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ABSTRACT 

This thesis uses autoencoders to explore the possibility of reducing the length of 

the Autism Diagnostic Observation Schedule (ADOS), which is a series of tests 

and observations used to diagnose autism spectrum disorders in children, 

adolescents, and adults of different developmental levels. The length of the 

ADOS, directly and indirectly, causes barriers to its access for many individuals, 

which means that individuals who need testing are unable to get it. Reducing the 

length of the ADOS without significantly sacrificing its accuracy would increase 

its accessibility. The autoencoders used in this thesis have specific connections 

between layers that mimic the sectional structure of the original ADOS. 

Autoencoders reduce the length of the ADOS by conducting its dimensionality 

through combining original variables into new variables. By examining the 

weights of variables entering the reduced diagnostic, this thesis explores which 

variables are prioritized and deprioritized by the autoencoder. These information 

yields insights as to which variables, and underlying concepts, should prioritize in 

a shorter ADOS. After training, all autoencoders used were able to reduce 

dimensionality with minimal accuracy losses. Examination of weights yielded 

many keen insights as to which ADOS variables are the least important to their 

modules and can thus be eliminated or deprioritized in a reduced diagnostic. In 

particular, the observation of self-injurious behavior was declared entirely 

unnecessary in the first three modules of the ADOS, a finding that corroborates 
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other recent experimental results in the domain. This observation suggests that 

the solutions converged upon by the model have real-world significance.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction  

Autism spectrum disorders (ASD) can pose tremendous developmental 

challenges to children who have them. When parents suspect that their child's 

neurological development is abnormal, it is essential for them to have their child 

examined and assessed by experts to verify if an autism spectrum disorder 

causes their troubles. Unfortunately, the autism diagnostic process is often 

cumbersome and costly, and many parents faced with significant barriers to its 

access. Many of these obstacles, directly and indirectly, result from the length of 

the autism diagnostic process. If the process could shorten without decreasing its 

effectiveness, many parents and their children could greatly benefit from the 

erosion of barriers to accessing autism diagnostic services. 

Autism spectrum disorders (ASD) are a group of complex neurological 

conditions of brain development. These disabilities are characterized by 

weakness of social interaction and communication, repetitive and stereotypic 

behaviors, reorganized in children during the first years [1]. The symptoms of 

ASD are apparent in children before three years of age, but in a rare situation, it 

can diagnosed at even earlier stages.  

According to a US government survey of American parents, in the United 

States, for every 45 children, at least one is diagnosed with ASD [2]. This number 
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is higher than the Center for Disease Control and Prevention's (CDC) estimation, 

which claims that one in 68 children is diagnosed with ASD [3]. The incidence 

rate of autism worldwide is approximately 20 per 10,000 children, and it is four 

times greater in male children than in female children [4]. 

  Autism diagnosis is a process executed by specialists to verify the 

existence of autism, identify its causes, and to propose appropriate therapeutic 

intervention programs. Autism is difficult to diagnose, and the process of 

diagnosis is an ongoing research challenge for specialists in the field. The 

current standard for autism diagnosis is the Autism Diagnostic Observation 

Schedule (ADOS), which is a series of tests and observations administered to 

children, adolescents, and adults of different stages of development. The length 

and complexity of the ADOS logistically limits the number of individuals that can 

be tested for autism. If the ADOS was shorter and less complex, evidence exists 

to suggest that a more substantial amount of individuals could access and afford 

autism diagnosis services. 

 

1.2 Thesis Scope 

his thesis uses autoencoders to test if all four modules of the Autism 

Diagnostic Observation Schedule can be reduced in dimensionality, and to 

examine which variables are prioritized and deprioritized in the dimensionality 

reduction process. The impact of original ADOS variables in the reduced 
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diagnostic is reviewed, and all insights gained from this process are catalogued 

and explored. 

 

1.3 Purpose 

The purpose of this thesis is to create an algorithm that reduces the length 

of the Autism Diagnostic Observation Schedule by lowering its dimensionality 

without significantly sacrificing its accuracy. The algorithm is designed to 

incorporate the sectional structure of the ADOS. When reducing dimensionality, 

the algorithm prioritizes and de-prioritizes different variables. Examining this 

information will yield insights regarding the ideal conceptual focus of potentially 

reduced versions of the ADOS.  

The ADOS is currently a long and cumbersome test to administer, which is 

problematic from an access standpoint. There is plenty of evidence that indicates 

that autism is under-diagnosed in developing countries. Part of the problem is 

that there are too many barriers to administering the test. According to a paper 

covering the hurdles of implementing the test in Jamaica, high administration 

costs and long waiting lists prevent many children from being tested for autism 

[5]. The high administration cost and long waiting lists can likely be at least 

partially attributed to the length of the test. More extended tests reduce the 

number of tests that can be administered in one day, which undoubtedly 

exacerbates long waiting lists. Likewise, the length and complexity of the test 
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drive up administration costs [6]. Finding a way to reduce the test without 

sacrificing its accuracy could allow for a newer version of the ADOS to be 

accessed by more significant numbers of potential patients worldwide. Any 

project that assists in this endeavor is a worthwhile task. In the United States, a 

full-length neuropsychological evaluation of the potential for autism spectrum 

disorder within a child can cost between $1,200 to $2,500 and take up to five 

hours. For a bare bones autism diagnostic process, without any interaction with 

parents or detailed feedback, the price can range from $500 to $800, and can 

take up to 2 hours. The price of these procedures depends upon the length and 

amount of labor required from highly-compensated specialists in the field [7]. 

 

1.4 Approach 

This thesis employs an autoencoder with connections that mirror the 

sectional structure of each ADOS module. The extent which each variable in the 

input influenced the reduced-length diagnostic is assessed and their relative 

impacts are ranked. This information might yield insights as to which aspects of 

the ADOS are the most and least important. Furthermore, this thesis aims to 

provide as much useful information as possible to psychologists designing the 

next version of the ADOS. All unusual patterns and trends from the results of the 

autoencoders are cataloged. It is possible that this information could shed light 
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on the way that different tests within the diagnostic could be fused for the sake of 

efficiency. 
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CHAPTER TWO 

BACKGROUND 

2.1 Introduction  

This section is an overview of the field of machine learning and the 

background mathematical and algorithmic techniques needed to comprehend the 

research methods used in this thesis.  

 

2.2 Machine Learning 

Machine learning is artificial intelligence research branch that involves a 

combination of statistics, mathematics, and programming. Machine learning 

algorithms train a computer to correctly execute a task on its own, without explicit 

programming. There are three types of machine learning tasks: supervised 

learning, unsupervised learning, and reinforcement learning. 

 

2.3 Supervised Learning 

Supervised learning involves training a machine learning algorithm to find 

a target function that reliably maps an input (or set of inputs) to an output (or set 

of outputs).  The algorithm is trained with a dataset that contains the correct 

outputs. This dataset is typically referred to as the training set. During training, 

the algorithm increases the accuracy of its target function iteratively. Once the 

algorithm trained, the efficiency of the algorithm is tested on a new dataset called 
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the test set. There are two common types of supervised learning problems: 

classification and regression. 

2.3.1 Classification 

    In a classification problem, an algorithm attempts to map an input to a 

categorical variable. The goal of classification is to figure out which category an 

input falls into, given a set of options. An algorithm is judged by the accuracy by 

which it can correctly predict which group an input should place too.     

2.3.2 Regression 

Regression tasks involve mapping an input to a continuous variable. In 

this case, the algorithm attempts to predict the correct output value. The 

accuracy of the algorithm is judged by the average error between the network’s 

output predictions and the correct values. 

 

2.4 Regularization 

Regularization, in machine learning, refers to a process by which 

overfitting can be avoided. Overfitting occurs when a model adapts too closely to 

the peculiarities of an individual data set, rather than learning a target function 

that can be used for different data sets of the same category. 
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2.5 Neural Network 

Neural networks are formally referred to as Artificial Neural Networks 

(ANN). They are a class of machine learning algorithm that has risen steadily in 

popularity over the previous decade. Training neural networks to solve problems 

is a process that is often referred to as “deep learning” colloquially. A neural 

network consists of connections of units or nodes called artificial neurons 

arranged in layers.  

Neural networks can describe as computational graphs, which place 

mathematical operations into nodes that connect to each other. When the output 

of one node is the input of another, an arrow can be drawn from the first node to 

the second[8]. Every neural network diagram displays the computational graph 

for that network. Nodes in a neural network are referred to as neurons. There are 

many different variations of neural networks that currently used for various tasks. 

2.5.1 Deep Feedforward Networks 

The most basic version of a neural network is called a feedforward neural 

network, or a multilayer perceptron. A multilayer perceptron consists of artificial 

neurons arranged in sequential layers. The first layer of the network is comprised 

of the data, which is the input for the model. Each neuron typically corresponds 

to a dimension or variable in that dataset. The first layer takes the form of a 

matrix, which is transformed by matrix multiplication with a set of numbers 

referred to as weights that are often randomly initialized. A further level of 
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transformation can be provided to introduce non-linearity if an activation function 

is implemented. The neurons in the following layer of the neural network 

represent the transformed version of the first layer, following matrix multiplication 

with weights. Through this process, data is continually transformed in each 

consecutive layer, until it reaches the final layer or the output layer. This process 

collectively referred as a forward pass [8]. 

 In supervised learning, the output of a neural network is checked for 

accuracy through a specified criterion. An algorithm is then implemented to 

adjust the weights of each layer by a small amount, with the goal of producing a 

more accurate output. Another forward pass is then conducted, and this process 

repeats in many iterations until a neural network has “learned” how to transform 

data to make consistently accurate predictions. 

 

2.6 Tensor 

A tensor is a mathematical object that can be used to represent any N-

dimensional data structure. A tensor is analogous to a container for data that can 

apply mathematical operations. A1-dimensional tensor is a vector; a 2-

dimensional tensor is a matrix, etc. Machine learning algorithms involve 

mathematical operations on data contained within tensors. 

1. One-dimensional tensor = vector. 
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2
5
1

 

2. Two-dimensional tensor = matrix.  

1 5 7
4 4 3
2 6 9

 

 

2.7 Matrix Multiplication 

If matrix A is a matrix with dimensions of n x m and matrix B is a matrix of 

m x p dimensions, then the product of A X B is a matrix of n x p dimensions. 

Each entry in the new matrix is given by multiplying the entries of a row in A by a 

column in B and summing the results. Matrix multiplication is not a commutative 

operation: the product of A X B does not equal the product of B X A. Additionally, 

matrix multiplication can only work if the column number in the first matrix 

matches the row number in the second matrix [9]. 

2 4 5
1 0 7

𝑥 𝑎
𝑦 𝑏
𝑧 𝑐

=  2𝑥 + 4𝑦 + 5𝑧 2𝑎 + 4𝑏 + 5𝑐
𝑥 + 7𝑧 𝑎 + 7𝑐  

 

2.8 Hadamard Product 

The Hadamard Product is a mathematical operation that is conducted 

between two matrices. It can only be calculated for two matrices of the same 
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dimensions. The Hadamard Product of two matrices is a matrix in which each 

element is the product of corresponding elements in the first two matrices.  

2 7
3 5 ⨀  1 1

0 0 =  (2 ∗ 1) (7 ∗ 1)
(3 ∗ 0) (5 ∗ 0) =  2 7

0 0  

 

2.9 Activation Function 

Activation functions are transformations that influence the output from a 

layer of neurons in a neural network. Activation functions can act as gates that 

block or allow neurons pass their values to the next layer based on a threshold, 

or they can transform the output of a neuron based on a continuous or discrete 

limit. 

Activation functions are vital in neural networks because they introduce 

non-linearity into the network. Besides, without activation functions between 

layers, each neural network layer would be a linear transformation of the 

previous layer. If this is the case, the target function between input and output is 

limited in its complexity, and the network likely fails to converge when tasked with 

solving a difficult non-convex optimization problem. By introducing non-linearity 

into a neural network training process, activation functions allow neural networks 

to find significantly more complex methods of mapping an input to an output [10].  
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2.10 Loss Function 

Loss functions are a crucial part of neural networks. Loss function can 

also be referred to as cost functions. A loss function is a mathematical 

representation of the gap between a network’s predictions and the correct 

values. The value of a loss function will always be positive, as it represents the 

inconsistency between forecasts and right values. Many different loss functions 

can be used in different situations [11]. For example, standard loss functions for 

regression problems are mean squared error and L1 loss. There is no way to 

quickly know which loss function will provide the best results for a given neural 

network experiment. Experimenting with multiple viable loss functions is a good 

practice for smaller scale problems where training time is not too cumbersome.  

If a neural network has at least one hidden layer, its loss function will 

almost certainly be non-convex. For clarity, a convex function has a single global 

minimum. Minimizing a convex loss function is relatively simple, as an algorithm 

needs merely to descend towards a single global minimum. Unfortunately, neural 

networks have non-convex loss functions that are marked by multiple local 

minima, rather than a single global minimum.  

 

2.11 Optimizer 

If a neural network minimizes a loss function to the best of its abilities, it 

must acquire a way to find the lowest point on a very complex non-convex loss 
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function. Finding a minimum point is a complicated task, and this is the purpose 

of optimization algorithms [12]. 

Optimization algorithms can be separated into first-order optimization 

algorithms and second-order optimization algorithms. First-order optimization 

algorithms minimize a loss function concerning its gradient. A gradient is merely 

a vector containing the partial derivatives of a function. In other words, the 

gradient is the multivariable equivalent of a derivative in single variable calculus, 

which is the slope or instantaneous rate of changing the output regarding its 

input. Second order methods use the Hessian, which is the multivariable 

equivalent of the second derivative. A Hessian can be as the gradient of a 

function’s gradient. First-order optimization methods are significantly less 

computationally costly than second-order optimization methods, and the following 

explanations and algorithms covered are all first-order optimization methods [13]. 

2.11.1 Gradient Descent 

All of the popular first-order optimization algorithms use an approach 

known as gradient descent. Gradient descent optimizers, following a forward 

pass, calculate the gradient of the loss function concerning the network’s 

parameters, mainly the weights. This gradient is calculated with an algorithm 

called backpropagation, which is a computational implementation of reverse 

mode differentiation. After the slope calculated, the weights are then adjusted in 

small steps in the opposite direction of the loss function gradients [14]. Then 
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another forward pass is calculated, and the loss function’s gradient is again 

calculated, and weights are then adjusted. The goal of gradient descent 

algorithms is to descend along the slope to find an optimal solution. 

2.11.2 Learning Rate 

The size of each adjustment, or step along the gradient, is called the 

learning rate of an optimizer. If the learning rate is too small, an optimizer might 

take too long to train, as its progress towards an optimal solution will take too 

long. If the learning rate is too large, the optimizer might “overshoot” the local 

region that leads to a minimum and skips over that area of the loss function 

entirely. Finding the best learning rate is often a matter of intuition and 

experimentation [13]. 

2.11.2 Batch Size 

The batch size of a neural network in training refers to the number of data 

samples that are sent through the network in a single forward pass to calculate 

the gradient of the loss function. A forward pass of all data samples in a neural 

network referred to as an epoch [11].  

2.11.3 Stochastic Gradient Descent 

The equation for stochastic gradient descent is:  

 𝜃 =  𝜃 −  𝛼 ∗ ∇𝐽(𝜃) 

In this equation, θ refers to the parameters updated. α refers to the 

learning rate or the size of the adjustment. ∇J(θ) refers to the gradient of the loss 
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function concerning the gradient. Collectively, α⋅∇J(θ) refers to the update of the 

parameters by the optimizer. In other words, stochastic gradient descent updates 

the parameters opposite the gradient of the loss function scaled by a constant 

called the learning rate [14]. 

2.11.4 Momentum  

If a gradient descends much more steeply in one dimension than in 

others, stochastic gradient descent tends to oscillate when updating, and often 

fails to drop in the correct amount towards a local minimum. Momentum is a 

technique that can be added to stochastic gradient descent to address this.  

Momentum mitigates oscillation and emphasizes the correct direction for the 

algorithm to descend in. It does this by incorporating information from the last 

update into the current update [15]. 

In mathematical terms, if the update of stochastic gradient descent is 

called v, then the new update can be formulated via the following equation: 

𝑣! = 𝜇 ∗ 𝑣!!! + 𝛼 ∗ ∇𝐽 𝜃  

In this equation, µ refers to a fraction of the previous update. µ is often a 

value near 1. Simply put, the last update, or a scaled version almost equal the 

previous update is added to the learning rate times the gradient to create the new 

update. The algorithm then updates the parameters with the equation [14]: 

𝜃 = 𝜃 − 𝑣! 

or 
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𝜃 = 𝜃 − (𝜇 ∗ 𝑣!!! + 𝛼 ∗ ∇𝐽 𝜃 ) 

In simpler terms, momentum works much as it does in its classical physics 

definition.  As the algorithm descends the gradient, it theoretically descends 

faster and faster. Momentum increases for terms with gradients pointing in the 

same direction and reduces the rate of updates for terms with gradients leading 

in opposite directions, which effectively accelerates the algorithms descent along 

the gradient and minimizes the oscillation of the optimizer [15]. 

 

2.12 Backpropagation 

Neural networks are made computationally tractable with the 

implementation of the back-propagation algorithm. Backpropagation is a neural 

network specific implementation of a technique called reverse mode 

differentiation, which allows for the rapid calculation of derivatives [16]. 

A partial derivative shows how altering one value affects a-partially 

dependent value. Within the context of a computational graph, it shows the 

expansive effects of altering different node. To compute partial derivatives 

between nodes that are not directly connected, one must sum over all possible 

paths from one node to another while multiplying the partial derivatives of each 

edge of a path together [17]. This is one way to think about how the chain rule in 

multivariable calculus works. 
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This problem here is that the number of paths between different nodes 

explodes as a neural network gets larger, which quickly makes a typical 

application of the multivariate chain rule computationally intractable. Forward 

mode differentiation and reverse mode differentiation are two techniques that 

help address this. Both techniques merge paths together at each node, rather 

than summing over all possible paths individually. Forward mode differentiation 

starts at input to the graph, and tracks how it affects every node forward. The 

derivative of every node with respect to the input is calculated. Once this is done, 

the derivative of the output with respect to every input has been calculated. 

Reverse mode differentiation starts at the graphs output, and then moves 

backwards, giving the derivative of the output with respect to every node in one 

calculation [16].  

If a graph has 100 inputs and one output, forward mode differentiation 

would have to move through the graph 100 times to get the derivative of the 

output with respect to all outputs. Reverse mode differentiation is able to get this 

same derivative while moving through the graph only once. For most neural 

networks, reverse mode differentiation is exponentially faster. The 

backpropagation algorithm, which applies reverse mode differentiation to neural 

networks, makes most neural networks computationally tractable. 
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CHAPTER THREE 

AUTISM DIAGNOSTIC OBSERVATION SCHEDULE 

 

3.1 Introduction 

This section describes each module of the Autism Diagnostic Observation 

Schedule (ADOS) in detail. The section communicates the origin and parameters 

of the data used in this thesis.  It includes the purpose of each module and the 

concepts that it covers. Each variable gets explained thoroughly. The section 

contains the significance of different scores for each variable, and lists the 

shortened encodings used in the data.  

 

3.2 Autism Diagnostic Observation Schedule (ADOS) 

ADOS is a tool for diagnosing and assessing autism. The procedure 

consists of a sequence of structured and semi-structured tasks that involve social 

interaction between the inspector and the participant. It is uesed to evaluate the 

potential for autism spectrum disorders within an individual [18]. 

 

3.3 ADOS  Modules 

ADOS modules are activities of social communicative sequences, 

structured situation, and unstructured situations that allow the examiner to 
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observe whether any behaviors occur that determine the presence of autism and 

other pervasive developmental disorders. The activities are tasks runs by the 

examiner to allow for a consistent observation of the participant. These activities 

contain several observationa items. The items are features of behavior that the 

inspector focuses on detecting throughout the task. The examiners rate each 

observation according to the coding rules and specific coding standards [19]. 

The ADOS has four modules which are Module 1, Module 2, Module 3 , 

and Module 4. The examiners select it based on the individual's expressive 

language level or chronological age level. Each module can be administered in 

the range of 45 minutes to 100 minutes. It is suitable for children and adults of 

different ages and language levels reaching non-speaking to fluently [19].  

In general Module 1 and Module 2 are designed for children who are not 

verbally fluent. Module 3 and Module 4 developed for participants who are 

verbally fluent. However, the difference between Module 3 and Module 4 is that 

Module 3 observes through play along with interview questions to collect 

information about social communication, while Module 4 entirely depends on 

interview questions and conversation [19].  

The table below shows the different ages and language levels between 

the modules [19]. 
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Table 1. ADOS Modules Ages and Language Levels 

Language level Chronological age range ADOS Module 
No speech/ simple phrase 31 months and older Module 1 
Phrase speech not verbally 

fluent Any age Module 2 

Fluent speech Children/ Adolescent 
Usually under 16 Module 3 

Fluent speech Adolescent / Adult Module 4 
 

As mentioned earlier, the examiner runs different tasks on the participant 

for observation which are call activities. The table below shows a list of the 

activities between modules [19].  

Table 2. Modules Activities 

Module 1 Module 2 Module 3 Module 4 
1. Free Play 
2. Response to 
Name 
3. Response to 
Joint Attention 
4. Buble play 
5. Anticipation of 
a Routine With 
objects 
6. Responsive 
social smile 
7. Anticipation of 
a Social Routine 
8. Functional and 
Symbolic 
Imitation 
9.Birthday Party 
10.Snack 

1. Construction 
Task 
2. Response to 
Name 
3. Make-Believe 
Play 
4. Joint 
Interactive Play 
5. Conversation 
6. Response to 
Joint Attention 
7. Demonstration 
Task 
8. Description of 
Picture 
9.Telling a Story 
From a Book 
10. Free Play 

1. Construction 
Task 
2. Make-Believe 
Play 
3. Joint 
Interactive Play 
4. Demonstration 
Task 
5. Description of a 
Picture 
6. Telling a Story 
From a Book 
7. Cartoons 
8. Conversation 
and Reporting 
9. Emotions 
10. Social 
Difficulties and 

1. Construction 
Task* 
2. Telling a Story 
From a Book 
3. Description of 
a Picture* 
4. Conversation 
and Reporting 
5. Current Work 
or School* 
6. Social 
Difficulties and 
Annoyance 
7. Emotions 
8. Demonstration 
Task 
9. Cartoons* 
10.Break 
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11.Birthday Party 
12.Snack 
13. Anticipation of 
a Routine with 
Objects 
14. Buble Play 

Annoyance 
11. Break 
12.Friends, 
Relationship and 
Marriage 
13.Loneliness 
14. Creating a 
Story 

11. Daily Living* 
12. Friends, 
Relationship and 
Marriage 
13.Loneliness 
14.Plans and 
Hopes 
15. Creating a 
Story 

* optional 

3.3.1 Module 1  

Module 1 is dedicated to children ages 31 months and older who have 

language levels of no speech to a simple phrase or single words. This module 

also can be used for adolescent and adult who have the same language level.  

Module 1 of the ADOS consists of 10 activities with 29 observation items.  

Each item is rated by the examiner according to 5 main categories, "Language 

and Communication," "Reciprocal Social Interaction," "Play,” "Stereotyped 

Behaviors and Restricted Interests,” and ”Other  Abnormal Behaviors.” [18] 

The table below shows Observation Items for Language and 

Communication section. In this section, there are 8 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 3. Module 1 Section 1 Observation Items   

Section A: Language and Communication 
Observation Items Abbreviation 

A1. Overall level of non-echoed spoken language  (OLANG) 
A2. Frequency of Spontaneous Vocalization Directed to Others  (FVOC) 
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A3. Intonation of Vocalizations or Verbalizations (INTON) 
A4. Immediate Echolalia  (IECHO) 
A5. Stereotyped/Idiosyncratic Use of Words or Phrases  (STEREO) 
A6. Use of Another’s Body  (UOTHER) 
A7. Pointing  (POINT) 
A8. Gestures  (GEST) 

 

The table below shows Observation Items for Reciprocal Social Interaction 

section. In this section, there are 12 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 4. Module 1 Section 2 Observation Items   

Section B: Reciprocal Social Interaction 
Observation Items Abbreviation 

B1. Unusual Eye Contact  (UEYE) 
B2. Responsive Social Smile  (SSMILE) 
B3. Facial Expressions Directed to Others  (FACEO) 
B4. Integration of Gaze and Other Behaviors During Social 
Overtures  

(GZSOV) 

B5. Other Behaviors During Social Overtures, Shared 
Enjoyment in Interaction 

(SHRNJ) 

B6. Response to Name  (RNAME) 
B7. Requesting  (REQ) 
B8. Giving  (GIVE) 
B9. Showing  (SHOW) 
B10. Spontaneous Initiation of Joint Attention  (SIJNT) 
B11. Response to Joint Attention  (RJNT) 
B12. Quality of Social Overtures  (QSOV) 

 
The table below shows Observation Items for Play section. In this section, there 

are 2 observation items the examiner evaluates according to the specific coding 

standards [19]. 
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Table 5. Module 1 Section 3 Observation Items 

Section C: Play 
Observation Items Abbreviation 

C1. Functional Play with Objects  (FPLAY) 
C2. Imagination/Creativity  (IMGCR) 

 

The table below shows Observation Items for Stereotyped Behaviors and 

Restricted Interests section. In this section, there are 4 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 6. Module 1 Section 4 Observation Items 

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person  (USENS) 
D2. Hand and Finger and Other Complex Mannerisms  (OMAN) 
D3. Self-Injurious Behavior (SELFINJ) 
D4. Unusually Repetitive Interests or Stereotyped Behaviors  (URBEH) 

 

The table below shows Observation Items for Other Abnormal Behaviors section. 

In this section, there are 3 observation items for the examiner to rate according 

specific coding standards [19]. 

Table 7. Module 1 Section 5 Observation Items 

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity  (ACTIVE) 
E2. Tantrums, Aggression, Negative or Disruptive Behavior  (AGG) 
E3. Anxiety  (ANXTY) 



  

 24 

3.3.2 Module 2  

Module 2 is dedicated to children of any age who have language level of 

some phrase speech but not verbally fluent. This module also can be used for 

adolescent and adult who have the same language level. Children under age of 3 

who are verbally fluent are examined with this module even if they meet Module 

3 standards. 

Module 2 of the ADOS consists of 14 activities with 28 observation items.  

Each item is rated by the examiner according to 5 main categories, “Language 

and Communication,” ” Reciprocal Social Interaction,” ” Play,” ” Stereotyped 

Behaviors and Restricted Interests,” and ” Other  Abnormal Behaviors.”[19] 

The table below shows Observation Items for Language and 

Communication section. In this section, there are 7 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 8. Module 2 Section 1 Observation Items 

Section A: Language and Communication 
Observation Items Abbreviation 

A1. Overall level of non-echoed spoken language  (OLANG) 
A2. Speech Abnormalities Associated With Autism  (SPABN) 
A3. Immediate Echolalia  (IECHO) 
A4. Stereotyped/Idiosyncratic Use of Words or Phrases  (STEREO) 
A5. Conversation  (CONVS) 
A6. Pointing  (POINT) 
A7. Descriptive, Conventional, Instrumental or informational 
Gestures  

(DGEST) 
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The table below shows Observation Items for Reciprocal Social Interaction 

section. In this section, there are 12 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 9. Module 2 Section 2 Observation Items 

Section B: Reciprocal Social Interaction 
Observation Items Abbreviation 

B1. Unusual Eye Contact  (UEYE) 
B2. Facial Expressions Directed to Others (FACEO) 
B3. Shared Enjoyment in Interaction  (SHRNJ) 
B4. Response to Name  (RNAME) 
B5. Showing  (SHOW) 
B6. Spontaneous Initiation of Joint Attention  (SIJNT) 
B7. Response to Joint Attention  (RJNT) 
B8. Quality of Social Overtures  (QSOV) 
B9. Amount  of Social Overtures  (ASOV) 
B10. Quality of Social Response  (QSRES) 
B11. Amount of Reciprocal Social Communication  (ARSOC) 
B12. Overall Quality of Rapport  (OQRAP) 

 

The table below shows Observation Items for Play section. In this section, 

there are 2 observation items for the examiner to rate according specific coding 

standards [19]. 

Table 10. Module 2 Section 3 Observation Items 

Section C: Play 
Observation Items Abbreviation 

C1. Functional Play with Objects  (FPLAY) 
C2. Imagination/Creativity  (IMGCR) 
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The table below shows Observation Items for Stereotyped Behaviors and 

Restricted Interests section. In this section, there are 4 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 11. Module 2 Section 4 Observation Items 

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person  (USENS) 
D2. Hand and Finger and Other Complex Mannerisms  (OMAN) 
D3. Self-Injurious Behavior (SELFINJ) 
D4. Unusually Repetitive Interests or Stereotyped Behaviors  (URBEH) 

 

The table below shows Observation Items for Other Abnormal Behaviors 

section. In this section, there are 3 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 12. Module 2 Section 5 Observation Items 

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity  (ACTIVE) 
E2. Tantrums, Aggression, Negative or Disruptive Behavior  (AGG) 
E3. Anxiety  (ANXTY) 

 

3.3.3 Module 3  

Module 3 is dedicated to children and adolescent between 4 to 15 years of 

age who have verbally fluent language levels. As mentioned previously, children 
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under age of 2 who are verbally fluent will be examined by Module 2 even if they 

meet Module 3 standards. 

Module 3 of the ADOS consists of 14 activities with 28 observation items.  

Each item is rated by the examiner according to 5 main categories, “Language 

and Communication,” ” Reciprocal Social Interaction,” ” Imagination,” ” 

Stereotyped Behaviors and Restricted Interests,” and ” Other  Abnormal 

Behaviors.” [19] 

The table below shows Observation Items for Language and 

Communication section. In this section, there are 9 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 13. Module 3 Section 1 Observation Items 

Section A: Language and Communication 
Observation Items Abbreviation 

A1. Overall level of non-echoed spoken language  (OLANG) 
A2. Speech Abnormalities Associated With Autism  (SPABN) 
A3. Immediate Echolalia  (IECHO) 
A4. Stereotyped/Idiosyncratic Use of Words or Phrases  (STEREO) 
A5. Offers Information  (OINFO) 
A6. Asks for Information  (AINFO) 
A7. Reporting of Events  (REPRT) 
A8. Conversation  (CONVS) 
A9. Descriptive, Conventional, Instrumental or informational 
Gestures  

(DGEST) 
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The table below shows Observation Items for Reciprocal Social Interaction 

section. In this section, there are 10 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 14. Module 3 Section 2 Observation Items 

Section B: Reciprocal Social Interaction 
Observation Items Abbreviation 

B1. Unusual Eye Contact  (UEYE) 
B2. Facial Expressions Directed to Others (FACEO) 
B3.Language Production and Linked Nonverbal Communication  (LLNVC) 
B4. Shared Enjoyment in Interaction  (SHIRJ) 
B5. Comment on Others’ Emotions/Empathy  (EMPTH) 
B6. Insight Into Typical Social Situations and Relationships  (INSIG) 
B7. Quality of Social Overtures  (QSOV) 
B8. Quality of Social Response  (QSRES) 
B9. Amount of Reciprocal Social Communication  (ARSOC) 
B10. Overall Quality of Rapport  (OQRAP) 

 

The table below shows Observation Items for Imagination section. In this 

section, there is 1 observation item for the examiner to rate according specific 

coding standards [19]. 

Table 15. Module 3 Section 3 Observation Items 

Section C: Imagination 
Observation Items Abbreviation 

C2. Imagination/Creativity  (IMGCR) 
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The table below shows Observation Items for Stereotyped Behaviors and 

Restricted Interests section. In this section, there are 5 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 16. Module 3 Section 4 Observation Items 

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person  (USENS) 
D2. Hand and Finger and Other Complex Mannerisms  (OMAN) 
D3. Self-Injurious Behavior (SELFINJ) 
D4. Excessive Interest in or References to Unusual or Highly 
Specific Topics or Objects or Repetitive Behaviors  

(TOPIC) 

D5. Compulsions or Rituals  (RITL) 
 

The table below shows Observation Items for Other Abnormal Behaviors 

section. In this section, there are 3 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 17. Module 3 Section 5 Observation Items 

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity/Agitation   (ACTIVE) 
E2. Tantrums, Aggression, Negative or Disruptive Behavior  (AGG) 
E3. Anxiety  (ANXTY) 
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3.3.4 Module 4  

Module 4 is dedicated to older adolescent and adult of age16 years and 

older who have verbally fluent language level. As mentioned previously there are 

slight differences between Module 4 and 3. Module 4 depends on interview 

questions and conversation while Module 3 depends on the play along with 

interview questions. 

Module 4 of the ADOS consists of 15 activities with 31 observation items.  

Each item is rated by the examiner according to 5 main categories, “Language 

and Communication,” ” Reciprocal Social Interaction,” ” Imagination,” 

"Stereotyped Behaviors and Restricted Interests,” and ” Other  Abnormal 

Behaviors.”[19] 

The table below shows Observation Items for Language and 

Communication section. In this section, there are 10 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 18. Module 4 Section 1 Observation Items 

Section A: Language and Communication 
Observation Items Abbreviation 

A1. Overall level of non-echoed spoken language  (OLANG) 
A2. Speech Abnormalities Associated With Autism  (SPABN) 
A3. Immediate Echolalia  (IECHO) 
A4. Stereotyped/Idiosyncratic Use of Words or Phrases  (STEREO) 
A5. Offers Information  (OINFO) 
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A6. Asks for Information  (AINFO) 
A7. Reporting of Events  (REPRT) 
A8. Conversation  (CONVS) 
A9. Descriptive, Conventional, Instrumental or informational 
Gestures  

(DGEST) 

A10. Emphatic or Emotional Gestures  (EGEST) 
 

The table below shows Observation Items for Reciprocal Social Interaction 

section. In this section, there are 12 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 19. Module 4 Section 2 Observation Items 

Section B: Reciprocal Social Interaction 
Observation Items Abbreviation 

B1. Unusual Eye Contact  (UEYE) 
B2. Facial Expressions Directed to Others (FACEO) 
B3.Language Production and Linked Nonverbal Communication  (LLNVC) 
B4. Shared Enjoyment in Interaction  (SEI) 
B5. Communication of Own Affect  (CAFF) 

B6. Comment on Others’ Emotions/Empathy  (EMPTH) 
B7. Insight Into Typical Social Situations and Relationships  (INSIG) 
B8. Responsibility  (RESP) 
B9. Quality of Social Overtures  (QSOV) 
B10. Quality of Social Response  (QSRES) 
B11. Amount of Reciprocal Social Communication  (ARSOC) 
B12. Overall Quality of Rapport  (OQRAP) 

 

The table below shows Observation Items for Imagination section. In this 

section, there are 1 observation item for the examiner to rate according specific 

coding standards [19]. 
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Table 20. Module 4 Section 3 Observation Items 

Section C: Imagination 
Observation Items Abbreviation 

C2. Imagination/Creativity  (IMGCR) 
 

The table below shows Observation Items for Stereotyped Behaviors and 

Restricted Interests section. In this section, there are 5 observation items for the 

examiner to rate according specific coding standards [19]. 

Table 21. Module 4 Section 4 Observation Items 

Section	D:	Stereotyped	Behaviors	and	Restricted	Interests	
Observation	Items	 Abbreviation	

D1. Unusual Sensory Interest in Play Material/Person  (USENS) 
D2. Hand and Finger and Other Complex Mannerisms  (OMAN) 
D3. Self-Injurious Behavior (SELFINJ) 
D4. Excessive Interest in or References to Unusual or Highly 
Specific Topics or Objects or Repetitive Behaviors  

(TOPIC) 

D5. Compulsions or Rituals  (RITL) 
 

The table below shows Observation Items for Other Abnormal Behaviors 

section. In this section, there are 3 observation items for the examiner to rate 

according specific coding standards [19]. 

Table 22. Module 4 Section 5 Observation Items 

Section	E:	Other	Abnormal	Behaviors	
Observation	Items	 Abbreviation	

E1.Overactivity/Agitation   (ACTIVE) 
E2. Tantrums, Aggression, Negative or Disruptive Behavior  (AGG) 
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E3. Anxiety  (ANXTY) 
 

 

3.4 ADOS Coding Conventions 

The table below shows coding conventions applied to ADOS modules 

coding sections [19]. 

Table 23. ADOS Coding Convention Modules 

Coding Rate Convention 

0 
 

No evidence of abnormality in the 
behavior according to the 

specifications. The absence of defect 
as specified does not imply the 

expression is normal. 

1 
The behavior is slightly or mildly 

unusual yet not an exact match to the 
type specified but not grossly abnormal. 

2 

The behavior is an exact match to the 
defined abnormality. At this level, the 

severity of coding defect will vary 
according to the item. 

3 

The behavior is blatantly abnormal and 
interferes with the assessment, or the 
behavior is limited therefore making it 

impossible to make a qualitative 
evaluation. 

4 

It shows that test subject displayed no 
instinctive use of words or anything 

close to a word during the entire ADOS 
administration 

7 an abnormal behavior yet, it not 
covered by the other ratings. 

8 
 

The behavior in question did not occur 
and/or the rating is not applicable 
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9 

The item cannot rate due to some 
reason other than that listed for a code 
8, such as if examiner commits an error 

and does not administer a particular 
ADOS activity. This code provides 

examiners with a consistent way to rate 
items that cannot measure and allowing 

it to use for any item. 
 

The coding ratings range from 0 (abnormality specified is absent) through 

2 or 3 (defect determined is present). Optimal or expected performance detailed 

in the code for a rating of 0, and partial, minimal, and/or wavering production 

described in the rest of the codes. In clinical practice, codes of 0, 1, 2, and 3 are 

the ones often considered most. Ratings of 8 or 9 can use for anything that is not 

applicable or that otherwise cannot be coded, as such it should be used sparingly 

because of all the missing data, including 8s or 9s, must change to scores of 0 

on the algorithm [19].  

 

3.5 ADOS DATA 

The ADOS records of the participants can found in the Autism Genetic 

Resource Exchange (AGRE). 

3.5.1 AGRE  

AGRE is a non-profit DNA repository and family registry. It has a database 

of biomaterials, genotypic and phenotypic data that is made available to 

researchers. It is a central shared resource for studies on autism and related 
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disorders.  It has data from 1700+ families with 3300+ affected individuals with 

an Autism Spectrum Disorder. It contains Clinical and biomaterial data for over 

500 twin families [20]. However, accessing the data requires approval. Approval 

information can be found in Appendix A. 

3.5.2 Data information 

The AGRE provided all records following the approvel prosses. Patient 

evaluation results for each module were included.  

Module 1 data contains1055 individuals, Module 2 contains 602 

individuals, Module 3 contains 1158 individuals, and Module 4 contains 264 

individuals. The data was collected between the years 2002 and 2015.  
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CHAPTER FOUR 

MODEL DESIGN 

 

4.1 Introduction 

This section covers all details relevant to the design of the model used in 

this thesis. The information includes details about the Python machine learning 

ecosystem, the type of model used, the unique architectural aspects of the model 

used, the reasoning behind these aspects, and their implementation in math and 

code.   

 

4.2 Python Machine Learning Tools Used 

4.2.1 Numpy 

        Numpy is a Python package used for scientific computing. It contains 

functions that allow for robust array computations, advanced math such as linear 

algebra and Fourier transformations, and can act as an efficient container of 

different types of data. Numpy can very easily integrate with other Python 

libraries and frameworks for specific purposes, such as neural networks and 

machine learning [21]. 
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4.2.1 Pandas 

Pandas is a Python library that provides useful data structures and tools 

for data analysis. In some ways, pandas is analogous to Excel for Python [22].   

4.2.2 Scikit-Learn 

Scikit-learn is a Python library for machine learning tasks. It provides 

many functions for regression, classification, dimensionality reduction, clustering, 

model selection, and preprocessing [23]. 

4.2.3 Matplotlib 

Matplotlib is a Python library that is used for convenient graphing and data 

visualizations [24]. 

4.2.4 Jupyter Notebook 

A Jupyter Notebook is a document, which can contain both computer code 

in specific languages (Python included) and rich text elements (charts, graphs, 

and so forth).  In the Jupyter Notebook, code is can be written and executed in 

the same document. Lines of code can divide into modular cells that can be 

executed individually. Jupyter notebooks run in a server-client application that 

operated through a web browser online or offline. When a notebook document is 

opened, a kernel corresponding to the language of choice (in this case, the 

iPython kernel) gets launched. When a cell of code is executed, the kernel runs 

the computations and produces the output underneath the block [25]. 
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4.3 PyTorch 

PyTorch is a Python constructed deep learning research framework, which 

offers flexibility and high speed. It consists of several libraries such as tensor 

computation that uses strong GPU integration, which is the key of PyTorch 

components.  Also, it contains tape-based autograd that supports all 

differentiable tensor operations. Moreover, it contains a neural networks library 

that is tightly integrated with automatic differentiation and optimization, which 

features famous optimizers such as Stochastic Gradient Descent, RMSprop, and 

Adam [26]. 

4.3.1 Pytorch Components 

 4.3.1.1 Tensor Computations  

Tensors are the core of PyTorch. They are n-dimensional arrays and form 

the fundamental building blocks for many algorithms including neural networks. 

PyTorch tensors are functionally equivalent to numpy arrays , but can be 

operated upon by GPU’s provide significantly faster calculations for many 

machine-learning tasks, including neural networks. A PyTorch tensor can cast 

into a GPU-specific data type, and a model comprised of these tensors can be 

trained on a GPU significantly faster than on a CPU [27]. 

 4.3.1.2 Autograd Mechanics 

The autograd package in PyTorch provides the functionality of automatic 

differentiation. Automatic differentiation is used to quickly evaluate the derivative 
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of a function specified by a computer program by repeatedly applying the chain 

rule to elementary operations [27]. 

Neural networks are typically trained with back-propagation using a unique 

form of automatic differentiation called reverse mode automatic differentiation. 

When using the autograd package, each forward pass of a neural network 

defines a computational graph with tensors as nodes. Each tensor is wrapped in 

a Variable object that represents a node in the computational graph [27]. Back-

propagation through this graph allows for the quick computation of gradients. 

PyTorch autograd implementation is not unique; however, it is swift compared to 

what is offered by many competing frameworks.   

4.3.1.3 Torch.nn 

Torch.nn is a library in PyTorch, which allows the user to build neural 

networks conveniently. It provides a high degree of abstraction over raw 

computational graphs, which makes it simpler to develop and organize neural 

networks of all sizes based on layer types, dimensions, and activation functions 

[26]. Torch.nn is similar to Keras, which providesthe same functionality to users 

of other frameworks like TensorFlow and Theano. 

The nn package contains Modules, which are similar to neural network 

layers. The modules take input and compute an output, and it can hold an 

internal state if needed. Also, nn contains a multitude of loss functions and 

activations for timely implementation. All commonly implemented loss and 
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activation functions are present in PyTorch, allowing for easy experimentation 

with different combinations [27].  

It is possible to build custom nn modules that are more complex than 

existing modules, and this can be done by creating a subclass and defining a 

specific forward operation that receives inputs and computes outputs.  

 4.3.1.4 Torch.optim 

The optim package provides an abstraction for optimization algorithms 

rather than manually writing code to update weights for Variables in a model. 

Powerful and popular optimization algorithms such as AdaGrad and Adam can 

conveniently implement in a model [27]. 

4.3.2 PyTorch Unique Features and Advantages  

4.3.2.1 Tight Integration with Python Language 

        PyTorch has multiple of advantages over other deep learning frameworks. It 

is more tightly integrated with the Python language than competitors such as 

TensorFlow.  PyTorch is underlying C/C++ code is tailored explicitly for 

conveniently working with Python. By comparison, TensorFlow was first built 

entirely in C/C++ and then bound to Python. Using PyTorch is like using other 

Python libraries, such as numpy or scipy. Layers can be written from scratch in 

Python and incorporated into PyTorch models. The code can execute on a line-

by-line basis, which allows for easier debugging. PyTorch also displays the 
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dimensionality of all tensors within a model, which also assists with debugging 

[27]. 

        PyTorch can easily be extended with custom Python code. This allows 

users to build models of any level of uniqueness and complexity while still 

enjoying PyTorch’s lightning fast computational speed. The tighter integration of 

PyTorch with the Python language makes innovation within PyTorch significantly 

more comfortable than in other frameworks, like TensorFlow.   

4.3.2.2 Dynamic Computational Graphs 

        PyTorch defines its computational graphs dynamically, which contrasts from 

the static graph methods used by other Python deep learning frameworks. All 

deep learning frameworks define neural networks as directed acyclic graphs. 

Most structures generate a graph once, and then continually re-use it when 

training the model. PyTorch, on the other hand, creates a graph with each 

forward pass. This dynamic computational graph generation enables a higher 

degree of flexibility in training in many ways, such as allowing inputs of different 

sizes dynamically within the same data set. Any aspect of the computational 

graph can be adjusted on the fly with control flow, from the dimensions of hidden 

layers to the number of hidden layers, to the activation function used between 

layers [27]. 
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 4.3.2.3 Exceptional Speed and Flexibility 

PyTorch also has a low framework overhead and support for acceleration 

libraries featured by hardware manufacturers. Integration with Nvidia’s 

acceleration libraries CUDA and CuDNN is a notable perk of PyTorch.  

PyTorch is also exceptionally fast for training small and large neural 

networks. Memory allocation is also hyper-efficient, as PyTorch contains custom 

memory allocators for GPU’s [27]. PyTorch tensors use the same memory 

allocation as numpy arrays, which allows for data to be converted between 

PyTorch and numpy structures significantly faster than it can in TensorFlow. 

Within the subjective experience of this experiment, PyTorch trained small neural 

networks markedly quicker than TensorFlow did.  

4.3.3 CUDA 

CUDA is a parallel computing platform developed by NVIDIA for use on 

GPU’s. CUDA allows for significantly faster computing with GPU’s and is tightly 

integrated with several popular machine learning frameworks, including PyTorch 

[28]. 

 

4.4 Autoencoder 

Autoencoders are a particular type of feedforward neural network. They 

recreate the model’s input as their target. Naturally, the output layer of an 

autoencoder has the same dimensions as the input layer. Autoencoders have 
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hidden layers smaller than either the input or output layer. An autoencoder 

compresses its inputs in the hidden layers and then attempts to reconstruct the 

input as its output [29]. 

Figure 1. Autoencoder [30]  

The first half of an autoencoder is called the encoder. The encoder 

includes the input layer and any hidden layers up to the smallest hidden layer. 

The most smallest hidden layer in an autoencoder represents the most 

compressed representation of the input. The first half of an autoencoder is called 

the encoder because by compressing the input, it is effectively creating a 

concise, encoded representation of the input [31]. 

The second half of an autoencoder is called the decoder. The decoder 

includes progressively wider hidden layers following the encoded layer, all the 

way until the output layer while attempting to reconstruct the input. This section 

of an autoencoder is called a decoder because it tries to recreate the original 
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input from its encoded representation, without “knowing” what the original input 

looked like, therefore acting as a “decoder” of sorts [31]. 

Autoencoders have very few practical applications currently. These neural 

networks mostly used for experimental causes. They are attractive to 

researchers because of their potential for large-scale, intelligent dimensionality 

reduction. If neural networks are used for large-scale unsupervised learning, 

autoencoders might be able to function as a memory of sorts by compressing the 

massive amounts of data an algorithm might parse through into a condensed 

representation, and then deconstructing that representation to restore the full 

dimensionality of the original data.  

4.4.1 Reasons for Using Autoencoder 

 Applying autoencoders to the Autism Diagnostic Observation Schedule is 

a novel application of autoencoders. Since autoencoders are a type of neural 

network, their effectiveness scales very well with the amount of data available. 

Neural networks also scale in effectiveness with more significant computational 

resources. Since computing power is increasing, and the amount of available 

ADOS data is increasing as well, autoencoders have the potential to be an 

algorithm of considerable interest in the future. Other dimensionality reduction 

methods such as principal components analysis (PCA) have been applied to the 

ADOS by other researchers in recent years [32]. These algorithms, as well as all 

different “shallow” machine learning algorithms, are increasingly less relevant 
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with every year, whereas neural networks are frequently interesting, relevant, 

and efficient. For this reason, autoencoders chosen for this thesis. 

 

 4.5 Autoencoder with Special Connection 

4.5.1 Special Connections with Binary Mask Matrix 

Typically, the computational graph of a neural network features fully 

connected layers. That is, each node in a layer connects to each node in the 

following layer. In effect, that means that each neuron in one layer has an impact 

on every neuron in the next layer. In this experiment, each neuron in the input 

layer corresponds to a variable within ADOS. Similarly, each neuron in the 

hidden layer of the autoencoder corresponds to a new variable in the reduced 

length diagnostic. Every neuron in the input layer that connects with a neuron in 

the hidden layer represents the content of an ADOS items impacting the content 

of reduced diagnostic items. 

 The ADOS features different sections with significantly different subject 

material. If an autoencoder with fully connected layers were to be used, that 

would indicate that questions from all sections should be indiscriminately 

combined in a reduced diagnostic. Given the conceptual differences between 

sections, this does not seem like a logical approach. Therefore, it is necessary to 

enforce specific connections between layers in the autoencoder.  
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 In the experiment’s design, the reduced length diagnostic has the same 

sectional structure as the original diagnostic. The only difference is that each 

section has fewer variables. Each variable in the original diagnostic influences 

every variable in the corresponding section of the reduced diagnostic, and no 

other variables in the reduced diagnostic whatsoever.  

 In other words, connections between neurons in each layer occur in 

discrete groups, rather than ubiquitously. This is achieved through the use of a 

binary adjacency matrix called a mask. The mask matrix exclusively consists of 

0’s and 1’s. The 0’s and 1’s correspond with connections that are to be removed 

and enforced respectively. 

During each forward pass for the network, the binary mask matrix is 

applied to the weight matrix before the weights and the inputs are multiplied 

together. The mask matrix and the weight matrix have the same dimensions, and 

they are combined with an element wise multiplication operation known as the 

Hadamard product. In this operation, corresponding values in each matrix are 

multiplied together. The result of this operation is the preservation of certain 

weights, and the removal of others by setting them to a value of 0. Once the 

weight matrix is combined with the inputs through matrix multiplication, every 

weight corresponding to desired connections is preserved and every weight 

corresponding to undesired connections is set to 0. The diagrams below are 

Hadamard Product of Weight Matrix and Binary Mask Matrix for Module 1, 2, 3 

and 4. Find the other Hadamard Product Diagrams in Appendix B. 
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Figure 2. Module 1 Hadamard Product for 2920 Dimensions  

 

Figure 3. Module 2 Hadamard Product for 2819 Dimensions 
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Figure 4. Module 3 Hadamard Product for 2819 Dimensions  

 

Figure 5. Module 4 Hadamard Product for 3119 Dimensions  
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The first matrix, is the weight matrix. This second matrix, the binary mask 

matrix, is comprised of ones and zeros corresponding to the desired and 

undesired connections. Before the weights are applied to the inputs, the network 

will constrain the weights through element-wise multiplication between the mask 

and the weight matrices. The new weight matrix is the Hadamard product of the 

mask and weight matrices.   

As can be seen in the diagram below, implementing the mask matrix in a 

forward pass erases all undesired connections. The only connections between 

nodes in layers are connections that correspond to specific sections of the 

ADOS. Find The diagrams in Appendix C.  
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Figure 6. Module 1 Autoencoder with Hidden Layer of Size 20 
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Figure 7. Module 2 Autoencoder with Hidden Layer of Size 19 
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Figure 8. Module 3 Autoencoder with Hidden Layer of Size 19 
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Figure 9. Module 4 Autoencoder with Hidden Layer of Size 19 



  

 54 

4.5.2 Creating Mask in PyTorch 

The binary mask used for the special connections between layers was 

originally created as a numpy array prior to its importation into PyTorch. PyTorch 

tensors are generally created from numpy arrays, so this intermediate step was 

required. The mask tensor was created as a PyTorch “FloatTensor” in order to 

match with the tensor type of the model’s weights. The tensor was then 

converted into a CUDA-specified tensor type stored on the GPU.  

The mask for each autoencoder decoder layer is simply a transposition of the 

mask for each autoencoder encoder layer. For example, the mask that works for 

a reduction from 29 to 23 dimensions is simply a transposition of the mask that 

expands 23 dimensions for 29 dimensions. Therefore, for the sake of 

convenience mask, each decoder mask was simply created by transposing the 

corresponding encoder mask. 

4.5.3 Incorporating Mask into Model 

PyTorch allows a user to build custom modules for its nn package. 

Modules in nn function as neural network layers. Building a new module requires 

creating a custom subclass with a unique forward pass that receives Variables as 

inputs and computes Variables as outputs. 

    This experiment features custom layers that feature the aforementioned 

binary mask to selectively enforce and eliminate connections in a manner 

consistent with the sectional structure of the Autism Diagnostic Observation 
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Schedule. The forward pass of each layer is altered to update the weights by 

taking the Hadamard Product, or element-wise multiplication product, of the 

weight matrix and the binary mask matrix before applying the weights to the input 

Variable via matrix multiplication.  

Otherwise, the custom module functions exactly like a standard 

feedforward neural network layer. The layer takes an array as an input and 

multiplies it through a weight matrix. The output of this operation becomes the 

input of the next layer in the neural network. In the case of PyTorch, the input 

array is a Torch tensor for GPU computation wrapped as a differentiable object 

called a Variable. The tensor inside this variable represent the data, which is 

multiplied by a weight matrix in which the undesired connections have already 

been eliminated through element-wise multiplication with the mask matrix or in 

other words the Hadamard Product. 

The custom module for the masked layers created by altering the source 

code for PyTorch regular linear layers used in a standard feedforward neural 

network. These layers involve matrix multiplication between weights and inputs. 

Before this step, the code was added to modify the weight matrix through 

element-wise multiplication with the corresponding mask matrix. 
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4.6 Autoencoder Architecture 

The input layer of each module’s architecture corresponds to the number 

of variables in that module. Since autoencoders attempt the reconstruct their 

input as their output, the output layer for each autoencoder has to have the same 

number of neurons as the input layer. The only things to determine, in terms of 

autoencoder architecture, were the number of hidden layers, and the size of each 

hidden layer, with the smallest hidden layer being the most important, since it 

represents the encoded representation of the diagnostic. 

 When evaluating the architecture of the autoencoder, it is critical to keep 

the project’s larger purpose in mind. The purpose of this thesis is to use an 

autoencoder to develop a viable reduced length diagnostic, rather than find the 

smallest possible encoded representation that an autoencoder can encode and 

then accurately decode. Likewise, the goal is to subjectively comprehend the 

variables that go into the encoded representation, and enforce specialized 

connections between layers to stay true to the sectional structure of the 

diagnostic. 

In light of the goal of making sense of the variables that go into the 

reduced diagnostic, it made sense to have as few hidden layers as possible. 

First, autoencoders with three hidden layers were tested for Module 1. An 

intermediate encoding layer and an intermediate decoding layer helped bridge 

the gaps between the input, encoding, and reconstructed output. While this 

approach yielded a very accurate reconstruction, it was difficult to keep track of 
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the underlying concepts behind variables, or neurons, in the reduced diagnostic 

within the context of the original variables of the diagnostic. For that reason, 

autoencoders with a single hidden layer were chosen, since it is easier to keep 

track of the presence of input variables within the reduced diagnostic. 

4.6.1 Autoencoder Pipeline 

4.6.1.1 Building Autoencoders in PyTorch 

 The nn abstraction method was used to build the autoencoders. NN allows 

for a model to built as a combination of layers and activation functions. Since the 

masked layers had built as custom nn modules, these layers could simply be 

stacked to form the autoencoder in Pytorch. 

 Over the course of this thesis, multiple autoencoders were trained for 

different reduced length diagnostics for each module. The dimensions of every 

autoencoder are listed below. 

4.6.2 List of Autoencoder Architectures Tested 

4.6.2.1 Module 1 

 Module 1 contains 29 variables that are measured. The input layer of each 

autoencoder for Module 1 therefore contains 29 neurons to represent these 

original 29 variables. The dimensions of the output layer of each autoencoder 

match the dimensions of the input layer. Over the course of this thesis, four 

separate autoencoder structures for this module were tested, each with a single 
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hidden layer representing the reduced diagnostic. The only differences between 

these four autoencoders were the connections and the hidden layer size. Hidden 

layer sizes of 20 neurons, 21 neurons, 22 neurons, and 23 neurons were tested. 

During an earlier phase of experimentation, hidden layer sizes slightly smaller 

than 20 neurons were tested. During these trials, the accuracy of the 

reconstruction was significantly worse. Therefore, nothing below 20 neurons was 

used in the final phase of the experiment for Module 1. 

4.6.2.1 Modules 2, 3 and 4 

 Modules 2, 3, and 4 each had four autoencoders trained for them. All 

autoencoders consisted of a single hidden layer. Each module’s experimentation 

involved training autoencoders with hidden layer dimensions of 19, 20, 21, and 

22 neurons. The only difference between the autoencoders for the different 

modules involved the dimensions of the input and output layers. Module 2 

contains 28 variables. Module 3 also contains 28 variables. Module 4 contains 31 

variables. The input and output dimensions of their respective autoencoders 

contain numbers of neurons that match the number of variables.  

4.6.3 Reasons for the Lower Limit in Dimensionality Reduction 

 The purpose of this experiment was to test the possibility of a coherent 

reduced version of the Autism Diagnostic Observation Schedule. Therefore, it did 

not make sense to decrease the dimensionality of the data as much as 

algorithmically possible, since a reduction of too large a magnitude would be 
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inconsistent with the project’s goal. The smallest hidden layer sizes of the 

autoencoders tested in this experiment represent multiple variables eliminated 

from each section of the corresponding module. Reducing dimensionality further 

seemed excessive from a subjective standpoint within the context of finding a 

viable reduced diagnostic size. The lowest dimensionality reductions involved 

removing multiple variables per section. Removing even more variables would 

not have left enough variables to cover the diversity of different concepts on the 

ADOS.  

4.6.4 Selecting Regression Over Classification  

This experiment was treated as a regression problem rather than a 

classification problem. Regression problems involve making predictions about a 

continuous variable, whereas classification problems involve making predictions 

about categorical variables. In regression problems, loss functions involve errors 

between predictions and targets. In classification, loss functions attempt to 

optimize classification accuracy as a binary procedure. 

The scores of different variables on the ADOS all take the form of ordinal 

variables. Only integer values exist, but the hierarchy of the integers has a 

meaning, unlike in a strict classification problem. Because of the ordinal nature of 

ADOS scores, reconstructing the input was treated as a high dimensional 

regression problem, with appropriate loss functions. To make sure that the 
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reconstructions were comparable to the input, values were rounded to the 

nearest integer. 

 

4.7 Hyperparameter Tuning  

 The most important part of training this autoencoder was picking the 

correct hyperparameters for the model, which refers to the choice of loss 

function, optimizer, and activation function. While intuition can certainly guide 

which loss functions, optimizers, and activation functions are tested out, there are 

multiple options for each of these hyperparameters that are plausible. The only 

way to determine which hyperparameter settings allow for the best convergence, 

and therefore most accurate reconstruction of an encoded, reduced 

representation is to test out different combinations. 

4.7.1 Tested Loss Functions 

The loss functions that were tested areaveraged version of Least Absolute 

Error (L1 loss) and Least Squared Error (L2 loss). L2 loss is also called Mean 

Squared Error Loss (MSELoss). Both of these functions are typically used for 

regression tasks. Since the numbers that represent scores on the different tests 

on the ADOS have an ordinal relationship, this problem was treated as a 

regression problem instead of a discrete classification problem. At the end, 

reconstructed values could be rounded in order to represent the integer nature of 

the scores for each variable on the diagnostic. 
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1- L1 Loss 

L1loss is simple error measurement typically used for regression 

problems. It takes the absolute value of each error, sums them up. In 

PyTorch, users have the option to then average this sum on a per-sample 

basis. In other words, this the average absolute value difference between 

the network’s predictions and the correct results [33]. The formula for 

averaged L1 loss is as follows: 

𝐿1 =
1
𝑛 𝑦(!) − 𝑦(!)

!

!!!

 

2- Mean Squared Error Loss (MSELoss) 

Mean squared error, which is also commonly referred to as L2 loss, 

is a very simple error measurement. It takes the difference between the 

estimation and the correct value of each, and then squares it. These 

squares are all summed together, and then divided by the sample size 

[33]. The formula for mean squared error is as follows: 

𝑀𝑆𝐸 =  
1
𝑛 (𝑦(!)

!

!!!

− 𝑦 ! )! 

4.7.1.1 Reasons for Testing Both L1 & L2 Loss 

  At first glance, it might seem like it is unnecessary to test the 

performance of both L1 and L2 loss functions. Since both results were averaged 

out, they basically seem to be measuring the same thing. The only difference is 
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that mean squared error or L2 loss measures a squared version of the average 

absolute value error or L1 loss.  

 While this is true, the shape that both loss functions take for a given 

experiment might be different. Since each of the functions will take the form of a 

very complex multivariable equation, differences in function shape can make a 

huge difference. 

 For any given problem, one function might have a gradient that is easier 

for an optimizer to navigate than the other. Not only that, but one function might 

work better for one set of optimizers and activation functions, and the other 

function might work better for another set of optimizers and activation functions. 

There is no way to know beforehand which will work best, so different 

combinations need to be tested.  

4.7.2 Tested Activation Functions  

  The activation functions that were tested are Rectified Linear Units 

(ReLU), Exponential Linear Units (ELU), Scaled Exponential Linear Units 

(SELU), and Softplus. 

1- Rectified Linear Units (ReLU) 

Rectified Linear Units or ReLU is a simple activation function that 

fires a neuron if its output is greater than 0, and does not activate a 

neuron if its value is less than 0. ReLU is the most popular activation 

function used by researchers in the field of deep learning. While it can 
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help implement a nonlinear target function that allows a network to 

converge upon a very difficult to reach solution to a complex problem, 

ReLU can be prone to backfiring in an inconvenient manner from time to 

time. A ReLU neuron with a large gradient might cause its weights to 

update in a way that permanently set that neuron’s value at 0 or below, 

causing it to “die” and never fire again. This problem can be avoided by 

setting a proper learning rate that is not too high [34]. The threshold for 

ReLU is very simple: 

    𝑓 𝑥 = max (0, 𝑥) 

Graphically, ReLU [35] looks like this 

 

Figure 10. ReLu Activation Function 

2- Exponential Linear Units (ELU) 

 For positive values, exponential linear units function are identical to 

rectified linear units. For negative values, the function has a boundary of -1 for an 

α value of 1.0, which the default used by PyTorch. Exponential linear units have 

a greater percentage of neurons fire, which ends up helping a neural network 

train faster [36]. The formula for exponential linear units is as follows: 



  

 64 

𝑓(𝑥) 𝑥                  𝑥 ≥ 0
𝛼 𝑒! − 1   𝑥 < 0  

Graphically, exponential linear units look like this: 

 

 

 

 

 

 

 

Figure 11. ELU Activation Function 

3- Scaled Exponential Linear Units (SELU) 

 SELU works very similarly to exponential linear units (ELU). The only 

difference is that the exponential linear units are scaled based on two constant 

parameters not subject to gradients, α & λ. The default value for α is 

1.6732632423543772848170429916717. The default value for λ is 

1.0507009873554804934193349852946. The formula for scaled exponential 

linear units is as follows [37]:  

 

𝑠𝑒𝑙𝑢 𝑥 = 𝜆 
𝑥                  𝑖𝑓𝑥 > 0
𝛼𝑒! − 𝛼     𝑖𝑓𝑥 ≤ 0  

 

Graphically, SELU looks like this: 



  

 65 

 

Figure 12. SELU Activation Function 

4- Softplus 

 The softplus activation function is simply a smooth approximation of the 

rectified linear unit activation function (ReLU). The softplus activation function is: 

     𝑓 𝑥 = ln (1+ 𝑒!) 

Graphically, softplus looks very similar to ReLu, but is smooth [38]. 

 

Figure13. Softplus Activation Function 
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4.7.3 Tested Optimizers  

The optimizers that were tested are Adaptive Moment Estimation (Adam), 

RMSProp and Average Stochastic Gradient Descent (ASGD). In order to 

understand Adam and RMSProp, it is necessary to understand the optimizer 

Adaptive Gradient Boost. 

4.7.3.1 Adaptive Gradient Boost (Adagrad) 

 Adagrad attempts to improve upon traditional stochastic gradient descent 

by normalizing updates for each parameter. After it is done, parameters with 

larger gradients have smaller updates, and parameters with smaller or less used 

gradients have larger updates [14]. The formulation of Adagrad is shown below: 

0!!!,! =  0!,! −
𝑛

𝐺!,!! + 𝜖
 .𝑔!,! 

   

The problem with Adagrad is that the cache eventually becomes too large 

and ceases to function properly. This process occurs because the squared 

gradients accumulated in the denominator, which is referred to as the cache. As 

the accumulated sum grows, the learning rate progressively shrinks until the 

algorithm learns at an infinitesimally small and computationally intractable rate 

[14]. 

1- RMSProp 

 The RMSProp optimization algorithm addresses the aforementioned 

weakness of adaptive gradient boost by decaying the size of the cache by 
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multiplying it by a constant fraction less than but close to 1. RMSProp also 

divides the learning rate for a given weight by a running average of the 

magnitudes of recent gradients for that weight [14].   

𝑐𝑎𝑐ℎ𝑒! = 𝛾 ∗ 𝑐𝑎𝑐ℎ𝑒!!! + 1− 𝑦 ∗ ∇𝐽(𝜃!)! 

2- Adaptive Moment Estimation (Adam) 

 Adam optimizer improves RMSProp by incorporating information from past 

updates, by using momentum.  It accumulates past squared gradients in an 

exponentially decaying average like RMSProp. In addition to this decaying 

average of squared gradients, Adam also accumulates an exponentially decaying 

average of previous gradients without squaring them. These two caches are 

running estimates of the mean and variance of past gradients, which are referred 

to as the first and second moments respectively. Adam then implements a bias 

correction to these estimates, and then uses this information to calculate new 

updates [14].  The Adam optimizer has the formulation: 

𝑚! = 𝛽! ∗𝑚!!! + 1− 𝛽! ∗ 𝐽(𝜃!) 

𝑣! =  𝛽! ∗ 𝑣!!! + 1− 𝛽! ∗ ∇𝐽(𝜃!)! 

𝜃! = 𝜃!!! −
𝛼 ∗𝑚!

( 𝑣!)
 

3- ASGD (Averaged Stochastic Gradient Descent) 

 This algorithm represents an accelerated version of stochastic gradient 

descent. A normal stochastic gradient descent update is performed, and then an 

average is calculated efficiently using a recursive formula [39].  
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𝑤! =
1

𝑡 − 𝑡!
𝑤!

!

!!!!!!

 

This average is then used to influence future updates, which can accelerate 

training significantly in some cases. 

𝑤!!! = 1− 𝛾!𝜆 𝑤! − 𝛾!𝑦!𝑥!𝑙′(𝑦!𝑥!𝑤!) 

𝑤!!! = 𝑤! + 𝜇!(𝑤!!! − 𝑤!) 

The averaging rate is: 

𝜇! = 1/𝑚𝑎𝑥 1, 𝑡 − 𝑡!  

4.7.4 Batch Size, Learning Rate and Scheduler Tuning  

Different batch sizes were tested throughout the training process. The 

batch size of a neural network refers to the number of data samples that are 

simultaneously sent forward through the network at one time.  

During hyperparameter tuning, different initial learning rates were tested 

for each optimizer.  The learning rate determines the size of a weight update for 

the optimizer. The learning rates tried altered by a factor of 10, and ranged from 

.01 to .00001.  

An algorithm called a scheduler, which dynamically adjusts the learning 

rate of an optimizer once descent on the loss function has stagnated, was also 

tested. Results with the scheduler, for all optimizers, were significantly worse 

than without a scheduler. This was true with all combinations of loss and 

activation functions, and was true regardless of the optimizer used. 
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The most likely explanation for this phenomenon involves local minima 

within the loss function. In all likelihood, the scheduler ended up getting stuck in a 

suboptimal local minimum during training. Since the scheduler decreases the 

learning rate once learning stagnates, it is very unlikely to “escape” a local 

minimum during gradient descent. 

4.8 Data Pipeline Prior to Training. 

4.8.1 Data Preprocessing  

The Autism Diagnostic Observation schedule data, covering Module 1, 

Module 2, Module 3, and Module 4, was supplied in the form of Excel 

spreadsheets with a “.xlsx” file extension. The first step in the data pipeline was 

to convert these “.xlsx” files to comma separated value files “.csv”. This format 

imports into python more cleanly. 

 Prior to doing this, the files were edited, as there were a small but 

insignificant number of samples that did not contain full ADOS data. There were 

also several columns in the spreadsheet that were completely unnecessary to 

the project. These columns included patient identification numbers and the date 

at which the tests were administered. Besides this, the data required very little 

preprocessing. 

4.8.2 Moving Data into Python Environment 

 The programming and machine learning part of this thesis was mostly 

conducted within the confines of a Jupyter notebook. The data was imported into 
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the Jupyter notebook with a library called Pandas. Pandas is a Python open 

source library that provides high performance data structures and data analysis 

tools for the purpose of data science and machine learning projects. Pandas 

library contains a function called “read_csv”, which takes the contents of a 

comma separated value file and imports it into a Python programming 

environment. 

 Following this, the data in the file were quickly isolated and placed into a 

structure called a Pandas dataframe. A Pandas dataframe can be thought of as 

an analogue to an Excel spreadsheet in Python. 

4.8.3 Conversion from Pandas Dataframe to Numpy Array 

 Numpy is a very popular Python library that allows for the computation of 

arrays. It is entirely possible to code a neural network from scratch using numpy. 

Numpy tends to be an integral part of almost every machine-learning project in 

Python, and supports a host of mathematical operations that are commonly used 

in data science and machine learning. Numpy arrays are stored and operated 

upon on CPU’s however, so for any project that requires high performance 

computing, numpy might not be sufficient.  

 The Pandas Dataframe needed to be converted to a numpy array prior to 

its importation into PyTorch. PyTorch tensors are generally created from numpy 

arrays, so this intermediate step was required. Also, binary mask used for the 
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special connections between layers was also originally created as a numpy 

array. 

4.8.4 Conversion from Numpy Array to PyTorch Tensor 

 PyTorch tensors are commonly created from Numpy arrays. Both the 

dataset and the binary mask matrix were quickly converted from 2-dimensional 

numpy arrays to PyTorch tensors.  A PyTorch tensor is conceptually equivalent 

to a numpy array. 

 In order for the algorithm to work, the mask and dataset had been stored 

in the exact same type of PyTorch tensor data structure. These tensors were first 

stored on the machine’s CPU.  

In order for the algorithm to work, the mask and dataset had to be stored 

in the exact same type of PyTorch tensor data structure. Furthermore, this data 

type had to match the data type of the weights for the network. By default, the 

weights of the neural network take the form of a “Float Tensor”. The mask and 

the dataset, when imported from numpy and pandas, were initially stored as 

“Long Tensors”. These “Long Tensors” were converted to “Float Tensors” so that 

the weights, mask, and data all matched. These tensors were first stored on the 

machine’s CPU.  

4.8.5 Moving PyTorch Tensors to GPU 

 PyTorch allows a user to run algorithms on GPU rather than CPU for the 

sake of efficient computing. The next step in the pipeline was to convert the 
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PyTorch CPU tensors currently in use to PyTorch GPU tensors, which effectively 

moves the data storage from the CPU to GPU. 

 PyTorch take advantage of NVIDIA’s CUDA library for computations run 

on NVIDIA GPU, so the PyTorch tensors were redefined as a specialized tensor 

optimized for CUDA computations. These steps were administered for both the 

mask and for the dataset. 

4.8.6 Wrapping GPU Tensors in PyTorch Variables 

 PyTorch features the convention of wrapping tensor data structures into 

objects called Variables prior to using them in a model. These Variable objects 

have an attribute called “.data” that refers to the tensor held within the Variable. 

 Once the data and the mask were wrapped in Variables while stored on 

the GPU, the model was ready to be trained. 
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CHAPTER FIVE 

MODEL TRAINING 

 

5.1 Introduction 

This section describes the training process for all autoencoders used in 

this thesis. This information includes the hyperparameters used, training 

procedures for avoiding overfitting, the logic behind these procedures, the 

duration of training, and the implementation of training within PyTorch.  

Once the correct configuration of hyperparameters had been selected for 

the autoencoders, each module was ready to be trained. The GPU used for 

training these models was an Nvidia GTX 870, which allows for accelerated 

computations using NVIDIA’s CUDA framework integrated into PyTorch. Neural 

networks train significantly faster on GPU, so training these models on GPU’s 

allowed for a greater amount of experimentation. 

 

5.2 Final Hyperparameters Used 

 With the different combination of the loss, activation and optimizer tested, 

L1 loss function, SELU activation function and Adam optimizer yielded the best 

results. This combination was used for all autoencoder architectures in all 

modules. 
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5.2.1 L1 Loss   

L1 loss function as mentioned previously measures average absolute 

value between the networks predictions and the correct result then sum them up. 

In PyTorch, users have the option to then average this sum on a per-sample 

basis. In other words, this represents the average absolute value difference 

between the network’s predictions and the correct results [29]. The formula for 

averaged L1 loss is as follows: 

𝐿1 =
1
𝑛 𝑦(!) − 𝑦(!)

!

!!!

 

In this case, L1’s gradient took a shape that was easier for the Adam 

optimizer to descend upon. 

5.2.2 SELU 

SELU as mentioned previously the exponential linear units are scaled 

based on two constant parameters not subject to gradients, α & λ [33]. SELU do 

not transform positive neuron outputs, and simply bound negative neuron outputs 

at -1 with a biased exponential transformation. As will be discussed later, it is 

unlikely that scaled exponential units transformed weighted outputs to a 

significant degree. For whatever reason, scaled exponential linear units worked 

better than competing activation functions. The formula for scaled exponential 

linear units is as follows:  

𝑠𝑒𝑙𝑢 𝑥 = 𝜆 
𝑥                  𝑖𝑓𝑥 > 0
𝛼𝑒! − 𝛼     𝑖𝑓𝑥 ≤ 0  
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4.2.3 Adam 

Adam as mentioned previously accumulates past squared gradients in an 

exponentially decaying average. In addition to this decaying average of squared 

gradients, Adam also accumulates an exponentially decaying average of 

previous gradients without squaring them. These two caches are running 

estimates of the mean and variance of past gradients, which are referred to as 

the first and second moments respectively. Adam then implements a bias 

correction to these estimates, and then uses this information to calculate new 

updates [17].  The Adam optimizer has the formulation: 

𝑚! = 𝛽! ∗𝑚!!! + 1− 𝛽! ∗ 𝐽(𝜃!) 

𝑣! =  𝛽! ∗ 𝑣!!! + 1− 𝛽! ∗ ∇𝐽(𝜃!)! 

𝜃! = 𝜃!!! −
𝛼 ∗𝑚!

( 𝑣!)
 

It adapts updates on a per-parameter basis, and is able to incorporate a 

concept of momentum as well. These traits, in all likelihood, decreased the 

probability of the Adam optimizer getting stuck in a suboptimal local minimum.  

4.2.4 Final Batch Size, Learning Rate and Scheduler 

As mentioned earlier, different batch sizes and learning rate were tested. 

The best final set of autoencoders was batch of size 10 and a learning rate of 

size (1.0*10-4) or .0001 across all architecture modules. Implementing a learning 

rate scheduler led to worse performance across the board in every architecture, 

so the scheduler was completely omitted from training.  
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5.3 Overfitting 

Overfitting is when a model’s target function maps inputs to outputs in a 

way that too closely matches the training data. When this happens, the model 

learns a pattern that is overly specific, and matches the training data, but would 

fail to regularize and apply to other similar data sets. Overfitting in neural 

networks is often mitigated by the implementation of a technique called dropout. 

Figure 14. Overfitting [40] 

4.3.1 Dropout 

Figure 15. Dropout [41] 
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Researchers who train neural networks typically use dropout to avoid 

overfitting. Dropout is a procedure by which certain numbers of neurons in each 

layer are removed from any given forward pass [42]. The neurons removed will 

vary on each forward pass. The idea behind this is that the model is forced to 

learn a target function despite different neurons being deactivated at different 

times. Doing this should help prevent the neural network from developing a target 

function that is overly specific to the dataset. Dropout, however, was not used in 

this project for the reason mentioned below.   

4.3.1.1 Reason not Using Dropout  

Since the autoencoders employed in this project already had a large 

number of neurons removed from training due to the specialized connections 

between layers enforced by the binary mask matrix, dropout seemed like it would 

be less effective than normal. Simply dropout removes neurons, and the project’s 

design also removes neurons, and there seemed to be a degree of redundancy 

there. 

4.3.2 K-Fold Cross Validation 

 K-fold cross validation is a technique used to prevent overfitting. In k-fold 

cross validation the data set is randomly partitioned into a training set and a 

validation set [43]. The diagram below shows k-fold cross validation. 
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Figure 16. K-Fold Cross Validation [43] 

K-fold cross validation in this experiment was implemented as follows. The 

data set was shuffled and randomly split into a training set and a test set. 90% of 

the data was used for training, and 10% for a test. The model was trained using 

the training data for 100,000 epochs, and then tested on the remaining test data. 

This represents a single fold in k-fold cross validation. Afterwards, entire data set 

was shuffled and randomly split again into a different training and test set of the 

same portions. Another fold of training and testing was carried out, followed by 

another random shuffle and split, until 10 folds of cross validation had been 

executed. This procedure theoretically prevents the model from approximating a 

target function that becomes overly reliant on a certain subsection of the dataset, 

thereby acting as a bulwark against overfitting. 

5.3.3 Code for K-Fold Cross Validation and Model Training 

 Because PyTorch is very tightly integrated with the Python language, it 

was possible to implement k-fold cross validation by using traditional Python 
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control flow methods. The 10 splits of cross validation were written in the form of 

a Python for loop of 10 iterations. In each loop, the dataset was randomly split 

with a 9:1 training to validation ratio. Within each split, the model was trained for 

100,00 epochs. The training was also represented as a for loop within the cross-

validation for loop. The training loop consisted of 100,000 iterations. 

 

5.4 Training 

 Each autoencoder was trained for 1,000,000 epochs consisting of 10 splits 

of 100,000 epochs for k-fold cross validation. Since the datasets were small and 

PyTorch is exceptionally efficient, the models were able to converge upon local 

minima very easily within this time.  

For each autoencoder structure in each module, training was conducted 10 

times. The results of each training session were saved, and the final weights for 

each structure represented an average of these 10 iterations.  

5.4.1 Training Time  

 Each architecture took roughly 1 hour to train. This extrapolates to roughly 

160 hours of total training time over the course of the experiment for all iterations 

of autoencoders on different modules. 
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5.4 Data Pipeline After Training 

5.4.1 Pipeline for Reconstructed Data Set and Target 

5.4.1.1 Moving Tensor to CPU 

 The first step in the pipeline, following training of the model, was to 

remove the data held in the Variable object representing the reconstructed ADOS 

dataset and the target. The next step was to convert the GPU tensor for the data 

into a CPU tensor, since the only purpose of using the GPU was training the 

model. These two steps were conducted in a single line of code for the 

reconstruction and target. 

5.4.1.2 Convert PyTorch CPU Tensor to Numpy Array 

 Since the end goal of the pipeline was to convert the reconstructed data 

into a csv, similar to the original data, the Pytorch tensor needed to be converted 

to a Numpy array as an intermediate step between PyTorch and Pandas. 

5.4.1.3 Convert Numpy Array to Pandas Data Frame 

 The next step in the pipeline was to convert the Numpy array into a  

Pandas data frame. The column names of the dataset were specified when 

creating the dataframe because this information was lost during training, as the 

model did not include column labels with the input.  
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5.4.1.4 Convert Pandas Dataframe to Comma Separated Value File  

 The final step in the reconstruction and target pipeline was to convert a 

pandas data frame into a comma separated value file so that it could be 

compared to the input.  

5.4.2 Pipeline for Weights 

 The parameters of the model in PyTorch are stored in an iterable object 

referred to as “model.parameters”. The parameters object of the model has an 

attribute referred to as “param.data”. 

 To remove the weights from this object, a for loop was constructed to 

iterate through “model.parameters” and convert the data within into a PyTorch 

tensor.  

From there, the weights followed the exact same pipeline as the 

reconstructed dataset did.  
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CHAPTER SIX 

MODEL VALIDATION 

 

6.1 Introduction 

 Validating a model involves insuring that the model can reliably and 

accurately achieve its purpose on relevant datasets. In this chapter, the accuracy 

of autoencoders at reconstructing their inputs will be evaluated. Since the 

purpose of an autoencoder is to accurately reconstruct its input as its target, 

validation for this project involved testing if the autoencoders used were actually 

able to accurately reconstruct their inputs. Accuracy was measured for each 

training iteration of autoencoders used in this project. Average accuracies are 

calculated for each combination of autoencoder architecture and module. A table 

of all autoencoder training iterations and their respective reconstruction 

accuracies can be found in Appendix D. 

 

6.2 Validation Method 

 Validation was conducted by testing how accurately an autoencoder was 

able to reconstruct its input. Reconstructing an input from a smaller hidden layer 

effectively represents an autoencoders ability to decode its hidden layer and 

recover as much information about its input as possible. All analysis of variables 

that go into a reduced representation of the ADOS is only relevant if the 
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autoencoder can reliably reconstruct the original higher-dimensional sample from 

that reduced representation. 

6.2.1.1 Compare Output with Target 

As mentioned previously, in the model the data was split into 90 percent 

training and 10 percent validation. Following this division, the model trained 

normally for a certain number of epochs.   

After training was completed for this partition, the dataset is then 

reshuffled and divided into a different random partition of 90/10. The model is 

then trained again, and then shuffled and randomly divided again, for an arbitrary 

number of splits. 

 The final outputs of the autoencoder represent reconstructed versions of 

the training data and the test data. Collectively, all samples from the original 

dataset are in the output, the only difference is that order is switched. For the 

sake of examining the autoencoder output, the training set reconstructions were 

compared to the training set splits, since these represent the overwhelming 

majority of the input data.  The data for every individual patient remains 

completely unchanged, so comparing the reconstruction to the shuffled data set 

is a completely valid method for evaluating the reconstruction performance of the 

autoencoder. However, since the order of the patients has been changed, the 

reconstruction compared to the original data set as supplied by the AGRE in its 

original patient order. 
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 K-fold cross validation was conducted to attempt to limit the potential for 

overfitting by this model.  

6.2.1.2 Calculating the Accuracy 

 Since the output was treated as a regression problem, all values in the 

output had to be rounded to the nearest integer prior to comparison with the 

input. After rounding, overlapping comma separated value files were compared, 

and all discrepancies highlighted. The number of discrepancies represents the 

number of observations that the autoencoder failed to accurately reconstruct. By 

dividing the number of discrepancies by the total number of observations, the 

percentage of wrong observations was calculated. Subtracting this percentage 

from 1 gave an accuracy percentage for the autoencoder. 

6.2.1.3 Average the Accuracy 

Accuracy numbers were calculated for all 10 autoencoders for a single 

architecture and module. To determine the reconstruction accuracy of a given 

autoencoder, the number of correct values divided by total values was calculated 

for each training session. After accuracy percentages were calculated for all 10 

training versions of a single architecture and module combination, those 

accuracies were averaged to estimate the aggregate average accuracy of a 

given architecture in reconstructing a module.  
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6.3 Autoencoder Reconstruction Accuracy 

6.3.1 Module 1 Autoencoder Reconstruction Accuracy  

The diagram below shows the average accuracy across Module 1 

architectures.  

Figure 17. Average Accuracy Across Module 1 

All autoencoders tested ended up with accurate reconstructions. Within 

Module 1, the autoencoder that reduced the 29-variable diagnostic to 20 

variables ended up reconstructing its inputs with 89.3% accuracy. This number, 

and each of the following average accuracy measures, describes the average 

accuracy of 10 identically designed and trained autoencoders. The least accurate 

of the 10 autoencoders reconstructed its input with 87.56% accuracy, and the 

most accurate reconstructed its input with 90% accuracy. 
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 The autoencoder architecture that reduced the 29-variable Module 1 to 21 

variables had an average accuracy of 90.5%. The least accurate iteration scored 

at 89.35% accuracy, and most accurate iteration had accuracy of 91.74%.  

The autoencoder architecture that reduced the 29-variable Module 1 to 22 

variables had an average accuracy of 92.5%. The least accurate iteration scored 

at 91.54% accuracy, and most accurate iteration had accuracy of 93.36%. 

The autoencoder architecture that reduced the 29-variable Module 1 to 23 

variables had an average accuracy of 94%. The least accurate iteration scored at 

93.35% accuracy, and most accurate iteration had accuracy of 94.53%. 

As one might expect, Module 1 autoencoders with larger hidden layers 

were more accurate at reconstructing than autoencoder architectures with 

smaller hidden layers. 

6.3.2 Module 2 Autoencoder Reconstruction Accuracy  

The diagram below shows the average accuracy across Module 2 

architecture. 
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Figure 18. Average Accuracy Across Module 2 

On Module 1, the autoencoder that reduced the 28-variable diagnostic to 

19 variables ended up reconstructing its inputs with 90.5% accuracy. The least 

accurate of the 10 autoencoders reconstructed its input with 88.15% accuracy, 

and the most accurate reconstructed its input with 91.12% accuracy. 

 The autoencoder architecture that reduced the 28-variable Module 2 to 21 

variables had an average accuracy of 91.4%. The least accurate iteration scored 

at 90.97% accuracy, and most accurate iteration had accuracy of 91.86%.  

The autoencoder architecture that reduced the 28-variable Module 2 to 22 

variables had an average accuracy of 92.6%. The least accurate iteration scored 

at 92.03% accuracy, and most accurate iteration had accuracy of 93.59%. 

The autoencoder architecture that reduced the 29-variable Module 2 to 23 

variables had an average accuracy of 94.3%. The least accurate iteration scored 

at 92.22% accuracy, and most accurate iteration had accuracy of 95.08%. 
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Module 2 autoencoders showed decreased accuracy with smaller hidden 

layers, as is expected. 

6.3.3 Module 3 Autoencoder Reconstruction Accuracy  

The diagram below shows the average accuracy across Module 3 

architecture. 

Figure 19. Average Accuracy Across Module 3 

On Module 3, the autoencoder that reduced the 28-variable diagnostic to 

19 variables ended up reconstructing its inputs with 92.5% accuracy. The least 

accurate of the 10 autoencoders reconstructed its input with 91.60% accuracy, 

and the most accurate reconstructed its input with 93.37% accuracy. 

 The autoencoder architecture that reduced the 28-variable Module 3 to 20 

variables had an average accuracy of 93.1%. The least accurate iteration scored 

at 92.48% accuracy, and most accurate iteration had accuracy of 93.67%.  
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The autoencoder architecture that reduced the 28-variable Module 3 to 21 

variables had an average accuracy of 95.2%. The least accurate iteration scored 

at 94.23% accuracy, and most accurate iteration had accuracy of 96.09%. 

The autoencoder architecture that reduced the 29-variable Module 3 to 22 

variables had an average accuracy of 95.9%. The least accurate iteration scored 

at 95.07% accuracy, and most accurate iteration had accuracy of 96.82%. 

Module 3 autoencoders showed decreased accuracy with smaller hidden 

layers, as is expected. 

6.3.4 Module 4 Autoencoder Reconstruction Accuracy 

The diagram below shows the average accuracy across Module 3 

architecture. 

Figure 20. Average Accuracy Across Module 4 

On Module 4, the autoencoder that reduced the 31-variable diagnostic to 

19 variables ended up reconstructing its inputs with 91.5% accuracy. The least 
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accurate of the 10 autoencoders reconstructed its input with 90.93% accuracy, 

and the most accurate reconstructed its input with 91.15% accuracy. 

 The autoencoder architecture that reduced the 31-variable Module 4 to 20 

variables had an average accuracy of 91.4%. The least accurate iteration scored 

at 91.00% accuracy, and most accurate iteration had accuracy of 92.21%.  

The autoencoder architecture that reduced the 31-variable Module 4 to 21 

variables had an average accuracy of 94%. The least accurate iteration scored at 

93.52% accuracy, and most accurate iteration had accuracy of 94.31%. 

The autoencoder architecture that reduced the 31-variable Module 4 to 22 

variables had an average accuracy of 95.1%. The least accurate iteration scored 

at 94.48% accuracy, and most accurate iteration had accuracy of 95.82%. 

Module 4 autoencoders mostly showed decreased accuracy with smaller 

hidden layers, with one exception. The 19-variable hidden layer actually had an 

accuracy that was on average 0.1% higher than the 20-variable hidden layer. 

With the exception of this discrepancy, the trend held true throughout all 

autoencoders. 
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CHAPTER SEVEN 

MODEL ANALYSIS 

 

7.1 Introduction 

This section explores the weights of autoencoders to extract all possible 

insights regarding the focal points of a reduced diagnostic. The lowest 

dimensional reconstruction is evaluated for each module. Additionally, weights 

are examined across all architectures within a module, and across all modules to 

see if there are any consistent overarching trends. 

 

7.2 Analysis Method 

7.2.1 Comma Separated Value File 

After Convert Pandas data frame to csv file, weights can be accessed in 

Excel. The encoder weights pulled from each autoencoder represent the weights 

used in the final epoch of training, prior to being element-wise multiplied with the 

binary mask matrix. Therefore, a large number of the weights in the comma 

separated value file were not used. It is simple to identify these weights based on 

their rows and columns, and delete them. Weights that were removed by the 

mask on the final forward pass were deleted prior to weight analysis for the 

purpose of clarity. 
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7.2.2 Averaging Weights 

 After 10 autoencoders for each architecture and module were trained, the 

weights from each autoencoder were converted to absolute values. The absolute 

value of a variable’s weights determines its impact in the reduced diagnostic, so 

whether a weight was positive or negative was irrelevant in terms of its impact. 

After conversion to absolute values, the weights for all 10 identical autoencoders 

were averaged before analysis. 

7.2.3 Reduced Diagnostic Analysis 

 Since all autoencoders tested demonstrated a satisfactory level of 

accuracy, the following analysis focuses on the autoencoder with the lowest 

dimensional hidden layer for each module. Therefor, a reduced diagnostic size of 

20 variables for Module 1, and 19 variables for Module 2, Module 3, and Module 

4. The weight data for the other architectures and modules can be found in 

Appendix E. 

7.2.4 Explanation of Graphs for Nodes  

 The following pie charts show the relative strength of connections between 

nodes in the input layer and nodes in the hidden layer. With the type of 

autoencoders employed in this project, nodes corresponding to original 

diagnostic variables influence, through weights, nodes corresponding to 

condensed variables in the reduced diagnostic. Each of the following pie charts 

represents a single node in the reduced section and shows the relative extent to 
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which different variables in the original diagnostic influenced the node through 

their respective weights.  

7.2.5 Explanation of Graphs for Sections 

The following bar chart compares the impact of the weights of each 

variable in terms of impact across an entire reduced diagnostic section. These 

numbers are simply calculated by summing the weights of a single variable in 

every question in its relevant section. These bar graphs display which variables 

had the greatest impact on the reduced diagnostic shown here, and allows for 

their comparison. 

7.2.6 Explanation for Correlations and Correlational Graphs 

 The following graphs show correlational relationships between the weights 

of variables in each section of the autoencoder. Values approaching 1 show a 

near perfect positive correlation, values approaching -1 show a near perfect 

inverse correlation. Variable pairs with values of 0 demonstrate no discernable 

correlational relationship. When two variables correlate in the positive direction, it 

means that increased presence of one variable generally accompanies increased 

presence of another. For this experiment, correlations with strength of 0.7 or 

greater were treated as strong positive relationships, and correlations greater 

than 0.9 were treated as almost perfectly correlated.  
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7.2.7 Meaning of Weights 

 The weight composition of a node in the hidden layer shows the extent to 

which variables in the input layer affected that node. Since weights represent 

coefficients for different inputs, weights with the highest absolute values 

represent a greater strength of connection between input nodes and hidden layer 

nodes. Absolute values close to zero represent minimal influence between 

nodes. Therefore, by examining the weight composition of each hidden layer 

node, in terms of the relative weight strength of input variables, it is possible to 

examine the conceptual makeup of each node in the hidden layer. On a section-

by-section basis, seeing which input variables were the most represented and 

least represented in the reduced diagnostic can give insights as to how ADOS 

might be reduced into a shorter, viable diagnostic. 

 

7.3 Module 1 Analysis  

The diagram below shows the Module 1 Autoencoder with a hidden layer 

of size 20. 
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Figure 21. Module 1 Autoencoder with a Hidden Layer of Size 20 
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7.3.1 Module 1 Section 1 Analysis 

The autoencoder reduced the first section of Module 1 from 8 variables to 

5 variable sections. Section 1 subject is Language and Communication. The 8 

variables in this section are Overall Level of Non-Echoed Spoken Language 

(OLANG), Frequency of Spontaneous Vocalization Directed to Others (FVOC), 

Intonation of Vocalizations or Verbalizations (INTON), Immediate Echolalia 

(IECHO), Stereotyped/Idiosyncratic Use of Words or Phrases (STEREO), Use of 

Another’s Body (UOTHER), Pointing (POINT), and Gestures (GEST). The 

diagrams below show the weights of the reduced diagnostic of this section. 

 

Figure 22. Relative Weights Impacts Node H1 – Module 1   
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Figure 23. Relative Weights Impacts Node H2 – Module 1 

 

Figure 24. Relative Weights Impacts Node H3 – Module 1
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Figure 25. Relative Weights Impacts Node H4 – Module 1 

 

Figure 26. Relative Weights Impacts Node H5 – Module 1 

The variables with the least representation in the reduced diagnostic are 

POINT, FVOC, and GEST. UOTHER” has the greatest presence by a significant 

margin. OLANG, IECHO and STEREO also had strong presences in the reduced 

diagnostic.  
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Variables with strong weights can potentially serve as focal points for a 

reduced ADOS with a 20-variable Module 1. POINT and GEST might be 

redundant variables, given there near perfect correlations. It should be noted that 

the variables with the smallest weight presences in this section still had 

significant absolute values, especially in comparison to weights analyzed in other 

sections and other modules. It is difficult to advocate completely disregarding any 

variables in the first section, but there might exist possibilities for more concise 

observation variable lists.  

7.3.1.1 Correlation Between Variables  

 

Figure 27. Weights Correlations – Module 1 Section 1 

Within the reduced diagnostic nodes, the weights of IECHO and UOTHER 

almost perfectly correlate in their presence. Likewise, the weights of POINT and 

GEST have a correlation of almost 1.  
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7.3.2 Module 1 Section 2 Analysis 

 Section 2 of Module 1 of the ADOS involves the subject of 

Reciprocal Social Interaction. The autoencoder reduced this section from 12 

variables to 9 variables. The original 12 variables were Unusual Eye Contact 

(UEYE), Responsive Social Smile (SSMILE), Facial Expressions Directed to 

Others (FACEO), Integration of Gaze (GZSOV) and Other Behaviors During 

Social Overtures, Shared Enjoyment in Interaction (SHRNJ), Response to Name 

(RNAME), Requesting (REQ), Giving (GIVE), Showing (SHOW), Spontaneous 

Initiation of Joint Attention (SIJNT), Response to Joint Attention (RJNT), and 

Quality of Social Overtures (QSOV). The diagrams below shows the weights of 

the reduced diagnostic of this section. 

 

Figure 28. Relative Weights Impacts Node H6 – Module 1 
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Figure 29. Relative Weights Impacts Node H7 – Module 1 

 

Figure 30. Relative Weights Impacts Node H8 – Module 1 
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Figure 31. Relative Weights Impacts Node H9 – Module 1 

 

Figure 32. Relative Weights Impacts Node H10 – Module 1 
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Figure 33. Relative Weights Impacts Node H11 – Module 1 

 

Figure 34. Relative Weights Impacts Node H12 – Module 1 
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Figure 35. Relative Weights Impacts Node H13 – Module 1 

 

Figure 36. Relative Weights Impacts Node H14 – Module 1 

In this section, none of the weights were negligible, but there did exist a 

clear hierarchy in variable importance. GZSOV, SSMILE and SHRNJ were the 

three most important variables by a significant margin. RJNT, REQ, RNAME, and 

GIVE formed the next tier of importance. UEYE and SHOW were of middling 

importance. SIJNT, FACEO, and QSOV were the three least represented 
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variables by a significant margin. Again, this information might have utility in 

identifying focal points for condensed observations. 

7.3.2.1 Correlation Between Variables  

 

Figure 37. Weights Correlations – Module 1 Section 2 

Correlations of 0.5 are considered weak according to conventional 

statistics. 

7.3.3 Module 1 Section 3 Analysis 

The third section of the reduced Module 1 autoencoder involved reducing 

9 original ADOS variables into 6 new ones. The 9 original variables spanned the 

subjects of Play, Stereotyped Behaviors/Restricted Interests, and Other 

Abnormal Behaviors. The original variables were Functional Play with Objects 

(FPLAY), Imagination/Creativity (IMGCR), Unusual Sensory Interest in Play 

Material/Person (USENS), Hand and Finger and Other Complex Mannerisms 

(OMAN), Self-Injurious Behavior (SELFINJ), Unusually Repetitive Interests or 

Stereotyped Behaviors (URBEH), Overactivity (ACTIVE), Tantrums, Aggression, 
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Negative or Disruptive Behavior (AGG), and Anxiety (ANXTY). The diagrams 

below shows the weights of the reduced diagnostic of this section. 

 

Figure 38. Relative Weights Impacts Node H15 – Module 1 

 

Figure 39. Relative Weights Impacts Node H16 – Module 1 
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Figure 40. Relative Weights Impacts Node H17 – Module 1 

 

Figure 41. Relative Weights Impacts Node H18 – Module 1 
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Figure 42. Relative Weights Impacts Node H19 – Module 1 

 

Figure 43. Relative Weights Impacts Node H20 – Module 1 

In this section SELFINJ and ANXTY were by far the two variables with the 

smallest strength weights. The weights for these variables were orders of 

magnitudes smaller than anything else in the diagnostic and were effectively 

eliminated from the reduced diagnostic. For reference, the weights of these two 

variables were over 4,000 times smaller than the third-least represented variable. 
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This suggests it might be possible to eliminate or disregard these variables in a 

reduced diagnostic. 

 Every other variable in the original section had a significant weight 

presence in the reduced diagnostic. The most significant variables were AGG, 

URBEH, and IMGCR. 

7.3.3.1 Correlation Between Variables 

 

Figure 44. Weights Correlations – Module 1 Section 3 

ACTIVE strongly correlates with URBEH, which suggests that increased 

presence of one variable in a node generally accompanies increased presence of 

another. 
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7.4 Module 2 Analysis 

The diagram below shows Module 2 Autoencoder with Hidden layer of 

size 19. 

 

Figure 45. Module 2 Autoencoder with Hidden Layer of Size 19 
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7.4.1 Module 2 Section 1 Analysis 

The first section of Module 2 corresponds to Language and 

Communication. The 7-variable original section was reduced to a 4-variable 

section by the autoencoder. The 7 variables in this section are Overall Level of 

Non-Echoed Spoken Language (OLANG), Speech Abnormalities (SPABN), 

Immediate Echolalia (IECHO), Stereotyped/Idiosyncratic Use of Words or 

Phrases (STEREO), Conversation (CONVS), Pointing (POINT), and Descriptive 

Gestures (DGEST). The diagrams below shows the weights of the reduced 

diagnostic of this section. 

 

Figure 46. Relative Weights Impacts Node H1 – Module 2 
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Figure 47. Relative Weights Impacts Node H2 – Module 2

 

Figure 48. Relative Weights Impacts Node H3 – Module 2 



  

 113 

 

Figure 49. Relative Weights Impacts Node H4 – Module 2 

 SPABN is the least represented variable by a significant margin. This data 

suggests that this variable could likely be deprioritized in a reduced diagnostic. 

None of the variables in this section have negligible weights however. The most 

represented variables are POINT and STEREO by a significant margin. The 

other variables, with the exception of SPABN are all closely clustered in the 

strength of their weights. 
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7.4.1.1 Correlation Between Variables 

 

Figure 50. Weights Correlations – Module 2 Section 1 

SPABN and STEREO correlate almost perfectly in their weights. SPABN 

also correlates strongly with CONVS.  

7.4.2 Module 2 Section 2 Analysis 

Section 2  of Module 2 of the ADOS involves the Subject of Reciprocal 

Social Interaction. The autoencoder reduced this section from 12 variables to 9 

variables. The original 12 variables were Unusual Eye Contact (UEYE), Facial 

Expressions Directed to Others (FACEO), Shared Enjoyment in Interaction 

(SHRNJ), Response to Name (RNAME), Showing (SHOW), Spontaneous 

Initiation of Joint Attention (SIJNT), Response to Joint Attention (RJNT), Amount 

of Social Overtures (ASOV), Quality of Social Response (QSOV), Amount of 

Reciprocal Social Communication (ARSOC) and Overall Quality of Rapport 
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(OQRAP). The diagrams below shows the weights of the reduced diagnostic of 

this section. 

 

Figure 51. Relative Weights Impacts Node H5 – Module 2 

 

Figure 52. Relative Weights Impacts Node H6 – Module 2 
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Figure 53. Relative Weights Impacts Node H7 – Module 2

 

Figure 54. Relative Weights Impacts Node H8 – Module 2 

 

Figure 55. Relative Weights Impacts Node H9 – Module 2 
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Figure 56. Relative Weights Impacts Node H10 – Module 2 

 

Figure 57. Relative Weights Impacts Node H11 – Module 2 

 

Figure 58. Relative Weights Impacts Node H12 – Module 2 
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Figure 59. Relative Weights Impacts Node H13 – Module 2 

Within the reduced diagnostic nodes, the weights of SIJNT and ARSOC 

almost perfectly correlate have a correlation of almost 1. Also, ASOV and 

QSRES correlate with each other with a near perfect correlation.  

RJIT was by far the least represented variable in the reduced diagnostic 

for this section. Its weights were over 100 times smaller than the second least 

represented variable. Every other variable in this section had significant weights. 

SHRNJ had the most significant presence. ASOV, OQRAP, SIJNT, SHOW and 

UEYE followed, and were also closely clustered. 
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7.4.2.1 Correlation Between Variables 

 

Figure 60. Weights Correlations – Module 2 Section 2 

UEYE and SHOW demonstrate a strong positive correlation in weight 

strength. SIJNT and RJNT also strongly correlate in weight presence, which 

makes sense given their similar subject nature. Last, OQRAP and FACEO have 

a strong correlational relationship. 

7.4.3 Module 2 Section 3 Analysis 

 The third section of the reduced Module 2 autoencoder involved 

reducing 9 original ADOS variables into 6 new ones. The 9 original variables 

spanned the subjects of Play, Stereotyped Behaviors/Restricted Interests, and 

Other Abnormal Behaviors. The original variables were Functional Play with 

Objects (FPLAY), Imagination/Creativity (IMGCR), Unusual Sensory Interest in 

Play Material/Person (USENS), Hand and Finger and Other Complex 

Mannerisms (OMAN), Self-Injurious Behavior (SELFINJ), Unusually Repetitive 
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Interests or Stereotyped Behaviors (URBEH), Overactivity (ACTIVE), Tantrums, 

Aggression, Negative or Disruptive Behavior (AGG), and Anxiety (ANXTY). The 

diagrams below shows the weights of the reduced diagnostic of this section. 

 

Figure 61. Relative Weights Impacts Node H14 – Module 2 

 

Figure 62. Relative Weights Impacts Node H15 – Module 2 
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Figure 63. Relative Weights Impacts Node H16 – Module 2 

 

Figure 64. Relative Weights Impacts Node H17 – Module 2 
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Figure 65. Relative Weights Impacts Node H18 – Module 2 

 

Figure 66. Relative Weights Impacts Node H19 – Module 2 

Once again, SELFINJ and ANXTY were by far the least represented 

variables, as they had completely negligible weights. They were over 1,000 times 

less influential than any other variables, and were effectively dropped from the 

diagnostic by the autoencoder.  ACTIVE and “OMAN” were the two variables with 
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greatest representation, and all variables besides the two that were mentioned 

were represented adequately. 

7.4.3.1 Correlation Between Variables 

 

Figure 67. Weights Correlations – Module 2 Section 3 

IMGCE and SELFINJ have a strong correlational relationship, although 

this is probably meaningless given the latter variable’s negligible presence in 

nodes.  

 

7.5 Module 3 Analysis 

The diagram below shows Module 3 Autoencoder with Hidden layer of 

size 19. 
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Figure 68. Module 3 Autoencoder with Hidden Layer of Size 19 
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7.5.1 Module 3 Section 1 Analysis 

The first section of Module 3 corresponds to Language and 

Communication. The 9-variable original section was reduced to a 6-variable 

section by the autoencoder. The 9 variables in this section are Overall Level of 

Non-Echoed Spoken Language (OLANG), Speech Abnormalities (SPABN), 

Immediate Echolalia (IECHO), Stereotyped/Idiosyncratic Use of Words or 

Phrases (STEREO), Offers Information (OINFO), Asks for Information (AINFO), 

Reporting of Events (REPRT), Conversation (CONVS), and Descriptive Gestures 

(DGEST). The diagrams below shows the weights of the reduced diagnostic of 

this section. 

 

Figure 69. Relative Weights Impacts Node H1 – Module 3 
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Figure 70. Relative Weights Impacts Node H2 – Module 3 

 

Figure 71. Relative Weights Impacts Node H3 – Module 3 

 

Figure 72. Relative Weights Impacts Node H4 – Module 3 
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Figure 73. Relative Weights Impacts Node H5 – Module 3 

 

Figure 74. Relative Weights Impacts Node H6 – Module 3 

IECHO was almost completely dropped from the diagnostic, as its weights 

were several orders of magnitude smaller than any others in the section. CONVS 

was the second least represented variable. While its weights were significantly 

higher than IECHO, it lagged significantly behind the other variables. 
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 All other weights were fairly strong, with DGEST as the highest, followed 

by AINFO, REPRT and OLANG. These variables had weights significantly than 

the other variables. 

7.5.1.1 Correlation Between Variables 

 

Figure 75. Weights Correlations – Module 3 Section 1 

AINFO and CONVS have a strong positive correlational relationship. 

7.5.2 Module 3 Section 2 Analysis 

 Section 2 of Module 3 involves Reciprocal Social Interaction. The original 

diagnostic included 10 variables, and the reduced diagnostic contains 7 

variables. The variables are Unusual Eye Contact (UEYE), Facial Expressions 

Directed to Examiner (FACEO), Language Production and Linked Nonverbal 

Communication (LLNVC), Shared Enjoyment in Interaction (SHRNJ), Comments 

on Others’ Emotions/Empathy (EMPTH), Insight into Typical Social Situations 

and Relationships (INSIG), Quality of Social Overtures (QSOV), Quality of Social 
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Response (QSRES), Amount of Reciprocal Social Communication (ARSOC), 

and Overall Quality of Rapport (OQRAP). The diagrams below shows the 

weights of the reduced diagnostic of this section. 

 

Figure 76. Relative Weights Impacts Node H7 – Module 3

 

Figure 77. Relative Weights Impacts Node H8 – Module 3 
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Figure 78. Relative Weights Impacts Node H9 – Module 3 

 

Figure 79. Relative Weights Impacts Node H10 – Module 3 
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Figure 80. Relative Weights Impacts Node H11 – Module 3 

 

Figure 81. Relative Weights Impacts Node H12 – Module 3 

 

Figure 82. Relative Weights Impacts Node H13 – Module 3 
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UEYE was the least represented variable by a large margin and was 

effectively dropped from the reduced diagnostic in this instance. All other 

variables had significant weights attached. EMPTHY and INSIG were the most 

impactful variables by a significant margin. The majority of the other variables 

were clustered closely together in weight strength, with QSRES and QSOV 

slightly lagging behind the others. 

75.2.1 Correlation Between Variables 

 

Figure 83. Weights Correlations – Module 3 Section 2 

EMPTH and QSRES have a strong correlational relationship in weight 

presence. OQRAP also correlates strongly with both EMPTH and QSRES. These 

correlations indicate shared occurrences between these three variables in some 

capacity. 
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7.5.3 Module 3 Section 3 Analysis 

The third section of the reduced diagnostic combines sections in the 

original that cover Imagination, Stereotyped Behaviors/Restricted Interests, and 

Other Abnormal Behaviors. There were 9 variables originally in these sections, 

and these were reduced to 6 variables by the autoencoders. The variables in 

these sections are Imagination/Creativity (IMGCR), Unusual Sensory Interest In 

Play Material/Person (USENS), Hand and Finger and Other Complex 

Mannerisms (OMAN), Self-Injurious Behavior (SELFINJ), Excessive Interest in or 

References to Unusual or Highly Specific Topics or Objects or Repetitive 

Behaviors (TOPIC), Compulsions or Rituals (RITL), Overactivity/Agitation 

(ACTIVE), Tantrums/Aggression (AGG), and Anxiety (ANXTY). The diagrams 

below shows the weights of the reduced diagnostic of this section. 

 

Figure 84. Relative Weights Impacts Node H14 – Module 3 
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Figure 85. Relative Weights Impacts Node H15 – Module 3 

 

Figure 86. Relative Weights Impacts Node H16 – Module 3 

 

Figure 87. Relative Weights Impacts Node H17 – Module 3 
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Figure 88. Relative Weights Impacts Node H18 – Module 3 

 

Figure 89. Relative Weights Impacts Node H19 – Module 3 

As in earlier cases, SELFINJ had by far the weakest weights, orders of 

magnitude below anything else. ANXTY also had very weak weights that were 

significantly below everything else. Nonetheless, there was a sizeable gap 

between ANXTY and SELFINJ”. All other weights were fairly strong, with TOPIC 

or RITL, OMAN, and ACTIVE demonstrating the strongest connections by a solid 

margin. The other variables were clustered close together with the exception of 
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AGG, which lagged behind other variables but ahead of the two least important 

ones. 

7.5.3.1 Correlation Between Variables 

 

Figure 90. Weights Correlations – Module 3 Section 3 

USENS and OMAN show a strong positive correlational relationship. 

 

7.6 Module 4 Analysis 

The diagram below shows Module 4 Autoencoder with Hidden layer of 

size 19. 
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Figure 91. Module 4 Autoencoder with Hidden Layer of Size 19 
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7.6.1 Module 4 Section 1 Analysis 

  The first section of Module 4 corresponds to Language and 

Communication. The 10-variable original section was reduced to a 6-variable 

section by the autoencoder. The 10 variables in this section are Overall Level of 

Non-Echoed Spoken Language (OLANG), Speech Abnormalities (SPABN), 

Immediate Echolalia (IECHO), Stereotyped/Idiosyncratic Use of Words or 

Phrases (STEREO), Offers Information (OINFO), Asks for Information (AINFO), 

Reporting of Events (REPRT), Conversation (CONVS), Descriptive Gestures 

(DGEST), Emphatic or Emotional Gestures (EGEST).  The diagrams below 

shows the weights of the reduced diagnostic of this section. 

 

Figure 92. Relative Weights Impacts Node H1 – Module 4 
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Figure 93. Relative Weights Impacts Node H2 – Module 4 

 

Figure 94. Relative Weights Impacts Node H3 – Module 4 

 

Figure 95. Relative Weights Impacts Node H4 – Module 4 
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Figure 96. Relative Weights Impacts Node H5 – Module 4 

 

Figure 97. Relative Weights Impacts Node H6 – Module 4 

OLANG and IECHO were the two least represented variables and had 

weights with absolute values several orders of magnitude smaller than the other 

variables. All other variables were represented with significant weights, with 

STEREO, EGEST, and AINFO leading the pack. Those three variables had 

weights higher than the others by a notable amount. 
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7.6.1.1 Correlation Between Variables 

 

Figure 98. Weights Correlations – Module 4 Section 1 

STEREO AND EGEST correlated positively to a strong degree.  

 7.6.2 Module 4 Section 2 Analysis 

 Section 3  of Module 4 involves Reciprocal Social Interaction. The original 

diagnostic included 12 variables, and the reduced diagnostic contains 7 

variables. The variables are Unusual Eye Contact (UEYE), Facial Expressions 

Directed to Examiner (FACEO), Language Production and Linked Nonverbal 

Communication (LLNVC), Shared Enjoyment in Interaction (SEI), Communication 

of Own Affect (CAFF), Comments on Others’ Emotions/Empathy (EMPTH), 

Insight into Typical Social Situations and Relationships (INSIG), Responsibility 

(RESP), Quality of Social Overtures (QSOV), Quality of Social Response 

(QSRES), Amount of Reciprocal Social Communication (ARSOC), and Overall 
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Quality of Rapport (OQRAP). The diagrams below shows the weights of the 

reduced diagnostic of this section. 

 

Figure 99. Relative Weights Impacts Node H7 – Module 4 

 

Figure 100. Relative Weights Impacts Node H8 – Module 4 
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Figure 101. Relative Weights Impacts Node H9 – Module 4 

 

Figure 102. Relative Weights Impacts Node H10 – Module 4 

 

Figure 103. Relative Weights Impacts Node H11 – Module 4 
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Figure 104. Relative Weights Impacts Node H12 – Module 4 

 

Figure 105. Relative Weights Impacts Node H13 – Module 4 

UEYE had the lowest absolute value weights by a large amount. It was 

effectively removed from the reduced diagnostic. QSOV was clearly the second 

least important input variable to the reduced diagnostic. QSRES and ARSOC 

were the next two variables in order of ascending absolute value weights, and 

had almost identical weights, at a significantly higher level than QSOV. INSIG 

was the next variable in ascending order. All other variables were closely 
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clustered together, with Others EMPTH featuring the highest absolute value 

weights. 

7.6.2.1 Correlation Between Variables 

 

Figure 106. Weights Correlations – Module 4 Section 2 

All correlation in this section are weak. 

7.6.3 Module 4 Section 3 Analysis 

 The third section of the reduced diagnostic combines sections in the 

original that cover Imagination, Stereotyped Behaviors/Restricted Interests, and 

Other Abnormal Behaviors. There were 9 variables originally in these sections, 

and these were reduced to 6 variables by the autoencoders. The variables in 

these sections are Imagination/Creativity (IMGCR), Unusual Sensory Interest In 

Play Material/Person (USENS), Hand and Finger and Other Complex 

Mannerisms (OMAN), Self-Injurious Behavior (SELFINJ), Excessive Interest in or 

References to Unusual or Highly Specific Topics or Objects or Repetitive 

Behaviors (TOPIC), Compulsions or Rituals (RITL), Overactivity/Agitation 
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(ATIVE), Tantrums/Aggression (AGG), and Anxiety (ANXTY). The diagrams 

below shows the weights of the reduced diagnostic of this section. 

 

Figure 107. Relative Weights Impacts Node H14 – Module 4 

 

Figure 108. Relative Weights Impacts Node H15 – Module 4 
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Figure 109. Relative Weights Impacts Node H16 – Module 4 

 

Figure 110. Relative Weights Impacts Node H17 – Module 4 
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Figure 111. Relative Weights Impacts Node H18 – Module 4 

 

Figure 112. Relative Weights Impacts Node H19 – Module 4 

The weights for this section were unusually balanced, and no variables 

were completely dropped. The nodes in this section were shared between input 

variables far more than many other sections of other modules. Interestingly 

enough, SELFINJ and ANXTY were the two variables with the highest strength of 

weights. SELFINJ in particular had cumulative weights that were more than 
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double the next most impactful variable. OMAN had weight strength almost 

equivalent to ANXTY, followed by TOPIC and IMGCR.  

7.6.3.1 Correlation Between Variables 

 

Figure 113. Weights Correlations – Module 4 Section 3 

IMGCE and OMAN had a strong positive correlational relationship. 

(ACTIVE) and AGG also correlated strongly in the positive direction. 
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7.7 Insights Across Module 1 Architectures 

7.7.1 Module 1 Section 1 Insights 

 

Figure 114. Module 1 Section 1 Insights  

 GEST was the least important variable across the board. None of its 

weights were negligible, but it was nonetheless the lowest ranked in terms of 

absolute value weights across the board. FVOC had the second lowest absolute 

value weights across the board, and displayed a greater degree of weight 

variance than GEST. 

 UOTHER was ranked highest in absolute value weights in three of the four 

autoencoders, representing the lowest dimensional reductions. OLANG was 

ranked second in absolute value weights in three lowest dimensional reductions, 

and was ranked first in the other.  
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7.7.2 Module 1 Section 2 Insights  

 

Figure 115. Module 1 Section 2 Insights  

The different architectures in Section 2 of Module 1 differed to a far 

greater degree than in many other sections. It seems that different autoencoders 

converged upon radically different minima. GIVE and “GZSOV” had high 

absolute value weights across the board. 

 Interestingly enough, the 29-20 architecture showed a greater degree of 

similarity with the 29-22 architecture. A similar trend was seen between the 29-21 

and 29-23 architectures.  
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7.7.3 Module 1 Section 3 Insights 

 

Figure 116. Module 1 Section 3 Insights 

 SELFINJ and ANXTY were consistently the least impactful architectures. 

The more significant the dimensionality reduction of an autoencoder architecture, 

the higher the extent to which these two variables dropped. In the lowest 

dimension architecture, these two variables almost wholly dropped. 

    AGG was the most impactful variable in the 20-variable reduced diagnostic 

and the 22-variable compressed diagnostic architectures. IMGCR was the most 

impactful variable in the other two architectures.  
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7.8 Insights Across Module 2 Architectures 

7.8.1 Module 2 Section 1 Insights  

 

Figure 117. Module 2 Section 1 Insights 

 There were very few consistent trends between architectures in Module 2 

Section 1. Different autoencoders found different combinations of weights to 

reduce dimensionality successfully. 

7.8.2 Module 2 Section 2 Insights  

 

Figure 118. Module 2 Section 2 Insights 
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RJNT had the lowest absolute value weights across all autoencoder 

architectures. 

7.8.3 Module 2 Section 3 Insights 

 

Figure 119. Module 2 Section 3 Insights 

 Once again, ANXTY and SELFINJ were the least represented variables in 

all architectures of autoencoder. ACTIVE had a strong weight presence 

throughout all reduced diagnostics. 
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7.9 Insights Across Module 3 Architectures  

7.9.1 Module 3 Section 1 Insights  

 

Figure 120. Module 3 Section 1 Insights 

 IECHO had the lowest absolute value weights in all reduced diagnostics. 

The absolute value of its weights was significantly smaller in the more moderate 

dimension reduced diagnostics (19 and 20 variables) than in the larger ones (21 

and 22 variables). CONVS had consistently low absolute value weights and was 

the second lowest in 3 out of 4 autoencoders.  
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7.8.2 Module 3 Section 2 Insights  

 

Figure 121. Module 3 Section 2 Insights 

UEYE had the lowest absolute value weights across the board in all 

reduced diagnostics. 

7.8.3 Module 3 Section 3 Insights  

 

Figure 122. Module 3 Section 3 Insights 
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SELFINJ once again had the lowest absolute value weights in all 

architectures. 

7.10 Insights Across Module 4 Architectures 

7.10.1 Module 4 Section 1 Insights 

 

Figure 123. Module 4 Section 1 Insights 

 OLANG had the lowest absolute value weights in all architectures and 

negligible absolute value weights in all structures. IECHO had the second most 

moderate absolute value weights and was also insignificant in all constructions. 

STEREO had a strong presence in all architectures and had the most substantial 

absolute value weights in 3 out of 4 reduced diagnostics. 
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7.10.2 Module 4 Section 2 Insights  

 

Figure 124. Module 4 Section 2 Insights 

UEYE had the lowest absolute value weights in all architectures and 

negligibly represented.  

7.10.3 Module 4 Section 3 Insights 

 

Figure 125. Module 4 Section 3 Insights 
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     SELFINJ had by far the highest absolute value weights for all 

architectures in this section. 

 

7.11 Insights Across Modules 

7.11.1 Modules 1, 2 and 3 

In the Modules 1, 2, and 3, SELFINJ was the lowest ranked variable 

across the board in its section. Its absolute value weights were negligible, and it 

effectively eliminated from most reduced diagnostics. In Module 4 however, it 

had the highest presence by a massive amount. 

A study published after the date of most patient data used for this project 

indicated that self-injury is not a symptom of autism [44]. The fact that 

autoencoders repeatedly converged on solutions that eliminated self-injury might 

not be a coincidence. For that reason, it might be worth examining if self-injury is 

a reliable indicator of autism for adolescents and adults capable of having a 

functional conversation with an interviewer. The nature of Modules 1-3 differs 

significantly from Modules 4, and it is possible that self-injury’s relationship with 

autism is somewhat nuanced, in that it is not a predictor for autism in earlier 

stages of social development, but is a definite symptom for autism in later stages 

of social development.  

7.11.2 Modules 1 and 2 

    ANXTY had low absolute value weights consistently in Modules 1 and 2. 
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7.11.3 Modules 3 and 4 

    IECHO had low absolute values and efficiently eliminated from diagnostics in 

both Modules 3 and 4. UEYE also had consistently low absolute value weights. 

 

7.12 Relative Significant of ADOS Observation Items 

7.12.1 Normalization with Feature-Scaling 

 To provide additional context for comparing the relative strengths of 

weights, weight amounts were also feature scaled to fit a range between 0 and 1. 

The formula for feature scaling for a given section of weights looks like this. 

 
𝑋! − 𝑋!"#
𝑋!"# − 𝑋!"#

 

 

 The smallest absolute value weight for a section is set to 0 under this 

formula, and the largest is set to 1. All others are placed on a relative scale 

between 0 and 1. Normalized plots of weight values allows for one to 

conveniently observe the degree of separation between the strengths of different 

weights.  

7.12.2 Module 1 

The table below shows relative significant of ADOS Observation Items for 

Module 1 Section 1.   
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Table 24. Module 1 Section 1 Relative Significant 

Module 1 (29-20) Section 1  
Observation Items Weights  Normalized Weights 

UOTHR 1.205708516 1	
OLANG 0.904170549 0.69581462	
IECHO 0.781549337 0.572116831	

STEREO 0.708023612 0.497945572	
INTON 0.453141831 0.240826005	
POINT 0.450138779 0.237796587	
FVOC 0.282855572 0.069044684	
GEST 0.214411804 0	

 
 

 

Figure 126. One-dimensional Scatter Plot - Module 1 Section 1 

The table below shows relative significant of ADOS Observation Items for 

Module 1 Section 2.   

Table 25. Module 1 Section 2 Relative Significant 

Module 1 (29-20) Section 2  
Observation Items Weights  Normalized Weights 

GZSOV 0.986883532 1 
SSMLE 0.946474784 0.933358854 
SHRNJ 0.945726214 0.93212433 
RJNT 0.8943154 0.847338838 
REQ 0.87838718 0.821070396 

RNAME 0.868602947 0.804934472 
GIVE 0.833063511 0.746323679 
UEYE 0.76341717 0.63146459 
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SHOW 0.645348437 0.436748443 
QSOV 0.458394155 0.128427886 
FACEO 0.398866478 0.030256257 
SIJNT 0.380520193 0 

 
 

 

Figure 127. One-dimensional Scatter Plot - Module 1 Section 2 

The table below shows relative significant of ADOS Observation Items for 

Module 1 Section 3.   

Table 26. Module 1 Section 3 Relative Significant 
 

Module 1 (29-20) Section 3  
Observation Items Weights Normalized Weights 

AGG 1.110117879 1 
URBEH 0.974269508 0.877620065 
IMGCR 0.948730169 0.854612777 
FPLAY 0.830749743 0.748329303 
ACTVE 0.824988178 0.743138958 
OMAN 0.781285844 0.703769411 
USENS 0.529718704 0.477143431 
ANXTY 7.63822E-05 1.15212E-05 

SELFINJ 6.3593E-05 0 
 

 
 

Figure 128. One-dimensional Scatter Plot - Module 1 Section 3 
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The table below shows relative significant of ADOS Observation Items for 

Module 1.  

Table 27. Module 1 Relative Significant 
 

Module 1 (29-20) 
Observation Items Normalized Weights 

UOTHR 1 
GZSOV 1 

AGG 1 
SSMLE 0.933358854 
SHRNJ 0.93212433 
URBEH 0.877620065 
IMGCR 0.854612777 
RJNT 0.847338838 
REQ 0.821070396 

RNAME 0.804934472 
FPLAY 0.748329303 
GIVE 0.746323679 

ACTVE 0.743138958 
OMAN 0.703769411 
OLANG 0.69581462 
UEYE 0.63146459 
IECHO 0.572116831 

STEREO 0.497945572 
USENS 0.477143431 
SHOW 0.436748443 
INTON 0.240826005 
POINT 0.237796587 
QSOV 0.128427886 
FVOC 0.069044684 

FACEO 0.030256257 
ANXTY 1.15212E-05 
GEST 0 
SIJNT 0 

SELFINJ 0 
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Figure 129. One-dimensional Scatter Plot - Module 1  

 

7.12.3 Module 2 

The table below shows relative significant of ADOS Observation Items for 

Module 2 Section 1.   

Table 28. Module 2 Section 1 Relative Significant 
 

Module 2 (28-19) Section 1  
Observation Items Weights Normalized Weights 

POINT 0.708659958 1 
STEREO 0.700268554 0.980743087 
CONVS 0.597751086 0.745482102 
OLANG 0.595364234 0.740004664 
DGEST 0.571544413 0.685342033 
IECHO 0.553512397 0.643961476 
SPABN 0.272899357 0 

 

 

Figure 130. One-dimensional Scatter Plot - Module 2 Section 1 
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The table below shows relative significant of ADOS Observation Items for 

Module 2 Section 2.   

Table 29. Module 2 Section 2 Relative Significant 
 

Module 2 (28-19) Section 2  
Observation Items Weights Normalized Weights 

SHRNJ 1.010939116 1 
ASOV 0.921786728 0.911798545 

OQRAP 0.901903429 0.892127329 
SIJNT 0.898558484 0.888818063 
SHOW 0.884995778 0.875400022 
UEYE 0.877366224 0.867851847 
QSOV 0.846978244 0.837787997 

RNAME 0.82933398 0.820331934 
ARSOC 0.675532079 0.668170542 
FACEO 0.629712293 0.622839488 
QSRES 0.522735909 0.517004155 
RJNT 0.000157736 0 

 

 

Figure 131. One-dimensional Scatter Plot - Module 2 Section 2 

The table below shows relative significant of ADOS Observation Items for 

Module 2 Section 3.   

Table 30. Module 2 Section 3 Relative Significant 
 

Module 2 (28-19) Section 3  
Observation Items Weights Normalized Weights 

ACTVE 1.175469252 1 



  

 166 

OMAN 0.914500552 0.777978982 
URBEH 0.883581232 0.751674146 
USENS 0.86840694 0.738764506 
IMGCR 0.797130439 0.678125505 
FPLAY 0.756933467 0.643927639 
AGG 0.603862908 0.513701749 

SELFINJ 6.93597E-05 1.99992E-05 
ANXTY 4.58522E-05 0 

	

	

Figure 132. One-dimensional Scatter Plot - Module 2 Section 3 

The table below shows relative significant of ADOS Observation Items for 

Module 2.  

Table 31. Module 2 Relative Significant 

Module 2 (28-19) 
Observation Items Normalized Weights 

POINT 1 
SHRNJ 1 
ACTVE 1 

STEREO 0.980743087 
ASOV 0.911798545 

OQRAP 0.892127329 
SIJNT 0.888818063 
SHOW 0.875400022 
UEYE 0.867851847 
QSOV 0.837787997 

RNAME 0.820331934 
OMAN 0.777978982 
URBEH 0.751674146 
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CONVS 0.745482102 
OLANG 0.740004664 
USENS 0.738764506 
DGEST 0.685342033 
IMGCR 0.678125505 
ARSOC 0.668170542 
IECHO 0.643961476 
FPLAY 0.643927639 
FACEO 0.622839488 
QSRES 0.517004155 

AGG 0.513701749 
SELFINJ 1.99992E-05 
SPABN 0 
RJNT 0 

ANXTY 0 
 

 

 

Figure 133. One-dimensional Scatter Plot - Module 2  

 

7.12.3 Module 3 

The table below shows relative significant of ADOS Observation Items for 

Module 3 Section 1.   
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Table 32. Module 3 Section 1 Relative Significant 

Module 3 (28-19) Section 1  
Observation Items Weights Normalized Weights 

DGEST 1.057394016 1 
AINFO 0.991035334 0.937240375 
REPRT 0.92237092 0.872300072 
OLANG 0.891673245 0.843267329 

STEREO 0.723490444 0.684206159 
OINFO 0.715556231 0.676702269 
SPABN 0.599730539 0.567158547 
CONVS 0.098701942 0.093303942 
IECHO 4.73278E-05 0 

 

 

Figure 134. One-dimensional Scatter Plot - Module 3 Section 1 

The table below shows relative significant of ADOS Observation Items for 

Module 3 Section 2.   

Table 33. Module 3 Section 2 Relative Significant 

Module 3 (28-19) Section 2  
Observation Items Weights Normalized Weights 

EMPTH 0.957367727 1 
INSIG 0.936019453 0.977697431 
LLNVC 0.823743481 0.860402581 
FACEO 0.78472377 0.81963864 
SHRNJ 0.781059777 0.815810862 
ARSOC 0.761125309 0.794985298 
OQRAP 0.732458418 0.765036961 
QSOV 0.655085127 0.684204986 
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QSRES 0.568260651 0.593499346 
UEYE 0.000156287 0 

 

 

Figure 135. One-dimensional Scatter Plot - Module 3 Section 2 

The table below shows relative significant of ADOS Observation Items for 

Module 3 Section 3.   

Table 34. Module 3 Section 3 Relative Significant 

 
Module 3 (28-19) Section 3  

Observation Items Weights Normalized Weights 
RITL 1.170622428 1 

OMAN 1.078962543 0.921694967 
ACTVE 0.971970664 0.830291812 
USENS 0.896979931 0.766227234 
TOPIC 0.839487573 0.717111517 
IMGCR 0.742854752 0.634558105 
AGG 0.270061152 0.230650566 

ANXTY 0.028987615 0.024701461 
SELFINJ 7.3343E-05 0 
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Figure 136. One-dimensional Scatter Plot - Module 3 Section 3 

The table below shows relative significant of ADOS Observation Items for 

Module 3. 

Table 35. Module 3 Relative Significant 

Module 3 (28-19) 
Observation Items Normalized Weights 

DGEST 1 
EMPTH 1 

RITL 1 
INSIG 0.977697431 
AINFO 0.937240375 
OMAN 0.921694967 
REPRT 0.872300072 
LLNVC 0.860402581 
OLANG 0.843267329 
ACTVE 0.830291812 
FACEO 0.81963864 
SHRNJ 0.815810862 
ARSOC 0.794985298 
USENS 0.766227234 
OQRAP 0.765036961 
TOPIC 0.717111517 

STEREO 0.684206159 
QSOV 0.684204986 
OINFO 0.676702269 
IMGCR 0.634558105 
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QSRES 0.593499346 
SPABN 0.567158547 

AGG 0.230650566 
CONVS 0.093303942 
ANXTY 0.024701461 
IECHO 0 
UEYE 0 

SELFINJ 0 
 

 

Figure 137. One-dimensional Scatter Plot - Module 3  

7.12.3 Module 4 

The table below shows relative significant of ADOS Observation Items for 

Module 4 Section 1.    

Table 36. Module 4 Section 1 Relative Significant 

Module 4 (31-19) Section 1  
Observation Items Weights Normalized Weights 

STEREO 1.041436433 1 
EGEST 1.026833667 0.985977423 
AINFO 0.97720692 0.938322419 
DGEST 0.769717302 0.739076667 
REPRT 0.681088622 0.653969334 
OINFO 0.567627342 0.545016037 
CONVS 0.510251157 0.489919491 
SPABN 0.425571861 0.408604628 
IECHO 0.00020563 0.000138819 
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OLANG 6.10677E-05 0 
 

 

Figure 138. One-dimensional Scatter Plot - Module 4 Section 1  

The table below shows relative significant of ADOS Observation Items for 

Module 4 Section 2.   

Table 37. Module 4 Section 2 Relative Significant 

Module 4 (31-19) Section 2  
Observation Items Weights Normalized Weights 

EMPTH 0.854731274 1 
RESP 0.84517449 0.988804041 

OQRAP 0.832105734 0.973493738 
LLNVC 0.813874191 0.95213513 
CAFF 0.760248374 0.889311438 
SEI 0.756331895 0.884723206 

FACEO 0.740745094 0.866462965 
INSIG 0.55350398 0.647106344 

ARSOC 0.39763268 0.464500072 
QSRES 0.377828497 0.441299085 
QSOV 0.066684778 0.076788143 
UEYE 0.001139013 0 
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Figure 139. One-dimensional Scatter Plot - Module 4 Section 2 

The table below shows relative significant of ADOS Observation Items for 

Module 4 Section 3.   

Table 38. Module 4 Section 3 Relative Significant 

Module 4 (31-19) Section 3  
Observation Items Weights Normalized Weights 

SELFINJ 1.889942607 1 
ANXTY 0.765446827 0.318667147 
OMAN 0.754011647 0.311738563 
TOPIC 0.63886953 0.241973866 
IMGCR 0.560970038 0.194774505 

RITL 0.488984408 0.151158356 
AGG 0.347731121 0.065572882 

USENS 0.314536498 0.045460234 
ACTVE 0.239507323 0 

 
 

 
 

Figure 140. One-dimensional Scatter Plot - Module 4 Section 3 
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The table below shows relative significant of ADOS Observation Items for 

Module 4.  

Table 39. Module 4 Relative Significant 

Module 4 (31-19) 
Observation Items Normalized Weights 

STEREO 1 
EMPTH 1 
SELFINJ 1 

RESP 0.988804041 
EGEST 0.985977423 
OQRAP 0.973493738 
LLNVC 0.95213513 
AINFO 0.938322419 
CAFF 0.889311438 
SEI 0.884723206 

FACEO 0.866462965 
DGEST 0.739076667 
REPRT 0.653969334 
INSIG 0.647106344 
OINFO 0.545016037 
CONVS 0.489919491 
ARSOC 0.464500072 
QSRES 0.441299085 
SPABN 0.408604628 
ANXTY 0.318667147 
OMAN 0.311738563 
TOPIC 0.241973866 
IMGCR 0.194774505 

RITL 0.151158356 
QSOV 0.076788143 
AGG 0.065572882 

USENS 0.045460234 
IECHO 0.000138819 
OLANG 0 
UEYE 0 

ACTVE 0 
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Figure 141. One-dimensional Scatter Plot - Module 4  
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CHAPTER EIGHT 

CONCLUSION 

 

8.1 Conclusion 

Following the training of each iteration of all autoencoder architectures on 

all ADOS modules, a number of clear insights were provided by examining the 

absolute value of each variable’s weights for the encoder section of each model. 

The effectiveness of all autoencoders was validated by their accuracy at 

reconstructing their input. As expected, the accuracy of a reconstruction directly 

correlated with the dimensionality of a hidden layer. By comparing the cumulative 

absolute value weights of variables, it was possible to rank the extent to which 

each variable impacted its relevant section in the reduced diagnostic. “Self-

Injurious Behavior” was consistently eliminated in all autoencoder architectures in 

Modules 1-3, which suggests that a reduced diagnostic could avoid including 

observations for this behavior in Modules 1-3 (which differ greatly from Module 4 

in their administration). This trend starkly reversed in Module 4, which relevant 

autoencoders consistently treated “Self-Injurious Behavior” as the highest priority 

when reducing the diagnostic. “Anxiety” was consistently deprioritized in Module 

1 and Module 2, suggesting that it might be not be necessary to monitor for this 

symptom when evaluating examinees with less developed language fluency and 

communication abilities. “Immediate echolalia” was eliminated from Module 3 and 



  

 177 

Module 4, suggesting that this symptom might not be necessary to include in 

examinations of individuals with more advanced language fluency and 

communication abilities.  

8.2 Discussion of Context 

This thesis attempted to use the weights of autoencoders to assess which 

variables in the Autism Diagnostic Observation Schedule would be integral to a 

shorter version of the diagnostic. Analyzing the weights of these autoencoders 

did allow for insights to be drawn regarding the extent to which variables 

represented in the reduced diagnostic. As such, the variables the autoencoders 

chose to prioritize can be treated as suggestions for focal points of a reduced 

diagnostic. 

 The fact that the autoencoders were able to reconstruct the diagnostic 

with a reasonable degree of accuracy suggests that machine learning 

approaches might be valuable in using the smaller amount of information in a 

shorter diagnostic to create a more extensive, more comprehensive patient 

profile. With sufficiently advanced machine learning approaches trained on 

enough large datasets, it might be possible that many types of shorter 

observation schedules could be used to create more significant patient profiles. 

This experiment suggests that machine learning approaches can enable the 

possibility of shorter autism diagnostics through their inferential capabilities. 
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 It is worth discussing if the concepts that autoencoders’ chose represent 

the foundation of a functional reduced diagnostic. There is, unfortunately, no way 

to currently confirming this. The possibility is worth considering though. The fact 

that the autoencoder reliably removed “Self-Injurious Behavior” from the 

diagnostic for the first three modules suggests that this might be a possibility. 

According to study, self-injury is no longer considered a symptom of autism[44]. 

The fact that every autoencoder trained on the first three modules repeatedly and 

reliably converged upon the solution of eliminating self-injury from the diagnostic 

suggests that it can isolate the variables that are most important to the diagnostic 

from the perspective of autism psychology. 

 Autoencoders might be valuable as tools to identify areas of further 

research within fields of psychology. If autoencoders consistently remove the 

same variable from a data set, it might be worth examining if that variable 

represents a concept that is related to the domain. In the case of these 

autoencoders, self-injury was repeatedly removed, and it turns out that there is 

experimental evidence to suggest that self-injury is not a symptom of autism. 

Similarly, if autoencoders regularly prioritize specific variables, that might indicate 

that those variables are a more integral aspect of autism than realized. Alone, 

these trends are entirely insufficient evidence, which is why further psychology 

research and experimentation would be needed. 

 In the big picture, psychological data contains a degree of inherent 

unreliability. Observation diagnoses are somewhat unreliable by nature, given 
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the degree of subjectivity included within them. This, unfortunately, limits the 

extent to which machine learning algorithms applied to psychology data can yield 

valuable insights about the underlying domain. 

Nonetheless, this thesis indicates that machine learning algorithms 

applied to psychology data can potentially uncover trends that accurately portray 

facts about human psychology. As more powerful models are applied to more 

massive data sets, it is possible that machine learning algorithms can act as a 

bulwark against the unreliability of psychology data by identifying consistent and 

essential patterns that separate useful variables from misleading variables. By 

reducing patient profiles to critical components, autoencoders certainly have 

potential in this regard, especially when it comes to the domain of the Autism 

Diagnostic Observation Schedule. 

  

8.3 Future Work 

  It would be valuable to test if autoencoders trained on a different and 

larger samples of ADOS data converged upon the same solutions by prioritizing 

and deprioritizing the same variables. Furthermore, researchers in the field of 

psychology might evaluate if a shorter diagnostic process can be created by 

designing a series of observation activities that focus on the concepts prioritized 

by the autoencoders in this thesis. 
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The fact that self-injury was, in contrast to Modules 1-3, heavily prioritized in 

Module 4 suggests that further research into the relationship between self-harm 

tendencies and adult autism might be valuable. Since the autoencoder correctly 

removed self-injury in Modules 1-3, a degree of credibility lent to its suggestion 

regarding self-injury in Module 4. 

Similarly, the autoencoder also strongly highlights “Anxiety” as a target for 

removal in Module 1 and Module 2, and highlights “Immediate Echolalia” as a 

target for removal from Module 3 and Module 4. This represents another 

potential research area for psychologists, as it can be examined if anxiety is 

really a symptom of autism for individuals with underdeveloped communication 

abilities, and if immediate echolalia is really a symptom of autism for individuals 

with more developed communication abilities. 
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APPENDIX A 

ADOS DATA APPROVAL  



  

 182 

 

  



  

 183 

 

 

 

 

 

 

 

 

APPENDIX B 

HADAMARD PRODUCT  
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Hadamard Product for Module 1 with a Hidden layer of size 21 
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APPENDIX C 

AUTOENCODER DIAGRAMS  
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RECONSTRUCTION ACCURACIES
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 Module 1 with Hidden Layer of Size 20 Training Iterations and their Respective 

Reconstruction Accuracies 

 

 

 

  

Module	1-2920	total	cell	27521	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 3161	 11.4857745	 24360	 88.5142255	
Training	2	 2756	 10.014171	 24765	 89.985829	
Training	3	 2753	 10.00327023	 24768	 89.99672977	
Training	4	 2760	 10.02870535	 24761	 89.97129465	
Training	5	 3295	 11.97267541	 24226	 88.02732459	
Training	6	 2755	 10.01053741	 24766	 89.98946259	
Training	7	 2795	 10.15588096	 24726	 89.84411904	
Training	8	 2810	 10.2103848	 24711	 89.7896152	
Training	9	 3423	 12.43777479	 24098	 87.56222521	
Training	10	 3023	 10.98433923	 24498	 89.01566077	

Total	 29531	 107.3035137	 245679	 892.6964863	
Average	 2953.1	 10.73035137	 24567.9	 89.26964863	
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Module 1 with Hidden Layer of Size 21 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	1-2921	total	cell	27521	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2868	 10.42113295	 24653	 89.57886705	
Training	2	 2550	 9.265651684	 24971	 90.73434832	
Training	3	 2533	 9.203880673	 24988	 90.79611933	
Training	4	 2539	 9.225682206	 24982	 90.77431779	
Training	5	 2534	 9.207514262	 24987	 90.79248574	
Training	6	 2929	 10.64278188	 24592	 89.35721812	
Training	7	 2664	 9.679880818	 24857	 90.32011918	
Training	8	 2825	 10.26488863	 24696	 89.73511137	
Training	9	 2316	 8.415391883	 25205	 91.58460812	
Training	10	 2274	 8.262781149	 25247	 91.73721885	

Total	 26032	 94.58958613	 249178	 905.4104139	
Average	 2603.2	 9.458958613	 24917.8	 90.54104139	
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Module 1 with Hidden Layer of Size 22 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	1-2922	total	cell	27521	
Training	#	 Wrong	cell	

found	
Percentage	of	

error	
Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2075	 7.539696959	 25446	 92.46030304	
Training	2	 1924	 6.991025035	 25597	 93.00897496	
Training	3	 2075	 7.539696959	 25446	 92.46030304	
Training	4	 2106	 7.652338214	 25415	 92.34766179	
Training	5	 2007	 7.292612914	 25514	 92.70738709	
Training	6	 1987	 7.219941136	 25534	 92.78005886	
Training	7	 1827	 6.638566913	 25694	 93.36143309	
Training	8	 2328	 8.458994949	 25193	 91.54100505	
Training	9	 2089	 7.590567203	 25432	 92.4094328	
Training	10	 2138	 7.768613059	 25383	 92.23138694	
Total	 20556	 74.69205334	 254654	 925.3079467	
Average	 2055.6	 7.469205334	 25465.4	 92.53079467	
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Module 1 with Hidden Layer of Size 23 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	1-2923	total	cell	27521	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1504	 5.464917699	 26017	 94.5350823	
Training	2	 1732	 6.293375967	 25789	 93.70662403	
Training	3	 1541	 5.599360488	 25980	 94.40063951	
Training	4	 1736	 6.307910323	 25785	 93.69208968	
Training	5	 1596	 5.799207878	 25925	 94.20079212	
Training	6	 1829	 6.64583409	 25692	 93.35416591	
Training	7	 1628	 5.915482722	 25893	 94.08451728	
Training	8	 1510	 5.486719233	 26011	 94.51328077	
Training	9	 1526	 5.544856655	 25995	 94.45514335	
Training	10	 1814	 6.591330257	 25707	 93.40866974	
Total	 16416	 59.64899531	 258794	 940.3510047	
Average	 1641.6	 5.964899531	 25879.4	 94.03510047	
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Module 2 with Hidden Layer of Size 19 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	2-2819	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1516	 10.00792184	 13632	 89.99207816	
Training	2	 1756	 11.59228941	 13392	 88.40771059	
Training	3	 1518	 10.0211249	 13630	 89.9788751	
Training	4	 1795	 11.84974914	 13353	 88.15025086	
Training	5	 1527	 10.08053868	 13621	 89.91946132	
Training	6	 1688	 11.14338527	 13460	 88.85661473	
Training	7	 1426	 9.413783998	 13722	 90.586216	
Training	8	 1720	 11.35463428	 13428	 88.64536572	
Training	9	 1575	 10.3974122	 13573	 89.6025878	
Training	10	 1344	 8.87245841	 13804	 91.12754159	

Total	 15865	 104.7332981	 135615	 895.2667019	
Average	 1586.5	 10.47332981	 13561.5	 89.52667019	
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Module 2 with Hidden Layer of Size 20 Training Iterations and their 

Respective Reconstruction Accuracies 

Module	2-2820	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1359	 8.971481384	 13789	 91.02851862	
Training	2	 1367	 9.024293636	 13781	 90.97570636	
Training	3	 1322	 8.727224716	 13826	 91.27277528	
Training	4	 1233	 8.139688408	 13915	 91.86031159	
Training	5	 1250	 8.251914444	 13898	 91.74808556	
Training	6	 1270	 8.383945075	 13878	 91.61605492	
Training	7	 1263	 8.337734354	 13885	 91.66226565	
Training	8	 1309	 8.641404806	 13839	 91.35859519	
Training	9	 1347	 8.892263005	 13801	 91.10773699	
Training	10	 1345	 8.879059942	 13803	 91.12094006	
Total	 13065	 86.24900977	 138415	 913.7509902	
Average	 1306.5	 8.624900977	 13841.5	 91.37509902	
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Module 2 with Hidden Layer of Size 21 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	2-2821	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1137	 7.505941378	 14011	 92.49405862	
Training	2	 970	 6.403485609	 14178	 93.59651439	
Training	3	 1207	 7.968048587	 13941	 92.03195141	
Training	4	 1173	 7.743596514	 13975	 92.25640349	
Training	5	 1124	 7.420121468	 14024	 92.57987853	
Training	6	 1116	 7.367309216	 14032	 92.63269078	
Training	7	 1184	 7.816213361	 13964	 92.18378664	
Training	8	 1070	 7.063638764	 14078	 92.93636124	
Training	9	 1114	 7.354106153	 14034	 92.64589385	
Training	10	 1069	 7.057037233	 14079	 92.94296277	

Total	 11164	 73.69949828	 140316	 926.3005017	
Average	 1116.4	 7.369949828	 14031.6	 92.63005017	
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Module 2 with Hidden Layer of Size 22 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	2-2822	total	cell	15148	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 745	 4.918141009	 14403	 95.08185899	
Training	2	 863	 5.697121732	 14285	 94.30287827	
Training	3	 862	 5.690520201	 14286	 94.3094798	
Training	4	 821	 5.419857407	 14327	 94.58014259	
Training	5	 804	 5.30763137	 14344	 94.69236863	
Training	6	 860	 5.677317138	 14288	 94.32268286	
Training	7	 829	 5.472669659	 14319	 94.52733034	
Training	8	 871	 5.749933985	 14277	 94.25006602	
Training	9	 1178	 7.776604172	 13970	 92.22339583	
Training	10	 799	 5.274623713	 14349	 94.72537629	
Total	 7887	 52.06627938	 128445	 847.9337206	
Average	 788.7	 5.206627938	 12844.5	 84.79337206	
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Module 3 with Hidden Layer of Size 19 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	3-2919	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2196	 7.526734302	 26980	 92.4732657	
Training	2	 2267	 7.770085001	 26909	 92.229915	
Training	3	 2351	 8.057992871	 26825	 91.94200713	
Training	4	 2448	 8.390457911	 26728	 91.60954209	
Training	5	 2435	 8.34590074	 26741	 91.65409926	
Training	6	 2006	 6.875514121	 27170	 93.12448588	
Training	7	 1932	 6.621880998	 27244	 93.378119	
Training	8	 2135	 7.317658349	 27041	 92.68234165	
Training	9	 2210	 7.574718947	 26966	 92.42528105	
Training	10	 1991	 6.824102002	 27185	 93.175898	

Total	 21971	 75.30504524	 269789	 924.6949548	
Average	 2197.1	 7.530504524	 26978.9	 92.46949548	
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Module 3 with Hidden Layer of Size 20 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	3-2920	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 2193	 7.516451878	 26983	 92.48354812	
Training	2	 1959	 6.714422813	 27217	 93.28557719	
Training	3	 2096	 7.183986838	 27080	 92.81601316	
Training	4	 1935	 6.632163422	 27241	 93.36783658	
Training	5	 1812	 6.210584042	 27364	 93.78941596	
Training	6	 2089	 7.159994516	 27087	 92.84000548	
Training	7	 1950	 6.683575542	 27226	 93.31642446	
Training	8	 2113	 7.242253907	 27063	 92.75774609	
Training	9	 1848	 6.333973129	 27328	 93.66602687	
Training	10	 2112	 7.238826433	 27064	 92.76117357	

Total	 20107	 68.91623252	 271653	 931.0837675	
Average	 2010.7	 6.891623252	 27165.3	 93.10837675	
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Module 3 with Hidden Layer of Size 21 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	3-2921	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1273	 4.363175213	 27903	 95.63682479	
Training	2	 1199	 4.109542089	 27977	 95.89045791	
Training	3	 1439	 4.932136002	 27737	 95.067864	
Training	4	 1445	 4.95270085	 27731	 95.04729915	
Training	5	 1334	 4.572251165	 27842	 95.42774883	
Training	6	 1519	 5.206333973	 27657	 94.79366603	
Training	7	 1138	 3.900466137	 28038	 96.09953386	
Training	8	 1391	 4.76761722	 27785	 95.23238278	
Training	9	 1615	 5.535371538	 27561	 94.46462846	
Training	10	 1672	 5.730737593	 27504	 94.26926241	

Total	 14025	 48.07033178	 277735	 951.9296682	
Average	 1402.5	 4.807033178	 27773.5	 95.19296682	
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Module 3 with Hidden Layer of Size 22 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	3-2922	total	cell	29176	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 1143	 3.91760351	 28033	 96.08239649	
Training	2	 1161	 3.979298053	 28015	 96.02070195	
Training	3	 1151	 3.945023307	 28025	 96.05497669	
Training	4	 1057	 3.622840691	 28119	 96.37715931	
Training	5	 1219	 4.178091582	 27957	 95.82190842	
Training	6	 1128	 3.86619139	 28048	 96.13380861	
Training	7	 1436	 4.921853578	 27740	 95.07814642	
Training	8	 1222	 4.188374006	 27954	 95.81162599	
Training	9	 1366	 4.681930354	 27810	 95.31806965	
Training	10	 1130	 3.873046339	 28046	 96.12695366	

Total	 12013	 41.17425281	 279747	 958.8257472	
Average	 1201.3	 4.117425281	 27974.7	 95.88257472	
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Module 4 with Hidden Layer of Size 19 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	4-3119	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 658	 8.956036477	 6689	 91.04396352	
Training	2	 666	 9.064924459	 6681	 90.93507554	
Training	3	 577	 7.853545665	 6770	 92.14645434	
Training	4	 607	 8.261875595	 6740	 91.7381244	
Training	5	 601	 8.180209609	 6746	 91.81979039	
Training	6	 608	 8.275486593	 6739	 91.72451341	
Training	7	 610	 8.302708589	 6737	 91.69729141	
Training	8	 637	 8.670205526	 6710	 91.32979447	
Training	9	 604	 8.221042602	 6743	 91.7789574	
Training	10	 666	 9.064924459	 6681	 90.93507554	

Total	 6234	 84.85095958	 67236	 915.1490404	
Average	 623.4	 8.485095958	 6723.6	 91.51490404	
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Module 4 with Hidden Layer of Size 20 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	4-3120	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 671	 9.132979447	 6676	 90.86702055	
Training	2	 602	 8.193820607	 6745	 91.80617939	
Training	3	 688	 9.364366408	 6659	 90.63563359	
Training	4	 619	 8.425207568	 6728	 91.57479243	
Training	5	 661	 8.996869471	 6686	 91.00313053	
Training	6	 640	 8.711038519	 6707	 91.28896148	
Training	7	 572	 7.785490676	 6775	 92.21450932	
Training	8	 613	 8.343541582	 6734	 91.65645842	
Training	9	 648	 8.819926501	 6699	 91.1800735	
Training	10	 590	 8.030488635	 6757	 91.96951137	

Total	 6304	 85.80372941	 67166	 914.1962706	
Average	 630.4	 8.580372941	 6716.6	 91.41962706	
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Module 4 with Hidden Layer of Size 21 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	4-3121	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 476	 6.478834899	 6871	 93.5211651	
Training	2	 445	 6.05689397	 6902	 93.94310603	
Training	3	 425	 5.784674017	 6922	 94.21532598	
Training	4	 450	 6.124948959	 6897	 93.87505104	
Training	5	 470	 6.397168912	 6877	 93.60283109	
Training	6	 429	 5.839118007	 6918	 94.16088199	
Training	7	 465	 6.329113924	 6882	 93.67088608	
Training	8	 432	 5.879951	 6915	 94.120049	
Training	9	 422	 5.743841024	 6925	 94.25615898	
Training	10	 418	 5.689397033	 6929	 94.31060297	

Total	 4432	 60.32394174	 69038	 939.6760583	
Average	 443.2	 6.032394174	 6903.8	 93.96760583	
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Module 4 with Hidden Layer of Size 22 Training Iterations and their Respective 

Reconstruction Accuracies 

Module	4-3122	total	cell	7347	

Training	#	 Wrong	cell	
found	

Percentage	of	
error	

Correct	cell	
found	

Percentage	of	
correct	

Training	1	 405	 5.512454063	 6942	 94.48754594	
Training	2	 307	 4.17857629	 7040	 95.82142371	
Training	3	 351	 4.777460188	 6996	 95.22253981	
Training	4	 367	 4.995236151	 6980	 95.00476385	
Training	5	 312	 4.246631278	 7035	 95.75336872	
Training	6	 342	 4.654961209	 7005	 95.34503879	
Training	7	 344	 4.682183204	 7003	 95.3178168	
Training	8	 378	 5.144957125	 6969	 94.85504287	
Training	9	 357	 4.859126174	 6990	 95.14087383	
Training	10	 394	 5.362733088	 6953	 94.63726691	

Total	 3557	 48.41431877	 69913	 951.5856812	
Average	 355.7	 4.841431877	 6991.3	 95.15856812	
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APPENDIX E 

MODULES WEIGHTS  
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Module 1 Section 1  Weights of Hidden Layer Nodes Ranked 
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Module 1 Section 2  Weights of Hidden Layer Nodes Ranked  
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Module 1 Section 3  Weights of Hidden Layer Nodes Ranked  
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Module 2 Section 1  Weights of Hidden Layer Nodes Ranked  
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Module 2 Section 2  Weights of Hidden Layer Nodes Ranked  
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Module 2 Section 3  Weights of Hidden Layer Nodes Ranked 
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Module 3 Section 1  Weights of Hidden Layer Nodes Ranked  
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Module 3 Section 2  Weights of Hidden Layer Nodes Ranked  
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Module 3 Section 3  Weights of Hidden Layer Nodes Ranked  
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Module 4 Section 1  Weights of Hidden Layer Nodes Ranked  
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Module 4 Section 2  Weights of Hidden Layer Nodes Ranked  
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Module 4 Section 3  Weights of Hidden Layer Nodes Ranked  

  



  

 239 

 

 

 

 

 

 

 

 

 

APPENDIX F 

MODEL CODE   
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Building module 1 Autoencoder with Hidden layer of size 20 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

#Create mask 29-20 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1') 

#create transposed mask 

mask1 = mask2.transpose() 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 
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        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 
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#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 
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        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 29, 20, 29    #batch size, dimensions of network 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0) 

dataset = dataframe.values 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(29, 20), #incoder 

                            activation, 

                            MaskedLayer2(20,29))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 
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trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 1train = torch.from_numpy(train) 

    Module 1test = torch.from_numpy(test) 

    Module 1train = Module 1train.type(torch.FloatTensor) 

    Module 1train = Module 1train.cuda() 

    Module 1test = Module 1test.type(torch.FloatTensor) 

    Module 1test = Module 1test.cuda() 

    x = torch.autograd.Variable(Module 1train)     #input 

    y = torch.autograd.Variable(Module 1train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 1test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 
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        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module 

1weights.csv") 

    break 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 
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reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_reconstruction.csv") 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_y.csv") 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S
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SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testset.csv") 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testeing.csv") 
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Building module 1 Autoencoder with Hidden layer of size 21 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

#Create mask 29-21 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1')  

#create transposed mask 

mask1 = mask2.transpose() 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 
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    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 
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#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 
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        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 29, 21, 29    #batch size, dimensions of network 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0) 

dataset = dataframe.values 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(29, 21), #incoder 

                            activation, 

                            MaskedLayer2(21,29))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 
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testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 1train = torch.from_numpy(train) 

    Module 1test = torch.from_numpy(test) 

    Module 1train = Module 1train.type(torch.FloatTensor) 

    Module 1train = Module 1train.cuda() 

    Module 1test = Module 1test.type(torch.FloatTensor) 

    Module 1test = Module 1test.cuda() 

    x = torch.autograd.Variable(Module 1train)     #input 

    y = torch.autograd.Variable(Module 1train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 1test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 
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        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module 

1weights.csv") 

    break 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 
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reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_reconstruction.csv") 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_y.csv") 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'
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,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testset.csv") 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testeing.csv")  
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Building module 1 Autoencoder with Hidden layer of size 22 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

#Create mask 29-22 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 
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1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1') 

#create transposed mask 

mask1 = mask2.transpose() 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 
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class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 
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#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  
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            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 29, 22, 29    #batch size, dimensions of network 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0) 

dataset = dataframe.values 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(29, 22), #incoder 

                            activation, 

                            MaskedLayer2(22,29))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 
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trainingloss = np.array(testloss, dtype =np.float64) 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 1train = torch.from_numpy(train) 

    Module 1test = torch.from_numpy(test) 

    Module 1train = Module 1train.type(torch.FloatTensor) 

    Module 1train = Module 1train.cuda() 

    Module 1test = Module 1test.type(torch.FloatTensor) 

    Module 1test = Module 1test.cuda() 

    x = torch.autograd.Variable(Module 1train)     #input 

    y = torch.autograd.Variable(Module 1train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 1test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 
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        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module 

1weights.csv") 

    break 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 
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reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_reconstruction.csv") 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_y.csv") 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A
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NXTY' ]) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testset.csv") 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testeing.csv")  
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Building module 1 Autoencoder with Hidden layer of size 23 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

#Create mask 29-23 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 
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1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1') 

#create transposed mask 

mask1 = mask2.transpose() 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 



  

 269 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 
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#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  



  

 271 

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 29, 23, 29    #batch size, dimensions of network 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 1.csv", header=0) 

dataset = dataframe.values 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(29, 23), #incoder 

                            activation, 

                            MaskedLayer2(23,29))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 
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trainingloss = np.array(testloss, dtype =np.float64) 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 1train = torch.from_numpy(train) 

    Module 1test = torch.from_numpy(test) 

    Module 1train = Module 1train.type(torch.FloatTensor) 

    Module 1train = Module 1train.cuda() 

    Module 1test = Module 1test.type(torch.FloatTensor) 

    Module 1test = Module 1test.cuda() 

    x = torch.autograd.Variable(Module 1train)     #input 

    y = torch.autograd.Variable(Module 1train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 1test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 
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        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 1/training1/Module 

1weights.csv") 

    break 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 
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reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_reconstruction.csv") 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_y.csv") 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A
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NXTY' ]) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testset.csv") 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','FVOC','INTON','IECHO','STEREO','UOTHR','POINT','GEST','UEYE','S

SMLE','FACEO','GZSOV','SHRNJ','RNAME','REQ','GIVE','SHOW','SIJNT','RJNT'

,'QSOV','FPLAY','IMGCR','USENS','OMAN','SELFINJ','URBEH','ACTVE','AGG','A

NXTY' ]) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

1/training1/Module 1_testeing.csv")  
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Building module 2 Autoencoder with Hidden layer of size 19 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

#Create mask 28-19 matrix 

mask2 = np.matrix('1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 
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0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1') 

#create transposed mask 

mask1 = mask2.transpose() 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 
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        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     
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    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 
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dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 19, 28    #batch size, dimensions of network 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0) 

dataset = dataframe.values 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 19), #incoder 

                            activation, 

                            MaskedLayer2(19,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 



  

 281 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 2train = torch.from_numpy(train) 

    Module 2test = torch.from_numpy(test) 

    Module 2train = Module 2train.type(torch.FloatTensor) 

    Module 2train = Module 2train.cuda() 

    Module 2test = Module 2test.type(torch.FloatTensor) 

    Module 2test = Module 2test.cuda() 

    x = torch.autograd.Variable(Module 2train)     #input 

    y = torch.autograd.Variable(Module 2train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 2test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 
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        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module 

2weights.csv") 

    break 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 
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['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_reconstruction.csv") 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_y.csv") 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 
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testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testset.csv") 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testeing.csv") 
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Building module 2 Autoencoder with Hidden layer of size 20 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

#Create mask 28-20 matrix 

mask2 = np.matrix('1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0;1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 ;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 ;  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 1 1 1 

1 1 1 1 1 1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 
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0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1') 

#create transposed mask 

mask1 = mask2.transpose() 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 
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        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 
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class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 
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dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 20, 28    #batch size, dimensions of network 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0) 

dataset = dataframe.values 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 20), #incoder 

                            activation, 

                            MaskedLayer2(19,20))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 
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#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 2train = torch.from_numpy(train) 

    Module 2test = torch.from_numpy(test) 

    Module 2train = Module 2train.type(torch.FloatTensor) 

    Module 2train = Module 2train.cuda() 

    Module 2test = Module 2test.type(torch.FloatTensor) 

    Module 2test = Module 2test.cuda() 

    x = torch.autograd.Variable(Module 2train)     #input 

    y = torch.autograd.Variable(Module 2train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 2test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 
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        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module 

2weights.csv") 

    break 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 
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reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_reconstruction.csv") 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_y.csv") 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 
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'ACTVE', 'AGG', 'ANXTY']) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testset.csv") 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testeing.csv") 
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Building module 2 Autoencoder with Hidden layer of size 21 

 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 28-21 matrix 

mask2 = np.matrix('1 1 1 1 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;  1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 ; 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 
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1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 
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mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 
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        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 21, 28    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 
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#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 21), #incoder 

                            activation, 

                            MaskedLayer2(21,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 



  

 300 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 2train = torch.from_numpy(train) 

    Module 2test = torch.from_numpy(test) 

    Module 2train = Module 2train.type(torch.FloatTensor) 

    Module 2train = Module 2train.cuda() 

    Module 2test = Module 2test.type(torch.FloatTensor) 

    Module 2test = Module 2test.cuda() 

    x = torch.autograd.Variable(Module 2train)     #input 

    y = torch.autograd.Variable(Module 2train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 2test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 
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    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module 

2weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE
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O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY' ]) 

 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 
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'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testeing.csv") 
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Building module 2 Autoencoder with Hidden layer of size 22 

 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 28-22 matrix 

mask2 = np.matrix('1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0;1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;  1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;0 0 0 

0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 
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0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1') 

 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 
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torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 
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            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 
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            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 22, 28    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 
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#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 2.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 22), #incoder 

                            activation, 

                            MaskedLayer2(22,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 
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for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 2train = torch.from_numpy(train) 

    Module 2test = torch.from_numpy(test) 

    Module 2train = Module 2train.type(torch.FloatTensor) 

    Module 2train = Module 2train.cuda() 

    Module 2test = Module 2test.type(torch.FloatTensor) 

    Module 2test = Module 2test.cuda() 

    x = torch.autograd.Variable(Module 2train)     #input 

    y = torch.autograd.Variable(Module 2train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 2test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 
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        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 2/training1/Module 

2weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 
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['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY' ]) 

 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE
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O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','CONVS','POINT','DGEST','UEYE','FACE

O', 'SHRNJ', 'RNAME', 'SHOW', 'SIJNT', 'RJNT', 'QSOV', 'ASOV', 'QSRES', 

'ARSOC', 'OQRAP', 'FPLAY', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'URBEH', 

'ACTVE', 'AGG', 'ANXTY']) 

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

2/training1/Module 2_testeing.csv")  
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Building module 3 Autoencoder with Hidden layer of size 19 

 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 28-19 matrix 

mask2 = np.matrix('1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 

1 1 1 0 0 0 0 0 0 ; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 

0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 
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0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0  1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 
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#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 
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        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 
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    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 19, 28    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 3.csv", header=0) 



  

 319 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 19), #incoder 

                            activation, 

                            MaskedLayer2(19,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 3train = torch.from_numpy(train) 
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    Module 3test = torch.from_numpy(test) 

    Module 3train = Module 3train.type(torch.FloatTensor) 

    Module 2train = Module 3train.cuda() 

    Module 3test = Module 3test.type(torch.FloatTensor) 

    Module 3test = Module 3test.cuda() 

    x = torch.autograd.Variable(Module 3train)     #input 

    y = torch.autograd.Variable(Module 3train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 3test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 
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    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module 

3weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 
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'ACTVE', 'AGG', 'ANXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 
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3/training1/Module 3_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_testeing.csv") 
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Building module 3 Autoencoder with Hidden layer of size 20 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 28-20 matrix 

mask2 = np.matrix('1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0;  1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0;  1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 

0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 

0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 

0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 
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1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 
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#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 
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        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 
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    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 20, 28    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

 

#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 3.csv", header=0) 
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dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 20), #incoder 

                            activation, 

                            MaskedLayer2(20,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 3train = torch.from_numpy(train) 
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    Module 3test = torch.from_numpy(test) 

    Module 3train = Module 3train.type(torch.FloatTensor) 

    Module 2train = Module 3train.cuda() 

    Module 3test = Module 3test.type(torch.FloatTensor) 

    Module 3test = Module 3test.cuda() 

    x = torch.autograd.Variable(Module 3train)     #input 

    y = torch.autograd.Variable(Module 3train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 3test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 
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    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module 

3weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 
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'ACTVE', 'AGG', 'ANXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 
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3/training1/Module 3_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_testeing.csv") 
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Building module 3 Autoencoder with Hidden layer of size 21 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 28-21 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 
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1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 ') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 
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variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 
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    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 21, 28    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

 

#import data from csv with pandas, strip values from dataframe into array 
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dataframe = pandas.read_csv("ADOSModule 3.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 21), #incoder 

                            activation, 

                            MaskedLayer2(21,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 
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    Module 3train = torch.from_numpy(train) 

    Module 3test = torch.from_numpy(test) 

    Module 3train = Module 3train.type(torch.FloatTensor) 

    Module 2train = Module 3train.cuda() 

    Module 3test = Module 3test.type(torch.FloatTensor) 

    Module 3test = Module 3test.cuda() 

    x = torch.autograd.Variable(Module 3train)     #input 

    y = torch.autograd.Variable(Module 3train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 3test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 
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    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module 

3weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 
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'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 
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testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_testeing.csv") 
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Building module 3 Autoencoder with Hidden layer of size 22 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 28-22 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 ; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 
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0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 ') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 
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variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 
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    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 28, 22, 28    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

 

#import data from csv with pandas, strip values from dataframe into array 
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dataframe = pandas.read_csv("ADOSModule 3.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(28, 22), #incoder 

                            activation, 

                            MaskedLayer2(22,28))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 
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    Module 3train = torch.from_numpy(train) 

    Module 3test = torch.from_numpy(test) 

    Module 3train = Module 3train.type(torch.FloatTensor) 

    Module 2train = Module 3train.cuda() 

    Module 3test = Module 3test.type(torch.FloatTensor) 

    Module 3test = Module 3test.cuda() 

    x = torch.autograd.Variable(Module 3train)     #input 

    y = torch.autograd.Variable(Module 3train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 3test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 
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    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 3/training1/Module 

3weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 
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'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ]) 
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testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','UEYE','FACEO','LLNVC','SHRNJ', 'EMPTH', 'INSIG', 'QSOV', 'QSRES', 

'ARSOC', 'OQRAP', 'IMGCR', 'USENS', 'OMAN', 'SELFINJ', 'TOPIC','RITL', 

'ACTVE', 'AGG', 'ANXTY' ])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

3/training1/Module 3_testeing.csv") 
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Building module 4 Autoencoder with Hidden layer of size 19 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 31-19 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 
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0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 
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variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 
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    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 31, 19, 31    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

 

#import data from csv with pandas, strip values from dataframe into array 



  

 359 

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(31, 19), #incoder 

                            activation, 

                            MaskedLayer2(19,31))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 
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    Module 4train = torch.from_numpy(train) 

    Module 4test = torch.from_numpy(test) 

    Module 4train = Module 4train.type(torch.FloatTensor) 

    Module 4train = Module 4train.cuda() 

    Module 4test = Module 4test.type(torch.FloatTensor) 

    Module 4test = Module 4test.cuda() 

    x = torch.autograd.Variable(Module 4train)     #input 

    y = torch.autograd.Variable(Module 4train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 4test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 
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    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module 

4weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO
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V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 



  

 363 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, 

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testeing.csv") 
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Building module 4 Autoencoder with Hidden layer of size 20 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 31-20 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 
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variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 
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    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 31, 20, 31    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 

 

#import data from csv with pandas, strip values from dataframe into array 
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dataframe = pandas.read_csv("ADOSModule 4.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(31, 20), #incoder 

                            activation, 

                            MaskedLayer2(20,31))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 
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    Module 4train = torch.from_numpy(train) 

    Module 4test = torch.from_numpy(test) 

    Module 4train = Module 4train.type(torch.FloatTensor) 

    Module 4train = Module 4train.cuda() 

    Module 4test = Module 4test.type(torch.FloatTensor) 

    Module 4test = Module 4test.cuda() 

    x = torch.autograd.Variable(Module 4train)     #input 

    y = torch.autograd.Variable(Module 4train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 4test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 

    testing = model(testset) 
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    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module 

4weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO
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V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 
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testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, 

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testeing.csv") 
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Building module 4 Autoencoder with Hidden layer of size 21 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 31-20 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 
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mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 
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        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 31, 21, 31    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 
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#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(31, 21), #incoder 

                            activation, 

                            MaskedLayer2(21,31))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 

for i in range(10): 
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    train, test = train_test_split(dataset, test_size=0.1) 

    Module 4train = torch.from_numpy(train) 

    Module 4test = torch.from_numpy(test) 

    Module 4train = Module 4train.type(torch.FloatTensor) 

    Module 4train = Module 4train.cuda() 

    Module 4test = Module 4test.type(torch.FloatTensor) 

    Module 4test = Module 4test.cuda() 

    x = torch.autograd.Variable(Module 4train)     #input 

    y = torch.autograd.Variable(Module 4train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 4test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 

        optimizer.step() 
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    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module 

4weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES
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T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT
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L','ACTVE','AGG','ANXTY']) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, 

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testeing.csv") 

 

  



  

 384 

Building module 4 Autoencoder with Hidden layer of size 22 

#import all dependencies 

import pandas 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import torch 

from torch.autograd import Variable 

from torch import nnfrom torch.optim import lr_scheduler 

from torch.nn import Parameter 

import numpy as np 

import math 

 

#Create mask 31-22 matrix 

mask2 = np.matrix('1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1') 

 

#create transposed mask 

mask1 = mask2.transpose() 

 

torch_mask1 = torch.from_numpy(mask1)     #convert mask to torch tensor 

torchmask1 = torch_mask1.type(torch.FloatTensor)     #match tensor type with 

weights 

torchmask1 = torchmask1.cuda()     #convert to GPU CUDA tensor 

mask1 = torch.autograd.Variable(torchmask1, requires_grad=True)  #wrap in 

variable to add to model 

 

torch_mask2 = torch.from_numpy(mask2)     #convert mask to torch tensor 

torchmask2 = torch_mask2.type(torch.FloatTensor)     #match tensor type with 

weights 
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torchmask2 = torchmask2.cuda()     #convert to GPU CUDA tensor 

mask2 = torch.autograd.Variable(torchmask2, requires_grad=True)     #wrap in 

variable to add to model 

 

#create special masked layer for encoder by altering feedforward layer's forward 

pass 

class MaskedLayer1(nn.Module): 

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer1, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 

            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 
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            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask1) 

 

    def __repr__(self): 

        return self.__class__.__name__ + ' (' 

            + str(self.in_features) + ' -> ' 

            + str(self.out_features) + ')' 

 

 

#create special masked layer for decoder by altering feedforward layer's forward 

pass 

class MaskedLayer2(nn.Module):     

    def __init__(self, in_features, out_features, bias=True): 

        super(MaskedLayer2, self).__init__() 

        self.in_features = in_features 

        self.out_features = out_features 

        self.weight = Parameter(torch.Tensor(in_features, out_features)) 

        if bias: 

            self.bias = Parameter(torch.Tensor(out_features)) 

        else: 
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            self.register_parameter('bias', None) 

        self.reset_parameters() 

 

    def reset_parameters(self): 

        stdv = 1. / math.sqrt(self.weight.size(1)) 

        self.weight.data.uniform_(-stdv, stdv) 

        if self.bias is not None: 

            self.bias.data.uniform_(-stdv, stdv) 

 

    def forward(self, input): 

        return input.mm(self.weight*mask2) 

    def __repr__(self): 

        return self.__class__.__name__ + ' ('  

            + str(self.in_features) + ' -> '  

            + str(self.out_features) + ')' 

 

dtype = torch.cuda.FloatTensor 

N, D_in, H1, D_out = 10, 31, 22, 31    #batch size, dimensions of network 

 

#randomly initialize weights with matching tensor type to mask 

w1 = Variable(torch.randn(D_in, H1).type(dtype), requires_grad=True) 

w2 = Variable(torch.randn(H1, D_out).type(dtype), requires_grad=True) 
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#import data from csv with pandas, strip values from dataframe into array 

dataframe = pandas.read_csv("ADOSModule 4.csv", header=0) 

dataset = dataframe.values 

 

#model configuration, dimensions, and hyperparameters 

activation = torch.nn.SELU() 

model = torch.nn.Sequential(MaskedLayer1(31, 22), #incoder 

                            activation, 

                            MaskedLayer2(22,31))#decoder 

model = model.cuda() 

criterion = torch.nn.L1Loss(size_average=True) 

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) 

 

#create arrays to store loss measurements for training and test sets 

trainingloss =[] 

trainingloss = np.array(trainingloss, dtype =np.float64) 

testloss = [] 

trainingloss = np.array(testloss, dtype =np.float64) 

 

#10 folds for cross validation, data set is split 90/10 training test, placed into 

tensor on GPU 
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for i in range(10): 

    train, test = train_test_split(dataset, test_size=0.1) 

    Module 4train = torch.from_numpy(train) 

    Module 4test = torch.from_numpy(test) 

    Module 4train = Module 4train.type(torch.FloatTensor) 

    Module 4train = Module 4train.cuda() 

    Module 4test = Module 4test.type(torch.FloatTensor) 

    Module 4test = Module 4test.cuda() 

    x = torch.autograd.Variable(Module 4train)     #input 

    y = torch.autograd.Variable(Module 4train, requires_grad=False)     #target, 

same as input 

    testset = torch.autograd.Variable(Module 4test, requires_grad = False)     #test 

set 

    #100,000 epochs per validation fold, model minimizes difference between 

target and prediction, training and test losses added to respective arrays every 

epoch  

 for t in range(100000): 

        y_pred = model(x) 

        loss = criterion(y_pred, y) 

        print(i, t, loss.data[0]) 

        trainingloss = np.append(trainingloss, loss.data[0]) 

        optimizer.zero_grad()        loss.backward() 
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        optimizer.step() 

    testing = model(testset) 

    val_loss = criterion(testing, testset) 

    print(val_loss.data[0]) 

    testloss = np.append(testloss,val_loss.data[0]) 

 

#remove encoder weights from model by iterating through model.parameters and 

removing data; break loop after encoder weights removed 

#CPU tensor to numpy array to pandas dataframe to comma-separated value file 

for param in model.parameters(): 

    cpuweights = param.data.cpu() 

    npweights = cpuweights.numpy() 

    df = pandas.DataFrame(npweights) 

    df.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 4/training1/Module 

4weights.csv") 

    break 

 

#take reconstruction (90% of data), move it to CPU tensor, then to numpy array, 

then to pandas dataframe, then to csv with headers listed 

reconstruction = y_pred.data.cpu() 

reconstruction = y_pred.data.numpy() 

reconstructionset = pandas.DataFrame(reconstruction, columns= 
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['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

reconstructionset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_reconstruction.csv") 

 

#target goes through same pipeline as reconstruction 

target = y.data.cpu().numpy() 

targetset = pandas.DataFrame(target, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO

V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

targetset.to_csv("/Users/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_y.csv") 

 

#testing reconstruction 

test = testset.data.cpu().numpy() 

testset = pandas.DataFrame(test, columns= 

['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CONVS','DGES

T','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RESP','QSO
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V','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TOPIC','RIT

L','ACTVE','AGG','ANXTY']) 

testset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testset.csv") 

 

#testing target  

tests = testing.data.cpu().numpy() 

testingset = pandas.DataFrame(tests, 

columns=['OLANG','SPABN','IECHO','STEREO','OINFO','AINFO','REPRT','CON

VS','DGEST','EGEST','UEYE','FACEO','LLNVC','SEI','CAFF','EMPTH','INSIG','RE

SP','QSOV','QSRES','ARSOC','OQRAP','IMGCR','USENS','OMAN','SELFINJ','TO

PIC','RITL','ACTVE','AGG','ANXTY'])  

testingset.to_csv("/home/sara/Desktop/AGRE/Autoencoder Module 

4/training1/Module 4_testeing.csv") 
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