the faithful representation of (Cs : Cy) generated by < 2%, y*, z, 29 =
22 >, where |(Cs : Cy4| = 20, we simply check the order of each matrix representation:

|A(zx)| = 5, and |A(yy)| = 4, then |A(z)||A(y)| = 20. which is the order of our index.
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We can now conclude that G = < z,y > = < A(z), A(y) > . Now, to finalize the

process, we factor our progenitor by necessary relations. We verify we have the correct
progenitor by using the Grindstaff Lemma which verifies the index of our progenitor is
the order of 11*4.
G<x,vy,t>:=Group<x,y,t|y 4, (x"=5), (y" —-1+x"-2xyxx"-1),t" 11,
tox=t"4, (t,t7y), (£, £7(y"2)), (£, 7 (y"3))>;
#G;
292820
Index (G, sub<G|x,y>);
14641
11°4;
14641
1464120 = 292820 = |G].

The homomorphic images obtained from this progenitor can be found in chapter 8.

Constructing a Permutation Representation

We worked in Z7; on matrices of degree 4 x 4, which implies we are working
with 4 ;5 of order 11. Since we have a semi-direct product in our progenitor, the ele-
ments of C5 : C4 will act as an automorphism on < t1 > x < to > x < t3 > x < t4 >. So,

aij =a <= t; — 13, since this is an automorphism. Therefore, for our A(zx) we have:
aip a2 a3 a4
a1 G2 a3 Q24
A(zzx) =
asy a3z asz a34

a41 Q42 G43 Q44

where t; corresponds to column 1, ¢ to column 2, and so on. We will label the entries

of the matrix as follows: a9 = a, ass = b, a91 = ¢, and age = d. Then,

al]l = a < t1—>t(11
a9 = a < t1—>tg
asz = a <— tl—)tg

aq4 = a4 < t1—>til



137

a11:a<:>t1—>t§ a22:a<:>t1—>t§l

We can now construct a table with our t;;; with nonzero entries to obtain the permu-
tation representation. Keep in mind we are working in Zq1. We will have a total of 40

tys for A(xx).

For aj1
t — ]
f - (1 =4
o (e =t = 1
o () =0 =
- () =0 = 8
- () =t = 8
o (el = =
o (e = ol = o
8- () =t = o
o= ()10 =0 =]



[ S 2 S R S A
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For ayq4

th — 15

3 — (13)? =t = 0
- (@) =t =
o () = =)
- () = =
B (= =]
G ()7 = =
o (@) =t =1
- (@) = =)
70— ()0 =0 = 8

To find our permutations, we used tables 6.1 and 6.2:



Table 6.10: Permutation Table of A(xx)

# | ¢ | Mapping to ¢7 | Element of Permutation
1|t t 13
2 |t t9 34
3 | t3 t3 11
4 |ty t5 20
5 |t £ 29
6 |13 t 26
714 8 23
8 |t t3° 40
9 |t t 1
10 | 3 t5 18
1|8 t 35
126 t4 16
13 | ¢} £ 17
14 | t5 t3 10
15| 43 ti 3
16 | t; t 36
17| 8 £ 33
18 | 3 ts 2
19 | 3 t3 15
20 | t] t3 12

Therefore, our permutation representation is the following:

A(zz) = < (1,13,17,33,9)(2, 34, 14, 10, 18)(3, 11, 35,19, 15) (4, 20, 12, 16, 36)

(5,29, 37, 25,21)(6, 26,30, 22, 38)(7, 23, 27, 39, 31)(8, 40, 24, 32, 28) > .
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Table 6.10: Permutation Table of A(xx)

# | t; | Mapping to t7 | Element of Permutation
21 | 49 t7 5
22 | 5 t3Y 38
23 | 1§ tt 27
24 | % 4 32
25 | #] 9 21
26 | t5 t5 30
27 | £} 10 39
28 | 1] 3 8
29 | #§ 10 37
30 | 5 t5 22
31| 4§ t3 7
32 | 4§ th 28
33| 4] t3 9
34 | t5 14
35 | t3 t3 19
36 | t] th 4
37 | 10 tl 25
38 | iV t3 6
39 | 10 5 31
40 | ¢° 4 24

For our A(yy) we would have:

t — tg
ty — t
t3 — t}

ty — t
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Thus, we would apply the same process and our permutation representation would be:
Ayy) = < (1,2,3,4)(5,6,7,8)(9,10,11,12)(13, 14, 15,16)(17, 18, 19, 20)
(21,22,23,24)(25,26,27,28)(29, 30, 31, 32)(33, 34, 35, 36) (37, 38, 39, 40) >.

This demonstrates that our presentation is correct since we have
|A(zz) x A(yy)| = 20 = |G|.

The Monomial Progenitor:

To build the monomial progenitor, we simply need to compute the sta-
biliser (N, ty,13,¢3,t])

We are looking for what element in V fixes our t1/5. The work is as follows:

S:=Sym(40) ;
yy:=S'(1,2,3,4) (5,6,7,8) (9,10,11,12) (13,14,15,16)
(17,18,19,20) (21,22,23,24) (25,26,27,28) (29,30,31,32)
(33,34,35,36) (37,38,39,40);

xx:=s!(1,13,17,33,9) (2,34,14,10,18) (3,11,35,19,15)
(4,20,12,16,36) (5,29,37,25,21) (6,26,30,22,38) (7,23,
27,39,31) (8,40,24,32,28);
N<x,y>:=Group<x,vIy 4, (x7=5), (v —-1xx"=2xy*x"-1)>;
Normaliser:=Stabiliser (N, {1,5,9,13,17,21,25,29,33,37});
Stabiliser(N,{1,5,9,13,17,21,25,29,33,37});

NN<x, y>:=Group<x,y|y 4, (x"=5), (y"-1*x"-2
*y*xx"=1)>;
Sch:=SchreierSystem (NN, sub<NN| Id (NN)>) ;
ArrayP:=[Id(N): i in [1..40171;

for i in [2..20] do

P:=[Id(N): 1 in
[1..#Sc
if Eltseg(Sch[i
if Eltseq(Sch[i
if Eltseqg(Sch[i
if Eltseqg(Sch[i
end for;
PP:=Id(N);

for k in [1..#P] do
PP:=PPxP[k]; end for;

for J in i]
3] eq 1 then P[]j]:=xx; end 1if;
31 eqg -1 then P[j]:=xx"-1; end if;
j] eqg 2 then P[Jj]l:=yy; end if;
3] eq -2 then P[jl:=yy -1; end if;
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ArrayP[i] :=PP;
end for;

Normaliser:=Stabiliser (N, {1,3,5,7,9,11,13,15,
17,19});

Stabiliser(N,{1,3,5,7,9,11,13,15,17,19});

A:=N! (1, 13, 17, 33, 9) (2, 34, 14, 10, 18) (3,
11, 35, 19, 15) (4, 20, 12, 1l6,36) (5, 29, 37,
25, 21) (¢, 26, 30, 22, 38) (7, 23, 27, 39, 31)

(8, 40, 24, 32, 28);

Normaliser eq sub<N|A>;
/*truex/

for 1 in [1..#N] do if ArrayP[i] eqg A then Schli];
end 1f; end for;

/xx*/

The original progenitor for G' was:

G<x,y>:=Group<x,yly"4, (x"=5), (y " -1x
X"T=2xy*x"=1)>;

The new monomial progenitor:

G<x,y,t>:=Group<x,y,tl|ly”4, (x°-5),
(y " —-1xx"-2+y*x"-1),t"11,t " x=t"4,

(t, t7y), (£, 87 (y"2)), (£, 7 (y"3))>;
#G;

/%292820x«/

This is verfied by the Grindstaff Lemma as follows:
Index (G, sub<G|x, y>);
14641

Since we are working with 11*4, which equals 14641, and the index of G x |G| =
292820, as desired, we have proved we have correctly constructed a monomial

progenitor for G.
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Chapter 7

Finding Generators PGLy(13): 2

Consider:

~ 2*12ZS _
G = <$7y,zat\t2:1,[t(z*”]:l,[(m*y*1:(2(11*2))*t)]7:17[y*t]2:1>’ where our control group N =
2%12 . G, and G is the homomorphic image of N factored by the relations: [z *y~! x
AW st 7 [y % t]? and the action of N = 2*12 : S, on the 12 symmetric generators
( y y g
given by:
x~ (1,4)(2,5)(3,6)(8,9)(10,00),y ~ (1,7,4)(2,8,6)(3,9,5)(10, 00,0) and

z~(1,6)(2,5)(3,4)(7,0)(8,10)(9, 00).We will show that G = PGL2(13).

The PG Ly(13) : 2 group is composed of 2x 2 matrices over a field ¢ such that ¢ = p™. Ev-

a+b(x)
ctd(x)’

Fi3,z € FigU{oco}|ad—be =1 or a nonzero square.} =< a, 3,7,6 >. Note: a, 3,7 and

ery finite field is of order p™ where p is a prime. Ly(13) = {z — where a,b,c,d €

d (will represent an automorphism) are our generators of PG Ly(13) we will be defining.
Therefore we will be working on a field of order 13 where
F=1{0,1,2,3,4,5,6,7,8,9,10,11,12} and Fi3U{oo} over 13 letters. Note: 0 = 13, and
oo = 14. To begin the process, let us first define our maps:

a:z—ax+ 1.

B : x — kx, where k is a generator of all nonzero squares.

. _1
Yix e =
2

aut:am—);

Let us begin with a : x — x 4+ 1 We begin with the element 0.
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0—0+1=1
l—=14+1=2
2—2+1=3
3—3+1=4
4—=44+1=5
5—5+1=6
6—6+1=7
T—T7+1=8
8—8+1=9
9—9+1=10

10— 10+1=11

11—114+1=12

oo o0+ 1=0c

Therefore, we obtain the following permutation:

(0,1,2,3,4,5,6,7,8,9,10,11,12)(c0). For § : & +— kx. To find k, we need to find an
element that produces all nonzero squares using modulus 13. The non zero squares of
Fis = {12,22,32,42 52,62,72,82,92,10%,112,12}. If we take every square in the set
mod 13, we will obtain the nonzero squares: {1,3,4,9,10,12}. Therefore, we must find
a k such that it produces this set of non zero squares. We find that 4 works as follows.
41 = 4,42 =343 =12,44 = 9,45 = 10,45 = 1,47 = 4,48 = 3,4° = 12,410 = 9 411 =
10,4'2 = 1. Then our mapping for § is 8 :  — 4z.

0—4(0)=0

1 4(1) =4

4 4(4) = 16 = 3mod13
3 4(3) =12

9 — 4(9) = 36 = 10mod13
10 — 4(10) = 40 = Imod13

25 4(2) =8
8 — 4(8) = 32 = 6modl3
6 — 4(6) = 24 = 11mod13
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11+ 4(11) = 44 = 5mod13
5 4(5) = 20 = Tmod13
75 4(7) = 28 = 2mod13

00 — 4(00) = 00
Then our permutation is: (0c0)(1,4,3,12,9,10)(2,8,6,11,5,7).

Now, for v we have:

I
|
I

1= —1=12modl13
12— —35 = —1(1271)
To find the inverse of 12, we need to find a number such that the product of it and 12
is 1 mod 13. Thus, the inverse of 12 is 12. Then:
12— —1(12) = —12 = 1mod13

. Likewise, we find the other mappings:

2 —1=-1(271) = —1(7) = —7 = 6mod13
6— —%=—1(6"1) = —1(11) = —11 = 2mod13
30— =-1(371) = —1(9) = —9 = 4mod13

4 -3 =-1(471) = -1(10) = —10 = 3mod13
50 —1=-1(5"1) = —1(8) = —8 = 5mod13
T —1=-1(7"1) = —-1(2) = —2 = 11lmod13
11— —& = —-1(117") = —1(6) = —6 = Tmod13
8~ —%=—1(8"1) = —1(5) = —5 = 8mod13

9 —5=-1(971) = —-1(3) = =3 = 10mod13
10 — _% = —1(1071) = —1(4) = —4 = 9mod13

Since we have PGL2(13) : 2 we must create an automorphism for the element
of order two not normal in our group. Note: If we did not have this element of order
two, we would simply have a PSL2(13). For the automorphism we find a map that

produces a nonzero entry that is not a perfect square. We find the following mapping:

2 a(z)+b __ 240z

< co)Td = 0+l = 2. Thus the equation ad — bc = 2 produces a nonzero

0 :x— <. Since

square. 0 : T +> %
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Like before, we work with finding inverses of our elements and obtain the following
permutation for §: (1,2)(3,5)(4,7)(6,9)(8,10)(11, 12)(0, c0).
We verify in M AGM A that our permutations are correct:

S:=Sym(14);
alpha:=s!(13,1,2,3,4,5,6,7,8,9,10,11,12);
beta:=S!'(1,4,3,12,9,10) (2,8,6,11,5,7);
gamma:=S! (13,14) (1,12) (2,6) (3,4) (7,11) (9,10);
#sub<S|alpha,beta, gamma>;
/*1092«/
aut:=S!(1,2) (3,5) (4,7) (6,9) (8,10) (11,12) (13,14);
PGL:=sub<S|alpha, beta, gamma, aut>;
s,t:=IsIsomorphic(Gl,PGL);
Sy
/*truex/

We obtain the mapping from M AGM A that show how elements of G1 of cardinality
91 are mapped to elements of PGL2(13) : 2 of cardinaliy 14:
Homomorphism of GrpPerm: Gl, Degree 91,

Order 2°3 *x 3 % 7 %= 13 into
GrpPerm: PGL, Degree 14, Order 2“3 * 3 * T % 13 induced by

)

(4 6)( 8)(9, 11) (12, 20) (13, 22) (1 18)( 17) (1le, ) (19
3) (2 8) (2 ) ( ) ( 2) (3 1) (3 49) (34, 53) (35,
7) (3 9) (3 61) (40, 57) (42 1) (4 0) (4 ) ( ) (

3) (4 4) (5 9) ( 6) (58 2) (6 2) (6 8) (66 ) (
1) (7 5) (7 ) ( ) ( 2) (8 5) (8 ) ( ) (

90)(88, 89)

[——> (1, 14) (2, 12) (3, 13) (4, 9) (5, 7) (6, 11) (8, 10)

(3, 4, 6)(5, 8, 7)(9, 12, 14) (10, 15, 17) (11, 18 20) (13, 23,

21) (16, 26, 25) (19, 22, 28) (24, 33, 35) (27, 38, 40) (29, 42,

43) (30, 44, 46) (31, 47, 49) (32, 50, 51) (34, 54, 52) (36, 55,

56) (37, 57, 59) (39, 62, 60) ( 63, 65) (45, 68, 66) (48, 53,

9) (58, 61, 72) (64, 67, T6) (73, 81, 82) (74, 83, 79) (75, 78,

85) (77, 86, 80) (84, 88, 90) (87, 89, 91)
|-——> (1, 7, ©6) (2, 10, 9) (4, 8, 12) (5, 14, 11),

(2, 3) (4, 6)(5, 9) (7, 10)(8, )(12 17)(13 24)(14 18)( 20

(16 27) (1 29)(21 30) (22, )( 2) (2 6) (2 7) (2 41)

(33,46) (3 2) (35, 50) (38 6) (3 5) (4 7) (4 5) (4 7)

(44, 51)(4 70)(49, ) ( 9) (5 1) (5 9) (5 3) (6 4)

(61 67)(62 75) (64, ) ( 8) (6 9) (7 0) (7 2) (8 6)

(8 5) (8 87) (90, 91)

|



(1, 2) (3, 5)(4, 7)(6, 8)(9 13) (10, 16)(11 19) (12, 21) (14, 23)
(15 25) (17 6) (1 8) (2 22)(24 34) (2 39) (29, 43)(30 45)
(31,48) ( 2) (3 4) (3 5) (37, 58)(38, 60)(40 62) (4 64)
(44,66) ( 8) (4 9) (4 53)(50, 51) (57, 72) (59, 61)(63, 76)
(65,67) ( 2) (7 4) (7 87) (78, 85) (79, 88)(80, 89) (83, 90)
(86,91)

|-—> (1, 12) (2, 5) (3, 13) (4, 6) (7, 8) (9, 14) (10, 11)

Now we will construct the homomorphic map which proves that G = PG L2(13) : 2 from
our progenitor N. Note: the automorphism was only needed for our element of order
2 not normal in PGLy(13) : 2. Since the permutations above are the homomorphic
images of PGLy(13) : 2, we will have:

6(x) = (1,50)(2,12)(3,0)(4, 9)(5,7)(6, 11)(8, 10),

o(y) = (1,7,6)(2,10,9)(4,8,12)(5, 00, 11),

é(2) = (1,0)(2,12)(3, 11)(4, 10)(5, 9)(6,8), and
o(t) = (1,12)(2,5)(3,0)(4,6)(7,8)(9,00)(10,11). Recall: we replaced 0 for 13 and

oo forld in our permutations defined above. For the mappings, we must find vari-
ables g((;c))Is that satisfy each set of homomorphic mappings from above. For ¢(z) =
(1,00)(2,12)(3,0)(4,9)(5,7)(6,11)(8,10), we construct the following map:

1= o0

a(@)+b _
c(z)+d — o0

a(l)+b _

dtd — X
a+b
ct+d

— c+d=0

=0

— c=—d.

oo 1

a(oco)+b
c(oo)+d 1
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Here, since we already have two variables in terms of ¢ we will attempt to write b in
terms of c.

3—0

3a+b __
3c+d T 0

— b= —-3a

— b= —3csince a =c¢
= b= 10c(modl13).

Now we have all variables in terms of ¢, therefore we write the following map.
¢(z)+10c
c(x)—c
c(z+10)
c(z—1) *
We now verify we have the correct map:

z+10
r—1

Does 2 — 127
(24+10) _ 12 __
2-1) — 1 — 12
12410 _ 22 _ 9

(i2-1) — 11
Likewise, we verify the remaining elements in ¢(x). Similarly, we construct the remain-

and to = 7951}12.

—

ing maps for ¢(y) = 3%, ¢(z) = %52

Now, |N| = 12 implies we have 12 symmetric generators which must be defined in terms
of our homomorphism. To do this we conjugate ¢(t) denoted t = (1,12)(2,5)(3,0)(4, 6)
(7,8)(9,14)(10,11) (where ¢t ~ t1) by an element of our homomorphism we will denote
as:

o(z) =X = S1(1,14)(2,12)(3,13)(4,9)(5,7)(6,11)(8, 10),

d(y) =Y = SI(1,7,6)(2,10,9)(4,8,12)(5,14,11),

¢(z) = Z = S1(1,11)(2,9)(3,10)(4,12)(6, 14)(8, 13) which will produce the twelve sym-
metric generators. Recall from our N we have

x~ (1,4)(2,5)(3,6)(8,9)(10, 12),

y~(1,7,4)(2,8,6)(3,9,5)(10,12,11)

and z ~ (1,6)(2,5)(3,4)(7,11)(8,10)(9, 12).

tX = (1,4)(2,14)(3,13)(5,10)(6,8)(7,12)(9, 11) = t4

127 2 (1,10)(2,14)(3, 7)(4, 11)(5, 8)(6, 13)(9, 12) = o
t=(1,12)(2,5)(3,13)(4,6)(7,8)(9, 14)(10,11) = t;

tZ = (1,3)(2,6)(4,11)(5,9)(7,13)(8,10)(12, 14) = tg
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tY = (1,8)(2,11)(3,13)(4,7)(5,9)(6,12)(10, 14) = t;
tX2) = (1,2)(3,5)(4,7)(6,9)(8,10)(11,12)(13,14) = t3
221 = (1,13)(2,4)(3,6)(5,8)(7,9)(10, 11)(12, 14) = 5

X = (1,12)(2,4)(3,11)(5,13)(6,9)(7,10)(8, 14) = t5
Y = (1,2)(3,14)(4,5)(6,8)(7,10)(9,12)(11,13) = tg
t = (1,3)(2,7)(4,6)(5,13)(8,11)(9, 12)(10, 14) = t19
tZ = (1,9)(2,5)(3,6)(4,14)(7,12)(8,10)(11, 13) = t13
tZ = (1,8)(2,4)(3,7)(5,12)(6,10)(9,11)(13, 14) = t12

Therefore, we have defined our 12 ¢;/5 in terms of our progenitor N by conju-
gation as the group Ly(13) given by:
x ~ (t1,t1)(t2, t5) (3, t6) (ts, to) (t10, t12)
y ~ (t1,t7,ta)(t2, ts, te) (t3, o, t5) (t10, t12, t11)
z ~ (t1,t6)(t2, t5)(t3, ta) (t7, t0) (ts, t10) (B9, t12)

Finally, the additional relations given by: (z % y~! % (2 )) % )" = 1 and
(y * )2 = 1 hold, since | X * Y 1% (ZO ) «T| = 7 and |V * T| = 2 as desired.
Therefore we have shown that |G| > |PGL2(13)|, but |G| < |PGL2(13)| by double coset
enumeration. Thus, G = PGLy(13).

—2
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7.0.3 Double Coset Enumeration of PG Ly(13)

—_—
—
[—

]
+
2
+
$
Z
2

Figure 7.1: DCE of PGL9(13) [Lunl§]
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Chapter 8

Progenitors and Their

Homomorphic Images

Table 7.1: 2%10: (52 : Cy)
Note: For the following table, we have relations labeled a, ..., s, and will only include
the relations used to find each group G. For Progenitor:

G =<a,bt|b*, b 2xa 1 xb?xa L, b7 xadxbxa™ 1,12 (t,a " xb7 1 xa), (a® %)%, ((axb)?
), (bxaxbxt)e, (axbxt)! (b xa ™ xt)9, (a®xbxt)" (a7 xb"Lxaxt)!, (a®xt)], (axt)F >;

njo|plql|r|s G = #G
o[3lofl0o]0]6 2 % Jo 1209600
0[5/0[6]18]8 10 x Jy 6048000
ojlojolo] 5|5 5% : Dy 6250
0/0|0[0[ 0|4 53 : Dg 1000
ojloloflo|l 0[5 53 : (5% : Dyo) 31250
0440 6 |6]|2x(22:(5%:Cs)) | 1228800
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Table 7.2: 2*10: (52 : C)
Note: For the following table, we used the same progenitor as above, but here our t;
were of order 3.

n|lo|plq|r]|s G= #G
0[3|5[0[5]5 As 60
o[2/0[0[5]0 U(3,4) 62400
olojo|o0|5]5 51 : Dy 6250
olojolo]0]4 5% . Ag 23437500
ojlojolo0|0]5 53 : (5% : Do) 31250
0]4|4][0[6]6]2x(2%:(5%:Cq)) | 1228800

Table 7.3: 2*%0 ; (S5) Famous Lemma
For progenitor:

G < z,y,t|la?, 0% (yxxxy 1xx)? (xxy 1) (¢, 2Y), 6%, (y* xx*xy=2)™, (y° * )%, ((y *
zxy)2x 1) (2 x 1) (yxxxyx ), (yxz* 1), (yx )y >

G #G
2% S 1920
Se 720

2°: S5 3840
3185 x 2 | 19440
2: Ly(49) | 11760

3:85; 2160

20 . S 7680

Ly(25) 7800

2: My | 190080

25 : S 23040

o v o o o o o o o o w
o | wl o v o o o o o o
ol o o & o v v v o o o
o o wl o o o o N v o
ol o o o o N o o o o o
w| a wl a] w| o o | o o =
o v N @ B o ] ] o | B
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Table 7.4: 2*30 : (32) . Dg Famous Lemma
For Progenitor:
G < v,w,z,y, 2t wh 22y 23w 2 2, (w x0)2 (e xy D)2 vx 2z b xv ko, (7%
272 (g, 2), wxy L xw b xyx 2Tl (Lokzx 2zl 2 (vrw T )™ (vry T x 2T 5 1) (v
w ) (zxt)e (yxt)d, (zxt)e, (wxt)  (yxv*t)9, (vrwxzxt) >

4 2 1

a|blc|dle|f|g|h|m G = #G

ololoflo[4]l0[0[5]2 4*S(4,4) 3916800
olololofolo[o[3]2 2*Sg 1440

olololofolo[3][5]3 3% % Sg 58320

olololo]o|o[5][3] 4] 4:PGL(3,4) 368640
ofofolofofo[4][3]4] 4PGL(3,4) 161280
olololofo|o[5]3]4 29 : Sg 368640
olololo[6|3[4][0]0 266 x Sg 276480
ojojlofo[6]6]0|4]2 212 . S 1474560
oloflolo[6|8][5][0] 2] PSL(4,3):2 | 24261120
olololo[6|6]6]8]2] 4%(U(4,3):4) | 52254720
olololo[6[8[5][0]2]2%:(U4,3):4) | 104509440

Table 7.5: 210 : Alts
For Progenitor: G < z,y, t|x2, Yo, (x*y_l)?’, t2, (t, y~ ! *), (y*x*y‘l *t)%, (y*x*t)b, (yx*
1), (Y« ) >

alblcl|d G = #G
0l4]6]5 6 : (Altg : Sp) 1555200
0/5]5|6 210 1,(2,11) 675840
0]6]4]0]2((Altg x Altg) :2) | 14400
0l6[5]5 214 . Alts 983040
4104710 2: L(2,16) 8160
410(5]5 28 . Alts 15360
6|4|6|6]| 3:(Altg: Syms) 777600
8l0[5]5 218 - Alts 15728640




For Progenitor:

G <yt % (wxyxaxtxy)? (yxa 1), (ty), (@ xyxa 2 xt)" (a2 xy* ™

Table 7.6: 2*10: (24 : 5)

O, (22 xyxx L xyxalxt) (mx ), (2 x 1), (272 % t)f, (x7txt)9 >

For Progenitor:

a|lb|lcld|e|f]| g G #G
olo[o[o]0[3] 2 29 1 Alts 30720
0[02]0[3]9]10 2° : Alts 1920
olol2]3]0]5] 3 28 Alts 15360
0[0[2[3]|5[5|6 213 Alts | 491520
0jo0f[2[4]4]4] 4 [29:(27:10) | 163840
ojlofofo]o][3] 2] 3%:(2*:10) | 38880
olo[o[o]o[3] 2 211 Alts | 245760
olo[o[o]0[3] 2 210 Altg | 368640
ojojof[ofo]3]2 29 : Altg 184320

Table 7.7: 2*10: (2 x A5)

2
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* Yk

G < x,v, z,t|x3,y2, DoV xysrsry, yxz L xyxz, (2_1 *x)s, (a:_l * 2_2)2,152, (t,x), (y=*
t)e, (q:*zz*t)b, (wxy*22%t)C, (zxt)?, (zxt)e, (zQ*t)f, (xxyxt)?, (y*z*t)h, (yxz=2xt)" >

alblc|d|e|f|g|h]| i G #G
0[0[0[0[0|0[0|4] 4 |2%:PSL(2,16) 32640
ofofo[o[3][0|6]|8] 38 2: Altyy 479001600
ofofofo[4][4]3]0] O 6:5(4,4) 5875200
o[of[o[6]0[8|6|4] 4 PGL(2,16) 16320
o[o[3[o]ofo|3]0]10 2: Mo 190080
o[o[3]of[of[4]0]0] 0] 3:PSL(2,16) 24480
0Ojo[4]0]0][4]6]6]10]2%:(2:5(4,4)) | 3916800
ojof4]6]4]4]0]0] 0O 6*S(4,4) 7833600
o[o[5][0][0[8]3]0] 5] 4:PSL(3,4) 161280
ojlof[5][0[3[5]0]0] 0 1 175560
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Table 7.8: 11*2: Dy,
For Progenitor:
G < x,y,t >= Group < z,y,tly% (x~1xy)?, 275, t11,tla=2) = 13, (y x 1), (y * t?)?, (y
£9)°, (y * )% (y + 1), (y + t0), (y % £%)9, (y + 1), (y + £10)" >

a|blc|d|je|f|g|h]| i G = #G
ofofo[ofof[o|0]O] 3 PSL(2,11) 660
oflofo[of[of[olo|O] 4 5: PSL(2,11) 6600
ojoJolofo[o]0][5] 0| PSL(2,11)x PSL(2,11) | 435600
olojo|6[0|8[6[4] 4 211 PSL(2,11) 1351680
ofof[3]of[o]o|3]0]10 210 PSL(2,11) 675840

Table 7.9: 11*: C5 : Cy
For Progenitor:
G < x,y,t >= Group < z,y,tly*, 275,y Lxax 2xyx 1,111, t(a?) =5 (y x )2, (y *
t2)°, (y +12)¢, (y + 1% (y + 2)°, (y + 197, (y = £%)9, (y + £9)", (y + £10)" >
a|blcldle|f|lg|h|i|G=]| #G
0[0[0]0O|0O]O[0|O0]|3| Mp | 7920

Table 7.10: 31*? : (3 x 5) : 2
For Progenitor:
G < x,y,t >= Group < z,y,t|y%, (- 1xy)2, 215,131, tlz?) = 128, (y*t21)?, (yt>2)°, (yx
23)¢, (y * t24)7, (y * t25)°, (y % t26)7, (y x t27)9, (y * t28)", (y x t29), (y * t30)7 >;

a|lblc|d|e|flg|h|i]]j G~ #G
0/0]j]0{0|0|0[0|0]|3 PSLy(31) 14880
0[0[0[0[0]0[0[0[4]0]15:(2x La(31) | 446400




Appendix A

MAGMA Code

A.1 Building a Progenitor for 210 : 2 x A;

/+*NumberOfTransitiveGroups (10) ;
N:=TransitiveGroup (10,11);

#N;

/*x60x/

Generators (N) ;

/ * (2, 4, 10) (5, 7, 9),
(1, 6) (2, 7)(3, 8) (4, 9) (5, 10),
(1, 3, 5, 7, 9 (2, 4, 6, 8, 10)

*/

S:=Sym(10);

xx:=S!(2, 4, 10) (5, 7, 9);

yy:=S! (1, 6) (2, 7)(3, 8) (4, 9) (5 10);

zz:=S!'(1, 3, 5, 7, 9)(2, 4, 6, 8, 10);

N:=sub<S|xx,yy,zz>;
#N;

/*120«/

FPGroup (N) ;

NN<x,y, z>:=Group<x,vy,z|x"3,y"2,z"5,
X"l y*xXxy,y*z —1lxyxz, (z"-1xx) "3,
(x"=1%xz2"=2) "2>;

#NN;
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/*120x/
Sch:=SchreierSystem (NN, sub<NN | Id (NN)
ArrayP:=[Id(N): i in [1..120117];

for i in [2..120] do

P:=[Id(N): 1 in [1..#Sch[ill1;

for 3 in [1..#Sch[i]] do

if Eltseq(Sch[l])[j] eq 1 then P[]]
if Eltseq(Sch[i]) [j] eq -1 then P[J]:
if Eltseqg(Sch[i])[]J] eq 2 then P[7]]
if Eltseq(Sch([i]) []j] eq 3 then P[7]]
if Eltseqg(Sch[i]) [J] eq -3 then P[7]]
end for;

PP:=Id (N);

for k in [1..#P] do
PP:=PPxP[k]; end for;
ArrayP[i] :=PP;
end for;
N1l:=Stabiliser (N, 1);
#N1;

/*10%/
N1;

/+ Permutation group N1 acting
on a set of cardinality 10
Order = 12 = 272 % 3

(2, 4, 10) (5, 7, 9)

(2, 8, 10) (3, 5, 7)
*/

for i in [1..120] do if ArrayP[i] eq
N! (2, 4, 10) (5, 7, 9)
then Sch[i]; end 1if;
/x x x/

G<x,vy,z,t>:=Group<x,vy,z,t|x"3,y"2,z

end for;

XT=1lxyxx*xy,y*xz —lxyxz, (z"-1xx) "3,
(x"=1%xz"=2)"2,t72, (t,x)>;

#G;

/*0%/
N12:=Stabiliser (N, [1,2]);
Cent:=Centraliser (N,N12);
Cent;

/* Permutation group Cent acting on\

>);

:=xx; end

=xx"-1;

:=yy; end
:=zz; end

t=zz"-1;

5,

if;

end 1f;

if;
if;

end 1f;
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a set of cardinality 10

Order = 6 = 2 % 3
(3, 9, 5) (4, 10, 8)
(1, 6) (2, 7)(3, 8)((4, 9) (5, 10)
x/
C:=Classes (N);
#C;
C;
/*10%/

for 1 in [2..10] do
i, Orbits (Centraliser (N,C[1][31));
end for;

for j in [2..10] do

C[31I131;

for i in [1..120] do if ArrayP[i] eq
C[j][3] then Sch[i]; end if; end for;
end for;

*(1, 6) (2, 7)(3, 8) (4, 9) (5, 10)

=

*
1

r
*

N

r

/
Yy
(
x
(
x
(
x
(1, 3, 5, 7, 9)(2, 4, 6, 8, 10)
z
(
z
(
x
(
Yy
(
Yy

*/

/+*FIRST ORDER RELATIONS:*/

for a,b,c,d,e,f,g,h,1 in [0..10] do
G<x,Vy,z,t>:=Group<x,vy,z,t|x"3,y"2,z"5,
X"l y*xxy,y*z —1lxyxz, (z"-1xx) "3,
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(x"=1%xz"-2)"2,t"2, (t,x),
(y*t) a,
(
(

X *x y * z 2%t)"c,
(x*t)"d,

(z*t) "e,

(z"2xt) " f
(xxy=xt) "g,
(yxzxt) "h,
(yxz " =2xt) "1
>
if #G gt 100 then a,b,c,d,e,f,qg,h,i;
#G;

end if;

end for;

A.2 MAGMA Code for Building Monomial Progenitor
11* 2, Cs : C4

G:=TransitiveGroup(10,4);

IsAbelian (G);

G;

xx:=G! (1, 3, 5, 7, 9 (2, 4, 6, 8, 10);
yy:=G! (1, 2, 9, 8) (3, 6, 7, 4) (5, 10);
S:=Subgroups (G) ;

CG:=CharacterTable (G) ;

/* Class | 1 2 3 4 5
Size | 1 5 5 5 4
Order | 1 2 4 4 5
p = 2 1 1 2 2 5
p = 5 1 2 3 4 1
X.1 + 1 1 1 1 1
X.2 + 1 1 -1 -1 1
X.3 0 1 -1 -1 1 1
X.4 0 1 -1 I -IT 1
X.5 + 4 0 0 0 -1

Explanation of Character Value Symbols
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I = RootOfUnity (4) %/

for 1 in [1..#S] do if Index (G,S[i] ‘subgroup) eq 4 then ij;
end i1f; end for;

/+*3 Pick SB 3 and label those generators for your H group*/

xl:=G!(1, 3, 5, 7, 9)(2, 4, 6, 8, 10);
H:=sub<G|x1>;

CH:=CharacterTable (H) ;
I:=Induction(CH[2],G);

I eqg CGI[5];

CH;

/ *

Character Table of Group H

Class | 1 3 4 5
Size | 1 1 1 1 1
Order | 1 5 5 5 5
p = 5 1 1 1 1 1

1

1 Z1 Z1#2 Z1#3 Z1#4
1 Z21#2 Z1#4 Z1 Z1#3
1 Z14#3 21 7144 7Z1#2
1 Z1#4 Z1#3 z1#2 z1

Explanation of Character Value Symbols

# denotes algebraic conjugation, that is,
#k indicates replacing the root of unity w by w’k

z1 = (CyclotomicField(5: Sparse := true)) ! [ RationalField()
| 0, 1, 0, O 1%/

CH[2];

T:=Transversal (G, H) ;
:=CyclotomicField(5);

GG:=GL (4,C);
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=[[C.1,0,0,0]: i in [1..4]11;
for i,j in [1..4] do A[i,]]:=0; end for;
=[[C.1,0,0,0]: i in [1..4]11;
for i,j in [1..4] do B[i,]]:=0; end for;
for i,J in [1..4] do if T[l]*xx*T[j]“—l in H then
A[i,j]:=CH[2] ( T[i]l*xx*T[j] "-1); end if; end for;
for i,J in [1..4] do if T[l]*yy*T[j]A—l in H then
B[i,J]:=CH[2] ( T[i]l*yy*T[]Jj]"-1); end if; end for;

Order (GG!A) ;
Order (GG!B) ;

GG!A;

/ *

[zeta_5 0 0 0]

[0 zeta_5"3 0 0]

[0 0 —zeta_5"3 - zeta_5"2 - zeta_5 - 1 0]
[0 0 O zeta_5"2]%/

GG!B;

/ *

1
[0 O
0

= O O

]
]
]

o O - O

[1 0 0]*/
/* We notice that the highest power of Zeta used is 3
in this case. We are in Cyclotomic field 5 which mean
s there are values for C.1, C.172, ..., c.175.
However, we are not required to label each C in this
instance because we only use 3 values of C.1.
Namely, C.1, C.172, and C.1"°3 (Look at the 2
matrices and notice the powers of Zeta). So when
we do the mat function in a second, rather than
putting all 5 elements, only label C.1, C.172,
and C.1°3 and their opposites. =*/
T:=Transversal (G, H) ;
=CyclotomicField (5);
/+*To find your C.1...C.1°n, all you do is pick
your bease, it will always be 2 or 3,
then in magma you do 2 mod your field,
which here we are using 11 since 5|11-1.
Then you do 2°1 mod 11 = 2,
then 272 mod 11 = 4, ectx*/
mat := function(n,p,D,k)



for i,J in [1..k] do if T[i]»xp*T[j] -1 in H then
if CH[n](T[i]l*p*T[J]"-1) eq C.1

then D[i, J]:=4; end if;

(T[i]l*p*T[Jj]"-1) eqg —-C.1

]
[
]
then D[i, j]:=-4; end if;
if CH[n](T[1i]*p*T[Jj] "-1) eq C.172
then D[i, j]:=5; end 1if;
if CH[n] (T[1i]*p*T[j] "-1) eq —-C.172
then D[i, j]:=-5; end if;
if CH[n] (T[1i]*p*T[Jj] "-1) eq C.1°3
then D[i, J]:=9; end 1if;
if CH[n](T[il*p*T[J]"-1) eq -C.173
then D[i,J]:=-9; end if;
if CH[n](T[il*xp*T[J]"-1) eq C.17°4
then D[i, J]:=3; end 1if;
if CH[n](T[1i]l*p*T[]j]"-1) eq —-C.17°4
then D[i,]j]:=-3; end if;
if CH[n](T[i]l*p*T[J]1"-1) in {1}
[

then D[i, J]:=CH[n] (T[i]l*pxT[J] "-1); end if;
end if; end for;
return D;
end function;
GG:=GL(4,11);
A:=[[0,0,0,01: i in [1..41];
mat (2, xx,A,4);
AA:=GG!mat (2,xx,A,4);
Order (GG!AR) ;
/*5%/
B:=[[0,0,0,0]: 14 in [1..411;
mat (2,vyy,B,4);
BB:=GG!mat (2,vy,B, 4);
Order (GG!BB) ;
/ x4/
HH:=sub<GG|AA, BB>;
IsIsomorphic (HH,G);

/*truex/
:=CyclotomicField(10);
A:=[[C.1,0,0,0] : 1 in [1..4171;

for i ,3 in [1..4] do A[i, J]:=0; end for;
for 1,3 in [1..4] do if T[il]l#*xx*xT[]J] -1
in H then A[i,J]:=CH[2] (T[1i]*xxxT[3]"-1);

end if; end for;

B:=[[C.1,0,0,0] : i in [1..4]11;

for 1 ,j in [1..4] do B[i,j]:=0; end for;
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for i,J in [1..4] do if T[i]lxyy*T[j] -1 in
H then B[i,j]:=CH[2](T[i]l*xyy*xT[j] " -1);
end 1f; end for;

perm := function(n, p, mat)
/+ Return the matrix converted to
permutation of S_{nx*p}.
*/
C<u>:=CyclotomicField(p);
Z:=Integers ();
s:=[1;
for 1 in [1..n] do
s[i]:
end for;
:=Matrix(C,1,n,s)*mat;
wi=[];
for i in [1..n] do
J:=0; done:=0;
repeat
if z[1,i]/u”j in Z then
if Z!'(z[1,i]1/u”3j) ge 0 then
wli]:=nx3j+Z! (z[1,1i]/u”3);

i;

done:=1;
end i1if; end if;
j:=3+1;
until done eq 1 or j eq p;
end for;

for i in [1..(p-1)] do

for a in [1..n] do
wlati*n]:=(Z!w[a]+i*n-1) mod (p*n) + 1;
end for; end for;

S:=Sym(n*p) ;

w:=S!w;

return w;

end function;

GG:=GL(4,C);

AA:=GG!A;

AA;

/x [ 4 0 0 0]

[ O 9 0 0]

[ O 0 3 0]

[ O 0 0 5]

tl, t1°5, t1°10, t1°4, =/
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BB:=GG!B;
/* BB;
[01 0 0]
[0 0O 1 0]
[0 0 0 1]
[1 00 0]/
perm(4,10,AR);
/~ (1, 9, 17, 25, 33)(2, 26, 10, 34, 18
) (3, 35, 27, 19, 11) (4, 20, 36, 12, 28)
(5,13, 21, 29, 37) (6, 30, 14, 38, 22)
(7, 39, 31, 23, 15) (8, 24, 40, 16, 32)x*/
perm(4,10,BB);
/+(1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11, 10)
(13, 16, 15, 14) (17, 20, 19, 18) (21, 24,
23, 22) (25, 28, 27, 26) (29, 32,
31, 30) (33, 36, 35, 34) (37, 40, 39, 38)x/
G;
FPGroup (G) ;
Finitely presented group on 2 generators
Relations
$.274 = 1Id(9)
$.1°-5 = Id($)
$.27-1 * $.17-2 x $.2 * $.1°-1 = Id($S)
G<x,y>:=Group<x,vyly 4,x" -5,
YV o=1lxx"T=2xyxx"—=1>;
=Sym (40) ;
xx:=S! (1, 9, 17, 25, 33) (2, 26, 10, 34, 18)
(3, 35, 27, 19, 11) (4, 20, 36, 12, 28) (5,13,
21, 29, 37) (6, 30, 14, 38, 22) (7, 39, 31,
23, 15) (8, 24, 40, 16, 32);
yy:=S! (1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11,
10) (13, 16, 15, 14) (17, 20, 19, 18) (21, 24,
23, 22) (25, 28, 27, 26) (29, 32, 31, 30)
(33, 36, 35, 34) (37, 40, 39, 38);
N:=sub<S|xx,yy>;

Sch:=SchreierSystem (G, sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#N]];
for 1 in [2..#N] do

=[Id(N): 1 in .#Sch([i]1]1;
] do

for J in ]
] eg 1 then P[]j]:=xx; end
]
]

[1
if Eltseq(Sch[ i]
(Schli]
(Sch[i]

if Eltseq
if Eltseq

eq -1 then P[j]:=xx"-1;

[
Sch
)
)
) eq 2 then P[j]:=yy; end

1.
[i
[J
[J
[J

if;
end 1f;
if;
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if Eltseq(Sch[i]) [j] eq -2 then P[j]:=yy " -1;

end for;

PP:=Id(N);

for k in [1..#P] do
PP:=PPxP[k]; end for;
ArrayP[1i] :=PP;

end for;

Normaliser:=Stabiliser (N, {1, 9, 17, 25, 33});
Generators (Normaliser);

/+ (1, 17, 33, 9, 25) (2, 10, 18, 26, 34) (3,
(4, 36, 28, 20, 12) (5, 21, 37, 13, 29) (6, 14,
(7, 31, 15, 39, 23) (8, 40, 32, 24, 16)x*/
Stabiliser (N, {1, 9, 17, 25, 33});
A:=Normaliser! (1, 17, 33, 9, 25) (2, 10, 18,
(3, 27, 11, 35, 19) (4, 36, 28, 20, 12) (5, 21,
(6, 14, 22, 30, 38) (7, 31, 15, 39, 23) (8, 40,
Normaliser eq sub<N|A>;

end

27,
22,

26,
37,
32,

if;
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11, 35, 19)

30, 38)

34)
13, 29)
24, 16);

for 1 in [1..#N] do if ArrayP[i] eg A then Sch[i]; end if;

/*xx"2
tT(x72);
*/

Normaliser eq sub<N|xx,xx"2>;
/+this is my old progenitor for group G:=*/

G<x,y>:=Group<x,v|y 2, (x"-1xy) "2,x"5>;

/+Now check Progenitor for mon presentationx/
G<x,y,t>:=Group<x,vy,t|y 4,x =5,y " —-1xx"=2%y*x"

_l,

tT11,t7(x72)=t"5, (£, t7 (y)), (L, £7(y"2)), (£, t7 (y"3))>;

#G;

/* 292820%/

Index (G, sub<G|x,y>);
/*14641x/
C:=Classes (N);

#C;

/x4x/

for 1 in [2..5] do

i,0rbits (Centralizer (N,C[1][31));
end for;

end for;
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for 3 in [2..5] do

Cl31[31;

for i in [1..20] do if ArrayP[i] eq C[3]1[3]
then Sch[i]; end if;

end for; end for;

/x vy~ 2

(1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11, 10)

(13, 16, 15, 14) (17, 20, 19, 18) (21, 24,

23, 22) (25, 28, 27, 26) (29, 32,

1, 30) (33, 36, 35, 34) (37, 40, 39, 38)

2, 3, 4)(, 6, 7, 8)(9, 10, 11, 12)
3, 14, 15, 1le6) (17, 18, 19, 20) (21, 22,
23, 24) (25, 26, 27, 28) (29, 30, 31,

2) (33, 34, 35, 36) (37, 38, 39, 40)

y -1

(1, 9, 17, 25, 33) (2

(3, 35, 27, 19, 11) (
(
(

3
y
(
(

26, 10, 34, 18)
4, 20, 36, 12, 28)
6, 30, 14, 38, 22)
8, 24, 40, 16, 32)

(5, 13, 21, 29, 37)
(7, 39, 31, 23, 15)
Xx/

for a,b,c,d,e,f,g9,h,1 in [0..10] do
G<x,y,t>:=Group<x,y,t|y”4,x"-5,

Yy -lsx"-2xy*x"-1,t711,t" (x"2)=t"5,
(y"2xt)"a

(y"2xt"2
(y"2+t"3
(y"2+t~4
(y"2*«t™5
(y"2+t"6
(y"2+xt~8
(y"2xt79)"
(y"2+t~10) "
if #G gt 10 then a,b,c,d,e,f,qg,h,i;
#G;

end if;

end for;

Monl041

for a,b,c,d,e,f,g,h,i in [0..10] do
G<x,y,t>:=Group<x,y,tl|ly"4,x"-5,

vy -lxx"-2xyxx"-1,t711,t" (x"2)=t"5,
(yxt) "a

(y*t~2) b,

(y*t"3) " c

"b,

’

4

)
)~
) d
) "e
) " £,
) g
h

4

4



(yxt~4)"d,
(y*t"5) e,
(yxt~6) " f,
(y*t"8) "g,
(y*t~9) "h,

(y*t~10) "i>;
if #G gt 10 then a,b,c,d,e,f,g,h,i;
#G;
end 1if;
end for;
Monl1042
/*0 00 00O0O0O0 3 7920/
for a,b,c,d,e,f,g9,h,1 in [0..10] do
G<x,vy,t>:=Group<x,y,t|y~4,x" -5,
vy i -1lxx"-2+yxx"-1,t"11,
tT(x72)=t"5, (y*xt~10)"3>;
/+xCompositionFactors (Gl);
G
| M1l
1x/

A.3 Double Coset of J, over M = As : Cs

G<x,y,t>:=Group<x,vy,t| x°5,vy"2,

X T-lxyxx"—lxy*xxy*x*y,t"3, (t,x),
(y + x"=2 x y » x"=1xt) "2,

(x"=2 » y * x"=1*t) "5>;

#G;

S:=Sym(10);

xx:=35!(2, 4, 6, 8, 10);

yy:=3S!'(1, 6) (2, 7)(3, 8)((4, 9) (5, 10);

N:=sub<S|xx,yy>;

#N;

Set (N) ;

HH:=sub<G| x,y,y * X"-1 » £ x y * x * y * £t x y 2

* X72 x y x L % Y3 & X2 &4y x X xYy *x L &
X2 % y°3 % X"2 *+y x X xy *x bt xy 4 x x"2

* X x y &+t xy 2+t x y' 3 % x"2 %y 3 x x”
y”3 *x X2 % Yy % X x y x L * yAZ * Tt * yA4 *x xX72 % y

y 4 x
* Yy
2 *

* X x Yy &t o ¥y'3 & xX72 x y'3 x XT2 %4 Y x X & Y *
T x vy 4 % X2 %+ y xx xy &L x Y2 &t %y 4o«

X72 *y x X x Yy L %y 3 % x"2 %y 3« x"2

*

168



169

y * x"=1>;
#HH;
f,Gl,k:=CosetAction (G, sub<G|x,y>);
IN:=sub<Gl|f (x), £ (y)>;
IM:=sub<Gl|f(x),f(y),f(y » x"=1 » t x y * X % y %

t * y'°2 # X72 x vy x t x Y3 x X2 ¥y % X xy x t

* V4 ox XT2 x y73 & XT2 xy x X x Yy * L x vy 4 %

X2 x Yy x* X *y * t x Yy 2 xt x y'3xx"2 xy3

* X2 % y°3 o+ xT2 x vy &+ X Y x L ox ¥2 x t % y4 o«
X"2 +y x X xy *xt %y 3Kk x"2 %y 3 xx"2 K,y kX

* YV L x vy 4 ox XT2 4y x X &y xLT x V2 xt xy4 o«
X2 x y x X #y &t oxy 3 x x"2 % y'3 & x72 x y %

x"=1)>;

#IM/#IN;
ts := [ Id(Gl): i in [1 .. 10] 1;
ts[l]l:=f(t); ts[2]:=f(t " (y"x73)); ts[3]:=£(t" (x"y));
ts[4]:=f£(t" (y"x74));ts[5]:=f£(t" (y*x"2xy*x"-2));
ts[6]:=f(t"(y"x75)); ts[7]:=f£(t" (y*xx"-2)"2);
ts[8]:=f(t"(y"x)); ts[9]:=f(t" (y*x"—1lxy*x"=2));
ts[10]:=f(t"(y"x72));

/+*This tells me how many of each type of DC I will have.
In other words how many double cosets of 1 t, of two ts,
three ts, ect. =/
#DoubleCosets (G, sub<G|x,y,y * x =1 » t * y * X * y x t *

V2 * x72 +y xt xy' 3 x X2 xy*xx*xyxtx yd4oxx"2
* V3 2+ XT2 x y & X &y xt ox Y4 ox X2 xy & X kY x t o*
v2 x £t x y°3 x x72 x y'3 % X2 x y'3 ¥ X72 %y & X

* Y ox L x V2 x t *xyv4 o« X2 xy x X xy xt xy 3 *x x"2
* V'3 % xXT2 xy o x# X xy x bt x v'4 ox x"2 xy x X kY xt %
V2 «t xy 4 x x"2 xy x x xy *txy 3 xx"2 %y 3«
X2 %y x x"=1>, sub<G|x,y>);

DoubleCosets (G, sub<G|x,y,y *» x =1 * £t » y » X x y x t
* Y2 x XT2 xy x b x y'3 % xX72 xy x x xy xt x y4

* XT2 x yO3 x xXT2 x Yy & X x Yy x L x y4 % x"2 %y * X %

vy ot ox y'2 xt x Y3 xx"2 %y 3 & x"2 %y 3 x x"2 %

Yy % X % y x T * yAZ *x T * y“4 *x X2 % y * X *x y x t x yA3
* XT2 % y7O3 & XT2 x Yy x X x Yy &t x y 4 ox XT2 & Yy x X *

y * T * yA2 * T * yA4 *x X2 % y * X x y x t x y“3 * X2

* y°3 x X72 *x y x x"=1>, sub<G|x,y>);

/ *

{ <GrpFP, Id(G), GrpFP>, <GrpFP, t » y » x » y x t -1 =«
y * x x y % t°-1,GrpFP>, <GrpFP, t « y * t x y x t°-1,
GrpFP>, <GrpFP, t x y » t x y * t, GrpFP>,<GrpFP, t =«
y x» t, GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t * y *x x *



y » t°-1,GrpFP>, <GrpfFP, t x vy » x » v * t°-1 *x y % t,

GrpFP>, <GrpFP, t * yv » t » y * xx y « t°-1, GrpFP>,
<GrpFP, t * vy » £t » y » t°=1 * y * t°=1, GrpFP> }x*/
Index (G,HH); /*=208x/
#G/H#IN; /+x1248x%/
prodim := function(pt, Q, I)
v = pt;
for 1 in I do
v o= v (Q[i]);
end for;
return v;
end function;

cst := [null : 1 in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | 1;
for i := 1 to 10 do
cst[prodim(1l, ts, [1i]1)] := [i];
end for;
m:=0;

for i in [1..1248] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

/*10%/

Orbits (N);

/+* GSet{@ 1, 6, 8, 10, 3, 2, 5, 4, 7, 9 @}~/

Nl:=Stabiliser (N,1);
SSS:={[1]1}; SSS:=SSS"N;
Seqqg:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do if ts[l] eqg
nxts[Rep (Seqqli]) [1]]
then print Rep(Seqql[i]);
end i1if; end for; end for;
N1;
/+ Permutation group N1 acting on a set of
cardinality 10
Order = 5
(2, 4, 6, 8, 10)=*/
#N1;
#N/#N1;
Tl:=Transversal (N,N1);
Tl; /* These are the transversals,
for which you conjugate MtlIN by:
Id(N),
(1, 6) (2, 7)(3, 8) (4, 9) (5, 10),
(, 8, 3, 10, 5, 2, 7, 4, 9, 6),
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(1 r 2y Ay

(11 lol 5’ 4/ 9/ 8/ 3I 2’ 7/ 6)’

(1, 3, 5, 7, 9),

(ll 9/ 7/ 5/ 3)/

(1, 2, 7, 8, 3, 4, 9, 10, 5, o),

(1, 5, 9, 3, 1),

(1, 7, 3, 9, 5) since tl goes to all elements 1..10%/

for 1 in [1..#T1] do
Ss:=[1]1"T1[i];
cst[prodim(1l, ts, ss)]:=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne
then m:=m+1; end if; end for; m;
Orbits (N1);
/* GSet{@ 1 @},

GSet{@ 3 @},

GSet{@ 5 @},

GSet{@ 7 @},

GSet{@ 9 @},

GSet{@ 2, 4, 6, 8, 10 @}~/

for g in IM do for h in IN do if ts[1l]*ts[9]

g* (ts[1]) "h

then g,h; break; end if; end for; end for;

N12:=Stabiliser (N, [1,2]);
SSS:={[1,21};
S5SSS:=SSS"N;
Seqgq:=Setseq(SSS) ;
for i in [1..#SSS] do for n in IM do
if ts[l]l*ts[2] eqg n*xts[Rep(Segql[i]) [1]]
*ts[Rep(Seqqli]) [2]]
then print Rep (Seqqlil);
end 1f;
end for;
end for;

N12; #N12;

#N/#N12;

Tl2:=Transversal (N,N12);
for 1 in [1..#T12] do ss:=[1,2]"T12[i];
cst [prodim(1l,ts,ss) ] :=ss;
end for;

m:=0; for i in [1..1248] do if cst[i] ne
then m:=m+1; end if; end for; m;
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N13:=Stabiliser (N, [1,3]);
SSS:={[1,31};
SS5S:=SSS"N;
Seqqg:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[1l]*xts[3] eq nxts[Rep(Seqqgli]) [1]]~*
ts[Rep(Seqqli]) [2]]
then print Rep(Seqqli]);
end 1f;
end for;
end for;

N13;

/* (2, 4, 6, 8, 10)«/
#N13;

#N/#N13;

Tl3:=Transversal (N,N13);
for i in [1..#T13] do ss:=[1,3]1"T13[i];
cst[prodim(l,ts,ss)]:=ss;
end for;

m:=0; for i1 in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

N15:=Stabiliser (N, [1,5]1);
SSS:={[1,51};
5SS :=SSS"N;
Seqgq:=Setseq(SSS) ;
for i in [1..#SSS] do for n in IM do
if ts[1l]l*ts[5] eqg n*xts[Rep(Seqgql[i]) [1]]
*ts[Rep(Seqqli]) [2]]
then print Rep (Seqqlil]);
end 1f;
end for;
end for;
/% [ 1, 5]
, 10 ]
21
ro 4]

o~

~
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[ 9, 3 1%/
for g in N do if [1,5]"g eg [6,10] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]"g egq [8,2] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]"g eq [10,4] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]"g eq [3,7] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]"g eq [2,6] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]17g eq [5,9] then
N15:=sub<N|N15,g>; end 1if; end for;
for g in N do if [1,5]1"g eq [4,8] then
N15:=sub<N|N15,g>; end 1if; end for;
for g in N do if [1,5]1"g eq [7,1] then
N15:=sub<N|N15,g>; end if; end for;
for g in N do if [1,5]"g egq [9,3] then
N15:=sub<N|N15,g>; end if; end for;
N15; #N15;
#N/#N15;
Tl5:=Transversal (N,N15);
for 1 in [1..#T15] do ss:=[1,5]"T15[1];
cst[prodim(l,ts,ss)]:=ss;
end for;
m:=0; for i1 in [1..1248] do if cst[i] ne
then m:=m+1; end if; end for; m;

N17:=Stabiliser (N, [1,7]1);
SSS:={[1,7]};
SSS:=SSS"N;
Seqqg:=Setseq(SSS) ;
for i in [1..#SSS] do for n in IM do
if ts[1l]*xts[7] eq nxts[Rep(Seqqli]) [1]]
xts[Rep (Seqqlil) [2]]
then print Rep(Seqqlil]);
end 1if;
end for;
end for;
N17; #N17;
#N/#N17;
/*10%/
Tl7:=Transversal (N,N17);
for 1 in [1..#T17] do ss:=[1,7]"T17[i];
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cst[prodim(1l,ts,ss)]:=ss;

end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

for g in IM do for h in IN do if ts[1l]
*ts[7] eq g*(ts[l]l*ts[3]) "h

then g,h; break; end if; end for; end for;

R b 2 S dh  Sh Ib b b b b S g 4 [1,2]*********************************

Orbits(N12); /+1 .. 10/

for g in IM do for h in IN do if ts[l]lx*ts[2]
*ts[2] eq g*x(ts[l]l*ts[2]) "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]xts[2]
*ts[3] eq gx(ts[l]l*xts[2]xts[1l]) "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]lxts[2]
*ts[4] eq gx(ts[l]) h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]lxts[2]
*ts[5] eq g*x(ts[l]l*ts[2]xts[4]) " "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]xts[2]
*ts[6] eq gx(ts[l])"h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]xts[2]
*ts[7] eq g*(ts[l]l*ts[2]) "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]lx*ts[2]
*ts[8] eq gx(ts[l]l*xts[2]xts[4]) "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]xts[2]
*ts[9] eq gx(ts[l]l*xts[2]xts[5]) "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]lxts[2]
*ts[10] eq gx(ts[l]l*ts[2]) "h

then g,h; break; end if; end for; end for;

N121:=Stabiliser (N, [1,2,1]);
SSS:={[1,2,11};
SSS:=SSS"N;

Seqqg:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
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if ts[l]xts[2]*ts[1l] eq n*xts[Rep(Seqqli]) [1]1]
xts[Rep (Seqqg[i]) [2]] *ts[Rep(Seqqli]) [3]]
then print Rep(Seqqlil]);
end 1if;
end for;
end for;
/x [ 1, 2, 11
[ 10, 3, 10 1%/
for g in N do if [1,2,1]"g egq [10,3,10] then
N121:=sub<N|N121,g>; end if; end for;
N121; #N121;
#N/$#N121;
/*25%/
Tl21l:=Transversal (N,N121);
for 1 in [1..#T121] do ss:=[1,2,1]1"T121[i];
cst[prodim(l,ts,ss)]:=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
N124:=Stabiliser (N, [1,2,4]);

SSS:={[1,2,4]1};

SS5S5:=SSS”N;

Seqqg:=Setseq(SSS);

for i in [1..#SSS] do for n in IM do

if ts[l]xts[2]*ts[4] eq n*xts[Rep(Seqqli]) [1]1]
]

xts[Rep (Seqq[i]) [2]] ts[Rep(Seqqlil) [3

]

then print Rep(Seqqlil]);

end
end
end

if;
for;
for;

/x [ 1, 2, 4 1]
(6, 7, 91«/
for g in N do if [1,2,4]"g eq [6,7,9] then
N124:=sub<N|N124,g>; end if; end for;
N124; #N124;
#N/$#N124;
/*25%/
Tl24:=Transversal (N,N124);
for 1 in [1..#T124] do ss:=[1,2,4]1"T124[i];
cst[prodim(l,ts,ss)]:=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
N125:=Stabiliser (N, [1,2,5]);
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SSS:={[1,2,51};
SS5S:=SSS”N;
Seqqg:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[l]*xts[2]*ts[5] eq n*xts[Rep(Seqqli]) [1]1]
*ts[Rep(Seqqli]) [2]] +*ts[Rep(Seqqlil) [3]]
then print Rep(Seqqli]);
end 1f;
end for;
end for;
/% [ 1, 2, 5] %/
N125; #N125;
#N/#N125;
/*50%/
T125:=Transversal (N,N125) ;
for 1 in [1..#T125] do ss:=[1,2,5]1"T125[1i];
cst [prodim(l,ts,ss) ] :=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
kkkhkhkhk kA hkhkkkhkhkkrhkhkdrhhkdx [1, 3] k%%
Orbits (N13);
/* GSet{Q@ 1 @},
GSet{@ 3 @},
GSet{@ 5 @},
GSet{@ 7 @},
GSet{@ 9 @},
GSet{@ 2, 4, 6, 8, 10 @}*/
for g in IM do for h in IN do if ts[1l]~x
ts[3]1*ts[1l] eq g*(ts[1l])"h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1]
*ts[3]xts[2] eq gx(ts[l]lxts[3]*xts[1l]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]
*ts[3]xts[3] eq gx(ts[1l]xts[3]) " "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]
*ts[3]xts[5] eg gx(ts[1l]xts[3]) " "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1]
*ts[3]xts[7] eq gx(ts[1l]) h
then g,h; break; end if; end for;
end for;



for g in IM do for h in IN do if ts[1l]
*ts[3]xts[9] eq gx(ts[l]lxts[3]*ts[2]) h
then g,h; break; end if; end for; end for;
N132:=Stabiliser (N, [1,3,2]);
SSS:={[1,3,21};
SSS:=SSS"N;
Seqg:=Setseq(SSS);
for 1 in [1..#SSS] do for n in IM do
if ts[l]*xts[3]1*ts[2] eq n*xts[Rep(Seqqli]) [1]]
xts[Rep (Seqq[i]) [2]] *ts[Rep(Seqqli]) [3]]
then print Rep(Seqqli]);
end 1if;
end for;
end for;
/= [ 1, 3, 2]
[6,8,7] =/
for g in N do if [1,3,2]"°g eq [6,8,7] then
N132:=sub<N|N132,g>; end if; end for;

N132; #N132;
#N/#N132;
/*25%/
Tl132:=Transversal (N,N132);
for i in [1..#T132] do ss:=[1,3,2]"T132[i];
cst[prodim(l,ts,ss)]:=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
N139:=Stabiliser (N, [1,3,9]);
SSs:={[1,3,91};
SS5S5:=SSS”N;
Seqqg:=Setseq(SSS) ;
for i in [1..#SSS] do for n in IM do
if ts[1]xts[3]1*ts[9] eq n*xts[Rep(Seqqlil]) [1]1]
*ts[Rep(Seqqli]) [2]] =*ts[Rep(Seqqli]) [3]]
then print Rep(Seqqlil]);
end 1if;
end for;
end for;
/x [ 1,
[
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for g in N do if [1,3,9]"g eq [3,5,1]
then N139:=sub<N|N139,g>; end if; end for;
for g in N do if [1,3,9]"g eq [5,7,3]
then N139:=sub<N|N139,g>; end if; end for;
for g in N do if [1,3,9]1"g eq [7,9,5]
then N139:=sub<N|N139,g>; end if; end for;
for g in N do if [1,3,9]1"g eq [9,1,7]
then N139:=sub<N|N139,g>; end if; end for;

N139; #N139;
#N/#N139;
/*2%/
T139:=Transversal (N,N139);
for 1 in [1..#T139] do ss:=[1,3,9]1"°T139[i];
cst[prodim(l,ts,ss)]:=ss;
end for;
:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

kkkhkhkkkkhhkkrhhkkrhkhkx [1, D] khkkrkk skt rxhk*k

Orbits (N15);
/* GSet{@ 1, 6, 8, 10, 3, 2, 5, 4, 7, 9 @}«/

for g in IM do for h in IN do if ts[1l]
*ts[5]xts[1l] eq gx(ts[1l]) "h
then g,h; break; end if; end for; end for;

Kk kkkkkhkkkhkkhkkxhkxkxk [1, 3, 2] kxrkxhkxs*

Orbits (N132);

/x GSet{@ 1, 6 @},
GSet{@ 2, 7 @},
GSet{@ 3, 8 @},
GSet{@ 4, 9 @},
GSet{Q@ 5, 10 @}*/

for g in IM do for h in IN do if ts[l]xts[3]
*ts[2]xts[1l] eq gx(ts[1l]xts[3]) " "h

then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]*ts[3]
*ts[2]xts[2] eqg gx(ts[l]xts[3]1*ts[2]) "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]*ts[3]
*ts[2]xts[3] eq gx(ts[l]l*xts[2]*ts[5]) "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[3]
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*ts[2]+xts[4] eq gx(ts[l]xts[2]*ts[5]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]xts[3]

*ts[2]xts[5] eqg gx(ts[l]lxts[3]*ts[2]) h
then g,h; break; end if; end for; end for;

kkkkkhkkhkkhkhkkhkkkdhkxhtkrx[1,3, 9] xx**
Orbits (N139);
/* GSet{@ 1, 3, 5, 7, 9 @},

GSet{@ 2, 4, 10, 6, 8 Q@}*/
for g in IM do for h in IN do if ts[l]xts[3]
*ts[9]xts[1l] eq gx(ts[l]xts[3]) " "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[3]
*ts[9]xts[2] eqg gx(ts[l]xts[3]1*ts[9]) h
then g,h; break; end if; end for; end for;

kkkkhhkkkhkhhkxhkhhkxhhkxxhhkx [121 ] x*x***xx*

Orbits (N121);

for g in IM do for h in IN do if ts[l]xts[3]~*
ts[9]1*ts[2] eq g*x(ts[l]l*ts[3]xts[9]) " "h

then g,h; break; end if; end for; end for;

R b S db dh Sb b Sb b b b b 2 dh db 3b Sb Ib b b b b b dh 2 db dh 2b Sb b 4

N121:=Stabiliser (N, [1,2,1]);
SSS:={[1,2,11};
S5S5:=SSS”N;
Seqqg:=Setseq(SSS);
for i in [1..#SSS] do for n in IM do
if ts[l]l*ts[2]*ts[1l] eq nxts[Rep(Seqgqgli]) [11]1]
xts[Rep (Seqq[i]) [2]] *ts[Rep(Seqqli]) [3]]
then print Rep (Seqqlil]);
end 1f;
end for;
end for;
/« [ 1, 2, 5]1[10,3,10] =/
for g in N do if [1,2,1]"g eq [10,3,10] then
N121:=sub<N|N121,g>; end if; end for;
N121; #N121;
#N/#N121;
/*50%/
Tl21:=Transversal (N,N121);
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for i in [1..#T121] do ss:=[1,2,1]1"T121[i];
cst[prodim(l,ts,ss)]:=ss;

end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;

for g in IM do for h in IN do if ts[1l]~x
ts[2]*ts[1l]xts[1l] eq gx(ts[l]xts[2]*ts[5]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]
*ts[2]xts[1l]*ts[2] eq g*x(ts[l]l*ts[2]xts[5]) "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]
*ts[2]xts[1l]*ts[4] eq gx(ts[l]*ts[2]) h

then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]
*ts[2]xts[1l]*ts[6] eq g*x(ts[l]l*ts[2]xts[1l]) " "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[1l]
*ts[2]xts[1]*ts[8] eq g*x(ts[l]l*ts[2]) "h

then g,h; break; end if; end for; end for;
hokkkkkkkkhkkhkhkhkhkhkkkkkkkkkkxx [124] xx%
Orbits (N124);

for g in IM do for h in IN do if ts[l]lxts[2]
*ts[4]xts[l] eq gx(ts[l]lxts[2]*xts[4]) h

then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[2]
*ts[4]xts[2] eq gx(ts[l]xts[2]) "h

then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]lx*ts[2]
*ts[4]xts[3] eq gx(ts[l]xts[2]) "h
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]lx*ts[2]
*ts[4]xts[4] eq gx(ts[l]lxts[2]*xts[4]) h
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if ts[l]xts[2]
*ts[4]xts[5] eq gx(ts[l]xts[5]) "h

then g,h; break; end if; end for; end for;
kkkkhkhkkkhkhkhkkhkhhkxhkh* [ 12D,k xxhxxx*
N125:=Stabiliser (N, [1,2,5]);

SSS:={[1,2,51};
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SSS:=SSS"N;
Seqg:=Setseq(SSS);
for 1 in [1..#SSS] do for n in IM do
if ts[l]l*ts[2]*ts[5] eq nxts[Rep(Seqgqli]) [1]]
xts[Rep(Seqqli]) [2]] =*ts[Rep(Seqql[i]) [3]]
then print Rep (Seqqglil]);
end 1f;
end for;
end for;
/x [ 1, 2, 5] %/
N125; #N125;
#N/$#N125;
/*50%/
Tl125:=Transversal (N,N125);
for 1 in [1..#T125] do ss:=[1,2,5]1"T125[i];
cst[prodim(l,ts,ss)]:=ss;
end for;
m:=0; for i in [1..1248] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits (N125);
for g in IM do for h in IN do if ts[l]lxts[2]
*ts[5]xts[1l] eqg gx(ts[l]lxts[2]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[2]
*ts[5]xts[2] eq gx(ts[l]xts[3]1*ts[2]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]lxts[2]
*ts[5]xts[3] eqg gx(ts[l]xts[2]*ts[1]) "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]l*ts[2]
*ts[5]xts[4] eq gx(ts[l]lxts[2]*ts[5]) "h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[2]
*ts[5]xts[5] eq gx(ts[l]xts[2]*ts[5]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]lxts[2]
*ts[5]xts[6] eq gx(ts[l]lxts[2]*xts[5]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[2]
*ts[5]xts[7] eq gx(ts[l]xts[2]*ts[1l]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[2]
*ts[5]xts[8] eq gx(ts[l]xts[3]1*ts[2]) h
then g,h; break; end if; end for; end for;
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for g in IM do for h in IN do if ts[l]lxts[2]
*ts[5]xts[9] eqg gx(ts[l]lxts[2]) h
then g,h; break; end if; end for; end for;
for g in IM do for h in IN do if ts[l]xts[2]
*ts[5]xts[10] eq gx(ts[l]lxts[2]*xts[4]*ts[5]) h
then g,h; break; end if; end for; end for;
hkkhkkhkkkkkhkkhkxkxkkkhkkhkrhkxk [1245] kxk*x %
N1245:=Stabiliser (N, [1,2,4,5]);
SSS:={[1,2,4,51};
SSS:=SSS"Nj;
Seqqg:=Setseq(SSS);
for 1 in [1..#SSS] do for n in IM do
if ts[l]lxts[2]*ts[4]*xts[5] eq nxts[Rep(Seqgqgli]) [1]]
xts[Rep(Seqq(i]) [2]] xts[Rep(Seqqli]) [3]] =
ts[Rep(Seqq[i]) [4]]
then print Rep(Seqqlil]);
end 1if;
end for;
end for;
/x [ 1, 2, 4
[ 3, 4, 6, 7]
[ 5, 6, 8, 9 1]
[ 7, 8, 10, 1 1
[ 9, 10, 2, 3 1%/
for g in N do if [1,2,4,5]1°g eq [3,4,6,7]
then N1245:=sub<N|N1245,g>; end if; end for;
for g in N do if [1,2,4,5]1"g eq [5,6,8,9]
then N1245:=sub<N|N1245,g>; end if; end for;
for g in N do if [1,2,4,5]1"g eq [7,8,10,1]
then N1245:=sub<N|N1245,g>; end if; end for;
for g in N do if [1,2,4,5]1"g eq [9,10,2,3]
then N1245:=sub<N|N1245,g>; end if; end for;

N1245; #N1245;
#N/$#N1245;

/*10%/
T1245:=Transversal (N,N1245);

for i in [1..#T1245] do ss:=[1,2,4,5]
"T1245[i7;

cst[prodim(l,ts,ss)]:=ss;

end for;
m:=0; for i in [1..1248] do if cst[i] ne
[] then m:=m+1; end if; end for; m;
Orbits (N1245);
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for g in IM do for h in IN do if ts[l]lxts[2]
*ts[4]xts[5]*ts[1l] eq grx(ts[l]l*ts[2]*ts[4])"
then g,h; break; end if; end for; end for;

h

for g in IM do for h in IN do if ts[l]lxts[2]
*ts[4]+xts[5]*ts[2] eq g*x(ts[l]l*ts[2]xts[5]) "h
then g,h; break; end if; end for; end for;

G<x,y>:=Group<x,y,t|x"2,y 6, (yxxxy " —=1xx) "2
14 (X*YA—l) A5/

(t,x7y),t72, (y 2xxxy"=2)"2,
(y™3*t) "0, ((y * x % y)"2+xt) "0, (y"2+t) "2
, (yax*xy*t) 70, (yxx*xt) "6, (y*t) "6>;
#G;

/*19440x%/

f, Gl, k:=CosetAction (G, sub<G|x,y>);
#k;

/*x1x/

CompositionFactors (Gl);

/% G

Cyclic(2)
Cyclic(2)
Alternating (5)
Cyclic (3)
Cyclic (3)

Cyclic (3)

* — X — X — X — % —

Cyclic (3)

1*/
NL:=NormalLattice (Gl);
NL;

IsAbelian (NL[2]);
/*xtruex/

H:=NL[2];
g, ff:=quo<Gl|NL[2]>;
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ar
/+*Permutation group g acting on a set of cardinality 24
Order = 240 = 274 x 3 % 5

(1, 2)( 5) (4, 6) (7, 11) (8, 13) (9, 15) (10, 17) (12, 18) (14, 21) (1le,
2) (19, 24) (20, 23)
(1, 3, 4, 7, 12, 2)(5, 8, 14, 21, 24, 18)(6, 9, 15, 11, 16, 10) (13,
19, 22, 20, 23, 17)
(1, 3)(2, 4)(5, 8) (6, 10) (7, 12)(9, 16) (11, 15) (13, 20) (14, 18) (17,
23) (19, 22) (21, 24)+/

=[03,3,3,31;

IsIsomorphic (NL[2],AbelianGroup (GrpPerm, (X)));

/*true Mapping from: GrpPerm: H to GrpPerm: $, Degree 12,
Order 374
Composition of Mapping from: GrpPerm: H to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 12, Order 374%/

nl:=NormalLattice(q);
nl;

E:=DirectProduct (nl1[2],nl[4]);
IsIsomorphic (E, q);
/xtrue Homomorphism of GrpPerm: E, Degree 48, Orde
r 2°4 = 3 % 5 into
GrpPerm: g, Degree 24, Order 274 x 3 x 5 induced by

Id(E) [-—> Id(q)
(1, 23) (2, 20) (3, 17) (4, 13) (5, 10)(6, ) (7, 19) (9, 14) (11, 24) (12,
3, 17)(4, 13) (5, 10) (6,
l

8) (7, 19) (9, 14) (11, 24) (12, 22) (15,
(25, 44) (26, 47) (27, 34) (28, 32) (29, 37) (31, 48) (33, 45) (35,
43) (36, 40) (38, 39) (42, 46) |-—> (1, (2, 12)(3, 10) (4, 15) (5,
17) (6, 9) (7, 24) (8, 14) (11, 19) (13, 21)(16, 23) (20, 22)
(25, 30, 33, 42, 29, 41) (26, 37, 43, 35, 45, 36) (27, 47, 32, 38, 40,
34) (28, 31, 48, 39, 46, 44) |--> (1, 3, 4, 7, 12, 2)(5, 8, 14, 21,
24, 18) (6, 9, 15, 11, 16, 10) (13, 19, 22, 20, 23, 17)«/

18)

8
22) (15, 21) (16, 18) |-—> (1, 23) (2, 20) (
1) (
1) (3
8)

IsIsomorphic(nl[2],CyclicGroup(2));

/*true Mapping from: GrpPerm: $, Degree 24, Order 2
to GrpPerm: $, Degree 2,
Order 2
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Composition of Mapping from: GrpPerm: $, Degree 24,
Order 2 to GrpPC and

Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GrpPerm: $, Degree 2, Order 2%/

IsIsomorphic(nl[4], SymmetricGroup(5));
/+true Homomorphism of GrpPerm: $, Degree 24,
Order 273 x 3 % 5 into
GrpPerm: $, Degree 5, Order 2°3 % 3 % 5 induced by
(1, 20) (2, 23) (3, 10) (4, 8) (5, 17)(6, 13) (7, 24)
(9, 21) (11, 19) (12,
16) (14, 15) (18, 22) |-—> (1, 2)
(1, 6, 9, 18, 5, 17)(2, 13, 19, 11, 21, 12)
(3, 23, 8, 14, 16, 10) (4,
7, 24, 15, 22, 20) |-—-> (1, 3, 5)(2, 4)x/

FPGroup (SymmetricGroup (5));

S<a,b>:=Group<a,bla”5,b"2, (a"-1xb) "4,
(axbxa”~—2«xbxa) "2>;
ff,ss,kk:=CosetAction (S, sub<S|Id(S)>);
s,t:=IsIsomorphic(ss,nl[4]);

Sy

/*truex/

FPGroup(nl[2]);
C<c,d>:=Group<c,d|d"2,c>;

ffl,cc,kkl:=CosetAction(C, sub<C|Id(C)>);
s,t:=IsIsomorphic(nl[2],cc);

Sy
/*truex/

/+xHere e and f will be a and b from S respectively
and g,h will be c¢,d from
C respectivelyx/

D<e, f,g,h>:=Group<e, f,g,h|e”5,f72, (e"-1xf) "4,
(exfxe”-2xf%e)”"2,h" 2,9, (g,e),
(g,f), (h,e), (h, £)>;



ff2,dd, kk2:=CosetAction (D, sub<D|Id (D) >);
s,t:=IsIsomorphic(qg,dd);

S

:=Transversal (G1,NL[2]);
f£(T[2]) eq g.1;

/*truex/
f£(T[3]) eq g.2;
/*truex/
f£(T[4]) eq g.3;
/*xtruex/

Order (T[2]);
2

Order (T[3]);
6

Order (T[4]);
2
Order (g.1);

2

Order (gq.2);
6

Order (gq.3);
2

/+xT[2] = g.1, T[3] = g.2, T[4] = g.3.

The transversals of NL[2] and the generators of g match up,
therefore we might have

a semidirect product or a mixed extension if we can write
the elements of g as products of elements of Kx/

Generators (NL[2]);

A:=G1!

(1, 161, 155) (2, 143, 162) (3, 144, 1l40) (4, 149, 147) (5, 145,
123) (6,119, 156) (7, 134, 140) (8, 122, 158) (9, 96, 157) (10,
80, 56) (11,

111, 74) (12, 101, 77) (13, 120, 151) (14, 108, 63) (15, 154,
114) (16,

105, 76) (17, 81, 98) (18, 82, 70) (19, 33, 110) (20, 79, 57)
(21, 51,

138) (22, 55, 127) (23, 153, 115) (24, 159, 87) (25, 39, 136)
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(26, 160,

88) (27, 141, 139) (28, 102, 75) (29, 53, 131) (30, 103, 97)
(31, 73,
112) (32, 45, 113) (34, 109, 35) (36, 148, 47) (37, 126, 92)
(38, 125,

66) (40, 118, 68) (41, 124, 59) (42, 142, 137) (43, 106, 85)
(44, 116,

150) (46, 83, 133) (48, 117, 152) (49, 60, 130) (50, 52, 128)
(54, 72,

129) (58, 135, 69) (61, 121, 100) (62, 91, 99) (64, 107, 67)
(65, 94, 89) (71, 104, 86) (78, 90, 93) (84, 95, 132);

B:=G1l!(1, 153, 151) (2, 144, 152) (3, 117, 162) (4, 126, 133)
(5, 135, 109) (6,
80, 78) (7, 107, 129) (8, 108, 89) (9, 105, 104) (10, 93, 156) (11,
154, 84) (12, 75, 106) (13, 161, 115) (14, 94, 158) (15, 132,
74) (16,
71, 157) (17, 57, 124) (18, 159, 61) (19, 38, 137) (20, 59,
81) (21,
148, 53) (22, 136, 45) (23, 120, 155) (24, 100, 70) (25,
113, 55) (26,
99, 97) (27, 73, 130) (28, 85, 101) (29, 138, 36) (30,
160, 62) (31,
60, 139) (32, 127, 39) (33, 125, 42) (34, 123, 58) (35
, 145, 69) (37,
83, 147) (40, 150, 50) (41, 98, 79) (43, 77, 102) (44,
52, 118) (46,
149, 92) (47, 131, 51) (48, 143, 146) (49, 141, 112)
(54, 134, 67) (56,
90, 119) (63, 65, 122) (64, 72, 140) (66, 142, 110)
(68, 116, 128) (76,
86, 96) (82, 87, 121) (88, 91, 103) (95, 111, 114);
C:=G1! (1, 154, 158) (2, 149, 139) (3, 126, 112) (4,
141, 162) (5, 125, 127) (6,
81, 100) (7, 118, 138)(8, 161, 114) (9, 101, 99) (10,
57, 82) (11, 94,
151) (12, 91, 157) (13, 111, 89) (14, 153, 84) (15,
122, 155) (16, 75,
103) (17, 121, 156) (18, 56, 79) (19, 113, 34) (20,
70, 80) (21, 134,
68) (22, 145, 66) (23, 132, 63) (24, 78, 59) (25, 58
, 137) (26, 104,
85) (27, 143, 147) (28, 97, 105) (29, 129, 52) (30,
76, 102) (31, 144,



92) (32, 109, 33) (35, 110, 45) (36, 107, 44) (37,
73, 146) (38, 55,
123) (39, 135, 42) (40, 51, 140) (41, 159, 90) (43,
160, 86) (46, 60,
152) (47, 64, 150) (48, 83, 130) (49, 117, 133) (50,
131, 72) (53, 54,
128) (61, 119, 98) (62, 96, 77) (65, 120, 74) (67,
116, 148) (69, 142,
136) (71, 106, 88) (87, 93, 124) (95, 108, 115);
D:=G1! (1, 159, 157) (2, 145, 150) (3, 135, 128) (4,
125, 148) (5, 116, 162) (6,
102, 132) (7, 130, 113) (8, 124, 99) (9, 161, 87)
(10, 85, 111) (11,
56, 106) (12, 154, 90) (13, 82, 104) (14, 98, 103)
(15, 78, 77) (1le,
153, 61) (17, 97, 108) (18, 71, 151) (19, 138, 83)
(20, 160, 65) (21,
133, 33) (22, 64, 139) (23, 100, 76) (24, 96, 155)
(25, 129, 73) (26,
89, 57) (27, 55, 107) (28, 95, 156) (29, 37, 137)
(30, 63, 81) (31,
136, 72) (32, 134, 49) (34, 118, 48) (35, 40,
152) (36, 147, 38) (39,
54, 112) (41, 91, 158) (42, 53, 126) (43, 74, 80)
(44, 143, 123) (45,
140, 60) (46, 110, 51) (47, 149, 66) (50, 144,
69) (52, 146, 58) (59,
62, 122) (67, 141, 127) (e8, 117, 109) (70, 86,
120) (75, 84, 119) (79,
88, 94) (92, 142, 131) (93, 101, 114) (105, 115,
121);
NL[2] eq sub<Gl|A,B,C,D>;

/*q, £f:=quo<Gl|NL[2]>;

q; x/

/+*Write the transversals as elements of gx*/
FPGroup (q) ;

/+Finitely presented group on 3 generators
Relations

S.172 = Id($)

$.276 = Id(S)

$.37°2 = Id($)

($.27-1 » $.3)72 = Id(S)

$.27-2 x $.1 x $.272 x $.3 x $.1 = $.3

= Id (%)
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($.2 « $.1 = $.27-1 « $.1)72 = Id(9)

$.1 * $.27-3 % $.1 « $.2°-1 « $.3 = S$.1 =
$.27-1 % $.3 = Id(S)

($.1 * $.27°-1)"5 = Id(s)«/

/+*The above presentation of g can be given by
Q<e, f,g>:=Group<e, f,gle"2,£76,972, (£°-1*g) "2,
f7-2xexf"2+gxexg, (frxexf"-1lxe)” 2,

exf " -3xexf"-1lxgrxexf"-1xg, (exf"-1) "5>;
ff,01,kk:=CosetAction (Q, sub<Q|Id(Q)>); =*/

Generators (q) ;
EE:=g! (1, 2) (3, 6) (4, 9) (5, 10) (7, 11)«(8, 12);
FF:=g! (1, 3, 7, 6, 11, 2) (4, 5, 9, 10, 12, 8);

GG:=q! (1, 4) (2, 5) (3, 8) (6, 10) (7, 12) (9, 11);

g eq sub<gl|EE,FF,GG>;

/*truex/
T[2];

H:=G1! (2, 3) (6, 10) (8, 14) (9, 16) (11, 15) (13, 23)
(18, 24) (21, 36) (22, 39) (25,

45) (26, 30) (27, 49) (29, 51) (32, 55) (33, 38) (35,
58) (37, 46) (40, 52) (42,

66) (44, ©8) (47, 53) (54, 64) (56, 78) (57, 81) (59,
79) (60, 73) (61, 87) (62,

88) (63, 89) (71, 96) (75, 101) (76, 104) (77, 106)
(82, 100) (84, 114) (85,

102) (93, 119) (94, 122) (98, 124) (99, 103) (107,
134) (109, 123) (110,

137) (111, 132) (112, 139) (117, 143) (126, 149)
(128, 150) (129, 140) (133,

147) (135, 145) (146, 152) (151, 155) (153, 161);
T[3];

I:=G1!'(2, 4)(3, 5, 7)(6, 11, 9, 17, 13, 12)(8, 15)
(10, 18, 20) (14, 24, 43, 23, 41,

26) (16, 28, 30) (19, 33, 32, 45, 35, 34) (21, 37,
22, 40, 31, 38) (25, 46,
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47) (29, 52, 50, 72, 54, 53) (36, 58, 83, 64, 39,
60) (42, 49, 44, 69, 48,

67) (51, 73, 55) (56, 79, 57, 82, 70, 80) (59, 85,
63) (61, 65, 62) (66, 68,

92) (71, 95, 93) (74, 99, 98, 89, 77, 100) (75, 102,
76, 105, 97, 103) (78,

106, 132, 124, 104, 108) (81, 111, 101) (84, 87,
86, 115, 90, 88) (91, 119,

94, 96, 121, 120) (107, 135, 130) (109, 113, 110)
(112, 123, 138, 146, 127,

140) (116, 142, 117) (118, 144, 125, 134, 126,
145) (128, 131, 129) (133,

150, 136, 152, 148, 137) (139, 147) (141, 143)
(151, 157, 156) (153, 159,

160) (154, 161) (155, 158);
T[4];

J:=G1l! (1, 2)(3, 6) (4, 8)(5, 9) (7, 13) (10, 19) (11,
21) (12, 22) (14, 25) (15, 27) (16,
29) (17, 31) (18, 32) (20, 35) (23, 42) (24, 44) (26,
48) (28, 50) (30, 54) (33,
56) (34, 57) (36, 59) (37, 61) (38, 62) (39, 63) (40,
65) (41, 47) (43, 46) (45,
70) (49, 71) (51, 74) (52, 75) (53, 76) (55, 77) (58,
84) (60, 86) (64, 90) (66,
91) (67, 93) (68, 94) (69, 95) (72, 97) (73, 98) (78,
107) (79, 109) (80,
110) (81, 112) (82, 113) (83, 85) (87, 116) (88,
117) (89, 118) (92, 121) (96,
123) (99, 125) (100, 126) (101, 127) (102, 128)
(103, 129) (104, 130) (105,
131) (106, 133) (108, 136) (111, 138) (114, 141)
(115, 142) (119, 146) (120,
140) (122, 147) (124, 148) (132, 135) (134, 151)
(137, 153) (139, 154) (143,
155) (144, 156) (145, 157) (149, 158) (150, 159)
(152, 160) (161, 162);

/+*Now, a presentation of NL[2]=<A,B,C,D> is
<w,x,y¥,z|w 3,x"3,y"3,z2"°3, (w,x), (w,y), (X,2),
(w,2),(x,2), (y,z)> becuase of

/*FPGroup (NL[2]);

Finitely presented group on 5 generators
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Relations
$.273 = 1Id($)
$.373 = Id (%)
$.473 = Id($)
$.57°3 = Id (%)
($.2, $.3) = Id($)
($.2, $.4) = Id($)
($.3, $.4) = Id($)
($.2, $.5) = Id($)
($.3, $.5) = Id($)
($.4, $.5) = Id($)
$.1 = Id(S$)~*/

and a presentation of g=<EE,FF,GG> is
<e,f,gle”2,£76,972, (£°-1xg) "2, £ " -2%ex*
f72xgxexg, (frexf -1xe) 2,
exf " -3*xexf " -1l+xgrxexf " -1xqg, (exf"-1) "5>;
from abovex/

/+*Need to find the action of g on NL[2], since
this is the semi direct partx*/

for i,3,%,1 in [1..3] do if A"H eq A"i*B " j*xC"k*D"1
then i, 3j,k,1; end if; end

for;
3133

for i,3J,k,1 in [1..3] do if A"I eq A"ixB"jxC"kxD"1
then i, j,%k,1; end if; end

for;
3313

for i,73,%,1 in [1..3] do if A"J eq A"ixB " jxC"k*D"1
then i, 3j,k,1; end if; end

for;
2 3 33

for i,j,k,1 in [1..3] do if B"H eg A"ixB"j*C"k*D"1
then i, 3j,k,1; end if; end

for;
1 333

for i,J,k,1 in [1..3] do if B"I eg A"ixB"j*C"k*D"1
then i, 3j,k,1; end if; end
for;
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3331

for i,3J,k,1 in [1..3] do if B"J eq A i*B"jxC"kxD"1
then i, 3j,k,1; end if; end

for;
1111

for i,3J,k,1 in [1..3] do if C"H eq A"ixB"jxC"kxD"1
then i, 3j,k,1; end if; end

for;
3313

for i,3,k,1 in [1..3] do if C"I eg A"ixB"j*C"k«D"1
then i, 3j,k,1; end if; end

for;
1333

for i,J,k,1 in [1..3] do if C°J eqg A"ixB"j*C"k*D"1
then i, 3j,k,1; end if; end

for;
3323

for i,3J,k,1 in [1..3] do if D"H eq A"ix*B"jxC"kxD"1
then i, 3j,k,1; end if; end

for;
3331

for i,3,k,1 in [1..3] do if D"I eq A"ixB"jxC"kxD"1
then i, 3j,k,1; end if; end

for;
2 2 2 2

for i,j,k,1 in [1..3] do if D"J eg A"ixB"j*C"k*D"1
then i, 3j,k,1; end if; end

for;
3332

/+ Writing g=<EE,FF,GG> in terms of NL[2]=
<A,B,C,D>, by pulling up:
> FPGroup (q) ;
Finitely presented group on 3 generators
Relations

$.17°2 = 1d($)



$.276 = Id(S)

$.372 = 1Id($9)

($.27-1 x $.3)72 = Id(S)

$.27-2 x $.1 x» $.272 x $.3 * $.1 x $.3 =
Id(s)

($.2 * $.1 % $.27-1 % $.1)"2 = Id($)

S.1 % $.27-3 x $.1 * $.27-1 % $.3 =
$.27°-1 x $.3 = Id($)

($.1 % $.27°-1)"5 = 1d($) =/

T:=Transversal (G1,NL[2]);
ff(T[2]) eqg EE;
/* true x/
ff(T[3]) eq FF;
/* true x/
f£(T[4]) eqg GG;
/* true x/
Order (T[2]);

/*x 2 %/

Order (T[31]);

/* 6 x/

Order (T[4]);

/*x 2 %/

S.1 «*

Order (T[2] "-1*T[3]); /+*this is (FF"-1xEE)"5,

($.1 « $.27-1)"5 = Id($)~*/
/x5 x/

/+*0Order is 5, does not change, so leave

Order (T[3]1"-1%xT[4])"2;
/+*36, changes so run codex/
/*T[3]"-1xT[4] in NL[2]; truex/

for i,3j,k,1 in [1..3] do
if (T[3]"-1%T[4])"2 eq ATi*B"jxC"kxD"1
then i, j,k,1; end if; end for;

/* (FE"=1xGG) "2/

/* 1 3 2 3%/

/* Thus, (f7-1%g) 2=w*x"3+y " 2xz"3=
wxy 2 x/

Order (T[3]1*T[2]1*T[3] " -1+xT[2]);
/*($.2 » $.1 x $.2°-1 %« $.1)72 = Id($),
leave alonex/

alonex/
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/x 2 %/

/* Thus, (fxexf"-1xe) "2=identity
(does not change)) =/

Order (T[3] "-2*T[2]
/x$.27-2 % $.1
Id($) =/

*T[3 ]

* $.272 % S.
/+ 3, changes, so run code x/

T[3] " -2+«T[2]*T[3]"2+xT[4]1+T[2]*T[4] in NL[2];

/*truex/

for i,3,k,1 in [1..3] do

if (T[3]7-2+T[2]*T[3] " 2xT[4]xT[2]*T[4]) eq

A"i*B"j*C"k*D"1 then i, j,k,1;

end if; end for;

/x 2 1 1 1x/

/* Thus, £ -2xexf " 2xgxexg=w"2xxxy*z */
Order ((T[3]1+T[2]+T[3] " -1*T[2])"2);

/% 1 %/

/* Thus, (f*exf"-1lxe) "2=identity remains
unchanged. =*/

Order (T[2]*T[3] " -3*T[2]*T[3] -1
*T[4]*T[2)*T[3] " -1xT[4]);

/*x 3 x/

for i,3j,k,1 in [1..3] do

1f T[2]*T[3] " =-3*T[2]*T[3] " -1*«T[4]*T[2]%*
T[3]"-1xT[4] eq ATixB"j*xC"kxD"1

then i, j,%k,1; end if; end for;

/1 2 3 3 */

/* Thus, e*xf " -3%exf " —lxgre+xf " -1+g=wrx"2 */



Order ((T[2]1*T[3]1°-1)"5);
/x 1 */
/* Thus, (exf"-1)"5 =

identity remains unchanged. =*/

/+ The following shows that Gl is isomorphic
to 374:"{\cdot} (S_5x2) =/

/*w,x,y,z is for 374, and e, f, g is gx/

H<w, x,vy,z,e,f,9>:=Group<w, x,v,z,e,£,9]

WAB/XABIYA:B/ z"3, (w, %), (Ww,y), (%,2),(w,2), (x,2), (Y,2),

e”2,£76,972, (f7-1xqg) "2=w*xy "2, f " -2xexf " 2xgxexg=
W 24«x*xy*xz, (frxexf"-1lxe)” 2,

exf " -3xexf -1lxgrexf -1xg=wxx"2, (exf"-1) "5,
wie=x,w f=y,w g=w"2,x"e=w,x " f=z,x"g=wirx*y*x2z,
yie=y,yv f=w,y g=y 2,z e=2z,z2 =W 2xx"2xy " 2%2"2
,2°g=2"2>;

#H;

/* 19440 x/

#G1;

/* 19440 «/
f1,H1,k1l:=CosetAction (H, sub<H|Id(H)>);
s:=IsIsomorphic (G1l,H1);

Sy

/* true x/
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