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The Cayley graph summarizes the information listed above.

Figure 5.2: Cayley graph of Sz(8) over (13 : 4)
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Chapter 6

Double Coset Enumeration over a

Maximal Subgroup

In this chapter we will construct a double coset enumeration over a maximal

subgroup with a progenitor factor by additional relations.

6.1 Construction of 2× PGL2(27) over M = 2•(13 : 2)

Definition 6.1. Let G be a group and H ≤ G. H is a maximal subgroup of G if

there is no normal subgroup N ≤ G such that H < N < G. [Rot95]

6.1.1 Double Coset Enumeration of G

In order to construct a double coset enumeration we have to consider on obtain-

ing the homomorphic image by factoring the progenitor 2∗13 : (13 : 2) by the relations

((x4)ttx)3, and ((x6)ttx)2 denoted by:

〈x, y, t|y2, (x−1y)2, x−13,

t2,

(t, yx2), ((x4)ttx)3, ((x6)ttx)2〉
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and N ∼= (13 : 2) =

〈x, y|y2, (x−1y)2, x−13.

Then,

G ∼=
2∗13 : (13 : 2)

((x4)ttx)3, ((x6)ttx)2
∼= 2× PGL2(27).

Let x ∼ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) and y ∼ (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7),

where t ∼ t1 and π = x4.

The first relation, ((x4)ttx)3 or (πt1t2)
3, is expand as follow:

(πt1t2)
3 = 1

π3(t1t2)
π2

(t1t2)
πt1t2 =

π3tπ
2

1 t
π2

2 t
π
1 t
π
2 t1t2 =

π3t
(1,9,4,...)
1 t

(1,9,4,12,7,2,10...)
2 t

(1,5,9,13,...)
1 t

(1,5,9,...2,6,10)
2 t1t2 =

π3t9t10t5t6t1t2 =

(1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)t9t10t5t6t1t2 = 1

(1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)t9t10t5 = t2t1t6

Expand second relation (βt1t
x
1)2 where β = x6:

(βt1t
x
1)2 = e

(βt1t2)
2 =

β2(t1t2)
βt1t2 =

β2tβ1 t
β
2 t1t2 = e

(1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)t7t8t1t2 = e

(1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)t7t8 = t2t1

There is one more thing to consider, let M be the maximal subgroup generated
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by the control group N = (13 : 2) and ytx4txtyt = t7t11t12t1 since

ytx4txtyt

ytx4txyy−1tyt

ytx4txytyt

ytx4(xy)(xy)−1txytyt

ytx5yt(xy)tyt

y(x5y)(x5y)−1t(x5y)t(xy)tyt

y(x5y)t(x
5y)t(xy)tyt

(1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6)t7t11t12t1.

Likewise, tx4ytx4ytx3y = t9t2t9. Thus,

M = 〈N, t7t11t12t1, t9t2t9〉 = 2•(13 : 2) where|M | = 104.

Then M is the subgroup.

Now that we have obtain the homomorphic image and maximal subgroup we can start

constructing the a manual double coset enumeration of G over the maximal subgroup,

M and N . Let w be a word in tis and [w] be the double coset, MwN .

MeN

The process on constructing a manual double coset, we begin with the first dou-

ble coset MeN = {Nen|nεN} denotes by [∗]. In this double coset there is only one single

coset, namelyM. The coset stabiliser ofM isN and is transitive on {t1, t2, t3, t4, t5, t6, t7,
t8, t9, t10, t11, t12, t13}. Thus, has a single orbit {1,2,3,4,5,6,7,8,9,10,11,12,13}. Take

a representative from the single orbit and do right multiplication to Me. Implies

Met1 = Mt1N is a new double coset denoted as [1]. Since we have 13 elements on

the orbit, that means 13 things will go to the new double coset, [1].

Mt1N

Continuing with the double coset Mt1N , we find the point stabiliser N1 and

coset stabiliser N (1) to determine the amount of single cosets that are in the new double
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coset [1]

N (1) ≥ 〈(2, 13)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8)〉.

Thus, the order of the coset stabiliser of N (1) denoted as |N (1)| = 2. So the number

of single cosets in N (1) is |N |
|N(1)| = 26

2 = 13. Now we find the orbits of N (1) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2, 13}, {3, 12}, {4, 11}, {5, 10}, {6, 9}{7, 8}

Take a representative ti from each orbit to determine if any double cosets Mt1ti are

new.

Mt1t1 = Me,∈ [∗](1 loop back)

Mt1t2 ∈ [12],

Mt1t3 ∈ [13],

Mt1t4 ∈ [14],

t1t5 = x4yx5yt7t11t12t1t8t6

=⇒ Mt1t5 = Mt8t6 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and x4yx5yt7t11t12t1 ∈M),

Mt1t6 ∈ [16],

t1t7 = yx−1y2xyt1t12t11t13t11t12t1t1

=⇒ Mt1t7 = Mt1 ∈ [1](2 loop back)

(since {N(t1)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M)

After multiplying on the right by an element from each orbit, we get new double cosets

with the following double cosets Mt1t2N,Mt1t3N,Mt1t4N, and Mt1t6N single coset

representatives, Mt1t2,Mt1t3,Mt1t4, and Mt1t6. We labeled each single coset repre-

sentative as [12], [13], [14], and [16], respectively. And we checked and proved for those

double cosets that are equal to other existing double cosets.

Mt1t2N

From the previous work we were able to determine our new double cosets with
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the single coset representatives [12], [13], [14], and [16]. Continuing with our work we

start with the first double coset Mt1t2N and find the coset stabilizer. But Mt1t2 is not

distinct, since t1t2 = xt9t8 whereMt9t8 ε Mt1t2. NowM(t1t2)
(1,9)(2,8)(3,7)(4,6)(10,13)(11,12)

= Mt9t8. Hence, (1, 9)(2, 8)(3, 7)(4, 6)(10, 13)(11, 12) ε N (12). Therefore:

N (12) ≥ 〈(1, 9)(2, 8)(3, 7)(4, 6)(10, 13)(11, 12)〉

Thus the order of N (12) = 2, therefore, the number of single cosets in Mt1t2N is

N
N(12) =26

2 = 13.Now we find the orbits ofN (12) on thirteen letters t1, t2, t3, t4, t5, t6, t7, t8,

t9, t10, t11, t12, t13 which are:

O = {5}, {1, 9}, {2, 8}, {3, 7}, {4, 6}, {10, 13}, {11, 12}

Now we take a representative from each orbit and we do right multiply to the single

coset Mt1t2 and check if we get new double cosets.

Mt1t2t5 ∈ [125]

Mt1t2t1 = Id(G)t1t12t11t13t11t12t1t13t8

=⇒ Mt1t2t1 = Mt13t8 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and Id(G)t1t12t11t13t11t12t1 ∈M),

Mt1t2t2 = Mt1 ∈ [1]

Mt1t2t3 ∈ [123]

Mt1t2t4 ∈ [124]

Mt1t2t10 ∈ [1210]

Mt1t2t11 ∈ [1211]

After right multiply by an element from each orbit, the new double cosets Mt1t2t5N,

Mt1t2t3N, Mt1t2t4N, Mt1t2t10N, Mt1t2t11N with single coset representatives Mt1t2t5,

Mt1t2t3, Mt1t2t4, Mt1t2t10, Mt1t2t11, denoted as [125], [123], [124], [1210], and [1211].

Mt1t2t5N

Following the same process from above, the double coset Mt1t2t5N has coset
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stabilizer of N (125) = N125. But Mt1t2t5 is not distinct, since t1t2t5 = xt9t8t5 where

Mt9t8t5 ε Mt1t2t5. Now M(t1t2t5)
(1,9)(2,8)(3,7)(4,6)(10,13)(11,12) = Mt9t8t5. Hence, (1, 9)

(2, 8)(3, 7)(4, 6)(10, 13)(11, 12) ε N (125). Therefore:

N (125) ≥ 〈(1, 9)(2, 8)(3, 7)(4, 6)(10, 13)(11, 12)〉

The order of N (125) = 2. Thus the number of single cosets in Mt1t2t5N is N
N(125) =26

2 =

13. Now that we know 13 single cosets exist in [125] so we find the orbits of N (125) on

thirteen letters. The orbits of

O = {5}, {1, 9}, {2, 8}, {3, 7}, {4, 6}, {10, 13}, {11, 12}

Take a representative from each orbit and do right multiply of the single coset Mt1t2t5.

Mt1t2t5t5 = Mt1t2 ∈ [12]

Mt1t2t5t1 = x4yx4yx3t4t11t4t1t2t5

=⇒ Mt1t2t5t1 = Mt1t2t5 ∈ [125]

(since {N(t1t2t5)
n|n ∈ N} and x4yx4yx3t4t11t4 ∈M),

Mt1t2t5t2 = yx4y2xyt7t13t11t12t1t8t9t12

=⇒ Mt1t2t5t2 = Mt8t9t12 ∈ [125]

(since {N(t1t2t5)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t2t5t3 = xyx4y2xyt7t13t11t12t1t4t7t4

=⇒ Mt1t2t5t3 = Mt4t7t4 ∈ [141]

(since {N(t1t4t1)
n|n ∈ N} and xyx4y2xyt7t13t11t12t1 ∈M),

Mt1t2t5t4 = xyx4y2xyt7t13t11t12t1t8t6t1

=⇒ Mt1t2t5t4 = Mt8t6t1 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and xyx4y2xyt7t13t11t12t1 ∈M),
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Mt1t2t5t10 = yx4y2xyt7t13t11t12t1t3t6t9

=⇒ Mt1t2t5t10 = Mt3t6t9 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t2t5t11 = xyx4yx4y2t12t5t12t2t1t5

=⇒ Mt1t2t5t11 = Mt2t1t5 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and xyx4yx4y2t12t5t12 ∈M)

After checking if there are any new cosets, the results listen above tells us there are no

new double cosets. Therefore, we must check and prove which single cosets are equal to

other existing double cosets.

Mt1t2t3N

Continuing with the new double coset Mt1t2t3N , we find the point stabiliser

N123 and coset stabiliser N (123) to determine the amount of single cosets that are in the

new double coset [123].

N (123) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (123) denoted as |N (123)| = 1. So the number

of single cosets in N (123) is |N |
|N(123)| = 26

1 = 26. Now we find the orbits of N (123) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t2t3ti

exist.

Mt1t2t3t1 = yx−1y2xyt1t12t11t13t11t12t1t1t2t3

=⇒ Mt1t2t3t1 = Mt1t2t3 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t2t3t2 = x4yx4yxt1t2t9t2t10t8t10

=⇒ Mt1t2t3t2 = Mt10t8t10 ∈ [131]
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(since {N(t1t3t1)
n|n ∈ N} and x4yx4yxt1t2t9t2 ∈M),

Mt1t2t3t3 = Mt1t2 ∈ [12]

Mt1t2t3t4 = x4yx4yx3t4t11t4t9t11t3

=⇒ Mt1t2t3t4 = Mt9t11t3 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x4yx4yx3t4t11t4 ∈M)

Mt1t2t3t5 = x4y2xyxyt5t12t1t13t11t8t10t8

=⇒ Mt1t2t3t5 = Mt8t10t8 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and x4y2xyxyt5t12t1t13t11 ∈M),

Mt1t2t3t6 = x5y2xy2t6t13t2t1t12t12t13t2

=⇒ Mt1t2t3t6 = Mt12t13t2 ∈ [124]

(since {N(t1t2t4)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t2t3t7 = x9t10t6t5t3t8t10t13t4

=⇒ Mt1t2t3t7 = Mt8t10t13t4 ∈ [13610]

(since {N(t1t3t6t10)
n|n ∈ N} and x9t10t6t5t3 ∈M),

Mt1t2t3t8 = x4y2xyxyt5t12t1t13t11t5t8t10

=⇒ Mt1t2t3t8 = Mt5t8t10 ∈ [146]

(since {N(t1t4t6)
n|n ∈ N} and x4y2xyxyt5t12t1t13t11 ∈M),

Mt1t2t3t9 = xt2t10

=⇒ Mt1t2t3t9 = Mt2t10 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x ∈M),

Mt1t2t3t10 = x4yx4yx3t4t11t4t6t7t2

=⇒ Mt1t2t3t10 = Mt6t7t2 ∈ [1210]

(since {N(t1t2t10)
n|n ∈ N} and x4yx4yx3t4t11t4 ∈M),

Mt1t2t3t11 = x4yx4yt1t8t1t2t7t12

=⇒ Mt1t2t3t11 = Mt2t7t12 ∈ [1611]

(since {N(t1t6t11)
n|n ∈ N} and x4yx4yt1t8t1 ∈M),
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Mt1t2t3t12 = x6y2x2t9t8t3t1t3t2t1t2t5t8

=⇒ Mt1t2t3t12 = Mt2t5t8 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and x6y2x2t9t8t3t1t3t2t1 ∈M),

Mt1t2t3t13 = yx−1y2xyt1t12t11t13t11t12t1t1t4t5

=⇒ Mt1t2t3t13 = Mt1t4t5 ∈ [145]

(since {N(t1t4t5)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t2t4N

Moving on with the new double coset Mt1t2t4N , we find the point stabiliser

N124 and coset stabiliser N (124) to determine the amount of single cosets that are in the

new double coset [124]. But Mt1t2t4 is not distinct, since t1t2t4 = t6t5t3 where Mt6t5t3

ε Mt1t2t4. Now M(t1t2t4)
(1,6)(2,5)(3,4)(7,13)(8,12)(9,11) = Mt6t5t3.

Hence, (1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11) ε N (124).

N (124) ≥〉(1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11)〈.

Hence, the order of the coset stabiliser of N (124) denoted as |N (124)| = 2. So the number

of single cosets in N (124) is |N |
|N(124)| = 26

2 = 13. Now we find the orbits of N (124) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {10}, {1, 6}, {2, 5}, {3, 4}, {7, 13}, {8, 12}, {9, 11}

Take a representative ti from each orbit to determine if any double cosets Mt1t2t4ti

exist.

Mt1t2t4t10 = x4yx4yx4t5t12t5t13t7t8t3

=⇒ Mt1t2t4t10 = Mt7t8t3 ∈ [1210]

(since {N(t1t2t10)
n|n ∈ N} and x4yx4yx4t5t12t5t13 ∈M),
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Mt1t2t4t1 = xyx−2y2x−1yt5t2t1t13t2t13t12t5t2t12

=⇒ Mt1t2t4t1 = Mt5t2t12 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and xyx−2y2x−1yt5t2t1t13t2t13t12 ∈M),

Mt1t2t4t2 = x5y2xy2t6t13t2t1t12t7t4t3

=⇒ Mt1t2t4t2 = Mt7t4t3 ∈ [145]

(since {N(t1t4t5)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M)

Mt1t2t4t4 = Mt1t2 ∈ [12]

Mt1t2t4t7 = yx4y2xyt7t13t11t12t1t11t9t12

=⇒ Mt1t2t4t7 = Mt11t9t12 ∈ [1313]

(since {N(t1t3t13)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t2t4t8 = x5y2x3t8t2t4t3t1t3t4t5

=⇒ Mt1t2t4t8 = Mt3t4t5 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x5y2x3t8t2t4t3t1 ∈M),

Mt1t2t4t9 = x4yx4yx3t4t11t4t6t7t3

=⇒ Mt1t2t4t9 = Mt6t7t3 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x4yx4yx3t4t11t4 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t2t10N

Following the same process from above, the double coset Mt1t2t10N has coset

stabilizer of N (1210) = N1210 = 〈(1, 7)(2, 6)(3, 5)(8, 13)(9, 12)(10, 11)〉. Since t1t2t10 =

xt7t6t11 where Mt7t6t11 ε Mt1t2t10. Now M(t1t2t10)
(1,7)(2,6)(3,5)(8,13)(9,12)(10,11)

= Mt7t6t11. Hence, (1, 7)(2, 6)(3, 5)(8, 13)(9, 12)(10, 11) ε N (1210). The order of N (1210)

= 2. Thus the number of single cosets in Mt1t2t10N is N
N(1210) =26

2 = 13. Now that we

know 13 single cosets exist in [1210] lets find the orbits of N (1210) on thirteen letters.

The orbits are
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O = {4}, {1, 7}, {2, 6}, {3, 5}, {8, 13}, {9, 12}, {10, 11}

Take a representative from each orbit and do right multiply to the single cosetMt1t2t10ti.

Mt1t2t10t4 = x6y2x2t9t8t3t1t3t2t1t8t9t11

=⇒ Mt1t2t10t4 = Mt9t8t11 ∈ [124]

(since {N(t1t2t4)
n|n ∈ N} and x6y2x2t9t8t3t1t3t2t1 ∈M),

Mt1t2t10t1 = yx−1y2xyt5t1t12t11t13t11t12t1t5t13t8

=⇒ Mt1t2t10t1 = Mt5t13t8 ∈ [1611]

(since {N(t1t6t11)
n|n ∈ N} and yx−1y2xyt5t1t12t11t13t11t12t1 ∈M),

Mt1t2t10t2 = t3t1

=⇒ Mt1t2t10t2 = Mt3t1 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and t3t1 ∈M)

Mt1t2t10t3 = x4yx4yx4t5t12t5t12t11t10

=⇒ Mt1t2t10t3 = Mt12t11t10 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x4yx4yx4t5t12t5 ∈M),

Mt1t2t10t8 = xt4t9

=⇒ Mt1t2t10t8 = Mt4t9 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x ∈M),

Mt1t2t10t9 = x4yx4yx2t3t10t3t8t10t2

=⇒ Mt1t2t10t9 = Mt8t10t2 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x4yx4yx2t3t10t3 ∈M)

Mt1t2t10t10 = Mt1t2 ∈ [12]

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we check and prove for those double cosets that are equal to other existing

double cosets.

Mt1t2t11N

Continuing with the new double coset Mt1t2t11N , we find the point stabiliser
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N1211 and coset stabiliser N (1211) to determine the amount of single cosets that are in

the new double coset [1211].

N (1211) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (1211) denoted as |N (1211)| = 1. So the number

of single cosets in N (1211) is |N |
|N(1211)| = 26

1 = 26. Now we find the orbits of N (1211) on

the transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t2t11ti

exist.

Mt1t2t11t1 = xyx4yx4y2t12t5t12t9t6t3

=⇒ Mt1t2t11t1 = Mt9t6t3 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and xyx4yx4y2t12t5t12 ∈M),

Mt1t2t11t2 = x2yx3yxt1t12t10t12t2t1t13t5

=⇒ Mt1t2t11t2 = Mt13t5 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x2yx3yxt1t12t10t12t2t1 ∈M),

Mt1t2t11t3 = x2yx3yxt1t12t10t12t2t1t1t11

=⇒ Mt1t2t11t3 = Mt1t11 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x2yx3yxt1t12t10t12t2t1 ∈M),

Mt1t2t11t4 = x2yx4yx4y2t12t5t12t9t10t12

=⇒ Mt1t2t11t4 = Mt9t10t12 ∈ [124]

(since {N(t1t2t4)
n|n ∈ N} and x2yx4yx4y2t12t5t12 ∈M),

Mt1t2t11t5 = xyx4yx4y2t12t5t12t2t1t11

=⇒ Mt1t2t11t5 = Mt2t1t11 ∈ [125]

(since {N(t1t2t5)
n|n ∈ N} and xyx4yx4y2t12t5t12 ∈M),
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Mt1t2t11t6 = xt4t7

=⇒ Mt1t2t11t6 = Mt4t7 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x ∈M),

Mt1t2t11t7 = x−1y2t12t11t12t13t1t12t1t4t2t12

=⇒ Mt1t2t11t7 = Mt4t2t12 ∈ [136]

(since {N(t1t3t6)
n|n ∈ N} and x−1y2t12t11t12t13t1t12 ∈M),

Mt1t2t11t8 = x6y2x2t9t8t3t1t3t2t1t3t5t10

=⇒ Mt1t2t11t8 = Mt3t5t10 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x6y2x2t9t8t3t1t3t2t1 ∈M),

Mt1t2t11t9 = x5y2xy2t6t13t2t1t12t11t1t3

=⇒ Mt1t2t11t9 = Mt1t1t3 ∈ [146]

(since {N(t1t4t6)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t2t11t10 = x4y2x3t8t2t4t3t1t12t2t3

=⇒ Mt1t2t11t10 = Mt12t2t3 ∈ [145]

(since {N(t1t4t5)
n|n ∈ N} and x4y2x3t8t2t4t3t1 ∈M),

Mt1t2t11t11 = Mt1t2 ∈ [12]

Mt1t2t11t12 = x−4t10t9t10t12t1t2t1t9t7t2

=⇒ Mt1t2t11t12 = Mt9t7t2 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x−4t10t9t10t12t1t2t1 ∈M),

Mt1t2t11t13 = yx5yt7t11t12t1t9t11

=⇒ Mt1t2t11t13 = Mt9t11 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and yx5yt7t11t12t1 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t3N

Following the same process from above, the double coset Mt1t3N has coset
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stabilizer of N (13) = N13 = 〈e〉. The order of N (13) = 1. Thus the number of single

cosets in Mt1t3N is N
N(13) =26

1 = 26. Now that we know 26 single cosets exist in [13] lets

find the orbits of N (13) on thirteen letters. The orbits are

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative from each orbit and do right multiply to the single coset Mt1t3ti

Mt1t3t1 ∈ [131],

Mt1t3t2 = x−1t10t11t6

=⇒ Mt1t3t2 = Mt10t11t6 ∈ [1210]

(since {N(t1t2t10)
n|n ∈ N} and x−1 ∈M),

Mt1t3t3 = Mt1 ∈ [1],

Mt1t3t4 = x3yx5yt7t11t12t1t8

=⇒ Mt1t3t4 = Mt8 ∈ [1]

(since {N(t1)
n|n ∈ N} and x3yx5yt7t11t12t1 ∈M),

Mt1t3t5 = x3yx5yt7t11t12t1t6t7t3

=⇒ Mt1t3t5 = Mt6t7t3 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x3yx5yt7t11t12t1 ∈M),

Mt1t3t6 ∈ [136],

Mt1t3t7 ∈ [137],

Mt1t3t8 ∈ [138],

Mt1t3t9 = x4yx4yt4t11t4t11t3

=⇒ Mt1t3t9 = Mt11t3 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x4yx4yt4t11t4 ∈M),

Mt1t3t10 = x4y2xy2t6t13t2t1t12t6t4

=⇒ Mt1t3t10 = Mt6t4 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and x4y2xy2t6t13t2t1t12 ∈M),
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Mt1t3t11 = x5y2xy2t6t13t2t1t12t7t4

=⇒ Mt1t3t11 = Mt7t4 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t3t12 = x9t10t6t5t3t13t11t8

=⇒ Mt1t3t12 = Mt13t11t8 ∈ [136]

(since {N(t1t3t6)
n|n ∈ N} and x9t10t6t5t3 ∈M),Mt1t3t13 ∈ [1313]

After right multiply by an element from each orbit, the new double cosets Mt1t3t1N,

Mt1t3t6N, Mt1t3t7N, Mt1t3t8N, Mt1t3t13N with single coset representatives are

Mt1t3t1, Mt1t3t6, Mt1t3t7, Mt1t3t8, Mt1t3t13, denoted as [131], [136], [137], [138], and

[1313].

Mt1t3t1N

Using the process from above, new double coset Mt1t3t1N , we find the point

stabiliser N131 and coset stabiliser N (131) to determine the amount of single cosets that

are in the new double coset [131].

N (131) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (131) denoted as |N (131)| = 1. So the number

of single cosets in N (131) is |N |
|N(131)| = 26

1 = 26. Now we find the orbits of N (131) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t3t1ti

exist.

Mt1t3t1t1 = Mt1t3 ∈ [13]

Mt1t3t1t2 = et2t10

=⇒ Mt1t3t1t2 = Mt2t10 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and e ∈M),
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Mt1t3t1t3 = x4y2xyxyt5t12t1t13t11t6t9t11

=⇒ Mt1t3t1t3 = Mt6t9t11 ∈ [146]

(since {N(t1t4t6)
n|n ∈ N} and x4y2xyxyt5t12t1t13t11 ∈M),

Mt1t3t1t4 = yx−1y2xyt1t12t11t13t11t12t1t11t3t8

=⇒ Mt1t3t1t4 = Mt11t3t8 ∈ [1611]

(since {N(t1t6t11)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t3t1t5 = yx2yt10t9t10t12t1t2t1t8t5t2

=⇒ Mt1t3t1t5 = Mt8t5t2 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and yx2yt10t9t10t12t1t2t1 ∈M),

Mt1t3t1t6 = x5t8t10t13t4

=⇒ Mt1t3t1t6 = Mt8t10t13t4 ∈ [13610]

(since {N(t1t3t6t10)
n|n ∈ N} and x5 ∈M),

Mt1t3t1t7 = yx−1y2xyt1t12t11t13t11t12t1t7t5t1

=⇒ Mt1t3t1t7 = Mt7t5t1 ∈ [137]

(since {N(t1t3t7)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t3t1t8 = x4yx4yt1t8t1t8t6t1

=⇒ Mt1t3t1t8 = Mt8t6t1 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x4yx4yt1t8t1 ∈M),

Mt1t3t1t9 = x4yx4yx3t4t11t4t10t9t8

=⇒ Mt1t3t1t9 = Mt10t9t8 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x4yx4yx3t4t11t4 ∈M),

Mt1t3t1t10 = x2yx5yt7t11t12t1t7t12

=⇒ Mt1t3t1t10 = Mt7t12 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x2yx5yt7t11t12t1 ∈M),

Mt1t3t1t11 = xyx4y2xyt7t13t11t12t1t7t8t9

=⇒ Mt1t3t1t11 = Mt7t8t9 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and xyx4y2xyt7t13t11t12t1 ∈M),
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Mt1t3t1t12 = x7t8t4t3t1t2t4t7t11

=⇒ Mt1t3t1t12 = Mt1t2t4t7t11 ∈ [13610]

(since {N(t1t3t6t10)
n|n ∈ N} and x7t8t4t3 ∈M),

Mt1t3t1t13 = x5y2x3t8t2t4t3t1t13t3t4

=⇒ Mt1t3t1t13 = Mt13t3t4 ∈ [145]

(since {N(t1t4t5)
n|n ∈ N} and x5y2x3t8t2t4t3t1 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t3t6N

Moving on with the new double coset Mt1t3t6N , we find the point stabiliser

N136 and coset stabiliser N (136) to determine the amount of single cosets that are

in the new double coset [136]. But Mt1t3t6 is not distinct, since t1t3t6 = x−6t6t4t1

where Mt6t4t1 ε Mt1t3t6. Now M(t1t3t6)
(1,6)(2,5)(3,4)(7,13)(8,12)(9,11) = Mt6t4t1. Hence,

(1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11) ε N (136).

N (136) ≥ 〈(1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11)〉.

Hence, the order of the coset stabiliser of N (136) denoted as |N (136)| = 2. So the number

of single cosets in N (136) is |N |
|N(136)| = 26

2 = 13. Now we find the orbits of N (136) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {10}{1, 6}, {2, 5}, {3, 4}, {7, 13}, {8, 12}, {9, 11}

Take a representative ti from each orbit to determine if any double cosets Mt1t3t6ti

exist.

Mt1t3t6t10 ∈ [13610]

Mt1t3t6t1 = x−6t6t4

=⇒ Mt1t3t6t1 = Mt6t4 ∈ [13]
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(since {N(t1t3)
n|n ∈ N} and x−6 ∈M),

Mt1t3t6t2 = x2yx5yt7t11t12t1t13t11

=⇒ Mt1t3t6t2 = Mt13t11 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and x2yx5yt7t11t12t1 ∈M),

Mt1t3t6t3 = yx−1y2xyt1t12t11t13t11t12t1t1t4t7

=⇒ Mt1t3t6t3 = Mt1t4t7 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t3t6t7 = x4yx4yx2t3t10t3t2t13t3

=⇒ Mt1t3t6t7 = Mt2t13t3 ∈ [1313]

(since {N(t1t3t13)
n|n ∈ N} and x4yx4yx2t3t10t3 ∈M),

Mt1t3t6t8 = x4y2x3t8t2t4t3t1t2t13t10

=⇒ Mt1t3t6t8 = Mt2t13t10 ∈ [136]

(since {N(t1t3t6)
n|n ∈ N} and x4y2x3t8t2t4t3t1 ∈M),

Mt1t3t6t9 = xyx4yx4y2t12t5t12t3t4t13

=⇒ Mt1t3t6t9 = Mt3t4t13 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and xyx4yx4y2t12t5t12 ∈M)

After checking if there are any new cosets, the results listen above tells us there are no

new double cosets. Therefore, we must have checked and prove which single cosets are

equal to other existing double cosets.

Mt1t3t7N

For the new double coset Mt1t3t7N we find the point stabiliser N137 and

coset stabiliser N (137) to determine the amount of single cosets that are in the new

double coset [137]. But Mt1t3t7 is not distinct, since t1t3t7 = x5t2t13t9 where Mt2t13t9

ε Mt1t3t7. Now M(t1t3t7)
(1,2)(3,13)(4,12)(5,11)(6,10)(7,9) = Mt2t13t9. Hence,

(1, 2)(3, 13)(4, 12)(5, 11)(6, 10)(7, 9) ε N (137).

N (137) ≥ 〈(1, 2)(3, 13)(4, 12)(5, 11)(6, 10)(7, 9)〉.

Hence, the order of the coset stabiliser of N (137) denoted as |N (137)| = 2. So the number
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of single cosets in N (137) is |N |
|N(137)| = 26

2 = 13. Now we find the orbits of N (137) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {8}{1, 2}, {3, 13}, {4, 12}, {5, 11}, {6, 10}, {7, 9}

Take a representative ti from each orbit to determine if any double cosets Mt1t3t7ti

exist.

Mt1t3t7t8 = yx4y2xyt7t13t11t12t1t1t4t5

=⇒ Mt1t3t7t8 = Mt1t4t5 ∈ [145]

(since {N(t1t4t5)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t3t7t1 = yx−1y2xyt1t12t11t13t11t12t1t7t5t7

=⇒ Mt1t3t7t1 = Mt7t5t7 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t3t7t3 = x−2y2t12t11t12t13t1t12t1t10t12t9

=⇒ Mt1t3t7t3 = Mt10t12t9 ∈ [1313]

(since {N(t1t3t13)
n|n ∈ N} and x−2y2t12t11t12t13t1t12t1 ∈M),

Mt1t3t7t4 = x3yx5yt7t11t12t1t5t8

=⇒ Mt1t3t7t4 = Mt5t8 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x3yx5yt7t11t12t1 ∈M),

Mt1t3t7t5 = yx2yt10t9t10t12t1t2t1t6t9t12

=⇒ Mt1t3t7t5 = Mt6t9t12 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and yx2yt10t9t10t12t1t2t1 ∈M),

Mt1t3t7t6 = x5y2x3t8t2t4t3t1t6t3t1

=⇒ Mt1t3t7t6 = Mt6t3t1 ∈ [146]

(since {N(t1t4t6)
n|n ∈ N} and x5y2x3t8t2t4t3t1 ∈M)

Mt1t3t7t7 = Mt1t3 ∈ [13]

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets if they are equal to
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other existing double cosets.

Mt1t3t8N

Continuing with the new double coset Mt1t3t8N , we find the point stabiliser

N138 and coset stabiliser N (138) to determine the amount of single cosets that are in the

new double coset [138].

N (138) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (138) denoted as |N (138)| = 1. So the number

of single cosets in N (138) is |N |
|N(138)| = 26

1 = 26. Now we find the orbits of N (138) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t3t8ti

exist.

Mt1t3t8t1 = x4yx4yt1t8t1t8t6t8

=⇒ Mt1t3t8t1 = Mt8t6t8 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and x4yx4yt1t8t1 ∈M),

Mt1t3t8t2 = x4yx4yxt2t9t2t7t8t3

=⇒ Mt1t3t8t2 = Mt7t8t3 ∈ [1210]

(since {N(t1t2t10)
n|n ∈ N} and x4yx4yxt2t9t2 ∈M),

Mt1t3t8t3 = x5y2xy2t6t13t2t1t12t9t1t6

=⇒ Mt1t3t8t3 = Mt9t1t6 ∈ [1611]

(since {N(t1t6t11)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t3t8t4 = x10t11t7t6t4t9t12

=⇒ Mt1t3t8t4 = Mt9t12 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x10t11t7t6t4 ∈M),
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Mt1t3t8t5 = yx4y2xyt7t13t11t12t1t13t1t4

=⇒ Mt1t3t8t5 = Mt13t1t4 ∈ [125]

(since {N(t1t2t5)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t3t8t6 = x4yx4yxt2t9t2t12t13t9

=⇒ Mt1t3t8t6 = Mt12t13t9 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x4yx4yxt2t9t2 ∈M),

Mt1t3t8t7 = x−1t1t9

=⇒ Mt1t3t8t7 = Mt1t9 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x−1 ∈M),

Mt1t3t8t8 = Mt1t3 ∈ [13]

Mt1t3t8t9 = x4yx4yt1t8t1t6t7t8

=⇒ Mt1t3t8t9 = Mt6t7t8 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x4yx4yt1t8t1 ∈M),

Mt1t3t8t10 = x4yx4yx2t3t10t3t7t10t7

=⇒ Mt1t3t8t10 = Mt7t10t7 ∈ [141]

(since {N(t1t4t1)
n|n ∈ N} and x4yx4yx2t3t10t3 ∈M),

Mt1t3t8t11 = x−4t10t9t10t12t1t2t1t9t8t12

=⇒ Mt1t3t8t11 = Mt9t8t12 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x−4t10t9t10t12t1t2t1 ∈M),

Mt1t3t8t12 = yxx4yx4y2t12t5t12t11t1t4

=⇒ Mt1t3t8t12 = Mt11t1t4 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and yxx4yx4y2t12t5t12 ∈M),

Mt1t3t8t13 = yx5yt7t9t10t1t8t3

=⇒ Mt1t3t8t13 = Mt8t3 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and yx5yt7t9t10t1 ∈M)

After checking if there are any new cosets, the results listen above tells us there are no

new double cosets. Therefore, we must have checked and prove which single cosets are
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equal to other existing double cosets.

Mt1t3t13N

For the new double coset Mt1t3t13N we find the point stabiliser N1313 and

coset stabiliser N (1313) to determine the amount of single cosets that are in the new

double coset [1313]. But Mt1t3t13 is not distinct, since t1t3t13 = x−3t1t12t2 where

Mt1t12t2 ε Mt1t3t13. Now M(t1t3t13)
(2,13)(3,12)(4,11)(5,10)(6,9)(7,8) = Mt1t12t2. Hence,

(2, 13)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8) ε N (1313).

N (1313) ≥ 〈(2, 13)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8)〉.

Hence, the order of the coset stabiliser of N (1313) denoted as |N (1313)| = 2. So the

number of single cosets in N (1313) is |N |
|N(1313)| = 26

2 = 13. Now we find the orbits of

N (1313) on the transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}{2, 13}, {3, 12}, {4, 11}, {5, 10}, {6, 9}, {7, 8}

Take a representative ti from each orbit to determine if any double cosets Mt1t3t13ti

exist.

Mt1t3t13t1 = yx4y2xyt13t11t12t1t7t4t2

=⇒ Mt1t3t13t1 = Mt7t4t2 ∈ [146]

(since {N(t1t4t6)
n|n ∈ N} and yx4y2xyt13t11t12t1 ∈M),

Mt1t3t13t13 = Mt1t3 ∈ [13],

Mt1t3t13t3 = x−2y2t12t11t12t13t1t12t1t1t12t2

=⇒ Mt1t3t13t3 = Mt1t12t2 ∈ [1313]

(since {N(t1t3t13)
n|n ∈ N} and x−2y2t12t11t12t13t1t12t1 ∈M),

Mt1t3t13t4 = x6y2x2t9t8t3t1t1t2t1t6t9t12

=⇒ Mt1t3t13t4 = Mt6t9t12 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and x6y2x2t9t8t3t1t1t2t1 ∈M),
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Mt1t3t13t5 = yx4y2xyt7t13t11t12t1t6t7t9

=⇒ Mt1t3t13t5 = Mt6t7t9 ∈ [124]

(since {N(t1t2t4)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t3t13t6 = x−1y2t12t11t12t13t1t12t1t5t3t13

=⇒ Mt1t3t13t6 = Mt5t3t13 ∈ [136]

(since {N(t1t3t6)
n|n ∈ N} and x−1y2t12t11t12t13t1t12t1 ∈M),

Mt1t3t13t7 = x−2y2t12t11t12t13t1t12t1t6t4t13

=⇒ Mt1t3t13t7 = Mt6t4t13 ∈ [137]

(since {N(t1t3t7)
n|n ∈ N} and x−2y2t12t11t12t13t1t12t1 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we check and prove for those double cosets if they are equal to other

existing double cosets.

Mt1t4N

Continuing with the new double coset Mt1t4N , we find the point stabiliser

N14 and coset stabiliser N (14) to determine the amount of single cosets that are in the

new double coset [14].

N (14) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (14) denoted as |N (14)| = 1. So the number

of single cosets in N (14) is |N |
|N(14)| = 26

1 = 26. Now we find the orbits of N (14) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t4ti exist.

Mt1t4t1 ∈ [141]

Mt1t4t2 = x10t11t7t6t4t8t11t8

=⇒ Mt1t4t2 = Mt8t11t8 ∈ [141]

(since {N(t1t4t1)
n|n ∈ N} and x10t11t7t6t4 ∈M),
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Mt1t4t3 = x−1t11t12t8

=⇒ Mt1t4t3 = Mt11t12t8 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x−1 ∈M),

Mt1t4t4 = Mt1 ∈ [1]

Mt1t4t5 ∈ [145]

Mt1t4t6 ∈ [146]

Mt1t4t7 ∈ [147]

Mt1t4t8 = x4y2xy2t6t13t2t1t12t2t12

=⇒ Mt1t4t8 = Mt2t12 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x4y2xy2t6t13t2t1t12 ∈M),

Mt1t4t9 = x7t8t4t3t1t6t8t13

=⇒ Mt1t3t9 = Mt6t8t13 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x7t8t4t3t1 ∈M),

Mt1t4t10 = x5y2xy2t6t13t2t1t12t7t5

=⇒ Mt1t4t10 = Mt7t5 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t4t11 = x2yx4yx4y2t12t5t12t1t4

=⇒ Mt1t4t11 = Mt1t4 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and x2yx4yx4y2t12t5t12 ∈M),

Mt1t4t12 = x2yx5yt7t11t12t1t13t4

=⇒ Mt1t4t12 = Mt1t13t4 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x2yx5yt7t11t12 ∈M),

Mt1t4t13 = x2yx3yxt1t12t10t12t2t1t11t9t5

=⇒ Mt1t4t13 = Mt11t9t5 ∈ [137]

(since {N(t1t3t7)
n|n ∈ N} and x2yx3yxt1t12t10t12t2t1 ∈M)

After right multiplying by an element from each orbit, the new double cosets Mt1t4t1N,

Mt1t4t5N, Mt1t4t6N, Mt1t4t7N with single coset representatives are Mt1t4t1, Mt1t4t5,
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Mt1t4t6, Mt1t4t7, denoted as [141], [145], [146], and [147].

Mt1t4t1N

For the new double coset Mt1t4t1N we find the point stabiliser N141 and coset

stabiliser N (141) to determine the amount of single cosets that are in the new double

coset [141]. But Mt1t4t1 is not distinct, since t1t4t1 = t5t2t5 where Mt5t2t5 ε Mt1t4t1.

Now M(t1t4t1)
(1,5)(2,4)(6,13)(7,12)(8,11)(9,10) = Mt5t2t5.

Hence, (1, 5)(2, 4)(6, 13)(7, 12)(8, 11)(9, 10) ε N (141).

N (141) ≥ 〈(1, 5)(2, 4)(6, 13)(7, 12)(8, 11)(9, 10)〉.

Hence, the order of the coset stabiliser of N (141) denoted as |N (141)| = 2. So the number

of single cosets in N (141) is |N |
|N(141)| = 26

2 = 13. Now we find the orbits of N (141) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {3}, {1, 5}, {2, 4}, {6, 13}, {7, 12}, {8, 11}, {9, 10}

Take a representative ti from each orbit to determine if any double cosets Mt1t4t1ti

exist.

Mt1t4t1t1 = Mt1t4 ∈ [14]

Mt1t4t1t2 = x4yx4yx4t5t12t5t11t9t4

=⇒ Mt1t4t1t2 = Mt11t9t4 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x4yx4yx4t5t12t5 ∈M),

Mt1t4t1t3 = x4y2x3t8t2t4t3t1t1t4t1

=⇒ Mt1t4t1t3 = Mt1t4t1 ∈ [141]

(since {N(t1t4t1)
n|n ∈ N} and x4y2x3t8t2t4t3 ∈M),

Mt1t4t1t8 = x4yx4yx3t4t11t4t8t10t2

=⇒ Mt1t4t1t8 = Mt8t10t2 ∈ [1611]

(since {N(t1t6t11)n|n ∈ N} and x4yx4yx3t4t11t4 ∈M),
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Mt1t4t1t9 = et5t2

=⇒ Mt1t4t1t9 = Mt5t2 ∈ [14]

(since {N(t1t4)
n|n ∈ N} and e ∈M),

Mt1t4t1t6 = yx4y2xyt7t13t11t12t1t13t1t4

=⇒ Mt1t4t1t6 = Mt13t1t4 ∈ [125]

(since {N(t1t2t5)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t4t1t7 = yx−1y2xyt1t12t11t13t11t12t1t7t4t1

=⇒ Mt1t4t1t7 = Mt7t4t1 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t4t5N

Moving on with the new double coset Mt1t4t5N , we find the point stabiliser

N145 and coset stabiliser N (145) to determine the amount of single cosets that are in

the new double coset [145]. But Mt1t4t5 is not distinct, since t1t4t5 = xt2t12t11 where

Mt2t12t11 ε Mt1t4t5. Now M(t1t4t5)
(1,2)(3,13)(4,12)(5,11)(6,10)(7,9) = Mt2t12t11. Hence,

(1, 2)(3, 13)(4, 12)(5, 11)(6, 10)(7, 9) ε N (145).

N (145) ≥ 〈(1, 2)(3, 13)(4, 12)(5, 11)(6, 10)(7, 9)〉.

Hence, the order of the coset stabiliser of N (145) denoted as |N (145)| = 2. So the number

of single cosets in N (145) is |N |
|N(145)| = 26

2 = 13. Now we find the orbits of N (145) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {8}{1, 2}, {3, 13}, {4, 12}, {5, 11}, {6, 10}, {7, 9}

Take a representative ti from each orbit to determine if any double cosets Mt1t4t5ti exist.
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Mt1t4t5t8 = x4y2xy2t6t13t2t1t12t1t3t7

=⇒ Mt1t4t5t8 = Mt1t3t7 ∈ [137]

(since {N(t1t3t7)
n|n ∈ N} and x4y2xy2t6t13t2t1t12 ∈M),

Mt1t4t5t1 = x5y2xy2t6t13t2t1t12t2t4t2

=⇒ Mt1t4t5t1 = Mt2t4t2 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t4t5t3 = x4yx4yxt2t9t2t2t1t13

=⇒ Mt1t4t5t3 = Mt2t1t13 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x4yx4yxt2t9t2 ∈M),

Mt1t4t5t4 = x5y2x3t8t2t4t3t1t13t12t3

=⇒ Mt1t4t5t4 = Mt13t12t3 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x5y2x3t8t2t4t3t1 ∈M),

Mt1t4t5t5 = Mt1t4 ∈ [14]

Mt1t4t5t6 = x5y2xy2t6t13t2t1t12t2t3t5

=⇒ Mt1t4t5t6 = Mt2t3t5 ∈ [124]

(since {N(t1t2t4)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t4t5t7 = x8t9t5t4t2t7t9t12t3

=⇒ Mt1t4t5t7 = Mt7t9t12t3 ∈ [13610]

(since {N(t1t2t4)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M)

After checking if there are any new cosets, the results listen above tells us there are no

new double cosets. Therefore, we must check and prove which single cosets are equal to

other existing double cosets.

Mt1t4t6N

For the new double coset Mt1t4t6N we find the point stabiliser N146 and coset

stabiliser N (146) to determine the amount of single cosets that are in the new double

coset [146]. But Mt1t4t6 is not distinct, since t1t4t6 = x−6t13t10t8 where Mt13t10t8 ε
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Mt1t4t6. Now M(t1t4t6)
(1,13)(2,12)(3,11)(4,10)(5,9)(6,8) = Mt13t10t8.

Hence, (1, 13)(2, 12)(3, 11)(4, 10)(5, 9)(6, 8) ε N (146).

N (146) ≥ 〈(1, 13)(2, 12)(3, 11)(4, 10)(5, 9)(6, 8)〉.

Hence, the order of the coset stabiliser of N (146) denoted as |N (146)| = 2. So the number

of single cosets in N (146) is |N |
|N(146)| = 26

2 = 13. Now we find the orbits of N (146) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {7}{1, 13}, {2, 12}, {3, 11}, {4, 10}, {5, 9}, {6, 8}

Take a representative ti from each orbit to determine if any double cosets Mt1t4t6ti

exist.

Mt1t4t6t7 = yx4y2xyt7t13t11t12t1t7t5t6

=⇒ Mt1t4t6t7 = Mt7t5t6 ∈ [1313]

(since {N(t1t3t13)
n|n ∈ N} and yx4y2xyt7t13t11t12t1 ∈M),

Mt1t4t6t1 = x5y2x3t10t9t10t12t1t2t1t10t9t13

=⇒ Mt1t4t6t1 = Mt10t9t13 ∈ [137]

(since {N(t1t3t7)
n|n ∈ N} and x5y2x3t10t9t10t12t1t2t1 ∈M),

Mt1t4t6t2 = yx2yt10t9t10t12t1t2t1t10t9t13

=⇒ Mt1t4t6t2 = Mt10t9t13 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and yx2yt10t9t10t12t1t2t1 ∈M),

Mt1t4t6t3 = x−4t10t9t10t12t1t2t1t5t3t5

=⇒ Mt1t4t6t3 = Mt5t3t5 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and x−4t10t9t10t12t1t2t1 ∈M),

Mt1t4t6t4 = xyx4y2xyt7t13t11t12t1t10t11t12

=⇒ Mt1t4t6t4 = Mt10t11t12 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and xyx4y2xyt7t13t11t12t1 ∈M),
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Mt1t4t6t5 = x−1t1t9

=⇒ Mt1t4t6t5 = Mt1t9 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x−1 ∈M)

Mt1t4t6t6 = Mt1t4 ∈ [14]

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t4t7N

Continuing with the new double coset Mt1t4t7N , we find the point stabiliser

N147 and coset stabiliser N (147) to determine the amount of single cosets that are in the

new double coset [147].

N (147) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (147) denoted as |N (147)| = 1. So the number

of single cosets in N (147) is |N |
|N(147)| = 26

1 = 26. Now we find the orbits of N (147) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t4t7ti

exist.

Mt1t4t7t1 = yx−1y2xyt1t12t11t13t11t12t1t3t6t3

=⇒ Mt1t4t7t1 = Mt3t6t3 ∈ [141]

(since {N(t1t4t1)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t4t7t2 = x4yx4t1t8t1t4t6t11

=⇒ Mt1t4t7t2 = Mt4t6t11 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x4yx4t1t8t1 ∈M),

Mt1t4t7t3 = yx−1y2xyt1t12t11t13t11t12t1t1t3t6
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=⇒ Mt1t4t7t3 = Mt1t3t6 ∈ [136]

(since {N(t1t3t6)
n|n ∈ N} and yx−1y2xyt1t12t11t13t11t12t1 ∈M),

Mt1t4t7t4 = yx2yt10t9t10t12t1t2t1t8t6t8

=⇒ Mt1t4t7t4 = Mt8t6t8 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and yx2yt10t9t10t12t1t2t1 ∈M),

Mt1t4t7t5 = xyx−2y2x−1yt5t2t1t13t2t13t12t13t1t3

=⇒ Mt1t4t7t5 = Mt13t1t3 ∈ [124]

(since {N(t1t2t4)
n|n ∈ N} and xyx−2y2x−1yt5t2t1t13t2t13t12 ∈M),

Mt1t4t7t6 = x4yx4yx4t5t12t5t1t4t7

=⇒ Mt1t4t7t6 = Mt1t4t7 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and x4yx4yx4t5t12t5 ∈M),

Mt1t4t7t7 = Mt1t4 ∈ [14],

Mt1t4t7t8 = x5y2xy2t6t13t2t1t12t7t6t3

=⇒ Mt1t4t7t8 = Mt7t6t3 ∈ [125]

(since {N(t1t2t5)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t4t7t9 = yx4yx4y2t12t5t12t9t8t12

=⇒ Mt1t4t7t9 = Mt9t8t12 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and yx4yx4y2t12t5t12 ∈M),

Mt1t4t7t10 = x5t12t10t7t3

=⇒ Mt1t4t7t10 = Mt12t10t7t3 ∈ [13610]

(since {N(t1t3t6t10)
n|n ∈ N} and x5 ∈M),

Mt1t4t7t11 = x4yx4yx3t4t11t4t13t1t2

=⇒ Mt1t4t7t11 = Mt13t1t2 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x4yx4yx3t4t11t4 ∈M),

Mt1t4t7t12 = yx4yx4y2t12t5t12t9t11t8

=⇒ Mt1t4t7t12 = Mt9t11t8 ∈ [1313]

(since {N(t1t3t13)
n|n ∈ N} and yx4yx4y2t12t5t12 ∈M),
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Mt1t4t7t13 = x5y2xy2t6t13t2t1t12t10t8t4

=⇒ Mt1t4t7t13 = Mt10t8t4 ∈ [137]

(since {N(t1t3t7)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus we have checked and prove for those double cosets that are equal to other

existing double cosets.

Mt1t6N

Using the process from above, new double coset Mt1t6N , we find the point

stabiliser N16 and coset stabiliser N (16) to determine the amount of single cosets that

are in the new double coset [16].

N (16) ≥ 〈e〉.

Thus, the order of the coset stabiliser of N (16) denoted as |N (16)| = 1. So the number

of single cosets in N (16) is |N |
|N(16)| = 26

1 = 26. Now we find the orbits of N (16) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}{12}, {13}

Take a representative ti from each orbit to determine if any double cosets Mt1t6ti exist.

Mt1t6t1 = t2t13t2

=⇒ Mt1t6t1 = Mt2t13t2 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and e ∈M),

Mt1t6t2 = x5y2xy2t6t13t2t1t12t3t11

=⇒ Mt1t6t2 = Mt3t11 ∈ [16]

(since {N(t1t6)
n|n ∈ N} and x5y2xy2t6t13t2t1t12 ∈M),

Mt1t6t3 = x4yx5yt7t11t12t1t2t3t12

=⇒ Mt1t6t3 = Mt2t3t12 ∈ [1211]

(since {N(t1t2t11)
n|n ∈ N} and x4yx5yt7t11t12t1 ∈M),
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Mt1t6t4 = xyx5yt7t11t12t8t10t8

=⇒ Mt1t6t4 = Mt8t10t8 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and xyx5yt7t11t12 ∈M),

Mt1t6t5 = x−1t11t12t7

=⇒ Mt1t6t5 = Mt11t12t7 ∈ [1210]

(since {N(t1t2t10)
n|n ∈ N} and x−1 ∈M),

Mt1t6t6 = Mt1 ∈ [1]

Mt1t6t7 = xt2t1t13

=⇒ Mt1t6t7 = Mt2t1t13 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x ∈M),

Mt1t6t8 = x−1t1t12t7

=⇒ Mt1t6t8 = Mt1t12t7 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x−1 ∈M),

Mt1t6t9 = x9t10t6t5t3t8t6t1

=⇒ Mt1t6t9 = Mt8t6t1 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x9t10t6t5t3 ∈M),

Mt1t6t10 = x5t2t5t7

=⇒ Mt1t6t10 = Mt2t5t7 ∈ [146]

(since {N(t1t4t6)
n|n ∈ N} and x5 ∈M),

Mt1t6t11 ∈ [1611],

Mt1t6t12 = x2t12t11t12t13t1t12t1t4t6

=⇒ Mt1t6t12 = Mt4t6 ∈ [13]

(since {N(t1t3)
n|n ∈ N} and x2t12t11t12t13t1t12t1 ∈M),

Mt1t6t13 = x−2y2t12t11t12t13t1t12t1t13t12

=⇒ Mt1t6t13 = Mt13t12 ∈ [12]

(since {N(t1t2)
n|n ∈ N} and x−2y2t12t11t12t13t1t12t1 ∈M)

After right multiply by an element from each orbit, the new double coset Mt1t6t11N
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with single coset representatives is Mt1t6t11, denoted as [1611].

Mt1t6t11N

For the new double coset Mt1t6t11N we find the point stabiliser N1611 and

coset stabiliser N (1611) to determine the amount of single cosets that are in the new

double coset [1611]. But Mt1t6t11 is not distinct, since t1t6t11 = x9t10t6t5t3t1t10t5t13

where Mt10t5t13 ε Mt1t6t11. Now M(t1t6t11)
(1,10)(2,9)(3,8)(4,7)(5,6)(11,13) = Mt10t5t13.

Hence, (1, 10)(2, 9)(3, 8)(4, 7)(5, 6)(11, 13) ε N (1611).

N (1411) ≥ 〈(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)(11, 13)〉.

Hence, the order of the coset stabiliser of N (146) denoted as |N (146)| = 2. So the number

of single cosets in N (146) is |N |
|N(146)| = 26

2 = 13. Now we find the orbits of N (146) on the

transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {12}{1, 10}, {2, 9}, {3, 8}, {4, 7}, {5, 6}, {11, 13}

Take a representative ti from each orbit to determine if any double cosets Mt1t4t11ti

exist.

Mt1t6t11t12 = xyx4yx4y2t12t5t12t1t6t11

=⇒ Mt1t6t11t12 = Mt1t6t11 ∈ [1611]

(since {N(t1t6t11)
n|n ∈ N} and xyx4yx4y2t12t5t12 ∈M),

Mt1t6t11t1 = x−4t10t9t10t13t1t2t1t11t10t9

=⇒ Mt1t6t11t1 = Mt11t10t9 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x−4t10t9t10t13t1t2t1 ∈M),

Mt1t6t11t2 = xyx4y2xyt7t13t11t12t1t7t10t7

=⇒ Mt1t6t11t2 = Mt7t10t7 ∈ [141]

(since {N(t1t4t1)
n|n ∈ N} and xyx4y2xyt7t13t11t12t1 ∈M),
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Mt1t6t11t3 = x4yx4yxt2t9t2t5t3t11

=⇒ Mt1t6t11t3 = Mt5t3t11 ∈ [138]

(since {N(t1t3t8)
n|n ∈ N} and x4yx4yxt2t9t2 ∈M),

Mt1t6t11t4 = x4y2xyxyt5t12t1t13t11t7t5t7

=⇒ Mt1t6t11t4 = Mt7t5t7 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and x4y2xyxyt5t12t1t13t11 ∈M),

Mt1t6t11t5 = yx4yx4y2t12t5t12t5t4t9

=⇒ Mt1t6t11t5 = Mt5t4t9 ∈ [1210]

(since {N(t1t2t10)
n|n ∈ N} and yx4yx4y2t12t5t12 ∈M),

Mt1t6t11t11 = Mt1t6 ∈ [16]

After checking if there are any new cosets, the results listen above tells us there are no

new double cosets. Therefore, we must check and prove which single cosets are equal to

other existing double cosets.

Mt1t3t6t10N

Using the process from above, new double coset Mt1t3t6t10N , we find the point

stabiliser N13610 and coset stabiliser N (13610) to determine the amount of single cosets

that are in the new double coset [13610]. But Mt1t3t6t10 is not distinct, since t1t3t6t10 =

x−6t6t4t1t10 where Mt6t4t1t10 ε Mt1t3t6t10. Now M(t1t3t6t10)
(1,6)(2,5)(3,4)(7,13)(8,12)(9,11)

= Mt6t4t1t10. Hence, (1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11) ε N (13610).

N (13610) ≥ 〈(1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11)〉.

Thus, the order of the coset stabiliser of N (13610) denoted as |N (13610)| = 2. So the

number of single cosets in N (13610) is |N |
|N(13610)| = 26

1 = 13. Now we find the orbits of

N (13610) on the transversals {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} which are:

O = {10}, {1, 6}, {2, 5}, {3, 4}, {7, 13}, {8, 12}, {9, 11}

Take a representative ti from each orbit to determine if any double cosets Mt1t3t6t10ti

exist.
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Mt1t3t6t10t10 = Mt1t3t6 ∈ [136],

Mt1t3t6t10t1 = x10t11t7t6t4t9t6t5

=⇒ Mt1t3t6t10t1 = Mt9t6t5 ∈ [145]

(since {N(t1t4t5)
n|n ∈ N} and x10t11t7t6t4 ∈M),

Mt1t3t6t10t2 = xyx4y2xyt7t13t11t12t1t11t13t3t7

=⇒ Mt1t3t6t10t2 = Mt11t13t3t7 ∈ [13610]

(since {N(t1t3t6t10)
n|n ∈ N} and xyx4y2xyt7t13t11t12t1 ∈M),

Mt1t3t6t10t3 = x5t12t9t6

=⇒ Mt1t3t6t10t3 = Mt12t9t6 ∈ [147]

(since {N(t1t4t7)
n|n ∈ N} and x5 ∈M),

Mt1t3t6t10t7 = x8t9t5t4t2t13t12t11

=⇒ Mt1t3t6t10t7 = Mt13t12t11 ∈ [123]

(since {N(t1t2t3)
n|n ∈ N} and x8t9t5t4t2 ∈M),

Mt1t3t6t10t8 = x−1t13t11t13

=⇒ Mt1t3t6t10t8 = Mt13t11t13 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and x−1 ∈M),

Mt1t3t6t10t11 = yx5yt7t9t10t1t13t2t13

=⇒ Mt1t3t6t10t11 = Mt13t2t13 ∈ [131]

(since {N(t1t3t1)
n|n ∈ N} and yx5yt7t9t10t1 ∈M)

After multiplying on the right by an element from each orbit, there are no new double

cosets. Thus, we have checked and prove for those double cosets that are equal to other

existing double cosets.

We have completed the double coset enumeration of G, since the set of right cosets is

closed under right multiplication. Thus the index of N in G is 378. We have concluded

the following:
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G = MeN ∪Mt1N ∪Mt1t2N ∪Mt1t3N ∪Mt1t4N ∪Mt1t6N ∪Mt1t2t5N

∪Mt1t2t3N ∪Mt1t2t4N ∪Mt1t2t10N ∪Mt1t2t11N ∪Mt1t3t1N

∪Mt1t3t6N ∪Mt1t3t7N ∪Mt1t3t8N ∪Mt1t3t13N ∪Mt1t4t1N

∪Mt1t4t5N ∪Mt1t4t6N ∪Mt1t4t7N ∪Mt1t6t11N ∪Mt1t3t6t10N

where

G =
2∗13 : (13 : 2)

((x4)ttx)3, ((x6)ttx)2
∼= 2× PGL2(27).

Therefore,

|G| ≤ |N |+ |N |
|N (1)|

+
|N |
|N (12)|

+
|N |
|N (125)|

+
|N |
|N (123)|

+
|N |
|N (124)|

+
|N |

|N (1210)|
+

|N |
|N (1211)|

+
|N |
|N (13)|

+
|N |
|N (131)|

+
|N |
|N (136)|

+
|N |
|N (137)|

+
|N |
|N (138)|

+
|N |

|N (1313)|
+
|N |
|N (14)|

+
|N |
|N (141)|

+
|N |
|N (145)|

+
|N |
|N (146)|

+
|N |
|N (147)|

+
|N |
|N (16)|

+
|N |

|N (1611)|
+

|N |
|N (13610)|

× |M |

and

|G| ≤ (1 + 13 + 13 + 13 + 26 + 13 + 13 + 26 + 26 + 26 + 13 + 13 + 26 + 13 + 26 + 13 +

13 + 13 + 26 + 26 + 13 + 13)× 104

|G| ≤ 39312.

The Cayley graph summarizes the information listed above.
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Figure 6.1: Cayley graph of 2× PGL2(27) over M = 2• : (13 : 2)
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6.2 Construct of PSL3(3) over M = (13 : 3)

6.2.1 Double Coset Enumeration of G

Before we apply the double coset enumeration over a maximal subgroup, we

are going to factor the progenitor 2∗13 : 13 by a special relations, (x−4t)3, (x2t)4, and

(x−1t)4, denoted by:

〈x, t|x−13,

t2,

(x−4t)3, (x−2t)4, (x−1t)4〉

and

N ∼= 13 =

〈x|x−13〉.

So we obtained the homomorphic image:

G ∼=
2∗13 : 13

(x−4t)3, (x2t)4, (x−1t)4
∼= PSL3(3),

where x ∼ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) and t ∼ t1.
Let π = x−4 = (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5), then the relation (x−4t1)

3 = 1 can be

written as

1 = (πt1)
3, which it can be expand:

(πt1)
3 = 1

π3tπ
2

1 t
π
1 t1 = 1

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)t6t10t1 = 1

t1t10 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)t6

The second relations is written as follow:
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Let β = x−2

(βt1)
4 = 1

β4tβ
3

1 t
β2

1 t
β
1 t1 = 1

(1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)t8t10t12t1 = 1

t1t12 = (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)t8t10

And the third relation can be expand as follow:

Let α = x−1

(αt1)
4 = 1

α4tα
3

1 tα
2

1 tα1 t1 = 1

(1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5)t11t12t13t1 = 1

t1t13 = (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5)t11t12

Let M be the maximal subgroup generated by the control group N = 13 and

t8t10t9 = tx
8
tx

10
tx

9

M =
〈
N, tx

8
tx

10
tx

9〉
, = (13 : 3) where |M | = 39.

Then M is the maximal subgroup.

Let us start constructing a manual double coset enumeration of G over the

maximal subgroup, M and N . Denote [w] to be the double coset MwN , where w is a

word in t′is.

MeN

We begin with the double coset MeN , denote [∗]. This double coset contains only one

single coset, namely M . The single coset stabilizer of M is N , which is transitive on

{t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} and therefore, has a single orbit,

O = {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}}.

Take an element from O say t1 and multiply the single coset representative M by t1
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to obtain Mt1. This is a new double coset Mt1N , denote it [1] so thirteen symmetric

generators will go to our new double coset, [1].

Mt1N

Continuing with the double coset Mt1N , we find the point stabilizer N1. This is

N1 = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

The coset stabiliser:

N (1) ≥ 〈(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)〉.

The number of single cosets in [1] is |N |
|N(1)| = 13, since the |N (1)|=1. The orbits

of N (1) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Now take an element from each orbit and do right multiplication by the single

coset representative Mt1. We get the following:

Mt1t1 = M ∈ [∗],

Mt1t2 ∈ [12],

Mt1t3 ∈ [13],

Mt1t4 ∈ [14],

t1t5 = x−1t9 =⇒ Mt1t5 = Mt9 ∈ [1],

(since {Nt1)n|n ∈ N} and x−1 ∈M),

t1t6 = x7t8t3t4t2t1t3 =⇒ Mt1t6 = Mt1t3 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x7t8t3t4t2 ∈M)

Mt1t7 ∈ [17],

t1t8 = x7t8t13t12t1t4t7
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=⇒ Mt1t8 = Mt4t7 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x7t8t13t12t1 ∈M)

t1t9 = x3t3t12t13t12t1t8t10

=⇒ Mt1t9 = Mt8t10 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x3t3t12t13t12t1 ∈M)

t1t10 = xt6

=⇒ Mt1t10 = Mt6 ∈ [1],

(since {N(t1)
n|n ∈ N} and x ∈M)

t1t11 = x10t11t9t10t9t13t4t10

=⇒ Mt1t11 = Mt4t10 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x10t11t9t10t9t13 ∈M)

t1t12 = x5t8t10

=⇒ Mt1t12 = Mt8t10 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x5 ∈M)

t1t13 = x10t11t12

=⇒ Mt1t13 = Mt11t12 ∈ [12].

(since {N(t1t2)
n|n ∈ N} and x10 ∈M)

After taking an element from each orbit and multiplying on the right, the new double

cosets Mt1t2N, Mt1t3N, Mt1t4N and Mt1t7N with single coset representatives are

Mt1t2, Mt1t3, Mt1t4 and Mt1t7. We represent them as [12], [13], [14], and [17], re-

spectively. And the other double cosets are equal to other existing double cosets, we

checked and proved which are equal.

Mt1t2N

Looking back to our new double cosets which are [12],[13], [14] and [17]. We

start first with the new double coset Mt1t2N by finding the coset stabilizer of N (12) =

N12 =〉e〈. The order of N (12) = 1, therefore the number of single cosets in Mt1t2N is
|N |
|N(12)| = 13. Lets find the orbits of N (12) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13}



183

which are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Following the same procedure from above, take an element from each orbit and multiply

on the right of the single coset Mt1t2 by the double coset Mt1t2N to get the following:

t1t2t1 ∈ [121],

t1t2t2 ∈ [1],

t1t2t3 = x4t4 =⇒ Mt1t2t3 = Mt4 ∈ [1],

(since {N(t1)
n|n ∈ N} and x4 ∈M)

t1t2t4 = x4t6t7t6 =⇒ Mt1t2t4 = Mt6t7t6 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x4 ∈M)

t1t2t5 ∈ [125],

t1t2t6 = x4t3t9 =⇒ Mt1t2t6 = Mt3t9 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x4 ∈M)

t1t2t7 = x5t6t1t2t13t10t12 =⇒ Mt1t2t7 = Mt10t12 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x5t6t1t2t13 ∈M)

t1t2t8 ∈ [128],

t1t2t9 = x7t7t5t6t1t8t9t2 =⇒ Mt1t2t9 = Mt8t9t2 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x7t7t5t6t1 ∈M)

t1t2t10 = x9t2t3t9 =⇒ Mt1t2t10 = Mt2t3t9 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x9 ∈M)

t1t2t11 = x6t7t12t11t13t2t4 =⇒ Mt1t2t11 = Mt2t4 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x6t7t12t11t13 ∈M)

t1t2t12 = x5t5t8 =⇒ Mt1t2t12 = Mt5t8 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x5 ∈M)
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t1t2t13 = x7t6t7t10 =⇒ Mt1t2t13 = Mt6t7t10 ∈ [125].

(since {N(t1t2t5)
n|n ∈ N} and x7 ∈M)

The new double coset representatives Mt1t2t1, Mt1t2t5, and Mt1t2t8 denoted as [121],

[125], and [128]. We needed to check which double cosets are equal to other existing

double cosets. For example Mt1t2t3N = Mt1N , so one symmetric generator goes to [1].

Since t3 is the only element on the orbit {3}. This is how we check which double cosets

are equal to each other, and how many symmetric generators go to a different double

cosets or they go back to itself.

Mt1t2t1N

Continuing with the new double coset Mt1t2t1, we find the coset stabilizer

N (121) = N121=Identity. Only e will fix 1 and 2. Hence the number of single cosets in

[121] is |N |
|N(121)| = 13

1 = 13. The orbits of N (121) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Take an element from each orbit and multiply on the right of the single coset represen-

tative Mt1t2t1 by the double coset Mt1t2t1N to get the following double cosets, either

new double cosets or cosets that are equal to each other.

t1t2t1t1 ∈ [12]

t1t2t1t2 = x9t9t11t10t2t11t4 =⇒ Mt1t2t1t2 = Mt11t4 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x9t9t11t10t2 ∈M)

t1t2t1t3 = x2t13t1t4 =⇒ Mt1t2t1t3 = Mt13t1t4 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x2 ∈M)

t1t2t1t4 = x8t9t11t8 =⇒ Mt1t2t1t4 = Mt9t11t8 ∈ [1313],
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(since {N(t1t3t13)
n|n ∈ N} and x8 ∈M)

t1t2t1t5 = x8t1t2t8 =⇒ Mt1t2t1t5 = Mt1t2t8 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x8 ∈M)

t1t2t1t6 = x5t10t1t13t7 =⇒ Mt1t2t1t6 = Mt10t13t7 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x5 ∈M)

t1t2t1t7 = x4t6t9t3 =⇒ Mt1t2t1t7 = Mt6t9t3 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x4 ∈M)

t1t2t1t8 = x10t10t11t4 =⇒ Mt1t2t1t8 = Mt10t11t4 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x10 ∈M)

t1t2t1t9 = x13t11t13t9 =⇒ Mt1t2t1t9 = Mt11t13t9 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x13 ∈M)

t1t2t1t10 = xt2t3t6 =⇒ Mt1t2t1t10 = Mt2t3t6 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x ∈M)

t1t2t1t11 = x3t5t8 =⇒ Mt1t2t1t11 = Mt5t8 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x3 ∈M)

t1t2t1t12 = x9t9t10 =⇒ Mt1t2t1t12 = Mt9t10 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x9 ∈M)

t1t2t1t13 = x9t10t12 =⇒ Mt1t2t1t13 = Mt10t12 ∈ [13].

(since {N(t1t3)
n|n ∈ N} and x9 ∈M)

From the work above there are no new double cosets, but we have to check and prove

where those double cosets belong to. Since each set from the orbit has only one element,

then there is only one symmetric generator go to different double cosets or back to itself.

Mt1t2t5N

The double coset Mt1t2t5, we find the coset stabilizer N (125) = N125 = 〈e〉.
So the number of single cosets in [125] is |N |

|N(125)| = 13
1 = 13 and the orbits of N (13) on

{t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are the following:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.
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Now take an element from each orbit and multiply on the right of the single coset

Mt1t2t5 by the double coset Mt1t2t5N to get the following:

t1t2t5t1 = x8t8t10t9t1t9t10t3 =⇒ Mt1t2t5t1 = Mt9t10t3 ∈ [128],

t1t2t5t2 = x7t8t10t9t1t8t10t7 =⇒ Mt1t2t5t2 = Mt8t10t7 ∈ [1313],

(since {N(t1t3t13)n|n ∈ N} and x7t8t10t9t1 ∈M)

t1t2t5t3 = x2t3t12t13t12t1t2t4t1 =⇒ Mt1t2t5t3 = Mt2t4t1 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x2t3t12t13t12t1 ∈M)

t1t2t5t4 = x11t2t3t2 =⇒ Mt1t2t5t4 = Mt2t3t2 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x11 ∈M)

t1t2t5t5 ∈ [12]

t1t2t5t6 = x11t1t4 =⇒ Mt1t2t5t6 = Mt1t4 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x11 ∈M)

t1t2t5t7 = x8t8t10t9t1t2t8 =⇒ Mt1t2t5t7 = Mt1t2t8 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x8 ∈M)

t1t2t5t8 = x6t9t10 =⇒ Mt1t2t5t8 = Mt9t10 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x6 ∈M)

t1t2t5t9 = x12t13t1t13 =⇒ Mt1t2t5t9 = Mt13t1t13 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x12 ∈M)

t1t2t5t10 = x5t6t1t2t13t5t7t12 =⇒ Mt1t2t5t10 = Mt5t7t12 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x5t6t1t2t13 ∈M)

t1t2t5t11 = x10t9t11t10t2t12t1t6 =⇒ Mt1t2t5t11 = Mt12t1t6 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x10t9t11t10t2 ∈M)

t1t2t5t12 = x9t9t11t10t2t2t3t9 =⇒ Mt1t2t5t12 = Mt2t3t9 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x9t9t11t10t2 ∈M)

t1t2t5t13 = x3t8t11t5 =⇒ Mt1t2t5t13 = Mt8t11t5 ∈ [1411].

(since {N(t1t4t11)
n|n ∈ N} and x3 ∈M)
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Mt1t2t8N

The last double coset from [12] is Mt1t2t8 and its coset stabilizer N (128) =

N128 = 〈e〉. The number of single cosets in [128] is |N |
|N(128)| = 13

1 = 13 and the orbits of

N (128) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Now take an element from each orbit and multiply on the right of the single coset

Mt1t2t8 by the double coset Mt1t2t8N to get the following:

t1t2t8t1 = x3t12t1t6 =⇒ Mt1t2t8t1 = Mt12t1t6 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x3 ∈M)

t1t2t8t2 = x7t8t13t12t1t7t8 =⇒ Mt1t2t8t2 = Mt7t8 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x7t8t13t12t1 ∈M)

t1t2t8t3 = x10t12t1t11 =⇒ Mt1t2t8t3 = Mt12t1t11 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x10 ∈M)

t1t2t8t4 = x6t6t9 =⇒ Mt1t2t8t4 = Mt6t9 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x6 ∈M)

t1t2t8t5 = x5t1t2t1 =⇒ Mt1t2t8t5 = Mt1t2t1 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x5 ∈M)

t1t2t8t6 = x6t7t12t11t13t6t7t10 =⇒ Mt1t2t8t6 = Mt6t7t10 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x6t7t12t11t13 ∈M)

t1t2t8t7 = x8t9t11t10t2t2t4t1 =⇒ Mt1t2t8t7 = Mt2t4t1 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x8t9t11t10t2 ∈M)

t1t2t8t8 ∈ [12]

t1t2t8t9 = x4t13t1 =⇒ Mt1t2t8t9 = Mt13t1 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x4 ∈M)

t1t2t8t10 = x6t6t4t5t13t9t11t3 =⇒ Mt1t2t8t10 = Mt9t11t3 ∈ [138],
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(since {N(t1t3t8)
n|n ∈ N} and x6t6t4t5t13 ∈M)

t1t2t8t11 = x4t5t13t1t12t13t1t4 =⇒ Mt1t2t8t11 = Mt13t1t4 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x4t5t13t1t12 ∈M)

t1t2t8t12 = x3t5t6t5 =⇒ Mt1t2t8t12 = Mt5t6t5 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x3 ∈M)

t1t2t8t13 = x9t8t10t9t1t1t7 =⇒ Mt1t2t8t13 = Mt1t7 ∈ [17].

(since {N(t1t7)
n|n ∈ N} and x9t8t10t9t1 ∈M)

Mt1t3N

Now the new double coset Mt1t3N , we find the coset stabilizer N (13) = N13 =

〈e〉. Only identity will fix 1 and 3. Hence the number of single cosets in [13] is |N |
|N(13)| =

13
1 = 13 and the orbits of N (13) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Now take an element from each orbit and multiply on the right of the single coset Mt1t3

by the double coset Mt1t3N to get the following:

t1t3t1 = x9t8t10 =⇒ Mt1t3t1 = Mt8t10 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x9 ∈M)

t1t3t2 = x10t9t11t10t2t7 =⇒ Mt1t3t2 = Mt7 ∈ [1],

(since {N(t1)
n|n ∈ N} and x10t9t11t10t2 ∈M)

t1t3t3 ∈ [1]

t1t3t4 = x4t5t6t5 =⇒ Mt1t3t4 = Mt5t6t5 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x4 ∈M)

t1t3t5 = x8t7 =⇒ Mt1t3t5 = Mt7 ∈ [1],

(since {N(t1)
n|n ∈ N} and x8 ∈M)

t1t3t6 = x6t8t10t9t1t1 =⇒ Mt1t3t6 = Mt1 ∈ [1],



189

(since {N(t1)
n|n ∈ N} and x6t8t10t9t1 ∈M)

t1t3t7 = x4t7t9 =⇒ Mt1t3t7 = Mt7t9 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x4 ∈M)

t1t3t8 ∈ [138]

t1t3t9 = x7t8t3t4t2t9t12 =⇒ Mt1t3t9 = Mt9t12 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x7t8t3t4t2 ∈M)

t1t3t10 = x11t12t10t11t10t1t13t1 =⇒ Mt1t3t10 = Mt13t1 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x11t12t10t11t10t1 ∈M)

t1t3t11 = x11t12t10t11t10t1t5t6 =⇒ Mt1t3t11 = Mt5t6 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x11t12t10t11t10t1 ∈M)

t1t3t12 = xt2t8 =⇒ Mt1t3t12 = Mt2t8 ∈ [17].

(since {N(t1t7)
n|n ∈ N} and x ∈M)

t1t3t13 ∈ [1313]

The new double coset representatives Mt1t3t8 and Mt1t3t13 denoted as [138], [1313].

We need to check which double cosets are equal to other existing double cosets. For

example Mt1t3t1N = Mx9t1t3N , so one symmetric generator goes to [13]. Since t1 is

the only element on the orbit {1}. This is how we check which double cosets are equal

to each other, and how many symmetric generators go to a different double cosets or

they go back to itself.

Mt1t3t8N

Continuing with the new double coset Mt1t3t8N , we find the coset stabilizer

N (138) = N138 = 〈e〉. Only identity will fix 1, 3, and 8.The number of single cosets in

[138] is |N |
|N(13)| = 13

1 = 13 and the orbits of N (138) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Now take an element from each orbit and multiply on the right of the single coset

Mt1t3t8 by the double coset Mt1t3t8N to get the following:
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t1t3t8t1 = x5t6t4t5t13t8t11t5 =⇒ Mt1t3t8t1 = Mt8t11t5 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x5t6t4t5t13 ∈M)

t1t3t8t2 = x8t7t12t11t13t6t7t13 =⇒ Mt1t3t8t2 = Mt6t7t13 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x8t7t12t11t13 ∈M)

t1t3t8t3 = x10t3t4t10 =⇒ Mt1t3t8t3 = Mt3t4t10 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x10 ∈M)

t1t3t8t4 = x2t3t9 =⇒ Mt1t3t8t4 = Mt3t9 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x2 ∈M)

t1t3t8t5 = Identityt11t1t8 =⇒ Mt1t3t8t5 = Mt11t1t8 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and Identity ∈M)

t1t3t8t6 = x10t11t9t10t9t13t10t11t1 =⇒ Mt1t3t8t6 = Mt10t11t1 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x10t11t9t10t9t13 ∈M)

t1t3t8t7 = x10t11t9t10t9t13t10t12t4 =⇒ Mt1t3t8t7 = Mt10t12t4 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x10t11t9t10t9t13 ∈M)

t1t3t8t8 ∈ [13]

t1t3t8t9 = x8t11t13t10 =⇒ Mt1t3t8t9 = Mt11t13t10 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x8 ∈M)

t1t3t8t10 = x6t7t5t6t1t9t12 =⇒ Mt1t3t8t10 = Mt9t12 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x6t7t5t6t1 ∈M)

t1t3t8t11 = x5t6t1t2t13t5t7t12 =⇒ Mt1t3t8t11 = Mt5t7t12 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x5t6t1t2t13 ∈M)

t1t3t8t12 = x3t4t5t4 =⇒ Mt1t3t8t12 = Mt4t5t4 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x3 ∈M)

t1t3t8t13 = x2t3t12t13t12t1t3t4t7 =⇒ Mt1t3t8t13 = Mt3t4t7 ∈ [125].

(since {N(t1t2t5)
n|n ∈ N} and x2t3t12t13t12t1 ∈M)
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Mt1t3t13N

Now the double coset Mt1t3t13N , we find the coset stabilizer N (1313) = N1313

= 〈e〉. Only identity will fix 1, 3, and 13.The number of single cosets in [1313] is |N |
|N(13)| =

13
1 = 13 and the orbits of N (1313) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Now take an element from each orbit and multiply on the right of the single coset

Mt1t3t13 by the double coset Mt1t3t13N to get the following:

t1t3t13t1 = x7t8t10t9t1t5t7t4 =⇒ Mt1t3t13t1 = Mt5t7t4 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x7t8t10t9t1 ∈M)

t1t3t13t2 = x5t6t4t5t13t13t1t4 =⇒ Mt1t3t13t2 = Mt13t1t4 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x5t6t4t5t13 ∈M)

t1t3t13t3 = x4t13t3t10 =⇒ Mt1t3t13t3 = Mt13t3t10 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x4 ∈M)

t1t3t13t4 = x6t7t2t3t1t8t11 =⇒ Mt1t3t13t4 = Mt8t11 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x6t7t2t3t1 ∈M)

t1t3t13t5 = x3t3t4t10 =⇒ Mt1t3t13t5 = Mt3t4t10 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x3 ∈M)

t1t3t13t6 = x5t6t1t2t13t13t1t7 =⇒ Mt1t3t13t6 = Mt13t1t7 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x5t6t1t2t13 ∈M)

t1t3t13t7 = x7t7t5t6t1t3t6t13 =⇒ Mt1t3t13t7 = Mt3t6t13 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x7t7t5t6t1 ∈M)

t1t3t13t8 = x7t8t3t4t2t7t8t11 =⇒ Mt1t3t13t8 = Mt7t8t11 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x7t8t3t4t2 ∈M)

t1t3t13t9 = x5t6t7t6 =⇒ Mt1t3t13t9 = Mt6t7t6 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x5 ∈M)

t1t3t13t10 = x8t7t12t11t13t10t12t9 =⇒ Mt1t3t13t10 = Mt10t12t9 ∈ [1313],
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(since {N(t1t3t13)
n|n ∈ N} and x8t7t12t11t13 ∈M)

t1t3t13t11 = x6t7t2t3t1t2t8 =⇒ Mt1t3t13t11 = Mt2t8 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x6t7t2t3t1 ∈M)

t1t3t13t12 = x5t4t6t11 =⇒ Mt1t3t13t12 = Mt4t6t11 ∈ [138].

(since {N(t1t3t8)
n|n ∈ N} and x5 ∈M)t1t3t13t13 ∈ [13]

Mt1t4N

Now the new double coset Mt1t4, the coset stabilizer N (14) = N14=Identity.

Only e will fix 1 and 4. Hence the number of single cosets in [14] is |N |
|N(14)| = 13

1 = 13.

The orbits of N (14) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Take an element from each orbit and multiply on the right of the single coset represen-

tative Mt1t4 by the double coset Mt1t4N to get the following double cosets, either new

double cosets or cosets that are equal to each other.

t1t4t1 = x11t12t10t11t10t1t6t8 =⇒ Mt1t4t1 = Mt6t8 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x11t12t10t11t10t1 ∈M)

t1t4t2 = x8t8t13t12t1t6t8t13 =⇒ Mt1t4t2 = Mt6t8t13 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x8t8t13t12t1 ∈M)

t1t4t3 = x11t12t10t11t10t1t8t1 =⇒ Mt1t4t3 = Mt8t1 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x11t12t10t11t10t1 ∈M)

t1t4t4 ∈ [1]

t1t4t5 = x9t9t11t10t2t11 =⇒ Mt1t4t5 = Mt11 ∈ [1],

(since {N(t1)
n|n ∈ N} and x9t9t11t10t2 ∈M)

t1t4t6 = x2t1t2t5 =⇒ Mt1t4t6 = Mt1t2t5 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x2 ∈M)



193

t1t4t7 = x10t10t11t10 =⇒ Mt1t4t7 = Mt10t11t10 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x10 ∈M)

t1t4t8 = x8t10t11 =⇒ Mt1t4t8 = Mt10t11 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x8 ∈M)

t1t4t9 = x8t8t10t9t1t10t13 =⇒ Mt1t4t9 = Mt10t13 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x8t8t10t9t1 ∈M)

t1t4t10 = x6t8t10t9t1t7t9t6 =⇒ Mt1t4t10 = Mt7t9t6 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x6t8t10t9t1 ∈M)

t1t4t11 ∈ [1411]

t1t4t12 = x7t9t10t3 =⇒ Mt1t4t12 = Mt9t10t3 ∈ [128],

(since {N(t1t2t8)
n|n ∈ N} and x7 ∈M)

t1t4t13 = x2t3t12t13t12t1t5t8 =⇒ Mt1t4t13 = Mt5t8 ∈ [14].

(since {N(t1t2t8)
n|n ∈ N} and x2t3t12t13t12t1 ∈M)

After taking an element from each orbit and multiplying on the right, the new double

cosets with single coset representatives is Mt1t4t11. We represent it as [1411], respec-

tively. And the other double cosets are equal to other existing double cosets, so we

checked and proved which are equal.

Mt1t4t11N

Continuing with the new double coset Mt1t4t11, the coset stabilizer N (1411) =

N1411=Identity. Only e will fix 1, 4, and 11. Hence the number of single cosets in [1411]

is |N |
|N(1411)| = 13

1 = 13. The orbits ofN (1411) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13}
are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Take an element from each orbit and multiply on the right of the single coset represen-

tative Mt1t4t11 by the double coset Mt1t4t11N . We have:
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t1t4t11t1 = x9t9t11t10t2t1t7 =⇒ Mt1t4t11t1 = Mt1t7 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x9t9t11t10t2 ∈M)

t1t4t11t2 = x9t9t10t9 =⇒ Mt1t4t11t2 = Mt9t10t9 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x9 ∈M)

t1t4t11t3 = x8t7t12t11t13t5t8t2 =⇒ Mt1t4t11t3 = Mt5t8t2 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x8t7t12t11t13 ∈M)

t1t4t11t4 = x9t2t4t1 =⇒ Mt1t4t11t4 = Mt2t4t1 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x9 ∈M)

t1t4t11t5 = x8t8t13t12t1t12t1t11 =⇒ Mt1t4t11t5 = Mt12t1t11 ∈ [1313],

(since {N(t1t3t13)
n|n ∈ N} and x8t8t13t12t1 ∈M)

t1t4t11t6 = x10t7t8t11 =⇒ Mt1t4t11t6 = Mt7t8t11 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x10 ∈M)

t1t4t11t7 = x3t3t12t13t12t1t7t9t1 =⇒ Mt1t4t11t7 = Mt7t9t1 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x3t3t12t13t12t1 ∈M)

t1t4t11t8 = Identityt4t6t4 =⇒ Mt1t4t11t8 = Mt4t6t4 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and Identity ∈M)

t1t4t11t9 = x9t8t13t12t1t10t13t7 =⇒ Mt1t4t11t9 = Mt10t13t7 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x9t8t13t12t1 ∈M)

t1t4t11t10 = x8t5t6t5 =⇒ Mt1t4t11t10 = Mt5t6t5 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x8 ∈M)

t1t4t11t11 ∈ [14]

t1t4t11t12 = x6t7t5t6t1t10t13t7 =⇒ Mt1t4t11t12 = Mt10t13t7 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x6t7t5t6t1 ∈M)

t1t4t11t13 = x6t8t10t9t1t5t8t2 =⇒ Mt1t4t11t13 = Mt5t8t2 ∈ [1411].

(since {N(t1t4t11)
n|n ∈ N} and x6t8t10t9t1 ∈M)
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Mt1t7N

Now the new double coset Mt1t7, the coset stabilizer N (17) = N17=Identity.

Only e will fix 1 and 7. Hence the number of single cosets in [17] is |N |
|N(17)| = 13

1 = 13.

The orbits of N (17) on {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13} are:

O = {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}.

Take an element from each orbit and multiply on the right of the single coset represen-

tative Mt1t7 by the double coset Mt1t7N to get the following double cosets, either new

double cosets or cosets that are equal to each other.

t1t7t1 = x9t8t13t12t1t4t11 =⇒ Mt1t7t1 = Mt1t4t11 ∈ [1411],

(since {N(t1t4t11)
n|n ∈ N} and x9t8t13t12t1 ∈M)

t1t7t2 = x11t12t1t6 =⇒ Mt1t7t2 = Mt12t1t6 ∈ [138],

(since {N(t1t3t8)
n|n ∈ N} and x11 ∈M)

t1t7t3 = x11t12t10t11t10t1t5t11 =⇒ Mt1t7t3 = Mt5t11 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x11t12t10t11t10t1 ∈M)

t1t7t4 = x7t8t3t4t2t12t13 =⇒ Mt1t7t4 = Mt12t13 ∈ [12],

(since {N(t1t2)
n|n ∈ N} and x7t8t3t4t2 ∈M)

t1t7t5 = x7t8t13t12t1t4t5t4 =⇒ Mt1t7t5 = Mt4t5t4 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x7t8t13t12t1 ∈M)

t1t7t6 = x7t8t3t4t2t13t1t4 =⇒ Mt1t7t6 = Mt13t1t4 ∈ [125],

(since {N(t1t2t5)
n|n ∈ N} and x7t8t3t4t2 ∈M)

t1t7t7 ∈ [1]

t1t7t8 = x6t7t2t3t1t11 =⇒ Mt1t7t8 = Mt11 ∈ [1],

(since {N(t1)
n|n ∈ N} and x6t7t2t3t1 ∈M)

t1t7t9 = x7t7t12t11t13t7t10 =⇒ Mt1t7t9 = Mt7t10 ∈ [14],

(since {N(t1t4)
n|n ∈ N} and x7t7t12t11t13 ∈M)

t1t7t10 = x7t5t6t1t13t2t12 =⇒ Mt1t7t10 = Mt13t2t12 ∈ [1313],
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(since {N(t1t3t13)
n|n ∈ N} and x7t5t6t1 ∈M)

t1t7t11 = x12t13t2 =⇒ Mt1t7t11 = Mt13t2 ∈ [13],

(since {N(t1t3)
n|n ∈ N} and x12 ∈M)

t1t7t12 = x5t6t1t2t13t10t3 =⇒ Mt1t7t12 = Mt10t3 ∈ [17],

(since {N(t1t7)
n|n ∈ N} and x5t6t1t2t13 ∈M)

t1t7t13 = x4t5t13t1t12t1t2t8 =⇒ Mt1t7t13 = Mt1t2t8 ∈ [128].

(since {N(t1t2t8)
n|n ∈ N} and x4t5t13t1t12 ∈M)

We have completed the double coset enumeration since the set of right cosets is closed

under right multiplication, since the index of M in G is 144 . We conclude:

G = MeN ∪Mt1N ∪Mt1t2N ∪Mt1t2t1N ∪Mt1t2t5N ∪Mt1t2t8N ∪Mt1t3N

∪Mt1t3t8N ∪Mt1t3t13N ∪Mt1t4N ∪Mt1t4t11N ∪Mt1t7N

where

G =
2∗13 : 13

(x−4t)3, (x2t)4, (x−1t)4

|G| ≤ |N |+ |N |
|N (1)|

+
|N |
|N (12)|

+
|N |
|N (121)|

+
|N |
|N (125)|

+
|N |
|N (128)|

+
|N |
|N (13)|

+
|N |
|N (138)|

+
|N |

|N (1313)|
+
|N |
|N (14)|

+
|N |

|N (1411)|
+
|N |
|N (17)|

× |M |

|G| ≤ (1 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13) × 39

|G| ≤ 144 × 39

|G| ≤ 5616.

The Cayley diagram summarizes the information listed above.
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Figure 6.2: Cayley graph of PSL3(3) over M = (13 : 3)

6.3 Double Coset Enumeration over a Maximal Subgroup

Using the process of maximal subgroup on a different example. In this example

we have to do a few changes to N . The control group of 2∗12 : (S4 × 2) was of kernel
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2. Hence, to have a better image we changed the kernel to be 1. Thus we were able

to continue by constructing a double coset enumeration of PSL2(8) over a maximal

subgroup with the new progenitor 2∗3 : S3.

6.3.1 Construct of PSL2(8) over M = (9 : 2)

Before we apply double coset enumeration over maximal subgroup we are going

to start by factoring the progenitor, 2∗3 : (S3), by the relations (xt)7, (xytx)2, and (yt)9,

denoted as

〈x, y, t|x2, y3, (y−1x)2,

t2,

(t, xy−1), (xt)7, (xytx)2, (yt)9 >;

and N ∼= S3 =

〈x, y|x2, y3, (y−1x)2〉.

So we obtain the following homomorphic image:

G ∼=
2∗3 : (S3)

(xt)7, (xytx)2, (yt)9
∼= PSL2(8),

where x ∼ (1, 2), y ∼ (1, 2, 3), and t ∼ t1.
Now expand the first relator (xt)7 = 1 to:

(xt)7 = 1, which it can be expand:

(xt)7 = 1

x7tx
6

1 t
x5

1 t
x4

1 t
x3

1 t
x2

1 t
x
1t1 = 1

(1, 2)t1t2t1t2t1t2t1 = 1

t1t2t1 = (1, 2)t1t2t1t2

After expanding the second relation (xytx)2 = e we noticed that this relation

simplifies to identity. Thus we continue with the third relation.
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And the third relation can be expand as follow:

(yt)9 = 1

y9ty
8

1 t
y7

1 t
y6

1 t
y5

1 t
y4

1 t
y3

1 t
y2

1 t
y
1t1 = 1

t3t2t1t3t2t1t3t2t1 = 1

t3t2t1t3 = t1t2t3t1t2

Let M be the maximal subgroup generated by the control group N = S3 and

t3t2t1t2t3t2t1 = ty
2
txttxty

2
txt

M =
〈
< x, y >, ty

2
txttxty

2
txt
〉
, = (9 : 2) where |M | = 18.

Therefore, M is the maximal subgroup.

Let us start constructing a manual double coset enumeration of G over the

maximal subgroup, M and N . Denote [w] to be the double coset MwN , where w is a

word in t′is.

MeN

We begin with the double coset MeN , denote [∗]. This double coset contains only one

single coset, namely M . The single coset stabilizer of M is N , which is transitive on

{t1, t2, t3} and therefore, has a single orbit,

O = {1, 2, 3}.

Now take an element from O say t1 and multiply the single coset representative M by

t1 to obtain Mt1. This is a new double coset Mt1N , denote as [1], so three symmetric

generators will go to our new double coset, [1].

Mt1N

Continuing with the double coset Mt1N , we find the point stabilizer N1. This is

N1 = {1}, {2}, {3}.
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But, the coset stabiliser of N1 is:

N (1) ≥ 〈1, (2, 3)〉.

Thus the number of single cosets in [1] is |N |
|N(1)| = 3, since the |N (1)|=2. The

orbits of N (1) on {t1, t2, t3} are:

O = {1}, {2, 3}.

Now take an element from each orbit and right multiply to the single coset

representative Mt1. We get the following:

Mt1t1 = M ∈ [∗],

Mt1t2 ∈ [12]

After taking an element from each orbit and right multiply to the single coset repre-

sentative, Mt1 we get a new double coset Mt1t2N with single coset representative is

Mt1t2. We represent Mt1t2N as [12] respectively.

Mt1t2N

The new double coset Mt1t2N and the coset stabilizer of N (12) is N12 = 〈e〉.
So the order of N (12)is1, therefore the number of single cosets in Mt1t2N is |N |

|N(12)| = 6.

Now find the orbits of N (12) on {t1, t2, t3} which are:

O = {1}, {2}, {3}.

Following the same process from above, take an element from each orbit and multiply

on the right of the single coset representative Mt1t2 of the double coset Mt1t2N to get

the following:
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Mt1t2t1 ∈ [121],

Mt1t2t2 ∈ [1],

Mt1t2t3 ∈ [123]

Hence, there are two new double coset Mt1t2t1N and Mt1t2t3N with the single coset

representatives Mt1t2t1 and Mt1t2t3, denoted by [121] and [123]. Note, the third single

coset is equal to an existing double coset [1], since Mt1t2t2N = Mt1N where t2t2 is

identity. Thus, one symmetric generator goes back to [1]. Throughout the process we

are going to use the same method to check and verify where does the single cosets equals

to or if they loop back to itself.

Mt1t2t1N

Continuing with the new double coset Mt1t2t1, we find the coset stabilizer

N (121) = N121=Identity. Only e will fix 1 and 2. Hence the number of single cosets in

[121] is |N |
|N(121)| = 6

1 = 6. The orbits of N (121) on {t1, t2, t3} are:

O = {1}, {2}, {3}.

Take an element from each orbit and right multiply to the single coset representative

Mt1t2t1 of the double coset Mt1t2t1N. We check and verify if there are any new double

cosets or if there are double cosets that are either equal to other existing double cosets

or if the double coset loops back to itself.

Mt1t2t1t1 = Mt1t2 ∈ [12]

t1t2t1t2 = xt1t2t1 =⇒ Mt1t2t1t2 = Mt1t2t1 ∈ [121],

(since {N(t1t2t1)
n|n ∈ N} and x ∈M)

Mt1t2t1t3 ∈ [1213]

From above we have a new double coset Mt1t2t1t3N with single coset representative
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Mt1t2t1t3, denoted as [1213]. The other two double cosets are equal to existing double

cosets Mt1t2N and Mt1t2t1N .

Mt1t2t3N

The double coset Mt1t2t3, we find the coset stabilizer N (123) = N123 =< e >.

So the number of single cosets in [123] is |N |
|N(123)| = 6

1 = 6 and the orbits of N (123) on

{t1, t2, t3} are the following:

O = {1}, {2}, {3}.

Now take an element from each orbit and right multiply of the single coset Mt1t2t3 by

the double coset Mt1t2t3N to get the following:

t1t2t3t1 = xy2xy2t1t2t3t1t3t2t1t1t2t3 =⇒ Mt1t2t3t1 = Mt1t2t3 ∈ [123],

(since {N(t1t2t3)
n|n ∈ N} and xy2xy2t1t2t3t1t3t2t1 ∈M)

t1t2t3t2 = xy2t1t2t3t1t3t2t1t3t2t1 =⇒ Mt1t2t3t2 = Mt3t2t1 ∈ [123],

(since {N(t1t2t3)
n|n ∈ N} and xy2t1t2t3t1t3t2t1 ∈M)

Mt1t2t3t3 = Mt1t2 ∈ [12]

Mt1t2t1t3N

Continuing with the new double coset Mt1t2t1t3N , we find the coset stabilizer

N (1213) = N1213 = 〈e〉. But Mt1t2t1t3 is not distinct, since

Mt1t2t1t3 = xy−1xyt3t2t1t2t3t2t1t3t2t3t1 where Mt3t2t3t1 ∈Mt1t2t1t3. Now

M(t1t2t1t3)
(1,3) = Mt3t2t3t1. Hence (1, 3) ∈ N (1213). Therefore,

N (1213) ≥ 〈e, (1, 3)〉.

The order of N (1213) = 2. Thus the number of single cosets in Mt1t2t1t3N is |N |
|N(1213)| =

6
2 = 3. Since we know only 3 single cosets exist in the double coset [1213], now we find

the orbits of N (1213) on {t1, t2, t3} are:

O = {2}, {1, 3}.

Now take an element from each orbit and multiply on the right of the single coset
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representative Mt1t2t1t3 of the double coset Mt1t2t1t3N to get the following:

Mt1t2t1t3t2 ∈ [12132],

Mt1t2t1t3t3 = Mt1t2t1 ∈ [121]

We get a new double coset Mt1t2t1t3t2N with single coset representative Mt1t2t1t3t2,

denoted by [12132].

Mt1t2t1t3t2N

Continuing with the new double coset Mt1t2t1t3t2N , we find the coset sta-

bilizer N (12132) = N12132 = 〈e〉. But Mt1t2t1t3t2 is not distinct, since t1t2t1t3t2 =

xy−1xyt3t2t1t2t3t2t1t3t2t3t1t2 where Mt3t2t3t1t2 ∈Mt1t2t1t3t2. Now M(t1t2t1t3t2)
(1,3)

= Mt3t2t3t1t2. Hence (1, 3) ∈ N (12132). Therefore,

N (12132) ≥ 〈e, (1, 3)〉.

The order of the coset stabiliser of N (12132)is2. Thus the number of single cosets in

Mt1t2t1t3t2N is |N |
|N(12132)| = 6

2 = 3. Since we know only 3 single cosets exist in [12132],

now we find the orbits of N (12132) on {t1, t2, t3} which are:

O = {2}, {1, 3}.

Now take an element from each orbit and multiply on the right of the single coset

representative Mt1t2t1t3t2 of the double coset Mt1t2t1t3t2N to get the following:

Mt1t2t1t3t2t2 = Mt1t2t1t3 ∈ [1213],

t1t2t1t3t2t1 = xyxy−1t2t3t1t3t2t3t1t2t3t2t1t3 =⇒ Mt1t2t1t3t2t1 = Mt2t3

t2t1t3 ∈ [12132],(since {N(t1t2t1t3t2)
n|n ∈ N} and xyxy−1t2t3t1t3t2t3t1 ∈M)

We have completed the double coset enumeration, since the set of right cosets

is closed under right multiplication then the index of M in G is 28 . We conclude:
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G = MeN ∪Mt1N ∪Mt1t2N ∪Mt1t2t1N ∪Mt1t2t3N ∪Mt1t2t1t3N ∪Mt1t2t1t3t2N

where

G =
2∗3 : S3

(xt)7, (xytx)2, (yt)9

|G| ≤ |N |+ |N |
|N (1)|

+
|N |
|N (12)|

+
|N |
|N (121)|

+
|N |
|N (123)|

+
|N |

|N (1213)|
+

|N |
|N (12132)|

× |M |

|G| ≤ (1 + 3 + 6 + 6 + 6 + 3 + 3) × 18

|G| ≤ 28 × 18

|G| ≤ 504.

The Cayley diagram summarizes the information listed above.

Figure 6.3: Cayley graph of PSL(2, 8) over M = (9 : 2)
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Chapter 7

Monomial Representative

7.1 Lifting Linear Character Table of H

Definition 7.1. Kernel of χ = {g ∈ G|χ(g) = χ(1)}.[Rot95]

Theorem 7.2. Linear character of H are lifts of linear characters of H/H ′. All ir-

reducible characters of H/H ′ is abelian group implies to the number of irreducible of

H/H ′ equals to the number of conjugacy classes of H/H ′ = |H|/|H ′|. [Why06]

In this section, we are going to induce a linear character of a proper subgroup

up to G, to do so we need to investigate the subgroup H in group G. Let G ∼= 6•(5 : 2)

with subgroup H, where H ∼= (3× 5) : 2. Note, from a subgroup H there exist a normal

subgroup, H ′. Since H ′ is to be the derived group of H we have the generators of H’,

H ′ =< (1, 14, 25, 7, 19)(2, 13, 26, 8, 20)(3, 16, 28, 9, 22)(4, 15, 27, 10, 21)

(5, 17, 29, 11, 24)(6, 18, 30, 12, 23) >∼= 5.

Now we are going to find the character table of H/H ′. Note H/H ′ ∼= 6. Since

H/H ′ is of order 6 then the character of H/H ′ = Z2×Z3 = {e, a, b, ab, ab2, b2}. Now that

we know what H/H ′ is composed of, we can obtained the generators of H/H ′. Since

H/H ′ =< H ′a,H ′b >∼= Z2 × Z3. Thus the set is {H ′e,H ′a,H ′b,H ′ab,H ′ab2, H ′b2}.
Note that Z2 = {0, 1} with primitive square root of unity is -1 and Z3 = {0, 1, 2} with

primitive third root of unity is w.

Now we simplify each column and row. Note for the first row is always

1. Moving on, for the second row, χ2, we get the following C1 ((−1)1)0((w)0)0 =
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Table 7.1: Character Table of H/H’
a b (a0b0) (a1b0) (a0b1) (a0b2) (a1b1) (a1b2)

Classes C1 C2 C3 C4 C5 C6

Size 1 1 1 1 1 1

Order 1 2 3 6 3 6

(−1)0(w)0 χ.1 ((−1)0)0((w)0)0 ((−1)0)1((w)0)0 ((−1)0)0((w)0)1 ((−1)0)0((w)0)2 ((−1)0)1((w)0)1 ((−1)0)1((w)0)2

(−1)1(w)0 χ.2 ((−1)1)0((w)0)0 ((−1)1)1((w)0)0 ((−1)1)0((w)0)1 ((−1)1)0((w)0)2 ((−1)1)1((w)0)1 ((−1)1)1((w)0)2

(−1)0(w)1 χ.3 ((−1)0)0((w)1)0 ((−1)0)1((w)1)0 ((−1)0)0((w)1)1 ((−1)0)0((w)1)2 ((−1)0)1((w)1)1 ((−1)0)1((w)1)2

(−1)1(w)1 χ.4 ((−1)1)0((w)1)0 ((−1)1)1((w)1)0 ((−1)1)0((w)1)1 ((−1)1)0((w)1)2 ((−1)1)1((w)1)1 ((−1)1)1((w)1)2

(−1)0(w)2 χ.5 ((−1)0)0((w)2)0 ((−1)0)1((w)2)0 ((−1)0)0((w)2)1 ((−1)0)0((w)2)2 ((−1)0)1((w)2)1 ((−1)0)1((w)2)2

(−1)1(w)2 χ.6 ((−1)1)0((w)2)0 ((−1)1)1((w)2)0 ((−1)1)0((w)2)1 ((−1)1)0((w)2)2 ((−1)1)1((w)2)1 ((−1)1)1((w)2)2

1, C2 ((−1)1)1((w)0)0 = −1, C3 ((−1)1)0((w)0)1 = 1, C4 ((−1)1)0((w0)2 = 1, C5

((−1)1)1((w)0)1 = −1, and C6 ((−1)1)1((w)0)2 = −1. Also, since w is of order three

we changed w4 = w. Using the same procedure for the rest of χ and its classes, we

completed table of H/H ′ where the conjugacy classes are listed below:

Let a=(1, 2)(3, 10)(4, 9)(5, 18)(6, 17)(7, 26)(8, 25)(11, 12)(13, 19)(14,20)

(15, 28)(16, 27)(21, 22)(23, 29)(24, 30),

b= (1, 21, 11)(2, 22, 12)(3, 23, 13)(4, 24, 14)(5, 25, 15)(6, 26, 16)(7,27, 17)(8, 28, 18)

(9, 30, 20)(10, 29, 19),

a ∗ b= (1, 22, 11, 2, 21, 12)(3, 29, 13, 10, 23, 19)(4, 30, 14, 9, 24,20)(5, 8, 15, 18, 25, 28)

(6, 7, 16, 17, 26, 27),

b2 =(1, 11, 21)(2, 12, 22)(3, 13, 23)(4, 14, 24)(5, 15, 25)(6, 16, 26)(7,17, 27)(8, 18, 28)

(9, 20, 30)(10, 19, 29),

a ∗ b2 = (1, 12, 21, 2, 11, 22)(3, 19, 23, 10, 13, 29)(4, 20, 24, 9, 14,30)(5, 28, 25, 18, 15,

8)(6, 27, 26, 17, 16, 7)

Table 7.2: Simplified Character Table of H/H’

Classes C1 C2 C3 C4 C5 C6

Rep. e a b b2 ab ab2

Size 1 1 1 1 1 1

χ1 1 1 1 1 1 1

χ.2 1 −1 1 1 −1 −1

χ.3 1 1 w w2 w w2

χ.4 1 −1 w w2 −w −w2

χ.5 1 1 w2 w4 = w w2 w4 = w

χ.6 1 −1 w2 w4 = w −w2 −w4 = −w

Since we have completed the linear character table of H/H ′, now we proceed
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by lifting from H/H ′ to H. By the definition of lift, H ′ CH where χ•i is a character of

H ′ and χi is a character of H then we have:

χi(h) = χ•i (h), h ∈ H.

Before we lift from H/H ′ to H we determine the conjugacy classes of H. We are going

to label every single conjugacy class in the following form listed below.

Let h1 = (1, 2)(3, 10)(4, 9)(5, 18)(6, 17)(7, 26)(8, 25)(11, 12)(13, 19)(14, 20)

(15, 28)(16, 27)(21, 22)(23, 29)(24, 30),

h2 = (1, 21, 11)(2, 22, 12)(3, 23, 13)(4, 24, 14)(5, 25, 15)(6, 26, 16)(7, 27, 17)(8, 28, 18)(9,

30, 20)(10, 29, 19),

h3 = (1, 7, 14, 19, 25)(2, 8, 13, 20, 26)(3, 9, 16, 22, 28)(4, 10, 15, 21, 27)(5, 11, 17, 24, 29)

(6, 12, 18, 23, 30),

h22 = (1, 11, 21)(2, 12, 22)(3, 13, 23)(4, 14, 24)(5, 15, 25)(6, 16, 26)(7, 17, 27)(8, 18, 28)

(9, 20, 30)(10, 19, 29),

h23 = (1, 14, 25, 7, 19)(2, 13, 26, 8, 20)(3, 16, 28, 9, 22)(4, 15, 27, 10, 21)(5, 17, 29, 11,

24)(6, 18, 30, 12, 23), h1 ∗ h2 = (1, 22, 11, 2, 21, 12)(3, 29, 13, 10, 23, 19)(4, 30, 14, 9, 24, 20)

(5, 8, 15, 18, 25, 28)(6, 7, 16, 17, 26, 27),

h1 ∗ h22 = (1, 12, 21, 2, 11, 22)(3, 19, 23, 10, 13, 29)(4, 20, 24, 9, 14, 30)(5, 28, 25, 18, 15,

8)(6, 27, 26, 17, 16, 7),

h2 ∗ h3 = (1, 27, 24, 19, 15, 11, 7, 4, 29, 25, 21, 17, 14, 10, 5)(2, 28, 23, 20, 16, 12, 8, 3, 30,

26, 22, 18, 13, 9, 6),

h22 ∗ h23 = (1, 24, 15, 7, 29, 21, 14, 5, 27, 19, 11, 4, 25, 17, 10)(2, 23, 16, 8, 30, 22, 13, 6,

28, 20, 12, 3, 26, 18, 9),

h23 ∗ h2 = (1, 4, 5, 7, 10, 11, 14, 15, 17, 19, 21, 24, 25, 27, 29)(2, 3, 6, 8, 9, 12, 13, 16, 18, 20,

22, 23, 26, 28, 30), and

h22 ∗ h3 = (1, 17, 4, 19, 5, 21, 7, 24, 10, 25, 11, 27, 14, 29, 15)(2, 18, 3, 20, 6, 22, 8, 23, 9, 26,

12, 28, 13, 30, 16).

Lift H/H ′ to H:

Note on the first row of χi(1) for each class χ•i (1) = 1. Thus, the value for the first row

and column of χi(1) in the character table of H is 1. Moving on, to calculate the lift χ

of a character χ• we have the following computations.
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Find χ2(h) :

χ2(h1) = χ•2(H
′h1) = −1,

χ2(h2) = χ•2(H
′h2) = 1,

χ2(h
2
2) = χ•2(H

′h22) = 1,

χ2(h3) = χ•2(H
′h3) = 1, (since h3 ∈ e)

χ2(h
2
3) = χ•2(H

′h23) = 1, (since h23 ∈ e)
χ2(h1h2) = χ•2(H

′h1h2) = −1,

χ2(h1h
2
2) = χ•2(H

′h1h
2
2) = −1,

χ2(h2h3) = χ•2(H
′h2h3) = 1, (since h2h3 ∈ b)

χ2(h
2
2h

2
3) = χ•2(H

′h22h
2
3) = 1, (since h22h

2
3 ∈ b2)

χ2(h
2
3h2) = χ•2(H

′h23h2) = 1, (since h23h2 ∈ b)
χ2(h

2
2h3) = χ•2(H

′h22h3) = 1 (since h22h3 ∈ b2)

Find χ3(h) :

χ3(h1) = χ•3(H
′h1) = 1,

χ3(h2) = χ•3(H
′h2) = w,

χ3(h
2
2) = χ•3(H

′h22) = w2,

χ3(h3) = χ•3(H
′h3) = 1, (since h3 ∈ e)

χ3(h
2
3) = χ•3(H

′h23) = 1, (since h23 ∈ e)
χ3(h1h2) = χ•3(H

′h1h2) = w,

χ3(h1h
2
2) = χ•3(H

′h1h
2
2) = w2,

χ3(h2h3) = χ•3(H
′h2h3) = w, (since h2h3 ∈ b)

χ3(h
2
2h

2
3) = χ•3(H

′h22h
2
3) = w2, (since h22h

2
3 ∈ b2)

χ3(h
2
3h2) = χ•3(H

′h23h2) = w, (since h23h2 ∈ b)
χ3(h

2
2h3) = χ•3(H

′h22h3) = w2 (since h22h3 ∈ b2)

Find χ4(h) :

χ4(h1) = χ•4(H
′h1) = −1,

χ4(h2) = χ•4(H
′h2) = w,

χ4(h
2
2) = χ•4(H

′h22) = w2,

χ4(h3) = χ•4(H
′h3) = 1, (since h3 ∈ e)

χ4(h
2
3) = χ•4(H

′h23) = 1, (since h23 ∈ e)
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χ4(h1h2) = χ•4(H
′h1h2) = −w,

χ4(h1h
2
2) = χ•4(H

′h1h
2
2) = −w2,

χ4(h2h3) = χ•4(H
′h2h3) = w, (since h2h3 ∈ b)

χ4(h
2
2h

2
3) = χ•4(H

′h22h
2
3) = w2, (since h22h

2
3 ∈ b2)

χ4(h
2
3h2) = χ•4(H

′h23h2) = w, (since h23h2 ∈ b)
χ4(h

2
2h3) = χ•4(H

′h22h3) = w2 (since h22h3 ∈ b2)

Find χ5(h) :

χ5(h1) = χ•5(H
′h1) = 1,

χ5(h2) = χ•5(H
′h2) = w2,

χ5(h
2
2) = χ•5(H

′h22) = w,

χ5(h3) = χ•5(H
′h3) = 1,

χ5(h
2
3) = χ•5(H

′h23) = 1,

χ5(h1h2) = χ•5(H
′h1h2) = w2,

χ5(h1h
2
2) = χ•5(H

′h1h
2
2) = w,

χ5(h2h3) = χ•5(H
′h2h3) = w2,

χ5(h
2
2h

2
3) = χ•5(H

′h22h
2
3) = w,

χ5(h
2
3h2) = χ•5(H

′h23h2) = w2,

χ5(h
2
2h3) = χ•5(H

′h22h3) = w

Find χ6(h) :

χ6(h1) = χ•6(H
′h1) = −1,

χ6(h2) = χ•6(H
′h2) = w2,

χ6(h
2
2) = χ•6(H

′h22) = w,

χ6(h3) = χ•6(H
′h3) = 1,

χ6(h
2
3) = χ•6(H

′h23) = 1,

χ6(h1h2) = χ•6(H
′h1h2) = −w2,

χ6(h1h
2
2) = χ•6(H

′h1h
2
2) = −w4 = −w,

χ6(h2h3) = χ•6(H
′h2h3) = w2,

χ6(h
2
2h

2
3) = χ•6(H

′h22h
2
3) = w4 = w,

χ6(h
2
3h2) = χ•6(H

′h23h2) = w2,

χ6(h
2
2h3) = χ•6(H

′h22h3) = w4 = w.
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Hence the lift of χi(h) = χ•i (h), h ∈ H and 2 < i < 6. In other words we can

lift all six linear characters of Z2 ⊗ Z3 to obtain χ1, χ2, ..., χ6 of G. The work is shown

on the following tables.

Table 7.3: Lifted Character Table of H

Classes C1 C2 C3 C4 C5 C6 C7 C8

Rep. e h1 h2 h22 h3 h23 h1h2 h1h
2
2

Size 1 5 1 1 2 2 5 5

χ1 1 1 1 1 1 1 1 1

χ.2 1 −1 1 1 1 1 −1 −1

χ.3 1 1 w w2 1 1 w w2

χ.4 1 −1 w w2 1 1 −w −w2

χ.5 1 1 w2 w 1 1 w2 w

χ.6 1 −1 w2 w 1 1 −w2 −w4 = −w

Table 7.4: Continue Lifted Character Table of H

Classes C9 C10 C11 C12

Rep. h2h3 h22h
2
3 h23h2 h22h3

Size 2 2 2 2

χ1 1 1 1 1

χ.2 1 1 1 1

χ.3 w w2 w w2

χ.4 w w2 w w2

χ.5 w2 w w2 w

χ.6 w2 w4 = w w2 w

Therefore we have build the character table of H by using the lifting method.

For the following sections of this chapter we used the same process, lifting, to build the

character tables of H of each monomial progenitor.

7.1.1 Monomial Progenitor 53∗2 :m (13 : 4)

To construct a monomial presentation of 53∗2 :m (13 : 4), we must induce a linear

character from a subgroup H of G. We must choose a subgroup with index matching

the degree of an irreducible character of G by considering the character table of G in

Table 7.5. Note G has characters χ.1, χ.2, ..., χ.8. We proceed using χ.3 and look for a

subgroup of order 2 so that |G||H| = 52
26 = 2.
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Since the index of the two groups is 2 and the matrix representation is faithful then

A(xx) and A(yy) will be represented by a 2× 2 matrices.

Verifying the Induction

We produce a character table for χ.3 in Table 7.5. First we will verify the

induction χ.4 of H to χ.3 of G by considering the irreducible characters φ of H and

φG of G. G is generated by x and y, where x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) and

y = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7).

The Conjugacy classes of group G are

C1 = Id(G)

C2 = (1, 3)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9), (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7), ... C3 =

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), (1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

C4 = (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12), (1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3).

C5 = (1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4), (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11)

C6 = (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5), (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

C7 = (1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6), (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)

C8 = (1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7), (1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8)

Consider the subgroup H of G given below.

H = Id(G), (1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3)

The conjugacy classes of H are

D1 = Id(G)

D2 = (1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3)

D3 = (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5)

D4 = (1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7)

D5 = (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)

D6 = (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11)

D7 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

D8 = (1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)
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D9 = (1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4)

D10 = (1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6)

D11 = (1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8)

D12 = (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

D13 = (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)

From the character tables of G and H we are going to use the information we

labeled as φ of H and φG of G. By the definition of induction we induce the character

φ = χ.4 of H up to φG = χ.3 of G to obtain the character φG of G.

φ ↑GH
φGα = n

hα

∑
w∈H∩Cα φ(w), where n = |G|

|H| = 52
26 = 2.

φG1 = 2
1

∑
w∈H∩C1

φ(w)

which implies φG1 = 2
1(φ(1)) = 2(1) = 2.

φG2 = 2
13

∑
w∈H∩C2

φ(w)

=⇒ φG2 = 2
13

∑
w∈H∩C2

φ(w)=0 (since H ∩ C2 = φ)

φG3 = 2
2

∑
w∈H∩C3

φ(w)

=⇒ φG3 = 1(1φ((1, 2, 3, 4, 5, ..., 13) + 1φ((1, 13, 12, 11, ...)) = Z1#5 + Z1#8

φG4 = 2
2

∑
w∈H∩C4

φ(w)

=⇒ φG4 = 1(1φ((1, 3, 5, 7, 9...) + 1φ((1, 12, 10, 8, ...)) = Z1#10 + Z1#3

φG5 = 2
2

∑
w∈H∩C5

φ(w)

=⇒ φG5 = 1(1φ((1, 11, 8, 5, 2...) + 1φ((1, 4, 7, 10, 13...)) = Z1#11 + Z1#2
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φG6 = 2
2

∑
w∈H∩C6

φ(w)

=⇒ φG6 = 1(1φ((1, 10, 6, 2, 11...) + 1φ((1, 5, 9, 13, 4...)) = Z1#6 + Z1#7

φG7 = 2
2

∑
w∈H∩C7

φ(w)

=⇒ φG7 = 1(1φ((1, 9, 4, 12, ...) + 1φ((1, 6, 11, 3, 8, ...)) = Z1 + Z1#12

φG8 = 2
2

∑
w∈H∩C8

φ(w)

=⇒ φG8 = 1(1φ((1, 8, 2, 9, 3, ...) + 1φ((1, 7, 13, 6, ...)) = Z1#9 + Z1#4

So φ ↑GH= (2, 0, Z1#8+Z1#5, Z1#10+Z1#3, Z1#11+Z1#2, Z1#7+Z1#6, Z1#12+

Z1, Z1#9 + Z1#4) and we have verified that χ.4 of H induces χ.3 of G.

Instead of writing zeta(13)r13 for r ∈ 1 ≤ r ≤ 12, we are going to replace it

with Z1#r for r. So we have verified φ ↑GH is equivalent to χ.3

> CG[3];
( 2, 0, zeta(13)_13ˆ8 + zeta(13)_13ˆ5, zeta(13)_13ˆ10
+ zeta(13)_13ˆ3, zeta(13)_13ˆ11 + zeta(13)_13ˆ2,
zeta(13)_13ˆ7 + zeta(13)_13ˆ6,-zeta(13)_13ˆ11
- zeta(13)_13ˆ10- zeta(13)_13ˆ9 - zeta(13)_13ˆ8
- zeta(13)_13ˆ7 - zeta(13)_13ˆ6 - zeta(13)_13ˆ5
- zeta(13)_13ˆ4 - zeta(13)_13ˆ3 - zeta(13)_13ˆ2 - 1,

zeta(13)_13ˆ9 + zeta(13)_13ˆ4 )

Note, since we are in Root Unity 13 we have the following:

Z113 = 1,

Z113 − 1 = 0,

(Z1−1)(Z112+Z111+Z110+Z19+Z18+Z17+Z16+Z15+Z14+Z13Z12+Z1+1) = 0.

Using the work from above we changed −zeta′s to (Z1#12 + Z1) to rewrite CG[3] in

terms of Z1#r

Thus,
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CG[3] = (2, 0, Z1#8+Z1#5, Z1#10+Z1#3, Z1#11+Z1#2, Z1#7+Z1#6, Z1#12+

Z1, Z1#9 + Z1#4).

Now we print the Characters tables of G and H.

Table 7.5: Character Table of G

χ C1 C2 C3 C4 C5 C6 C7 C8

χ.1 1 1 1 1 1 1 1 1
χ.2 1 -1 1 1 1 1 1 1
χ.3 2 0 Z1 Z1#2 Z1#3 Z1#4 Z1#5 Z1#6
χ.4 2 0 Z1#5 Z1#3 Z1#2 Z1#6 Z1 Z1#4
χ.5 2 0 Z1#2 Z1#4 Z1#6 Z1#5 Z1#3 Z1
χ.6 2 0 Z1#4 Z1#5 Z1 Z1#3 Z1#6 Z1#2
χ.7 2 0 Z1#6 Z1 Z1#5 Z1#2 Z1#4 Z1#3
χ.8 2 0 Z1#3 Z1#6 Z1#4 Z1 Z1#2 Z1#5

# denotes algebraic conjugation.
Z1 is the primitive thirteen root of unity.

Table 7.6: Character Table of H

χ D1 D2 D3 D4 D5 D6 D7 D8

χ.1 1 1 1 1 1 1 1 1
χ.2 1 Z1 Z1#2 Z1#3 Z1#4 Z1#5 Z1#6 Z1#7
χ.3 1 Z1#2 Z1#4 Z1#6 Z1#8 Z1#10 Z1#12 Z1
χ.4 1 Z1#3 Z1#6 Z1#9 Z1#12 Z1#2 Z1#5 Z1#8
χ.5 1 Z1#4 Z1#8 Z1#12 Z1#3 Z1#7 Z1#11 Z1#2
χ.6 1 Z1#5 Z1#10 Z1#2 Z1#7 Z1#12 Z1#4 Z1#9
χ.7 1 Z1#6 Z1#12 Z1#5 Z1#11 Z1#4 Z1#10 Z1#3
χ.8 1 Z1#7 Z1 Z1#8 Z1#2 Z1#9 Z1#3 Z1#10
χ.9 1 Z1#8 Z1#3 Z1#11 Z1#6 Z1 Z1#9 Z1#4
χ.10 1 Z1#9 Z1#5 Z1 Z1#10 Z1#6 Z1#2 Z1#11
χ.11 1 Z1#10 Z1#7 Z1#4 Z1 Z1#11 Z1#8 Z1#5
χ.12 1 Z1#11 Z1#9 Z1#7 Z1#5 Z1#3 Z1 Z1#12
χ.13 1 Z1#12 Z1#11 Z1#10 Z1#9 Z1#8 Z1#7 Z1#6
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Table 7.7: Character Table of H Cont.

χ D9 D10 D11 D12 D13

χ.1 1 1 1 1 1
χ.2 Z1#8 Z1#9 Z1#10 Z1#11 Z1#12
χ.3 Z1#3 Z1#5 Z1#7 Z1#9 Z1#11
χ.4 Z1#11 Z1 Z1#4 Z1#7 Z1#10
χ.5 Z1#6 Z1#10 Z1 Z1#5 Z1#9
χ.6 Z1 Z1#6 Z1#11 Z1#3 Z1#8
χ.7 Z1#9 Z1#2 Z1#8 Z1 Z1#7
χ.8 Z1#4 Z1#11 Z1#5 Z1#12 Z1#6
χ.9 Z1#12 Z1#7 Z1#2 Z1#10 Z1#5
χ.10 Z1#7 Z1#3 Z1#12 Z1#8 Z1#4
χ.11 Z1#2 Z1#12 Z1#9 Z1#6 Z1#3
χ.12 Z1#10 Z1#8 Z1#6 Z1#4 Z1#2
χ.13 Z1#5 Z1#4 Z1#3 Z1#2 Z1

# denotes algebraic conjugation.
Z1 is the primitive thirteen root of unity.

Before we verify the monomial representation of the matrices we must find the

exact value of Z1. Noticed the order | < Z > | = 13, that means we must find the

GFq(field) 3 13
p−1 has a subgroup isomorphic to < Z > prime p 3 13

p−1 . Then the prime

is 53. Since 13
53−1 = 13

52 . Thus Z53 − {0} =< 2 >, since 252 = 1 mod 53. We apply the

following formula: |ak| = |a|
gcd(k,|a|) where a = 2. Since the generator of the cyclotomic

field 53 is 2 and |2| = 52.

Thus,

|2k| = |2|
gcd(k, |2|)

⇒ |2k| = 52

gcd(k, 52)

where |2k| = 13.

Hence, k = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48.

|16| = |24| = 13

|44| = |28| = 13

|15| = |212| = 13
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Take the first order Z = 16 where ka = 42 = 16 mod 53. Now we can replace Z1 with

16 to calculate every entry of CG[3] = χ.3, CH[4] = χ.4, and the matrix.

Table 7.8: χ.3 of G

φG Class Size Class Representative

2 C1 1 Id(G)

0 C2 13 (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)

Z1 C3 2 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Z1#2 C4 2 (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)

Z1#3 C5 2 (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11)

Z1#4 C6 2 (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

Z1#5 C7 2 (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)

Z1#6 C8 2 (1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8)

Table 7.9: χ.4 of H

φ Class Size Class Representative

1 D1 1 Id(H)

Z1#3 = 15 D2 1 (1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3)

Z1#6 = 13 D3 1 (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5)

Z1#9 = 36 D4 1 (1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7)

Z1#12 = 10 D5 1 (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)

Z1#2 = 44 D6 1 (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11)

Z1#5 = 24 D7 1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Z1#8 = 42 D8 1 (1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

Z1#11 = 47 D9 1 (1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4)

Z1 = 16 D10 1 (1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6)

Z1#4 = 28 D11 1 (1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8)

Z1#7 = 49 D12 1 (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

Z1#10 = 46 D13 1 (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)

Equivalencies from table to construct matrix: 1 = 1,
Z1 = 16.
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Now prove the monomial representation has the following generators:

A(xx) =

Z15 = 24 0

0 Z18 = 42

, and A(yy) =

0 1

1 0



Verifying the Monomial Representation

Since we have a linear character φ of the subgroup H of index 2 in G we let

G = Ht1 ∪Ht2 where the t′is are transversals of G acting on H.

That is G = He ∪ H(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7).

Continuing the process in a 2x2 matrix:

A(xx) =

 φ(t1xt
−1
1 ) φ(t1xt

−1
2 )

φ(t2xt
−1
1 ) φ(t2xt

−1
2 ).



We will calculate all 2 elements of the matrix using the following calculation where

t1 = e, t2 = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7),

and x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) with each ti corresponding to each transver-

sal respectively from the G listed before. We will start by calculating the multiplication

of tixt
−1
j and list the resulting permutation rather than show the entire process. For

example:

φ(t1xt
−1
1 ) = φ(e(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)e−1) = φ((1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13). We will go directly to what φ(t1xt
−1
1 ) is equal to. Since (1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13) ∈ H. We look back to our Table 5.4 noticed

φ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)) is in class D7=Z1#5 = 165 = 24 mod 53 where

Z1 = 16. Therefore, the nonzero entry for Row 1 is 24. We proceed as follows:

Row1 :

φ(t1xt
−1
1 ) = φ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)) = 24

φ(t1xt
−1
2 ) = φ((1, 11)(2, 10)(3, 9)(4, 8)(5, 7)(12, 13)) = 0

Row2 :

φ(t2xt
−1
1 ) = φ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)) = 0

φ(t2xt
−1
2 ) = φ((1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)) = 42
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( since φ((1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)) ∈ D8)

Each φ of H corresponded with a conjugacy class of either H or G. If the element is

in a conjugacy class from H (seen in Table 5.4) we write the value of φ for that class.

Since our matrix was produced in cyclotomic field 53, we needed to produce an order

13 element in Z53. In this case, 2 was chosen as the element of order 13. To complete

this process, the matrix for yy should also be verified by repeating the process above

where y = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7).

Row1 :

φ(t1yt
−1
1 ) = φ((1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

φ(t1yt
−1
2 ) = φ(e) = 1

Row2 :

φ(t2yt
−1
1 ) = φ(e) = 0

φ(t2yt
−1
2 ) = φ((1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

Therefore,

A(xx) =

24 0

0 42

, and A(yy) =

0 1

1 0


To determine if we have a faithful representation we check if the order of each ma-

trix equals to the order of our generators. Since |A(xx)| = 13 and |A(yy)| = 2 with

|A(xx) · A(yy)| = 2 (the order of our index), we know that 〈A(xx) and A(yy)〉 is a

faithful representation of G. We proceed and produce a permutation representation.

Constructing a Permutation Representation

We worked in Z13(number field 53) and on 2×2 matrices(dimension 2), thus we

produce a 53∗2 :m (13 : 4) progenitor permutation representation based on the monomial

representation (13 : 4) = 〈A(xx), A(yy)〉. Consider the matrix entries for ai,j for A(xx)

and A(yy). We know there are 2 t’s, one for each column of our matrix and because

we have a semi-direct product in our progenitor then the elements of (13 : 4) act as

automorphisms of < t1 > ∗ < t2 > .

Now we find the permutations for our two matrices xx and yy, to do so we use

the following formula

ai,j = 1 if the automorphism takes ti → tj
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ai,j = n if the automorphism takes ti → tnj .

Since 53∗2 is a free product of two cyclic groups of order 52 we will construct a table

with two t’s of order 52 labeled from 1...104 found in table 5.5. We are going to use

each non-zero entry for each matrix A(xx) and A(yy) to apply the formula listed above.

a11 = 24 and a22 = 42 & b12 = 1 and b21 = 1

Thus,

A(xx) A(yy)

t1 → t241 , t1 → t2,

t2 → t422 t2 → t1

Proceeding on finding a permutation representative we must describe Table 7.10. The

top number of the chart labels each element, the middle of the chart shows what the

automorphism produces, and the bottom number shows what that produced element is

numbered on the top of the chart. The same process is conducted for generators yy,

but for Table 7.11 we will only show part of the process.
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Table 7.10: Automorphisms of A(xx)

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52 t61 t62
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t241 t422 t481 t312 t191 t202 t431 t92 t141 t512 t381 t402
47 83 95 61 37 40 85 18 27 102 75 80

13 14 15 16 17 18 19 20 21 22 23 24

t71 t72 t81 t82 t91 t92 t101 t102 t111 t112 t121 t122
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t91 t292 t331 t182 t41 t72 t281 t492 t521 t382 t231 t272
17 58 65 36 7 14 55 98 103 76 45 54

25 26 27 28 29 30 31 32 33 34 35 36

t131 t132 t141 t142 t151 t152 t161 t162 t171 t172 t181 t182
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t471 t162 t181 t52 t421 t472 t131 t362 t371 t252 t81 t142
93 32 35 10 83 94 25 72 73 50 15 28

37 38 39 40 41 42 43 44 45 46 47 48

t191 t192 t201 t202 t211 t212 t221 t222 t231 t232 t241 t242
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t321 t32 t31 t452 t271 t342 t511 t232 t221 t122 t461 t2
63 6 5 90 53 68 101 46 43 24 91 2

49 50 51 52 53 54 55 56 57 58 59 60

t251 t252 t261 t262 t271 t272 t281 t282 t291 t292 t301 t302
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t171 t432 t411 t322 t121 t212 t361 t102 t71 t522 t311 t412
33 86 81 64 23 42 71 20 13 104 61 82

61 62 63 64 65 66 67 68 69 70 71 72

t311 t312 t321 t322 t331 t332 t341 t342 t351 t352 t361 t362
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t21 t302 t261 t192 t501 t82 t211 t502 t451 t392 t161 t282
3 60 51 38 99 16 41 100 89 78 31 56
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73 74 75 76 77 78 79 80 81 82 83 84

t371 t372 t381 t382 t391 t392 t401 t402 t411 t412 t431 t422
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t401 t172 t111 t62 t351 t482 t61 t372 t301 t262 t1 t152
79 34 21 12 69 96 11 74 59 52 1 30

85 86 87 88 89 90 91 92 93 94 95 96

t431 t432 t441 t442 t451 t452 t461 t462 t471 t472 t481 t482
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t251 t42 t491 t462 t201 t352 t441 t242 t151 t132 t391 t22
49 8 97 92 39 70 87 48 29 26 77 4

97 98 99 100 101 102 103 104

t491 t492 t501 t502 t511 t512 t521 t522
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t101 t442 t341 t332 t51 t222 t291 t112
19 88 67 66 9 44 57 22

Table 7.11: Automorphisms of A(yy)

1 2 3 4 ... 101 102 103 104

t1 t2 t3 t4 ... t511 t512 t521 t522
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t1 t4 t3 ... t512 t511 t522 t521
2 1 4 3 ... 102 101 104 103
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From Table 7.10 and 7.11, we can construct permutations for A(xx) and A(yy)

by using our labels from each automorphism. Consider element #1 be denoted as t1

from Table 5.5. This produces the permutation (1, 47, 91, 87, 97, 19, 55, 71, 31,

25, 93, 29, 83). If we follow each element and its corresponding automorphism number

labeling and repeating the process for xx, we produce the following permutations:

A(xx) = (1, 47, 91, 87, 97, 19, 55, 71, 31, 25, 93, 29, 83),

(3, 95, 77, 69, 89, 39, 5, 37, 63, 51, 81, 59, 61),

(7, 85, 49, 33, 73, 79, 11, 75, 21, 103, 57, 13, 17),

(9, 27, 35, 15, 65, 99, 67, 41, 53, 23, 45, 43, 101),

(2, 84, 30, 94, 26, 32, 72, 56, 20, 98, 88, 92, 48),

(4, 62, 60, 82, 52, 64, 38, 6, 40, 90, 70, 78, 96),

(8, 18, 14, 58, 104, 22, 76, 12, 80, 74, 34, 50, 86),

(10, 102, 44, 46, 24, 54, 42, 68, 100, 66, 16, 36, 28)

Likewise for yy.

A(yy) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16),

(17, 18)(19, 20)(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32),

(33, 34)(35, 36)(37, 38)(39, 40)(41, 42)(43, 44)(45, 46)(47, 48),

(49, 50)(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64),

(65, 66)(67, 68)(69, 70)(71, 72)(73, 74)(75, 76)(77, 78)(79, 80),

(81, 82)(83, 84)(85, 86)(87, 88)(89, 90)(91, 92)(93, 94)(95, 96),

(97, 98)(99, 100)(101, 102)(103, 104).

Therefore, we have constructed a permutation representation from our matrices.

Creating a Presentation of the Progenitor

To construct a presentation for the progenitor we must choose a t to normalize

from our two choices < t1 > ∗ < t2 > . Let t ∼ t1. Now we find permutations which

normalizes < t1 > or fixes the following set

{t1, t21, t31, t41, t51, t61, t71, t81, t91, t101 , t111 , t121 , t131 , t141 , ..., t521 }. This is a defining characteristic

of a monomial progenitors. Monomial progenitors fix a set of t′s while permutation
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progenitors fix only one specific ti.

By using Magma we were able to find the stabiliser of t.

> Sch:=SchreierSystem(G,sub<G|Id(G)>);
> ArrayP:=[Id(N): i in [1..#N]];
> for i in [2..#N] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
for|for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> Normaliser:=Stabiliser(N,{1,3,5,7,9,11,13,15,17,19,21,23,
>25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,
>61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93, 95,
>97,99,101,103});

> Normaliser.1;

>A1:=N!(1, 55, 83, 19, 29, 97, 93, 87, 25, 91, 31, 47, 71)
>(2, 72, 48, 32, 92, 26, 88, 94, 98, 30, 20, 84, 56)
>(3, 5, 61, 39, 59, 89, 81, 69, 51, 77, 63, 95, 37)
>(4,38, 96, 64, 78, 52, 70, 82, 90, 60, 40, 62, 6)
>(7, 11, 17, 79, 13, 73, 57,33, 103, 49, 21, 85, 75)
>(8, 76, 86, 22, 50, 104, 34, 58, 74, 14, 80, 18,12)
>(9, 67, 101, 99, 43, 65, 45, 15, 23, 35, 53, 27, 41)
>(10, 42, 28, 54, 36,24, 16, 46, 66, 44, 100, 102, 68);

> for i in [1..26] do if ArrayP[i] eq A1 then Sch[i]; end if;
>end for;
xˆ6

To include permutation that fixes one to our presentation we must convert this

permutation into words. The code from above was used to find the following: A1 = x6.

We look at the permutation xx6 = (1, 55, 83, ), 1 goes to 55, so we check the label in

our Table 7.10 where the element is 28, thus the automorphism is t281
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A1 → tx
6

= t281 .

So, a presentation for the progenitor is 53∗2 :m (13 : 4) = G < x, y, t >:= Group <

x, y, t|y2, (x−1 ∗ y)2, x(−13), t53, tx
6

= t28 >;

To check if our progenitor is correct we apply Grindstaff ′s Lemma. Our symmetric

generators are t1 and t2. We want to add to the above presentation that all ti′s commute;

that is, (t1, t2). Now t2 = ty.

So we check if

53∗4 :m (13 : 4) = G < x, y, t >:= Group < x, y, t|y2, (x−1 ∗ y)2, x(−13), t53, tx
6

= t28 >

factored by (t, ty) is the group 532 :m (13 : 4) of order 532 × (13× 4).

G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2, xˆ(-13),
tˆ53,
tˆ(xˆ6)=tˆ28, (t,tˆy)>;

print Index(G,sub<G|x,y>: CosetLimit:=9ˆ10,
Hard:=true, Print:=2);

Next, we find finite homomorphic images of the progenitor 53∗2 :m (13 : 4). Thus, we

factor the progenitor by additional relations. Here, we have factored by first order

relations.

for r,s,u,v,w,z,aa,bb,cc,dd,ee,ff,gg,hh,ii,jj,
kk,ll,mm,nn,oo,pp,qq,rr in [0..10] do
G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2, xˆ(-13),
tˆ53,
tˆ(xˆ6)=tˆ28,(y*(tˆ5)ˆ(xˆ2))ˆr, (y*(tˆ3)ˆ(x * y))ˆs,
(y*(tˆ3)ˆ(y * x))ˆu, (y*(tˆ12)ˆ(xˆ-2))ˆv,(y*(tˆ5)ˆ(xˆ-2))ˆw,
(y*(tˆ12)ˆ(x*y))ˆz, (y*tˆ(x * yˆ-1))ˆaa, (y*(tˆ4)ˆ(xˆ2))ˆbb,
(y*(tˆ3)ˆ(xˆ3))ˆcc, (y*(tˆ12)ˆ(xˆ-1))ˆdd, (y*(tˆ10)ˆ(x))ˆee,
(y*(tˆ7)ˆ(xˆ-1))ˆff,(y*(tˆ2)ˆ(xˆ-2))ˆgg, (y*(tˆ2)ˆ(xˆ-1))ˆhh,
(y*(tˆ3)ˆ(xˆ2 * y))ˆii, (y*(tˆ8)ˆ(x * y))ˆjj,(y*(tˆ34)ˆ(y))ˆkk,
(y*(tˆ2)ˆ(xˆ3))ˆll, (y*(tˆ10)ˆ(xˆ2))ˆmm,(y*(tˆ6)ˆ(xˆ-2))ˆnn,
(y*(tˆ6)ˆ(yˆ-1 * x))ˆoo,(y*tˆ(xˆ2 * yˆ-1))ˆpp,
(y*(tˆ6)ˆ(xˆ-1))ˆqq, (y*(tˆ41)ˆ(yˆ2))ˆrr>;
if #G gt 26 then
#G,r,s,u,v,w,z,aa,bb,cc,dd,ee,ff,gg,hh,ii,jj,
kk,ll,mm,nn,oo,pp,qq,rr;
end if;
end for;

Homomorphic Images of 53∗4 :m (13 : 4) were found, please see Chapter 10.
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Chapter 8

Progenitors with no Images Due

to MAGMA Resources

8.1 Monomial Progenitor 7∗8 :m (32 : 8)

To construct a monomial presentation of 7∗2 :m (32 : 8), we must induce a linear

character from a subgroup H of G. We must choose a subgroup with index matching

the degree of an irreducible character of G by considering the character table of G in

Table 5.1 and note G has characters χ.1, χ.2, ..., χ.9. We proceed using χ.9 and look for

a subgroup of order 8 so that |G||H| = 72
9 = 8.

Since the index of the two groups is 8 this implies, if a matrix representation is faithful

then A(xx), A(yy), and A(zz) will be represented by a 8× 8 matrices.

Verifying the Induction

We produce a character table for χ.9 in table 5.2. First we will verify the

induction χ.2 of H to χ.9 of G by considering the irreducible characters φ of H and

φG of G. G is generated by x, y, and z, where x = (1, 2, 9)(3, 4, 5)(6, 7, 8), y :=

(1, 4, 7)(2, 5, 8)(3, 6, 9), and z = (1, 6, 4, 5, 2, 3, 8, 7). But one of the generators is redun-

dant, thus using 2 instead of 3 generators is efficient. Then the matrix representation

will be A(xx) and A(zz).

The Conjugacy classes of group G are
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C1 = Id(G)

C2 = (1, 4)(2, 3)(5, 9)(6, 8), (1, 7)(2, 6)(3, 5)(8, 9), (1, 6)(2, 8)(3, 4)(7, 9), ...

C3 = (1, 2, 9)(3, 4, 5)(6, 7, 8), (1, 3, 8)(2, 4, 6)(5, 7, 9), (1, 9, 2)(3, 5, 4)(6, 8, 7), ...

C4 = (1, 4, 2, 8)(3, 7, 6, 5), (1, 2, 3, 5)(4, 6, 9, 7), (1, 3, 6, 4)(2, 7, 8, 9), ...

C5 = (1, 7, 5, 8)(2, 3, 4, 9), (1, 5, 3, 2)(4, 7, 9, 6), (2, 6, 9, 5)(3, 7, 8, 4), ..

C6 = (1, 6, 4, 5, 2, 3, 8, 7), (1, 8, 6, 3, 7, 9, 2, 5), (1, 5, 7, 6, 9, 8, 3, 4), ...

C7 = (1, 9, 7, 2, 5, 3, 8, 4), (1, 2, 4, 9, 6, 8, 3, 7), (1, 5, 8, 6, 2, 7, 4, 3), ...

C8 = (1, 5, 9, 2, 8, 4, 6, 7), (1, 6, 2, 9, 3, 7, 5, 4), (1, 4, 8, 3, 5, 2, 7, 9), ...

C9 = (1, 2, 6, 5, 8, 7, 9, 4), (2, 8, 6, 4, 9, 3, 5, 7), (1, 9, 5, 6, 3, 4, 2, 7), ...

Consider the subgroup H of G given below.

H = Id(G), (1, 6, 5)(2, 7, 3)(4, 9, 8), (1, 3, 8)(2, 4, 6)(5, 7, 9)

The conjugacy classes of H are

D1 = Id(G)

D2 = (1, 6, 5)(2, 7, 3)(4, 9, 8)

D3 = (1, 5, 6)(2, 3, 7)(4, 8, 9)

D4 = (1, 3, 8)(2, 4, 6)(5, 7, 9)

D5 = (1, 8, 3)(2, 6, 4)(5, 9, 7)

D6 = (1, 2, 9)(3, 4, 5)(6, 7, 8)

D7 = (1, 9, 2)(3, 5, 4)(6, 8, 7)

D8 = (1, 4, 7)(2, 5, 8)(3, 6, 9)

D9 = (1, 7, 4)(2, 8, 5)(3, 9, 6)

From the character tables of G and H we are going to use the information we

labeled as φ of H and φG of G. By the definition of induction we induce the character

φ = χ.2 of H up to φG = χ.9 of G to obtain the character φG of G.

φ ↑GH

φGα = n
hα

∑
w∈H∩Cα φ(w), where n = |G|

|H| = 72
9 = 8 and hα is the size of χ.9 in Table 5.3.
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φG1 = 8
1

∑
w∈H∩C1

φ(w)

which implies φG1 = 8
1(φ(1)) = 8(1) = 8.

φG2 = 8
9

∑
w∈H∩C2

φ(w)

=⇒ φG2 = 8
9

∑
w∈H∩C2

φ(w)=8
9(0) = 0 (since H ∩ C2 = φ)

φG3 = 8
8

∑
w∈H∩C3

φ(w)

=⇒ φG3 = 1(1φ((1, 2, 9)(3, 4, 5)(6, 7, 8)) + 1φ((1, 3, 8)(2, 4, 6)(5, 7, 9))

+ 1φ((1, 9, 2)(3, 5, 4)(6, 8, 7) + 1φ((1, 6, 5)(2, 7, 3)(4, 9, 8)) + 1φ((1, 7, 4)

(2, 8, 5)(3, 9, 6)) + 1φ((1, 4, 7)(2, 5, 8)(3, 6, 9)) + 1φ((1, 8, 3)(2, 6, 4)(5, 9, 7))

+ 1φ((1, 5, 6)(2, 3, 7)(4, 8, 9))) = Z1 + (−Z1− 1) + 1 + 1

+ Z1 + (−Z1− 1) + Z1 + (−Z1− 1) = −1

φG4 = 8
9

∑
w∈H∩C4

φ(w)

=⇒ φG4 = 8
9

∑
w∈H∩C4

φ(w)=8
9(0) = 0 (since H ∩ C4 = φ)

φG5 = 8
9

∑
w∈H∩C5

φ(w)

=⇒ φG5 = 8
9

∑
w∈H∩C5

φ(w)=8
9(0) = 0 (since H ∩ C5 = φ)

φG6 = 8
9

∑
w∈H∩C6

φ(w)

=⇒ φG6 = 8
9

∑
w∈H∩C6

φ(w)=8
9(0) = 0 (since H ∩ C6 = φ)

φG7 = 8
9

∑
w∈H∩C7

φ(w)

=⇒ φG7 = 8
9

∑
w∈H∩C7

φ(w)=8
9(0) = 0 (since H ∩ C7 = φ)
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φG8 = 8
9

∑
w∈H∩C8

φ(w)

=⇒ φG8 = 8
9

∑
w∈H∩C8

φ(w)=8
9(0) = 0 (since H ∩ C8 = φ)

=⇒ φG9 = 8
9

∑
w∈H∩C9

φ(w)=8
9(0) = 0 (since H ∩ C9 = φ)

So φ ↑GH= (8, 0,−1, 0, 0, 0, 0, 0, 0) and we have verified that χ.2 of H induces χ.9 of

G.

>CG[9];
( 8, 0, -1, 0, 0, 0, 0, 0, 0 )

Table 8.1: Character Table of G

χ C1 C2 C3 C4 C5 C6 C7 C8 C9

χ.1 1 1 1 1 1 1 1 1 1
χ.2 1 -1 1 1 1 -1 -1 -1 -1
χ.3 1 1 1 −1 −1 I −I I −I
χ.4 1 1 1 −1 −1 −I I −I I
χ.5 1 -1 1 I −I Z1 Z1#3 -Z1 −Z1#3
χ.6 1 -1 1 −I I Z1#3 Z1 −Z1#3 −Z1
χ.7 1 -1 1 -I I −Z1#3 −Z1 Z1#3 Z1
χ.8 1 -1 1 I −I −Z1 −Z1#3 Z1 Z1#3
χ.9 8 0 -1 0 0 0 0 0 0

# denotes algebraic conjugation.
Z1 is the primitive three root of unity. I is Root of Unity four.

Table 8.2: Character Table of H

χ D1 D2 D3 D4 D5 D6 D7 D8 D9

χ.1 1 1 1 1 1 1 1 1 1
χ.2 1 J −1− J 1 1 J −J − 1 J −1− J
χ.3 1 −1− J J 1 1 −1− J J − 1 -J J
χ.4 1 1 1 J −1− J J − 1 −J − 1 −J J
χ.5 1 J −1− J J − 1 −J − 1 −J J 1 1
χ.6 1 −1− J J J − 1 −J 1 1 J − 1 -J
χ.7 1 1 1 −1− J J − 1 −J J J − 1 -J
χ.8 1 J − 1 -J-1 −J J 1 1 −1− J J
χ.9 1 −1− J J − 1 −J J J-1 −J 1 1
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Before we verify the monomial representation of the matrices we must find

the exact value of Z1. Noticed the order | < Z > | = 3 that means we must find the

GFq(field) 3 3
p−1 has a subgroup isomorphic to < Z > prime p 3 3

p−1 . Implies p = 7.

Since 3
7−1 = 3

6 . Thus Z7 − {0} =< 2 > since 26 = 1 mod 7. We apply the following

formula: |ak| = |a|
gcd(k,|a|) where a = 2. Since the generator of the cyclotomic field 7 is 2

and |2| = 6.

Thus,

|2k| = |2|
gcd(k, |2|)

|2k| = 6

gcd(k, 6)

where |2k| = 3.

Hence, k = 2, 4.

|4| = |22| = 3

|16| = |24| = 3

Take the first order Z = 4 where ka = 24 = 2 mod 7 Now we can replace Z1 with 2 to

calculate every entry of CG[9], CH[2], and matrix.

Table 8.3: χ.9 of G

φG Class Size Class Representative

8 C1 1 Id(G)

0 C2 9 (1, 9)(3, 7)(4, 6)(5, 8)

−1 C3 8 (1, 2, 9)(3, 4, 5)(6, 7, 8)

0 C4 9 (1, 7, 9, 3)(4, 5, 6, 8)

0 C5 9 (1, 3, 9, 7)(4, 8, 6, 5)

0 C6 9 (1, 5, 7, 6, 9, 8, 3, 4)

0 C7 9 (1, 6, 3, 5, 9, 4, 7, 8)

0 C8 9 (1, 8, 7, 4, 9, 5, 3, 6)

0 C9 9 (1, 4, 3, 8, 9, 6, 7, 5)
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Table 8.4: χ.2 of H

φ Class Size Class Representative

1 D1 1 Id(H)

Z1 D2 1 (1, 6, 5)(2, 7, 3)(4, 9, 8)

−Z1− 1 D3 1 (1, 5, 6)(2, 3, 7)(4, 8, 9)

1 D4 1 (1, 3, 8)(2, 4, 6)(5, 7, 9)

1 D5 1 (1, 8, 3)(2, 6, 4)(5, 9, 7)

Z1 D6 1 (1, 2, 9)(3, 4, 5)(6, 7, 8)

−Z1− 1 D7 1 (1, 9, 2)(3, 5, 4)(6, 8, 7)

Z1 D8 1 (1, 4, 7)(2, 5, 8)(3, 6, 9)

−Z1− 1 D9 1 (1, 7, 4)(2, 8, 5)(3, 9, 6)

Equivalencies from table to construct matrix: 1 = 1,
Z1 = 2.

Now prove the monomial representation has the following generators:

A(xx) =



Z1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 Z1 0 0 0 0 0

0 0 0 Z1 0 0 0 0

0 0 0 0 −Z1− 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −Z1− 1 0

0 0 0 0 0 0 0 −Z1− 1


,

and

A(zz) =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0





231

Verifying the Monomial Representation

Since we have a linear character φ of the subgroup H of index 8 in G we let

G = Ht1 ∪Ht2 ∪Ht3 ∪Ht4 ∪Ht5 ∪Ht6 ∪Ht7 ∪Ht8 where the t′is are transversals of

G acting on H.

That is G = He ∪ H(1, 6, 4, 5, 2, 3, 8, 7) ∪ H(1, 4, 2, 8)(3, 7, 6, 5) ∪
H(1, 5, 8, 6, 2, 7, 4, 3) ∪ H(1, 2)(3, 6)(4, 8)(5, 7) ∪ H(1, 3, 4, 7, 2, 6, 8, 5)

∪ H(1, 8, 2, 4)(3, 5, 6, 7) ∪ H(1, 7, 8, 3, 2, 5, 4, 6).

Continuing the process in a 8x8 matrix:

A(xx) =



φ(t1xt
−1
1 ) φ(t1xt

−1
2 ) φ(t1xt

−1
3 ) ... φ(t1xt

−1
7 ) φ(t1xt

−1
8 )

φ(t2xt
−1
1 ) φ(t2xt

−1
2 ) φ(t2xt

−1
3 ) ... φ(t2xt

−1
7 ) φ(t2xt

−1
8 )

φ(t3xt
−1
1 ) φ(t3xt

−1
2 ) φ(t3xt

−1
3 ) ... φ(t3xt

−1
7 ) φ(t3xt

−1
8 )

... φ(t4xt
−1
2 ) φ(t4xt

−1
3 ) ... φ(t4xt

−1
7 ) φ(t4xt

−1
8 )

... φ(t5xt
−1
2 ) φ(t5xt

−1
3 ) ... φ(t5xt

−1
7 ) φ(t5xt

−1
8 )

... φ(t6xt
−1
2 ) φ(t6xt

−1
3 ) ... φ(t6xt

−1
7 ) φ(t6xt

−1
8 )

φ(t7xt
−1
1 ) φ(t7xt

−1
2 ) φ(t7xt

−1
3 ) ... φ(t7xt

−1
7 ) φ(t7xt

−1
8 )

φ(t8xt
−1
1 ) φ(t8xt

−1
2 ) φ(t8xt

−1
3 ) ... φ(t8xt

−1
7 ) φ(t8xt

−1
8 )



We will calculate all 8 elements of the matrix using the following calculation where

t1 = e, t2 = (1, 6, 4, 5, 2, 3, 8, 7), t3 = (1, 4, 2, 8)(3, 7, 6, 5), t4 = (1, 5, 8, 6, 2, 7, 4, 3),

t5 = (1, 2)(3, 6)(4, 8)(5, 7), t6 = (1, 3, 4, 7, 2, 6, 8, 5), t7 = (1, 8, 2, 4)(3, 5, 6, 7), t8 =

(1, 7, 8, 3, 2, 5, 4, 6) and x = (1, 2, 9)(3, 4, 5)(6, 7, 8) with each ti corresponding to each

transversal respectively from the G listed above. We will start by calculating the mul-

tiplication of tixt
−1
j .

φ(t1xt
−1
1 ) = φ(e(1, 2, 9)(3, 4, 5)(6, 7, 8)e−1) = φ((1, 2, 9)(3, 4, 5)(6, 7, 8)). We will go di-

rectly to what φ(t1xt
−1
1 ) is equal to. Since (1, 2, 9)(3, 4, 5)(6, 7, 8) ∈ H. We look back

to our Table 5.4 noticed

φ((1, 2, 9)(3, 4, 5)(6, 7, 8)) is in class D6=Z1. Therefore, the nonzero entry for Row 1 is

Z1. We proceed as follows:
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Row 1:

φ(t1xt
−1
1 ) = φ((1, 2, 9)(3, 4, 5)(6, 7, 8)) = Z1 = 2

( since φ((1, 2, 9)(3, 4, 5)(6, 7, 8)) ∈ D6)

φ(t1xt
−1
2 ) = φ((1, 5, 2, 9, 7, 3, 6, 8)) = 0

φ(t1xt
−1
3 ) = φ((1, 4, 6, 3)(2, 9, 8, 7)) = 0

φ(t1xt
−1
4 ) = φ((1, 6, 2, 9, 3, 7, 5, 4)) = 0

φ(t1xt
−1
5 ) = φ((2, 9)(3, 8)(4, 7)(5, 6)) = 0

φ(t1xt
−1
6 ) = φ((1, 7, 6, 4, 8, 2, 9, 5)) = 0

φ(t1xt
−1
7 ) = φ((1, 8, 5, 7)(2, 9, 4, 3)) = 0

φ(t1xt
−1
8 ) = φ((1, 3, 5, 8, 4, 2, 9, 6)) = 0

Row 2:

φ(t2xt
−1
1 ) = φ((1, 7, 2, 4, 3, 6, 5, 9)) = 0

φ(t2xt
−1
2 ) = φ((1, 8, 3)(2, 6, 4)(5, 9, 7)) = 1

( since φ((1, 8, 3)(2, 6, 4)(5, 9, 7)) ∈ D5)

φ(t2xt
−1
3 ) = φ((1, 3, 7, 4, 5, 9, 8, 2)) = 0

φ(t2xt
−1
4 ) = φ((1, 2, 7, 6)(3, 8, 5, 9)) = 0

φ(t2xt
−1
5 ) = φ((1, 5, 9, 2, 8, 4, 6, 7)) = 0

φ(t2xt
−1
6 ) = φ((1, 4)(2, 3)(5, 9)(6, 8)) = 0

φ(t2xt
−1
7 ) = φ((1, 6, 3, 5, 9, 4, 7, 8)) = 0

φ(t2xt
−1
8 ) = φ((2, 5, 9, 6)(3, 4, 8, 7)) = 0

Row 3:

φ(t3xt
−1
1 ) = φ((1, 5, 4, 9)(2, 6, 3, 8)) = 0

φ(t3xt
−1
2 ) = φ((1, 4, 9, 7, 8, 5, 6, 2)) = 0

φ(t3xt
−1
3 ) = φ((1, 6, 5)(2, 7, 3)(4, 9, 8)) = Z1 = 2

( since φ((1, 6, 5)(2, 7, 3)(4, 9, 8) ∈ D2)

φ(t3xt
−1
4 ) = φ((2, 8, 6, 4, 9, 3, 5, 7)) = 0

φ(t3xt
−1
5 ) = φ((1, 7, 5, 8)(2, 3, 4, 9)) = 0

φ(t3xt
−1
6 ) = φ((1, 8, 7, 4, 9, 5, 3, 6)) = 0

φ(t3xt
−1
7 ) = φ((1, 3)(2, 5)(4, 9)(6, 7)) = 0
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φ(t3xt
−1
8 ) = φ((1, 2, 4, 9, 6, 8, 3, 7)) = 0

Row 4:

φ(t4xt
−1
1 ) = φ((1, 3, 2, 8, 7, 5, 6, 9)) = 0

φ(t4xt
−1
2 ) = φ((1, 2, 3, 5)(4, 6, 9, 7)) = 0

φ(t4xt
−1
3 ) = φ((1, 5, 7, 6, 9, 8, 3, 4)) = 0

φ(t4xt
−1
4 ) = φ((1, 4, 7)(2, 5, 8)(3, 6, 9)) = Z1 = 2

( since φ((1, 4, 7)(2, 5, 8)(3, 6, 9) ∈ D8)

φ(t4xt
−1
5 ) = φ((1, 6, 9, 2, 4, 8, 5, 3)) = 0

φ(t4xt
−1
6 ) = φ((2, 6, 9, 5)(3, 7, 8, 4)) = 0

φ(t4xt
−1
7 ) = φ((1, 7, 3, 8, 6, 9, 4, 2)) = 0

φ(t4xt
−1
8 ) = φ((1, 8)(2, 7)(4, 5)(6, 9)) = 0

Row 5:

φ(t5xt
−1
1 ) = φ((1, 9)(3, 7)(4, 6)(5, 8)) = 0

φ(t5xt
−1
2 ) = φ((1, 9, 7, 2, 5, 3, 8, 4)) = 0

φ(t5xt
−1
3 ) = φ((1, 9, 8, 6)(2, 4, 7, 5)) = 0

φ(t5xt
−1
4 ) = φ((1, 9, 3, 2, 6, 7, 4, 8)) = 0

φ(t5xt
−1
5 ) = φ((1, 9, 2)(3, 5, 4)(6, 8, 7)) = −Z1− 1 = −2− 1 = 4 mod 7

( since φ((1, 9, 2)(3, 5, 4)(6, 8, 7) ∈ D7)

φ(t5xt
−1
6 ) = φ((1, 9, 5, 6, 3, 4, 2, 7)) = 0

φ(t5xt
−1
7 ) = φ((1, 9, 4, 5)(2, 8, 3, 6)) = 0

φ(t5xt
−1
8 ) = φ((1, 9, 6, 5, 7, 8, 2, 3)) = 0

Row 6:

φ(t6xt
−1
1 ) = φ((1, 4, 8, 3, 5, 2, 7, 9)) = 0

φ(t6xt
−1
2 ) = φ((1, 6)(2, 8)(3, 4)(7, 9)) = 0

φ(t6xt
−1
3 ) = φ((2, 3, 6, 7, 9, 8, 5, 4)) = 0

φ(t6xt
−1
4 ) = φ((1, 7, 9, 3)(4, 5, 6, 8)) = 0

φ(t6xt
−1
5 ) = φ((1, 8, 6, 3, 7, 9, 2, 5)) = 0
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φ(t6xt
−1
6 ) = φ((1, 3, 8)(2, 4, 6)(5, 7, 9)) = 1

( since φ((1, 3, 8)(2, 4, 6)(5, 7, 9) ∈ D4)

φ(t6xt
−1
7 ) = φ((1, 2, 6, 5, 8, 7, 9, 4)) = 0

φ(t6xt
−1
8 ) = φ((1, 5, 3, 2)(4, 7, 9, 6)) = 0

Row 7:

φ(t7xt
−1
1 ) = φ((1, 6, 8, 9)(2, 5, 7, 4)) = 0

φ(t7xt
−1
2 ) = φ((2, 4, 5, 8, 9, 7, 6, 3)) = 0

φ(t7xt
−1
3 ) = φ((1, 7)(2, 6)(3, 5)(8, 9)) = 0

φ(t7xt
−1
4 ) = φ((1, 8, 9, 3, 4, 6, 5, 2)) = 0

φ(t7xt
−1
5 ) = φ((1, 3, 6, 4)(2, 7, 8, 9)) = 0

φ(t7xt
−1
6 ) = φ((1, 2, 8, 9, 5, 4, 7, 3)) = 1

φ(t7xt
−1
7 ) = φ((1, 5, 6)(2, 3, 7)(4, 8, 9)) = −Z1− 1 = 4 mod 7

( since φ((1, 5, 6)(2, 3, 7)(4, 8, 9) ∈ D3)

φ(t7xt
−1
8 ) = φ((1, 4, 3, 8, 9, 6, 7, 5)) = 0

Row 8:

φ(t8xt
−1
1 ) = φ((1, 8, 4, 7, 6, 2, 3, 9)) = 0

φ(t8xt
−1
2 ) = φ((1, 3, 9, 7)(4, 8, 6, 5)) = 0

φ(t8xt
−1
3 ) = φ((1, 2, 5, 6, 4, 3, 9, 8)) = 0

φ(t8xt
−1
4 ) = φ((1, 5)(2, 4)(3, 9)(7, 8)) = 0

φ(t8xt
−1
5 ) = φ((1, 4, 5, 7, 3, 9, 2, 6)) = 0

φ(t8xt
−1
6 ) = φ((1, 6, 7, 2)(3, 9, 5, 8)) = 1

φ(t8xt
−1
7 ) = φ((2, 7, 5, 3, 9, 4, 6, 8)) = 0

φ(t8xt
−1
8 ) = φ((1, 7, 4)(2, 8, 5)(3, 9, 6)) = −Z1− 1 = 4 mod 7

( since φ((1, 7, 4)(2, 8, 5)(3, 9, 6) ∈ D9)

Each φ of H corresponded with a conjugacy class of either H or G. If the element is

in a conjugacy class from H (seen in table 5.4) we write the value of φ for that class.

Since our matrix was produced in cyclotomic field 7, we needed to produce an order 3

element in Z7. In this case, 2 was chosen as the element of order 3. To complete this

process, the matrix for zz should also be verified by repeating the process above where
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zz = (1, 6, 4, 5, 2, 3, 8, 7) and matrix

A(zz) =



φ(t1zt
−1
1 ) φ(t1zt

−1
2 ) φ(t1zt

−1
3 ) ... φ(t1zt

−1
7 ) φ(t1zt

−1
8 )

φ(t2zt
−1
1 ) φ(t2zt

−1
2 ) φ(t2zt

−1
3 ) ... φ(t2zt

−1
7 ) φ(t2zt

−1
8 )

φ(t3zt
−1
1 ) φ(t3zt

−1
2 ) φ(t3zt

−1
3 ) ... φ(t3zt

−1
7 ) φ(t3zt

−1
8 )

... φ(t4zt
−1
2 ) φ(t4zt

−1
3 ) ... φ(t4zt

−1
7 ) φ(t4zt

−1
8 )

... φ(t5zt
−1
2 ) φ(t5zt

−1
3 ) ... φ(t5zt

−1
7 ) φ(t5zt

−1
8 )

... φ(t6zt
−1
2 ) φ(t6zt

−1
3 ) ... φ(t6zt

−1
7 ) φ(t6zt

−1
8 )

φ(t7zt
−1
1 ) φ(t7zt

−1
2 ) φ(t7zt

−1
3 ) ... φ(t7zt

−1
7 ) φ(t7zt

−1
8 )

φ(t8zt
−1
1 ) φ(t8zt

−1
2 ) φ(t8zt

−1
3 ) ... φ(t8zt

−1
7 ) φ(t8zt

−1
8 )


.

Repeating the same process from above we get the following calculations for

each row of the matrix A(zz).

Row 1:

φ(t1zt
−1
1 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t1zt
−1
2 ) = φ(e) = 1

φ(t1zt
−1
3 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t1zt
−1
4 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t1zt
−1
5 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t1zt
−1
6 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

φ(t1zt
−1
7 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t1zt
−1
8 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

Row 2:

φ(t2zt
−1
1 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t2zt
−1
2 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t2zt
−1
3 ) = φ(e) = 1

φ(t2zt
−1
4 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t2zt
−1
5 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t2zt
−1
6 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t2zt
−1
7 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0
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φ(t2zt
−1
8 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

Row 3:

φ(t3zt
−1
1 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t3zt
−1
2 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t3zt
−1
3 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t3zt
−1
4 ) = φ(e) = 1

φ(t3zt
−1
5 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t3zt
−1
6 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t3zt
−1
7 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t3zt
−1
8 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

Row 4:

φ(t4zt
−1
1 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

φ(t4zt
−1
2 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t4zt
−1
3 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t4zt
−1
4 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t4zt
−1
5 ) = φ(e) = 1

φ(t4zt
−1
6 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t4zt
−1
7 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t4zt
−1
8 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

Row 5:

φ(t5zt
−1
1 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t5zt
−1
2 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

φ(t5zt
−1
3 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t5zt
−1
4 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t5zt
−1
5 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t5zt
−1
6 ) = φ((e) = 1

φ(t5zt
−1
7 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t5zt
−1
8 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0
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Row 6:

φ(t6zt
−1
1 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t6zt
−1
2 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t6zt
−1
3 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

φ(t6zt
−1
4 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t6zt
−1
5 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t6zt
−1
6 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t6zt
−1
7 ) = φ(e) = 1

φ(t6zt
−1
8 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

Row 7:

φ(t7zt
−1
1 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t7zt
−1
2 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t7zt
−1
3 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t7zt
−1
4 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

φ(t7zt
−1
5 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t7zt
−1
6 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t7zt
−1
7 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

φ(t7zt
−1
8 ) = φ(e) = 1

Row 8:

φ(t8zt
−1
1 ) = φ(e) = 1

φ(t8zt
−1
2 ) = φ((1, 7, 8, 3, 2, 5, 4, 6)) = 0

φ(t8zt
−1
3 ) = φ((1, 8, 2, 4)(3, 5, 6, 7)) = 0

φ(t8zt
−1
4 ) = φ((1, 3, 4, 7, 2, 6, 8, 5)) = 0

φ(t8zt
−1
5 ) = φ((1, 2)(3, 6)(4, 8)(5, 7)) = 0

φ(t8zt
−1
6 ) = φ((1, 5, 8, 6, 2, 7, 4, 3)) = 0

φ(t8zt
−1
7 ) = φ((1, 4, 2, 8)(3, 7, 6, 5)) = 0

φ(t8zt
−1
8 ) = φ((1, 6, 4, 5, 2, 3, 8, 7)) = 0

Therefore, we have proven the monomial representation has the generators
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A(xx) =



2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 4


and

A(zz) =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0


Since |A(xx)| = 3 and |A(zz)| = 8 with |A(xx) · A(zz)| = 8, the order of our in-

dex, we know that 〈A(xx) and A(zz)〉 is a faithful representation of G. We proceed and

produce a permutation representation.

Constructing a Permutation Representation

We worked in Z7 on matrices of degree 8x8 thus we are produce a 7∗8 :m

(32 : 8) progenitor permutation representation based on the monomial representation

(32 : 8) = 〈A(xx), A(zz)〉. Consider the matrix entries for ai,j for A(xx) and A(zz). We

know there are 8 t’s, one for each column of our matrix and because we have a semi-

direct product in our progenitor then the elements of (32 : 8) act as automorphisms of

< t1 > ∗ < t2 > ∗ < t3 > ∗ < t4 > ∗ < t5 > ∗ < t6 > ∗ < t7 > ∗ < t8 > .

Now we find the permutations for our two matrices xx and zz, to do so we use

the following formula

ai,j = 1 if the automorphism takes ti → tj

ai,j = n if the automorphism takes ti → tnj .
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Since 7∗8 is a free product of two cyclic groups of order 6 we will construct a table with

8 t’s of order 6 labeled from 1...48 found in table 5.5. Viewing the entries of A(xx)

a11 = 2, a22 = 1, a33 = 2, a44 = 2, a55 = 4, a66 = 1, a77 = 4, and a88 = 4.

Thus,

t1 → t21,

t2 → t12,

t3 → t23,

t4 → t24,

t5 → t45,

t6 → t16,

t7 → t47,

t8 → t48

Proceeding on finding a permutation representative we must describe Table 5.5. The

top number of the chart labels each element, the middle of the chart shows what the

automorphism produces, and the bottom number shows what that produced element is

numbered on the top of the chart. The same process is conducted for generators zz,

but for Table 5.6 we will only show part of the process.
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Table 8.5: Automorphisms of A(xx)

1 2 3 4 5 6 7 8

t1 t2 t3 t4 t5 t6 t7 t8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t21 t2 t23 t24 t45 t6 t47 t48
9 26 11 12 29 6 31 32

9 10 11 12 13 14 15 16

t21 t22 t32 t42 t52 t62 t72 t82
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t41 t22 t43 t44 t5 t26 t17 t8
25 10 27 28 5 14 7 8

17 18 19 20 21 22 23 24

t31 t32 t33 t34 t35 t36 t37 t38
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t61 t32 t63 t64 t55 t36 t57 t58
41 18 43 44 37 22 39 40

25 26 27 28 29 30 31 32

t41 t42 t43 t44 t45 t46 t47 t48
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t1 t42 t13 t14 t25 t46 t27 t28
1 26 3 4 13 30 15 16

33 34 35 36 37 38 39 40

t51 t52 t53 t54 t55 t56 t57 t58
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t31 t52 t33 t34 t65 t56 t67 t68
17 34 19 20 45 38 47 48

41 42 43 44 45 46 47 48

t61 t62 t63 t64 t65 t66 t67 t68
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t51 t62 t53 t54 t35 t66 t37 t38
33 42 35 36 21 46 23 24
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Viewing the nonzero entries from the monomial representation, A(zz), and

using the formula listed above we have a12 = 1, a23 = 1, a34 = 1, a45 = 1, a56 = 1,

a67 = 1, a78 = 1, and a81 = 1.

Thus,

t1 → t12,

t2 → t13,

t3 → t14,

t4 → t15,

t5 → t16,

t6 → t17,

t7 → t18,

t8 → t11.

Table 8.6: Automorphisms of A(zz)

1 2 3 4 5 6 7 8 ... 47 48

t1 t2 t3 t4 t5 t6 t7 t8 ... t67 t68
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t3 t4 t5 t6 t7 t8 t1 ... t68 t61
1 2 3 4 5 6 7 8 ... 47 48

From Table 5.5 and 5.6, we can construct permutations for A(xx) and A(zz)

by using our labels from each automorphism. Consider element #1 be denoted as t1

from Table 5.5. This produces the permutation (1, 9, 25). If we follow each element and

its corresponding automorphism number labeling and repeating the process for xx, we

produce the following permutations:

A(xx) = (1, 9, 25), (17, 41, 33), (3, 11, 27), (19, 43, 35), (4, 12, 28), (20, 44, 36),

(5, 29, 13), (21, 37, 45) (7, 31, 15), (23, 39, 47), (8, 32, 16), (24, 40, 48)

Likewise for zz.
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A(zz) = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16),

(17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32),

(33, 34, 35, 36, 37, 38, 39, 40)(41, 42, 43, 44, 45, 46, 47, 48)

Therefore, we have constructed a permutation representation from our matrices.

Creating a Presentation of the Progenitor

To construct a presentation for the progenitor we must choose a t to normalize

from our eight choices < t1 > ∗ < t2 > ∗ < t3 > ∗ < t4 > ∗ < t5 > ∗ < t6 > ∗ < t7 >

∗ < t8 > . Let t ∼ t1. Now we find permutations which normalizes < t1 > or fixes the

following set

{t1, t21, t31, t41, t51, t61}. This is a defining characteristic of a monomial progenitors. Mono-

mial progenitors fix a set of t′s while permutation progenitors fix only one specific ti.

Using MAGMA we were able to find

> Sch:=SchreierSystem(G,sub<G|Id(G)>);
> ArrayP:=[Id(N): i in [1..#N]];
> for i in [2..#N] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
for|for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=zz; end if;
for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=zzˆ-1; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> Normaliser:=Stabiliser(N,{1,9,17,25,33,41});

> Stabiliser(N,{1,9,17,25,33,41});
(2, 10, 26)(3, 11, 27)(4, 28, 12)(6, 30, 14)(7, 31, 15)
(8, 16, 32)(18, 42,34)(19, 43, 35)(20, 36, 44)
(22, 38, 46)(23, 39, 47)(24, 48, 40)(1, 25, 9)(3, 27, 11)
(4, 28, 12)(5, 13, 29)(7, 15, 31)
(8, 16, 32)(17, 33,41)(19, 35, 43)(20, 36, 44)(21, 45, 37)
(23, 47, 39)(24, 48, 40)
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>A1:=N!(2, 10, 26)(3, 11, 27)(4, 28, 12)(6, 30, 14)(7, 31, 15)
>(8, 16, 32)(18, 42,34)(19, 43, 35)(20, 36, 44)(22, 38, 46)
>(23, 39, 47)(24, 48, 40);

B1:=N! (1, 25, 9)(3, 27, 11)(4, 28, 12)(5, 13, 29)(7, 15, 31)
>(8, 16, 32)(17, 33,41)(19, 35, 43)(20, 36, 44)(21, 45, 37)
>(23, 47, 39)(24, 48, 40);

> for i in [1..72] do if ArrayP[i] eq A1
then Sch[i]; end if; end for;
x

>for i in [1..72] do if ArrayP[i] eq B1
then Sch[i]; end if; end for;

x * (zˆ4*x*zˆ2*x*zˆ2)ˆ-1

For a presentation we must convert these permutations into words which we

find to be: A1 = x, x stabilises the t′s while B1 =x ∗ (z4 ∗ x ∗ z2 ∗ x ∗ z2)−1 commutes

with the t′s.

We look at the permutation xx = (1, 9, 25),(17, 41, 33), (3, 11, 27), (19, 43, 35), ... so x

stabilises 1 which is 9. We check the label in our Table 5.5. If the element is 2, then

the automorphism is t21

A1 → tx = t21.

So, a presentation for the progenitor of 7∗8 :m (32 : 8) is G < x, z, t >:= Group <

x, z, t|x3, (x, z4xz2xz2), (z4xz2xz2)−1z−1x−1z,
z(z4xz2xz2)−1x−1z−1(z4xz2xz2)−1, z8, t7, (t, x(z4xz2xz2)−1), tx = t2 >;

Now we check if our progenitor is correct. We apply Grindstaff’s Lemma. Our symmet-

ric generators are t1, t2, t3, t4, t5, and t6. We want to add to the above presentation

that all ti′s commute; that is, (t1, t2),(t1, t3),(t1, t4), (t1, t5), (t1, t6), (t1, t7), and (t1, t8).

Now t2 = tz, t3 = tz
2
, t4 = tz

3
, t5 = tz

4
, and t6 = tz

5
.

So we check if

7∗8 :m (32 : 8) = G < x, z, t >:= Group < x, z, t|x3, (z4xz2xz2)3, (x, z4xz2xz2),
(z4xz2xz2)−1z−1x−1z, z(z4xz2xz2)−1x−1z−1(z4xz2xz2)−1, z8, t7, (t, x(z4xz2xz2)−1),

tx = t2 >; factored by t2 = tz, t3 = tz
2
, t4 = tz

3
, t5 = tz

4
, t6 = tz

5
, t7 = tz

6
, and t8 = tz

7
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is the group 78 :m (32 : 8) of order 78 × (32 × 8).

G<x,z,t>:=Group<x,z,t|xˆ3,(zˆ4*x*zˆ2*x*zˆ2)ˆ3,
(x,zˆ4*x*zˆ2*x*zˆ2),

(zˆ4*x*zˆ2*x*zˆ2)ˆ-1*zˆ-1*xˆ-1*z,
z*(zˆ4*x*zˆ2*x*zˆ2)ˆ-1*xˆ-1*zˆ-1*(zˆ4*x*zˆ2*x*zˆ2)ˆ-1,zˆ8,
tˆ7,
(t,x * (zˆ4*x*zˆ2*x*zˆ2)ˆ-1),tˆx=tˆ2,
(t,tˆz),(t,tˆ(zˆ2)),(t,tˆ(zˆ3)),(t,tˆ(zˆ4)),(t,tˆ(zˆ5)),
(t,tˆ(zˆ6)),(t,tˆ(zˆ7))>;

print Index(G,sub<G|x,z>: CosetLimit:=9ˆ10,
Hard:=true, Print:=2);

Grinstaff Lemma is verified, the index matches the order of 78 × (32 × 8)=415065672.

Next, we find finite homomorphic images of the progenitor 7∗8 :m (32 : 8). Thus, we

factor the progenitor by additional relations. Here, we have factored by first order

relations.

for a,b,c,d,e,f,g,h in [0..10] do
G<x,y,z,t>:=Group<x,y,z,t|xˆ3,yˆ3,(x,y),yˆ-1*zˆ-1*xˆ-1*z,
z*yˆ-1*xˆ-1*zˆ-1*yˆ-1,zˆ8,
tˆ7,
(t,x * yˆ-1),tˆ(x)=tˆ2, (zˆ4*t)ˆa,(y*t)ˆb, (zˆ2*t)ˆc,
(zˆ-2*t)ˆd,(z*t)ˆe, (zˆ3*t)ˆf,(zˆ-3*t)ˆg, (zˆ-1*t)ˆh>;
if #G gt 72 then
#G, a,b,c,d,e,f,g,h;
end if;
end for;

Progenitors with no images due to MAGMA resources of 7∗8 :m (32 : 8) SInce we do not

get finite homomorphic images for this group, now we are going to show the isomorphism

type of the control group N . We used the following codes to prove the isomorphism

type 32 : 8. The CompositionFactor and the NormalLattice of the group G is listed as:

> G:=TransitiveGroup(9,15);
>CompositionFactors(G);

G
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
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*
| Cyclic(3)

*
| Cyclic(3)
1

> NL:=NormalLattice(G);
> NL;

Normal subgroup lattice
-----------------------

[5] Order 72 Length 1 Maximal Subgroups: 4
---
[4] Order 36 Length 1 Maximal Subgroups: 3
---
[3] Order 18 Length 1 Maximal Subgroups: 2
---
[2] Order 9 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

We continue by finding the largest abelian group. In this case the largest abelian group

is the subgroup NL[2] of order 9. We verify by asking MAGMA the following:

> IsAbelian(NL[2]);
true

Since NL[2] is the largest abelian group, then we verify if it is 3× 3, 32, or 9.

> X:=AbelianGroup(GrpPerm,[3,3]);
> IsIsomorphic(NL[2],X);
true Mapping from: GrpPerm: $, Degree 9,
Order 3ˆ2 to GrpPerm: X

By MAGMA, K is given in the form 3× 3. Now we check what is Q. To do

so, we factor Q by the largest abelian group, NL[2] and labeled it q.

> q,ff:=quo<G|NL[2]>;
> q;
Permutation group q acting on a set of cardinality 8
Order = 8 = 2ˆ3

Id(q)
Id(q)
(1, 2, 3, 4, 5, 6, 7, 8)
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Note q is of order 8.

Now we find the transversal of G and NL[2] and store the transversal as T [2].

> T:=Transversal(G,NL[2]);
> ff(T[2]) eq q!(1, 2, 3, 4, 5, 6, 7, 8);
true

Now find the permutations of NL[2] and store them as A and B.

> NL[2].1;
(1, 6, 5)(2, 7, 3)(4, 9, 8)
> A:=G!(1, 6, 5)(2, 7, 3)(4, 9, 8);
> NL[2].2;
(1, 3, 8)(2, 4, 6)(5, 7, 9)
> B:=G!(1, 3, 8)(2, 4, 6)(5, 7, 9);

Now we write a presentation with a3 and b3 and since we have the semi-direct product,

we check the action of ac =? and bc =?. We have the following presentation with the

unknown action of ac =? and bc =? of the monomial progenitor.

< a, b, c|a3, b3, (a, b), c8, ac =?, bc =? >

Now we use Magma to find the action of ac =? and bc =?.

> for i,j in [0..2] do if AˆT[2] eq Aˆi*Bˆj
then i,j; end if; end for;

0 2
> for i,j in [0..2] do if BˆT[2] eq Aˆi*Bˆj
then i,j; end if; end for;
2 2

After we check the action of c on a and b, we get the following presentation:

H < a, b, c >:= Group < a, b, c|a3, b3, (a, b), c8, ac = b2, bc = a2b2 >;

To verify if the presentation of the isomorphism type of N is correct, we ask MAGMA

the following:

> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);
> IsIsomorphic(G,H1);
true

Therefore, the isomorphism type of N ∼= 32 : 8.
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8.2 Monomial Progenitor 53∗4 :m (13 : 4)

To construct a monomial presentation of 53∗4 :m 13 : 4, first we must induce a linear

character from a subgroup H of G. To insure we get an irreducible character we must

choose a subgroup with index matching the degree of an irreducible character of G. We

consider the character table of G in Table 5.1 and note G has characters χ.1, χ.2, ..., χ.7.

We proceed using χ.5 and look for a subgroup of order 4 so that |G||H| = 52
13 = 4.

Since the index of the two groups is 4. This implies, if a matrix representation is faithful

then A(xx) and A(yy) will be represented by a 4× 4 matrices.

Verifying the Induction

We produce a character table for χ.5 in table 5.2. We will verify the induc-

tion χ.3 of H to χ.5 of G by considering the irreducible characters φ (of H) and φG

(of G). G is generated by x and y, where x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) and

y = (1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6).

The Conjugacy classes of group G are

C1 = Id(G)

C2 = (1, 3)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9), (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7), ... C3 =

(1, 3, 13, 11)(2, 8, 12, 6)(4, 5, 10, 9), (1, 4, 6, 3)(2, 9, 5, 11)(7, 8, 13, 12), ...

C4 = (1, 7, 3, 10)(4, 5, 13, 12)(6, 8, 11, 9), (1, 10, 4, 8)(2, 5, 3, 13)(6, 11, 12, 7), ...

C5 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), (1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6), ...

C6 = (1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4), (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11), ...

C7 = (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5), (1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7), ...

Consider the subgroup H of G given below.

H = Id(G), (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

The conjugacy classes of H are

D1 = Id(G)

D2 = (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)
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D3 = (1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6)

D4 = (1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

D5 = (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11)

D6 = (1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7)

D7 = (1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3)

D8 = (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)

D9 = (1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8)

D10 = (1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4)

D11 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

D12 = (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)

D13 = (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5)

From the character tables of G and H we are going to use only the information

we labeled as φ (of H) and φG (of G). Using our definition of induction we induce the

character φ = χ.3 of H up to φG = χ.5 of G to obtain the character φG of G.

φ ↑GH
φGα = n

hα

∑
w∈H∩Cα φ(w), where n = |G|

|H| = 52
13 = 4.

φG1 = 4
1

∑
w∈H∩C1

φ(w)

which implies φG1 = 4
1(φ(1)) = 4(1) = 4.

φG2 = 4
13

∑
w∈H∩C2

φ(w)

=⇒ φG2 = 4
13

∑
w∈H∩C2

φ(w)=0 (since H ∩ C2 = φ)

φG3 = 4
13

∑
w∈H∩C3

φ(w)

=⇒ φG3 = 4
13

∑
w∈H∩C3

φ(w) = 0 (since H ∩ C3 = φ)

φG4 = 4
13

∑
w∈H∩C4

φ(w)
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=⇒ φG4 = 4
13

∑
w∈H∩C4

φ(w) = 0 (since H ∩ C4 = φ)

φG5 = 4
4

∑
w∈H∩C5

φ(w)

φG5 = 4
4

∑
w∈H∩C5

φ((1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6))

=⇒ φG5 = 1 ∗ φ((1, 9, 4, 12, ...)) + 1 ∗ φ((1, 13, 12, 11, ...)) + 1 ∗ φ((1, 2, 3, ...)) + 1 ∗
φ((1, 6, 11, ...)) = Z(13)413 + Z(13)613 + Z(13)713 + Z(13)913 = 20 mod 53,

since Z(13)13 = 16.

φG6 = 4
4

∑
w∈H∩C6

φ(w)

φG6 = 4
4

∑
w∈H∩C6

φ((1, 11, 8, 2, ...)

=⇒ φG6 = 1 ∗ φ((1, 4, 7, 10, ...)) + 1 ∗ φ((1, 12, 10, 8, ...)) + 1 ∗ φ((1, 3, 5, 7, ...)) + 1 ∗
φ((1, 11, 8, 5, ...)) = Z(13)813 + Z(13)1213 + Z(13)13 + Z(13)513 = 39 mod 53

φG7 = 4
4

∑
w∈H∩C7

φ(w)

φG7 = 4
4

∑
w∈H∩C7

φ((1, 10, 6, 2, 11, ...))

=⇒ φG7 = 1 ∗ φ((1, 10, 6, 2, 11, ...)) + 1 ∗ φ((1, 8, 2, 9, 3, ...)) + 1 ∗ φ((1, 7, 13, 6, 12, ...)) +

1 ∗ φ((1, 5, 9, 13, ...)) = Z(13)1113 + Z(13)1013 + Z(13)313 + Z(13)213 = 46 mod 53.

so φ ↑GH= 4, 0, 0, 0, 20, 39, 46 and we have verified that

χ.3 of H induces χ.5 of G.
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Table 8.7: Character Table of G

χ C1 C2 C3 C4 C5 C6 C7

χ.1 1 1 1 1 1 1 1
χ.2 1 1 -1 -1 1 1 1
χ.3 1 -1 -I I 1 1 1
χ.4 1 -1 I -I 1 1 1
χ.5 4 0 0 0 Z1 Z1#2 Z1#4
χ.6 4 0 0 0 Z1#2 Z1#4 Z1

χ.7 4 0 0 0 Z1#4 Z1 Z1#2

# denotes algebraic conjugation.
Z1 is the primitive thirteen root of unity. I is the primitive fourth root of unity.

Table 8.8: Character Table of H

χ C1 C2 C3 C4 C5 C6 C7 C8 C9

χ.1 1 1 1 1 1 1 1 1 1
χ.2 1 1 1 1 1 -1 -1 -1 -1
χ.3 1 1 1 -1 -1 I -I I -I
χ.4 1 1 1 -1 -1 -I I -I I
χ.5 1 -1 1 I -I Z1 Z1#3 −Z1 −Z1#3
χ.6 1 -1 1 -I I Z1#3 Z1 −Z1#3 −Z1
χ.7 1 -1 1 -I I −Z1#3 −Z1 Z1#3 Z1

χ.8 1 -1 1 I -I −Z1 −Z1#3 Z1 Z1#3
χ.9 8 0 -1 0 0 0 0 0 0

# denotes algebraic conjugation.
Z1 is the primitive thirteen root of unity.

Table 8.9: χ.5 of G

φG Class Size Class Representative

4 C1 1 Id(G)

0 C2 13 (1, 3)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9)

0 C3 13 (1, 10, 3, 7)(4, 12, 13, 5)(6, 9, 11, 8)

0 C4 13 (1, 7, 3, 10)(4, 5, 13, 12)(6, 8, 11, 9)

Z1 = 20 C5 4 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Z1#2 = 39 C6 4 (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)

Z1#4 = 46 C7 4 (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)
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Table 8.10: χ.3 of H

φ Class Size Class Representative

1 D1 1 Id(H)

Z1#2 = 44 D2 1 (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

Z1#4 = 28 D3 1 (1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6)

Z1#6 = 13 D4 1 (1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

Z1#8 = 42 D5 1 (1, 4, 7, 10, 13, 3, 6, 9, 12, 2, 5, 8, 11)

Z1#10 = 46 D6 1 (1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13, 7)

Z1#12 = 10 D7 1 (1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3)

Z1 = 16 D8 1 (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)

Z1#3 = 15 D9 1 (1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8)

Z1#5 = 24 D10 1 (1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4)

Z1#7 = 49 D11 1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

Z1#9 = 36 D12 1 (1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)

Z1#11 = 47 D13 1 (1, 10, 6, 2, 11, 7, 3, 12, 8, 4, 13, 9, 5)

Equivalencies from table to construct matrix: 1 = 1,
Z1 = 16.

With induction taking place, now show the monomial representation has the

following generators:

A(xx) =


Z7
13 0 0 0

0 Z4
13 0 0

0 0 Z6
13 0

0 0 0 Z9
13

, and A(yy) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



Verifying the Monomial Representation

Since we have a linear character φ of the subgroup H of index 4 in G we let

G = Ht1 ∪Ht2 ∪Ht3 ∪Ht4 where the t′is are transversals of G acting on H.

That is G = He ∪ H(1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6) ∪ H(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)

(6, 7) ∪ H(1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)

Continuing the process in a 4x4 matrix:
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A(xx) =


φ(t1xt

−1
1 ) φ(t1xt

−1
2 ) φ(t1xt

−1
3 ) φ(t1xt

−1
4 )

φ(t2xt
−1
1 ) φ(t2xt

−1
2 ) φ(t2xt

−1
3 ) φ(t2xt

−1
4 )

φ(t3xt
−1
1 ) φ(t3xt

−1
2 ) φ(t3xt

−1
3 ) φ(t3xt

−1
4 )

φ(t4xt
−1
1 ) φ(t4xt

−1
2 ) φ(t4xt

−1
3 ) φ(t4xt

−1
4 )



We will calculate all 16 elements of the matrix using the following calculation where

t1 = e, t2 = (1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6),

t3 = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7), t4 = (1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7), and x =

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) with each ti corresponding to each transversal respec-

tively from the G listed before. We will start by calculating the multiplication of tixt
−1
j

and list the resulting permutation rather than show the entire process. For example:

φ(t1xt
−1
1 ) = φ(e(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)e−1) = φ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13). We will go directly to what φ(t1xt
−1
1 ) is equal to. Since (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13) ∈ H. We look back to our Table 5.4 note φ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13))

is in class D11=Z1#7 = 49 mod 53 where Z1 = 16. Therefore, the nonzero entry for

Row 1 is 49. We proceed as follows:

Row 1:

φ(t1xt
−1
1 ) = φ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)) = 49

φ(t1xt
−1
2 ) = φ((1, 3, 6, 4)(2, 11, 5, 9)(7, 12, 13, 8) = 0

φ(t1xt
−1
3 ) = φ((1, 11)(2, 10)(3, 9)(4, 8)(5, 7)(12, 13)) = 0

φ(t1xt
−1
4 ) = φ((1, 10, 3, 7)(4, 12, 13, 5)(6, 9, 11, 8)) = 0

Row 2:

φ(t2xt
−1
1 ) = φ((1, 6, 5, 13)(2, 11, 4, 8)(7, 10, 12, 9)) = 0

φ(t2xt
−1
2 ) = φ((1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6)) = 28

φ(t2xt
−1
3 ) = φ((1, 7, 3, 10)(4, 5, 13, 12)(6, 8, 11, 9)) = 0

φ(t2xt
−1
4 ) = φ((1, 4)(2, 3)(5, 13)(6, 12)(7, 11)(8, 10)) = 0

Row 3:

φ(t3xt
−1
1 ) = φ((1, 13)(2, 12)(3, 11)(4, 10)(5, 9)(6, 8)) = 0

φ(t3xt
−1
2 ) = φ((1, 13, 8, 9)(2, 5, 7, 4)(3, 10, 6, 12)) = 0
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φ(t3xt
−1
3 ) = φ((1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)) = 13

φ(t3xt
−1
4 ) = φ((1, 13, 5, 6)(2, 8, 4, 11)(7, 9, 12, 10)) = 0

Row 4:

φ(t4xt
−1
1 ) = φ((1, 9, 8, 13)(2, 4, 7, 5)(3, 12, 6, 10)) = 0

φ(t4xt
−1
2 ) = φ((1, 7)(2, 6)(3, 5)(8, 13)(9, 12)(10, 11)) = 0

φ(t4xt
−1
3 ) = φ((1, 4, 6, 3)(2, 9, 5, 11)(7, 8, 13, 12)) = 0

φ(t4xt
−1
4 ) = φ((1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9)) = 36

Each φ of H corresponded with a conjugacy class of either H or G. If the element is

in a conjugacy class from H (seen in table 5.4) we write the value of φ for that class.

Since our matrix was produced in cyclotomic field 53, we needed to produce an order

13 element in Z53. In this case, 2 was chosen as the element of order 13. To complete

this process, the matrix for yy should also be verified by repeating the process above.

Row 1:

φ(t1yt
−1
1 ) = φ((1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6)) = 0

φ(t1yt
−1
2 ) = φ(e) = 1

φ(t1yt
−1
3 ) = φ((1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)) = 0

φ(t1yt
−1
4 ) = φ((1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

Row 2:

φ(t2yt
−1
1 ) = φ((1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

φ(t2yt
−1
2 ) = φ((1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6)) = 0

φ(t2yt
−1
3 ) = φ(e) = 1

φ(t2yt
−1
4 ) = φ((1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)) = 0

Row 3:

φ(t3yt
−1
1 ) = φ((1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)) = 0

φ(t3yt
−1
2 ) = φ((1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

φ(t3yt
−1
3 ) = φ((1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6)) = 0
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φ(t3yt
−1
4 ) = φ(e) = 1

Row 4:

φ(t4yt
−1
1 ) = φ(e) = 1

φ(t4yt
−1
2 ) = φ((1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)) = 0

φ(t4yt
−1
3 ) = φ((1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)) = 0

φ(t4yt
−1
4 ) = φ((1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6)) = 0

Therefore,

A(xx) =


49 0 0 0

0 28 0 0

0 0 13 0

0 0 0 36

, and A(yy) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


Since |A(xx)| = 13 and |A(yy)| = 4 with |A(xx) · A(yy)| = 4, the order of our in-

dex, we know that 〈A(xx) and A(yy)〉 is a faithful representation of G. We proceed and

produce a permutation representation.

Constructing a Permutation Representation

We worked in Z13 on matrices of degree 4x4 which implies we are producing a

53∗4 :m 13 : 4 progenitor permutation representation based on the monomial represen-

tation 13 : 4 = 〈A(xx), A(yy)〉. We consider the matrix entries for ai,j for A(xx) and

A(yy). We know there are 4 t’s, one for each column of our matrix and because we have

a semi-direct product in our progenitor then the elements of 13 : 4 act as automorphisms

of < t1 > ∗ < t2 > ∗ < t3 > ∗ < t4 > .

Now we represent xx and yy as permutations. To do so we observe

ai,j = 1 if the automorphism takes ti → tj

ai,j = n if the automorphism takes ti → tnj .

Since 53∗4 is a free product of four cyclic groups of order 52 we will construct a table

with four t’s of order 52 labeled from 1...208 found in table 5.5. Viewing the entries of

A(xx)

a11 = 49, a22 = 28, a33 = 13, and a44 = 36.
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Thus,

t1 → t491 ,

t2 → t282 ,

t3 → t133 .

t4 → t364 .

Proceeding on finding a permutation representative we must describe Table 5.5. The

top number of the chart labels each element, the middle of the chart shows what the

automorphism produces, and the bottom number shows what that produced element is

numbered on the top of the chart. The same process is conducted for generators yy,

but for Table 5.6 we will only show part of the process.
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Table 8.11: Automorphisms of A(xx)

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4 t21 t22 t23 t24 t31 t32 t33 t34
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t491 t282 t133 t364 t451 t32 t263 t194 t411 t312 t393 t24
193 110 51 144 177 10 103 76 161 122 155 8

13 14 15 16 17 18 19 20 21 22 23 24

t41 t42 t43 t44 t51 t52 t53 t54 t61 t62 t63 t64
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t371 t62 t523 t384 t331 t342 t123 t214 t291 t92 t253 t44
145 22 207 152 129 134 47 84 113 34 99 16

25 26 27 28 29 30 31 32 33 34 35 36

t71 t72 t73 t74 t81 t82 t83 t84 t91 t92 t93 t94
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t251 t372 t383 t404 t211 t122 t513 t234 t171 t402 t113 t64
97 146 151 160 81 46 203 92 65 158 43 24

37 38 39 40 41 42 43 44 45 46 47 48

t101 t102 t103 t104 t111 t112 t113 t114 t121 t122 t123 t124
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t131 t152 t243 t424 t91 t432 t373 t254 t51 t181 t503 t84
49 58 95 168 33 170 147 100 17 70 199 32

49 50 51 52 53 54 55 56 57 58 59 60

t131 t132 t133 t134 t141 t142 t143 t144 t151 t152 t153 t154
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t11 t462 t103 t444 t501 t212 t233 t274 t461 t492 t363 t104
1 182 39 176 197 82 91 108 181 194 143 40

61 62 63 64 65 66 67 68 69 70 71 72

t161 t162 t163 t164 t171 t172 t173 t174 t181 t182 t183 t184
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t421 t242 t493 t464 t381 t522 t93 t294 t341 t272 t223 t124
167 94 195 184 149 206 35 116 133 106 87 48
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73 74 75 76 77 78 79 80 81 82 83 84

t191 t192 t193 t194 t201 t202 t203 t204 t211 t212 t213 t214
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t301 t22 t353 t484 t261 t302 t483 t314 t221 t52 t83 t144
117 6 139 192 101 118 191 124 85 18 31 56

85 86 87 88 89 90 91 92 93 94 95 96

t221 t222 t223 t224 t231 t232 t233 t234 t241 t242 t243 t244
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t181 t332 t213 t504 t141 t82 t343 t334 t101 t362 t473 t164
69 130 83 200 53 30 135 132 37 142 187 64

97 98 99 100 101 102 103 104 105 106 107 108

t251 t252 t253 t254 t261 t262 t263 t264 t271 t272 t273 t274
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t61 t112 t73 t524 t21 t392 t203 t354 t511 t142 t333 t184
21 42 27 208 5 154 79 140 201 54 131 72

109 110 111 112 113 114 115 116 117 118 119 120

t281 t282 t283 t284 t291 t292 t293 t294 t301 t302 t303 t304
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t471 t422 t463 t14 t431 t172 t63 t374 t391 t452 t193 t204
185 166 183 4 169 66 23 148 153 178 75 80

121 122 123 124 125 126 127 128 129 130 131 132

t311 t312 t313 t314 t321 t322 t323 t324 t331 t332 t333 t334
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t351 t202 t323 t34 t311 t482 t453 t394 t271 t232 t53 t224
137 78 127 12 121 190 179 156 105 90 19 88

133 134 135 136 137 138 139 140 141 142 143 144

t341 t342 t343 t344 t351 t352 t353 t354 t361 t362 t363 t364
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t231 t512 t183 t54 t191 t262 t313 t414 t151 t22 t443 t244
89 202 71 20 73 102 123 164 57 2 175 96
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145 146 147 148 149 150 151 52 153 154 155 156

t371 t372 t373 t374 t381 t382 t383 t384 t391 t392 t393 t394
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t111 t292 t43 t74 t71 t42 t173 t434 t31 t322 t303 t264
41 114 15 28 25 14 67 172 9 126 119 104

157 158 159 160 161 162 163 164 165 166 167 168

t401 t402 t403 t404 t411 t412 t413 t414 t421 t422 t423 t424
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t521 t72 t433 t94 t481 t352 t33 t454 t441 t102 t163 t284
205 26 171 36 189 138 11 180 173 38 63 112

169 170 171 172 173 174 175 176 177 178 179 180

t431 t432 t433 t434 t441 t442 t443 t444 t451 t452 t453 t454
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t401 t382 t293 t114 t361 t132 t423 t474 t321 t412 t23 t304
157 150 115 44 141 50 167 188 125 162 7 120

181 182 183 184 185 186 187 188 189 190 191 192

t461 t462 t463 t464 t471 t472 t473 t474 t481 t482 t483 t484
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t281 t162 t153 t134 t241 t442 t283 t494 t201 t192 t413 t324
109 62 59 52 93 174 111 196 77 74 163 128

193 194 195 196 197 198 199 200 201 202 203 204

t491 t492 t493 t494 t501 t502 t503 t504 t511 t512 t513 t514
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t161 t472 t13 t154 t121 t222 t143 t514 t81 t502 t273 t344
61 186 3 60 45 86 55 204 29 198 107 136
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205 206 207 208

t521 t522 t523 t524
↓ ↓ ↓ ↓
t41 t252 t403 t174
13 98 159 68

Table 8.12: Automorphisms of A(yy)

1 2 3 ... ... ... 206 207 208

t1 t2 t3 ... ... ... t168 t169 t1610
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t3 t4 ... ... ... t523 t524 t521
2 3 4 ... ... ... 207 208 205

From Table 8.11 and 8.12, we can construct permutations for A(xx) and A(yy)

by using our labels from each automorphism. Consider element #1 be denoted as t1

from Table 8.11. This produces the permutation (1, 193, 61, 165, 173, 141, 57,

181, 109, 185, 93, 37, 49). If we follow each element and its corresponding automorphism

number labeling and repeating the process for xx, we produce the following permuta-

tions:

A(xx) = (1, 193, 61, 165, 173, 141, 57, 181, 109, 185, 93, 37, 49),

(2, 110, 166, 38, 58, 194, 186, 174, 50, 182, 62, 94, 142),

(3, 51, 39, 95, 187, 111, 183, 59, 143, 175, 167, 63, 195),

(4, 144, 96, 64, 184, 52, 176, 188, 196, 60, 40, 168, 112),

(5, 177, 125, 121, 137, 73, 117, 153, 9, 161, 189, 77, 101),

(6, 10, 122, 78, 118, 178, 162, 138, 102, 154, 126, 190, 74),

(7, 103, 79, 191, 163, 11, 155, 119, 75, 139, 123, 127, 179),

(8, 76, 192, 128, 156, 104, 140, 164, 180, 120, 80, 124, 12),

(13, 145, 41, 33, 65, 149, 25, 97, 21, 113, 169, 157, 205),

(14, 22, 34, 158, 26, 146, 114, 66, 206, 98, 42, 170, 150),

(15, 207, 159, 171, 115, 23, 99, 27, 151, 67, 35, 43, 147),

(16, 152, 172, 44, 100, 208, 68, 116, 148, 28, 160, 36, 24),
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(17, 129, 105, 201, 29, 81, 85, 69, 133, 89, 53, 197, 45),

(18, 134, 202, 198, 86, 130, 90, 30, 46, 70, 106, 54, 82),

(19, 47, 199, 55, 91, 135, 71, 87, 83, 31, 203, 107, 131),

(20, 84, 56, 108, 72, 48, 32, 92, 132, 88, 200, 204, 136)

Likewise for yy.

A(yy) = (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16),

(17, 18, 19, 20), (21, 22, 23, 24), (25, 26, 27, 28), (29, 30, 31, 32),

(33, 34, 35, 36), (37, 38, 39, 40), (41, 42, 43, 44), (45, 46, 47, 48),

(49, 50, 51, 52), (53, 54, 55, 56), (57, 58, 59, 60), (61, 62, 63, 64),

(65, 66, 67, 68), (69, 70, 71, 72), (73, 74, 75, 76), (77, 78, 79, 80),

(81, 82, 83, 84), (85, 86, 87, 88), (89, 90, 91, 92), (93, 94, 95, 96),

(97, 98, 99, 100), (101, 102, 103, 104), (105, 106, 107, 108), (109, 110, 111, 112),

(113, 114, 115, 116), (117, 118, 119, 120), (121, 122, 123, 124), (125, 126, 127, 128),

(129, 130, 131, 132), (133, 134, 135, 136), (137, 138, 139, 140), (141, 142, 143, 144),

(145, 146, 147, 148), (149, 150, 151, 152), (153, 154, 155, 156), (157, 158, 159, 160),

(161, 162, 163, 164), (165, 166, 167, 168), (169, 170, 171, 172), (173, 174, 175, 176),

(177, 178, 179, 180), (181, 182, 183, 184), (185, 186, 187, 188), (189, 190, 191, 192),

(193, 194, 195, 196), (197, 198, 199, 200), (201, 2012, 203, 204), (205, 206, 207, 208)

therefore, we have constructed a permutation representation from our matrices.

Creating a Presentation of the Progenitor

To construct a presentation for the progenitor we must choose a t to normalize

from our four choices < t1 > ∗ < t2 > ∗ < t3 > ∗ < t4 > Let t ∼ t1 and we must find

permutations which normalizes < t1 >, or fixes the following set

{t1, t21, t31, t41, t51, t61, t71, t81, t91, t101 , t111 , t121 , t131 , t141 , t151 , t161 , t171 }. This is a defining character-

istic of a monomial progenitors. Monomial progenitors fix a set of t’s while permutation

progenitors fix only one specific ti.

Using Magma, we were able to find the normaliser stabiliser.
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Normaliser:=Stabiliser(N,(1,5,9,13,17,21,25,29,33,37,41,45,
49,53,57,61, 65,69,73,77,81,85,89,93,97,101,105,109,113,
117,121,125,129,133,137,141,145,149,153,157,161,165,169,
173,177,181,185,189,193,197,201,205));

norm = (1,37,185,181,141,165,193,49,93,109,57,173,61)
(2,94,182,174,194,38,110,142,62,50,186,58,166)(3, 63,175,59,
111,95,51,195,167,143,183,187, 39)(4,168,60,188,52,64,144,112,
40,196,176,184,96)(5,77,161,153,73,121,177,101,189,9,117,137,
125)(6,190,154,138,178,78,10,74,126,102,162,118,122)(7,127,
139,119,11,191,103,179,123,75,155,163,79)(8,124,120,164,104,
128,76,12,80,180,140,156,192)(13,157,113,97,149,33,145, 205,
169,21,25,65,41)(14,170,98,66,146,158,22,150,42,206,114,26,
34)(15,43,67,27,23,171,207,147,35,151,99,115,159)(16,36, 28,
116,208,44,152,24,160,148,68,100,172)(17,197,89,69,81,201,
129,45,53,133,85,29,105)(18,54,70,30,130,198,134,82,106,46,
90,86,202)(19,107,31,87,135,55,47,131,203,83,71,91,199)(20,
204,88,92,48,108,84,136,200,132,32,72,56)

For a presentation we must convert this permutation into words which we find

to be: norm = x−2.

We look at the permutation xx−2 = (1, 37, 185, ...), 1 goes to 37 so we check the label

in our Table 5.5. If the element is 37, then the automorphism is t101

norm → tx
−2

= t101 .

So, a presentation for the progenitor is 53∗4 :m 13 : 4 = G < x, y, t >:= Group <

x, y, t|y4, y−2x−1y2x−1, y−1x−3yx2, t53, tx−2
= t10 > .

Now we check if our progenitor is correct. We apply Grindstaff’s Lemma. Our symmet-

ric generators are t1, t2, t3, and t4. We want to add to the above presentation that all

ti′s commute; that is, (t1, t2), (t1, t3), and (t1, t4). Now t2 = ty, t3 = ty
2
, and t4 = ty

3
.

So we check if

53∗4 :m 13 : 4 = G < x, y, t >:= Group < x, y, t|y4, y−2x−1y2x−1, y−1x−3yx2, t53,
tx

−2
= t10 > factored by (t, ty), (t, ty

2
), and (t, ty

3
) is the group 534 :m (13 : 4) of order

534×(13×4). Next, we find finite homomorphic images of the progenitor 53∗4 :m (13 : 4).

Thus, we factor the progenitor by additional relations.
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Chapter 9

Computing Large Finite

Homomorphic Images

9.1 Finding Homomorphic Image

The program MAGMA is used to compute large number of finite groups. But

if we have a group with a large number of permutations representation then we use two

different methods in MAGMA to calculate the order of G and its composition factor.

The loops that were used through this process are listed below. The following loops

helped to compute the order and composition factor of a large finite group.

Method(1)

One of the groups we used to compute the order and its composition factor is:

>G<v,w,x,y,z,t>:=Group<v,w,x,y,z,t|vˆ2,wˆ3,xˆ2,yˆ2,zˆ2,
(wˆ-1*v)ˆ2, wˆ-1*x*w*y,w*x*wˆ-1*z,v*x*v*y,(x*y)ˆ2,
tˆ2,
(t,v * x * y * z * wˆ-1),(t,x),(v*t)ˆ10,(v * w * y * z*tˆv)ˆ5,
(v * w * y * z*t)ˆ6,(w*y*t)ˆ0,(w*y*tˆy)ˆ4>;

Now we factor G by the element y and t, we could have used any of the generators. In

this case we used on two. With that being said, now we find the index of G and H.

>H:=sub<G|y,t>;
>Index(G,H);
153600
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The Index of G and H is 153600, which is a number that can be compute using Magma.

now we do the coset action of group G and H. Then we check the kernel. To get an

interesting Image we need to get kernel to be 1 otherwise is not helpful.

>f,G1,k:=CosetAction(G,H);
>#k;
1

In this case kernel is 1 so we proceed by checking the composition factor of the group,

G.

>CompositionFactors(G1);
G

| Cyclic(2)

*
| Cyclic(2)

*
| Alternating(5)

*
| Alternating(5)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1

Therefore, G ∼= 28 :• (A5 : (S5 : 2))

Method(2)

Example1 For the following group we used a different method to calculate the order
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of G and to find the composition factor. In this case we were able to used this method

since the index of the group did not exceed the order of the index, which is of order 710

G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ2,yˆ3,zˆ2,wˆ2, (yˆ-1*x)ˆ2,
yˆ-1*z*y*w,(x*z)ˆ2,(z*w)ˆ2, y*z*yˆ-1*z*w,
tˆ2,
(t,x*y),(x * yˆ-1 * w*t)ˆ6,

(y*tˆ(x*wˆ-1))ˆ4,(x*w*t)ˆ4,(x*w*tˆy)ˆ10>;
V:=CosetSpace(G,sub<G|x,y,z,w>: CosetLimit:=7ˆ10,
Hard:=true, Print:=1);

INDEX = 9360000
G:=CosetImage(V);
CompositionFactors(G);

G
| Cyclic(2)

*
| A(1, 25) = L(2, 25)

*
| Cyclic(2)

*
| Alternating(5)

*
| Alternating(5).

*
| Cyclic(2)
1

Therefore, G ∼= 2 : (A5 × (S5 : PGL2(25)))

Example2

Since the order of G is 18720000 exceeding the number of permutation representation

that MAGMA can calculate. If we want to compute the order of the group and its

composition factor, the we must use the following loop in MAGMA:

G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,yˆ-1*xˆ-3*yxˆ-2,
tˆ2,
(t,xˆ-1 * yˆ-1 * x), (y * xˆ2 * y*t)ˆ4,(xˆ2*t)ˆ5>;
V:=CosetSpace(G,sub<G|x,y>: CosetLimit:=7ˆ10,
Hard:=true, Print:=1); G:=CosetImage(V); CompositionFactors(G);
INDEX = 360000 (a=360000 r=477 h=441134 n=441134; l=886
c=1.19; m=360001 t=441133)

G
| C(2, 5) = S(4, 5)

*
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| Cyclic(2)

*
| Cyclic(2)
1

Therefore G ∼= 4•S4(5).

9.2 Factoring 4•S(4, 5) over (13 : 4) by Z(G)

From a previous example we were able to obtained an important finite homo-

morphic image, 4bulletS4(5), using the famous lemma. (More details and information

about this group will be found in Chapter 2.) In this section we are going to factor G

by the center, which is of order 4. To factor 4•S4(5) over (13 : 4 by the center or also

known as Z(G), we are going to use a similar process we used on the previous example.

Let G = (2∗13:13):4
(yx2yt1)4,(x2t1)5

∼= 4•S4(5). Since we want G to be factored by the first order

relations (yx2yt1)
4, (x2t1)

5, and the center we must run the following loops in MAGMA

so we can get our desired.

>G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,yˆ-1*xˆ-3*y*xˆ-2,
tˆ2,(t,xˆ-1 * yˆ-1 * x), (y * xˆ2 * y*t)ˆ4,(xˆ2*t)ˆ5>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> #G1;
18720000
> CompositionFactors(G1);
G
| C(2, 5) = S(4, 5)

*
| Cyclic(2)

*
| Cyclic(2)
1
> C:=Center(G1);
> #C;
4
> Order(C.1);
4
> D:=C.1;
> Order(D);
4
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Thus, the order of the center of G is 4.

Since we know the order of the center, we proceed by converting the Z(G) in terms of

words, to do so, we are going to use the WordGroup loop.

> W,phi:=WordGroup(G1);
> rho:=InverseWordMap(G1);
> D@rho;
> gg:=function(W)
w4 := W.1 * W.2; w5 := w4 * W.3; w6 := w5 * W.1;
end function;
> gg(G);
x * y * t * x * t * xˆ2 * t * y * xˆ-1 * t * y * t *
yˆ-1 * t * yˆ-1 * t * xˆ2 *t * x * t
> #k;
1

Hence, we have found the center of G and converted into words,

Z(G) =< xytxtx2tyx−1tyty−1ty−1tx2txt > . As of now, we factor the finite presenta-

tion, G, by the relations and the center,Z(G). To verify that we have factored G by the

center we run the following loops in MAGMA:

> G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,yˆ-1*xˆ-3*yxˆ-2,
tˆ2,
(t,xˆ-1 * yˆ-1 * x), (y * xˆ2 * y*t)ˆ4,
(xˆ2*t)ˆ5,x * y * t * x * t * xˆ2 * t * y * xˆ-1 * t * y * t *
yˆ-1 * t * yˆ-1 * t * xˆ2 * t * x * t>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
>CompositionFactors(G1);
G

| C(2, 5) = S(4, 5)
1

In Conclusion we have showed that G is factored by the relations (yx2yt1)
4, (x2t1)

5 and

by the center Z(G) =< xytxtx2tyx−1tyty−1ty−1tx2txt > .

9.2.1 Construction of S(4, 5) over 13:4

Now that we know the center of G we proceed on factoring G by the relations

and the center to obtained G ∼= 2∗13:(13:4)
(yx2yt1)4,(x2t1)5,xytxtx2tyx−1tyty−1ty−1tx2txt

∼= S4(5). Note

N = (13 : 4), where x ∼ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) and

y ∼ 1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7). Let t ∼ t1.
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> G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,
yˆ-1*xˆ-3*y*xˆ-2,tˆ2,(t,xˆ-1 * yˆ-1 * x), (y * xˆ2 * y*t)ˆ4,
(xˆ2*t)ˆ5,x * y * t * x * t * xˆ2 * t * y * xˆ-1 * t * y * t *
yˆ-1 * t * yˆ-1 * t * xˆ2 * t * x * t>;
> Index(G,sub<G|x,y>);
90000
f,G1,k:=CosetAction(G,sub<G|x,y>);
> #DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
1767

We want to find the index of N in G. To do so, we regularly perform a manual double

coset enumeration of G over N. But noticed from the information listed above, by cause

of a large number of double cosets of G we are going to stop here.
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Chapter 10

Tables of Homomorphic Images

10.1 Homomorphic Images of 2∗13 : 13

|N|=13
G<x,t>:=Group<x,t|xˆ-13,
tˆ2,
(xˆ-1*t)ˆb,(x*t*tˆx)ˆc,(xˆ-2*t)ˆd,(xˆ2*t*tˆx)ˆe,
(xˆ-3*t)ˆf,(xˆ3*t*tˆx)ˆg,(xˆ-4*t)ˆh,(xˆ4*t*tˆx)ˆi,
(xˆ-5*t)ˆj,(xˆ5*t*tˆx)ˆk,(xˆ-6*t)ˆl,(xˆ6*t*tˆx)ˆm>;

Table 10.1: Some Finite Images of Progenitor 2∗13 : 13

#G b c ... i j k l m Isomorphism Type

1092 0 0 ... 0 0 0 7 2 PSL2(13)

2184 0 0 ... 0 3 0 6 4 PSL2(25)

7800 0 0 ... 2 6 0 0 0 2•PSL2(13)

11232 0 0 ... 0 0 8 8 2 PGL3(3)

15600 0 0 ... 2 0 4 0 0 PSL(25) : 2

19656 0 0 ... 0 4 0 0 2 PSL2(27) : 2

124800 0 0 ... 0 6 0 10 2 U3(4) : 2

246480 0 0 ... 0 0 0 3 4 PSL2(79)

492960 0 0 ... 0 0 2 0 4 2• PSL2(79)

4094064 0 0 ... 0 3 0 8 3 2× PSL2(79)

12130560 10 2 d=8, f=8... 0 0 0 0 0
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10.2 Homomorphic Images of 2∗13 : (13 : 2)

|N|=26
G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2,xˆ-13,
tˆ2,
(t,b * xˆ2),

((xˆ6)*t)ˆc,(y*tˆ(xˆ-1)*tˆ(xˆ2))ˆd,
((xˆ5)*t)ˆe,(y*t*tˆ(xˆ3))ˆf,
((xˆ4)*t)ˆg,(y*tˆx*tˆ(xˆ2))ˆh,
((xˆ3)*t)ˆi,(y*tˆ(xˆ2)*t)ˆj,
((xˆ2)*t)ˆk,(y*tˆ(xˆ3)*t)ˆl,
(x*t)ˆm, (y*tˆ(xˆ4)*t)ˆn,
(y*tˆ(xˆ5))ˆo,(y*tˆ(xˆ5)*t)ˆp,
(y*tˆ(xˆ4))ˆq,(x*t*tˆx)ˆr,

(y*tˆ(xˆ3))ˆs,((xˆ2)*t*tˆx)ˆu,
(y*tˆ(xˆ2))ˆv,((xˆ3)*t*tˆx)ˆw,

(y*tˆx)ˆz,((xˆ4)*t*tˆx)ˆa1,
(y*t)ˆa2,((xˆ5)*t*tˆx)ˆa3,
(y*tˆ(xˆ-1))ˆa4,((xˆ6)*t*tˆx)ˆa5>;

Table 10.2: Some Finite Images of Progenitor 2∗13 : (13 : 2)

#G c ... q u v w z a1 a2 a3 a4 a5 Isomorphism Type

26 0 ... 0 0 0 0 0 0 0 0 1 0 Empty

985920 0 ... 0 0 0 0 0 0 0 2 0 4 4: PSL(2,79)

52 0 ... 0 0 0 0 0 0 2 0 0 0 C2

297648 0 ... 0 0 0 0 0 0 4 2 0 0 2•PGL2(53)

31200 0 ... 0 0 0 0 0 2 0 4 10 0 2•PGL2(25)

22464 0 ... 4 3 4 0 0 0 0 0 0 0 2•PGL3(3)

39312 0 ... 0 0 0 0 0 3 0 0 0 2 2 : PGL2(27)

19656 0 ... 0 3 3 0 0 0 0 0 0 0 PGL2(27)

2184 0 ... 0 0 0 0 3 0 0 2 10 6 2•PSL2(13)

11232 0 ... 0 0 0 0 0 3 3 0 0 4 2× PSL2(13)
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10.3 Homomorphic Images of 2∗13 : (13 : 4)

|N|=52
G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,yˆ-1*xˆ-3*y*xˆ-2,
tˆ2,
(t,yˆx),
((x*y)ˆ2*tˆ(xˆ-4))ˆc,((x*y)ˆ2*t)ˆd,
((x*y)ˆ2*tˆx)ˆe,((x*y)ˆ2*tˆ(xˆ6))ˆf,
((x*y)*tˆ(xˆ-4))ˆg,((x*y)*t)ˆh,
((x*y)*tˆx)ˆi,((x*y)*tˆ(xˆ6))ˆj,
((yˆ-1*xˆ-1)*tˆ(xˆ-4))ˆk,
((yˆ-1*xˆ-1)*t)ˆl,((yˆ-1*xˆ-1)*tˆx)ˆm,
((yˆ-1*xˆ-1)*tˆ(xˆ6))ˆn,
(x*t)ˆo,(xˆ2*t)ˆp,(xˆ4*t)ˆq>;

Table 10.3: Some Finite Images of Progenitor 2∗13 : (13 : 4)

#G c d ... l m n o p q Isomorphism Type

104 0 0 ... 0 0 0 0 0 2 C2

1352 0 0 ... 0 0 0 4 0 0 132 : (4× 2)

58240 0 0 ... 0 0 5 0 5 0 2× Sz(8)

29120 0 0 ... 0 5 0 5 0 7 Sz(8)

10.4 Homomorphic Images of 2∗13 : (13 : S3)

|N|=78
G<x,y,t>:=Group<x,y,t|yˆ6,yˆ-1*xˆ3*y*x,xˆ-4*yˆ-1*x*y,
tˆ2,
(t,x *y*x*yˆ2),(t,xˆ-1*yˆ-1*x),(y*xˆ2*yˆ2*tˆ(xˆ2))ˆa,
(y*xˆ2*yˆ2*t)ˆb,(y*xˆ2*yˆ2*tˆx)ˆc,((x*y)ˆ2*tˆ(xˆ2))ˆd,
((x*y)ˆ2*t)ˆe,((x*y)ˆ2*tˆx)ˆf,((yˆ-1*xˆ-1)ˆ2*tˆ(xˆ2))ˆg,
((yˆ-1*xˆ-1)ˆ2*t)ˆh,((yˆ-1*xˆ-1)ˆ2*tˆx)ˆi,(x*y*tˆ(xˆ2))ˆj,
(x*y*t)ˆk,(x*y*tˆx)ˆl,(yˆ-1*xˆ-1*tˆ(xˆ2))ˆm,
(yˆ-1*xˆ-1*t)ˆn,(yˆ-1*xˆ-1*tˆx)ˆo,(x*t)ˆp,(xˆ2*t)ˆq>;

Table 10.4: Some Finite Images of Progenitor 2∗13 : (13 : S3)

#G a b ... l m n o p q Isomorphism Type

156 0 0 ... 0 0 0 0 0 2 C2

638976 0 0 ... 0 0 0 0 0 4 213 : (13 : S3)

26364 0 0 ... 0 0 0 6 0 6 133 :• S3 : 2
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10.5 Homomorphic Images of 2∗30 : (2•3 : 5)

|N|=30
G<x,t>:=Group<x,t|xˆ30,
tˆ3,
(xˆ15*t)ˆa,(xˆ10*t)ˆb,(xˆ-10*t)ˆc,
(xˆ6*t)ˆd,(xˆ12*t)ˆe,(xˆ-12*t)ˆf,
(xˆ-6*t)ˆg,(xˆ5*t)ˆh,(xˆ-5*t)ˆi,
(xˆ3*t)ˆj,(xˆ9*t)ˆk,(xˆ-9*t)ˆl,
(xˆ-3*t)ˆm,(xˆ2*t)ˆn,(xˆ4*t)ˆo,
(xˆ8*t)ˆp,(xˆ14*t)ˆq,(xˆ-14*t)ˆr,
(xˆ-8*t)ˆs,(xˆ-4*t)ˆu,
(xˆ-2*t)ˆv,(x*t)ˆw,(xˆ7*t)ˆy,
(xˆ11*t)ˆz,(xˆ13*t)ˆaa,
(xˆ-13*t)ˆbb,(xˆ-11*t)ˆcc,
(xˆ-7*t)ˆdd,(xˆ-1*t)ˆee>;

Table 10.5: Some Finite Images of Progenitor 2∗30 : (2•3 : 5)

#G a b ... z aa bb cc dd ee Isomorphism Type

180 0 0 ... 0 0 0 0 3 2 A5

60 0 0 ... 0 0 0 2 3 2 A5

3960 0 0 ... 0 0 0 2 4 2 3× PGL2(11)

241920 0 0 ... 0 0 2 3 4 5 4 : (PSL3(4)× 3)

14880 0 0 ... 0 3 0 4 5 2 PSL2(31)

12180 0 0 ... 0 3 0 5 7 2 PSL2(29)

10.6 Homomorphic Images of 2∗12 : S4

|N|=24
G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ2,yˆ3,zˆ2,wˆ2,(yˆ-1*x)ˆ2,yˆ-1

*z*y*w, (x*z)ˆ2,(z*w)ˆ2, y*z*yˆ-1*z*w,
tˆ2,
(t,x*y),
(x*yˆ-1*w*t)ˆm1,(z*tˆy)ˆa,(z*t)ˆb,(x*tˆ(yˆz))ˆc,(x*tˆy)ˆd,
(x*t)ˆe,(x*tˆw)ˆf,(y*t)ˆg,(y*t)ˆh,(y*tˆw)ˆi,(y*tˆ(x*wˆ-1))ˆj,
(x*w*t)ˆk,(x*w*tˆy)ˆl,(x*w*tˆw)ˆm>;
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Table 10.6: Some Finite Images of Progenitor 2∗12 : S4

#G a b ... i j k l m m1 Isomorphism Type

1008 0 0 ... 0 0 0 3 0 3 6× PSL2(7)

24360 0 0 ... 0 0 0 7 0 2 PGL2(29)

18579460 0 0 ... 0 0 0 3 0 4 28
•
3 : (S6 × PSL2(7))

720 0 0 ... 0 0 0 3 4 10 2•A6

11520 0 0 ... 0 0 0 3 5 8 24 : S6
336 0 0 ... 0 0 0 3 7 3 2 : PSL2(7)

2688 0 0 ... 0 0 0 3 7 4 24 : PSL2(7)

11232 0 0 ... 0 0 0 4 8 3 2•PSL3(3)

30720 0 0 ... 0 0 0 5 5 3 28 : (S5)

2016 0 0 ... 0 0 0 6 0 2 6 : PGL2(7)

3326400 0 0 ... 0 0 0 6 5 3 A7 :• PGL2(11)

4896 0 0 ... 0 0 0 9 4 3 2•PSL2(17)

3960 0 0 ... 0 2 0 5 0 6 3 : PGL2(11)

672 0 0 ... 0 8 0 2 0 8 2•PGL2(7)

3420 0 0 ... 0 9 0 2 0 9 PSL2(19)

2184 0 0 ... 0 2 0 7 7 6 PGL2(13)

40320 0 0 ... 0 3 0 5 5 8 2× PSL3(4)

1440 0 0 ... 0 3 0 6 4 4 4•(3 : S5)

178920 0 0 ... 0 3 0 7 5 4 PSL2(71)

21504 0 0 ... 0 4 0 3 7 6 27
•
PSL2(7)

336 0 0 ... 0 4 0 3 7 9 2 : PSL2(7)

1062720 0 0 ... 0 4 0 8 4 6 2 : PGL2(81)

7680 0 0 ... 0 4 4 6 0 6 26 : (S5)

224640000 0 0 ... 0 4 4 10 0 6 2 : (A5 × (A•52 : PGL2(25)))
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|N|=24
G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ2,yˆ3,zˆ2,wˆ2,
(yˆ-1*x)ˆ2, yˆ-1*z*y*w, (x*z)ˆ2,(z*w)ˆ2, y*z*yˆ-1*z*w,
tˆ2,
(t,x*y),(x * yˆ-1 * w*t)ˆj,(x*w*t)ˆp1,
(x*tˆy)ˆp2,(x*t)ˆp3,(y*t)ˆp4>;

Table 10.7: More Finite Images of Progenitor 2∗12 : S4

#G p1 p2 p3 p4 j Isomorphism Type

240 0 0 0 2 4 2× S5
2184 0 0 0 2 7 PGL2(13)

120 0 0 2 0 3 S5
14400 0 0 2 0 5 2 :• (A5 × S5)
15360 0 0 6 8 2 27 :• S5
117600 0 0 7 8 2 PGL2(49)

1344 0 0 0 3 3 23 : PSL2(7)

4896 4 0 0 0 3 2 :• PSL2(17)

28800 4 0 0 4 6 2 :• (A5 × (S5 × 2))

31457280 4 0 0 4 8 218 : S5
61440 5 0 0 4 4 29 : S5

11796480 4 10 0 5 5 215 :• A6

2520 5 0 0 5 3 A7

1920 5 0 0 6 3 24 : S5
483840 10 0 0 10 2 6 : (2× PGL3(4))

5040 5 4 3 0 5 2•A7

30720 5 0 3 0 8 28
•
S5

302400 5 0 3 0 10 S5 : A7

80640 7 0 3 0 5 4 : PSL3(4)
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|N|=48
G<v,w,x,y,z,t>:=Group<v,w,x,y,z,t|vˆ2,wˆ3,xˆ2,yˆ2,zˆ2,
(wˆ-1*v)ˆ2, wˆ-1*x*w*y, w*x*wˆ-1*z,v*x*v*y,(x*y)ˆ2,
tˆ2,
(t,v * x * y * z * wˆ-1),(t,x),(v*t)ˆl,
(w*tˆy)ˆm1,(v*tˆ(x*wˆ2))ˆm2,
(v * w * y * z*t)ˆm3>;

10.7 Homomorphic Images of 2∗12 : (S4 × 2)

Table 10.8: 2∗12 : (S4 × 2)

#G m1 m2 m3 m4 Isomorphism Type

737280 0 0 4 5 210 : S6
31200 0 2 5 6 PGL(2,25)

80640 0 3 4 7 PGL(3,4):2

46080 0 4 4 5 26 : S6

|N|=48
G<v,w,x,y,z,t>:=Group<v,w,x,y,z,t|vˆ2,wˆ3,xˆ2,yˆ2,
zˆ2, (wˆ-1*v)ˆ2, wˆ-1*x*w*y, w*x*wˆ-1*z,v*x*v*y,
(x*y)ˆ2,
tˆ2,
(t,v * x * y * z * wˆ-1),(t,x),
(v*t)ˆm1,( x * y * z*t)ˆa,(x*t)ˆb,

(x*tˆv)ˆc,(x*y*tˆ(x*wˆ2))ˆd,
(x*y*t)ˆe,(v*tˆ(x*wˆ2))ˆf,
(v*tˆ(wˆ2*y))ˆg,(v*t)ˆh,
(v*w*y*tˆv)ˆi,( v * w * y*t)ˆj,
(v * w * y*t)ˆk,(w*t)ˆl,(w*tˆy)ˆm,
(v*x*tˆ(x*wˆ2))ˆn,(v*x*t)ˆo,(v * w * y * z*tˆv)ˆp,
(v * w * y * z*t)ˆq,(w*y*t)ˆr,(w*y*tˆy)ˆs>;
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Table 10.9: 2∗12 : (S4 × 2)

#G a b c ... p q r s m1 Isomorphism Type

28800 0 0 0 ... 0 0 0 4 5 2 :• (A5 : (S5 × 2))

2880 0 0 0 ... 0 0 0 4 4 4 : S6
57600 0 0 0 0 0 0 4 0 4 4 :• (A5 : (S5 × 2))

1440 0 0 0 0 0 0 4 5 6 2•S6
983040 0 0 0 0 0 0 5 5 5 214 : S6
14400 0 0 0 0 0 0 6 5 4 A5 : (S5 × 2)

368640 0 0 0 0 0 5 5 0 4 29 : S6
23040 0 0 0 0 0 5 5 4 8 25 : S6
30720 0 0 0 0 0 5 5 5 5 29 :• A5

14400 0 0 0 0 0 6 0 4 5 A5 :• (S5 × 2)

4769856 0 0 0 0 0 7 0 4 7 L2(13) :• (PGL2(13)× 2)

240 0 0 0 0 2 0 0 5 10 2•A5

672 0 0 0 0 2 0 0 7 8 PGL2(7)

1008 0 0 0 0 2 0 0 7 9 PSL2(8)

1344 0 0 0 0 2 0 0 8 8 2•PGL2(7)

8640 0 0 0 0 2 0 0 8 10 6 :• S6
6840 0 0 0 0 2 0 0 9 9 PSL2(19)

41040 0 0 0 0 2 0 0 9 10 S3 : PSL2(19)

164160 0 0 0 0 2 0 0 10 9 6 : PSL2(19)

69120 0 0 0 0 3 0 0 0 5 25 : (3 : S6)

93600 0 0 0 0 3 0 0 6 6 6 :• PGL2(25)

11520 0 0 0 0 3 5 5 0 8 24 : S6
33592320 0 0 0 0 3 8 6 6 10

61440 0 0 0 0 4 0 5 5 5 210 : A5

31457280 0 0 0 0 4 0 5 10 5

805306368 0 0 0 0 4 4 0 0 8

30720 0 0 0 0 4 5 5 5 5 29 :• A5

1006632960 0 0 0 0 4 10 0 5 5

322560 0 0 0 0 5 0 8 8 4 22 :• (PGL3(4) : 2)

3686400 0 0 0 0 5 6 0 4 10 28 :• (A5 : (S5 : 2))

80640 0 0 0 0 5 7 8 8 4 PGL3(4) : 2

1572864 0 0 0 0 8 6 0 4 6 215 :• S4
47185920 0 0 0 0 6 0 5 8 4
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10.8 Homomorphic Images of 2∗30 : (S5)

|N|=120
G<x,y,t>:=Group<x,y,t|(xˆ-1 * yˆ-2)ˆ2,(x * yˆ-2)ˆ2,
yˆ-1*xˆ4*y*xˆ2,xˆ-1*yˆ-1*xˆ-1*yˆ-1*xˆ-1 *y*x*y,
y*xˆ-1*yˆ-1*xˆ3*yˆ4,
tˆ2,
(t,y * xˆ-1 * y),
(t,xˆ5),(t,x*y*x * yˆ-2),(xˆ5*t)ˆa,(xˆ5*tˆy)ˆb,
(xˆ3 * y * xˆ-1*y*tˆx)ˆc,( xˆ3 * y * xˆ-1 * y*t)ˆd,
(y*xˆ-1*y*t)ˆe,(y*xˆ-1*y*tˆ(yˆ-4))ˆf,(y*xˆ-1*y*tˆx)ˆg,
(y * xˆ-1 * y*tˆy)ˆh,(yˆ4*t)ˆi,(yˆ3*tˆx)ˆj,(yˆ3*t)ˆk,
(yˆ-3*tˆx)ˆl,(yˆ-3*t)ˆm,(x*y*tˆ(yˆ5))ˆn,(x*y*tˆy)ˆo,
(x*y*tˆ(yˆ2))ˆp,(x*y*t)ˆq,( yˆ-1 * xˆ-1*tˆ(yˆ5))ˆr,
( yˆ-1 * xˆ-1*tˆy)ˆs,( yˆ-1 * xˆ-1*tˆ(yˆ2))ˆu,
( yˆ-1 * xˆ-1*t)ˆv,(xˆ2*t)ˆw,(yˆ2*tˆx)ˆz,
(yˆ2*t)ˆa1,(x*t)ˆb1,(x*tˆy)ˆc1,(y*tˆx)ˆd1,
(y*t)ˆe1,(xˆ3 * yˆ-1 * x*tˆx)ˆf1,
(xˆ3 * yˆ-1 * x*t)ˆg1,(x * y * x * yˆ-1*t)ˆh1>;

Table 10.10: 2∗30 : (S5)

#G a b c ... c1 d1 e1 f1 g1 h1 Isomorphism Type

96 0 0 0 ... 0 0 0 0 0 3 22 : S6
960 0 0 0 ... 0 0 0 0 4 4 23 : S6
1200 0 0 0 ... 0 0 0 0 4 10 52 : 23

86400 0 0 0 ... 0 0 0 0 5 0 2•((A5 : A6) : 2)

120 0 0 0 ... 0 0 0 0 5 5 2•A5

1440 0 0 0 ... 0 0 0 0 5 6 S6
483840 0 0 0 ... 0 0 0 0 6 4 6 : (2(: S8))

125829120 0 0 0 ... 0 0 0 4 8 4

80640 0 0 0 ... 4 0 0 0 7 0 2× S8
25804800 0 0 0 ... 4 0 0 4 0 0 25 × 5 : (4 : S8)

1612800 0 0 0 ... 4 0 0 4 0 10 2× 5 : (4 : S8)

60 0 0 0 ... 5 0 0 10 5 5 A5

10.9 Homomorphic Images of Z10 o Z3

|N|=3000
G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ10,yˆ10,zˆ10,wˆ3,
(x,y),(x,z),(y,z),xˆ-1*wˆ-1*z*w,yˆ-1*wˆ-1*x*w,
tˆ2,
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(t,y),(t,z),(w*t)ˆa,(wˆ-1*t)ˆb,(xˆ2*t)ˆc,(x*t)ˆd,
(xˆ-1*t)ˆe,(x*y*t)ˆf,(x*w*t)ˆg>;

Table 10.11: Z10 o Z3

#G a b c d e f g Isomorphism Type

2400 0 0 0 0 0 0 3 2•S3
48000 0 0 0 0 0 0 4 24 : S4

96 0 0 0 0 0 2 3 2•S3
48 0 0 0 0 0 2 4 S4
120 0 0 0 0 0 2 5 A5

648 0 0 0 0 0 3 6 33 :• (S4)

384 0 0 0 0 0 4 4 24 :• S4
3840 0 0 0 0 0 4 5 25 : S5
75000 0 0 0 0 0 5 6 53 : S4
8232 0 0 0 0 0 7 6 73 :∗ (S4)

17496 0 0 0 0 0 9 6 36 :• (S4)

6000 0 0 0 0 0 10 4 S4
1875000 0 0 0 0 0 10 5 55 : A5

5040 0 0 0 0 3 0 7 S7
117600 0 0 0 0 6 3 8 PGL(2, 49)

3000 0 0 0 2 0 5 6 52 : S5

|N|=52
G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,yˆ-1*xˆ-3*y*xˆ-2,
tˆ2,
(t,xˆ-1 * yˆ-1 * x), (y * xˆ2 * y*t)ˆr,
((x * y)ˆ2*tˆ(x * yˆ-1))ˆa,
((x * y)ˆ2*t)ˆb,((x * y)ˆ2*tˆ(yˆ-1))ˆc,
((x * y)ˆ2*tˆ(xˆ-1))ˆd,

(x * y*tˆ(x * yˆ-1))ˆe,(x * y*t)ˆf,(x * y*tˆ(yˆ-1))ˆg,
(x * y*tˆ(xˆ-1))ˆh,(yˆ-1 * xˆ-1*tˆ(x * yˆ-1))ˆi,
(yˆ-1 * xˆ-1*t)ˆj,
(yˆ-1 * xˆ-1*tˆ(yˆ-1))ˆk,
(yˆ-1 * xˆ-1*tˆ(xˆ-1))ˆl,
(x*t)ˆm,(xˆ2*t)ˆn, (xˆ4*t)ˆo>;

Table 10.12: Curtis Lemma 2∗13 : (13 : 4)

#G a b c ... m o r Isomorphism Type

18720000 0 0 0 ... 5 0 4 4•S4(5)
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10.10 Homomorphic Images of 53∗4 :m (13 : 4)

|N|=52
G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2, xˆ(-13),
tˆ53,
tˆ(xˆ6)=tˆ28,(y*(tˆ5)ˆ(xˆ2))ˆr, (y*(tˆ3)ˆ(x * y))ˆs,
(y*(tˆ3)ˆ(y * x))ˆu, (y*(tˆ12)ˆ(xˆ-2))ˆv,(y*(tˆ5)ˆ(xˆ-2))ˆw,
(y*(tˆ12)ˆ(x*y))ˆz, (y*tˆ(x * yˆ-1))ˆaa, (y*(tˆ4)ˆ(xˆ2))ˆbb,
(y*(tˆ3)ˆ(xˆ3))ˆcc, (y*(tˆ12)ˆ(xˆ-1))ˆdd, (y*(tˆ10)ˆ(x))ˆee,
(y*(tˆ7)ˆ(xˆ-1))ˆff,(y*(tˆ2)ˆ(xˆ-2))ˆgg, (y*(tˆ2)ˆ(xˆ-1))ˆhh,
(y*(tˆ3)ˆ(xˆ2 * y))ˆii, (y*(tˆ8)ˆ(x * y))ˆjj,(y*(tˆ34)ˆ(y))ˆkk,
(y*(tˆ2)ˆ(xˆ3))ˆll, (y*(tˆ10)ˆ(xˆ2))ˆmm,(y*(tˆ6)ˆ(xˆ-2))ˆnn,
(y*(tˆ6)ˆ(yˆ-1 * x))ˆoo,(y*tˆ(xˆ2 * yˆ-1))ˆpp,
(y*(tˆ6)ˆ(xˆ-1))ˆqq, (y*(tˆ41)ˆ(yˆ2))ˆrr>;

Table 10.13: 53∗4 :m (13 : 4)

|G| r s u v ... oo pp qq rr Isomorphism Type

74412 0 0 0 0 ... 0 0 0 3 PSL2(53)
1934712 0 0 0 0 ... 0 0 0 4 (13 : PGL2(53))
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Appendix A

MAGMA Code for First Order

Relations

NumberOfPrimitiveGroups(13);

N:=PrimitiveGroup(13,4);

#N;
N;
/*
Here we have the generators of the group
Permutation group N acting on a set of cardinality 13
Order = 52 = 2ˆ2 * 13

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
(1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)

*/

CompositionFactors(N);
/* G

| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(13)
1

The isomorphism type of my control group is congruent to13:4

*/
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%--------------------------------------------------------
Generators(N);
/*

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
(1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)

*/

N.1;
N.2;
/* now we store each generator as x and y*/
S:=Sym(13);
xx:=S!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);
yy:=S!(1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7);
N:=sub<S|aa,bb>;

#N;
/*52*/

IsAbelian(N);
/*false*/
NL:=NormalLattice(G1);
NL;

/*Normal subgroup lattice
-----------------------

[4] Order 52 Length 1 Maximal Subgroups: 3
---
[3] Order 26 Length 1 Maximal Subgroups: 2
---
[2] Order 13 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

*/
Center(N);
/*Permutation group acting on a set of cardinality 13
Order = 1
the group doesn’t have a center*/

FPGroup(N);

/*Finitely presented group on 2 generators
Relations

$.2ˆ4 = Id($)
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$.2ˆ-2 * $.1ˆ-1 * $.2ˆ2 * $.1ˆ-1 = Id($)
$.2ˆ-1 * $.1ˆ-3 * $.2 * $.1ˆ-2 = Id($)

*/
/*We write a presentation for N in terms of the generators*/
NN<x,y>:=Group<x,y|yˆ4,yˆ-2xˆ-1yˆ2xˆ-1,yˆ-1xˆ-3yxˆ-2>;
#NN;
/*52*/

/*the schreierSystem is used to convert permutations
into words.*/

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..52]];
for i in [2..52] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=aaˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=bbˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

%-------------------------------------------
/*we stabilize and element from N, in this case
I stabilized 1, we could of stabilized a different number*/
N1:=Stabiliser(N,1);
#N1;
/*4*/
N1;

/*Permutation group N1 acting on a set of cardinality 13
Order = 4 = 2ˆ2

(2, 9, 13, 6)(3, 4, 12, 11)(5, 7, 10, 8)

*/

/* we used the following loop to convert the
permutation of the stabilizer of 1and we converted
them into words.*/

for i in [1..52] do if ArrayP[i] eq
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N!(2, 9, 13, 6)(3, 4, 12, 11)(5, 7, 10, 8) then Sch[i];
end if; end for;

/*yˆx, add it to the presentation of G and make sure it
commutes with t*/

G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,
yˆ-1*xˆ-3*y*xˆ-2,tˆ2,(t,yˆx)>;

#G;

%---------------------------------------------------
?*now we stabilize 1 and 2 and find the classes of N*/
N12:=Stabiliser(N,[1,2]);

Cent:=Centraliser(N,N12);

Cent;

/*Permutation group N acting on a set of cardinality 13
Order = 52 = 2ˆ2 * 13

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
(1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7)

*/

C:=Classes(N);
#C;

for i in [1..#C] do

i, C[i][3];
end for;
/*1 Id(N)
2 (1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11)
3 (1, 3, 6, 4)(2, 11, 5, 9)(7, 12, 13, 8)
4 (1, 4, 6, 3)(2, 9, 5, 11)(7, 8, 13, 12)
5 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
6 (1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)
7 (1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)

*/

/*the following loop computes the orbits of the centralizer
of N and the classes.



283

for i in [2..7] do i, Orbits(Centraliser(N,C[i][3]));
end for;

/*2 [
GSet{@ 10 @},
GSet{@ 1, 6, 4, 3 @},
GSet{@ 2, 5, 9, 11 @},
GSet{@ 7, 13, 8, 12 @}

]
3 [

GSet{@ 10 @},
GSet{@ 1, 3, 6, 4 @},
GSet{@ 2, 11, 5, 9 @},
GSet{@ 7, 12, 13, 8 @}

]
4 [

GSet{@ 10 @},
GSet{@ 1, 4, 6, 3 @},
GSet{@ 2, 9, 5, 11 @},
GSet{@ 7, 8, 13, 12 @}

]
5 [

GSet{@ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 @}
]
6 [

GSet{@ 1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12 @}
]
7 [

GSet{@ 1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10 @}
]

*/

/*and this loop converts the permutations(classes) into words
since our presentations has be written in terms of the
generators x and y*/
for j in [2..7] do for i in [1..52] do if ArrayP[i] eq
C[j][3] then C[j][3],Sch[i];

end if;

end for;

end for;
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/*(1, 6)(2, 5)(3, 4)(7, 13)(8, 12)(9, 11)
(x * y)ˆ2
(1, 3, 6, 4)(2, 11, 5, 9)(7, 12, 13, 8)
x * y
(1, 4, 6, 3)(2, 9, 5, 11)(7, 8, 13, 12)
yˆ-1 * xˆ-1
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
x
(1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12)
xˆ2
(1, 5, 9, 13, 4, 8, 12, 3, 7, 11, 2, 6, 10)
xˆ4

*/
/*Now we factor the presentation of G by all
first order relations and we run it on MAGMA */

for l,m,n,o,p,q,c,d,e,f,g,h,i,j,k in [0..10] do
G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,
yˆ-1*xˆ-3*y*xˆ-2,tˆ2,(t,yˆx),
((x*y)ˆ2*tˆ(xˆ-4))ˆc,
((x*y)ˆ2*t)ˆd,
((x*y)ˆ2*tˆx)ˆe,
((x*y)ˆ2*tˆ(xˆ6))ˆf,
((x*y)*tˆ(xˆ-4))ˆg,
((x*y)*t)ˆh,
((x*y)*tˆx)ˆi,
((x*y)*tˆ(xˆ6))ˆj,
((yˆ-1*xˆ-1)*tˆ(xˆ-4))ˆk,
((yˆ-1*xˆ-1)*t)ˆl,
((yˆ-1*xˆ-1)*tˆx)ˆm,
((yˆ-1*xˆ-1)*tˆ(xˆ6))ˆn,
(x*t)ˆo,
(xˆ2*t)ˆp,
(xˆ4*t)ˆq>;

/*this is used to find second order relations*/
Orbits(Stabiliser(Centraliser(N,xx*yy),1));
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Appendix B

MAGMA Code for Sz(8) DCE

/* This code guides a double coset enumeration
of G over NSz(8) DCE 2ˆ{*}13:(13,4),
when n=5 and p=5 and factor by the center*/
G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,
yˆ-1*xˆ-3*y*xˆ-2,tˆ2,(t,yˆx),
((yˆ-1*xˆ-1)*tˆ(xˆ6))ˆ5,
(xˆ2*t)ˆ5>;

#G;
f,G1,k:=CosetAction(G,sub<G|x,y>);
IN:=sub<G1|f(x),f(y)>;
CompositionFactors(G1);
c:=Center(G1).1;

Order(c);
NN:=G;
N:=G1;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..58240]];
for i in [2..58240] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=f(x); end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=f(x)ˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=f(y); end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=f(y)ˆ-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=f(t); end if;
end for;
PP:=Id(N);

for k in [1..#P] do
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PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..58240] do if ArrayP[i] eq c then Sch[i];
end if; end for;

%--------------------------------------------------

/*Add relation to the progenitor so it is being
factored by the center*/
G<x,y,t>:=Group<x,y,t|yˆ4,yˆ-2*xˆ-1*yˆ2*xˆ-1,
yˆ-1*xˆ-3*y*xˆ-2,tˆ2,(t,yˆx),
((yˆ-1*xˆ-1)*tˆ(xˆ6))ˆ5,
(xˆ2*t)ˆ5,xˆ3*t*xˆ-2*t*yˆ-1*t*y*t*yˆ2*t>;
#G;

S:=Sym(13);
xx:=S!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);
yy:=S!(1, 8, 12, 5)(2, 3, 11, 10)(4, 6, 9, 7);
N:=sub<S|xx,yy>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
IN:=sub<G1|f(x),f(y)>;
CompositionFactors(G1);

\*now label your t’s in terms of x and y*/

ts:=[Id(G1): i in [1..13]];
ts[1]:=f(t); ts[2]:=f(tˆx);
ts[3]:=f(tˆ(xˆ2));
ts[4]:=f(tˆ(xˆ3));
ts[5]:=f(tˆ(xˆ4));
ts[6]:=f(tˆ(xˆ5));
ts[7]:=f(tˆ(xˆ6));
ts[8]:=f(tˆ(xˆ7));
ts[9]:=f(tˆ(xˆ8));
ts[10]:=f(tˆ(xˆ9));
ts[11]:=f(tˆ(xˆ(10)));
ts[12]:=f(tˆ(xˆ(11)));
ts[13]:=f(tˆ(xˆ(12)));

DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
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prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
Q[I] applied sequentially.

*/
v := pt;
for i in I do
v := vˆ(Q[i]);

end for;
return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];
for i := 1 to 13 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;
for i in [1..560] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

%--------------------------------------------------

N1:=Stabiliser(N,[1]);
SSS:={[1]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IN do
if ts[1] eq n*ts[Rep(Seqq[i])[1]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N1; #N1;
T1:=Transversal(N,N1);
for i in [1..#T1] do ss:=[1]ˆT1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..560] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
Orbits(N1);
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%--------------------------------------------------

N12:=Stabiliser(N,[1,2]);
SSS:={[1,2]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IN do
if ts[1]*ts[2] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N12; #N12;
T12:=Transversal(N,N12);
for i in [1..#T12] do ss:=[1,2]ˆT12[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..560] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
Orbits(N12);
%--------------------------------------------------

N13:=Stabiliser(N,[1,3]);
SSS:={[1,3]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IN do
if ts[1]*ts[3] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N13; #N13;
T13:=Transversal(N,N13);
for i in [1..#T13] do ss:=[1,3]ˆT13[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..560] do if cst[i] ne [] then m:=m+1;
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end if; end for; m;
Orbits(N13);
%--------------------------------------------------

N15:=Stabiliser(N,[1,5]);
SSS:={[1,5]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IN do
if ts[1]*ts[5] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N15; #N15;
T15:=Transversal(N,N15);
for i in [1..#T15] do ss:=[1,5]ˆT13[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..560] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
Orbits(N15);
%--------------------------------------------------

/* Continue inserting the code from below
,if m increases by a value, then we have a new
double coset. For single cosets the value of m tells us
the number of single cosets for every new double coset.

N124:=Stabiliser(N,[1,2,4]);
SSS:={[1,2,4]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IN do
if ts[1]*ts[2]*ts[4] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
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end if;
end for;
end for;

N124s:=N124;
for n in N do if 1ˆn eq 2 and 2ˆn eq 1 and 4ˆn eq 12 then
N124s:=sub<N|N124s,n>;
end if; end for;
#N124s;

N124s;
[1,2,4]ˆN124s;

N124:=Stabiliser(N,[1,2,4]);
N124;
N124:=sub<N|(1, 2)(3, 13)(4, 12)(5, 11)(6, 10)(7, 9)>;

#N124;
[1,2,4]ˆN124;

T:=Transversal(N,N124);
for i in [1..#T] do {[1,2,4]ˆN124}ˆT[i];
end for;

for n in IN do if ts[2]*ts[1]*ts[12] eq
n*ts[1]*ts[2]*ts[4] then n; end if; end for;
for m,n in IN do if ts[2]*ts[1]*ts[12] eq
m*(ts[1]*ts[2]*ts[4])ˆn then A:=m; B:=n;
end if; end for;
W,phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
g:=function(W);
g(G);
ts[2]*ts[1]*ts[12] eq f(xˆ2)*ts[1]*ts[2]*ts[4];

T124:=Transversal(N,N124);
for i in [1..#T124] do ss:=[1,2,4]ˆT124[i];
cst[prodim(1,ts,ss)]:=ss;
end for;
m:=0; for i in [1..560] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

Orbits(N124);

/*since there are equal coset names on the double coset
we check all elements in N that sends [2112] to [124] we
do the loop listen below to determine the relation.*/
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/*we continue using the loops until the number of m
increases to 560, since the index of |G|/|N|=560*/

%--------------------------------------------------

/* Since we have all new existing double cosets
now we check for those double cosets where m did
not increased. We verify if they are equal to other existing
double cosets. We use the following code*/

for m,n in IN do if ts[1]*ts[2]*ts[8]*ts[1] eq
m*(ts[1]*ts[2]*ts[3])ˆn then m,n; end if; end for;

/*since [1281] is not a new double coset we check if it is
equal to other existing double cosets. In this case is
equal to [123]. We use the loop listen below to test
every new double coset until MAGMA prints out permutations
so we know the coset [1281] lives in the double coset [123].
Lastly, we find by what relation [1281] lives in [123]*/

for m,n in IN do if ts[1]*ts[2]*ts[8]*ts[1] eq
m*(ts[1]*ts[2]*ts[3])ˆn then A:=m;B:=n; end if; end for;
W,phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;

g:=function(W);
w4 := W.1 * W.2; return w4;
end function;
g(G);
ts[1]*ts[2]*ts[8]*ts[1] eq f(x*y)*ts[10]*ts[11]*ts[12];

%--------------------------------------------------

/*Once we have found all orbits and the order of m has
increased to 560 our group is closed under right
multiplication and a Cayley graph is given to
summarize the work.*/
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Appendix C

MAGMA Code for 2× PGL2(27)

over M=(13:2) DCE

/* To complete a DCE of G over a maximal subgroup M we
follow a similar procedure for a regular DCE of G. But in
this case for one of the loops we must replace M with N.

%------------------------------------------------------

S:=Sym(13);
xx:=S!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);
yy:=S!(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7);
N:=sub<S|xx,yy>;

G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2,xˆ-13,tˆ2,(t,y * xˆ2),
((xˆ4)*t*tˆx)ˆ3,
((xˆ6)*t*tˆx)ˆ2>;

H:=sub<G|x,y,y * t * xˆ4 * t * x * t * y * t,
t * xˆ4 * y * t * xˆ4 * y * t * xˆ3 * y>;
#H;
f,G1,k:=CosetAction(G,sub<G|x,y>);
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|f(x),f(y),f(y * t * xˆ4 * t *x* t * y * t),
f(t * xˆ4 * y * t * xˆ4 * y* t * xˆ3 * y)>;
#IN;#IM;

ts:=[Id(G1): i in [1..13]];
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ts[1]:=f(t); ts[2]:=f(tˆx);
ts[3]:=f(tˆ(xˆ2));
ts[4]:=f(tˆ(xˆ3));
ts[5]:=f(tˆ(xˆ4));
ts[6]:=f(tˆ(xˆ5));
ts[7]:=f(tˆ(xˆ6));
ts[8]:=f(tˆ(xˆ7));
ts[9]:=f(tˆ(xˆ8));
ts[10]:=f(tˆ(xˆ9));
ts[11]:=f(tˆ(xˆ(10)));
ts[12]:=f(tˆ(xˆ(11)));
ts[13]:=f(tˆ(xˆ(12)));

DoubleCosets(G,H,sub<G|x,y>);
Index(G,sub<G|x,y>);

prodim := function(pt, Q, I)

v := pt;
for i in I do
v := vˆ(Q[i]);

end for;
return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];
for i := 1 to 13 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;
for i in [1..1512] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

%-------------------------
N1:=Stabiliser (N,[1]);
SSS:={[1]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do for n in IM do if ts[1] eq
n*ts[Rep(Seqq[i])[1]]
then print Rep(Seqq[i]);
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end if; end for; end for;
N1; #N1;
T1:=Transversal(N,N1);
for i in [1..#T1] do
ss:=[1]ˆT1[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0; for i in [1..378] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N1);

%-------------------------
N12:=Stabiliser(N,[1,2]);
SSS:={[1,2]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N12; #N12;

/* Equal Coset Name [1,2]˜[9,8]
in one of the following loops we have n in M not N*/

N12s:=N12;
for n in M do if 1ˆn eq 9 and 2ˆn eq 8 then
N12s:=sub<N|N12s,n>;
end if; end for;
#N12s;

N12s;
[1,2]ˆN12s;

N12:=Stabiliser(N,[1,2]);
N12;
N12:=sub<N|(1, 9)(2, 8)(3, 7)(4, 6)(10, 13)(11, 12)>;

#N12;
[1,2]ˆN12;
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T:=Transversal(N,N12);
for i in [1..#T] do {[1,2]ˆN12}ˆT[i];
end for;

for n in IM do if ts[1]*ts[2] eq
n*ts[9]*ts[8] then n; end if; end for;

ts[1]*ts[2] eq f(x)*ts[9]*ts[8];

/* Now we find the relation that sends [1,2] to [9,8]*/

for n in IM do if ts[1]*ts[2]
eq n*ts[9]*ts[8] then n; end if; end for;
for n in IM do if ts[1]*ts[2] eq
n*ts[9]*ts[8] then A:=n; end if; end for;
W,phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
g:=function(W);

return W.1;
end function;
g(G);
T12:=Transversal(N,N12);
for i in [1..#T12] do ss:=[1,2]ˆT12[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1512] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
Orbits(N12);

%--------------------------------------------------

N13:=Stabiliser(N,[1,3]);
SSS:={[1,3]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IM do
if ts[1]*ts[3] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;
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N13; #N13;
T13:=Transversal(N,N13);
for i in [1..#T13] do ss:=[1,3]ˆT13[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1512] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

Orbits(N13);

%--------------------------------------------------

N14:=Stabiliser(N,[1,4]);
SSS:={[1,4]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IM do
if ts[1]*ts[4] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N14; #N14;
T14:=Transversal(N,N14);
for i in [1..#T14] do ss:=[1,4]ˆT14[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1512] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

Orbits(N14);

%--------------------------------------------------

N16:=Stabiliser(N,[1,6]);
SSS:={[1,6]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IM do
if ts[1]*ts[6] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
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then print Rep(Seqq[i]);
end if;
end for;
end for;

N16; #N16;
T16:=Transversal(N,N16);
for i in [1..#T16] do ss:=[1,6]ˆT16[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..1512] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
Orbits(N16);

/*Every time the value of m increases we have a new
double coset. But keep in mind that he value of m is
the number of single cosets found on each double coset.
We continue until the value of m increases to the number
of the index, 1512. Once we have found all 22 DC now we
check where the not existing double cosets live.*/

%--------------------------------------------------
/*If the value of m does not increase
then is not a new double coset so
now we check for the the non existing double
coset using the following loops*/

DoubleCosets(G,H,sub<G|x,y>);

/*we use the loop above to label all 22 double
cosets including identity(loop below). */

A:=[Id(G1): i in [1..21]];
A:=[Id(G1): i in [1..21]];
A[1]:=f(t * y * t * xˆ2 * t * y * t);
A[2]:=f(t * xˆ2 * y * t * x * y * t);
A[3]:=f(t * xˆ3 * t * x * y *t);
A[4]:=f(t * x * t * xˆ-1 * t * y * t);
A[5]:=f(t * x * t* x * t * x * t);
A[6]:=f(t * xˆ2 * y * t * y * t);
A[7]:=f(t * xˆ3 * t * y * t);
A[8]:=f(t * y * t * x * y * t);
A[9]:=f(t * y * t * x * t);
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A[10]:=f(t * x * t * xˆ-1 * t);
A[11]:=f(t * x * t * y * t);
A[12]:=f(t); A[13]:=f(t * x * t);
A[14]:=f(t * y * t);
A[15]:=f(t * x * y * t);
A[16]:=f(t * x * t * x * t);
A[17]:=f(t * y * t * y * t);
A[18]:=f(t* xˆ2 * t * y * t);
A[19]:=f(t * x * y * t * y * t);
A[20]:=f(t * x * y * t * xˆ-1 * t);
A[21]:=f(t * x * t * x * y * t);

%--------------------------------------------------
/* once we have label all 22 double cosets we
continue and use the following loop. This loop
lets us know where the exactly the double cosets
live. To verify if [1,2] is new we use the loop shown
below*/

for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[2] eq m*(A[i])ˆn then "true"; end if;
end for; end for; end for;
for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[2] eq m*(A[i])ˆn then i; end if; end for;
end for; end for;
/*13*/

/*the loop tells us that is on 13, note 13 is a
double coset of two t’s*/

for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[3] eq m*(A[i])ˆn then "true"; end if;
end for; end for; end for;
for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[3] eq m*(A[i])ˆn then i; end if; end for;
end for; end for;
/*14*/

for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[4] eq m*(A[i])ˆn then "true"; end if;
end for; end for; end for;
for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[4] eq m*(A[i])ˆn then i; end if; end for;
end for; end for;
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/*15*/

for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[5] eq m*(A[i])ˆn then "true"; end if;
end for; end for; end for;
for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[5] eq m*(A[i])ˆn then i; end if; end for;
end for; end for;
/*14*/

/*Note, [1,5] is not a new double coset since
in 14 we have the double coset [1,3] so [1,5]
lives in [1,3] . Now we find by what relation
they are equal. We are going to use the
SchreierSystem*/

%--------------------------------------------------
/* Since we have G over M we have aded on
the loop g in Mand h in N*/

for g in IM do for h in IN do if
ts[1]*ts[5] eq g*(ts[1]*ts[3])ˆh
then g,h; break; end if; end for; end for;

for g in IM do for h in IN do if
ts[1]*ts[5] eq g*(ts[1]*ts[3])ˆh
then A:=g;B:=h; break; end if;
end for; end for;

N:=G1; NN:=G;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(G1): i in [1..#G1]];

for i in [2..#G1] do
P:=[Id(G1): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=f(x); end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=f(xˆ-1); end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=f(y); end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=f(t); end if;
end for;
PP:=Id(G1);
for k in [1..#P] do PP:=PP*P[k]; end for;
ArrayP[i]:=PP;

end for;
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for i in [1..#G1] do if ArrayP[i] eq A then Sch[i];
end if; end for;

/*xˆ4 * y * t * xˆ4 * t * x * t * y * t*/
for i in [1..#G1] do if ArrayP[i] eq B then Sch[i];
end if; end for;
/*conjugate [1,3] by xˆ4*y*/
ts[1]*ts[5] eq
f(xˆ4 * y * t * xˆ4 * t * x * t * y * t)*ts[8]*ts[6];

%--------------------------------------------------
/* lets try one more using the label of each
double coset and SchreierSystem */

for i in [1..21] do for m in IM do for n in IN do
if ts[1]*ts[3]*ts[9] eq m*(A[i])ˆn then i; end if;
end for; end for; end for;
/*Note 10 is my new double coset name [1,6]*/

for g in IM do for h in IN do if ts[1]*ts[3]*ts[9] eq
g*(ts[1]*ts[6])ˆh then g,h;
break; end if; end for; end for;
for g in IM do for h in IN do if ts[1]*ts[3]*ts[9] eq
g*(ts[1]*ts[6])ˆh then A:=g;B:=h; break; end if;
end for; end for;
for i in [1..#G1] do if ArrayP[i] eq A then Sch[i];
end if; end for;
for i in [1..#G1] do if ArrayP[i] eq B then Sch[i];
end if; end for;
/*conjugate [1,6] by xˆ-3*/
ts[1]*ts[3]*ts[9] eq
f(t * xˆ4 * y * t * xˆ4 * y * t * xˆ3)*ts[11]*ts[3];

%--------------------------------------------------
/*Once we have found all orbits and the order of m has
increased to 1512 our group is closed under right
multiplication and a Cayley graph is given to
summarize the work.
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Appendix D

MAGMA Code for Monomial

Progenitor 53∗2 :m (13 : 4)

G:=TransitiveGroup(13,2);
#G;
G;
G.1;
G.2;
G eq sub<G|G.1,G.2>;

%--------------------------------------------------

xx:=G!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);
yy:=G!(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7);
G eq sub<G|xx,yy>;
IsAbelian(G);
/*False, Continue with the process*/
CG:=CharacterTable(G);
CG;

%--------------------------------------------------
/*Now we find the classes of G*/

C:=Classes(G);
C;

Class(G,C[1][3]);
/* find all 8 classes by changing C[i][3] for i in 1,...,8*/
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CG[3];

%--------------------------------------------------
/*Now find the subgroup that is equal to the index,2*/

S:=Subgroups(G);
for i in [1..#S] do if Index(G,S[i]‘subgroup) eq 2 then i;
end if; end for;
H:=S[3]‘subgroup;
CH:=CharacterTable(H);
CH;

for i in [2..13] do if Induction(CH[i],G) eq CG[3] then i;
end if; end for;

Induction(CH[4],G) eq CG[3];
I:=Induction(CH[4],G);
I eq CG[3];

%--------------------------------------------------
/* we use the following code to find all classes of H*/

Cprime:=Classes(H);
Class(H,Cprime[1][3]);

/*change Cprime[i][3]; for i in 1,...,8*/

CH[4];

%--------------------------------------------------
/**Find the 2 x 2 Matrix for xx and yy**/
C:=CyclotomicField(13);
GG:=GL(2,C);

T:=Transversal(G,H);
#T;
/* in here I have the index and the prime field*/
N:=H;

A:=[[C.1,0]:i in [1..2]];
for i,j in [1..2] do A[i,j]:=0; end for;

for i,j in [1..2] do if T[i]*xx*T[j]ˆ-1 in H then
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A[i,j]:=CH[4] (T[i]*xx*T[j]ˆ-1); end if; end for;
GG!A;
Order(GG!A);

B:=[[C.1,0]:i in [1..2]];
for i,j in [1..2] do B[i,j]:=0; end for;
for i,j in [1..2] do if T[i]*yy*T[j]ˆ-1 in H then
B[i,j]:=CH[4] (T[i]*yy*T[j]ˆ-1); end if; end for;
GG!B;
Order(GG!B);

%--------------------------------------------------

C:=CyclotomicField(13);
GG:=GL(2,53);
/* in here I have the index and the prime field*/
N:=H;
T:=Transversal(G,H);
#T;
mat := function(n,p,D,k)
for i,j in [1..k] do if T[i]*p*T[j]ˆ-1 in H then
if CH[n](T[i]*p*T[j]ˆ-1) eq C.1ˆ5 then D[i,j]:=24;
end if;
if CH[n](T[i]*p*T[j]ˆ-1) eq C.1ˆ8 then D[i,j]:=42;
end if;
if CH[n](T[i]*p*T[j]ˆ-1) eq 1 then D[i,j]:=1;end if;
end if; end for;
return D;
end function;
A:=[[0,0]: i in [1..2]];
mat(4,xx,A,2);
mat(4,yy,A,2);

AA:=GG!mat(4,xx,A,2);
BB:=GG!mat(4,yy,A,2);
HH:=sub<GG|AA,BB>;
IsIsomorphic(HH,G);

%--------------------------------------------------

/***Find the permutation representation with #Field -1*/

C:=CyclotomicField(52);
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GG:=GL(2,C);
/* in here I have the index and the prime field*/
N:=H;
A:=[[C.1,0]:i in [1..2]]; A:=[[C.1,0]: i in [1..2]];
for i,j in [1..2] do A[i,j]:=0; end for;

for i,j in [1..2] do if T[i]*xx*T[j]ˆ-1 in H then
A[i,j]:=CH[4] (T[i]*xx*T[j]ˆ-1); end if; end for;
GG!A;
Order(GG!A);

B:=[[C.1,0]:i in [1..2]]; B:=[[C.1,0]: i in [1..2]];
for i,j in [1..2] do B[i,j]:=0; end for;

for i,j in [1..2] do if T[i]*yy*T[j]ˆ-1 in H then
B[i,j]:=CH[4] (T[i]*yy*T[j]ˆ-1); end if; end for;

GG!B;
Order(GG!B);

HH:=sub<GG|A,B>;
IsIsomorphic(HH,G);

%--------------------------------------------------

perm := function(n, p, mat)
/* Return the matrix converted to permutation
of S_{n*p}.*/
C<u>:=CyclotomicField(p);
Z:=Integers ();
s:=[];

for i in [1..n] do
s[i]:=i;

end for;
z:=Matrix(C,1,n,s)*mat;
w:=[];
for i in [1..n] do
j:=0; done:=0;
repeat
if z[1,i]/uˆj in Z then
if Z!(z[1,i]/uˆj) ge 0 then

w[i]:=n*j+Z!(z[1,i]/uˆj);
done:=1;

end if; end if;
j:=j+1;
until done eq 1 or j eq p;
end for;
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for i in [1..(p-1)] do
for a in [1..n] do
w[a+i*n]:=(Z!w[a]+i*n-1) mod (p*n) + 1;

end for; end for;
S:=Sym(n*p);
w:=S!w;

return w;
end function;
HH:=sub<Sym(2*52)|perm(2,52,GG!A),
perm(2,52,GG!B)>;
IsIsomorphic(HH,G);
perm(2,52,GG!A);

perm(2,52,GG!B);

%--------------------------------------------------

FPGroup(G);
G<x,y>:=Group<x,y|yˆ2,(xˆ-1*y)ˆ2, xˆ(-13)>;
S:=Sym(104);
xx:=S!(1,47,91,87,97,19,55,71,31,25,93,29,83)
(3,95,77,69,89,39,5,37,63,51,81,59,61)
(7,85,49,33,73,79,11,75,21,103,57,13,17)
(9,27,35,15,65,99,67,41,53,23,45,43,101)
(2,84,30,94,26,32,72,56,20,98,88,92,48)
(4,62,60,82,52,64,38,6,40,90,70,78,96)
(8,18,14,58,104,22,76,12,80,74,34,50,86)
(10,102,44,46,24,54,42,68,100,66,16,36,28);

yy:=S!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)
(15, 16)(17, 18)(19, 20)(21,22)(23, 24)(25, 26)
(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39,
40)(41, 42)(43, 44)(45, 46)(47, 48)(49, 50)(51, 52)
(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)
(65, 66)(67, 68)(69, 70)(71, 72)(73, 74)(75,
76)(77, 78)(79, 80)(81, 82)(83, 84)(85, 86)(87, 88)
(89, 90)(91, 92)(93,
94)(95, 96)(97, 98)(99, 100)(101, 102)(103, 104);

N:=sub<S|xx,yy>;
#N;

Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..#N]];
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for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

Normaliser:=Stabiliser(N,{1,3,5,7,9,11,13,15,17,
19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,
85,87,89,91,93,95,97,99,101,103});

Normaliser;
Normaliser.1;

A1:=N!(1,47,91,87,97,19,55,71,31,25,93,29,83)
(2,84,30,94,26,32,72,56,20,98,88,92,48)(3,95,
77,69,89,39,5,37,63,51,81,59,61)(4,62,60,82,52,
64,38,6,40,90,70,78,96)(7,85,49,33,73,79,11,75,
21,103,57,13,17)(8,18,14,58,104,22,76,12,80,74,
34,50,86)(9,27,35,15,65,99,67,41,53,23,45,43,
101)(10,102,44,46,24,54,42,68,100,66,16,36,28);
for i in [1..26] do if ArrayP[i] eq A1 then Sch[i];
end if; end for;

G<x,y,t>:=Group<x,y,t|yˆ2,(xˆ-1*y)ˆ2, xˆ(-13),tˆ53,
tˆ(xˆ5)=tˆ3,(t,tˆy)>;

%------------- Find First Order Relation----/
C:=Classes(N);
#C;
for i in [2..8] do i, Orbits(Centraliser(N,C[i][3]));
end for;

for j in [2..8] do for i in [1..26] do if ArrayP[i] eq C[j][3]
then C[j][3],Sch[i];
end if;
end for;
end for;
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Appendix E

MAGMA Code for Wreath

Product

%*--------Producing a Wreath Product Progenitor-------------/
N:=TransitiveGroup(30,437);
PP<x,y,z,w>:=Group<x,y,z,w|xˆ10,yˆ10,zˆ10,wˆ3,(x,y),(x,z),
xˆw=y,yˆw=z,zˆw=x>;
f3,P1,k3:=CosetAction(PP,sub<PP|Id(PP)>);
IsIsomorphic(G,P1);
/*true Mapping from: GrpPerm: G to GrpPerm: P1
Composition of Mapping from: GrpPerm: G to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: P1

*/
W:=WreathProduct(CyclicGroup(10),CyclicGroup(3));
PP<x,y,z,w>:=Group<x,y,z,w|xˆ10,yˆ10,zˆ10,wˆ3,(x,y),(x,z),
xˆw=y,yˆw=z,zˆw=x>;
f3,P1,k3:=CosetAction(PP,sub<PP|Id(PP)>);

%-----------------------------------------------
S:=Sym(30);
xx:=S!(1,2,3,4,5,6,7,8,9,10);
yy:=S!(11,12,13,14,15,16,17,18,19,20);
zz:=S!(21,22,23,24,25,26,27,28,29,30);
ww:=S!(1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)
(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30);
N:=sub<S|xx,yy,zz,ww>;
N eq sub<N|xx,yy,zz,ww>;
CompositionFactors(N);
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FPGroup(N);
/*1st Presentation*/
NN<x,y,z,w>:=Group<x,y,z,w|xˆ10,yˆ10,zˆ10,wˆ3,
(x,y),(x,z),(y,z),xˆ-1*wˆ-1*z*w,yˆ-1*wˆ-1*x*w>;
#NN;
/*3000*/

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..3000]];
for i in [2..3000] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=zz; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=zzˆ-1; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=ww; end if;
if Eltseq(Sch[i])[j] eq -4 then P[j]:=wwˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

N1:=Stabiliser(N,1);

#N1;
/*100*/
N1;
/*(11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

(21, 22, 23, 24, 25, 26, 27, 28, 29, 30)*/

for i in [1..3000] do if ArrayP[i] eq N!(11, 12, 13,
14, 15, 16, 17, 18, 19, 20)
then Sch[i]; end if; end for;

/*y*/

for i in [1..3000] do if ArrayP[i] eq N! (21, 22, 23,
24, 25, 26, 27, 28, 29, 30)
then Sch[i]; end if; end for;
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/*z*/

G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ10,yˆ10,zˆ10,wˆ3,
(x,y),(x,z),(y,z),xˆ-1*wˆ-1*z*w,yˆ-1*wˆ-1*x*w,tˆ2,(t,y),
(t,z)>;

%------------------------------------------------
C:=Classes(N);

#C;
/*360*/
for i in [1..#C] do
i, C[i][3];
end for;

for i in [2..360] do i, Orbits(Centraliser(N,C[i][3]));
end for;

for j in [2..360] do for i in [1..13] do if ArrayP[i] eq
C[j][3] then C[j][3],Sch[i];
end if;
end for;
end for;
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Appendix F

Finding Generators of PSL(2, 7)

/**********Find Mapping for PSL(2,7)*********/
G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ2,yˆ3,zˆ2,wˆ2,
(yˆ-1*x)ˆ2, yˆ-1*z*y*w, (x*z)ˆ2,(z*w)ˆ2, y*z*yˆ-1*z*w,
tˆ2,(t,x*y),(x * yˆ-1 * w*t)ˆ3,(y*t)ˆ3,(w * t)ˆ3,
x * w * y * t * z * w * t,t * z * t * x * w * y * t * w * t>;

#G;

S:=Sym(12);
xx:=S!(1, 4)(2, 5)(3, 6)(8, 9)(10, 12);
yy:=S!(1, 7, 4)(2, 8, 6)(3, 9, 5)(10, 12, 11);
zz:=S!(1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(9, 12);
ww:=S!(1, 9)(2, 7)(3, 8)(4, 10)(5, 11)(6, 12);

N:=sub<S|xx,yy,zz,ww>;
#N;
f,G1,k:=CosetAction(G,sub<G|x,y,z,w>);
IN:=sub<G1|f(x),f(y),f(z),f(w)>;
CompositionFactors(G1);

%------------------------------------------------
/*we use the following loop to compute the
single cosets of the group*/
for i in [1..7] do i, cst[i]; end for;
/*1 []
2 [ 12 ]
3 [ 10 ]
4 [ 11 ]
5 [ 9 ]
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6 [ 8 ]
7 [ 5 ]

*/

%------------------------------------------------

/*Here we have the image of x,y,z,w, and t*/
f(x);
/*(2, 3)(5, 6)*/
f(y);
/*(2, 4, 3)(5, 7, 6)*/
f(z);
/*(2, 5)(3, 6)*/
f(w);
/*(2, 5)(4, 7)*/
f(t);
/*(1, 2)(3, 4)*/

%------------------------------------------------

/*this code prints out the twelve t’s we have*/
f(t)ˆIN;
/*GSet{@

(1, 2)(3, 4),
(1, 3)(2, 4),
(1, 4)(2, 3),
(1, 5)(4, 6),
(1, 5)(3, 7),
(1, 6)(4, 5),
(1, 3)(5, 7),
(1, 4)(5, 6),
(1, 7)(3, 5),
(1, 2)(6, 7),
(1, 6)(2, 7),
(1, 7)(2, 6)

@}*/

/*rename f(t),f(x),f(y),f(z),f(w)*/
ft:=f(t);
fx:=f(x);
fy:=f(y);
fz:=f(z);
fw:=f(w);



312

%------------------------------------------------

/* we must find all twelve t’s that satisfies
the twelve permutationslisted above*/

ft:=f(t);
f2:=(ft)ˆ((fz*fy));

f3:=ftˆ((fxˆfw));
f4:=(ftˆ(fx));
f5:=ftˆ(fw*fy);
f6:=ftˆ(fz);
f7:=ftˆ(fy);
f8:=ftˆ(fw*fx);
f9:=ftˆ(fw);
f10:=ftˆ(fx*fwˆ(-1));
f11:=ftˆ((fz*fx*fyˆ(-1))ˆ3);
f12:=ftˆ(fz*fw);

/*check if we get all the 12 t’s match
to the ones in f(t)ˆIN;*/
ft;
f2;
f3;
f4;
f5;
f6;
f7;
f8;
f9;
f10;
f11;
f12;

%------------------------------------------------

/***Finding Generators of PSL(2,7) ****/

G<x,y,z,w,t>:=Group<x,y,z,w,t|xˆ2,yˆ3,zˆ2,wˆ2,
(yˆ-1*x)ˆ2, yˆ-1*z*y*w, (x*z)ˆ2,(z*w)ˆ2,
y*z*yˆ-1*z*w,tˆ2,(t,x*y),(x * yˆ-1 * w*t)ˆ3,
(y*t)ˆ3,(w * t)ˆ3, x * w * y * t * z * w * t,
t * z * t * x * w * y * t * w * t>;
#G;
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S:=Sym(12);
xx:=S!(1, 4)(2, 5)(3, 6)(8, 9)(10, 12);
yy:=S!(1, 7, 4)(2, 8, 6)(3, 9, 5)(10, 12, 11);
zz:=S!(1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(9, 12);
ww:=S!(1, 9)(2, 7)(3, 8)(4, 10)(5, 11)(6, 12);

N:=sub<S|xx,yy,zz,ww>;
#N;

f,G1,k:=CosetAction(G,sub<G|x,y,z,w>);
IN:=sub<G1|f(x),f(y),f(z),f(w)>;
CompositionFactors(G1);

%------------------------------------------------

/* we are now in symmetric 8, menacing we are working
with 8 letters.
Also store alpha, beta, and gamma after finding by hand*/
S:=Sym(8);
alpha:=S!(7,1,2,3,4,5,6);
beta:=S!(1,4,2)(3,5,6);
gamma:=S!(7,8)(1,6)(2,3)(4,5);

psl:=sub<S|alpha, beta, gamma>;
IsIsomorphic(G1,psl);
/*true Homomorphism of GrpPerm: G1, Degree 7,
Order 2ˆ3 * 3 * 7 into GrpPerm: psl,
Degree 8, Order 2ˆ3 * 3 * 7 induced by

(2, 3)(5, 6) |--> (1, 7)(2, 4)(3, 8)(5, 6)
(2, 4, 3)(5, 7, 6) |--> (1, 6, 2)(4, 5, 7)
(2, 5)(3, 6) |--> (1, 8)(2, 6)(3, 7)(4, 5)
(2, 5)(4, 7) |--> (1, 2)(3, 4)(5, 7)(6, 8)
(1, 2)(3, 4) |--> (1, 3)(2, 6)(4, 8)(5, 7)

on the left hand side we have the image of x,y,z,w,t.
and on the right hand side we have the homomorphism.
We are going to use the homomorphism to find the map
for each one, this is done by hand.*/

%------------------------------------------------
f,G2,k:=CosetAction(S,sub<S|alpha,beta,gamma>);
IN:=sub<G2|f(alpha),f(beta),f(gamma)>;

/* now we store the homomorphisms as follows:*/
X:= S!(1, 7)(2, 4)(3, 8)(5, 6);
Y:= S!(1, 6, 2)(4, 5, 7);
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Z:=S!(1, 8)(2, 6)(3, 7)(4, 5);
W:=S!(1, 2)(3, 4)(5, 7)(6, 8);
T:=S!(1, 3)(2, 6)(4, 8)(5, 7);

T; /*(1, 3)(2, 6)(4, 8)(5, 7)*/
T4:=Tˆ(X); /*=t_4=(1, 6)(2, 3)(4, 5)(7, 8),*/
T2:=Tˆ(Z*Y); /*(1, 2)(3, 5)(4, 8)(6, 7)*/
T5:=T2ˆX; /*(1, 5)(2, 3)(4, 7)(6, 8)*/
T3:=Tˆ(XˆW); /*(1, 3)(2, 8)(4, 5)(6, 7)*/
T6:=T3ˆX; /*(1, 5)(2, 6)(3, 4)(7, 8)*/
T7:=TˆY; /*(1, 2)(3, 6)(4, 7)(5, 8)*/
T8:=Tˆ(W*X); /*(1, 6)(2, 4)(3, 7)(5, 8)*/
T9:=T8ˆX; /*(1, 8)(2, 4)(3, 6)(5, 7)*/
T10:=Tˆ(X*Wˆ-1); /*(1, 4)(2, 8)(3, 7)(5, 6)*/
T11:=Tˆ((Z*X*Yˆ-1)ˆ3); /*(1, 4)(2, 7)(3, 5)(6, 8)*/
T12:=T10ˆX; /*(1, 8)(2, 7)(3, 4)(5, 6)*/
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Appendix G

Maximal Subgroup of PSL(2, 8)

over S4 × 2

/*////////////////////Change Ker=2 to ker=1//////////////////*/
S:=Sym(12);
vv:=S!(1, 2)(3, 6)(4, 8)(5, 9)(7, 11);
ww:=S!(1, 3, 11)(2, 7, 6)(4, 8, 12)(5, 9, 10);
xx:=S!(2, 8)(3, 9)(7, 10)(11, 12);
yy:=S!(1, 4)(5, 6)(7, 12)(10, 11);
zz:=S!(1, 5)(2, 9)(3, 8)(4, 6);
N:=sub<S|vv,ww,xx,yy,zz>;
#N;
/*48*/
G<v,w,x,y,z,t>:=Group<v,w,x,y,z,t|vˆ2,wˆ3,xˆ2,yˆ2,zˆ2,
(wˆ-1*v)ˆ2, wˆ-1*x*w*y, w*x*wˆ-1*z,v*x*v*y,(x*y)ˆ2,
tˆ2,(t,v * x * y * z * wˆ-1),(t,x),(v*t)ˆ7,
(v * w * y * z*tˆv)ˆ2,
(v * w * y * z*t)ˆ0,(w*y*t)ˆ0,(w*y*tˆy)ˆ9>;
#G;
/*1008*/
f,G1,k:=CosetAction(G,sub<G|v,w,x,y,z>);
IN:=sub<G1|f(v),f(w),f(x),f(y),f(z)>;
CompositionFactors(G1);

%------------------------------------------------
#k;
/*the kernel is 2 to have a better image we want to change
kernel to be 1 since we want only identity to live in K
otherwise we would have one thing be mapping to two
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things which it wont be a one to this is the process to change
the kernel to 1*/

%------------------------------------------------
/*first we want to find the order the mapping of
each generator*/
f(x);
/*Id(G)*/
Order(f(y));
/*1*/
Order(f(z));
/*1*/
Order(f(v));
/*2*/
Order(f(w));
/*3*/

/*Noticed that the the order of f(x)=f(y)=f(z)=1.
Thus we are going to construct a new progenitor using the
original progenitor but changing x,y, and z with identity.
so we use the old progenitor to get a new one as follow*/

/* since x,y,& z are identity then we only use v=2 and w=3*/

%------------------------------------------------

G<v,w,t>:=Group<v,w,t|vˆ2,wˆ3, (wˆ-1*v)ˆ2,tˆ2,(t,v*wˆ-1),
(v*t)ˆ7,(v * w * tˆv)ˆ2,(w*t)ˆ9>;
#G;
/*the new order of G is half of what was our old order of G,
1008since we have a new G we do coset action of the
new group call it G1*/
f,G1,k:=CosetAction(G,sub<G|v,w>);
#k;
/*yes, the order of k is 1 now we can construct a better
image for this group*/

%------------------------------------------------
CompositionFactors(G1);
/*we stil have G

| A(1, 8) = L(2, 8)
1

*/
#sub<G|v,w>;
/*6*/
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NN<v,w>:=Group<v,w|vˆ2,wˆ3, (wˆ-1*v)ˆ2>;
HH:=sub<NN|v*wˆ-1>;
/*2*/

%------------------------------------------------
/*now we do the point stabilizer of 1*/
ff,N,k1:=CosetAction(NN,HH);
N;

/*Now we get the generators of S_3
Symmetric group N acting on a set of cardinality 3
Order = 6 = 2 * 3
(1, 2)
(1, 2, 3)*/
ff(v*wˆ-1);

/*(2, 3)*/
Stabiliser(N,1);

%------------------------------------------------

/*/////Now we start with the process of maximal subgroup///*/
S:=Sym(12);
xx:=S!(1, 2)(3, 6)(4, 8)(5, 9)(7, 11);
yy:=S!(1, 3, 11)(2, 7, 6)(4, 8, 12)(5, 9, 10);
N:=sub<S|xx,yy>;
f,N1,k:=CosetAction(N,sub<N|Id(N)>);
G<x,y,t>:=Group<x,y,t|xˆ2,yˆ3, (yˆ-1*x)ˆ2,tˆ2,(t,x*yˆ-1),
(x*t)ˆ7,(x * y * tˆx)ˆ2,(y*t)ˆ9>;
#G;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
M:=MaximalSubgroups(G1);
#M;
/*3*/
for i in [1..3] do #M[i]‘ subgroup; end for;
/*14
18*
56*/

/* only 18 is the candidates for maximal subgroup
divisible by N (#N = 6) we will perform DCE using this
maximal subgroup. */

%------------------------------------------------
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C:=Conjugates(G1,M[2]‘subgroup);
#C;
/*28*/

M:=MaximalSubgroups(G1);
#M;
/*3*/
M;
C:=Conjugates(G1,M[2]‘subgroup); /* 28 */
CC:=Setseq(C);
for i in [1..#CC] do if f(x) in CC[i] and f(y) in CC[i] then i;
end if; end for;
/*13*/

CC[28];

for g in G1 do if CC[13] eq sub<G1|f(x),f(y),g> then A:=g;
break;
end if; end for;
Order(A);
for g in G1 do if Order(g) eq 2 and
CC[13] eq sub<G1|f(x),f(y),g> then A:=g; break; end if;
end for;

%------------------------------------------------

W,phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
/*function(W)

w4 := W.3 * W.1; w5 := w4 * W.3; w6 := w5 *
W.2; w7 := w6 * W.3; w8 := w7 *
W.1; w9 := w8 * W.3; w10 := w9 * W.2; w11 := w10 *
W.3; w12 := w11 * W.1;
w13 := w12 * W.3; w14 := w13 * W.2; w15 := w14 *
W.3; return w15;

end function*/

/* now we run the loop to change the permutation
into words but shorter relation*/

N:=G1;
NN:=G;
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Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..#G1]];
for i in [2..#G1] do
P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=f(x); end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=f(y); end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=f(y)ˆ-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=f(t); end if;
end for;
PP:=Id(N);
for k in [1..#P] do PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..#G1] do if ArrayP[i] eq A then Sch[i];
end if; end for;
/*t * x * t * y * t * x * t * y * t * x * t * y * t*/

/*H1=H we have the relation of H and the order of H is
18 which is what we have in M[2]*/
H1:=sub<G1|f(x),f(y),f(t * x * t * y * t * x * t * y * t * x

* t * y * t)>;
#H1;
/*18*/

%------------------------------------------------

/*now lets find out the composition factor of H=M[2]*/
CompositionFactors(M[2]‘subgroup);
/* G

| Cyclic(2)

*
| Cyclic(3)

*
| Cyclic(3)

*/
NL:=NormalLattice(M[2]‘subgroup);
NL;
/*Normal subgroup lattice
-----------------------

[4] Order 18 Length 1 Maximal Subgroups: 3
---
[3] Order 9 Length 1 Maximal Subgroups: 2
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---
[2] Order 3 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

*/
Center(M[2]‘subgroup);
for i in [1..#NL] do if IsAbelian(NL[i]) then i;
end if; end for;
/*1
2
3

*/
NL[3];
/*The largest abelian group of M is NL[3] of order 9.
Now we factor by NL[3]*/
X:=[3ˆ2];
IsIsomorphic(NL[3],AbelianGroup(GrpPerm,X));
/* isomorphism type of M is 3ˆ2:2*/

%------------------------------------------------

/*/////Maximal Subgroup Clean File with my new
control group Sym_3/////////*/
S:=Sym(3);
xx:=S!(1, 2);
yy:=S!(1, 2, 3);
/*we are working with the new generators of my
new control group S_3*/
N:=sub<S|xx,yy>;
#N;
Set(N);
G<x,y,t>:=Group<x,y,t|xˆ2,yˆ3, (yˆ-1*x)ˆ2,tˆ2,(t,x*yˆ-1),
(x*t)ˆ7,(x * y * tˆx)ˆ2,(y*t)ˆ9>;
#G;
H:=sub<G|x,y,t * x * t * y * t * x

* t * y * t * x * t * y * t>;
#H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|f(x),f(y),f(t * x * t * y * t * x *
t * y * t * x * t * y * t)>;
#IN;#IM;
/*6, 18*/
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%------------------------------------------------
/*Now we construct a double coset enumeration*/

ts:=[Id(G1): i in [1..3]];
ts[1]:=f(t); ts[2]:=f(tˆ(x));
ts[3]:=f(tˆ(yˆ2));
#DoubleCosets(G,H,sub<G|x,y>);
/*7*/
DoubleCosets(G,H,sub<G|x,y>);
/*{ <GrpFP: H, Id(G), GrpFP>,
<GrpFP: H, t * x * t * x * t * y * t * y * t,
GrpFP>, <GrpFP: H, t * x * t * x * t, GrpFP>,
<GrpFP: H, t, GrpFP>, <GrpFP: H, t

* x * t, GrpFP>, <GrpFP: H, t * x * t * y * t, GrpFP>,
<GrpFP: H, t * x * t * x * t * y * t, GrpFP> }*/

/*Expand relations
1) (x*t)ˆ7= xˆ7*tˆxˆ6*tˆxˆ5*tˆxˆ4*tˆxˆ3*tˆxˆ2*tˆxt=1
1=(1, 2)t_1*t_2*t_1*t_2t_1*t_2t_1
ts[1]*ts[2]*ts[1] eq f(x)*ts[1]*ts[2]*ts[1]*ts[2];

2) 1=(x * y * tˆx)ˆ2 xytˆxxytˆx= xy*xy*(xy)ˆ-1tˆx*xytˆx
=(x*y)ˆ2tˆxˆ2*y*tˆx
=t_2t_2
=1

3)1=(y*t)ˆ9
=yˆ9*tˆyˆ8*tˆyˆ7*tˆyˆ6*tˆyˆ5*tˆyˆ4*tˆyˆ3*tˆyˆ2*tˆy*t
1=yˆ9*tˆyˆ8*tˆyˆ7*tˆyˆ6*tˆyˆ5*tˆyˆ4*tˆyˆ3*tˆyˆ2*tˆy*t
t_3*t_2*t_1*t_3*t_2*t_1*t_3t_2t_1=1
ts[3]*ts[2]*ts[1]*ts[3] eq ts[1]*ts[2]*ts[3]*ts[1]*ts[2];
H=9:2
N=S_3
G1=PSL_2(8)
2ˆ3:S_3 */

%------------------------------------------------

Index(G,H);
prodim := function(pt, Q, I)

v := pt;
for i in I do

v := vˆ(Q[i]);



322

end for;
return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]] where
null is [Integers() | ];
for i := 1 to 3 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;
for i in [1..28] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*3*/

N1:=Stabiliser (N,[1]);
SSS:={[1]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do for n in IM do if ts[1] eq
n*ts[Rep(Seqq[i])[1]]
then print Rep(Seqq[i]);
end if; end for; end for;
N1; #N1; /* #N1=2 and N1=(2, 3)*/
T1:=Transversal(N,N1);
for i in [1..#T1] do ss:=[1]ˆT1[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*3*/
Orbits(N1);
/* GSet{@ 1 @},

GSet{@ 2, 3 @}*/

N12:=Stabiliser(N,[1,2]);
SSS:={[1,2]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;
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for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2] eq n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N12; #N12;
T12:=Transversal(N,N12);
for i in [1..#T12] do ss:=[1,2]ˆT12[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*9*/
Orbits(N12);
/*GSet{@ 1 @},

GSet{@ 2 @},
GSet{@ 3 @}*/

/************************[1,2]***************************/
/*121 a new double coset, 122 one transversal goes back to
[1], and 123 a new double coset*/

N121:=Stabiliser(N,[1,2,1]);
SSS:={[1,2,1]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[1] eq n*ts[Rep(Seqq[i])[1]]*
ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N121; #N121;
T121:=Transversal(N,N121);
for i in [1..#T121] do ss:=[1,2,1]ˆT121[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

/*15*/
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Orbits(N121);
/* GSet{@ 1 @},

GSet{@ 2 @},
GSet{@ 3 @}*/

N123:=Stabiliser(N,[1,2,3]);
SSS:={[1,2,3]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[3] eq n*ts[Rep(Seqq[i])[1]]*
ts[Rep(Seqq[i])[2]]*

ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N123; #N123;

T123:=Transversal(N,N123);
for i in [1..#T123] do ss:=[1,2,3]ˆT123[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*21*/
Orbits(N123);
/* GSet{@ 1 @},

GSet{@ 2 @},
GSet{@ 3 @}

*/

/*******************[1,2,1]***************************/
/*1212 lives on a different double coset and 1211
lives in [12]*/

N1213:=Stabiliser(N,[1,2,1,3]);
SSS:={[1,2,1,3]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;
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for i in [1..#SSS] do for n in IM do
if ts[1]*ts[2]*ts[1]*ts[3] eq n*ts[Rep(Seqq[i])[1]]

*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if;
end for;
end for;

N1213; #N1213;
/*[ 1, 2, 1, 3 ]
[ 3, 2, 3, 1 ] #N1213=2*/

/* Equal Name */
N1213s:=N1213;
for n in N do if 1ˆn eq 3 and 2ˆn eq 2 and 1ˆn eq
3 and 3ˆn eq 1 then

N1213s:=sub<N|N1213s,n>;
end if; end for;
#N1213s;

N1213s;
/*(1, 3)*/
[1,2,1,3]ˆN1213s;

N1213:=Stabiliser(N,[1,2,1,3]);
N1213;
N1213:=sub<N|(1,3)>;

#N1213;
[1,2,1,3]ˆN1213;

T:=Transversal(N,N1213);
for i in [1..#T] do {[1,2,1,3]ˆN1213}ˆT[i];
end for;

for n in IM do if ts[1]*ts[2]*ts[1]*ts[3] eq
n*ts[3]*ts[2]*ts[3]*ts[1] then n; end if; end for;

ts[1]*ts[2]*ts[1]*ts[3] eq
f(x * yˆ-1 * t * x * t * y * t * x * t * y * tˆ-1 * yˆ-1

* tˆ-1 * xˆ-1 * tˆ-1)*ts[3]*ts[2]*ts[3]*ts[1];

/* Add Relation */
for n in IM do if ts[1]*ts[2]*ts[1]*ts[3]
eq n*ts[3]*ts[2]*ts[3]*ts[1] then n; end if; end for;
for n in IM do if ts[1]*ts[2]*ts[1]*ts[3] eq
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n*ts[3]*ts[2]*ts[3]*ts[1] then A:=n; end if; end for;
W,phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
g:=function(W);

return W.1;
end function;
g(G);
/*a*/
T1213:=Transversal(N,N1213);
for i in [1..#T1213] do ss:=[1,2,1,3]ˆT1213[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
/*24*/
Orbits(N1213);
/*GSet{@ 2 @},

GSet{@ 1, 3 @}

*/
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