
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

3-2018

USING AUTOENCODER TO REDUCE THE LENGTH OF THE USING AUTOENCODER TO REDUCE THE LENGTH OF THE

AUTISM DIAGNOSTIC OBSERVATION SCHEDULE (ADOS) AUTISM DIAGNOSTIC OBSERVATION SCHEDULE (ADOS)

Sara Hussain Daghustani
California State University - San Bernardino

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Other Psychology Commons

Recommended Citation Recommended Citation
Daghustani, Sara Hussain, "USING AUTOENCODER TO REDUCE THE LENGTH OF THE AUTISM
DIAGNOSTIC OBSERVATION SCHEDULE (ADOS)" (2018). Electronic Theses, Projects, and Dissertations.
620.
https://scholarworks.lib.csusb.edu/etd/620

This Thesis is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It
has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of
CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/415?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/620?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

USING AUTOENCODER TO REDUCE THE LENGTH OF THE AUTISM

DIAGNOSTIC OBSERVATION SCHEDULE (ADOS)

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Sara Hussain Daghustani

March 2018

USING AUTOENCODER TO REDUCE THE LENGTH OF THE AUTISM

DIAGNOSTIC OBSERVATION SCHEDULE (ADOS)

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Sara Daghustani

March 2018

Approved by:

Dr. Kerstin Voigt, Adviser, Computer Science and Engineering

Dr. George Georgiou, Committee Member

Dr. Qingquan Sun, Committee Member

© 2018 Sara Hussain Daghustani

 iii

ABSTRACT

This thesis uses autoencoders to explore the possibility of reducing the length of

the Autism Diagnostic Observation Schedule (ADOS), which is a series of tests

and observations used to diagnose autism spectrum disorders in children,

adolescents, and adults of different developmental levels. The length of the

ADOS, directly and indirectly, causes barriers to its access for many individuals,

which means that individuals who need testing are unable to get it. Reducing the

length of the ADOS without significantly sacrificing its accuracy would increase

its accessibility. The autoencoders used in this thesis have specific connections

between layers that mimic the sectional structure of the original ADOS.

Autoencoders reduce the length of the ADOS by conducting its dimensionality

through combining original variables into new variables. By examining the

weights of variables entering the reduced diagnostic, this thesis explores which

variables are prioritized and deprioritized by the autoencoder. These information

yields insights as to which variables, and underlying concepts, should prioritize in

a shorter ADOS. After training, all autoencoders used were able to reduce

dimensionality with minimal accuracy losses. Examination of weights yielded

many keen insights as to which ADOS variables are the least important to their

modules and can thus be eliminated or deprioritized in a reduced diagnostic. In

particular, the observation of self-injurious behavior was declared entirely

unnecessary in the first three modules of the ADOS, a finding that corroborates

 iv

other recent experimental results in the domain. This observation suggests that

the solutions converged upon by the model have real-world significance.

 v

ACKNOWLEDGEMENTS

I dedicate my thanks to my beloved parents for their encouragement and

believing in me. Many thanks to my motivational source my sister Wid

Daghustani for being such an inspiration to me. My thanks to all my friends who

helped me pass all the obstacles in my master’s degree journey. Thanks to

everyone I meet through my studying years for his or her help. I am also grateful

to Mr. Mohammad Al-Hijjawi for providing me Nvidia GPU Hardware. My

appreciations to my adviser Dr. Voigt for her precious supervision and

suggestions during the thesis progress. Moreover, thanks to the committee

members Dr. Georgiou and Dr. Sun for their cooperation.

 vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. x

LIST OF FIGURES .. xii

CHAPTER ONE: INTRODUCTION

1.1 Introduction .. 1

1.2 Thesis Scope ... 2

1.3 Purpose .. 3

1.4 Approach ... 4

CHAPTER TWO: BACKGROUND

 2.1 Introduction .. 6

2.2 Machine Learning .. 6

2.3 Supervised Learning .. 6

2.4 Regularization ... 7

2.5 Neural Network .. 8

2.6 Tensor .. 9

2.7 Matrix Multiplication ... 10

2.8 Hadamard Product ... 10

2.9 Activation Function .. 11

2.10 Loss Function ... 12

2.11 Optimizer ... 12

 vii

2.12 Backpropagation ... 16

CHAPTER THREE: AUTISM DIAGNOSTIC OBSERVATION SCHEDULE

 3.1 Introduction .. 18

3.2 Autism Diagnostic Observation Schedule (ADOS) 18

3.3 ADOS Modules .. 18

3.4 ADOS Coding Conventions ... 33

3.5 ADOS Data .. 34

CHAPTER FOUR: MODEL DESIGN

 4.1 Introduction .. 36

4.2 Python Machine Learning Tools Used ... 36

4.3 Pytorch ... 38

4.4 Autoencoder ... 42

4.5 Autoencoder with Special Connection ... 45

4.6 Autoencoder Architecture .. 56

4.7 Hyperparameter Tuning ... 60

4.8 Data Pipeline Prior To Training .. 69

CHAPTER FIVE: MODEL TRAINING

 5.1 Introduction .. 73

5.2 Final Hyperparameters Used ... 73

5.3 Overfitting ... 76

5.4 Training .. 79

5.5 Data Pipeline After Training ... 80

 viii

CHAPTER SIX: MODEL VALIDATION

 6.1 Introduction .. 82

6.2 Validation Method .. 82

6.3 Autoencoder Reconstruction Accuracies 85

CHAPTER SEVEN: MODEL ANALYSIS

 7.1 Introduction .. 91

7.2 Analysis Method ... 91

7.3 Module 1 Analysis .. 94

7.4 Module 2 Analysis .. 110

7.5 Module 3 Analysis .. 123

7.6 Module 4 Analysis .. 136

7.7 Insights Across Module 1 ... 150

7.8 Insights Across Module 2 ... 153

7.9 Insights Across Module 3 ... 155

7.10 Insights Across Module 4 ... 157

7.11 Insights Across Modules .. 159

7.12 Relative Significant of ADOS Observation Items 160

CHAPTER EIGHT: CONCLUSION

8.1 Conclusion ... 176

8.2 Discussion of Context .. 177

8.3 Future Work ... 179

APPENDIX A: ADOS DATA APPROVAL ... 181

 ix

APPENDIX B: HADAMARD PRODUCT ... 183

APPENDIX C: AUTOENCODER DIAGRAMS .. 196

APPENDIX D: RECONSTRUCTION ACCURACIES 209

APPENDIX E: MODULES WEIGHTS ... 226

APPENDIX F: MODEL CODE .. 239

REFERENCES .. 394

 x

LIST OF TABLES

Table 1. ADOS Modules Ages and Language Levels 20

Table 2. Modules Activities 20

Table 3. Module 1 Section 1 Observation Items .. 21

Table 4. Module 1 Section 2 Observation Items .. 22

Table 5. Module 1 Section 3 Observation Items .. 23

Table 6. Module 1 Section 4 Observation Items .. 23

Table 7. Module 1 Section 5 Observation Items .. 23

Table 8. Module 2 Section 1 Observation Items .. 24

Table 9. Module 2 Section 2 Observation Items .. 25

Table 10. Module 2 Section 3 Observation Items .. 25

Table 11. Module 2 Section 4 Observation Items .. 26

Table 12. Module 2 Section 5 Observation Items .. 26

Table 13. Module 3 Section 1 Observation Items .. 27

Table 14. Module 3 Section 2 Observation Items .. 28

Table 15. Module 3 Section 3 Observation Items .. 28

Table 16. Module 3 Section 4 Observation Items .. 29

Table 17. Module 3 Section 5 Observation Items .. 29

Table 18. Module 4 Section 1 Observation Items .. 30

Table 19. Module 4 Section 2 Observation Items .. 31

Table 20. Module 4 Section 3 Observation Items .. 32

Table 21. Module 4 Section 4 Observation Items .. 32

 xi

Table 22. Module 4 Section 5 Observation Items .. 32

Table 23. ADOS Coding Convention Modules ... 33

Table 24. Module 1 Section 1 Relative Significant 161

Table 25. Module 1 Section 2 Relative Significant 161

Table 26. Module 1 Section 3 Relative Significant 162

Table 27. Module 1 Relative Significant ... 163

Table 28. Module 2 Section 1 Relative Significant 164

Table 29. Module 2 Section 2 Relative Significant 165

Table 30. Module 2 Section 3 Relative Significant 165

Table 31. Module 2 Relative Significant ... 166

Table 32. Module 3 Section 1 Relative Significant 168

Table 33. Module 3 Section 2 Relative Significant 168

Table 34. Module 3 Section 3 Relative Significant 169

Table 35. Module 3 Relative Significant ... 170

Table 36. Module 4 Section 1 Relative Significant 171

Table 37. Module 4 Section 2 Relative Significant 172

Table 38. Module 4 Section 3 Relative Significant 173

Table 39. Module 4 Relative Significant ... 174

 xii

LIST OF FIGURES

Figure 1. Autoencoder. ... 43

Figure 2. Module 1 Hadamard Product for 2920 Dimensions. 47

Figure 3. Module 2 Hadamard Product for 2819 Dimensions 47

Figure 4. Module 3 Hadamard Product for 2819 Dimensions 48

Figure 5. Module 4 Hadamard Product for 3119 Dimensions 48

Figure 6. Module 1 Autoencoder with a Hidden Layer of Size 20 50

Figure 7. Module 2 Autoencoder with a Hidden Layer of Size 19 51

Figure 8. Module 3 Autoencoder with a Hidden Layer of Size 19 52

Figure 9. Module 4 Autoencoder with a Hidden Layer of Size 19 53

Figure 10. ReLu Activation Function ... 63

Figure 11. ELU Activation Function .. 64

Figure 12. SELU Activation Function .. 65

Figure 13. Softplus Activation Function .. 65

Figure 14. Overfitting .. 76

Figure 15. Dropout ... 76

Figure 16. K-Fold Cross Validation ... 78

Figure 17. Average Accuracy Across Module 1 .. 85

Figure 18. Average Accuracy Across Module 2 .. 87

Figure 19. Average Accuracy Across Module 3 .. 88

Figure 20. Average Accuracy Across Module 4 .. 89

Figure 21. Module 1 Autoencoder with a Hidden Layer of Size 20 95

 xiii

Figure 22. Relative Weights Impacts Node H1 – Module 1 96

Figure 23. Relative Weights Impacts Node H2 – Module 1 97

Figure 24. Relative Weights Impacts Node H3 – Module 1 97

Figure 25. Relative Weights Impacts Node H4 – Module 1 98

Figure 26. Relative Weights Impacts Node H5 – Module 1 98

Figure 27. Weights Correlations – Module 1 Section 1 99

Figure 28. Relative Weights Impacts Node H6 – Module 1 100

Figure 29. Relative Weights Impacts Node H7 – Module 1 101

Figure 30. Relative Weights Impacts Node H8 – Module 1 101

Figure 31. Relative Weights Impacts Node H9 – Module 1 102

Figure 32. Relative Weights Impacts Node H10 – Module 1 102

Figure 33. Relative Weights Impacts Node H11 – Module 1 103

Figure 34. Relative Weights Impacts Node H12 – Module 1 103

Figure 35. Relative Weights Impacts Node H13 – Module 1 104

Figure 36. Relative Weights Impacts Node H14 – Module 1 104

Figure 37. Weights Correlations – Module 1 Section 2 105

Figure 38. Relative Weights Impacts Node H15 – Module 1 106

Figure 39. Relative Weights Impacts Node H16 – Module 1 106

Figure 40. Relative Weights Impacts Node H17 – Module 1 107

Figure 41. Relative Weights Impacts Node H18 – Module 1 107

Figure 42. Relative Weights Impacts Node H19 – Module 1 108

 xiv

Figure 43. Relative Weights Impacts Node H20 – Module 1 108

Figure 44. Weights Correlations – Module 1 Section 3 109

Figure 45. Module 2 Autoencoder with a Hidden Layer of Size 19 110

Figure 46. Relative Weights Impacts Node H1 – Module 2 111

Figure 47. Relative Weights Impacts Node H2 – Module 2 112

Figure 48. Relative Weights Impacts Node H3 – Module 2 112

Figure 49. Relative Weights Impacts Node H4 – Module 2 113

Figure 50. Weights Correlations – Module 2 Section 1 114

Figure 51. Relative Weights Impacts Node H5 – Module 2 115

Figure 52. Relative Weights Impacts Node H6 – Module 2 115

Figure 53. Relative Weights Impacts Node H7 – Module 2 116

Figure 54. Relative Weights Impacts Node H8 – Module 2 116

Figure 55. Relative Weights Impacts Node H9 – Module 2 116

Figure 56. Relative Weights Impacts Node H10 – Module 2 117

Figure 57. Relative Weights Impacts Node H11 – Module 2 117

Figure 58. Relative Weights Impacts Node H12 – Module 2 117

Figure 59. Relative Weights Impacts Node H13 – Module 2 118

Figure 60. Weights Correlations – Module 2 Section 2 119

Figure 61. Relative Weights Impacts Node H14 – Module 2 120

Figure 62. Relative Weights Impacts Node H15 – Module 2 120

Figure 63. Relative Weights Impacts Node H16 – Module 2 121

Figure 64. Relative Weights Impacts Node H17 – Module 2 121

 xv

Figure 65. Relative Weights Impacts Node H18 – Module 2 122

Figure 66. Relative Weights Impacts Node H19 – Module 2 122

Figure 67. Weights Correlations – Module 2 Section 3 123

Figure 68. Module 3 Autoencoder with a Hidden Layer of Size 19 124

Figure 69. Relative Weights Impacts Node H1 – Module 3 125

Figure 70. Relative Weights Impacts Node H2 – Module 3 126

Figure 71. Relative Weights Impacts Node H3 – Module 3 126

Figure 72. Relative Weights Impacts Node H4 – Module 3 126

Figure 73. Relative Weights Impacts Node H5 – Module 3 127

Figure 74. Relative Weights Impacts Node H6 – Module 3 127

Figure 75. Weights Correlations – Module 3 Section 1 128

Figure 76. Relative Weights Impacts Node H7 – Module 3 129

Figure 77. Relative Weights Impacts Node H8 – Module 3 129

Figure 78. Relative Weights Impacts Node H9 – Module 3 130

Figure 79. Relative Weights Impacts Node H10 – Module 3 130

Figure 80. Relative Weights Impacts Node H11 – Module 3 131

Figure 81. Relative Weights Impacts Node H12 – Module 3 131

Figure 82. Relative Weights Impacts Node H13 – Module 3 131

Figure 83. Weights Correlations – Module 3 Section 2 132

Figure 84. Relative Weights Impacts Node H14 – Module 3 133

Figure 85. Relative Weights Impacts Node H15 – Module 3 134

Figure 86. Relative Weights Impacts Node H16 – Module 3 134

 xvi

Figure 87. Relative Weights Impacts Node H17 – Module 3 134

Figure 88. Relative Weights Impacts Node H18 – Module 3 135

Figure 89. Relative Weights Impacts Node H19 – Module 3 135

Figure 90. Weights Correlations – Module 3 Section 3 136

Figure 91. Module 4 Autoencoder with a Hidden Layer of Size 19 137

Figure 92. Relative Weights Impacts Node H1 – Module 4 138

Figure 93. Relative Weights Impacts Node H2 – Module 4 139

Figure 94. Relative Weights Impacts Node H3 – Module 4 139

Figure 95. Relative Weights Impacts Node H4 – Module 4 139

Figure 96. Relative Weights Impacts Node H5 – Module 4 140

Figure 97. Relative Weights Impacts Node H6 – Module 4 140

Figure 98. Weights Correlations – Module 4 Section 1 141

Figure 99. Relative Weights Impacts Node H7 – Module 4 142

Figure 100. Relative Weights Impacts Node H8 – Module 4 142

Figure 101. Relative Weights Impacts Node H9 – Module 4 143

Figure 102. Relative Weights Impacts Node H10 – Module 4 143

Figure 103. Relative Weights Impacts Node H11 – Module 4 143

Figure 104. Relative Weights Impacts Node H12 – Module 4 144

Figure 105. Relative Weights Impacts Node H13 – Module 4 144

Figure 106. Weights Correlations – Module 4 Section 2 145

Figure 107. Relative Weights Impacts Node H14 – Module 4 146

Figure 108. Relative Weights Impacts Node H15 – Module 4 146

 xvii

Figure 109. Relative Weights Impacts Node H16 – Module 4 147

Figure 110. Relative Weights Impacts Node H17 – Module 4 147

Figure 111. Relative Weights Impacts Node H18 – Module 4 148

Figure 112. Relative Weights Impacts Node H19 – Module 4 148

Figure 113. Weights Correlations – Module 4 Section 3 149

Figure 114. Module 1 Section 1 Insights .. 150

Figure 115. Module 1 Section 3 Insights .. 151

Figure 116. Module 1 Section 3 Insights .. 152

Figure 117. Module 2 Section 1 Insights .. 153

Figure 118. Module 2 Section 2 Insights .. 153

Figure 119. Module 2 Section 3 Insights .. 154

Figure 120. Module 3 Section 1 Insights .. 155

Figure 121. Module 3 Section 2 Insights .. 156

Figure 121. Module 3 Section 3 Insights .. 156

Figure 123. Module 4 Section 1 Insights .. 157

Figure 124. Module 4 Section 2 Insights .. 158

Figure 125. Module 4 Section 3 Insights .. 158

Figure 126. One-dimensional Scatter Plot - Module 1 Section 1 161

Figure 127. One-dimensional Scatter Plot - Module 1 Section 2 162

Figure 128. One-dimensional Scatter Plot - Module 1 Section 3 162

Figure 129. One-dimensional Scatter Plot - Module 1 164

Figure 130. One-dimensional Scatter Plot - Module 2 Section 1 164

 xviii

Figure 131. One-dimensional Scatter Plot - Module 2 Section 2 165

Figure 132. One-dimensional Scatter Plot - Module 2 Section 3 166

Figure 133. One-dimensional Scatter Plot - Module 2 167

Figure 134. One-dimensional Scatter Plot - Module 3 Section 1 168

Figure 135. One-dimensional Scatter Plot - Module 3 Section 2 169

Figure 136. One-dimensional Scatter Plot - Module 3 Section 3 170

Figure 137. One-dimensional Scatter Plot - Module 3 171

Figure 138. One-dimensional Scatter Plot - Module 4 Section 1 172

Figure 139. One-dimensional Scatter Plot - Module 4 Section 2 173

Figure 140. One-dimensional Scatter Plot - Module 4 Section 3 173

Figure 141. One-dimensional Scatter Plot - Module 4 175

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Autism spectrum disorders (ASD) can pose tremendous developmental

challenges to children who have them. When parents suspect that their child's

neurological development is abnormal, it is essential for them to have their child

examined and assessed by experts to verify if an autism spectrum disorder

causes their troubles. Unfortunately, the autism diagnostic process is often

cumbersome and costly, and many parents faced with significant barriers to its

access. Many of these obstacles, directly and indirectly, result from the length of

the autism diagnostic process. If the process could shorten without decreasing its

effectiveness, many parents and their children could greatly benefit from the

erosion of barriers to accessing autism diagnostic services.

Autism spectrum disorders (ASD) are a group of complex neurological

conditions of brain development. These disabilities are characterized by

weakness of social interaction and communication, repetitive and stereotypic

behaviors, reorganized in children during the first years [1]. The symptoms of

ASD are apparent in children before three years of age, but in a rare situation, it

can diagnosed at even earlier stages.

According to a US government survey of American parents, in the United

States, for every 45 children, at least one is diagnosed with ASD [2]. This number

 2

is higher than the Center for Disease Control and Prevention's (CDC) estimation,

which claims that one in 68 children is diagnosed with ASD [3]. The incidence

rate of autism worldwide is approximately 20 per 10,000 children, and it is four

times greater in male children than in female children [4].

 Autism diagnosis is a process executed by specialists to verify the

existence of autism, identify its causes, and to propose appropriate therapeutic

intervention programs. Autism is difficult to diagnose, and the process of

diagnosis is an ongoing research challenge for specialists in the field. The

current standard for autism diagnosis is the Autism Diagnostic Observation

Schedule (ADOS), which is a series of tests and observations administered to

children, adolescents, and adults of different stages of development. The length

and complexity of the ADOS logistically limits the number of individuals that can

be tested for autism. If the ADOS was shorter and less complex, evidence exists

to suggest that a more substantial amount of individuals could access and afford

autism diagnosis services.

1.2 Thesis Scope

his thesis uses autoencoders to test if all four modules of the Autism

Diagnostic Observation Schedule can be reduced in dimensionality, and to

examine which variables are prioritized and deprioritized in the dimensionality

reduction process. The impact of original ADOS variables in the reduced

 3

diagnostic is reviewed, and all insights gained from this process are catalogued

and explored.

1.3 Purpose

The purpose of this thesis is to create an algorithm that reduces the length

of the Autism Diagnostic Observation Schedule by lowering its dimensionality

without significantly sacrificing its accuracy. The algorithm is designed to

incorporate the sectional structure of the ADOS. When reducing dimensionality,

the algorithm prioritizes and de-prioritizes different variables. Examining this

information will yield insights regarding the ideal conceptual focus of potentially

reduced versions of the ADOS.

The ADOS is currently a long and cumbersome test to administer, which is

problematic from an access standpoint. There is plenty of evidence that indicates

that autism is under-diagnosed in developing countries. Part of the problem is

that there are too many barriers to administering the test. According to a paper

covering the hurdles of implementing the test in Jamaica, high administration

costs and long waiting lists prevent many children from being tested for autism

[5]. The high administration cost and long waiting lists can likely be at least

partially attributed to the length of the test. More extended tests reduce the

number of tests that can be administered in one day, which undoubtedly

exacerbates long waiting lists. Likewise, the length and complexity of the test

 4

drive up administration costs [6]. Finding a way to reduce the test without

sacrificing its accuracy could allow for a newer version of the ADOS to be

accessed by more significant numbers of potential patients worldwide. Any

project that assists in this endeavor is a worthwhile task. In the United States, a

full-length neuropsychological evaluation of the potential for autism spectrum

disorder within a child can cost between $1,200 to $2,500 and take up to five

hours. For a bare bones autism diagnostic process, without any interaction with

parents or detailed feedback, the price can range from $500 to $800, and can

take up to 2 hours. The price of these procedures depends upon the length and

amount of labor required from highly-compensated specialists in the field [7].

1.4 Approach

This thesis employs an autoencoder with connections that mirror the

sectional structure of each ADOS module. The extent which each variable in the

input influenced the reduced-length diagnostic is assessed and their relative

impacts are ranked. This information might yield insights as to which aspects of

the ADOS are the most and least important. Furthermore, this thesis aims to

provide as much useful information as possible to psychologists designing the

next version of the ADOS. All unusual patterns and trends from the results of the

autoencoders are cataloged. It is possible that this information could shed light

 5

on the way that different tests within the diagnostic could be fused for the sake of

efficiency.

6

CHAPTER TWO

BACKGROUND

2.1 Introduction

This section is an overview of the field of machine learning and the

background mathematical and algorithmic techniques needed to comprehend the

research methods used in this thesis.

2.2 Machine Learning

Machine learning is artificial intelligence research branch that involves a

combination of statistics, mathematics, and programming. Machine learning

algorithms train a computer to correctly execute a task on its own, without explicit

programming. There are three types of machine learning tasks: supervised

learning, unsupervised learning, and reinforcement learning.

2.3 Supervised Learning

Supervised learning involves training a machine learning algorithm to find

a target function that reliably maps an input (or set of inputs) to an output (or set

of outputs). The algorithm is trained with a dataset that contains the correct

outputs. This dataset is typically referred to as the training set. During training,

the algorithm increases the accuracy of its target function iteratively. Once the

algorithm trained, the efficiency of the algorithm is tested on a new dataset called

 7

the test set. There are two common types of supervised learning problems:

classification and regression.

2.3.1 Classification

 In a classification problem, an algorithm attempts to map an input to a

categorical variable. The goal of classification is to figure out which category an

input falls into, given a set of options. An algorithm is judged by the accuracy by

which it can correctly predict which group an input should place too.

2.3.2 Regression

Regression tasks involve mapping an input to a continuous variable. In

this case, the algorithm attempts to predict the correct output value. The

accuracy of the algorithm is judged by the average error between the network’s

output predictions and the correct values.

2.4 Regularization

Regularization, in machine learning, refers to a process by which

overfitting can be avoided. Overfitting occurs when a model adapts too closely to

the peculiarities of an individual data set, rather than learning a target function

that can be used for different data sets of the same category.

 8

2.5 Neural Network

Neural networks are formally referred to as Artificial Neural Networks

(ANN). They are a class of machine learning algorithm that has risen steadily in

popularity over the previous decade. Training neural networks to solve problems

is a process that is often referred to as “deep learning” colloquially. A neural

network consists of connections of units or nodes called artificial neurons

arranged in layers.

Neural networks can describe as computational graphs, which place

mathematical operations into nodes that connect to each other. When the output

of one node is the input of another, an arrow can be drawn from the first node to

the second[8]. Every neural network diagram displays the computational graph

for that network. Nodes in a neural network are referred to as neurons. There are

many different variations of neural networks that currently used for various tasks.

2.5.1 Deep Feedforward Networks

The most basic version of a neural network is called a feedforward neural

network, or a multilayer perceptron. A multilayer perceptron consists of artificial

neurons arranged in sequential layers. The first layer of the network is comprised

of the data, which is the input for the model. Each neuron typically corresponds

to a dimension or variable in that dataset. The first layer takes the form of a

matrix, which is transformed by matrix multiplication with a set of numbers

referred to as weights that are often randomly initialized. A further level of

 9

transformation can be provided to introduce non-linearity if an activation function

is implemented. The neurons in the following layer of the neural network

represent the transformed version of the first layer, following matrix multiplication

with weights. Through this process, data is continually transformed in each

consecutive layer, until it reaches the final layer or the output layer. This process

collectively referred as a forward pass [8].

 In supervised learning, the output of a neural network is checked for

accuracy through a specified criterion. An algorithm is then implemented to

adjust the weights of each layer by a small amount, with the goal of producing a

more accurate output. Another forward pass is then conducted, and this process

repeats in many iterations until a neural network has “learned” how to transform

data to make consistently accurate predictions.

2.6 Tensor

A tensor is a mathematical object that can be used to represent any N-

dimensional data structure. A tensor is analogous to a container for data that can

apply mathematical operations. A1-dimensional tensor is a vector; a 2-

dimensional tensor is a matrix, etc. Machine learning algorithms involve

mathematical operations on data contained within tensors.

1. One-dimensional tensor = vector.

 10

2
5
1

2. Two-dimensional tensor = matrix.

1 5 7
4 4 3
2 6 9

2.7 Matrix Multiplication

If matrix A is a matrix with dimensions of n x m and matrix B is a matrix of

m x p dimensions, then the product of A X B is a matrix of n x p dimensions.

Each entry in the new matrix is given by multiplying the entries of a row in A by a

column in B and summing the results. Matrix multiplication is not a commutative

operation: the product of A X B does not equal the product of B X A. Additionally,

matrix multiplication can only work if the column number in the first matrix

matches the row number in the second matrix [9].

2 4 5
1 0 7

𝑥 𝑎
𝑦 𝑏
𝑧 𝑐

= 2𝑥 + 4𝑦 + 5𝑧 2𝑎 + 4𝑏 + 5𝑐
𝑥 + 7𝑧 𝑎 + 7𝑐

2.8 Hadamard Product

The Hadamard Product is a mathematical operation that is conducted

between two matrices. It can only be calculated for two matrices of the same

 11

dimensions. The Hadamard Product of two matrices is a matrix in which each

element is the product of corresponding elements in the first two matrices.

2 7
3 5 ⨀ 1 1

0 0 = (2 ∗ 1) (7 ∗ 1)
(3 ∗ 0) (5 ∗ 0) = 2 7

0 0

2.9 Activation Function

Activation functions are transformations that influence the output from a

layer of neurons in a neural network. Activation functions can act as gates that

block or allow neurons pass their values to the next layer based on a threshold,

or they can transform the output of a neuron based on a continuous or discrete

limit.

Activation functions are vital in neural networks because they introduce

non-linearity into the network. Besides, without activation functions between

layers, each neural network layer would be a linear transformation of the

previous layer. If this is the case, the target function between input and output is

limited in its complexity, and the network likely fails to converge when tasked with

solving a difficult non-convex optimization problem. By introducing non-linearity

into a neural network training process, activation functions allow neural networks

to find significantly more complex methods of mapping an input to an output [10].

 12

2.10 Loss Function

Loss functions are a crucial part of neural networks. Loss function can

also be referred to as cost functions. A loss function is a mathematical

representation of the gap between a network’s predictions and the correct

values. The value of a loss function will always be positive, as it represents the

inconsistency between forecasts and right values. Many different loss functions

can be used in different situations [11]. For example, standard loss functions for

regression problems are mean squared error and L1 loss. There is no way to

quickly know which loss function will provide the best results for a given neural

network experiment. Experimenting with multiple viable loss functions is a good

practice for smaller scale problems where training time is not too cumbersome.

If a neural network has at least one hidden layer, its loss function will

almost certainly be non-convex. For clarity, a convex function has a single global

minimum. Minimizing a convex loss function is relatively simple, as an algorithm

needs merely to descend towards a single global minimum. Unfortunately, neural

networks have non-convex loss functions that are marked by multiple local

minima, rather than a single global minimum.

2.11 Optimizer

If a neural network minimizes a loss function to the best of its abilities, it

must acquire a way to find the lowest point on a very complex non-convex loss

 13

function. Finding a minimum point is a complicated task, and this is the purpose

of optimization algorithms [12].

Optimization algorithms can be separated into first-order optimization

algorithms and second-order optimization algorithms. First-order optimization

algorithms minimize a loss function concerning its gradient. A gradient is merely

a vector containing the partial derivatives of a function. In other words, the

gradient is the multivariable equivalent of a derivative in single variable calculus,

which is the slope or instantaneous rate of changing the output regarding its

input. Second order methods use the Hessian, which is the multivariable

equivalent of the second derivative. A Hessian can be as the gradient of a

function’s gradient. First-order optimization methods are significantly less

computationally costly than second-order optimization methods, and the following

explanations and algorithms covered are all first-order optimization methods [13].

2.11.1 Gradient Descent

All of the popular first-order optimization algorithms use an approach

known as gradient descent. Gradient descent optimizers, following a forward

pass, calculate the gradient of the loss function concerning the network’s

parameters, mainly the weights. This gradient is calculated with an algorithm

called backpropagation, which is a computational implementation of reverse

mode differentiation. After the slope calculated, the weights are then adjusted in

small steps in the opposite direction of the loss function gradients [14]. Then

 14

another forward pass is calculated, and the loss function’s gradient is again

calculated, and weights are then adjusted. The goal of gradient descent

algorithms is to descend along the slope to find an optimal solution.

2.11.2 Learning Rate

The size of each adjustment, or step along the gradient, is called the

learning rate of an optimizer. If the learning rate is too small, an optimizer might

take too long to train, as its progress towards an optimal solution will take too

long. If the learning rate is too large, the optimizer might “overshoot” the local

region that leads to a minimum and skips over that area of the loss function

entirely. Finding the best learning rate is often a matter of intuition and

experimentation [13].

2.11.2 Batch Size

The batch size of a neural network in training refers to the number of data

samples that are sent through the network in a single forward pass to calculate

the gradient of the loss function. A forward pass of all data samples in a neural

network referred to as an epoch [11].

2.11.3 Stochastic Gradient Descent

The equation for stochastic gradient descent is:

 𝜃 = 𝜃 − 𝛼 ∗ ∇𝐽(𝜃)

In this equation, θ refers to the parameters updated. α refers to the

learning rate or the size of the adjustment. ∇J(θ) refers to the gradient of the loss

 15

function concerning the gradient. Collectively, α⋅∇J(θ) refers to the update of the

parameters by the optimizer. In other words, stochastic gradient descent updates

the parameters opposite the gradient of the loss function scaled by a constant

called the learning rate [14].

2.11.4 Momentum

If a gradient descends much more steeply in one dimension than in

others, stochastic gradient descent tends to oscillate when updating, and often

fails to drop in the correct amount towards a local minimum. Momentum is a

technique that can be added to stochastic gradient descent to address this.

Momentum mitigates oscillation and emphasizes the correct direction for the

algorithm to descend in. It does this by incorporating information from the last

update into the current update [15].

In mathematical terms, if the update of stochastic gradient descent is

called v, then the new update can be formulated via the following equation:

𝑣! = 𝜇 ∗ 𝑣!!! + 𝛼 ∗ ∇𝐽 𝜃

In this equation, µ refers to a fraction of the previous update. µ is often a

value near 1. Simply put, the last update, or a scaled version almost equal the

previous update is added to the learning rate times the gradient to create the new

update. The algorithm then updates the parameters with the equation [14]:

𝜃 = 𝜃 − 𝑣!

or

 16

𝜃 = 𝜃 − (𝜇 ∗ 𝑣!!! + 𝛼 ∗ ∇𝐽 𝜃)

In simpler terms, momentum works much as it does in its classical physics

definition. As the algorithm descends the gradient, it theoretically descends

faster and faster. Momentum increases for terms with gradients pointing in the

same direction and reduces the rate of updates for terms with gradients leading

in opposite directions, which effectively accelerates the algorithms descent along

the gradient and minimizes the oscillation of the optimizer [15].

2.12 Backpropagation

Neural networks are made computationally tractable with the

implementation of the back-propagation algorithm. Backpropagation is a neural

network specific implementation of a technique called reverse mode

differentiation, which allows for the rapid calculation of derivatives [16].

A partial derivative shows how altering one value affects a-partially

dependent value. Within the context of a computational graph, it shows the

expansive effects of altering different node. To compute partial derivatives

between nodes that are not directly connected, one must sum over all possible

paths from one node to another while multiplying the partial derivatives of each

edge of a path together [17]. This is one way to think about how the chain rule in

multivariable calculus works.

 17

This problem here is that the number of paths between different nodes

explodes as a neural network gets larger, which quickly makes a typical

application of the multivariate chain rule computationally intractable. Forward

mode differentiation and reverse mode differentiation are two techniques that

help address this. Both techniques merge paths together at each node, rather

than summing over all possible paths individually. Forward mode differentiation

starts at input to the graph, and tracks how it affects every node forward. The

derivative of every node with respect to the input is calculated. Once this is done,

the derivative of the output with respect to every input has been calculated.

Reverse mode differentiation starts at the graphs output, and then moves

backwards, giving the derivative of the output with respect to every node in one

calculation [16].

If a graph has 100 inputs and one output, forward mode differentiation

would have to move through the graph 100 times to get the derivative of the

output with respect to all outputs. Reverse mode differentiation is able to get this

same derivative while moving through the graph only once. For most neural

networks, reverse mode differentiation is exponentially faster. The

backpropagation algorithm, which applies reverse mode differentiation to neural

networks, makes most neural networks computationally tractable.

 18

CHAPTER THREE

AUTISM DIAGNOSTIC OBSERVATION SCHEDULE

3.1 Introduction

This section describes each module of the Autism Diagnostic Observation

Schedule (ADOS) in detail. The section communicates the origin and parameters

of the data used in this thesis. It includes the purpose of each module and the

concepts that it covers. Each variable gets explained thoroughly. The section

contains the significance of different scores for each variable, and lists the

shortened encodings used in the data.

3.2 Autism Diagnostic Observation Schedule (ADOS)

ADOS is a tool for diagnosing and assessing autism. The procedure

consists of a sequence of structured and semi-structured tasks that involve social

interaction between the inspector and the participant. It is uesed to evaluate the

potential for autism spectrum disorders within an individual [18].

3.3 ADOS Modules

ADOS modules are activities of social communicative sequences,

structured situation, and unstructured situations that allow the examiner to

 19

observe whether any behaviors occur that determine the presence of autism and

other pervasive developmental disorders. The activities are tasks runs by the

examiner to allow for a consistent observation of the participant. These activities

contain several observationa items. The items are features of behavior that the

inspector focuses on detecting throughout the task. The examiners rate each

observation according to the coding rules and specific coding standards [19].

The ADOS has four modules which are Module 1, Module 2, Module 3 ,

and Module 4. The examiners select it based on the individual's expressive

language level or chronological age level. Each module can be administered in

the range of 45 minutes to 100 minutes. It is suitable for children and adults of

different ages and language levels reaching non-speaking to fluently [19].

In general Module 1 and Module 2 are designed for children who are not

verbally fluent. Module 3 and Module 4 developed for participants who are

verbally fluent. However, the difference between Module 3 and Module 4 is that

Module 3 observes through play along with interview questions to collect

information about social communication, while Module 4 entirely depends on

interview questions and conversation [19].

The table below shows the different ages and language levels between

the modules [19].

 20

Table 1. ADOS Modules Ages and Language Levels

Language level Chronological age range ADOS Module
No speech/ simple phrase 31 months and older Module 1
Phrase speech not verbally

fluent Any age Module 2

Fluent speech Children/ Adolescent
Usually under 16 Module 3

Fluent speech Adolescent / Adult Module 4

As mentioned earlier, the examiner runs different tasks on the participant

for observation which are call activities. The table below shows a list of the

activities between modules [19].

Table 2. Modules Activities

Module 1 Module 2 Module 3 Module 4
1. Free Play
2. Response to
Name
3. Response to
Joint Attention
4. Buble play
5. Anticipation of
a Routine With
objects
6. Responsive
social smile
7. Anticipation of
a Social Routine
8. Functional and
Symbolic
Imitation
9.Birthday Party
10.Snack

1. Construction
Task
2. Response to
Name
3. Make-Believe
Play
4. Joint
Interactive Play
5. Conversation
6. Response to
Joint Attention
7. Demonstration
Task
8. Description of
Picture
9.Telling a Story
From a Book
10. Free Play

1. Construction
Task
2. Make-Believe
Play
3. Joint
Interactive Play
4. Demonstration
Task
5. Description of a
Picture
6. Telling a Story
From a Book
7. Cartoons
8. Conversation
and Reporting
9. Emotions
10. Social
Difficulties and

1. Construction
Task*
2. Telling a Story
From a Book
3. Description of
a Picture*
4. Conversation
and Reporting
5. Current Work
or School*
6. Social
Difficulties and
Annoyance
7. Emotions
8. Demonstration
Task
9. Cartoons*
10.Break

 21

11.Birthday Party
12.Snack
13. Anticipation of
a Routine with
Objects
14. Buble Play

Annoyance
11. Break
12.Friends,
Relationship and
Marriage
13.Loneliness
14. Creating a
Story

11. Daily Living*
12. Friends,
Relationship and
Marriage
13.Loneliness
14.Plans and
Hopes
15. Creating a
Story

* optional

3.3.1 Module 1

Module 1 is dedicated to children ages 31 months and older who have

language levels of no speech to a simple phrase or single words. This module

also can be used for adolescent and adult who have the same language level.

Module 1 of the ADOS consists of 10 activities with 29 observation items.

Each item is rated by the examiner according to 5 main categories, "Language

and Communication," "Reciprocal Social Interaction," "Play,” "Stereotyped

Behaviors and Restricted Interests,” and ”Other Abnormal Behaviors.” [18]

The table below shows Observation Items for Language and

Communication section. In this section, there are 8 observation items for the

examiner to rate according specific coding standards [19].

Table 3. Module 1 Section 1 Observation Items

Section A: Language and Communication
Observation Items Abbreviation

A1. Overall level of non-echoed spoken language (OLANG)
A2. Frequency of Spontaneous Vocalization Directed to Others (FVOC)

 22

A3. Intonation of Vocalizations or Verbalizations (INTON)
A4. Immediate Echolalia (IECHO)
A5. Stereotyped/Idiosyncratic Use of Words or Phrases (STEREO)
A6. Use of Another’s Body (UOTHER)
A7. Pointing (POINT)
A8. Gestures (GEST)

The table below shows Observation Items for Reciprocal Social Interaction

section. In this section, there are 12 observation items for the examiner to rate

according specific coding standards [19].

Table 4. Module 1 Section 2 Observation Items

Section B: Reciprocal Social Interaction
Observation Items Abbreviation

B1. Unusual Eye Contact (UEYE)
B2. Responsive Social Smile (SSMILE)
B3. Facial Expressions Directed to Others (FACEO)
B4. Integration of Gaze and Other Behaviors During Social
Overtures

(GZSOV)

B5. Other Behaviors During Social Overtures, Shared
Enjoyment in Interaction

(SHRNJ)

B6. Response to Name (RNAME)
B7. Requesting (REQ)
B8. Giving (GIVE)
B9. Showing (SHOW)
B10. Spontaneous Initiation of Joint Attention (SIJNT)
B11. Response to Joint Attention (RJNT)
B12. Quality of Social Overtures (QSOV)

The table below shows Observation Items for Play section. In this section, there

are 2 observation items the examiner evaluates according to the specific coding

standards [19].

 23

Table 5. Module 1 Section 3 Observation Items

Section C: Play
Observation Items Abbreviation

C1. Functional Play with Objects (FPLAY)
C2. Imagination/Creativity (IMGCR)

The table below shows Observation Items for Stereotyped Behaviors and

Restricted Interests section. In this section, there are 4 observation items for the

examiner to rate according specific coding standards [19].

Table 6. Module 1 Section 4 Observation Items

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person (USENS)
D2. Hand and Finger and Other Complex Mannerisms (OMAN)
D3. Self-Injurious Behavior (SELFINJ)
D4. Unusually Repetitive Interests or Stereotyped Behaviors (URBEH)

The table below shows Observation Items for Other Abnormal Behaviors section.

In this section, there are 3 observation items for the examiner to rate according

specific coding standards [19].

Table 7. Module 1 Section 5 Observation Items

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity (ACTIVE)
E2. Tantrums, Aggression, Negative or Disruptive Behavior (AGG)
E3. Anxiety (ANXTY)

 24

3.3.2 Module 2

Module 2 is dedicated to children of any age who have language level of

some phrase speech but not verbally fluent. This module also can be used for

adolescent and adult who have the same language level. Children under age of 3

who are verbally fluent are examined with this module even if they meet Module

3 standards.

Module 2 of the ADOS consists of 14 activities with 28 observation items.

Each item is rated by the examiner according to 5 main categories, “Language

and Communication,” ” Reciprocal Social Interaction,” ” Play,” ” Stereotyped

Behaviors and Restricted Interests,” and ” Other Abnormal Behaviors.”[19]

The table below shows Observation Items for Language and

Communication section. In this section, there are 7 observation items for the

examiner to rate according specific coding standards [19].

Table 8. Module 2 Section 1 Observation Items

Section A: Language and Communication
Observation Items Abbreviation

A1. Overall level of non-echoed spoken language (OLANG)
A2. Speech Abnormalities Associated With Autism (SPABN)
A3. Immediate Echolalia (IECHO)
A4. Stereotyped/Idiosyncratic Use of Words or Phrases (STEREO)
A5. Conversation (CONVS)
A6. Pointing (POINT)
A7. Descriptive, Conventional, Instrumental or informational
Gestures

(DGEST)

 25

The table below shows Observation Items for Reciprocal Social Interaction

section. In this section, there are 12 observation items for the examiner to rate

according specific coding standards [19].

Table 9. Module 2 Section 2 Observation Items

Section B: Reciprocal Social Interaction
Observation Items Abbreviation

B1. Unusual Eye Contact (UEYE)
B2. Facial Expressions Directed to Others (FACEO)
B3. Shared Enjoyment in Interaction (SHRNJ)
B4. Response to Name (RNAME)
B5. Showing (SHOW)
B6. Spontaneous Initiation of Joint Attention (SIJNT)
B7. Response to Joint Attention (RJNT)
B8. Quality of Social Overtures (QSOV)
B9. Amount of Social Overtures (ASOV)
B10. Quality of Social Response (QSRES)
B11. Amount of Reciprocal Social Communication (ARSOC)
B12. Overall Quality of Rapport (OQRAP)

The table below shows Observation Items for Play section. In this section,

there are 2 observation items for the examiner to rate according specific coding

standards [19].

Table 10. Module 2 Section 3 Observation Items

Section C: Play
Observation Items Abbreviation

C1. Functional Play with Objects (FPLAY)
C2. Imagination/Creativity (IMGCR)

 26

The table below shows Observation Items for Stereotyped Behaviors and

Restricted Interests section. In this section, there are 4 observation items for the

examiner to rate according specific coding standards [19].

Table 11. Module 2 Section 4 Observation Items

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person (USENS)
D2. Hand and Finger and Other Complex Mannerisms (OMAN)
D3. Self-Injurious Behavior (SELFINJ)
D4. Unusually Repetitive Interests or Stereotyped Behaviors (URBEH)

The table below shows Observation Items for Other Abnormal Behaviors

section. In this section, there are 3 observation items for the examiner to rate

according specific coding standards [19].

Table 12. Module 2 Section 5 Observation Items

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity (ACTIVE)
E2. Tantrums, Aggression, Negative or Disruptive Behavior (AGG)
E3. Anxiety (ANXTY)

3.3.3 Module 3

Module 3 is dedicated to children and adolescent between 4 to 15 years of

age who have verbally fluent language levels. As mentioned previously, children

 27

under age of 2 who are verbally fluent will be examined by Module 2 even if they

meet Module 3 standards.

Module 3 of the ADOS consists of 14 activities with 28 observation items.

Each item is rated by the examiner according to 5 main categories, “Language

and Communication,” ” Reciprocal Social Interaction,” ” Imagination,” ”

Stereotyped Behaviors and Restricted Interests,” and ” Other Abnormal

Behaviors.” [19]

The table below shows Observation Items for Language and

Communication section. In this section, there are 9 observation items for the

examiner to rate according specific coding standards [19].

Table 13. Module 3 Section 1 Observation Items

Section A: Language and Communication
Observation Items Abbreviation

A1. Overall level of non-echoed spoken language (OLANG)
A2. Speech Abnormalities Associated With Autism (SPABN)
A3. Immediate Echolalia (IECHO)
A4. Stereotyped/Idiosyncratic Use of Words or Phrases (STEREO)
A5. Offers Information (OINFO)
A6. Asks for Information (AINFO)
A7. Reporting of Events (REPRT)
A8. Conversation (CONVS)
A9. Descriptive, Conventional, Instrumental or informational
Gestures

(DGEST)

 28

The table below shows Observation Items for Reciprocal Social Interaction

section. In this section, there are 10 observation items for the examiner to rate

according specific coding standards [19].

Table 14. Module 3 Section 2 Observation Items

Section B: Reciprocal Social Interaction
Observation Items Abbreviation

B1. Unusual Eye Contact (UEYE)
B2. Facial Expressions Directed to Others (FACEO)
B3.Language Production and Linked Nonverbal Communication (LLNVC)
B4. Shared Enjoyment in Interaction (SHIRJ)
B5. Comment on Others’ Emotions/Empathy (EMPTH)
B6. Insight Into Typical Social Situations and Relationships (INSIG)
B7. Quality of Social Overtures (QSOV)
B8. Quality of Social Response (QSRES)
B9. Amount of Reciprocal Social Communication (ARSOC)
B10. Overall Quality of Rapport (OQRAP)

The table below shows Observation Items for Imagination section. In this

section, there is 1 observation item for the examiner to rate according specific

coding standards [19].

Table 15. Module 3 Section 3 Observation Items

Section C: Imagination
Observation Items Abbreviation

C2. Imagination/Creativity (IMGCR)

 29

The table below shows Observation Items for Stereotyped Behaviors and

Restricted Interests section. In this section, there are 5 observation items for the

examiner to rate according specific coding standards [19].

Table 16. Module 3 Section 4 Observation Items

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person (USENS)
D2. Hand and Finger and Other Complex Mannerisms (OMAN)
D3. Self-Injurious Behavior (SELFINJ)
D4. Excessive Interest in or References to Unusual or Highly
Specific Topics or Objects or Repetitive Behaviors

(TOPIC)

D5. Compulsions or Rituals (RITL)

The table below shows Observation Items for Other Abnormal Behaviors

section. In this section, there are 3 observation items for the examiner to rate

according specific coding standards [19].

Table 17. Module 3 Section 5 Observation Items

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity/Agitation (ACTIVE)
E2. Tantrums, Aggression, Negative or Disruptive Behavior (AGG)
E3. Anxiety (ANXTY)

 30

3.3.4 Module 4

Module 4 is dedicated to older adolescent and adult of age16 years and

older who have verbally fluent language level. As mentioned previously there are

slight differences between Module 4 and 3. Module 4 depends on interview

questions and conversation while Module 3 depends on the play along with

interview questions.

Module 4 of the ADOS consists of 15 activities with 31 observation items.

Each item is rated by the examiner according to 5 main categories, “Language

and Communication,” ” Reciprocal Social Interaction,” ” Imagination,”

"Stereotyped Behaviors and Restricted Interests,” and ” Other Abnormal

Behaviors.”[19]

The table below shows Observation Items for Language and

Communication section. In this section, there are 10 observation items for the

examiner to rate according specific coding standards [19].

Table 18. Module 4 Section 1 Observation Items

Section A: Language and Communication
Observation Items Abbreviation

A1. Overall level of non-echoed spoken language (OLANG)
A2. Speech Abnormalities Associated With Autism (SPABN)
A3. Immediate Echolalia (IECHO)
A4. Stereotyped/Idiosyncratic Use of Words or Phrases (STEREO)
A5. Offers Information (OINFO)

 31

A6. Asks for Information (AINFO)
A7. Reporting of Events (REPRT)
A8. Conversation (CONVS)
A9. Descriptive, Conventional, Instrumental or informational
Gestures

(DGEST)

A10. Emphatic or Emotional Gestures (EGEST)

The table below shows Observation Items for Reciprocal Social Interaction

section. In this section, there are 12 observation items for the examiner to rate

according specific coding standards [19].

Table 19. Module 4 Section 2 Observation Items

Section B: Reciprocal Social Interaction
Observation Items Abbreviation

B1. Unusual Eye Contact (UEYE)
B2. Facial Expressions Directed to Others (FACEO)
B3.Language Production and Linked Nonverbal Communication (LLNVC)
B4. Shared Enjoyment in Interaction (SEI)
B5. Communication of Own Affect (CAFF)

B6. Comment on Others’ Emotions/Empathy (EMPTH)
B7. Insight Into Typical Social Situations and Relationships (INSIG)
B8. Responsibility (RESP)
B9. Quality of Social Overtures (QSOV)
B10. Quality of Social Response (QSRES)
B11. Amount of Reciprocal Social Communication (ARSOC)
B12. Overall Quality of Rapport (OQRAP)

The table below shows Observation Items for Imagination section. In this

section, there are 1 observation item for the examiner to rate according specific

coding standards [19].

 32

Table 20. Module 4 Section 3 Observation Items

Section C: Imagination
Observation Items Abbreviation

C2. Imagination/Creativity (IMGCR)

The table below shows Observation Items for Stereotyped Behaviors and

Restricted Interests section. In this section, there are 5 observation items for the

examiner to rate according specific coding standards [19].

Table 21. Module 4 Section 4 Observation Items

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person (USENS)
D2. Hand and Finger and Other Complex Mannerisms (OMAN)
D3. Self-Injurious Behavior (SELFINJ)
D4. Excessive Interest in or References to Unusual or Highly
Specific Topics or Objects or Repetitive Behaviors

(TOPIC)

D5. Compulsions or Rituals (RITL)

The table below shows Observation Items for Other Abnormal Behaviors

section. In this section, there are 3 observation items for the examiner to rate

according specific coding standards [19].

Table 22. Module 4 Section 5 Observation Items

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity/Agitation (ACTIVE)
E2. Tantrums, Aggression, Negative or Disruptive Behavior (AGG)

 33

E3. Anxiety (ANXTY)

3.4 ADOS Coding Conventions

The table below shows coding conventions applied to ADOS modules

coding sections [19].

Table 23. ADOS Coding Convention Modules

Coding Rate Convention

0

No evidence of abnormality in the
behavior according to the

specifications. The absence of defect
as specified does not imply the

expression is normal.

1
The behavior is slightly or mildly

unusual yet not an exact match to the
type specified but not grossly abnormal.

2

The behavior is an exact match to the
defined abnormality. At this level, the

severity of coding defect will vary
according to the item.

3

The behavior is blatantly abnormal and
interferes with the assessment, or the
behavior is limited therefore making it

impossible to make a qualitative
evaluation.

4

It shows that test subject displayed no
instinctive use of words or anything

close to a word during the entire ADOS
administration

7 an abnormal behavior yet, it not
covered by the other ratings.

8

The behavior in question did not occur
and/or the rating is not applicable

 34

9

The item cannot rate due to some
reason other than that listed for a code
8, such as if examiner commits an error

and does not administer a particular
ADOS activity. This code provides

examiners with a consistent way to rate
items that cannot measure and allowing

it to use for any item.

The coding ratings range from 0 (abnormality specified is absent) through

2 or 3 (defect determined is present). Optimal or expected performance detailed

in the code for a rating of 0, and partial, minimal, and/or wavering production

described in the rest of the codes. In clinical practice, codes of 0, 1, 2, and 3 are

the ones often considered most. Ratings of 8 or 9 can use for anything that is not

applicable or that otherwise cannot be coded, as such it should be used sparingly

because of all the missing data, including 8s or 9s, must change to scores of 0

on the algorithm [19].

3.5 ADOS DATA

The ADOS records of the participants can found in the Autism Genetic

Resource Exchange (AGRE).

3.5.1 AGRE

AGRE is a non-profit DNA repository and family registry. It has a database

of biomaterials, genotypic and phenotypic data that is made available to

researchers. It is a central shared resource for studies on autism and related

 35

disorders. It has data from 1700+ families with 3300+ affected individuals with

an Autism Spectrum Disorder. It contains Clinical and biomaterial data for over

500 twin families [20]. However, accessing the data requires approval. Approval

information can be found in Appendix A.

3.5.2 Data information

The AGRE provided all records following the approvel prosses. Patient

evaluation results for each module were included.

Module 1 data contains1055 individuals, Module 2 contains 602

individuals, Module 3 contains 1158 individuals, and Module 4 contains 264

individuals. The data was collected between the years 2002 and 2015.

 36

CHAPTER FOUR

MODEL DESIGN

4.1 Introduction

This section covers all details relevant to the design of the model used in

this thesis. The information includes details about the Python machine learning

ecosystem, the type of model used, the unique architectural aspects of the model

used, the reasoning behind these aspects, and their implementation in math and

code.

4.2 Python Machine Learning Tools Used

4.2.1 Numpy

 Numpy is a Python package used for scientific computing. It contains

functions that allow for robust array computations, advanced math such as linear

algebra and Fourier transformations, and can act as an efficient container of

different types of data. Numpy can very easily integrate with other Python

libraries and frameworks for specific purposes, such as neural networks and

machine learning [21].

 37

4.2.1 Pandas

Pandas is a Python library that provides useful data structures and tools

for data analysis. In some ways, pandas is analogous to Excel for Python [22].

4.2.2 Scikit-Learn

Scikit-learn is a Python library for machine learning tasks. It provides

many functions for regression, classification, dimensionality reduction, clustering,

model selection, and preprocessing [23].

4.2.3 Matplotlib

Matplotlib is a Python library that is used for convenient graphing and data

visualizations [24].

4.2.4 Jupyter Notebook

A Jupyter Notebook is a document, which can contain both computer code

in specific languages (Python included) and rich text elements (charts, graphs,

and so forth). In the Jupyter Notebook, code is can be written and executed in

the same document. Lines of code can divide into modular cells that can be

executed individually. Jupyter notebooks run in a server-client application that

operated through a web browser online or offline. When a notebook document is

opened, a kernel corresponding to the language of choice (in this case, the

iPython kernel) gets launched. When a cell of code is executed, the kernel runs

the computations and produces the output underneath the block [25].

 38

4.3 PyTorch

PyTorch is a Python constructed deep learning research framework, which

offers flexibility and high speed. It consists of several libraries such as tensor

computation that uses strong GPU integration, which is the key of PyTorch

components. Also, it contains tape-based autograd that supports all

differentiable tensor operations. Moreover, it contains a neural networks library

that is tightly integrated with automatic differentiation and optimization, which

features famous optimizers such as Stochastic Gradient Descent, RMSprop, and

Adam [26].

4.3.1 Pytorch Components

 4.3.1.1 Tensor Computations

Tensors are the core of PyTorch. They are n-dimensional arrays and form

the fundamental building blocks for many algorithms including neural networks.

PyTorch tensors are functionally equivalent to numpy arrays , but can be

operated upon by GPU’s provide significantly faster calculations for many

machine-learning tasks, including neural networks. A PyTorch tensor can cast

into a GPU-specific data type, and a model comprised of these tensors can be

trained on a GPU significantly faster than on a CPU [27].

 4.3.1.2 Autograd Mechanics

The autograd package in PyTorch provides the functionality of automatic

differentiation. Automatic differentiation is used to quickly evaluate the derivative

 39

of a function specified by a computer program by repeatedly applying the chain

rule to elementary operations [27].

Neural networks are typically trained with back-propagation using a unique

form of automatic differentiation called reverse mode automatic differentiation.

When using the autograd package, each forward pass of a neural network

defines a computational graph with tensors as nodes. Each tensor is wrapped in

a Variable object that represents a node in the computational graph [27]. Back-

propagation through this graph allows for the quick computation of gradients.

PyTorch autograd implementation is not unique; however, it is swift compared to

what is offered by many competing frameworks.

4.3.1.3 Torch.nn

Torch.nn is a library in PyTorch, which allows the user to build neural

networks conveniently. It provides a high degree of abstraction over raw

computational graphs, which makes it simpler to develop and organize neural

networks of all sizes based on layer types, dimensions, and activation functions

[26]. Torch.nn is similar to Keras, which providesthe same functionality to users

of other frameworks like TensorFlow and Theano.

The nn package contains Modules, which are similar to neural network

layers. The modules take input and compute an output, and it can hold an

internal state if needed. Also, nn contains a multitude of loss functions and

activations for timely implementation. All commonly implemented loss and

 40

activation functions are present in PyTorch, allowing for easy experimentation

with different combinations [27].

It is possible to build custom nn modules that are more complex than

existing modules, and this can be done by creating a subclass and defining a

specific forward operation that receives inputs and computes outputs.

 4.3.1.4 Torch.optim

The optim package provides an abstraction for optimization algorithms

rather than manually writing code to update weights for Variables in a model.

Powerful and popular optimization algorithms such as AdaGrad and Adam can

conveniently implement in a model [27].

4.3.2 PyTorch Unique Features and Advantages

4.3.2.1 Tight Integration with Python Language

 PyTorch has multiple of advantages over other deep learning frameworks. It

is more tightly integrated with the Python language than competitors such as

TensorFlow. PyTorch is underlying C/C++ code is tailored explicitly for

conveniently working with Python. By comparison, TensorFlow was first built

entirely in C/C++ and then bound to Python. Using PyTorch is like using other

Python libraries, such as numpy or scipy. Layers can be written from scratch in

Python and incorporated into PyTorch models. The code can execute on a line-

by-line basis, which allows for easier debugging. PyTorch also displays the

 41

dimensionality of all tensors within a model, which also assists with debugging

[27].

 PyTorch can easily be extended with custom Python code. This allows

users to build models of any level of uniqueness and complexity while still

enjoying PyTorch’s lightning fast computational speed. The tighter integration of

PyTorch with the Python language makes innovation within PyTorch significantly

more comfortable than in other frameworks, like TensorFlow.

4.3.2.2 Dynamic Computational Graphs

 PyTorch defines its computational graphs dynamically, which contrasts from

the static graph methods used by other Python deep learning frameworks. All

deep learning frameworks define neural networks as directed acyclic graphs.

Most structures generate a graph once, and then continually re-use it when

training the model. PyTorch, on the other hand, creates a graph with each

forward pass. This dynamic computational graph generation enables a higher

degree of flexibility in training in many ways, such as allowing inputs of different

sizes dynamically within the same data set. Any aspect of the computational

graph can be adjusted on the fly with control flow, from the dimensions of hidden

layers to the number of hidden layers, to the activation function used between

layers [27].

 42

 4.3.2.3 Exceptional Speed and Flexibility

PyTorch also has a low framework overhead and support for acceleration

libraries featured by hardware manufacturers. Integration with Nvidia’s

acceleration libraries CUDA and CuDNN is a notable perk of PyTorch.

PyTorch is also exceptionally fast for training small and large neural

networks. Memory allocation is also hyper-efficient, as PyTorch contains custom

memory allocators for GPU’s [27]. PyTorch tensors use the same memory

allocation as numpy arrays, which allows for data to be converted between

PyTorch and numpy structures significantly faster than it can in TensorFlow.

Within the subjective experience of this experiment, PyTorch trained small neural

networks markedly quicker than TensorFlow did.

4.3.3 CUDA

CUDA is a parallel computing platform developed by NVIDIA for use on

GPU’s. CUDA allows for significantly faster computing with GPU’s and is tightly

integrated with several popular machine learning frameworks, including PyTorch

[28].

4.4 Autoencoder

Autoencoders are a particular type of feedforward neural network. They

recreate the model’s input as their target. Naturally, the output layer of an

autoencoder has the same dimensions as the input layer. Autoencoders have

 43

hidden layers smaller than either the input or output layer. An autoencoder

compresses its inputs in the hidden layers and then attempts to reconstruct the

input as its output [29].

Figure 1. Autoencoder [30]

The first half of an autoencoder is called the encoder. The encoder

includes the input layer and any hidden layers up to the smallest hidden layer.

The most smallest hidden layer in an autoencoder represents the most

compressed representation of the input. The first half of an autoencoder is called

the encoder because by compressing the input, it is effectively creating a

concise, encoded representation of the input [31].

The second half of an autoencoder is called the decoder. The decoder

includes progressively wider hidden layers following the encoded layer, all the

way until the output layer while attempting to reconstruct the input. This section

of an autoencoder is called a decoder because it tries to recreate the original

 44

input from its encoded representation, without “knowing” what the original input

looked like, therefore acting as a “decoder” of sorts [31].

Autoencoders have very few practical applications currently. These neural

networks mostly used for experimental causes. They are attractive to

researchers because of their potential for large-scale, intelligent dimensionality

reduction. If neural networks are used for large-scale unsupervised learning,

autoencoders might be able to function as a memory of sorts by compressing the

massive amounts of data an algorithm might parse through into a condensed

representation, and then deconstructing that representation to restore the full

dimensionality of the original data.

4.4.1 Reasons for Using Autoencoder

 Applying autoencoders to the Autism Diagnostic Observation Schedule is

a novel application of autoencoders. Since autoencoders are a type of neural

network, their effectiveness scales very well with the amount of data available.

Neural networks also scale in effectiveness with more significant computational

resources. Since computing power is increasing, and the amount of available

ADOS data is increasing as well, autoencoders have the potential to be an

algorithm of considerable interest in the future. Other dimensionality reduction

methods such as principal components analysis (PCA) have been applied to the

ADOS by other researchers in recent years [32]. These algorithms, as well as all

different “shallow” machine learning algorithms, are increasingly less relevant

 45

with every year, whereas neural networks are frequently interesting, relevant,

and efficient. For this reason, autoencoders chosen for this thesis.

 4.5 Autoencoder with Special Connection

4.5.1 Special Connections with Binary Mask Matrix

Typically, the computational graph of a neural network features fully

connected layers. That is, each node in a layer connects to each node in the

following layer. In effect, that means that each neuron in one layer has an impact

on every neuron in the next layer. In this experiment, each neuron in the input

layer corresponds to a variable within ADOS. Similarly, each neuron in the

hidden layer of the autoencoder corresponds to a new variable in the reduced

length diagnostic. Every neuron in the input layer that connects with a neuron in

the hidden layer represents the content of an ADOS items impacting the content

of reduced diagnostic items.

 The ADOS features different sections with significantly different subject

material. If an autoencoder with fully connected layers were to be used, that

would indicate that questions from all sections should be indiscriminately

combined in a reduced diagnostic. Given the conceptual differences between

sections, this does not seem like a logical approach. Therefore, it is necessary to

enforce specific connections between layers in the autoencoder.

 46

 In the experiment’s design, the reduced length diagnostic has the same

sectional structure as the original diagnostic. The only difference is that each

section has fewer variables. Each variable in the original diagnostic influences

every variable in the corresponding section of the reduced diagnostic, and no

other variables in the reduced diagnostic whatsoever.

 In other words, connections between neurons in each layer occur in

discrete groups, rather than ubiquitously. This is achieved through the use of a

binary adjacency matrix called a mask. The mask matrix exclusively consists of

0’s and 1’s. The 0’s and 1’s correspond with connections that are to be removed

and enforced respectively.

During each forward pass for the network, the binary mask matrix is

applied to the weight matrix before the weights and the inputs are multiplied

together. The mask matrix and the weight matrix have the same dimensions, and

they are combined with an element wise multiplication operation known as the

Hadamard product. In this operation, corresponding values in each matrix are

multiplied together. The result of this operation is the preservation of certain

weights, and the removal of others by setting them to a value of 0. Once the

weight matrix is combined with the inputs through matrix multiplication, every

weight corresponding to desired connections is preserved and every weight

corresponding to undesired connections is set to 0. The diagrams below are

Hadamard Product of Weight Matrix and Binary Mask Matrix for Module 1, 2, 3

and 4. Find the other Hadamard Product Diagrams in Appendix B.

 47

Figure 2. Module 1 Hadamard Product for 2920 Dimensions

Figure 3. Module 2 Hadamard Product for 2819 Dimensions

 48

Figure 4. Module 3 Hadamard Product for 2819 Dimensions

Figure 5. Module 4 Hadamard Product for 3119 Dimensions

 49

The first matrix, is the weight matrix. This second matrix, the binary mask

matrix, is comprised of ones and zeros corresponding to the desired and

undesired connections. Before the weights are applied to the inputs, the network

will constrain the weights through element-wise multiplication between the mask

and the weight matrices. The new weight matrix is the Hadamard product of the

mask and weight matrices.

As can be seen in the diagram below, implementing the mask matrix in a

forward pass erases all undesired connections. The only connections between

nodes in layers are connections that correspond to specific sections of the

ADOS. Find The diagrams in Appendix C.

 50

Figure 6. Module 1 Autoencoder with Hidden Layer of Size 20

 51

Figure 7. Module 2 Autoencoder with Hidden Layer of Size 19

 52

Figure 8. Module 3 Autoencoder with Hidden Layer of Size 19

 53

Figure 9. Module 4 Autoencoder with Hidden Layer of Size 19

 54

4.5.2 Creating Mask in PyTorch

The binary mask used for the special connections between layers was

originally created as a numpy array prior to its importation into PyTorch. PyTorch

tensors are generally created from numpy arrays, so this intermediate step was

required. The mask tensor was created as a PyTorch “FloatTensor” in order to

match with the tensor type of the model’s weights. The tensor was then

converted into a CUDA-specified tensor type stored on the GPU.

The mask for each autoencoder decoder layer is simply a transposition of the

mask for each autoencoder encoder layer. For example, the mask that works for

a reduction from 29 to 23 dimensions is simply a transposition of the mask that

expands 23 dimensions for 29 dimensions. Therefore, for the sake of

convenience mask, each decoder mask was simply created by transposing the

corresponding encoder mask.

4.5.3 Incorporating Mask into Model

PyTorch allows a user to build custom modules for its nn package.

Modules in nn function as neural network layers. Building a new module requires

creating a custom subclass with a unique forward pass that receives Variables as

inputs and computes Variables as outputs.

 This experiment features custom layers that feature the aforementioned

binary mask to selectively enforce and eliminate connections in a manner

consistent with the sectional structure of the Autism Diagnostic Observation

 55

Schedule. The forward pass of each layer is altered to update the weights by

taking the Hadamard Product, or element-wise multiplication product, of the

weight matrix and the binary mask matrix before applying the weights to the input

Variable via matrix multiplication.

Otherwise, the custom module functions exactly like a standard

feedforward neural network layer. The layer takes an array as an input and

multiplies it through a weight matrix. The output of this operation becomes the

input of the next layer in the neural network. In the case of PyTorch, the input

array is a Torch tensor for GPU computation wrapped as a differentiable object

called a Variable. The tensor inside this variable represent the data, which is

multiplied by a weight matrix in which the undesired connections have already

been eliminated through element-wise multiplication with the mask matrix or in

other words the Hadamard Product.

The custom module for the masked layers created by altering the source

code for PyTorch regular linear layers used in a standard feedforward neural

network. These layers involve matrix multiplication between weights and inputs.

Before this step, the code was added to modify the weight matrix through

element-wise multiplication with the corresponding mask matrix.

 56

4.6 Autoencoder Architecture

The input layer of each module’s architecture corresponds to the number

of variables in that module. Since autoencoders attempt the reconstruct their

input as their output, the output layer for each autoencoder has to have the same

number of neurons as the input layer. The only things to determine, in terms of

autoencoder architecture, were the number of hidden layers, and the size of each

hidden layer, with the smallest hidden layer being the most important, since it

represents the encoded representation of the diagnostic.

 When evaluating the architecture of the autoencoder, it is critical to keep

the project’s larger purpose in mind. The purpose of this thesis is to use an

autoencoder to develop a viable reduced length diagnostic, rather than find the

smallest possible encoded representation that an autoencoder can encode and

then accurately decode. Likewise, the goal is to subjectively comprehend the

variables that go into the encoded representation, and enforce specialized

connections between layers to stay true to the sectional structure of the

diagnostic.

In light of the goal of making sense of the variables that go into the

reduced diagnostic, it made sense to have as few hidden layers as possible.

First, autoencoders with three hidden layers were tested for Module 1. An

intermediate encoding layer and an intermediate decoding layer helped bridge

the gaps between the input, encoding, and reconstructed output. While this

approach yielded a very accurate reconstruction, it was difficult to keep track of

 57

the underlying concepts behind variables, or neurons, in the reduced diagnostic

within the context of the original variables of the diagnostic. For that reason,

autoencoders with a single hidden layer were chosen, since it is easier to keep

track of the presence of input variables within the reduced diagnostic.

4.6.1 Autoencoder Pipeline

4.6.1.1 Building Autoencoders in PyTorch

 The nn abstraction method was used to build the autoencoders. NN allows

for a model to built as a combination of layers and activation functions. Since the

masked layers had built as custom nn modules, these layers could simply be

stacked to form the autoencoder in Pytorch.

 Over the course of this thesis, multiple autoencoders were trained for

different reduced length diagnostics for each module. The dimensions of every

autoencoder are listed below.

4.6.2 List of Autoencoder Architectures Tested

4.6.2.1 Module 1

 Module 1 contains 29 variables that are measured. The input layer of each

autoencoder for Module 1 therefore contains 29 neurons to represent these

original 29 variables. The dimensions of the output layer of each autoencoder

match the dimensions of the input layer. Over the course of this thesis, four

separate autoencoder structures for this module were tested, each with a single

 58

hidden layer representing the reduced diagnostic. The only differences between

these four autoencoders were the connections and the hidden layer size. Hidden

layer sizes of 20 neurons, 21 neurons, 22 neurons, and 23 neurons were tested.

During an earlier phase of experimentation, hidden layer sizes slightly smaller

than 20 neurons were tested. During these trials, the accuracy of the

reconstruction was significantly worse. Therefore, nothing below 20 neurons was

used in the final phase of the experiment for Module 1.

4.6.2.1 Modules 2, 3 and 4

 Modules 2, 3, and 4 each had four autoencoders trained for them. All

autoencoders consisted of a single hidden layer. Each module’s experimentation

involved training autoencoders with hidden layer dimensions of 19, 20, 21, and

22 neurons. The only difference between the autoencoders for the different

modules involved the dimensions of the input and output layers. Module 2

contains 28 variables. Module 3 also contains 28 variables. Module 4 contains 31

variables. The input and output dimensions of their respective autoencoders

contain numbers of neurons that match the number of variables.

4.6.3 Reasons for the Lower Limit in Dimensionality Reduction

 The purpose of this experiment was to test the possibility of a coherent

reduced version of the Autism Diagnostic Observation Schedule. Therefore, it did

not make sense to decrease the dimensionality of the data as much as

algorithmically possible, since a reduction of too large a magnitude would be

 59

inconsistent with the project’s goal. The smallest hidden layer sizes of the

autoencoders tested in this experiment represent multiple variables eliminated

from each section of the corresponding module. Reducing dimensionality further

seemed excessive from a subjective standpoint within the context of finding a

viable reduced diagnostic size. The lowest dimensionality reductions involved

removing multiple variables per section. Removing even more variables would

not have left enough variables to cover the diversity of different concepts on the

ADOS.

4.6.4 Selecting Regression Over Classification

This experiment was treated as a regression problem rather than a

classification problem. Regression problems involve making predictions about a

continuous variable, whereas classification problems involve making predictions

about categorical variables. In regression problems, loss functions involve errors

between predictions and targets. In classification, loss functions attempt to

optimize classification accuracy as a binary procedure.

The scores of different variables on the ADOS all take the form of ordinal

variables. Only integer values exist, but the hierarchy of the integers has a

meaning, unlike in a strict classification problem. Because of the ordinal nature of

ADOS scores, reconstructing the input was treated as a high dimensional

regression problem, with appropriate loss functions. To make sure that the

 60

reconstructions were comparable to the input, values were rounded to the

nearest integer.

4.7 Hyperparameter Tuning

 The most important part of training this autoencoder was picking the

correct hyperparameters for the model, which refers to the choice of loss

function, optimizer, and activation function. While intuition can certainly guide

which loss functions, optimizers, and activation functions are tested out, there are

multiple options for each of these hyperparameters that are plausible. The only

way to determine which hyperparameter settings allow for the best convergence,

and therefore most accurate reconstruction of an encoded, reduced

representation is to test out different combinations.

4.7.1 Tested Loss Functions

The loss functions that were tested areaveraged version of Least Absolute

Error (L1 loss) and Least Squared Error (L2 loss). L2 loss is also called Mean

Squared Error Loss (MSELoss). Both of these functions are typically used for

regression tasks. Since the numbers that represent scores on the different tests

on the ADOS have an ordinal relationship, this problem was treated as a

regression problem instead of a discrete classification problem. At the end,

reconstructed values could be rounded in order to represent the integer nature of

the scores for each variable on the diagnostic.

 61

1- L1 Loss

L1loss is simple error measurement typically used for regression

problems. It takes the absolute value of each error, sums them up. In

PyTorch, users have the option to then average this sum on a per-sample

basis. In other words, this the average absolute value difference between

the network’s predictions and the correct results [33]. The formula for

averaged L1 loss is as follows:

𝐿1 =
1
𝑛 𝑦(!) − 𝑦(!)

!

!!!

2- Mean Squared Error Loss (MSELoss)

Mean squared error, which is also commonly referred to as L2 loss,

is a very simple error measurement. It takes the difference between the

estimation and the correct value of each, and then squares it. These

squares are all summed together, and then divided by the sample size

[33]. The formula for mean squared error is as follows:

𝑀𝑆𝐸 =
1
𝑛 (𝑦(!)

!

!!!

− 𝑦 !)!

4.7.1.1 Reasons for Testing Both L1 & L2 Loss

 At first glance, it might seem like it is unnecessary to test the

performance of both L1 and L2 loss functions. Since both results were averaged

out, they basically seem to be measuring the same thing. The only difference is

 62

that mean squared error or L2 loss measures a squared version of the average

absolute value error or L1 loss.

 While this is true, the shape that both loss functions take for a given

experiment might be different. Since each of the functions will take the form of a

very complex multivariable equation, differences in function shape can make a

huge difference.

 For any given problem, one function might have a gradient that is easier

for an optimizer to navigate than the other. Not only that, but one function might

work better for one set of optimizers and activation functions, and the other

function might work better for another set of optimizers and activation functions.

There is no way to know beforehand which will work best, so different

combinations need to be tested.

4.7.2 Tested Activation Functions

 The activation functions that were tested are Rectified Linear Units

(ReLU), Exponential Linear Units (ELU), Scaled Exponential Linear Units

(SELU), and Softplus.

1- Rectified Linear Units (ReLU)

Rectified Linear Units or ReLU is a simple activation function that

fires a neuron if its output is greater than 0, and does not activate a

neuron if its value is less than 0. ReLU is the most popular activation

function used by researchers in the field of deep learning. While it can

 63

help implement a nonlinear target function that allows a network to

converge upon a very difficult to reach solution to a complex problem,

ReLU can be prone to backfiring in an inconvenient manner from time to

time. A ReLU neuron with a large gradient might cause its weights to

update in a way that permanently set that neuron’s value at 0 or below,

causing it to “die” and never fire again. This problem can be avoided by

setting a proper learning rate that is not too high [34]. The threshold for

ReLU is very simple:

 𝑓 𝑥 = max (0, 𝑥)

Graphically, ReLU [35] looks like this

Figure 10. ReLu Activation Function

2- Exponential Linear Units (ELU)

 For positive values, exponential linear units function are identical to

rectified linear units. For negative values, the function has a boundary of -1 for an

α value of 1.0, which the default used by PyTorch. Exponential linear units have

a greater percentage of neurons fire, which ends up helping a neural network

train faster [36]. The formula for exponential linear units is as follows:

 64

𝑓(𝑥) 𝑥 𝑥 ≥ 0
𝛼 𝑒! − 1 𝑥 < 0

Graphically, exponential linear units look like this:

Figure 11. ELU Activation Function

3- Scaled Exponential Linear Units (SELU)

 SELU works very similarly to exponential linear units (ELU). The only

difference is that the exponential linear units are scaled based on two constant

parameters not subject to gradients, α & λ. The default value for α is

1.6732632423543772848170429916717. The default value for λ is

1.0507009873554804934193349852946. The formula for scaled exponential

linear units is as follows [37]:

𝑠𝑒𝑙𝑢 𝑥 = 𝜆
𝑥 𝑖𝑓𝑥 > 0
𝛼𝑒! − 𝛼 𝑖𝑓𝑥 ≤ 0

Graphically, SELU looks like this:

 65

Figure 12. SELU Activation Function

4- Softplus

 The softplus activation function is simply a smooth approximation of the

rectified linear unit activation function (ReLU). The softplus activation function is:

 𝑓 𝑥 = ln (1+ 𝑒!)

Graphically, softplus looks very similar to ReLu, but is smooth [38].

Figure13. Softplus Activation Function

 66

4.7.3 Tested Optimizers

The optimizers that were tested are Adaptive Moment Estimation (Adam),

RMSProp and Average Stochastic Gradient Descent (ASGD). In order to

understand Adam and RMSProp, it is necessary to understand the optimizer

Adaptive Gradient Boost.

4.7.3.1 Adaptive Gradient Boost (Adagrad)

 Adagrad attempts to improve upon traditional stochastic gradient descent

by normalizing updates for each parameter. After it is done, parameters with

larger gradients have smaller updates, and parameters with smaller or less used

gradients have larger updates [14]. The formulation of Adagrad is shown below:

0!!!,! = 0!,! −
𝑛

𝐺!,!! + 𝜖
 .𝑔!,!

The problem with Adagrad is that the cache eventually becomes too large

and ceases to function properly. This process occurs because the squared

gradients accumulated in the denominator, which is referred to as the cache. As

the accumulated sum grows, the learning rate progressively shrinks until the

algorithm learns at an infinitesimally small and computationally intractable rate

[14].

1- RMSProp

 The RMSProp optimization algorithm addresses the aforementioned

weakness of adaptive gradient boost by decaying the size of the cache by

 67

multiplying it by a constant fraction less than but close to 1. RMSProp also

divides the learning rate for a given weight by a running average of the

magnitudes of recent gradients for that weight [14].

𝑐𝑎𝑐ℎ𝑒! = 𝛾 ∗ 𝑐𝑎𝑐ℎ𝑒!!! + 1− 𝑦 ∗ ∇𝐽(𝜃!)!

2- Adaptive Moment Estimation (Adam)

 Adam optimizer improves RMSProp by incorporating information from past

updates, by using momentum. It accumulates past squared gradients in an

exponentially decaying average like RMSProp. In addition to this decaying

average of squared gradients, Adam also accumulates an exponentially decaying

average of previous gradients without squaring them. These two caches are

running estimates of the mean and variance of past gradients, which are referred

to as the first and second moments respectively. Adam then implements a bias

correction to these estimates, and then uses this information to calculate new

updates [14]. The Adam optimizer has the formulation:

𝑚! = 𝛽! ∗𝑚!!! + 1− 𝛽! ∗ 𝐽(𝜃!)

𝑣! = 𝛽! ∗ 𝑣!!! + 1− 𝛽! ∗ ∇𝐽(𝜃!)!

𝜃! = 𝜃!!! −
𝛼 ∗𝑚!

(𝑣!)

3- ASGD (Averaged Stochastic Gradient Descent)

 This algorithm represents an accelerated version of stochastic gradient

descent. A normal stochastic gradient descent update is performed, and then an

average is calculated efficiently using a recursive formula [39].

 68

𝑤! =
1

𝑡 − 𝑡!
𝑤!

!

!!!!!!

This average is then used to influence future updates, which can accelerate

training significantly in some cases.

𝑤!!! = 1− 𝛾!𝜆 𝑤! − 𝛾!𝑦!𝑥!𝑙′(𝑦!𝑥!𝑤!)

𝑤!!! = 𝑤! + 𝜇!(𝑤!!! − 𝑤!)

The averaging rate is:

𝜇! = 1/𝑚𝑎𝑥 1, 𝑡 − 𝑡!

4.7.4 Batch Size, Learning Rate and Scheduler Tuning

Different batch sizes were tested throughout the training process. The

batch size of a neural network refers to the number of data samples that are

simultaneously sent forward through the network at one time.

During hyperparameter tuning, different initial learning rates were tested

for each optimizer. The learning rate determines the size of a weight update for

the optimizer. The learning rates tried altered by a factor of 10, and ranged from

.01 to .00001.

An algorithm called a scheduler, which dynamically adjusts the learning

rate of an optimizer once descent on the loss function has stagnated, was also

tested. Results with the scheduler, for all optimizers, were significantly worse

than without a scheduler. This was true with all combinations of loss and

activation functions, and was true regardless of the optimizer used.

 69

The most likely explanation for this phenomenon involves local minima

within the loss function. In all likelihood, the scheduler ended up getting stuck in a

suboptimal local minimum during training. Since the scheduler decreases the

learning rate once learning stagnates, it is very unlikely to “escape” a local

minimum during gradient descent.

4.8 Data Pipeline Prior to Training.

4.8.1 Data Preprocessing

The Autism Diagnostic Observation schedule data, covering Module 1,

Module 2, Module 3, and Module 4, was supplied in the form of Excel

spreadsheets with a “.xlsx” file extension. The first step in the data pipeline was

to convert these “.xlsx” files to comma separated value files “.csv”. This format

imports into python more cleanly.

 Prior to doing this, the files were edited, as there were a small but

insignificant number of samples that did not contain full ADOS data. There were

also several columns in the spreadsheet that were completely unnecessary to

the project. These columns included patient identification numbers and the date

at which the tests were administered. Besides this, the data required very little

preprocessing.

4.8.2 Moving Data into Python Environment

 The programming and machine learning part of this thesis was mostly

conducted within the confines of a Jupyter notebook. The data was imported into

 70

the Jupyter notebook with a library called Pandas. Pandas is a Python open

source library that provides high performance data structures and data analysis

tools for the purpose of data science and machine learning projects. Pandas

library contains a function called “read_csv”, which takes the contents of a

comma separated value file and imports it into a Python programming

environment.

 Following this, the data in the file were quickly isolated and placed into a

structure called a Pandas dataframe. A Pandas dataframe can be thought of as

an analogue to an Excel spreadsheet in Python.

4.8.3 Conversion from Pandas Dataframe to Numpy Array

 Numpy is a very popular Python library that allows for the computation of

arrays. It is entirely possible to code a neural network from scratch using numpy.

Numpy tends to be an integral part of almost every machine-learning project in

Python, and supports a host of mathematical operations that are commonly used

in data science and machine learning. Numpy arrays are stored and operated

upon on CPU’s however, so for any project that requires high performance

computing, numpy might not be sufficient.

 The Pandas Dataframe needed to be converted to a numpy array prior to

its importation into PyTorch. PyTorch tensors are generally created from numpy

arrays, so this intermediate step was required. Also, binary mask used for the

 71

special connections between layers was also originally created as a numpy

array.

4.8.4 Conversion from Numpy Array to PyTorch Tensor

 PyTorch tensors are commonly created from Numpy arrays. Both the

dataset and the binary mask matrix were quickly converted from 2-dimensional

numpy arrays to PyTorch tensors. A PyTorch tensor is conceptually equivalent

to a numpy array.

 In order for the algorithm to work, the mask and dataset had been stored

in the exact same type of PyTorch tensor data structure. These tensors were first

stored on the machine’s CPU.

In order for the algorithm to work, the mask and dataset had to be stored

in the exact same type of PyTorch tensor data structure. Furthermore, this data

type had to match the data type of the weights for the network. By default, the

weights of the neural network take the form of a “Float Tensor”. The mask and

the dataset, when imported from numpy and pandas, were initially stored as

“Long Tensors”. These “Long Tensors” were converted to “Float Tensors” so that

the weights, mask, and data all matched. These tensors were first stored on the

machine’s CPU.

4.8.5 Moving PyTorch Tensors to GPU

 PyTorch allows a user to run algorithms on GPU rather than CPU for the

sake of efficient computing. The next step in the pipeline was to convert the

 72

PyTorch CPU tensors currently in use to PyTorch GPU tensors, which effectively

moves the data storage from the CPU to GPU.

 PyTorch take advantage of NVIDIA’s CUDA library for computations run

on NVIDIA GPU, so the PyTorch tensors were redefined as a specialized tensor

optimized for CUDA computations. These steps were administered for both the

mask and for the dataset.

4.8.6 Wrapping GPU Tensors in PyTorch Variables

 PyTorch features the convention of wrapping tensor data structures into

objects called Variables prior to using them in a model. These Variable objects

have an attribute called “.data” that refers to the tensor held within the Variable.

 Once the data and the mask were wrapped in Variables while stored on

the GPU, the model was ready to be trained.

 73

CHAPTER FIVE

MODEL TRAINING

5.1 Introduction

This section describes the training process for all autoencoders used in

this thesis. This information includes the hyperparameters used, training

procedures for avoiding overfitting, the logic behind these procedures, the

duration of training, and the implementation of training within PyTorch.

Once the correct configuration of hyperparameters had been selected for

the autoencoders, each module was ready to be trained. The GPU used for

training these models was an Nvidia GTX 870, which allows for accelerated

computations using NVIDIA’s CUDA framework integrated into PyTorch. Neural

networks train significantly faster on GPU, so training these models on GPU’s

allowed for a greater amount of experimentation.

5.2 Final Hyperparameters Used

 With the different combination of the loss, activation and optimizer tested,

L1 loss function, SELU activation function and Adam optimizer yielded the best

results. This combination was used for all autoencoder architectures in all

modules.

 74

5.2.1 L1 Loss

L1 loss function as mentioned previously measures average absolute

value between the networks predictions and the correct result then sum them up.

In PyTorch, users have the option to then average this sum on a per-sample

basis. In other words, this represents the average absolute value difference

between the network’s predictions and the correct results [29]. The formula for

averaged L1 loss is as follows:

𝐿1 =
1
𝑛 𝑦(!) − 𝑦(!)

!

!!!

In this case, L1’s gradient took a shape that was easier for the Adam

optimizer to descend upon.

5.2.2 SELU

SELU as mentioned previously the exponential linear units are scaled

based on two constant parameters not subject to gradients, α & λ [33]. SELU do

not transform positive neuron outputs, and simply bound negative neuron outputs

at -1 with a biased exponential transformation. As will be discussed later, it is

unlikely that scaled exponential units transformed weighted outputs to a

significant degree. For whatever reason, scaled exponential linear units worked

better than competing activation functions. The formula for scaled exponential

linear units is as follows:

𝑠𝑒𝑙𝑢 𝑥 = 𝜆
𝑥 𝑖𝑓𝑥 > 0
𝛼𝑒! − 𝛼 𝑖𝑓𝑥 ≤ 0

 75

4.2.3 Adam

Adam as mentioned previously accumulates past squared gradients in an

exponentially decaying average. In addition to this decaying average of squared

gradients, Adam also accumulates an exponentially decaying average of

previous gradients without squaring them. These two caches are running

estimates of the mean and variance of past gradients, which are referred to as

the first and second moments respectively. Adam then implements a bias

correction to these estimates, and then uses this information to calculate new

updates [17]. The Adam optimizer has the formulation:

𝑚! = 𝛽! ∗𝑚!!! + 1− 𝛽! ∗ 𝐽(𝜃!)

𝑣! = 𝛽! ∗ 𝑣!!! + 1− 𝛽! ∗ ∇𝐽(𝜃!)!

𝜃! = 𝜃!!! −
𝛼 ∗𝑚!

(𝑣!)

It adapts updates on a per-parameter basis, and is able to incorporate a

concept of momentum as well. These traits, in all likelihood, decreased the

probability of the Adam optimizer getting stuck in a suboptimal local minimum.

4.2.4 Final Batch Size, Learning Rate and Scheduler

As mentioned earlier, different batch sizes and learning rate were tested.

The best final set of autoencoders was batch of size 10 and a learning rate of

size (1.0*10-4) or .0001 across all architecture modules. Implementing a learning

rate scheduler led to worse performance across the board in every architecture,

so the scheduler was completely omitted from training.

 76

5.3 Overfitting

Overfitting is when a model’s target function maps inputs to outputs in a

way that too closely matches the training data. When this happens, the model

learns a pattern that is overly specific, and matches the training data, but would

fail to regularize and apply to other similar data sets. Overfitting in neural

networks is often mitigated by the implementation of a technique called dropout.

Figure 14. Overfitting [40]

4.3.1 Dropout

Figure 15. Dropout [41]

 77

Researchers who train neural networks typically use dropout to avoid

overfitting. Dropout is a procedure by which certain numbers of neurons in each

layer are removed from any given forward pass [42]. The neurons removed will

vary on each forward pass. The idea behind this is that the model is forced to

learn a target function despite different neurons being deactivated at different

times. Doing this should help prevent the neural network from developing a target

function that is overly specific to the dataset. Dropout, however, was not used in

this project for the reason mentioned below.

4.3.1.1 Reason not Using Dropout

Since the autoencoders employed in this project already had a large

number of neurons removed from training due to the specialized connections

between layers enforced by the binary mask matrix, dropout seemed like it would

be less effective than normal. Simply dropout removes neurons, and the project’s

design also removes neurons, and there seemed to be a degree of redundancy

there.

4.3.2 K-Fold Cross Validation

 K-fold cross validation is a technique used to prevent overfitting. In k-fold

cross validation the data set is randomly partitioned into a training set and a

validation set [43]. The diagram below shows k-fold cross validation.

 78

Figure 16. K-Fold Cross Validation [43]

K-fold cross validation in this experiment was implemented as follows. The

data set was shuffled and randomly split into a training set and a test set. 90% of

the data was used for training, and 10% for a test. The model was trained using

the training data for 100,000 epochs, and then tested on the remaining test data.

This represents a single fold in k-fold cross validation. Afterwards, entire data set

was shuffled and randomly split again into a different training and test set of the

same portions. Another fold of training and testing was carried out, followed by

another random shuffle and split, until 10 folds of cross validation had been

executed. This procedure theoretically prevents the model from approximating a

target function that becomes overly reliant on a certain subsection of the dataset,

thereby acting as a bulwark against overfitting.

5.3.3 Code for K-Fold Cross Validation and Model Training

 Because PyTorch is very tightly integrated with the Python language, it

was possible to implement k-fold cross validation by using traditional Python

 79

control flow methods. The 10 splits of cross validation were written in the form of

a Python for loop of 10 iterations. In each loop, the dataset was randomly split

with a 9:1 training to validation ratio. Within each split, the model was trained for

100,00 epochs. The training was also represented as a for loop within the cross-

validation for loop. The training loop consisted of 100,000 iterations.

5.4 Training

 Each autoencoder was trained for 1,000,000 epochs consisting of 10 splits

of 100,000 epochs for k-fold cross validation. Since the datasets were small and

PyTorch is exceptionally efficient, the models were able to converge upon local

minima very easily within this time.

For each autoencoder structure in each module, training was conducted 10

times. The results of each training session were saved, and the final weights for

each structure represented an average of these 10 iterations.

5.4.1 Training Time

 Each architecture took roughly 1 hour to train. This extrapolates to roughly

160 hours of total training time over the course of the experiment for all iterations

of autoencoders on different modules.

 80

5.4 Data Pipeline After Training

5.4.1 Pipeline for Reconstructed Data Set and Target

5.4.1.1 Moving Tensor to CPU

 The first step in the pipeline, following training of the model, was to

remove the data held in the Variable object representing the reconstructed ADOS

dataset and the target. The next step was to convert the GPU tensor for the data

into a CPU tensor, since the only purpose of using the GPU was training the

model. These two steps were conducted in a single line of code for the

reconstruction and target.

5.4.1.2 Convert PyTorch CPU Tensor to Numpy Array

 Since the end goal of the pipeline was to convert the reconstructed data

into a csv, similar to the original data, the Pytorch tensor needed to be converted

to a Numpy array as an intermediate step between PyTorch and Pandas.

5.4.1.3 Convert Numpy Array to Pandas Data Frame

 The next step in the pipeline was to convert the Numpy array into a

Pandas data frame. The column names of the dataset were specified when

creating the dataframe because this information was lost during training, as the

model did not include column labels with the input.

 81

5.4.1.4 Convert Pandas Dataframe to Comma Separated Value File

 The final step in the reconstruction and target pipeline was to convert a

pandas data frame into a comma separated value file so that it could be

compared to the input.

5.4.2 Pipeline for Weights

 The parameters of the model in PyTorch are stored in an iterable object

referred to as “model.parameters”. The parameters object of the model has an

attribute referred to as “param.data”.

 To remove the weights from this object, a for loop was constructed to

iterate through “model.parameters” and convert the data within into a PyTorch

tensor.

From there, the weights followed the exact same pipeline as the

reconstructed dataset did.

 82

CHAPTER SIX

MODEL VALIDATION

6.1 Introduction

 Validating a model involves insuring that the model can reliably and

accurately achieve its purpose on relevant datasets. In this chapter, the accuracy

of autoencoders at reconstructing their inputs will be evaluated. Since the

purpose of an autoencoder is to accurately reconstruct its input as its target,

validation for this project involved testing if the autoencoders used were actually

able to accurately reconstruct their inputs. Accuracy was measured for each

training iteration of autoencoders used in this project. Average accuracies are

calculated for each combination of autoencoder architecture and module. A table

of all autoencoder training iterations and their respective reconstruction

accuracies can be found in Appendix D.

6.2 Validation Method

 Validation was conducted by testing how accurately an autoencoder was

able to reconstruct its input. Reconstructing an input from a smaller hidden layer

effectively represents an autoencoders ability to decode its hidden layer and

recover as much information about its input as possible. All analysis of variables

that go into a reduced representation of the ADOS is only relevant if the

 83

autoencoder can reliably reconstruct the original higher-dimensional sample from

that reduced representation.

6.2.1.1 Compare Output with Target

As mentioned previously, in the model the data was split into 90 percent

training and 10 percent validation. Following this division, the model trained

normally for a certain number of epochs.

After training was completed for this partition, the dataset is then

reshuffled and divided into a different random partition of 90/10. The model is

then trained again, and then shuffled and randomly divided again, for an arbitrary

number of splits.

 The final outputs of the autoencoder represent reconstructed versions of

the training data and the test data. Collectively, all samples from the original

dataset are in the output, the only difference is that order is switched. For the

sake of examining the autoencoder output, the training set reconstructions were

compared to the training set splits, since these represent the overwhelming

majority of the input data. The data for every individual patient remains

completely unchanged, so comparing the reconstruction to the shuffled data set

is a completely valid method for evaluating the reconstruction performance of the

autoencoder. However, since the order of the patients has been changed, the

reconstruction compared to the original data set as supplied by the AGRE in its

original patient order.

 84

 K-fold cross validation was conducted to attempt to limit the potential for

overfitting by this model.

6.2.1.2 Calculating the Accuracy

 Since the output was treated as a regression problem, all values in the

output had to be rounded to the nearest integer prior to comparison with the

input. After rounding, overlapping comma separated value files were compared,

and all discrepancies highlighted. The number of discrepancies represents the

number of observations that the autoencoder failed to accurately reconstruct. By

dividing the number of discrepancies by the total number of observations, the

percentage of wrong observations was calculated. Subtracting this percentage

from 1 gave an accuracy percentage for the autoencoder.

6.2.1.3 Average the Accuracy

Accuracy numbers were calculated for all 10 autoencoders for a single

architecture and module. To determine the reconstruction accuracy of a given

autoencoder, the number of correct values divided by total values was calculated

for each training session. After accuracy percentages were calculated for all 10

training versions of a single architecture and module combination, those

accuracies were averaged to estimate the aggregate average accuracy of a

given architecture in reconstructing a module.

 85

6.3 Autoencoder Reconstruction Accuracy

6.3.1 Module 1 Autoencoder Reconstruction Accuracy

The diagram below shows the average accuracy across Module 1

architectures.

Figure 17. Average Accuracy Across Module 1

All autoencoders tested ended up with accurate reconstructions. Within

Module 1, the autoencoder that reduced the 29-variable diagnostic to 20

variables ended up reconstructing its inputs with 89.3% accuracy. This number,

and each of the following average accuracy measures, describes the average

accuracy of 10 identically designed and trained autoencoders. The least accurate

of the 10 autoencoders reconstructed its input with 87.56% accuracy, and the

most accurate reconstructed its input with 90% accuracy.

 86

 The autoencoder architecture that reduced the 29-variable Module 1 to 21

variables had an average accuracy of 90.5%. The least accurate iteration scored

at 89.35% accuracy, and most accurate iteration had accuracy of 91.74%.

The autoencoder architecture that reduced the 29-variable Module 1 to 22

variables had an average accuracy of 92.5%. The least accurate iteration scored

at 91.54% accuracy, and most accurate iteration had accuracy of 93.36%.

The autoencoder architecture that reduced the 29-variable Module 1 to 23

variables had an average accuracy of 94%. The least accurate iteration scored at

93.35% accuracy, and most accurate iteration had accuracy of 94.53%.

As one might expect, Module 1 autoencoders with larger hidden layers

were more accurate at reconstructing than autoencoder architectures with

smaller hidden layers.

6.3.2 Module 2 Autoencoder Reconstruction Accuracy

The diagram below shows the average accuracy across Module 2

architecture.

 87

Figure 18. Average Accuracy Across Module 2

On Module 1, the autoencoder that reduced the 28-variable diagnostic to

19 variables ended up reconstructing its inputs with 90.5% accuracy. The least

accurate of the 10 autoencoders reconstructed its input with 88.15% accuracy,

and the most accurate reconstructed its input with 91.12% accuracy.

 The autoencoder architecture that reduced the 28-variable Module 2 to 21

variables had an average accuracy of 91.4%. The least accurate iteration scored

at 90.97% accuracy, and most accurate iteration had accuracy of 91.86%.

The autoencoder architecture that reduced the 28-variable Module 2 to 22

variables had an average accuracy of 92.6%. The least accurate iteration scored

at 92.03% accuracy, and most accurate iteration had accuracy of 93.59%.

The autoencoder architecture that reduced the 29-variable Module 2 to 23

variables had an average accuracy of 94.3%. The least accurate iteration scored

at 92.22% accuracy, and most accurate iteration had accuracy of 95.08%.

 88

Module 2 autoencoders showed decreased accuracy with smaller hidden

layers, as is expected.

6.3.3 Module 3 Autoencoder Reconstruction Accuracy

The diagram below shows the average accuracy across Module 3

architecture.

Figure 19. Average Accuracy Across Module 3

On Module 3, the autoencoder that reduced the 28-variable diagnostic to

19 variables ended up reconstructing its inputs with 92.5% accuracy. The least

accurate of the 10 autoencoders reconstructed its input with 91.60% accuracy,

and the most accurate reconstructed its input with 93.37% accuracy.

 The autoencoder architecture that reduced the 28-variable Module 3 to 20

variables had an average accuracy of 93.1%. The least accurate iteration scored

at 92.48% accuracy, and most accurate iteration had accuracy of 93.67%.

 89

The autoencoder architecture that reduced the 28-variable Module 3 to 21

variables had an average accuracy of 95.2%. The least accurate iteration scored

at 94.23% accuracy, and most accurate iteration had accuracy of 96.09%.

The autoencoder architecture that reduced the 29-variable Module 3 to 22

variables had an average accuracy of 95.9%. The least accurate iteration scored

at 95.07% accuracy, and most accurate iteration had accuracy of 96.82%.

Module 3 autoencoders showed decreased accuracy with smaller hidden

layers, as is expected.

6.3.4 Module 4 Autoencoder Reconstruction Accuracy

The diagram below shows the average accuracy across Module 3

architecture.

Figure 20. Average Accuracy Across Module 4

On Module 4, the autoencoder that reduced the 31-variable diagnostic to

19 variables ended up reconstructing its inputs with 91.5% accuracy. The least

 90

accurate of the 10 autoencoders reconstructed its input with 90.93% accuracy,

and the most accurate reconstructed its input with 91.15% accuracy.

 The autoencoder architecture that reduced the 31-variable Module 4 to 20

variables had an average accuracy of 91.4%. The least accurate iteration scored

at 91.00% accuracy, and most accurate iteration had accuracy of 92.21%.

The autoencoder architecture that reduced the 31-variable Module 4 to 21

variables had an average accuracy of 94%. The least accurate iteration scored at

93.52% accuracy, and most accurate iteration had accuracy of 94.31%.

The autoencoder architecture that reduced the 31-variable Module 4 to 22

variables had an average accuracy of 95.1%. The least accurate iteration scored

at 94.48% accuracy, and most accurate iteration had accuracy of 95.82%.

Module 4 autoencoders mostly showed decreased accuracy with smaller

hidden layers, with one exception. The 19-variable hidden layer actually had an

accuracy that was on average 0.1% higher than the 20-variable hidden layer.

With the exception of this discrepancy, the trend held true throughout all

autoencoders.

 91

CHAPTER SEVEN

MODEL ANALYSIS

7.1 Introduction

This section explores the weights of autoencoders to extract all possible

insights regarding the focal points of a reduced diagnostic. The lowest

dimensional reconstruction is evaluated for each module. Additionally, weights

are examined across all architectures within a module, and across all modules to

see if there are any consistent overarching trends.

7.2 Analysis Method

7.2.1 Comma Separated Value File

After Convert Pandas data frame to csv file, weights can be accessed in

Excel. The encoder weights pulled from each autoencoder represent the weights

used in the final epoch of training, prior to being element-wise multiplied with the

binary mask matrix. Therefore, a large number of the weights in the comma

separated value file were not used. It is simple to identify these weights based on

their rows and columns, and delete them. Weights that were removed by the

mask on the final forward pass were deleted prior to weight analysis for the

purpose of clarity.

 92

7.2.2 Averaging Weights

 After 10 autoencoders for each architecture and module were trained, the

weights from each autoencoder were converted to absolute values. The absolute

value of a variable’s weights determines its impact in the reduced diagnostic, so

whether a weight was positive or negative was irrelevant in terms of its impact.

After conversion to absolute values, the weights for all 10 identical autoencoders

were averaged before analysis.

7.2.3 Reduced Diagnostic Analysis

 Since all autoencoders tested demonstrated a satisfactory level of

accuracy, the following analysis focuses on the autoencoder with the lowest

dimensional hidden layer for each module. Therefor, a reduced diagnostic size of

20 variables for Module 1, and 19 variables for Module 2, Module 3, and Module

4. The weight data for the other architectures and modules can be found in

Appendix E.

7.2.4 Explanation of Graphs for Nodes

 The following pie charts show the relative strength of connections between

nodes in the input layer and nodes in the hidden layer. With the type of

autoencoders employed in this project, nodes corresponding to original

diagnostic variables influence, through weights, nodes corresponding to

condensed variables in the reduced diagnostic. Each of the following pie charts

represents a single node in the reduced section and shows the relative extent to

 93

which different variables in the original diagnostic influenced the node through

their respective weights.

7.2.5 Explanation of Graphs for Sections

The following bar chart compares the impact of the weights of each

variable in terms of impact across an entire reduced diagnostic section. These

numbers are simply calculated by summing the weights of a single variable in

every question in its relevant section. These bar graphs display which variables

had the greatest impact on the reduced diagnostic shown here, and allows for

their comparison.

7.2.6 Explanation for Correlations and Correlational Graphs

 The following graphs show correlational relationships between the weights

of variables in each section of the autoencoder. Values approaching 1 show a

near perfect positive correlation, values approaching -1 show a near perfect

inverse correlation. Variable pairs with values of 0 demonstrate no discernable

correlational relationship. When two variables correlate in the positive direction, it

means that increased presence of one variable generally accompanies increased

presence of another. For this experiment, correlations with strength of 0.7 or

greater were treated as strong positive relationships, and correlations greater

than 0.9 were treated as almost perfectly correlated.

 94

7.2.7 Meaning of Weights

 The weight composition of a node in the hidden layer shows the extent to

which variables in the input layer affected that node. Since weights represent

coefficients for different inputs, weights with the highest absolute values

represent a greater strength of connection between input nodes and hidden layer

nodes. Absolute values close to zero represent minimal influence between

nodes. Therefore, by examining the weight composition of each hidden layer

node, in terms of the relative weight strength of input variables, it is possible to

examine the conceptual makeup of each node in the hidden layer. On a section-

by-section basis, seeing which input variables were the most represented and

least represented in the reduced diagnostic can give insights as to how ADOS

might be reduced into a shorter, viable diagnostic.

7.3 Module 1 Analysis

The diagram below shows the Module 1 Autoencoder with a hidden layer

of size 20.

 95

Figure 21. Module 1 Autoencoder with a Hidden Layer of Size 20

 96

7.3.1 Module 1 Section 1 Analysis

The autoencoder reduced the first section of Module 1 from 8 variables to

5 variable sections. Section 1 subject is Language and Communication. The 8

variables in this section are Overall Level of Non-Echoed Spoken Language

(OLANG), Frequency of Spontaneous Vocalization Directed to Others (FVOC),

Intonation of Vocalizations or Verbalizations (INTON), Immediate Echolalia

(IECHO), Stereotyped/Idiosyncratic Use of Words or Phrases (STEREO), Use of

Another’s Body (UOTHER), Pointing (POINT), and Gestures (GEST). The

diagrams below show the weights of the reduced diagnostic of this section.

Figure 22. Relative Weights Impacts Node H1 – Module 1

 97

Figure 23. Relative Weights Impacts Node H2 – Module 1

Figure 24. Relative Weights Impacts Node H3 – Module 1

 98

Figure 25. Relative Weights Impacts Node H4 – Module 1

Figure 26. Relative Weights Impacts Node H5 – Module 1

The variables with the least representation in the reduced diagnostic are

POINT, FVOC, and GEST. UOTHER” has the greatest presence by a significant

margin. OLANG, IECHO and STEREO also had strong presences in the reduced

diagnostic.

 99

Variables with strong weights can potentially serve as focal points for a

reduced ADOS with a 20-variable Module 1. POINT and GEST might be

redundant variables, given there near perfect correlations. It should be noted that

the variables with the smallest weight presences in this section still had

significant absolute values, especially in comparison to weights analyzed in other

sections and other modules. It is difficult to advocate completely disregarding any

variables in the first section, but there might exist possibilities for more concise

observation variable lists.

7.3.1.1 Correlation Between Variables

Figure 27. Weights Correlations – Module 1 Section 1

Within the reduced diagnostic nodes, the weights of IECHO and UOTHER

almost perfectly correlate in their presence. Likewise, the weights of POINT and

GEST have a correlation of almost 1.

 100

7.3.2 Module 1 Section 2 Analysis

 Section 2 of Module 1 of the ADOS involves the subject of

Reciprocal Social Interaction. The autoencoder reduced this section from 12

variables to 9 variables. The original 12 variables were Unusual Eye Contact

(UEYE), Responsive Social Smile (SSMILE), Facial Expressions Directed to

Others (FACEO), Integration of Gaze (GZSOV) and Other Behaviors During

Social Overtures, Shared Enjoyment in Interaction (SHRNJ), Response to Name

(RNAME), Requesting (REQ), Giving (GIVE), Showing (SHOW), Spontaneous

Initiation of Joint Attention (SIJNT), Response to Joint Attention (RJNT), and

Quality of Social Overtures (QSOV). The diagrams below shows the weights of

the reduced diagnostic of this section.

Figure 28. Relative Weights Impacts Node H6 – Module 1

 101

Figure 29. Relative Weights Impacts Node H7 – Module 1

Figure 30. Relative Weights Impacts Node H8 – Module 1

 102

Figure 31. Relative Weights Impacts Node H9 – Module 1

Figure 32. Relative Weights Impacts Node H10 – Module 1

 103

Figure 33. Relative Weights Impacts Node H11 – Module 1

Figure 34. Relative Weights Impacts Node H12 – Module 1

 104

Figure 35. Relative Weights Impacts Node H13 – Module 1

Figure 36. Relative Weights Impacts Node H14 – Module 1

In this section, none of the weights were negligible, but there did exist a

clear hierarchy in variable importance. GZSOV, SSMILE and SHRNJ were the

three most important variables by a significant margin. RJNT, REQ, RNAME, and

GIVE formed the next tier of importance. UEYE and SHOW were of middling

importance. SIJNT, FACEO, and QSOV were the three least represented

 105

variables by a significant margin. Again, this information might have utility in

identifying focal points for condensed observations.

7.3.2.1 Correlation Between Variables

Figure 37. Weights Correlations – Module 1 Section 2

Correlations of 0.5 are considered weak according to conventional

statistics.

7.3.3 Module 1 Section 3 Analysis

The third section of the reduced Module 1 autoencoder involved reducing

9 original ADOS variables into 6 new ones. The 9 original variables spanned the

subjects of Play, Stereotyped Behaviors/Restricted Interests, and Other

Abnormal Behaviors. The original variables were Functional Play with Objects

(FPLAY), Imagination/Creativity (IMGCR), Unusual Sensory Interest in Play

Material/Person (USENS), Hand and Finger and Other Complex Mannerisms

(OMAN), Self-Injurious Behavior (SELFINJ), Unusually Repetitive Interests or

Stereotyped Behaviors (URBEH), Overactivity (ACTIVE), Tantrums, Aggression,

 106

Negative or Disruptive Behavior (AGG), and Anxiety (ANXTY). The diagrams

below shows the weights of the reduced diagnostic of this section.

Figure 38. Relative Weights Impacts Node H15 – Module 1

Figure 39. Relative Weights Impacts Node H16 – Module 1

 107

Figure 40. Relative Weights Impacts Node H17 – Module 1

Figure 41. Relative Weights Impacts Node H18 – Module 1

 108

Figure 42. Relative Weights Impacts Node H19 – Module 1

Figure 43. Relative Weights Impacts Node H20 – Module 1

In this section SELFINJ and ANXTY were by far the two variables with the

smallest strength weights. The weights for these variables were orders of

magnitudes smaller than anything else in the diagnostic and were effectively

eliminated from the reduced diagnostic. For reference, the weights of these two

variables were over 4,000 times smaller than the third-least represented variable.

 109

This suggests it might be possible to eliminate or disregard these variables in a

reduced diagnostic.

 Every other variable in the original section had a significant weight

presence in the reduced diagnostic. The most significant variables were AGG,

URBEH, and IMGCR.

7.3.3.1 Correlation Between Variables

Figure 44. Weights Correlations – Module 1 Section 3

ACTIVE strongly correlates with URBEH, which suggests that increased

presence of one variable in a node generally accompanies increased presence of

another.

 110

7.4 Module 2 Analysis

The diagram below shows Module 2 Autoencoder with Hidden layer of

size 19.

Figure 45. Module 2 Autoencoder with Hidden Layer of Size 19

 111

7.4.1 Module 2 Section 1 Analysis

The first section of Module 2 corresponds to Language and

Communication. The 7-variable original section was reduced to a 4-variable

section by the autoencoder. The 7 variables in this section are Overall Level of

Non-Echoed Spoken Language (OLANG), Speech Abnormalities (SPABN),

Immediate Echolalia (IECHO), Stereotyped/Idiosyncratic Use of Words or

Phrases (STEREO), Conversation (CONVS), Pointing (POINT), and Descriptive

Gestures (DGEST). The diagrams below shows the weights of the reduced

diagnostic of this section.

Figure 46. Relative Weights Impacts Node H1 – Module 2

 112

Figure 47. Relative Weights Impacts Node H2 – Module 2

Figure 48. Relative Weights Impacts Node H3 – Module 2

 113

Figure 49. Relative Weights Impacts Node H4 – Module 2

 SPABN is the least represented variable by a significant margin. This data

suggests that this variable could likely be deprioritized in a reduced diagnostic.

None of the variables in this section have negligible weights however. The most

represented variables are POINT and STEREO by a significant margin. The

other variables, with the exception of SPABN are all closely clustered in the

strength of their weights.

 114

7.4.1.1 Correlation Between Variables

Figure 50. Weights Correlations – Module 2 Section 1

SPABN and STEREO correlate almost perfectly in their weights. SPABN

also correlates strongly with CONVS.

7.4.2 Module 2 Section 2 Analysis

Section 2 of Module 2 of the ADOS involves the Subject of Reciprocal

Social Interaction. The autoencoder reduced this section from 12 variables to 9

variables. The original 12 variables were Unusual Eye Contact (UEYE), Facial

Expressions Directed to Others (FACEO), Shared Enjoyment in Interaction

(SHRNJ), Response to Name (RNAME), Showing (SHOW), Spontaneous

Initiation of Joint Attention (SIJNT), Response to Joint Attention (RJNT), Amount

of Social Overtures (ASOV), Quality of Social Response (QSOV), Amount of

Reciprocal Social Communication (ARSOC) and Overall Quality of Rapport

 115

(OQRAP). The diagrams below shows the weights of the reduced diagnostic of

this section.

Figure 51. Relative Weights Impacts Node H5 – Module 2

Figure 52. Relative Weights Impacts Node H6 – Module 2

 116

Figure 53. Relative Weights Impacts Node H7 – Module 2

Figure 54. Relative Weights Impacts Node H8 – Module 2

Figure 55. Relative Weights Impacts Node H9 – Module 2

 117

Figure 56. Relative Weights Impacts Node H10 – Module 2

Figure 57. Relative Weights Impacts Node H11 – Module 2

Figure 58. Relative Weights Impacts Node H12 – Module 2

 118

Figure 59. Relative Weights Impacts Node H13 – Module 2

Within the reduced diagnostic nodes, the weights of SIJNT and ARSOC

almost perfectly correlate have a correlation of almost 1. Also, ASOV and

QSRES correlate with each other with a near perfect correlation.

RJIT was by far the least represented variable in the reduced diagnostic

for this section. Its weights were over 100 times smaller than the second least

represented variable. Every other variable in this section had significant weights.

SHRNJ had the most significant presence. ASOV, OQRAP, SIJNT, SHOW and

UEYE followed, and were also closely clustered.

 119

7.4.2.1 Correlation Between Variables

Figure 60. Weights Correlations – Module 2 Section 2

UEYE and SHOW demonstrate a strong positive correlation in weight

strength. SIJNT and RJNT also strongly correlate in weight presence, which

makes sense given their similar subject nature. Last, OQRAP and FACEO have

a strong correlational relationship.

7.4.3 Module 2 Section 3 Analysis

 The third section of the reduced Module 2 autoencoder involved

reducing 9 original ADOS variables into 6 new ones. The 9 original variables

spanned the subjects of Play, Stereotyped Behaviors/Restricted Interests, and

Other Abnormal Behaviors. The original variables were Functional Play with

Objects (FPLAY), Imagination/Creativity (IMGCR), Unusual Sensory Interest in

Play Material/Person (USENS), Hand and Finger and Other Complex

Mannerisms (OMAN), Self-Injurious Behavior (SELFINJ), Unusually Repetitive

 120

Interests or Stereotyped Behaviors (URBEH), Overactivity (ACTIVE), Tantrums,

Aggression, Negative or Disruptive Behavior (AGG), and Anxiety (ANXTY). The

diagrams below shows the weights of the reduced diagnostic of this section.

Figure 61. Relative Weights Impacts Node H14 – Module 2

Figure 62. Relative Weights Impacts Node H15 – Module 2

 121

Figure 63. Relative Weights Impacts Node H16 – Module 2

Figure 64. Relative Weights Impacts Node H17 – Module 2

 122

Figure 65. Relative Weights Impacts Node H18 – Module 2

Figure 66. Relative Weights Impacts Node H19 – Module 2

Once again, SELFINJ and ANXTY were by far the least represented

variables, as they had completely negligible weights. They were over 1,000 times

less influential than any other variables, and were effectively dropped from the

diagnostic by the autoencoder. ACTIVE and “OMAN” were the two variables with

 123

greatest representation, and all variables besides the two that were mentioned

were represented adequately.

7.4.3.1 Correlation Between Variables

Figure 67. Weights Correlations – Module 2 Section 3

IMGCE and SELFINJ have a strong correlational relationship, although

this is probably meaningless given the latter variable’s negligible presence in

nodes.

7.5 Module 3 Analysis

The diagram below shows Module 3 Autoencoder with Hidden layer of

size 19.

 124

Figure 68. Module 3 Autoencoder with Hidden Layer of Size 19

 125

7.5.1 Module 3 Section 1 Analysis

The first section of Module 3 corresponds to Language and

Communication. The 9-variable original section was reduced to a 6-variable

section by the autoencoder. The 9 variables in this section are Overall Level of

Non-Echoed Spoken Language (OLANG), Speech Abnormalities (SPABN),

Immediate Echolalia (IECHO), Stereotyped/Idiosyncratic Use of Words or

Phrases (STEREO), Offers Information (OINFO), Asks for Information (AINFO),

Reporting of Events (REPRT), Conversation (CONVS), and Descriptive Gestures

(DGEST). The diagrams below shows the weights of the reduced diagnostic of

this section.

Figure 69. Relative Weights Impacts Node H1 – Module 3

 126

Figure 70. Relative Weights Impacts Node H2 – Module 3

Figure 71. Relative Weights Impacts Node H3 – Module 3

Figure 72. Relative Weights Impacts Node H4 – Module 3

 127

Figure 73. Relative Weights Impacts Node H5 – Module 3

Figure 74. Relative Weights Impacts Node H6 – Module 3

IECHO was almost completely dropped from the diagnostic, as its weights

were several orders of magnitude smaller than any others in the section. CONVS

was the second least represented variable. While its weights were significantly

higher than IECHO, it lagged significantly behind the other variables.

 128

 All other weights were fairly strong, with DGEST as the highest, followed

by AINFO, REPRT and OLANG. These variables had weights significantly than

the other variables.

7.5.1.1 Correlation Between Variables

Figure 75. Weights Correlations – Module 3 Section 1

AINFO and CONVS have a strong positive correlational relationship.

7.5.2 Module 3 Section 2 Analysis

 Section 2 of Module 3 involves Reciprocal Social Interaction. The original

diagnostic included 10 variables, and the reduced diagnostic contains 7

variables. The variables are Unusual Eye Contact (UEYE), Facial Expressions

Directed to Examiner (FACEO), Language Production and Linked Nonverbal

Communication (LLNVC), Shared Enjoyment in Interaction (SHRNJ), Comments

on Others’ Emotions/Empathy (EMPTH), Insight into Typical Social Situations

and Relationships (INSIG), Quality of Social Overtures (QSOV), Quality of Social

 129

Response (QSRES), Amount of Reciprocal Social Communication (ARSOC),

and Overall Quality of Rapport (OQRAP). The diagrams below shows the

weights of the reduced diagnostic of this section.

Figure 76. Relative Weights Impacts Node H7 – Module 3

Figure 77. Relative Weights Impacts Node H8 – Module 3

 130

Figure 78. Relative Weights Impacts Node H9 – Module 3

Figure 79. Relative Weights Impacts Node H10 – Module 3

 131

Figure 80. Relative Weights Impacts Node H11 – Module 3

Figure 81. Relative Weights Impacts Node H12 – Module 3

Figure 82. Relative Weights Impacts Node H13 – Module 3

 132

UEYE was the least represented variable by a large margin and was

effectively dropped from the reduced diagnostic in this instance. All other

variables had significant weights attached. EMPTHY and INSIG were the most

impactful variables by a significant margin. The majority of the other variables

were clustered closely together in weight strength, with QSRES and QSOV

slightly lagging behind the others.

75.2.1 Correlation Between Variables

Figure 83. Weights Correlations – Module 3 Section 2

EMPTH and QSRES have a strong correlational relationship in weight

presence. OQRAP also correlates strongly with both EMPTH and QSRES. These

correlations indicate shared occurrences between these three variables in some

capacity.

 133

7.5.3 Module 3 Section 3 Analysis

The third section of the reduced diagnostic combines sections in the

original that cover Imagination, Stereotyped Behaviors/Restricted Interests, and

Other Abnormal Behaviors. There were 9 variables originally in these sections,

and these were reduced to 6 variables by the autoencoders. The variables in

these sections are Imagination/Creativity (IMGCR), Unusual Sensory Interest In

Play Material/Person (USENS), Hand and Finger and Other Complex

Mannerisms (OMAN), Self-Injurious Behavior (SELFINJ), Excessive Interest in or

References to Unusual or Highly Specific Topics or Objects or Repetitive

Behaviors (TOPIC), Compulsions or Rituals (RITL), Overactivity/Agitation

(ACTIVE), Tantrums/Aggression (AGG), and Anxiety (ANXTY). The diagrams

below shows the weights of the reduced diagnostic of this section.

Figure 84. Relative Weights Impacts Node H14 – Module 3

 134

Figure 85. Relative Weights Impacts Node H15 – Module 3

Figure 86. Relative Weights Impacts Node H16 – Module 3

Figure 87. Relative Weights Impacts Node H17 – Module 3

 135

Figure 88. Relative Weights Impacts Node H18 – Module 3

Figure 89. Relative Weights Impacts Node H19 – Module 3

As in earlier cases, SELFINJ had by far the weakest weights, orders of

magnitude below anything else. ANXTY also had very weak weights that were

significantly below everything else. Nonetheless, there was a sizeable gap

between ANXTY and SELFINJ”. All other weights were fairly strong, with TOPIC

or RITL, OMAN, and ACTIVE demonstrating the strongest connections by a solid

margin. The other variables were clustered close together with the exception of

 136

AGG, which lagged behind other variables but ahead of the two least important

ones.

7.5.3.1 Correlation Between Variables

Figure 90. Weights Correlations – Module 3 Section 3

USENS and OMAN show a strong positive correlational relationship.

7.6 Module 4 Analysis

The diagram below shows Module 4 Autoencoder with Hidden layer of

size 19.

 137

Figure 91. Module 4 Autoencoder with Hidden Layer of Size 19

 138

7.6.1 Module 4 Section 1 Analysis

 The first section of Module 4 corresponds to Language and

Communication. The 10-variable original section was reduced to a 6-variable

section by the autoencoder. The 10 variables in this section are Overall Level of

Non-Echoed Spoken Language (OLANG), Speech Abnormalities (SPABN),

Immediate Echolalia (IECHO), Stereotyped/Idiosyncratic Use of Words or

Phrases (STEREO), Offers Information (OINFO), Asks for Information (AINFO),

Reporting of Events (REPRT), Conversation (CONVS), Descriptive Gestures

(DGEST), Emphatic or Emotional Gestures (EGEST). The diagrams below

shows the weights of the reduced diagnostic of this section.

Figure 92. Relative Weights Impacts Node H1 – Module 4

 139

Figure 93. Relative Weights Impacts Node H2 – Module 4

Figure 94. Relative Weights Impacts Node H3 – Module 4

Figure 95. Relative Weights Impacts Node H4 – Module 4

 140

Figure 96. Relative Weights Impacts Node H5 – Module 4

Figure 97. Relative Weights Impacts Node H6 – Module 4

OLANG and IECHO were the two least represented variables and had

weights with absolute values several orders of magnitude smaller than the other

variables. All other variables were represented with significant weights, with

STEREO, EGEST, and AINFO leading the pack. Those three variables had

weights higher than the others by a notable amount.

 141

7.6.1.1 Correlation Between Variables

Figure 98. Weights Correlations – Module 4 Section 1

STEREO AND EGEST correlated positively to a strong degree.

 7.6.2 Module 4 Section 2 Analysis

 Section 3 of Module 4 involves Reciprocal Social Interaction. The original

diagnostic included 12 variables, and the reduced diagnostic contains 7

variables. The variables are Unusual Eye Contact (UEYE), Facial Expressions

Directed to Examiner (FACEO), Language Production and Linked Nonverbal

Communication (LLNVC), Shared Enjoyment in Interaction (SEI), Communication

of Own Affect (CAFF), Comments on Others’ Emotions/Empathy (EMPTH),

Insight into Typical Social Situations and Relationships (INSIG), Responsibility

(RESP), Quality of Social Overtures (QSOV), Quality of Social Response

(QSRES), Amount of Reciprocal Social Communication (ARSOC), and Overall

 142

Quality of Rapport (OQRAP). The diagrams below shows the weights of the

reduced diagnostic of this section.

Figure 99. Relative Weights Impacts Node H7 – Module 4

Figure 100. Relative Weights Impacts Node H8 – Module 4

 143

Figure 101. Relative Weights Impacts Node H9 – Module 4

Figure 102. Relative Weights Impacts Node H10 – Module 4

Figure 103. Relative Weights Impacts Node H11 – Module 4

 144

Figure 104. Relative Weights Impacts Node H12 – Module 4

Figure 105. Relative Weights Impacts Node H13 – Module 4

UEYE had the lowest absolute value weights by a large amount. It was

effectively removed from the reduced diagnostic. QSOV was clearly the second

least important input variable to the reduced diagnostic. QSRES and ARSOC

were the next two variables in order of ascending absolute value weights, and

had almost identical weights, at a significantly higher level than QSOV. INSIG

was the next variable in ascending order. All other variables were closely

 145

clustered together, with Others EMPTH featuring the highest absolute value

weights.

7.6.2.1 Correlation Between Variables

Figure 106. Weights Correlations – Module 4 Section 2

All correlation in this section are weak.

7.6.3 Module 4 Section 3 Analysis

 The third section of the reduced diagnostic combines sections in the

original that cover Imagination, Stereotyped Behaviors/Restricted Interests, and

Other Abnormal Behaviors. There were 9 variables originally in these sections,

and these were reduced to 6 variables by the autoencoders. The variables in

these sections are Imagination/Creativity (IMGCR), Unusual Sensory Interest In

Play Material/Person (USENS), Hand and Finger and Other Complex

Mannerisms (OMAN), Self-Injurious Behavior (SELFINJ), Excessive Interest in or

References to Unusual or Highly Specific Topics or Objects or Repetitive

Behaviors (TOPIC), Compulsions or Rituals (RITL), Overactivity/Agitation

 146

(ATIVE), Tantrums/Aggression (AGG), and Anxiety (ANXTY). The diagrams

below shows the weights of the reduced diagnostic of this section.

Figure 107. Relative Weights Impacts Node H14 – Module 4

Figure 108. Relative Weights Impacts Node H15 – Module 4

 147

Figure 109. Relative Weights Impacts Node H16 – Module 4

Figure 110. Relative Weights Impacts Node H17 – Module 4

 148

Figure 111. Relative Weights Impacts Node H18 – Module 4

Figure 112. Relative Weights Impacts Node H19 – Module 4

The weights for this section were unusually balanced, and no variables

were completely dropped. The nodes in this section were shared between input

variables far more than many other sections of other modules. Interestingly

enough, SELFINJ and ANXTY were the two variables with the highest strength of

weights. SELFINJ in particular had cumulative weights that were more than

 149

double the next most impactful variable. OMAN had weight strength almost

equivalent to ANXTY, followed by TOPIC and IMGCR.

7.6.3.1 Correlation Between Variables

Figure 113. Weights Correlations – Module 4 Section 3

IMGCE and OMAN had a strong positive correlational relationship.

(ACTIVE) and AGG also correlated strongly in the positive direction.

 150

7.7 Insights Across Module 1 Architectures

7.7.1 Module 1 Section 1 Insights

Figure 114. Module 1 Section 1 Insights

 GEST was the least important variable across the board. None of its

weights were negligible, but it was nonetheless the lowest ranked in terms of

absolute value weights across the board. FVOC had the second lowest absolute

value weights across the board, and displayed a greater degree of weight

variance than GEST.

 UOTHER was ranked highest in absolute value weights in three of the four

autoencoders, representing the lowest dimensional reductions. OLANG was

ranked second in absolute value weights in three lowest dimensional reductions,

and was ranked first in the other.

 151

7.7.2 Module 1 Section 2 Insights

Figure 115. Module 1 Section 2 Insights

The different architectures in Section 2 of Module 1 differed to a far

greater degree than in many other sections. It seems that different autoencoders

converged upon radically different minima. GIVE and “GZSOV” had high

absolute value weights across the board.

 Interestingly enough, the 29-20 architecture showed a greater degree of

similarity with the 29-22 architecture. A similar trend was seen between the 29-21

and 29-23 architectures.

 152

7.7.3 Module 1 Section 3 Insights

Figure 116. Module 1 Section 3 Insights

 SELFINJ and ANXTY were consistently the least impactful architectures.

The more significant the dimensionality reduction of an autoencoder architecture,

the higher the extent to which these two variables dropped. In the lowest

dimension architecture, these two variables almost wholly dropped.

 AGG was the most impactful variable in the 20-variable reduced diagnostic

and the 22-variable compressed diagnostic architectures. IMGCR was the most

impactful variable in the other two architectures.

 153

7.8 Insights Across Module 2 Architectures

7.8.1 Module 2 Section 1 Insights

Figure 117. Module 2 Section 1 Insights

 There were very few consistent trends between architectures in Module 2

Section 1. Different autoencoders found different combinations of weights to

reduce dimensionality successfully.

7.8.2 Module 2 Section 2 Insights

Figure 118. Module 2 Section 2 Insights

 154

RJNT had the lowest absolute value weights across all autoencoder

architectures.

7.8.3 Module 2 Section 3 Insights

Figure 119. Module 2 Section 3 Insights

 Once again, ANXTY and SELFINJ were the least represented variables in

all architectures of autoencoder. ACTIVE had a strong weight presence

throughout all reduced diagnostics.

 155

7.9 Insights Across Module 3 Architectures

7.9.1 Module 3 Section 1 Insights

Figure 120. Module 3 Section 1 Insights

 IECHO had the lowest absolute value weights in all reduced diagnostics.

The absolute value of its weights was significantly smaller in the more moderate

dimension reduced diagnostics (19 and 20 variables) than in the larger ones (21

and 22 variables). CONVS had consistently low absolute value weights and was

the second lowest in 3 out of 4 autoencoders.

 156

7.8.2 Module 3 Section 2 Insights

Figure 121. Module 3 Section 2 Insights

UEYE had the lowest absolute value weights across the board in all

reduced diagnostics.

7.8.3 Module 3 Section 3 Insights

Figure 122. Module 3 Section 3 Insights

 157

SELFINJ once again had the lowest absolute value weights in all

architectures.

7.10 Insights Across Module 4 Architectures

7.10.1 Module 4 Section 1 Insights

Figure 123. Module 4 Section 1 Insights

 OLANG had the lowest absolute value weights in all architectures and

negligible absolute value weights in all structures. IECHO had the second most

moderate absolute value weights and was also insignificant in all constructions.

STEREO had a strong presence in all architectures and had the most substantial

absolute value weights in 3 out of 4 reduced diagnostics.

 158

7.10.2 Module 4 Section 2 Insights

Figure 124. Module 4 Section 2 Insights

UEYE had the lowest absolute value weights in all architectures and

negligibly represented.

7.10.3 Module 4 Section 3 Insights

Figure 125. Module 4 Section 3 Insights

 159

 SELFINJ had by far the highest absolute value weights for all

architectures in this section.

7.11 Insights Across Modules

7.11.1 Modules 1, 2 and 3

In the Modules 1, 2, and 3, SELFINJ was the lowest ranked variable

across the board in its section. Its absolute value weights were negligible, and it

effectively eliminated from most reduced diagnostics. In Module 4 however, it

had the highest presence by a massive amount.

A study published after the date of most patient data used for this project

indicated that self-injury is not a symptom of autism [44]. The fact that

autoencoders repeatedly converged on solutions that eliminated self-injury might

not be a coincidence. For that reason, it might be worth examining if self-injury is

a reliable indicator of autism for adolescents and adults capable of having a

functional conversation with an interviewer. The nature of Modules 1-3 differs

significantly from Modules 4, and it is possible that self-injury’s relationship with

autism is somewhat nuanced, in that it is not a predictor for autism in earlier

stages of social development, but is a definite symptom for autism in later stages

of social development.

7.11.2 Modules 1 and 2

 ANXTY had low absolute value weights consistently in Modules 1 and 2.

 160

7.11.3 Modules 3 and 4

 IECHO had low absolute values and efficiently eliminated from diagnostics in

both Modules 3 and 4. UEYE also had consistently low absolute value weights.

7.12 Relative Significant of ADOS Observation Items

7.12.1 Normalization with Feature-Scaling

 To provide additional context for comparing the relative strengths of

weights, weight amounts were also feature scaled to fit a range between 0 and 1.

The formula for feature scaling for a given section of weights looks like this.

𝑋! − 𝑋!"#
𝑋!"# − 𝑋!"#

 The smallest absolute value weight for a section is set to 0 under this

formula, and the largest is set to 1. All others are placed on a relative scale

between 0 and 1. Normalized plots of weight values allows for one to

conveniently observe the degree of separation between the strengths of different

weights.

7.12.2 Module 1

The table below shows relative significant of ADOS Observation Items for

Module 1 Section 1.

 161

Table 24. Module 1 Section 1 Relative Significant

Module 1 (29-20) Section 1
Observation Items Weights Normalized Weights

UOTHR 1.205708516 1	
OLANG 0.904170549 0.69581462	
IECHO 0.781549337 0.572116831	

STEREO 0.708023612 0.497945572	
INTON 0.453141831 0.240826005	
POINT 0.450138779 0.237796587	
FVOC 0.282855572 0.069044684	
GEST 0.214411804 0	

Figure 126. One-dimensional Scatter Plot - Module 1 Section 1

The table below shows relative significant of ADOS Observation Items for

Module 1 Section 2.

Table 25. Module 1 Section 2 Relative Significant

Module 1 (29-20) Section 2
Observation Items Weights Normalized Weights

GZSOV 0.986883532 1
SSMLE 0.946474784 0.933358854
SHRNJ 0.945726214 0.93212433
RJNT 0.8943154 0.847338838
REQ 0.87838718 0.821070396

RNAME 0.868602947 0.804934472
GIVE 0.833063511 0.746323679
UEYE 0.76341717 0.63146459

 162

SHOW 0.645348437 0.436748443
QSOV 0.458394155 0.128427886
FACEO 0.398866478 0.030256257
SIJNT 0.380520193 0

Figure 127. One-dimensional Scatter Plot - Module 1 Section 2

The table below shows relative significant of ADOS Observation Items for

Module 1 Section 3.

Table 26. Module 1 Section 3 Relative Significant

Module 1 (29-20) Section 3
Observation Items Weights Normalized Weights

AGG 1.110117879 1
URBEH 0.974269508 0.877620065
IMGCR 0.948730169 0.854612777
FPLAY 0.830749743 0.748329303
ACTVE 0.824988178 0.743138958
OMAN 0.781285844 0.703769411
USENS 0.529718704 0.477143431
ANXTY 7.63822E-05 1.15212E-05

SELFINJ 6.3593E-05 0

Figure 128. One-dimensional Scatter Plot - Module 1 Section 3

 163

The table below shows relative significant of ADOS Observation Items for

Module 1.

Table 27. Module 1 Relative Significant

Module 1 (29-20)
Observation Items Normalized Weights

UOTHR 1
GZSOV 1

AGG 1
SSMLE 0.933358854
SHRNJ 0.93212433
URBEH 0.877620065
IMGCR 0.854612777
RJNT 0.847338838
REQ 0.821070396

RNAME 0.804934472
FPLAY 0.748329303
GIVE 0.746323679

ACTVE 0.743138958
OMAN 0.703769411
OLANG 0.69581462
UEYE 0.63146459
IECHO 0.572116831

STEREO 0.497945572
USENS 0.477143431
SHOW 0.436748443
INTON 0.240826005
POINT 0.237796587
QSOV 0.128427886
FVOC 0.069044684

FACEO 0.030256257
ANXTY 1.15212E-05
GEST 0
SIJNT 0

SELFINJ 0

 164

Figure 129. One-dimensional Scatter Plot - Module 1

7.12.3 Module 2

The table below shows relative significant of ADOS Observation Items for

Module 2 Section 1.

Table 28. Module 2 Section 1 Relative Significant

Module 2 (28-19) Section 1
Observation Items Weights Normalized Weights

POINT 0.708659958 1
STEREO 0.700268554 0.980743087
CONVS 0.597751086 0.745482102
OLANG 0.595364234 0.740004664
DGEST 0.571544413 0.685342033
IECHO 0.553512397 0.643961476
SPABN 0.272899357 0

Figure 130. One-dimensional Scatter Plot - Module 2 Section 1

 165

The table below shows relative significant of ADOS Observation Items for

Module 2 Section 2.

Table 29. Module 2 Section 2 Relative Significant

Module 2 (28-19) Section 2
Observation Items Weights Normalized Weights

SHRNJ 1.010939116 1
ASOV 0.921786728 0.911798545

OQRAP 0.901903429 0.892127329
SIJNT 0.898558484 0.888818063
SHOW 0.884995778 0.875400022
UEYE 0.877366224 0.867851847
QSOV 0.846978244 0.837787997

RNAME 0.82933398 0.820331934
ARSOC 0.675532079 0.668170542
FACEO 0.629712293 0.622839488
QSRES 0.522735909 0.517004155
RJNT 0.000157736 0

Figure 131. One-dimensional Scatter Plot - Module 2 Section 2

The table below shows relative significant of ADOS Observation Items for

Module 2 Section 3.

Table 30. Module 2 Section 3 Relative Significant

Module 2 (28-19) Section 3
Observation Items Weights Normalized Weights

ACTVE 1.175469252 1

 166

OMAN 0.914500552 0.777978982
URBEH 0.883581232 0.751674146
USENS 0.86840694 0.738764506
IMGCR 0.797130439 0.678125505
FPLAY 0.756933467 0.643927639
AGG 0.603862908 0.513701749

SELFINJ 6.93597E-05 1.99992E-05
ANXTY 4.58522E-05 0

	

	

Figure 132. One-dimensional Scatter Plot - Module 2 Section 3

The table below shows relative significant of ADOS Observation Items for

Module 2.

Table 31. Module 2 Relative Significant

Module 2 (28-19)
Observation Items Normalized Weights

POINT 1
SHRNJ 1
ACTVE 1

STEREO 0.980743087
ASOV 0.911798545

OQRAP 0.892127329
SIJNT 0.888818063
SHOW 0.875400022
UEYE 0.867851847
QSOV 0.837787997

RNAME 0.820331934
OMAN 0.777978982
URBEH 0.751674146

 167

CONVS 0.745482102
OLANG 0.740004664
USENS 0.738764506
DGEST 0.685342033
IMGCR 0.678125505
ARSOC 0.668170542
IECHO 0.643961476
FPLAY 0.643927639
FACEO 0.622839488
QSRES 0.517004155

AGG 0.513701749
SELFINJ 1.99992E-05
SPABN 0
RJNT 0

ANXTY 0

Figure 133. One-dimensional Scatter Plot - Module 2

7.12.3 Module 3

The table below shows relative significant of ADOS Observation Items for

Module 3 Section 1.

 168

Table 32. Module 3 Section 1 Relative Significant

Module 3 (28-19) Section 1
Observation Items Weights Normalized Weights

DGEST 1.057394016 1
AINFO 0.991035334 0.937240375
REPRT 0.92237092 0.872300072
OLANG 0.891673245 0.843267329

STEREO 0.723490444 0.684206159
OINFO 0.715556231 0.676702269
SPABN 0.599730539 0.567158547
CONVS 0.098701942 0.093303942
IECHO 4.73278E-05 0

Figure 134. One-dimensional Scatter Plot - Module 3 Section 1

The table below shows relative significant of ADOS Observation Items for

Module 3 Section 2.

Table 33. Module 3 Section 2 Relative Significant

Module 3 (28-19) Section 2
Observation Items Weights Normalized Weights

EMPTH 0.957367727 1
INSIG 0.936019453 0.977697431
LLNVC 0.823743481 0.860402581
FACEO 0.78472377 0.81963864
SHRNJ 0.781059777 0.815810862
ARSOC 0.761125309 0.794985298
OQRAP 0.732458418 0.765036961
QSOV 0.655085127 0.684204986

 169

QSRES 0.568260651 0.593499346
UEYE 0.000156287 0

Figure 135. One-dimensional Scatter Plot - Module 3 Section 2

The table below shows relative significant of ADOS Observation Items for

Module 3 Section 3.

Table 34. Module 3 Section 3 Relative Significant

Module 3 (28-19) Section 3

Observation Items Weights Normalized Weights
RITL 1.170622428 1

OMAN 1.078962543 0.921694967
ACTVE 0.971970664 0.830291812
USENS 0.896979931 0.766227234
TOPIC 0.839487573 0.717111517
IMGCR 0.742854752 0.634558105
AGG 0.270061152 0.230650566

ANXTY 0.028987615 0.024701461
SELFINJ 7.3343E-05 0

 170

Figure 136. One-dimensional Scatter Plot - Module 3 Section 3

The table below shows relative significant of ADOS Observation Items for

Module 3.

Table 35. Module 3 Relative Significant

Module 3 (28-19)
Observation Items Normalized Weights

DGEST 1
EMPTH 1

RITL 1
INSIG 0.977697431
AINFO 0.937240375
OMAN 0.921694967
REPRT 0.872300072
LLNVC 0.860402581
OLANG 0.843267329
ACTVE 0.830291812
FACEO 0.81963864
SHRNJ 0.815810862
ARSOC 0.794985298
USENS 0.766227234
OQRAP 0.765036961
TOPIC 0.717111517

STEREO 0.684206159
QSOV 0.684204986
OINFO 0.676702269
IMGCR 0.634558105

 171

QSRES 0.593499346
SPABN 0.567158547

AGG 0.230650566
CONVS 0.093303942
ANXTY 0.024701461
IECHO 0
UEYE 0

SELFINJ 0

Figure 137. One-dimensional Scatter Plot - Module 3

7.12.3 Module 4

The table below shows relative significant of ADOS Observation Items for

Module 4 Section 1.

Table 36. Module 4 Section 1 Relative Significant

Module 4 (31-19) Section 1
Observation Items Weights Normalized Weights

STEREO 1.041436433 1
EGEST 1.026833667 0.985977423
AINFO 0.97720692 0.938322419
DGEST 0.769717302 0.739076667
REPRT 0.681088622 0.653969334
OINFO 0.567627342 0.545016037
CONVS 0.510251157 0.489919491
SPABN 0.425571861 0.408604628
IECHO 0.00020563 0.000138819

 172

OLANG 6.10677E-05 0

Figure 138. One-dimensional Scatter Plot - Module 4 Section 1

The table below shows relative significant of ADOS Observation Items for

Module 4 Section 2.

Table 37. Module 4 Section 2 Relative Significant

Module 4 (31-19) Section 2
Observation Items Weights Normalized Weights

EMPTH 0.854731274 1
RESP 0.84517449 0.988804041

OQRAP 0.832105734 0.973493738
LLNVC 0.813874191 0.95213513
CAFF 0.760248374 0.889311438
SEI 0.756331895 0.884723206

FACEO 0.740745094 0.866462965
INSIG 0.55350398 0.647106344

ARSOC 0.39763268 0.464500072
QSRES 0.377828497 0.441299085
QSOV 0.066684778 0.076788143
UEYE 0.001139013 0

 173

Figure 139. One-dimensional Scatter Plot - Module 4 Section 2

The table below shows relative significant of ADOS Observation Items for

Module 4 Section 3.

Table 38. Module 4 Section 3 Relative Significant

Module 4 (31-19) Section 3
Observation Items Weights Normalized Weights

SELFINJ 1.889942607 1
ANXTY 0.765446827 0.318667147
OMAN 0.754011647 0.311738563
TOPIC 0.63886953 0.241973866
IMGCR 0.560970038 0.194774505

RITL 0.488984408 0.151158356
AGG 0.347731121 0.065572882

USENS 0.314536498 0.045460234
ACTVE 0.239507323 0

Figure 140. One-dimensional Scatter Plot - Module 4 Section 3

 174

The table below shows relative significant of ADOS Observation Items for

Module 4.

Table 39. Module 4 Relative Significant

Module 4 (31-19)
Observation Items Normalized Weights

STEREO 1
EMPTH 1
SELFINJ 1

RESP 0.988804041
EGEST 0.985977423
OQRAP 0.973493738
LLNVC 0.95213513
AINFO 0.938322419
CAFF 0.889311438
SEI 0.884723206

FACEO 0.866462965
DGEST 0.739076667
REPRT 0.653969334
INSIG 0.647106344
OINFO 0.545016037
CONVS 0.489919491
ARSOC 0.464500072
QSRES 0.441299085
SPABN 0.408604628
ANXTY 0.318667147
OMAN 0.311738563
TOPIC 0.241973866
IMGCR 0.194774505

RITL 0.151158356
QSOV 0.076788143
AGG 0.065572882

USENS 0.045460234
IECHO 0.000138819
OLANG 0
UEYE 0

ACTVE 0

 175

Figure 141. One-dimensional Scatter Plot - Module 4

 176

CHAPTER EIGHT

CONCLUSION

8.1 Conclusion

Following the training of each iteration of all autoencoder architectures on

all ADOS modules, a number of clear insights were provided by examining the

absolute value of each variable’s weights for the encoder section of each model.

The effectiveness of all autoencoders was validated by their accuracy at

reconstructing their input. As expected, the accuracy of a reconstruction directly

correlated with the dimensionality of a hidden layer. By comparing the cumulative

absolute value weights of variables, it was possible to rank the extent to which

each variable impacted its relevant section in the reduced diagnostic. “Self-

Injurious Behavior” was consistently eliminated in all autoencoder architectures in

Modules 1-3, which suggests that a reduced diagnostic could avoid including

observations for this behavior in Modules 1-3 (which differ greatly from Module 4

in their administration). This trend starkly reversed in Module 4, which relevant

autoencoders consistently treated “Self-Injurious Behavior” as the highest priority

when reducing the diagnostic. “Anxiety” was consistently deprioritized in Module

1 and Module 2, suggesting that it might be not be necessary to monitor for this

symptom when evaluating examinees with less developed language fluency and

communication abilities. “Immediate echolalia” was eliminated from Module 3 and

 177

Module 4, suggesting that this symptom might not be necessary to include in

examinations of individuals with more advanced language fluency and

communication abilities.

8.2 Discussion of Context

This thesis attempted to use the weights of autoencoders to assess which

variables in the Autism Diagnostic Observation Schedule would be integral to a

shorter version of the diagnostic. Analyzing the weights of these autoencoders

did allow for insights to be drawn regarding the extent to which variables

represented in the reduced diagnostic. As such, the variables the autoencoders

chose to prioritize can be treated as suggestions for focal points of a reduced

diagnostic.

 The fact that the autoencoders were able to reconstruct the diagnostic

with a reasonable degree of accuracy suggests that machine learning

approaches might be valuable in using the smaller amount of information in a

shorter diagnostic to create a more extensive, more comprehensive patient

profile. With sufficiently advanced machine learning approaches trained on

enough large datasets, it might be possible that many types of shorter

observation schedules could be used to create more significant patient profiles.

This experiment suggests that machine learning approaches can enable the

possibility of shorter autism diagnostics through their inferential capabilities.

 178

 It is worth discussing if the concepts that autoencoders’ chose represent

the foundation of a functional reduced diagnostic. There is, unfortunately, no way

to currently confirming this. The possibility is worth considering though. The fact

that the autoencoder reliably removed “Self-Injurious Behavior” from the

diagnostic for the first three modules suggests that this might be a possibility.

According to study, self-injury is no longer considered a symptom of autism[44].

The fact that every autoencoder trained on the first three modules repeatedly and

reliably converged upon the solution of eliminating self-injury from the diagnostic

suggests that it can isolate the variables that are most important to the diagnostic

from the perspective of autism psychology.

 Autoencoders might be valuable as tools to identify areas of further

research within fields of psychology. If autoencoders consistently remove the

same variable from a data set, it might be worth examining if that variable

represents a concept that is related to the domain. In the case of these

autoencoders, self-injury was repeatedly removed, and it turns out that there is

experimental evidence to suggest that self-injury is not a symptom of autism.

Similarly, if autoencoders regularly prioritize specific variables, that might indicate

that those variables are a more integral aspect of autism than realized. Alone,

these trends are entirely insufficient evidence, which is why further psychology

research and experimentation would be needed.

 In the big picture, psychological data contains a degree of inherent

unreliability. Observation diagnoses are somewhat unreliable by nature, given

 179

the degree of subjectivity included within them. This, unfortunately, limits the

extent to which machine learning algorithms applied to psychology data can yield

valuable insights about the underlying domain.

Nonetheless, this thesis indicates that machine learning algorithms

applied to psychology data can potentially uncover trends that accurately portray

facts about human psychology. As more powerful models are applied to more

massive data sets, it is possible that machine learning algorithms can act as a

bulwark against the unreliability of psychology data by identifying consistent and

essential patterns that separate useful variables from misleading variables. By

reducing patient profiles to critical components, autoencoders certainly have

potential in this regard, especially when it comes to the domain of the Autism

Diagnostic Observation Schedule.

8.3 Future Work

 It would be valuable to test if autoencoders trained on a different and

larger samples of ADOS data converged upon the same solutions by prioritizing

and deprioritizing the same variables. Furthermore, researchers in the field of

psychology might evaluate if a shorter diagnostic process can be created by

designing a series of observation activities that focus on the concepts prioritized

by the autoencoders in this thesis.

 180

The fact that self-injury was, in contrast to Modules 1-3, heavily prioritized in

Module 4 suggests that further research into the relationship between self-harm

tendencies and adult autism might be valuable. Since the autoencoder correctly

removed self-injury in Modules 1-3, a degree of credibility lent to its suggestion

regarding self-injury in Module 4.

Similarly, the autoencoder also strongly highlights “Anxiety” as a target for

removal in Module 1 and Module 2, and highlights “Immediate Echolalia” as a

target for removal from Module 3 and Module 4. This represents another

potential research area for psychologists, as it can be examined if anxiety is

really a symptom of autism for individuals with underdeveloped communication

abilities, and if immediate echolalia is really a symptom of autism for individuals

with more developed communication abilities.

 181

APPENDIX A

ADOS DATA APPROVAL

 182

 183

APPENDIX B

HADAMARD PRODUCT

 184

Hadamard Product for Module 1 with a Hidden layer of size 21

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
1
(2
9

to
2
1
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
5

w
1,
6

..
.

w
1,
14

w
1,
15

..
.

w
1,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

8,
1

..
.

w
8,
5

w
8,
6

..
.

w
8,
14

w
8,
15

..
.

w
8,
21

w
9,
1

..
.

w
9,
5

w
9,
6

..
.

w
9,
14

w
9,
15

..
.

w
9,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

20
,1

..
.

w
20

,5
w

20
,6

..
.

w
20

,1
4

w
20

,1
5

..
.

w
20

,2
1

w
21

,1
..
.

w
21

,5
w

21
,6

..
.

w
21

,1
4

w
21

,1
5

..
.

w
21

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

29
,1

..
.

w
29

,5
w

29
,6

..
.

w
29

,1
4

w
29

,1
5

..
.

w
29

,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,5

0 1
,6

..
.

0 1
,1
4

0 1
,1
5

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 8

,1
..
.

1 8
,5

0 8
,6

..
.

0 8
,1
4

0 8
,1
5

..
.

0 8
,2
1

0 9
,1

..
.

0 9
,5

1 9
,6

..
.

1 9
,1
4

0 9
,1
5

..
.

0 9
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

0,
1

..
.

0 2
0,
5

1 2
0,
6

..
.

1 2
0,
14

0 2
0,
15

..
.

0 2
0,
21

0 2
1,
1

..
.

0 2
1,
5

0 2
1,
6

..
.

0 2
1,
14

1 2
1,
15

..
.

1 2
1,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

9,
1

..
.

0 2
9,
5

0 2
9,
6

..
.

0 2
9,
14

1 2
9,
15

..
.

1 2
9,
21

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4w

1,
1

..
.

w
1,
5

0 1
,6

..
.

0 1
,1
4

0 1
,1
5

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

8,
1

..
.

w
8,
5

0 8
,6

..
.

0 8
,1
4

0 8
,1
5

..
.

0 8
,2
1

0 9
,1

..
.

0 9
,5

w
9,
6

..
.

w
9,
14

0 9
,1
5

..
.

0 9
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

0,
1

..
.

0 2
0,
5

w
20

,6
..
.

w
20

,1
4

0 2
0,
15

..
.

0 2
0,
21

0 2
1,
1

..
.

0 2
1,
5

0 2
1,
6

..
.

0 2
1,
14

w
21

,1
5

..
.

w
21

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

9,
1

..
.

0 2
9,
5

0 2
9,
6

..
.

0 2
9,
14

w
29

,1
5

..
.

w
29

,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 185

Hadamard Product for Module 1 with a Hidden layer of size 22

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
s
k
M
a
tr
ix

fo
r
M
o
d
u
le
1
(2
9

to
2
2
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,6

w
1
,6

..
.

w
1
,1
4

w
1
,1
7

..
.

w
1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

8
,1

..
.

w
8
,6

w
8
,6

..
.

w
8
,1
4

w
8
,1
7

..
.

w
8
,2
2

w
9
,1

..
.

w
9
,6

w
9
,6

..
.

w
9
,1
4

w
9
,1
7

..
.

w
9
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

2
0
,1

..
.

w
2
0
,6

w
2
0
,6

..
.

w
2
0
,1
4

w
2
0
,1
7

..
.

w
2
0
,2
2

w
2
1
,1

..
.

w
2
1
,6

w
2
1
,6

..
.

w
2
1
,1
4

w
2
1
,1
7

..
.

w
2
1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

2
9
,1

..
.

w
2
9
,6

w
2
9
,6

..
.

w
2
9
,1
4

w
2
9
,1
7

..
.

w
2
9
,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,6

0 1
,7

..
.

0 1
,1
6

0 1
,1
7

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 8

,1
..
.

1 8
,6

0 8
,7

..
.

0 8
,1
6

0 8
,1
7

..
.

0 8
,2
2

0 9
,1

..
.

0 9
,6

1 9
,7

..
.

1 9
,1
6

0 9
,1
7

..
.

0 9
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

0
,1

..
.

0 2
0
,6

1 2
0
,7

..
.

1 2
0
,1
6

0 2
0
,1
7

..
.

0 2
0
,2
2

0 2
1
,1

..
.

0 2
1
,6

0 2
1
,7

..
.

0 2
1
,1
6

1 2
1
,1
7

..
.

1 2
1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

9
,1

..
.

0 2
9
,6

0 2
9
,7

..
.

0 2
9
,1
6

1 2
9
,1
7

..
.

1 2
9
,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,6

0 1
,7

..
.

0 1
,1
6

0 1
,1
7

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

8
,1

..
.

w
8
,6

0 8
,7

..
.

0 8
,1
6

0 8
,1
7

..
.

0 8
,2
2

0 9
,1

..
.

0 9
,6

w
9
,7

..
.

w
9
,1
6

0 9
,1
7

..
.

0 9
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

0
,1

..
.

0 2
0
,6

w
2
0
,7

..
.

w
2
0
,1
6

0 2
0
,1
7

..
.

0 2
0
,2
2

0 2
1
,1

..
.

0 2
1
,6

0 2
1
,7

..
.

0 2
1
,1
6

w
2
1
,1
7

..
.

w
2
1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

9
,1

..
.

0 2
9
,6

0 2
9
,7

..
.

0 2
9
,1
6

w
2
9
,1
7

..
.

w
2
9
,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 186

Hadamard Product for Module 1 with a Hidden layer of size 23

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
1
(2
9

to
2
3
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
6

w
1,
6

..
.

w
1,
14

w
1,
17

..
.

w
1,
23

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

8,
1

..
.

w
8,
6

w
8,
6

..
.

w
8,
14

w
8,
17

..
.

w
8,
23

w
9,
1

..
.

w
9,
6

w
9,
6

..
.

w
9,
14

w
9,
17

..
.

w
9,
23

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

20
,1

..
.

w
20

,6
w

20
,6

..
.

w
20

,1
4

w
20

,1
7

..
.

w
20

,2
3

w
21

,1
..
.

w
21

,6
w

21
,6

..
.

w
21

,1
4

w
21

,1
7

..
.

w
21

,2
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

29
,1

..
.

w
29

,6
w

29
,6

..
.

w
29

,1
4

w
29

,1
7

..
.

w
29

,2
3

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,6

0 1
,7

..
.

0 1
,1
6

0 1
,1
7

..
.

0 1
,2
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 8

,1
..
.

1 8
,6

0 8
,7

..
.

0 8
,1
6

0 8
,1
7

..
.

0 8
,2
3

0 9
,1

..
.

0 9
,6

1 9
,7

..
.

1 9
,1
6

0 9
,1
7

..
.

0 9
,2
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

0,
1

..
.

0 2
0,
6

1 2
0,
7

..
.

1 2
0,
16

0 2
0,
17

..
.

0 2
0,
23

0 2
1,
1

..
.

0 2
1,
6

0 2
1,
7

..
.

0 2
1,
16

1 2
1,
17

..
.

1 2
1,
23

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

9,
1

..
.

0 2
9,
6

0 2
9,
7

..
.

0 2
9,
16

1 2
9,
17

..
.

1 2
9,
23

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4w

1,
1

..
.

w
1,
6

0 1
,7

..
.

0 1
,1
6

0 1
,1
7

..
.

0 1
,2
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

8,
1

..
.

w
8,
6

0 8
,7

..
.

0 8
,1
6

0 8
,1
7

..
.

0 8
,2
3

0 9
,1

..
.

0 9
,6

w
9,
7

..
.

w
9,
16

0 9
,1
7

..
.

0 9
,2
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

0,
1

..
.

0 2
0,
6

w
20

,7
..
.

w
20

,1
6

0 2
0,
17

..
.

0 2
0,
23

0 2
1,
1

..
.

0 2
1,
6

0 2
1,
7

..
.

0 2
1,
16

w
21

,1
7

..
.

w
21

,2
3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

9,
1

..
.

0 2
9,
6

0 2
9,
7

..
.

0 2
9,
16

w
29

,1
7

..
.

w
29

,2
3

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 187

Hadamard Product for Module 2 with a Hidden layer of size 20

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
2
(2
8

to
2
0
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
4

w
1,
5

..
.

w
1,
13

w
1,
14

..
.

w
1,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

7,
1

..
.

w
7,
4

w
7,
5

..
.

w
7,
13

w
7,
14

..
.

w
7,
20

w
8,
1

..
.

w
8,
4

w
8,
5

..
.

w
8,
13

w
8,
14

..
.

w
8,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

19
,1

..
.

w
19

,4
w

19
,5

..
.

w
19

,1
3

w
19

,1
4

..
.

w
19

,2
0

w
20

,1
..
.

w
20

,4
w

20
,5

..
.

w
20

,1
3

w
20

,1
4

..
.

w
20

,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

28
,1

..
.

w
28

,4
w

28
,5

..
.

w
28

,1
3

w
28

,1
4

..
.

w
28

,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,4

0 1
,5

..
.

0 1
,1
3

0 1
,1
4

..
.

0 1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 7

,1
..
.

1 7
,4

0 7
,5

..
.

0 7
,1
3

0 7
,1
4

..
.

0 7
,2
0

0 8
,1

..
.

0 8
,4

1 8
,5

..
.

1 8
,1
3

0 8
,1
4

..
.

0 8
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9,
1

..
.

0 1
9,
4

1 1
9,
5

..
.

1 1
9,
13

0 1
9,
14

..
.

0 1
9,
20

0 2
0,
1

..
.

0 2
0,
4

0 2
0,
5

..
.

0 2
0,
13

1 2
0,
14

..
.

1 2
0,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8,
1

..
.

0 2
8,
4

0 2
8,
5

..
.

0 2
8,
13

1 2
8,
14

..
.

1 2
8,
20

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
4

0 1
,5

..
.

0 1
,1
3

0 1
,1
4

..
.

0 1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

7,
1

..
.

w
7,
4

0 7
,5

..
.

0 7
,1
3

0 7
,1
4

..
.

0 7
,2
0

0 8
,1

..
.

0 8
,4

w
8,
5

..
.

w
8,
13

0 8
,1
4

..
.

0 8
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9,
1

..
.

0 1
9,
4

w
19

,5
..
.

w
19

,1
3

0 1
9,
14

..
.

0 1
9,
20

0 2
0,
1

..
.

0 2
0,
4

0 2
0,
5

..
.

0 2
0,
13

w
20

,1
4

..
.

w
20

,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8,
1

..
.

0 2
8,
4

0 2
8,
5

..
.

0 2
8,
13

w
28

,1
4

..
.

w
28

,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 188

Hadamard Product for Module 2 with a Hidden layer of size 21

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
2
(2
8

to
2
1
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
5

w
1,
6

..
.

w
1,
15

w
1,
16

..
.

w
1,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

7,
1

..
.

w
7,
5

w
7,
6

..
.

w
7,
15

w
7,
16

..
.

w
7,
21

w
8,
1

..
.

w
8,
5

w
8,
6

..
.

w
8,
15

w
8,
16

..
.

w
8,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

19
,1

..
.

w
19

,5
w

19
,6

..
.

w
19

,1
5

w
19

,1
6

..
.

w
19

,2
1

w
20

,1
..
.

w
20

,5
w

20
,6

..
.

w
20

,1
5

w
20

,1
6

..
.

w
20

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

28
,1

..
.

w
28

,5
w

28
,6

..
.

w
28

,1
5

w
28

,1
6

..
.

w
28

,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,5

0 1
,6

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 7

,1
..
.

1 7
,5

0 7
,6

..
.

0 7
,1
5

0 7
,1
6

..
.

0 7
,2
1

0 8
,1

..
.

0 8
,5

1 8
,6

..
.

1 8
,1
5

0 8
,1
6

..
.

0 8
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9,
1

..
.

0 1
9,
5

1 1
9,
6

..
.

1 1
9,
15

0 1
9,
16

..
.

0 1
9,
21

0 2
0,
1

..
.

0 2
0,
5

0 2
0,
6

..
.

0 2
0,
15

1 2
0,
16

..
.

1 2
0,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8,
1

..
.

0 2
8,
5

0 2
8,
6

..
.

0 2
8,
15

1 2
8,
16

..
.

1 2
8,
21

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4w

1,
1

..
.

w
1,
5

0 1
,6

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

7,
1

..
.

w
7,
5

0 7
,6

..
.

0 7
,1
5

0 7
,1
6

..
.

0 7
,2
1

0 8
,1

..
.

0 8
,5

w
8,
6

..
.

w
8,
15

0 8
,1
6

..
.

0 8
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9,
1

..
.

0 1
9,
5

w
19

,6
..
.

w
19

,1
5

0 1
9,
16

..
.

0 1
9,
21

0 2
0,
1

..
.

0 2
0,
5

0 2
0,
6

..
.

0 2
0,
15

w
20

,1
6

..
.

w
20

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8,
1

..
.

0 2
8,
5

0 2
8,
6

..
.

0 2
8,
15

w
28

,1
6

..
.

w
28

,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 189

Hadamard Product for Module 2 with a Hidden layer of size 22

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
s
k
M
a
tr
ix

fo
r
M
o
d
u
le
2
(2
8

to
2
2
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,5

w
1
,6

..
.

w
1
,1
5

w
1
,1
6

..
.

w
1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

7
,1

..
.

w
7
,5

w
7
,6

..
.

w
7
,1
5

w
7
,1
6

..
.

w
7
,2
2

w
8
,1

..
.

w
8
,5

w
8
,6

..
.

w
8
,1
5

w
8
,1
6

..
.

w
8
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

1
9
,1

..
.

w
1
9
,5

w
1
9
,6

..
.

w
1
9
,1
5

w
1
9
,1
6

..
.

w
1
9
,2
2

w
2
0
,1

..
.

w
2
0
,5

w
2
0
,6

..
.

w
2
0
,1
5

w
2
0
,1
6

..
.

w
2
0
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

2
8
,1

..
.

w
2
8
,5

w
2
8
,6

..
.

w
2
8
,1
5

w
2
8
,1
6

..
.

w
2
8
,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,5

0 1
,6

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 7

,1
..
.

1 7
,5

0 7
,6

..
.

0 7
,1
5

0 7
,1
6

..
.

0 7
,2
2

0 8
,1

..
.

0 8
,5

1 8
,6

..
.

1 8
,1
5

0 8
,1
6

..
.

0 8
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9
,1

..
.

0 1
9
,5

1 1
9
,6

..
.

1 1
9
,1
5

0 1
9
,1
6

..
.

0 1
9
,2
2

0 2
0
,1

..
.

0 2
0
,5

0 2
0
,6

..
.

0 2
0
,1
5

1 2
0
,1
6

..
.

1 2
0
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8
,1

..
.

0 2
8
,5

0 2
8
,6

..
.

0 2
8
,1
5

1 2
8
,1
6

..
.

1 2
8
,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,5

0 1
,6

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

7
,1

..
.

w
7
,5

0 7
,6

..
.

0 7
,1
5

0 7
,1
6

..
.

0 7
,2
2

0 8
,1

..
.

0 8
,5

w
8
,6

..
.

w
8
,1
5

0 8
,1
6

..
.

0 8
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9
,1

..
.

0 1
9
,5

w
1
9
,6

..
.

w
1
9
,1
5

0 1
9
,1
6

..
.

0 1
9
,2
2

0 2
0
,1

..
.

0 2
0
,5

0 2
0
,6

..
.

0 2
0
,1
5

w
2
0
,1
6

..
.

w
2
0
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8
,1

..
.

0 2
8
,5

0 2
8
,6

..
.

0 2
8
,1
5

w
2
8
,1
6

..
.

w
2
8
,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 190

Hadamard Product for Module 3 with a Hidden layer of size 20

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
3
(2
8

to
2
0
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,6

w
1
,7

..
.

w
1
,1
7

w
1
,1
4

..
.

w
1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

9
,1

..
.

w
9
,6

w
9
,9

..
.

w
9
,1
7

w
9
,1
4

..
.

w
9
,2
0

w
1
0
,1

..
.

w
1
0
,6

w
1
0
,9

..
.

w
1
0
,1
7

w
1
0
,1
4

..
.

w
1
0
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

1
9
,1

..
.

w
1
9
,6

w
1
9
,9

..
.

w
1
9
,1
7

w
1
9
,1
4

..
.

w
1
9
,2
0

w
2
0
,1

..
.

w
2
0
,6

w
2
0
,9

..
.

w
2
0
,1
7

w
2
0
,1
4

..
.

w
2
0
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

2
8
,1

..
.

w
2
8
,6

w
2
8
,9

..
.

w
2
8
,1
7

w
2
8
,1
4

..
.

w
2
8
,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,6

0 1
,7

..
.

0 1
,1
3

0 1
,1
4

..
.

0 1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 9

,1
..
.

1 9
,6

0 9
,7

..
.

0 9
,1
3

0 9
,1
4

..
.

0 9
,2
0

0 1
0
,1

..
.

0 1
0
,6

1 1
0
,7

..
.

1 1
0
,1
3

0 1
0
,1
4

..
.

0 1
0
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9
,1

..
.

0 1
9
,6

1 1
9
,7

..
.

1 1
9
,1
3

0 1
9
,1
4

..
.

0 1
9
,2
0

0 2
0
,1

..
.

0 2
0
,6

0 2
0
,7

..
.

0 2
0
,1
3

1 2
0
,1
4

..
.

1 2
0
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8
,1

..
.

0 2
8
,6

0 2
8
,7

..
.

0 2
8
,1
3

1 2
8
,1
4

..
.

1 2
8
,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,6

0 1
,7

..
.

0 1
,1
3

0 1
,1
4

..
.

0 1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

9
,1

..
.

w
9
,6

0 9
,7

..
.

0 9
,1
3

0 9
,1
4

..
.

0 9
,2
0

0 1
0
,1

..
.

0 1
0
,6

w
1
0
,7

..
.

w
1
0
,1
3

0 1
0
,1
4

..
.

0 1
0
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9
,1

..
.

0 1
9
,6

w
1
9
,7

..
.

w
1
9
,1
3

0 1
9
,1
4

..
.

0 1
9
,2
0

0 2
0
,1

..
.

0 2
0
,6

0 2
0
,7

..
.

0 2
0
,1
3

w
2
0
,1
4

..
.

w
2
0
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8
,1

..
.

0 2
8
,6

0 2
8
,7

..
.

0 2
8
,1
3

w
2
8
,1
4

..
.

w
2
8
,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 191

Hadamard Product for Module 3 with a Hidden layer of size 21

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
s
k
M
a
tr
ix

fo
r
M
o
d
u
le
3
(2
8

to
2
1
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,7

w
1
,8

..
.

w
1
,1
5

w
1
,1
6

..
.

w
1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

9
,1

..
.

w
9
,7

w
9
,8

..
.

w
9
,1
5

w
9
,1
6

..
.

w
9
,2
1

w
1
0
,1

..
.

w
1
0
,7

w
1
0
,8

..
.

w
1
0
,1
5

w
1
0
,1
6

..
.

w
1
0
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

1
9
,1

..
.

w
1
9
,7

w
1
9
,8

..
.

w
1
9
,1
5

w
1
9
,1
6

..
.

w
1
9
,2
1

w
2
0
,1

..
.

w
2
0
,7

w
2
0
,8

..
.

w
2
0
,1
5

w
2
0
,1
6

..
.

w
2
0
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

2
8
,1

..
.

w
2
8
,7

w
2
8
,8

..
.

w
2
8
,1
5

w
2
8
,1
6

..
.

w
2
8
,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,7

0 1
,8

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 9

,1
..
.

1 9
,7

0 9
,8

..
.

0 9
,1
5

0 9
,1
6

..
.

0 9
,2
1

0 1
0
,1

..
.

0 1
0
,7

1 1
0
,8

..
.

1 1
0
,1
5

0 1
0
,1
6

..
.

0 1
0
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9
,1

..
.

0 1
9
,7

1 1
9
,8

..
.

1 1
9
,1
5

0 1
9
,1
6

..
.

0 1
9
,2
1

0 2
0
,1

..
.

0 2
0
,7

0 2
0
,8

..
.

0 2
0
,1
5

1 2
0
,1
6

..
.

1 2
0
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8
,1

..
.

0 2
8
,7

0 2
8
,8

..
.

0 2
8
,1
5

1 2
8
,1
6

..
.

1 2
8
,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1
,1

..
.

w
1
,7

0 1
,8

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

9
,1

..
.

w
9
,7

0 9
,8

..
.

0 9
,1
5

0 9
,1
6

..
.

0 9
,2
1

0 1
0
,1

..
.

0 1
0
,7

w
1
0
,8

..
.

w
1
0
,1
5

0 1
0
,1
6

..
.

0 1
0
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9
,1

..
.

0 1
9
,7

w
1
9
,8

..
.

w
1
9
,1
5

0 1
9
,1
6

..
.

0 1
9
,2
1

0 2
0
,1

..
.

0 2
0
,7

0 2
0
,8

..
.

0 2
0
,1
5

w
2
0
,1
6

..
.

w
2
0
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8
,1

..
.

0 2
8
,7

0 2
8
,8

..
.

0 2
8
,1
5

w
2
8
,1
6

..
.

w
2
8
,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 192

Hadamard Product for Module 3 with a Hidden layer of size 22

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
3
(2
8

to
2
2
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
7

w
1,
8

..
.

w
1,
15

w
1,
16

..
.

w
1,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

9,
1

..
.

w
9,
7

w
9,
8

..
.

w
9,
15

w
9,
16

..
.

w
9,
21

w
10

,1
..
.

w
10

,7
w

10
,8

..
.

w
10

,1
5

w
10

,1
6

..
.

w
10

,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

19
,1

..
.

w
19

,7
w

19
,8

..
.

w
19

,1
5

w
19

,1
6

..
.

w
19

,2
2

w
20

,1
..
.

w
20

,7
w

20
,8

..
.

w
20

,1
5

w
20

,1
6

..
.

w
20

,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

28
,1

..
.

w
28

,7
w

28
,8

..
.

w
28

,1
5

w
28

,1
6

..
.

w
28

,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,7

0 1
,8

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 9

,1
..
.

1 9
,7

0 9
,8

..
.

0 9
,1
5

0 9
,1
6

..
.

0 9
,2
2

0 1
0,
1

..
.

0 1
0,
7

1 1
0,
8

..
.

1 1
0,
15

0 1
0,
16

..
.

0 1
0,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9,
1

..
.

0 1
9,
7

1 1
9,
8

..
.

1 1
9,
15

0 1
9,
16

..
.

0 1
9,
22

0 2
0,
1

..
.

0 2
0,
7

0 2
0,
8

..
.

0 2
0,
15

1 2
0,
16

..
.

1 2
0,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8,
1

..
.

0 2
8,
7

0 2
8,
8

..
.

0 2
8,
15

1 2
8,
16

..
.

1 2
8,
22

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4w

1,
1

..
.

w
1,
7

0 1
,8

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

9,
1

..
.

w
9,
7

0 9
,8

..
.

0 9
,1
5

0 9
,1
6

..
.

0 9
,2
2

0 1
0,
1

..
.

0 1
0,
7

w
10

,8
..
.

w
10

,1
5

0 1
0,
16

..
.

0 1
0,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 1

9,
1

..
.

0 1
9,
7

w
19

,8
..
.

w
19

,1
5

0 1
9,
16

..
.

0 1
9,
22

0 2
0,
1

..
.

0 2
0,
7

0 2
0,
8

..
.

0 2
0,
15

w
20

,1
6

..
.

w
20

,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

8,
1

..
.

0 2
8,
7

0 2
8,
8

..
.

0 2
8,
15

w
28

,1
6

..
.

w
28

,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 193

Hadamard Product for Module 4 with a Hidden layer of size 20

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
4
(3
1

to
2
0
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
6

w
1,
7

..
.

w
1,
13

w
1,
14

..
.

w
1,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

10
,1

..
.

w
10

,6
w

10
,7

..
.

w
10

,1
3

w
10

,1
4

..
.

w
10

,2
0

w
11

,1
..
.

w
11

,6
w

11
,7

..
.

w
11

,1
3

w
11

,1
4

..
.

w
11

,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

22
,1

..
.

w
22

,6
w

22
,7

..
.

w
22

,1
3

w
22

,1
4

..
.

w
22

,2
0

w
23

,1
..
.

w
23

,6
w

23
,7

..
.

w
23

,1
3

w
23

,1
4

..
.

w
23

,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

31
,1

..
.

w
31

,6
w

31
,7

..
.

w
31

,1
3

w
31

,1
4

..
.

w
31

,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,6

0 1
,7

..
.

0 1
,1
3

0 1
,1
4

..
.

0 1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 1

0,
1

..
.

1 1
0,
6

0 1
0,
7

..
.

0 1
0,
13

0 1
0,
14

..
.

0 1
0,
20

0 1
1,
1

..
.

0 1
1,
6

1 1
1,
7

..
.

1 1
1,
13

0 1
1,
14

..
.

0 1
1,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

2,
1

..
.

0 2
2,
6

1 2
2,
7

..
.

1 2
2,
13

0 2
2,
14

..
.

0 2
2,
20

0 2
3,
1

..
.

0 2
3,
6

0 2
3,
7

..
.

0 2
3,
13

1 2
3,
14

..
.

1 2
3,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 3

1,
1

..
.

0 3
1,
6

0 3
1,
7

..
.

0 3
1,
13

1 3
1,
14

..
.

1 3
1,
20

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
6

0 1
,7

..
.

0 1
,1
3

0 1
,1
4

..
.

0 1
,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

10
,1

..
.

w
10

,6
0 1

0,
7

..
.

0 1
0,
13

0 1
0,
14

..
.

0 1
0,
20

0 1
1,
1

..
.

0 1
1,
6

w
11

,7
..
.

w
11

,1
3

0 1
1,
14

..
.

0 1
1,
20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

2,
1

..
.

0 2
2,
6

w
22

,7
..
.

w
22

,1
3

0 2
2,
14

..
.

0 2
2,
20

0 2
3,
1

..
.

0 2
3,
6

0 2
3,
7

..
.

0 2
3,
13

w
23

,1
4

..
.

w
23

,2
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 3

1,
1

..
.

0 3
1,
6

0 3
1,
7

..
.

0 3
1,
13

w
31

,1
4

..
.

w
31

,2
0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 194

Hadamard Product for Module 4 with a Hidden layer of size 21

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
4
(3
1

to
2
1
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
7

w
1,
8

..
.

w
1,
15

w
1,
16

..
.

w
1,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

10
,1

..
.

w
10

,7
w

10
,8

..
.

w
10

,1
5

w
10

,1
6

..
.

w
10

,2
1

w
11

,1
..
.

w
11

,7
w

11
,8

..
.

w
11

,1
5

w
11

,1
6

..
.

w
11

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

22
,1

..
.

w
22

,7
w

22
,8

..
.

w
22

,1
5

w
22

,1
6

..
.

w
22

,2
1

w
23

,1
..
.

w
23

,7
w

23
,8

..
.

w
23

,1
5

w
23

,1
6

..
.

w
23

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

31
,1

..
.

w
31

,7
w

31
,8

..
.

w
31

,1
5

w
31

,1
6

..
.

w
31

,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,7

0 1
,8

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 1

0,
1

..
.

1 1
0,
7

0 1
0,
8

..
.

0 1
0,
15

0 1
0,
16

..
.

0 1
0,
21

0 1
1,
1

..
.

0 1
1,
7

1 1
1,
8

..
.

1 1
1,
15

0 1
1,
16

..
.

0 1
1,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

2,
1

..
.

0 2
2,
7

1 2
2,
8

..
.

1 2
2,
15

0 2
2,
16

..
.

0 2
2,
21

0 2
3,
1

..
.

0 2
3,
7

0 2
3,
8

..
.

0 2
3,
15

1 2
3,
16

..
.

1 2
3,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 3

1,
1

..
.

0 3
1,
7

0 3
1,
8

..
.

0 3
1,
15

1 3
1,
16

..
.

1 3
1,
21

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
7

0 1
,8

..
.

0 1
,1
5

0 1
,1
6

..
.

0 1
,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

10
,1

..
.

w
10

,7
0 1

0,
8

..
.

0 1
0,
15

0 1
0,
16

..
.

0 1
0,
21

0 1
1,
1

..
.

0 1
1,
7

w
11

,8
..
.

w
11

,1
5

0 1
1,
16

..
.

0 1
1,
21

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

2,
1

..
.

0 2
2,
7

w
22

,8
..
.

w
22

,1
5

0 2
2,
16

..
.

0 2
2,
21

0 2
3,
1

..
.

0 2
3,
7

0 2
3,
8

..
.

0 2
3,
15

w
23

,1
6

..
.

w
23

,2
1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 3

1,
1

..
.

0 3
1,
7

0 3
1,
8

..
.

0 3
1,
15

w
31

,1
6

..
.

w
31

,2
1

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 195

Hadamard Product for Module 4 with a Hidden layer of size 22

H
a
d
a
m
a
rd

P
ro
d
u
c
t
o
f
W
e
ig
h
t
M
a
tr
ix

a
n
d
B
in
a
ry

M
a
sk

M
a
tr
ix

fo
r
M
o
d
u
le
4
(3
1

to
2
2
)

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
7

w
1,
8

..
.

w
1,
16

w
1,
17

..
.

w
1,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

10
,1

..
.

w
10

,7
w

10
,8

..
.

w
10

,1
6

w
10

,1
7

..
.

w
10

,2
2

w
11

,1
..
.

w
11

,7
w

11
,8

..
.

w
11

,1
6

w
11

,1
7

..
.

w
11

,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

22
,1

..
.

w
22

,7
w

22
,8

..
.

w
22

,1
6

w
22

,1
7

..
.

w
22

,2
2

w
23

,1
..
.

w
23

,7
w

23
,8

..
.

w
23

,1
6

w
23

,1
7

..
.

w
23

,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

31
,1

..
.

w
31

,7
w

31
,8

..
.

w
31

,1
6

w
31

,1
7

..
.

w
31

,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

�

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

1 1
,1

..
.

1 1
,7

0 1
,8

..
.

0 1
,1
6

0 1
,1
7

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 1

0,
1

..
.

1 1
0,
7

0 1
0,
8

..
.

0 1
0,
16

0 1
0,
17

..
.

0 1
0,
22

0 1
1,
1

..
.

0 1
1,
7

1 1
1,
8

..
.

1 1
1,
16

0 1
1,
17

..
.

0 1
1,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

2,
1

..
.

0 2
2,
7

1 2
2,
8

..
.

1 2
2,
16

0 2
2,
17

..
.

0 2
2,
22

0 2
3,
1

..
.

0 2
3,
7

0 2
3,
8

..
.

0 2
3,
16

1 2
3,
17

..
.

1 2
3,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 3

1,
1

..
.

0 3
1,
7

0 3
1,
8

..
.

0 3
1,
16

1 3
1,
17

..
.

1 3
1,
22

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

=
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

w
1,
1

..
.

w
1,
7

0 1
,8

..
.

0 1
,1
6

0 1
,1
7

..
.

0 1
,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
w

10
,1

..
.

w
10

,7
0 1

0,
8

..
.

0 1
0,
16

0 1
0,
17

..
.

0 1
0,
22

0 1
1,
1

..
.

0 1
1,
7

w
11

,8
..
.

w
11

,1
6

0 1
1,
17

..
.

0 1
1,
22

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 2

2,
1

..
.

0 2
2,
7

w
22

,8
..
.

w
22

,1
6

0 2
2,
17

..
.

0 2
2,
22

0 2
3,
1

..
.

0 2
3,
7

0 2
3,
8

..
.

0 2
3,
16

w
23

,1
7

..
.

w
23

,2
2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
0 3

1,
1

..
.

0 3
1,
7

0 3
1,
8

..
.

0 3
1,
16

w
31

,1
7

..
.

w
31

,2
2

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

 196

APPENDIX C

AUTOENCODER DIAGRAMS

 197

 198

 199

 200

 201

 202

 203

 204

 205

 206

 207

 208

 209

APPENDIX D

RECONSTRUCTION ACCURACIES

 210

 Module 1 with Hidden Layer of Size 20 Training Iterations and their Respective

Reconstruction Accuracies

Module	1-2920	total	cell	27521	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 3161	 11.4857745	 24360	 88.5142255	
Training	2	 2756	 10.014171	 24765	 89.985829	
Training	3	 2753	 10.00327023	 24768	 89.99672977	
Training	4	 2760	 10.02870535	 24761	 89.97129465	
Training	5	 3295	 11.97267541	 24226	 88.02732459	
Training	6	 2755	 10.01053741	 24766	 89.98946259	
Training	7	 2795	 10.15588096	 24726	 89.84411904	
Training	8	 2810	 10.2103848	 24711	 89.7896152	
Training	9	 3423	 12.43777479	 24098	 87.56222521	
Training	10	 3023	 10.98433923	 24498	 89.01566077	

Total	 29531	 107.3035137	 245679	 892.6964863	
Average	 2953.1	 10.73035137	 24567.9	 89.26964863	

 211

Module 1 with Hidden Layer of Size 21 Training Iterations and their Respective

Reconstruction Accuracies

Module	1-2921	total	cell	27521	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2868	 10.42113295	 24653	 89.57886705	
Training	2	 2550	 9.265651684	 24971	 90.73434832	
Training	3	 2533	 9.203880673	 24988	 90.79611933	
Training	4	 2539	 9.225682206	 24982	 90.77431779	
Training	5	 2534	 9.207514262	 24987	 90.79248574	
Training	6	 2929	 10.64278188	 24592	 89.35721812	
Training	7	 2664	 9.679880818	 24857	 90.32011918	
Training	8	 2825	 10.26488863	 24696	 89.73511137	
Training	9	 2316	 8.415391883	 25205	 91.58460812	
Training	10	 2274	 8.262781149	 25247	 91.73721885	

Total	 26032	 94.58958613	 249178	 905.4104139	
Average	 2603.2	 9.458958613	 24917.8	 90.54104139	

 212

Module 1 with Hidden Layer of Size 22 Training Iterations and their Respective

Reconstruction Accuracies

Module	1-2922	total	cell	27521	
Training	#	 Wrong	cell	

found	
Percentage	of	

error	
Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2075	 7.539696959	 25446	 92.46030304	
Training	2	 1924	 6.991025035	 25597	 93.00897496	
Training	3	 2075	 7.539696959	 25446	 92.46030304	
Training	4	 2106	 7.652338214	 25415	 92.34766179	
Training	5	 2007	 7.292612914	 25514	 92.70738709	
Training	6	 1987	 7.219941136	 25534	 92.78005886	
Training	7	 1827	 6.638566913	 25694	 93.36143309	
Training	8	 2328	 8.458994949	 25193	 91.54100505	
Training	9	 2089	 7.590567203	 25432	 92.4094328	
Training	10	 2138	 7.768613059	 25383	 92.23138694	
Total	 20556	 74.69205334	 254654	 925.3079467	
Average	 2055.6	 7.469205334	 25465.4	 92.53079467	

 213

Module 1 with Hidden Layer of Size 23 Training Iterations and their Respective

Reconstruction Accuracies

Module	1-2923	total	cell	27521	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1504	 5.464917699	 26017	 94.5350823	
Training	2	 1732	 6.293375967	 25789	 93.70662403	
Training	3	 1541	 5.599360488	 25980	 94.40063951	
Training	4	 1736	 6.307910323	 25785	 93.69208968	
Training	5	 1596	 5.799207878	 25925	 94.20079212	
Training	6	 1829	 6.64583409	 25692	 93.35416591	
Training	7	 1628	 5.915482722	 25893	 94.08451728	
Training	8	 1510	 5.486719233	 26011	 94.51328077	
Training	9	 1526	 5.544856655	 25995	 94.45514335	
Training	10	 1814	 6.591330257	 25707	 93.40866974	
Total	 16416	 59.64899531	 258794	 940.3510047	
Average	 1641.6	 5.964899531	 25879.4	 94.03510047	

 214

Module 2 with Hidden Layer of Size 19 Training Iterations and their Respective

Reconstruction Accuracies

Module	2-2819	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1516	 10.00792184	 13632	 89.99207816	
Training	2	 1756	 11.59228941	 13392	 88.40771059	
Training	3	 1518	 10.0211249	 13630	 89.9788751	
Training	4	 1795	 11.84974914	 13353	 88.15025086	
Training	5	 1527	 10.08053868	 13621	 89.91946132	
Training	6	 1688	 11.14338527	 13460	 88.85661473	
Training	7	 1426	 9.413783998	 13722	 90.586216	
Training	8	 1720	 11.35463428	 13428	 88.64536572	
Training	9	 1575	 10.3974122	 13573	 89.6025878	
Training	10	 1344	 8.87245841	 13804	 91.12754159	

Total	 15865	 104.7332981	 135615	 895.2667019	
Average	 1586.5	 10.47332981	 13561.5	 89.52667019	

 215

Module 2 with Hidden Layer of Size 20 Training Iterations and their

Respective Reconstruction Accuracies

Module	2-2820	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1359	 8.971481384	 13789	 91.02851862	
Training	2	 1367	 9.024293636	 13781	 90.97570636	
Training	3	 1322	 8.727224716	 13826	 91.27277528	
Training	4	 1233	 8.139688408	 13915	 91.86031159	
Training	5	 1250	 8.251914444	 13898	 91.74808556	
Training	6	 1270	 8.383945075	 13878	 91.61605492	
Training	7	 1263	 8.337734354	 13885	 91.66226565	
Training	8	 1309	 8.641404806	 13839	 91.35859519	
Training	9	 1347	 8.892263005	 13801	 91.10773699	
Training	10	 1345	 8.879059942	 13803	 91.12094006	
Total	 13065	 86.24900977	 138415	 913.7509902	
Average	 1306.5	 8.624900977	 13841.5	 91.37509902	

 216

Module 2 with Hidden Layer of Size 21 Training Iterations and their Respective

Reconstruction Accuracies

Module	2-2821	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1137	 7.505941378	 14011	 92.49405862	
Training	2	 970	 6.403485609	 14178	 93.59651439	
Training	3	 1207	 7.968048587	 13941	 92.03195141	
Training	4	 1173	 7.743596514	 13975	 92.25640349	
Training	5	 1124	 7.420121468	 14024	 92.57987853	
Training	6	 1116	 7.367309216	 14032	 92.63269078	
Training	7	 1184	 7.816213361	 13964	 92.18378664	
Training	8	 1070	 7.063638764	 14078	 92.93636124	
Training	9	 1114	 7.354106153	 14034	 92.64589385	
Training	10	 1069	 7.057037233	 14079	 92.94296277	

Total	 11164	 73.69949828	 140316	 926.3005017	
Average	 1116.4	 7.369949828	 14031.6	 92.63005017	

 217

Module 2 with Hidden Layer of Size 22 Training Iterations and their Respective

Reconstruction Accuracies

Module	2-2822	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 745	 4.918141009	 14403	 95.08185899	
Training	2	 863	 5.697121732	 14285	 94.30287827	
Training	3	 862	 5.690520201	 14286	 94.3094798	
Training	4	 821	 5.419857407	 14327	 94.58014259	
Training	5	 804	 5.30763137	 14344	 94.69236863	
Training	6	 860	 5.677317138	 14288	 94.32268286	
Training	7	 829	 5.472669659	 14319	 94.52733034	
Training	8	 871	 5.749933985	 14277	 94.25006602	
Training	9	 1178	 7.776604172	 13970	 92.22339583	
Training	10	 799	 5.274623713	 14349	 94.72537629	
Total	 7887	 52.06627938	 128445	 847.9337206	
Average	 788.7	 5.206627938	 12844.5	 84.79337206	

 218

Module 3 with Hidden Layer of Size 19 Training Iterations and their Respective

Reconstruction Accuracies

Module	3-2919	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2196	 7.526734302	 26980	 92.4732657	
Training	2	 2267	 7.770085001	 26909	 92.229915	
Training	3	 2351	 8.057992871	 26825	 91.94200713	
Training	4	 2448	 8.390457911	 26728	 91.60954209	
Training	5	 2435	 8.34590074	 26741	 91.65409926	
Training	6	 2006	 6.875514121	 27170	 93.12448588	
Training	7	 1932	 6.621880998	 27244	 93.378119	
Training	8	 2135	 7.317658349	 27041	 92.68234165	
Training	9	 2210	 7.574718947	 26966	 92.42528105	
Training	10	 1991	 6.824102002	 27185	 93.175898	

Total	 21971	 75.30504524	 269789	 924.6949548	
Average	 2197.1	 7.530504524	 26978.9	 92.46949548	

 219

Module 3 with Hidden Layer of Size 20 Training Iterations and their Respective

Reconstruction Accuracies

Module	3-2920	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2193	 7.516451878	 26983	 92.48354812	
Training	2	 1959	 6.714422813	 27217	 93.28557719	
Training	3	 2096	 7.183986838	 27080	 92.81601316	
Training	4	 1935	 6.632163422	 27241	 93.36783658	
Training	5	 1812	 6.210584042	 27364	 93.78941596	
Training	6	 2089	 7.159994516	 27087	 92.84000548	
Training	7	 1950	 6.683575542	 27226	 93.31642446	
Training	8	 2113	 7.242253907	 27063	 92.75774609	
Training	9	 1848	 6.333973129	 27328	 93.66602687	
Training	10	 2112	 7.238826433	 27064	 92.76117357	

Total	 20107	 68.91623252	 271653	 931.0837675	
Average	 2010.7	 6.891623252	 27165.3	 93.10837675	

 220

Module 3 with Hidden Layer of Size 21 Training Iterations and their Respective

Reconstruction Accuracies

Module	3-2921	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1273	 4.363175213	 27903	 95.63682479	
Training	2	 1199	 4.109542089	 27977	 95.89045791	
Training	3	 1439	 4.932136002	 27737	 95.067864	
Training	4	 1445	 4.95270085	 27731	 95.04729915	
Training	5	 1334	 4.572251165	 27842	 95.42774883	
Training	6	 1519	 5.206333973	 27657	 94.79366603	
Training	7	 1138	 3.900466137	 28038	 96.09953386	
Training	8	 1391	 4.76761722	 27785	 95.23238278	
Training	9	 1615	 5.535371538	 27561	 94.46462846	
Training	10	 1672	 5.730737593	 27504	 94.26926241	

Total	 14025	 48.07033178	 277735	 951.9296682	
Average	 1402.5	 4.807033178	 27773.5	 95.19296682	

 221

Module 3 with Hidden Layer of Size 22 Training Iterations and their Respective

Reconstruction Accuracies

Module	3-2922	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1143	 3.91760351	 28033	 96.08239649	
Training	2	 1161	 3.979298053	 28015	 96.02070195	
Training	3	 1151	 3.945023307	 28025	 96.05497669	
Training	4	 1057	 3.622840691	 28119	 96.37715931	
Training	5	 1219	 4.178091582	 27957	 95.82190842	
Training	6	 1128	 3.86619139	 28048	 96.13380861	
Training	7	 1436	 4.921853578	 27740	 95.07814642	
Training	8	 1222	 4.188374006	 27954	 95.81162599	
Training	9	 1366	 4.681930354	 27810	 95.31806965	
Training	10	 1130	 3.873046339	 28046	 96.12695366	

Total	 12013	 41.17425281	 279747	 958.8257472	
Average	 1201.3	 4.117425281	 27974.7	 95.88257472	

 222

Module 4 with Hidden Layer of Size 19 Training Iterations and their Respective

Reconstruction Accuracies

Module	4-3119	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 658	 8.956036477	 6689	 91.04396352	
Training	2	 666	 9.064924459	 6681	 90.93507554	
Training	3	 577	 7.853545665	 6770	 92.14645434	
Training	4	 607	 8.261875595	 6740	 91.7381244	
Training	5	 601	 8.180209609	 6746	 91.81979039	
Training	6	 608	 8.275486593	 6739	 91.72451341	
Training	7	 610	 8.302708589	 6737	 91.69729141	
Training	8	 637	 8.670205526	 6710	 91.32979447	
Training	9	 604	 8.221042602	 6743	 91.7789574	
Training	10	 666	 9.064924459	 6681	 90.93507554	

Total	 6234	 84.85095958	 67236	 915.1490404	
Average	 623.4	 8.485095958	 6723.6	 91.51490404	

 223

Module 4 with Hidden Layer of Size 20 Training Iterations and their Respective

Reconstruction Accuracies

Module	4-3120	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 671	 9.132979447	 6676	 90.86702055	
Training	2	 602	 8.193820607	 6745	 91.80617939	
Training	3	 688	 9.364366408	 6659	 90.63563359	
Training	4	 619	 8.425207568	 6728	 91.57479243	
Training	5	 661	 8.996869471	 6686	 91.00313053	
Training	6	 640	 8.711038519	 6707	 91.28896148	
Training	7	 572	 7.785490676	 6775	 92.21450932	
Training	8	 613	 8.343541582	 6734	 91.65645842	
Training	9	 648	 8.819926501	 6699	 91.1800735	
Training	10	 590	 8.030488635	 6757	 91.96951137	

Total	 6304	 85.80372941	 67166	 914.1962706	
Average	 630.4	 8.580372941	 6716.6	 91.41962706	

 224

Module 4 with Hidden Layer of Size 21 Training Iterations and their Respective

Reconstruction Accuracies

Module	4-3121	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 476	 6.478834899	 6871	 93.5211651	
Training	2	 445	 6.05689397	 6902	 93.94310603	
Training	3	 425	 5.784674017	 6922	 94.21532598	
Training	4	 450	 6.124948959	 6897	 93.87505104	
Training	5	 470	 6.397168912	 6877	 93.60283109	
Training	6	 429	 5.839118007	 6918	 94.16088199	
Training	7	 465	 6.329113924	 6882	 93.67088608	
Training	8	 432	 5.879951	 6915	 94.120049	
Training	9	 422	 5.743841024	 6925	 94.25615898	
Training	10	 418	 5.689397033	 6929	 94.31060297	

Total	 4432	 60.32394174	 69038	 939.6760583	
Average	 443.2	 6.032394174	 6903.8	 93.96760583	

 225

Module 4 with Hidden Layer of Size 22 Training Iterations and their Respective

Reconstruction Accuracies

Module	4-3122	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 405	 5.512454063	 6942	 94.48754594	
Training	2	 307	 4.17857629	 7040	 95.82142371	
Training	3	 351	 4.777460188	 6996	 95.22253981	
Training	4	 367	 4.995236151	 6980	 95.00476385	
Training	5	 312	 4.246631278	 7035	 95.75336872	
Training	6	 342	 4.654961209	 7005	 95.34503879	
Training	7	 344	 4.682183204	 7003	 95.3178168	
Training	8	 378	 5.144957125	 6969	 94.85504287	
Training	9	 357	 4.859126174	 6990	 95.14087383	
Training	10	 394	 5.362733088	 6953	 94.63726691	

Total	 3557	 48.41431877	 69913	 951.5856812	
Average	 355.7	 4.841431877	 6991.3	 95.15856812	

 226

APPENDIX E

MODULES WEIGHTS

 227

Module 1 Section 1 Weights of Hidden Layer Nodes Ranked

 228

Module 1 Section 2 Weights of Hidden Layer Nodes Ranked

 229

Module 1 Section 3 Weights of Hidden Layer Nodes Ranked

 230

Module 2 Section 1 Weights of Hidden Layer Nodes Ranked

 231

Module 2 Section 2 Weights of Hidden Layer Nodes Ranked

 232

Module 2 Section 3 Weights of Hidden Layer Nodes Ranked

 233

Module 3 Section 1 Weights of Hidden Layer Nodes Ranked

 234

Module 3 Section 2 Weights of Hidden Layer Nodes Ranked

 235

Module 3 Section 3 Weights of Hidden Layer Nodes Ranked

 236

Module 4 Section 1 Weights of Hidden Layer Nodes Ranked

 237

Module 4 Section 2 Weights of Hidden Layer Nodes Ranked

 238

Module 4 Section 3 Weights of Hidden Layer Nodes Ranked

 239

APPENDIX F

MODEL CODE

 240

Building module 1 Autoencoder with Hidden layer of size 20

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 29-20 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 0; 1 1 1

1 1 1 1 1 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0

 241

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1

1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0

1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 242

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

 243

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 244

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 29, 20, 29 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(29, 20), #incoder

 activation,

 MaskedLayer2(20,29))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

 245

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 1train = torch.from_numpy(train)

 Module 1test = torch.from_numpy(test)

 Module 1train = Module 1train.type(torch.FloatTensor)

 Module 1train = Module 1train.cuda()

 Module 1test = Module 1test.type(torch.FloatTensor)

 Module 1test = Module 1test.cuda()

 x = torch.autograd.Variable(Module 1train) #input

 y = torch.autograd.Variable(Module 1train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 1test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 246

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module

1weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

 247

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

 248

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testeing.csv")

 249

Building module 1 Autoencoder with Hidden layer of size 21

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 29-21 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 0; 1 1 1

1 1 1 1 1 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0

 250

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1

1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0

1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 251

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

 252

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 253

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 29, 21, 29 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(29, 21), #incoder

 activation,

 MaskedLayer2(21,29))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

 254

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 1train = torch.from_numpy(train)

 Module 1test = torch.from_numpy(test)

 Module 1train = Module 1train.type(torch.FloatTensor)

 Module 1train = Module 1train.cuda()

 Module 1test = Module 1test.type(torch.FloatTensor)

 Module 1test = Module 1test.cuda()

 x = torch.autograd.Variable(Module 1train) #input

 y = torch.autograd.Variable(Module 1train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 1test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 255

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module

1weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

 256

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

 257

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testeing.csv")

 258

Building module 1 Autoencoder with Hidden layer of size 22

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 29-22 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 0; 1 1 1

1 1 1 1 1 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0

 259

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0;0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1

1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

 260

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

 261

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 262

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 29, 22, 29 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(29, 22), #incoder

 activation,

 MaskedLayer2(22,29))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

 263

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 1train = torch.from_numpy(train)

 Module 1test = torch.from_numpy(test)

 Module 1train = Module 1train.type(torch.FloatTensor)

 Module 1train = Module 1train.cuda()

 Module 1test = Module 1test.type(torch.FloatTensor)

 Module 1test = Module 1test.cuda()

 x = torch.autograd.Variable(Module 1train) #input

 y = torch.autograd.Variable(Module 1train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 1test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 264

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module

1weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

 265

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

 266

NXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testeing.csv")

 267

Building module 1 Autoencoder with Hidden layer of size 23

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 29-23 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 0; 1 1 1

1 1 1 1 1 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0

 268

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0;0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1

1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

 269

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

 270

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 271

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 29, 23, 29 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(29, 23), #incoder

 activation,

 MaskedLayer2(23,29))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

 272

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 1train = torch.from_numpy(train)

 Module 1test = torch.from_numpy(test)

 Module 1train = Module 1train.type(torch.FloatTensor)

 Module 1train = Module 1train.cuda()

 Module 1test = Module 1test.type(torch.FloatTensor)

 Module 1test = Module 1test.cuda()

 x = torch.autograd.Variable(Module 1train) #input

 y = torch.autograd.Variable(Module 1train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 1test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 273

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module

1weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

 274

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

 275

NXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

1/training1/Module 1_testeing.csv")

 276

Building module 2 Autoencoder with Hidden layer of size 19

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-19 matrix

mask2 = np.matrix('1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

 277

0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 278

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 279

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

 280

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 19, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 19), #incoder

 activation,

 MaskedLayer2(19,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

 281

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 2train = torch.from_numpy(train)

 Module 2test = torch.from_numpy(test)

 Module 2train = Module 2train.type(torch.FloatTensor)

 Module 2train = Module 2train.cuda()

 Module 2test = Module 2test.type(torch.FloatTensor)

 Module 2test = Module 2test.cuda()

 x = torch.autograd.Variable(Module 2train) #input

 y = torch.autograd.Variable(Module 2train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 2test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 282

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module

2weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

 283

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

 284

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testeing.csv")

 285

Building module 2 Autoencoder with Hidden layer of size 20

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-20 matrix

mask2 = np.matrix('1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0;1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ; 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0

 286

0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 287

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

 288

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

 289

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 20, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 20), #incoder

 activation,

 MaskedLayer2(19,20))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

 290

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 2train = torch.from_numpy(train)

 Module 2test = torch.from_numpy(test)

 Module 2train = Module 2train.type(torch.FloatTensor)

 Module 2train = Module 2train.cuda()

 Module 2test = Module 2test.type(torch.FloatTensor)

 Module 2test = Module 2test.cuda()

 x = torch.autograd.Variable(Module 2train) #input

 y = torch.autograd.Variable(Module 2train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 2test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 291

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module

2weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

 292

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

 293

'ACTVE', 'AGG', 'ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testeing.csv")

 294

Building module 2 Autoencoder with Hidden layer of size 21

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-21 matrix

mask2 = np.matrix('1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1

 295

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

 296

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 297

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 298

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 21, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

 299

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 21), #incoder

 activation,

 MaskedLayer2(21,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 300

 train, test = train_test_split(dataset, test_size=0.1)

 Module 2train = torch.from_numpy(train)

 Module 2test = torch.from_numpy(test)

 Module 2train = Module 2train.type(torch.FloatTensor)

 Module 2train = Module 2train.cuda()

 Module 2test = Module 2test.type(torch.FloatTensor)

 Module 2test = Module 2test.cuda()

 x = torch.autograd.Variable(Module 2train) #input

 y = torch.autograd.Variable(Module 2train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 2test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 301

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module

2weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

 302

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

 303

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testeing.csv")

 304

Building module 2 Autoencoder with Hidden layer of size 22

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-22 matrix

mask2 = np.matrix('1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0;1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

 305

0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

 306

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 307

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 308

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 22, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

 309

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 22), #incoder

 activation,

 MaskedLayer2(22,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

 310

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 2train = torch.from_numpy(train)

 Module 2test = torch.from_numpy(test)

 Module 2train = Module 2train.type(torch.FloatTensor)

 Module 2train = Module 2train.cuda()

 Module 2test = Module 2test.type(torch.FloatTensor)

 Module 2test = Module 2test.cuda()

 x = torch.autograd.Variable(Module 2train) #input

 y = torch.autograd.Variable(Module 2train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 2test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 311

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module

2weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

 312

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

 313

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES',

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

2/training1/Module 2_testeing.csv")

 314

Building module 3 Autoencoder with Hidden layer of size 19

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-19 matrix

mask2 = np.matrix('1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 ; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0

 315

0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

 316

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 317

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 318

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 19, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 3.csv", header=0)

 319

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 19), #incoder

 activation,

 MaskedLayer2(19,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 3train = torch.from_numpy(train)

 320

 Module 3test = torch.from_numpy(test)

 Module 3train = Module 3train.type(torch.FloatTensor)

 Module 2train = Module 3train.cuda()

 Module 3test = Module 3test.type(torch.FloatTensor)

 Module 3test = Module 3test.cuda()

 x = torch.autograd.Variable(Module 3train) #input

 y = torch.autograd.Variable(Module 3train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 3test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 321

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module

3weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

 322

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

 323

3/training1/Module 3_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_testeing.csv")

 324

Building module 3 Autoencoder with Hidden layer of size 20

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-20 matrix

mask2 = np.matrix('1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0

0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0

0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1

 325

1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

 326

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 327

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 328

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 20, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 3.csv", header=0)

 329

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 20), #incoder

 activation,

 MaskedLayer2(20,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 3train = torch.from_numpy(train)

 330

 Module 3test = torch.from_numpy(test)

 Module 3train = Module 3train.type(torch.FloatTensor)

 Module 2train = Module 3train.cuda()

 Module 3test = Module 3test.type(torch.FloatTensor)

 Module 3test = Module 3test.cuda()

 x = torch.autograd.Variable(Module 3train) #input

 y = torch.autograd.Variable(Module 3train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 3test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 331

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module

3weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

 332

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

 333

3/training1/Module 3_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_testeing.csv")

 334

Building module 3 Autoencoder with Hidden layer of size 21

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-21 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1

 335

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 ')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

 336

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 337

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 338

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 21, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

 339

dataframe = pandas.read_csv("ADOSModule 3.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 21), #incoder

 activation,

 MaskedLayer2(21,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 340

 Module 3train = torch.from_numpy(train)

 Module 3test = torch.from_numpy(test)

 Module 3train = Module 3train.type(torch.FloatTensor)

 Module 2train = Module 3train.cuda()

 Module 3test = Module 3test.type(torch.FloatTensor)

 Module 3test = Module 3test.cuda()

 x = torch.autograd.Variable(Module 3train) #input

 y = torch.autograd.Variable(Module 3train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 3test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 341

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module

3weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

 342

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

 343

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_testeing.csv")

 344

Building module 3 Autoencoder with Hidden layer of size 22

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 28-22 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 ; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

 345

0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 ')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

 346

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 347

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 348

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 28, 22, 28 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

 349

dataframe = pandas.read_csv("ADOSModule 3.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(28, 22), #incoder

 activation,

 MaskedLayer2(22,28))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 350

 Module 3train = torch.from_numpy(train)

 Module 3test = torch.from_numpy(test)

 Module 3train = Module 3train.type(torch.FloatTensor)

 Module 2train = Module 3train.cuda()

 Module 3test = Module 3test.type(torch.FloatTensor)

 Module 3test = Module 3test.cuda()

 x = torch.autograd.Variable(Module 3train) #input

 y = torch.autograd.Variable(Module 3train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 3test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 351

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module

3weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

 352

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

 353

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES',

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL',

'ACTVE', 'AGG', 'ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

3/training1/Module 3_testeing.csv")

 354

Building module 4 Autoencoder with Hidden layer of size 19

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 31-19 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0;1 1

1 1 1 1 1 1 1 1 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0; 1 1 1 1 1 1

1 1 1 1 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0

 355

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1 1 1

1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1

1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

 356

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 357

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 358

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 31, 19, 31 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

 359

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(31, 19), #incoder

 activation,

 MaskedLayer2(19,31))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 360

 Module 4train = torch.from_numpy(train)

 Module 4test = torch.from_numpy(test)

 Module 4train = Module 4train.type(torch.FloatTensor)

 Module 4train = Module 4train.cuda()

 Module 4test = Module 4test.type(torch.FloatTensor)

 Module 4test = Module 4test.cuda()

 x = torch.autograd.Variable(Module 4train) #input

 y = torch.autograd.Variable(Module 4train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 4test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 361

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module

4weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

 362

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

 363

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests,

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testeing.csv")

 364

Building module 4 Autoencoder with Hidden layer of size 20

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 31-20 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 1 1 0;1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0; 1 1 1 1 1

1 1 1 1 1 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0

 365

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1

1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1

1 1 1; 0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

 366

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 367

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 368

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 31, 20, 31 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

#import data from csv with pandas, strip values from dataframe into array

 369

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(31, 20), #incoder

 activation,

 MaskedLayer2(20,31))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 370

 Module 4train = torch.from_numpy(train)

 Module 4test = torch.from_numpy(test)

 Module 4train = Module 4train.type(torch.FloatTensor)

 Module 4train = Module 4train.cuda()

 Module 4test = Module 4test.type(torch.FloatTensor)

 Module 4test = Module 4test.cuda()

 x = torch.autograd.Variable(Module 4train) #input

 y = torch.autograd.Variable(Module 4train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 4test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 testing = model(testset)

 371

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module

4weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

 372

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

 373

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests,

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testeing.csv")

 374

Building module 4 Autoencoder with Hidden layer of size 21

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 31-20 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 1 1 0;1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0; 1 1 1 1 1

1 1 1 1 1 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0

 375

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1

1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

 376

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 377

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 378

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 31, 21, 31 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

 379

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(31, 21), #incoder

 activation,

 MaskedLayer2(21,31))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

for i in range(10):

 380

 train, test = train_test_split(dataset, test_size=0.1)

 Module 4train = torch.from_numpy(train)

 Module 4test = torch.from_numpy(test)

 Module 4train = Module 4train.type(torch.FloatTensor)

 Module 4train = Module 4train.cuda()

 Module 4test = Module 4test.type(torch.FloatTensor)

 Module 4test = Module 4test.cuda()

 x = torch.autograd.Variable(Module 4train) #input

 y = torch.autograd.Variable(Module 4train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 4test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 optimizer.step()

 381

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module

4weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

 382

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

 383

L','ACTVE','AGG','ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests,

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testeing.csv")

 384

Building module 4 Autoencoder with Hidden layer of size 22

#import all dependencies

import pandas

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import torch

from torch.autograd import Variable

from torch import nnfrom torch.optim import lr_scheduler

from torch.nn import Parameter

import numpy as np

import math

#Create mask 31-22 matrix

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0; 1

1 1 1 1 1 1 1 1 1 0;1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0; 1 1 1 1 1

1 1 1 1 1 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0

 385

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 1 1 1 1 1 1 1

1 1; 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0

0 1 1 1 1 1 1 1 1 1')

#create transposed mask

mask1 = mask2.transpose()

torch_mask1 = torch.from_numpy(mask1) #convert mask to torch tensor

torchmask1 = torch_mask1.type(torch.FloatTensor) #match tensor type with

weights

torchmask1 = torchmask1.cuda() #convert to GPU CUDA tensor

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True) #wrap in

variable to add to model

torch_mask2 = torch.from_numpy(mask2) #convert mask to torch tensor

torchmask2 = torch_mask2.type(torch.FloatTensor) #match tensor type with

weights

 386

torchmask2 = torchmask2.cuda() #convert to GPU CUDA tensor

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True) #wrap in

variable to add to model

#create special masked layer for encoder by altering feedforward layer's forward

pass

class MaskedLayer1(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer1, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 387

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask1)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

#create special masked layer for decoder by altering feedforward layer's forward

pass

class MaskedLayer2(nn.Module):

 def __init__(self, in_features, out_features, bias=True):

 super(MaskedLayer2, self).__init__()

 self.in_features = in_features

 self.out_features = out_features

 self.weight = Parameter(torch.Tensor(in_features, out_features))

 if bias:

 self.bias = Parameter(torch.Tensor(out_features))

 else:

 388

 self.register_parameter('bias', None)

 self.reset_parameters()

 def reset_parameters(self):

 stdv = 1. / math.sqrt(self.weight.size(1))

 self.weight.data.uniform_(-stdv, stdv)

 if self.bias is not None:

 self.bias.data.uniform_(-stdv, stdv)

 def forward(self, input):

 return input.mm(self.weight*mask2)

 def __repr__(self):

 return self.__class__.__name__ + ' ('

 + str(self.in_features) + ' -> '

 + str(self.out_features) + ')'

dtype = torch.cuda.FloatTensor

N, D_in, H1, D_out = 10, 31, 22, 31 #batch size, dimensions of network

#randomly initialize weights with matching tensor type to mask

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True)

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True)

 389

#import data from csv with pandas, strip values from dataframe into array

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0)

dataset = dataframe.values

#model configuration, dimensions, and hyperparameters

activation = torch.nn.SELU()

model = torch.nn.Sequential(MaskedLayer1(31, 22), #incoder

 activation,

 MaskedLayer2(22,31))#decoder

model = model.cuda()

criterion = torch.nn.L1Loss(size_average=True)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

#create arrays to store loss measurements for training and test sets

trainingloss =[]

trainingloss = np.array(trainingloss, dtype =np.float64)

testloss = []

trainingloss = np.array(testloss, dtype =np.float64)

#10 folds for cross validation, data set is split 90/10 training test, placed into

tensor on GPU

 390

for i in range(10):

 train, test = train_test_split(dataset, test_size=0.1)

 Module 4train = torch.from_numpy(train)

 Module 4test = torch.from_numpy(test)

 Module 4train = Module 4train.type(torch.FloatTensor)

 Module 4train = Module 4train.cuda()

 Module 4test = Module 4test.type(torch.FloatTensor)

 Module 4test = Module 4test.cuda()

 x = torch.autograd.Variable(Module 4train) #input

 y = torch.autograd.Variable(Module 4train, requires_grad=False) #target,

same as input

 testset = torch.autograd.Variable(Module 4test, requires_grad = False) #test

set

 #100,000 epochs per validation fold, model minimizes difference between

target and prediction, training and test losses added to respective arrays every

epoch

 for t in range(100000):

 y_pred = model(x)

 loss = criterion(y_pred, y)

 print(i, t, loss.data[0])

 trainingloss = np.append(trainingloss, loss.data[0])

 optimizer.zero_grad() loss.backward()

 391

 optimizer.step()

 testing = model(testset)

 val_loss = criterion(testing, testset)

 print(val_loss.data[0])

 testloss = np.append(testloss,val_loss.data[0])

#remove encoder weights from model by iterating through model.parameters and

removing data; break loop after encoder weights removed

#CPU tensor to numpy array to pandas dataframe to comma-separated value file

for param in model.parameters():

 cpuweights = param.data.cpu()

 npweights = cpuweights.numpy()

 df = pandas.DataFrame(npweights)

 df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module

4weights.csv")

 break

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array,

then to pandas dataframe, then to csv with headers listed

reconstruction = y_pred.data.cpu()

reconstruction = y_pred.data.numpy()

reconstructionset = pandas.DataFrame(reconstruction, columns=

 392

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_reconstruction.csv")

#target goes through same pipeline as reconstruction

target = y.data.cpu().numpy()

targetset = pandas.DataFrame(target, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_y.csv")

#testing reconstruction

test = testset.data.cpu().numpy()

testset = pandas.DataFrame(test, columns=

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

 393

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY'])

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testset.csv")

#testing target

tests = testing.data.cpu().numpy()

testingset = pandas.DataFrame(tests,

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module

4/training1/Module 4_testeing.csv")

 394

REFERENCES

[1] N. Vijayakumar and M. Judy, "Autism spectrum disorders: Integration of the

genome, transcriptome and the environment", Journal of the Neurological

Sciences, vol. 364, pp. 167-176, 2016.

 [2] "World Autism Awareness Day", Ministry of Health Portal Kingdom of Saudi

Arabia, 2015. [Online]. Available:

http://www.moh.gov.sa/en/HealthAwareness/HealthDay/2015/Pages/HealthDay-

2015-04-02.aspx.

[3] B. Zablotsky, L. Black, M. Maenner, L. Schieve and S. Blumberg, "Estimated

Prevalence of Autism and Other Developmental Disabilities Following

Questionnaire Changes in the 2014 National Health Interview Survey", National

Health Statistics Reports, 2015.

[4] D. Christensen, J. Baio, K. Braun, D. Bilder, J. Charles, J. Constantino, J.

Daniels, M. Durkin, R. Fitzgerald, M. Kurzius-Spencer, L. Lee, S. Pettygrove, C.

Robinson, E. Schulz, C. Wells, M. Wingate, W. Zahorodny and M. Yeargin-

Allsopp, "Prevalence and Characteristics of Autism Spectrum Disorder Among

Children Aged 8 Years — Autism and Developmental Disabilities Monitoring

Network, 11 Sites, United States, 2012", MMWR. Surveillance Summaries, vol.

65, no. 3, pp. 1-23, 2016.

[5] M. Samms-Vaughan, M. Rahbar, A. Dickerson, K. Loveland, M. Hessabi, D.

Pearson, J. Bressler, S. Shakespeare-Pellington, M. Grove, C. Coore-Desai, J.

Reece and E. Boerwinkle, "The diagnosis of autism and autism spectrum

 395

disorder in low- and middle-income countries: Experience from Jamaica", Autism,

vol. 21, no. 5, pp. 564-572, 2017.

 [6] N. Akshoomoff, C. Corsello and H. Schmidt, "The Role of the Autism

Diagnostic Observation Schedule in the Assessment of Autism Spectrum

Disorders in School and Community Settings", The California School

Psychologist, vol. 11, no. 1, pp. 7-19, 2006.

[7] E. Braaten and G. Felopulos, Straight talk about Psychology testing for kids.

New York: The Guilford Press, 2012, pp. 52-53.

 [8] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT Press, 2016,

pp. 164-223.

[9] Maths Learning Service: Revision Matrices. 2007.

[10] M. Labs, "Secret Sauce behind the beauty of Deep Learning: Beginners

guide to Activation Functions", Towards Data Science, 2017. [Online]. Available:

https://towardsdatascience.com/secret-sauce-behind-the-beauty-of-deep-

learning-beginners-guide-to-activation-functions-a8e23a57d046.

[11]] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT Press, 2016,

pp. 1-26.

[12] A. Walia, "Types of Optimization Algorithms used in Neural Networks and

Ways to Optimize Gradient Descent", Towards Data Science, 2017. [Online].

Available: https://towardsdatascience.com/types-of-optimization-algorithms-used-

in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f.

[13] "First Order Optimization Methods", A Bit less Wrong, 2016.

 396

[14] S. Ruder, "An overview of gradient descent optimization algorithms", 2016.

[15] Q. Yue and C. Ma, "Deep Learning for Hyperspectral Data Classification

through Exponential Momentum Deep Convolution Neural Networks", Journal of

Sensors, vol. 2016, pp. 1-8, 2016.

[16] C. Olah, "Calculus on Computational Graphs: Backpropagation", colah's

blog, 2015.

[17] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT Press, 2016,

pp. 29-50.

[18] I. Kamp-Becker, M. Ghahreman, M. Heinzel-Gutenbrunner, M. Peters, H.

Remschmidt and K. Becker, "Evaluation of the revised algorithm of Autism

Diagnostic Observation Schedule (ADOS) in the diagnostic investigation of high-

functioning children and adolescents with autism spectrum disorders", Autism,

vol. 17, no. 1, pp. 87-102, 2013.

[19] C. Lord, M. Rutter, P. DiLavore and S. Risi, Autism diagnostic observation

schedule, second edition (ADOS-2). Los Angeles, CA: WPS, 2012.

[20] "Overview-Autism Genetic Resource Exchange", Agre.autismspeaks.org.

[Online]. Available:

http://agre.autismspeaks.org/site/c.lwLZKnN1LtH/b.5002149/k.E3CE/Overview.ht

m.

[21] "NumPy — NumPy", Numpy.org. [Online]. Available: http://www.numpy.org/.

[22] "Python Data Analysis Library — pandas: Python Data Analysis

Library", Pandas.pydata.org. [Online]. Available: https://pandas.pydata.org.

 397

[23] "scikit-learn: machine learning in Python — scikit-learn 0.19.1

documentation", Scikit-learn.org. [Online]. Available: http://scikit-learn.org/stable/.

[24] "Matplotlib: Python plotting — Matplotlib 2.1.2

documentation", Matplotlib.org. [Online]. Available: https://matplotlib.org.

[25] "The Jupyter Notebook — Jupyter Notebook 5.4.0 documentation", Jupyter-

notebook.readthedocs.io. [Online]. Available: https://jupyter-

notebook.readthedocs.io/en/stable/notebook.html.

[26] "PyTorch | About", Pytorch.org. [Online]. Available: http://pytorch.org/about/.

[27] "PyTorch documentation — PyTorch master documentation", Pytorch.org.

[Online]. Available: http://pytorch.org/docs/master/index.html.

[28] "CUDA Zone", NVIDIA Developer. [Online]. Available:

https://developer.nvidia.com/cuda-zone.

[29] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT Press, 2016,

pp. 271-325.

[30] Chervinskii, Schematic picture of an autoencoder architecture. 2015.

[31] "Autoencoder", Maciek, 2018.

[32] O. Tadevosyan-leyfer, M. Dowd, R. Mankoski, B. Winklosky, S. Putnam, L.

McGrath, H. Tager-flusberg and S. Folstein, "A Principal Components Analysis of

the Autism Diagnostic Interview-Revised", Journal of the American Academy of

Child & Adolescent Psychiatry, vol. 42, no. 7, pp. 864-872, 2003.

[33] "torch.nn — PyTorch master documentation", Pytorch.org, 2018. [Online].

Available: http://pytorch.org/docs/master/nn.html#l1loss.

 398

[34] A. Sharma V, "Understanding Activation Functions in Neural Networks",

Medium, 2017. [Online]. Available: https://medium.com/the-theory-of-

everything/understanding-activation-functions-in-neural-networks-9491262884e0.

[35] "Deep Learning with Keras", O’Reilly | Safari, 2018. [Online]. Available:

https://www.safaribooksonline.com/library/view/deep-learning-

with/9781787128422/8e232ec5-c2b8-48ee-b4ea-294d1e344533.xhtml.

[36] D. Clevert, T. Unterthiner and S. Hochreiter, FAST AND ACCURATE DEEP

NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS). Published

as a conference paper at ICLR 2016, 2016.

[37] H. Patel, "SELU vs RELU activation in simple NLP models", Hardik Patel,

2017. [Online]. Available: https://www.hardikp.com/2017/07/24/SELU-vs-RELU/.

[38] Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang and Yanpeng Li,

"Improving deep neural networks using softplus units", 2015 International Joint

Conference on Neural Networks (IJCNN), 2015.

[39] L. Bottou, Stochastic Gradient Descent Tricks. Microsoft Research, 2012.

[40] elite data science, overfitting. 2017

[41] Srivastava, Nitish, et al., Dropout: a simple way to prevent neural networks

from overfitting. 2014.

[42] G. Roffo, "Ranking to Learn and Learning to Rank: On the Role of Ranking

in Pattern Recognition Applications", PhD, University of Glasgow, 2018.

[43] K. Markham, "scikit-learn video #7: Optimizing your model with cross-

validation", The Official Blog of Kaggle.com, 2018.

 399

[44] "Challenging Behavior in Autism: Self-Injury | Interactive Autism

Network", Iancommunity.org, 2018. [Online]. Available:

https://iancommunity.org/aic/challenging-behavior-autism-self-injury.

	USING AUTOENCODER TO REDUCE THE LENGTH OF THE AUTISM DIAGNOSTIC OBSERVATION SCHEDULE (ADOS)
	Recommended Citation

	Microsoft Word - USING AUTOENCODER TO REDUCE THE LENGTH OF THE ADOS-Revised1.docx

