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Abstract

Bayesian statistics is an important approach to modern statistical analyses. It

allows us to use our prior knowledge of the unknown parameters to construct a model for

our data set. The foundation of Bayesian analysis is Bayes’ Rule, which in its proportional

form indicates that the posterior is proportional to the prior times the likelihood. We will

demonstrate how we can apply Bayesian statistical techniques to fit a linear regression

model and a hierarchical linear regression model to a data set. We will show how to apply

different distributions to Bayesian analyses and how the use of a prior affects the model.

We will also make a comparison between the Bayesian approach and the traditional

frequentist approach to data analyses.
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Chapter 1

Introduction

It is only in the last 60 years or so that Bayesian statistics has become popular,

but its origins date back to more than 250 years. In statistics there are two major

approached to making inferences, the frequentist paradigm and the Bayesian paradigm.

Frequentist statistics made its debut in the 1920’s and has been the go-to methods for

inferential statistics in many disciplines. It wasn’t until the mid 1900’s that Bayesian

statistics started to emerge as a practical alternative when frequentist methods fell short.

In fact, it was thanks to Bayesian statistics that Alan Turing was able to break the

German Enigma code during World War II, and that the missing Air France Flight 447

from 2009 was recovered. Like in any paradigm, there are objections to the Bayesian

approach. It is mainly criticized because it relies on subjective priors and uses variant

parameters. However, in 1992 the International Society for Bayesian Analysis (ISBA)

was founded to promote the implementation and development of Bayesian statistics. It is

because of its increase in popularity, and because of its non-fixed parameter requirement

that we will be using Bayesian statistical techniques to construct a hierarchical linear

regression model.
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Chapter 2

Basics of Bayesian Statistics

2.1 History

The birth of Bayesian statistics can be attributed to Thomas Bayes (1702-1761),

a Presbyterian minister and amateur mathematician. It was not Bayes’ intention to create

a new field in mathematics, he simply wanted to know how the effect of some event can

tell him the cause of that event. Without intent, however, his work sparked a 250-year-old

dispute among statisticians. There were those that helped develop the theory like Pierre

Simon Laplace and Harold Jeffreys, and those that largely opposed it like Ronald Aylmer

Fisher. In any case, Bayesian statistics has helped solve famous historical events and

continues to grow as a statistical method for applied research. To understand Bayesian

statistics, however, we need to first learn about the men that created it and about the

events that helped its development.

Bayes studied theology in Scotland, at the University of Edinburgh, and upon

completing his studies he served as an assistant minister to his father who was a clergyman

of the Presbyterian Church [McG11]. During this time, he became a member of the Royal

Society, which allowed him to read and write about theological issues [McG11]. Bayes

presumably read an essay by David Hume (1711-1776) where he stated that we cannot be

certain about a cause and effect, just like we can’t be certain that God is the creator of

the world, and that we can only speak in terms of “probable cause and probable effect”

[McG11]. Bayes also read Abraham de Moivre’s (1667-1754) book Doctrine of Chances,

where he too discussed probability in terms of cause and effect [BP63]. It was then that
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Bayes thought about the inverse, looking at effect to determine the cause.

Bayes wanted to use observable information to determine the probability that

some past event had occurred. Basically, he wanted to use current information to test the

probability that a hypothesis was correct. To test his idea, Bayes developed an experiment

that would allow him to quantify “inverse probability”, that is, effect and cause. The

experiment ran as follows: Bayes sits with his back towards a billiard table and asks a

friend to throw an imaginary cue ball onto the table. He then asks his friend to make a

mental note of where the imaginary ball lands and to throw an actual ball and report if

it landed toward the right or the left of the imaginary cue ball. If his friend says that it

landed to the right, then Bayes knows that the cue ball must be to the left-hand edge of

the billiard table, and if his friend says that it landed to the left of the cue ball then it

must be on the right-hand edge of the table. He continues to ask his friend to repeat this

process. With each turn, Bayes gets a narrower idea of possible places where the cue ball

lies. In the end, he concludes that the ball landed between two bounds. He could never

know the exact location of the cue ball, but he could be fairly confident about his range

of where he thought the cue ball had landed [McG11].

Bayes’ initial belief about where the cue ball is located is his hypothesis. This

location is given as a range in the form of a probability distribution and is called the prior.

The probability of a hypothesis being correct given the data of where the subsequent balls

have landed is also a distribution which he called the likelihood. Bayes’ used the prior

together with the likelihood to update his initial belief of where he thinks the cue ball

is located. He called this new belief the posterior. Each time that new information is

gathered, the probability for the initial belief gets updated, thus, the posterior belief now

becomes the new prior belief. With this experiment, Bayes used information about the

present (the positions of the balls) to make judgments about the past (probable position

of the imaginary cue ball).

Interestingly, Bayes never actually published his findings. It was his friend

Richard Price (1723-1791), also a Presbyterian minister and amateur mathematician,

that discovered his work after his death and who presented it to the Royal Society. The

work was published in 1763 as “An Essay Towards Solving a Problem in the Doctrine

of Chances,” in the Royal Society’s journal Philosophical Transactions. Bayes, strangely

enough, did not provide the formula for what is now known as Bayes’ rule, nor did he
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provide a systematic way to apply his theory. It was French mathematician Pierre Simon

Laplace, who deserves that credit.

Pierre Simon Laplace (1749-1827) is credited with deriving the formula for

Bayes’ rule, ironically though, his work involving frequencies contributed to the lack of

support for the Bayesian approach. In 1774 Laplace published one of his most influential

works, “Memoir on the Probability of the Causes Given Events,” where he talked about

uniform priors, subjective priors, and the posterior distribution [Sti86]. It was in this ar-

ticle where he described that “the probability of a cause (given an event) is proportional

to the probability of the event (given its cause)” [McG11]. However, it wasn’t until some

time between 1810 and 1814 that he developed the formula for Bayes’ rule [McG11]. It is

worth mentioning that Laplace became aware of Bayes’ work, but not until after his 1774

publication. Laplace also developed the central limit theorem [McG11]. The central limit

theorem states that taken a large random sample of the population, the distribution of

the sample means will be normally distributed. This lead Laplace to the realization that

under large data sets he could use a frequency-based approach to do a Bayesian-based

analysis [McG11]. It was his continuous use of the frequency-based approach and the

large criticism of using subjective priors by the mathematical community that lead to the

downfall of Bayesian statistics.

Another reason for the low support for the Bayesian-based approach, is the lack

of agreement among scientists, in particular, the Jeffereys-Fisher debate. Harold Jeffreys

(1891-1989), a geophysicist, was a supporter and advocate for Bayesian statistics. He used

it in his research on earthquakes by measuring the arrival time of a tsunami’s wave to

determine the probability that his hypothesis about the epicenter of the earthquake was

correct. He also developed objective methods to using Bayesian priors. In fact, in 1961

he devised a rule for generating a prior distribution, which we now refer to as Jeffereys’

Prior [Hof09]. Additionally, in 1939 he wrote Theory of Probability, but unfortunately

did not become popular at the time since it was published as part of a series on physics.

Even though Jeffereys was an advocate for Bayesian statistics, he didn’t have the support

of other scientists and mathematicians nor was he as vocal about his theories and ideas

like Fisher was about his.

Roland Aylmer Fisher (1890-1962) on the opposing side, was an influential math-

ematician and a strong advocate for the frequency-based approach. Fisher developed a
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series of statistical methods that are still used today, among them are test for significance

(p-values), maximum likelihood estimators, analysis of variance, and experimental design

[McG11]. Fisher worked with small data sets which allowed him to replicate his exper-

iments, this meant that he relied on relative frequencies instead of relative probabilities

to do his analyses [McG11]. Fisher also published a book, Statistical Methods for Re-

search Workers, which unlike Jeffreys book, was easy to read and popularly used. Also,

Fisher did not work alone, Egon Pearson (1895-1980) and Jerzy Neyman (1894-1981)

developed the Neyman-Pearson theory for hypothesis tests, which expanded on Fisher’s

techniques [McG11]. Furthermore, Fisher adamantly defended his views, and publicly

criticized Bayesian statistics. In his anti-Bayesian movement, he stated, “the theory of

inverse probability is founded upon an error, and must be wholly rejected”[McG11, p.

48]. With only one Bayesian, and with the increase support for the frequency-based ap-

proach, it became difficult to gain enough supporters for Bayesian statistics. Regardless,

it continued to be used during the 1900’s.

Without the use of Bayesian statistical techniques, the famous mathematician,

Alan Mathison Turing (1912-1954) would not have deciphered the German Enigma codes,

which helped win World War II. During the war, Germany used encrypted messages to

send military tactics to its generals, which England had intersected, but had no efficient

way to decipher [McG11]. The Enigma machine used a three wheel combination system

that switched each letter of the alphabet each time that the typist pressed down on a

key to write a message [McG11]. However, the key to the combination code was changed

every 8 to 24 hours which made it difficult to decipher. In 1939 the British government

send Turing to the Government Code and Cypher School (GC&CS) research center in

Bletchley Park, England to work on deciphering the German Enigma codes [McG11].

Turing designed a machine which he called “bombe” that tested three wheel combinations

of the alphabet. Furthermore, he used Bayesian techniques to reduce the number of

wheel settings that needed to be checked by applying probabilities to eliminate less likely

combinations. This reduced the number of wheel settings that needed to be tested from

336 to 18 [McG11]. He used similar techniques to decipher the encoded messages send

to the U-boats. Unfortunately, the use of Bayesian techniques during the war was not

known until after 1973 when the British government declassified much of the work done

at Bletchley Park [McG11].
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After WWII, supporters of Bayesian statistical methods like Jack Good, Dennis

Victor Lindley, and Leonard Jimmie Savage kept it afloat. Jack Good (1916-2009) was

Turing’s assistant during the war, and after the war he kept working with the British gov-

ernment in cryptography. He also continued to work on developing Bayesian techniques

and even published two influential books Probability and the Weighing of Evidence in

1950 and An Essay on Modern Bayesian Methods in 1965. However, it was often hard

to promote his work because he had to keep his involvement during WWII a secret. His

ideas were also difficult to follow, as Lindley put it in regards to a talk that Good gave at

a Royal Statistical Society conference, “He did not get his ideas across to us. We should

have paid much more respect to what he was saying because he was way in advance of

us in many ways” [McG11, p. 99]. Dennis Victor Lindley (1923-2013), on the other

had, created Europe’s leading Bayesian department at the University College London

and ten others all over the United Kingdom [McG11]. He too published several books,

including Introduction to Probability and Statistics form a Bayesian Viewpoint. He once

said that his and Savage transition to Bayesian statistics was however slow, “We were

both fools because we failed completely to recognize the consequences of what we were

doing” [McG11, p. 101]. In 1954 Leonard Jimmie Savage (1917-1971) wrote Foundations

of Statistics where only once he referred to Bayes’ rule. In subsequent work however, he

used frequentist techniques to justify subjective priors [McG11]. He said that he became

a Bayesian only after he realized the importance of the likelihood principle, which states

that all relevant information about the data is contained in the likelihood function re-

gardless of the chosen prior [GCS+14]. This made the technique practical when time and

money was an issue. It could be used for one-time events and could be combined with

different data where each observation could be assigned a different probability. While

Bayesian techniques may have come natural to some like Good, or required a slow tran-

sition to others like Lindley and Savage, it proved its self to be useful when frequentist

techniques failed.

Another major historical event where Bayesian statistics techniques proved use-

ful was in the search for the missing Air France Flight 447. The flight went missing in the

early morning of June 1, 2009 over the South Atlantic ocean. It was heading from Rio de

Janeiro, Brazil to Paris, France with 228 passengers. Search teams had only 30 days to

find the two black boxes that were on board. A week after the crash 33 bodies and plane
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debris emerged 45 miles from the plane’s last known location [McG11]. After the signal

from the black boxes went out sonar equipment was used, however, due to the underwater

terrain it was difficult to distinguish between rocks and plane debris. It wasn’t until a

year later that the Bureau d’Enquêtes et d’Analyses (BEA), the French equivalent of

the U.S. Federal Aviation Administration, hired Larry Stone form Metron, Inc. to use

Bayesian statistical techniques to find AF 447 [McG11]. Stone and his team included all

the following information into the prior probability: flight’s last known location before

it went missing; winds and currents during the time of the crash; search results follow-

ing the incident; and position and recovery times of the found bodies [McG11]. They

then included all available data from searches done in the air, surface and underwater

to calculate the posterior probability [McG11]. They did two analyses one assuming the

high-frequency signal from the black boxes was working at the time of the crash and one

assuming that it was not. The Bayesian analysis allowed the search team to look in areas

with higher probability of locating the flight, which proved useful because a week later,

on April 2, 2011, the plane was found 7.5 miles north-northeast of the plane’s last know

position [McG11]. Once again, Bayes’ solved a mystery.

Bayes didn’t purposely intend to create a new field in mathematics nor to start a

250-year dispute among statisticians; but thanks to his work, we have an alternate to the

frequentist-bases approach. One that allows us to deal with large data, one that allows us

to use our personal knowledge, and one that allows us to easily add new observations and

update our beliefs. The frequentist-based approached emerged because it was simpler

to use and was considered objective, but it was the Bayesian-based approached that

proved itself useful were frequencies lacked. If it wasn’t for the hard work, dedication,

and determination of Laplace, Jeffereys, Turing, Good, Lindley, and Savage (to name a

few), Germany would not have been defeated during WWII and AF 447 would not have

been recovered. Since the mid 1950’s Bayesian statistics became more popular and today

continues to grow as a paradigm in inferential statistics and is often used in conjunction

with the frequentist inference.

2.2 Bayes’ Rule

Bayes might have come up with the idea of inverse probability, but it was Laplace

that gave us Bayes’ rule. However, to understand Bayes’ rule we first need to define a
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few things. The following standard definitions were taken from Introduction to Bayesian

Statistics and Probability and Statistical Inference. Also, note that P (·) is the probability

of an event.

Definition 2.1. Events A and B in a sample space H are independent if and only if

P (A ∩B) = P (A)P (B). Otherwise, A and B are called dependent events.

Here, when we say ‘independent’ we mean that the occurrence of one event is

not affected or determined by the occurrence of the other. If we mean to say that two

events do not overlap, we call them disjoint or mutually exclusive.

When we want to find the probability of one event, say A, we sum its disjoint

parts, that is, A = (A ∩B) ∪ (A ∩Bc), and call it the marginal probability :

P (A) = P (A ∩B) + P (A ∩Bc).

When we want to find the probability of the set of outcomes that are both in

event A and B, that is A∩B, we call the probability of their intersection, P (A∩B), the

joint probability.

Definition 2.2. The conditional probability of an event A, given that event B has oc-

curred, is defined by

P (A|B) =
P (A ∩B)

P (B)
,

provided that P (B) > 0. From this follows the multiplication rule,

P (A ∩B) = P (B)P (A|B).

We are now ready to discuss Bayes’ rule. Say H is a hypothesis and D is the

data in support or against H. We want to look at the probability of the hypothesis given

the data, P (H|D). Thus, by definition of conditional probability we have

P (H|D) =
P (D ∩H)

P (D)
.

Since P (D) is the marginal probability and P (D) = P (D∩H)+P (D∩Hc), then

P (D) is the total probability of the data considering all possible hypotheses. Substituting

this into the above equation gives

P (H|D) =
P (D ∩H)

P (D ∩H) + P (D ∩Hc)
,
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where Hc is evidence against H. We now apply the multiplication rule to each of the

joint probabilities to obtain

P (H|D) =
P (D|H)P (H)

P (D|H)P (H) + P (D|Hc)P (Hc)
,

where in the numerator P (D|H) is the probability of the data under the hypothesis in

consideration, and P (H) is the initial subjective belief given to the hypothesis. Since

P (D) = P (D|H)P (H) + P (D|Hc)P (Hc), we can substitute this back into the equation,

which gives us Bayes’ rule for a single event:

P (H|D) =
P (D|H)P (H)

P (D)
.

When we have more than two events that make up the sample space, we use the

general form of Bayes’ rule. To do this, however, we need to define a few more things.

Definition 2.3. A collection of sets {H1, ...,HK} is a partition of another set H, the

sample space, if

1. the events are disjoint, which we write as Hi ∩Hj = ∅ for i 6= j;

2. the union of the sets is H, which we write as
⋃K
k=1Hk = H.

Let H1, H2, . . . ,HK be a set of events that partitions the sample space and let D

be an observable event, then D is the union of mutually exclusive and exhaustive event,

thus,

D = (H1 ∩D) ∪ (H2 ∩D) ∪ · · · ∪ (HK ∩D).

Then the sum of the probability of these events gives

P (D) =

K∑
k=1

P (Hk ∩D)

which is called the law of total probability. Applying the multiplication rule to the joint

probability yields

P (D) =
K∑
k=1

P (D|Hk)P (Hk).

Theorem 2.4. (Bayes’ Rule) Let {H1, ...,Hk} be a partition of the sample space H such

that P (Hk) > 0 for k = 1, ...,K, and let P (D) be the positive prior probability of an

event, then

P (Hj |D) =
P (D|Hj)P (Hj)∑K
k=1 P (D|Hk)P (Hk)

.
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Proof. Suppose H1, ...,Hk is a partition of the sample space H, and D is an observed

event. Then we can decompose D into parts by the partition as

D = (H1 ∩D) ∪ (H2 ∩D) ∪ · · · ∪ (HK ∩D).

The conditional probability P (Hj |D) for j = 1, . . . , k is defined as

P (Hj |D) =
P (Hj ∩D)

P (D)
.

Then by the law of total probability, we can replace the denominator by

P (D) =
K∑
k=1

P (Hk ∩D),

thus,

P (Hj |D) =
P (Hj ∩D)∑K
k=1 P (Hk ∩D)

.

Applying the multiplication rule to each of the joint probabilities gives

P (Hj |D) =
P (D|Hj)P (Hj)∑K
k=1 P (D|Hk)P (Hk)

as desired.

Lets take a closer look at Bayes’ rule to understand how we can revise our beliefs

on the bases of objective observable data. Recall that H1, H2, . . . ,HK is the unobservable

events that partition the sample space H. The prior probability of each event is P (Hj)

for j = 1, . . . ,K. This prior is given as a distribution of the weights that we assign to

each event based on our subjective belief.

The probability that an observed event D has occurred given the unobservable

events Hj for j = 1, . . . ,K denoted by P (D|Hj) is referred to as the likelihood function.

The likelihood is a distribution of the weights given to each Hj as determined by the

occurrence of D. That is, the data D determines whether a hypothesis Hj is true or false.

The posterior probability is given by P (Hj |D) for j = 1, . . . ,K, which indicates

the probability of Hj given that D has occurred. Just like our previous distributions, the

posterior distribution gives the weights we assign to each Hj after D has occurred. The

posterior is the combination of our subjective belief with the observable objective data.

Once we have the posterior probability, we can use it as a prior probability in subsequent

data analysis given new observations.
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In Bayes’ rule, the numerator, prior times likelihood, gets divided by the de-

nominator, the sum of the prior times likelihoods of the whole partition. This division

yields a posterior probability that sums to 1. Here, the denominator is acting as a scale

because we are dividing by the sum of the relative weights for each Hj . We can actually

ignore this constant since we get get the same information from an unscaled distribution

as we do from a scaled distribution. Thus, the posterior is actually proportional to the

prior times the likelihood:

posterior ∝ prior × likelihood.

In the next example, we provide a basic application of Bayes’ rule in its discrete form.

Example 2.2.1. This example is a modification of Alan Jessop’s Bayes Ice-Breaker in

the journal Practical Activities. Suppose that we have three dice and that we paste the

letters of the following words on each die, one letter per side: pascal, pastel, and castle.

Suppose then, that we place all three dice in a bag. What is the probability that we select

the die who’s letters spelled out the word “pascal”? Furthermore, suppose we select one

of the die from the bag without looking and roll it on a table. What is the probability

that we chose the “pascal” die given that we rolled an A, that is, P (pascal|A)? To answer

this question we first create a table with the sample space. See Table 2.1. Anyone with

a background in probability can see that this is a straight forward answer. If we see an

“A” the odds are 2 : 2 in favor of “pascal” because it has 2 A’s out of the 4 total A’s,

P (pascal|A) =
2

2 + 2
=

2

4
=

1

2
.

Evidence A C E L P S T Total

PASCAL 2 1 0 1 1 1 0 6

PASTEL 1 0 1 1 1 1 1 6

CASTLE 1 1 1 1 0 1 1 6

Table 2.1: Sample space for the “pascal,” “pastel,” and “castle” dice.

However, lets answer the same question using Bayes’ rule. Since Bayesian statis-

tics requires that we use our prior belief about a phenomenon to determine the probability

of some occurrence, we must assign a probability to our prior belief that we have selected

the “pascal” die. Knowing that there are three dice, we say that P (pascal) = 1
3 . We
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also need to ask the question, “What is the probability that we get an “A” given that we

rolled the “pascal” die?” Since there are 2 A’s out of 6 letters this is

P (A|pascal) =
2

6
=

1

3
.

We now apply Bayes’ rule,

P (pascal|A) =
P (A|pascal)P (pascal)

P (A|pascal)P (pascal) + P (A|pastel)P (pastel) + P (A|castle)P (castle)

P (pascal|A) =
1
3 ×

1
3

1
3 ×

1
3 + 1

6 ×
1
3 + 1

6 ×
1
3

P (pascal|A) =
1
9

1
9 + 1

18 + 1
18

P (pascal|A) =
1
9
4
18

=
1

2
.

As expected, we got the same answer as in the straight forward case. The probability of

selecting the “pascal” die given that we rolled an “A” is 1
2 .

Lets suppose, however, that your prior belief of selecting the “pascal” die is 1
2 .

In fact, since the prior is a probability distribution and must add up to 1, we assign the

following priors to the remaining dice, P (pastel) = 1
6 and P (castle) = 1

3 . Using the same

sample space as before we apply Bayes’ rule with the new priors

P (pascal|A) =
1
3 ×

1
2

1
3 ×

1
2 + 1

6 ×
1
6 + 1

6 ×
1
3

P (pascal|A) =
1
6

1
6 + 1

36 + 1
18

P (pascal|A) =
1
6
9
36

=
2

3
.

Since our prior believe was in favor of the “pascal” die, this yield a higher

posterior probability. If instead we chose 1
6 as a prior, we get a posterior of 2

7 . As we can

see the posterior is affected by our initial choice in prior.

As we learn from our data, we can use our knowledge from the posterior to

update our prior beliefs and then use this as our new prior. If we let P (pascal) = 2
3 ,

then we get a new posterior of P (pascal|A) = 4
5 . We can now say that there is an 80%

probability that we selected the “pascal” die.
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2.3 Making Inferences with Bayes

In statistics we use data to make inferences about some unknown parameters.

Since it is usually not possible to gather information from everyone in our population of

interest, we do so from a subset of the population called the sample. We then use the

statistics of the sample to make inferences about the population parameters. In Bayesian

statistics these unknown parameters are considered variant, that is, not fixed. Here we

will use θ to denote a single parameter or a collection of parameters, i.e. a vector, and

Θ to represent the parameter space, which is the set of all possible parameter values,

thus, θ ∈ Θ [Hof09]. We will let Y = (y1, y2, . . . yn) represent the data set, which is

treated as a random vector, and Y be the sample space, which is the set of all possible

data sets [Hof09]. In the Bayesian approach we are interested in finding the posterior

distribution, P (θ|Y )—the true value of the unknown parameter θ given the observed

dataset Y . To find the posterior distribution we calculate the joint distribution of the

prior and the likelihood. The prior distribution, P (θ), describes our belief about θ, and

the likelihood distribution, P (Y |θ), describes our belief about Y if we knew θ to be true

[Hof09]. Therefore, if we ignore the scaling constant, the posterior distribution is

P (θ|Y ) ∝ P (θ)P (Y |θ).

The posterior distribution is a summary of our beliefs about the parameter(s) given the

data, which we can represent as a probability distribution with the range of values that

we believe captures the true parameter(s).

In the Bayes’ Rule section, we described Bayes’ rule for discrete data. When

dealing with continuous data, the formula has an integral in the denominator,

P (θ|Y ) =
P (Y |θ)P (θ)∫
P (Y |θ)P (θ)dθ

.

From here on, we will be speaking in terms of continuous data. The definitions in this

section are taken from A First Course in Bayesian Statistical Methods by Hoff and In-

troduction to Bayesian Statistics by Bolstad.

In Bayesian statistics there are different distributions that we can use to repre-

sent our parameters. In order to make calculations easy, we use a prior distribution that

is in the same family as the posterior distribution, called a conjugate.



14

Definition 2.5. A class P of prior distributions for θ is called conjugate for a sampling

model p(y|θ) if

p(θ) ∈ P ⇒ p(θ|y) ∈ P.

The distribution that we use for the prior depends on our data. For example,

for count data we can use a Poisson distribution. Other types of distributions include

the Beta, Gamma, Normal, Exponential, and Chi-square distributions. Once we have the

posterior distribution for our data we can use a point estimate for our parameter θ. The

point estimate can be the median, mean, or mode of our posterior distribution.

In Bayesian statistics we use a Bayesian interval estimate know as a credible

interval.

Definition 2.6. For 0 < α < 1, a 100(1− α)% credible set for θ is a subset C ⊂ Θ such

that P{C|X = x} = 1− α.

The credible interval summarizes the range of possible values for our parame-

ter(s). We can further restrict this range by selecting the highest posterior density (HPD)

region.

Definition 2.7. (HPD region) A 100× (1− α)% HPD region consists of a subset of the

parameter space, s(y) ⊂ Θ such that

1. Pr(θ ∈ s(y)|Y = y) = 1− α;

2. If θa ∈ s(y), and θb /∈ s(y), then p(θa|Y = y) > p(θb|Y = y).

As already mentioned, there are different distributions that can be used to do

a Bayesian analysis. In this section we will illustrate how Bayesian statistical techniques

can be applied using a beta distribution. We start by describing the beta distribution in

terms of Bayesian statistics.

Let X = {xi} for i = 1, 2, ...n be a sample data set. The Xi’s are independent

Bernoulli, so x = 0 or 1. We let p represent the proportion of individuals with a certain

characteristic. Then p ∼ Beta(α, β), where f(p) is the prior distribution,

f(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1, 0 ≤ p ≤ 1;α > 0, β > 0.

Then the mean and variance for the prior is given by
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E(p) =
α

α+ β
and var(p) =

αβ

(α+ β)2(α+ β + 1)
, respectively.

Examples of beta prior distributions that are conjugate to the binomial distri-

bution are given in Figure 2.1. The distribution on the left are symmetric, while those

on the right are skewed. The Beta(1,1) distribution, in the upper left hand corner, is an

example of a non-informative prior, also known as a uniform prior; and the Beta(2,3), in

the upper right hand corner, is an example of an informative prior.
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Figure 2.1: Plots of beta prior distributions.

The likelihood function is given by the binomial distribution (as a function of r)

L(p) = f(x|p) =

 n

r

 pr(1− p)(n−r),

where r =
∑n

i=1 xi = the number of successes in the sample and (n− r) is the number of
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failures in the sample. Also,  n

r

 =
n!

r!(n− r)!
.

By Bayes’ rule, the posterior is the beta distribution

f(p|X) =
Γ(α+ β + n)

Γ(α+ r)Γ(β + n− r)
pα+r−1(1− p)β+(n−r)−1.

The mean and variance for the posterior is given by

E(p|X) =
α+ r

α+ β + n
and var(p|X) =

(α+ r)(β + n− r)
(α+ β + n)2(α+ β + n+ 1)

, respectively.

Recall, that we can ignore the normalizing constant, so the posterior can be

simplified to

f(p|X) ∝ pα+r−1(1− p)β+(n−r)−1.

Example 2.3.1. Suppose we are interested in knowing the proportion of adults in the

United States that have diabetes. Say we believe that 20% of the adult population has

diabetes, p = .2. We will use data from the U.S. National Center for Health Statistics

(NCHS) from their “simple random sample of the American population” collected between

2009 and 2012. The data was gathered using the American National Health and Nutrition

Examination survey (NHANES), see https://www.cdc.gov/nchs/data/series/sr_02/

sr02_162.pdf for more information on the survey. Furthermore, we will use the free

software R, which is a language and environment for statistical computing and graphics,

and the LearnBayes library package to analyze the data for this example.

Since we are using a beta distribution we must select our parameters for the

prior to reflect our chosen prior p. Let α = 10.81 and β = 42.24, which were specifically

chosen to produced our desired prior mean of 0.2. We now use the program R to construct

a beta density for the prior and the posterior. We first drew a random sample of n = 100

from the NHANES data consisting of only adults, see Table 2.2 below. Note that r = 7

and (n− r) = 93.

Diabetes Response

Yes 7

No 93

Table 2.2: Adult U.S. population with diabetes from a sample of n = 100.
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The beta prior together with the likelihood function yield the posterior param-

eters, α = 17.81 and β = 135.24. Figure 2.2 shows a plot of the prior f(p), likelihood

L(p), and posterior distributions f(p|X) for our data. Here we can see that the mean of

the prior is set at 0.2, while the mean of the likelihood and posterior are 0.09 and 0.12,

respectively.
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Figure 2.2: Prior, likelihood, and posterior densities for U.S. adults with diabetes.

The 95% posterior credible interval estimate for p is (0.07, 0.17). Since the

posterior mean lies within this interval, we can be 95% confident that the posterior

distribution captures the true mean. Therefore, it is very likely that the percentage of

the adult U.S. population with diabetes is 12%.

It is important to discuss the effect, or lack of, that the prior has on the data.

In this example, we can see that the posterior distribution is heavily influenced by the

likelihood and not so much by the prior. Thus, the data is more informative than the

prior. This shows that regardless of our initial chosen prior, the likelihood will have more

pull on the posterior. As we add more data and use the posterior as the new prior, the

mean of the new posterior should start to resemble the mean of the prior. Therefore, we

should not worry about our initial chosen prior since the posterior is going to be more

similar to the sources with stronger information [O’H08].
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2.4 Frequentist vs. Bayesians

It is not worth describing Bayesian statistical techniques without making a com-

parison between this Bayesian paradigm and the frequentist paradigm. As we mentioned

in the history section, the frequentist approached overshadowed the Bayesian approach

during the first part of the 1900’s, and it wasn’t until after the 1950’s that thanks to the

efforts of a few Bayesian statisticians it slowly become accepted in the statistical commu-

nity. Like with any paradigm it has its criticisms, but it also has some clear advantages

over the more traditional frequentist paradigm. In this section we will describe the fre-

quentist and Bayesian paradigms, discuss the advantages of using Bayesian techniques,

and mention some of the criticisms against the Bayesian approach.

We first discuss the frequentist approach to inferential statistics. In this paradigm

parameters about the population are considered to be fixed and unknown; and the hy-

pothesis made about these parameters are either supported or rejected by the data.

Usually, this data comes from a sample of the population. Theoretically, as an infinite

number of samples are drawn from the population, we can construct a relative frequency

distribution, called the sampling distribution, which is used to make estimates about the

population parameters. Thus, we are making estimates based on hypothetical repetitions

of the experiment taken an infinite number of times. These estimates can be made in

terms of probabilistic statements like proportions and confidence intervals. Each time

that we construct a confidence interval we can be certain to some degree that we have

captured the true parameter, however, there is always some chance that we have not

captured the true parameter. When testing a hypothesis, frequentist compare a p-value

to some level of significance in order to reject or “fail to reject” the null hypothesis, H0,

as compared to the alternate hypothesis, H1. A p-value gives the probability of obtaining

the observed value under the assumption that the H0 is true [Ver05]. If the p-value of

our observed test statistic is less than the level of significance we accept the H1, and if

it is equal to or larger than the level of significance, we fail to reject the H0. This hy-

pothesis testing technique, however, leads to Type I and Type II errors. A Type I error

occurs when we reject H0 when it should have been accepted, and a Type II error occurs

when we accept H0 when it should have been rejected. The frequentist approach requires

an understanding of several concepts that can often be confusing (like, what exactly do

confidence intervals really mean?), however, the calculations required to compute confi-
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dence intervals, p-values, and most hypothesis test are fairly simple, which is one of the

reasons why prior to the 1920’s the frequentist approach was preferred over the Bayesian

approach.

In the Bayesian paradigm parameters are considered to be unknown random

variables, that is, not fixed. We can also make subjective statements about what we

believe the parameters to be before observing the data. These statements are made

in terms of “degree of believe,”—the personal relative weights that we attach to every

possible parameter value [Bol07]. We can attach different weights to our parameters, all

in a single analysis. These wights are given as a probability distribution, which we already

know is called the prior distribution. Recall that we then combine this prior distribution

with the conditional observed data, that is, the data given the parameter, to obtain the

posterior distribution. For large data sets this can become a very complicated process

if done by hand, but thanks to today’s sophisticated computer software all of this work

can be done for us. The posterior distribution then gives the relative weights that we

attach to each parameter value after analyzing the data [Bol07]. We then construct a

credible interval around the estimated parameter, which indicates with some degree of

confidence that our parameter lies within this interval. Thus, we are directly applying

probabilities to the posterior distribution. Also, as new data comes in, we update our

beliefs about the population parameters by using the posterior as the new prior. It is this

straight forward interpretation of credible intervals, the ability to analyze large data sets,

the ease of adding new data to our analyzes without having to start from the beginning

that makes the Bayesian approach appealing to statisticians.

There are also advantages to using the Bayesian approach over the frequentist

approach. First, as already mentioned, in the Bayesian approach we can directly make

probabilistic statements about the parameters via credible intervals. Recall that credible

intervals indicate how confident we are that we captured the true parameter(s). Therefore,

we can say, “I am 95% confident that my parameter lies within this interval.” In the

frequentist approach, on the other hand, we can only make probabilistic statements about

the unknown parameters through the sampling distribution via confidence intervals, which

only indicate whether or not we have captured the true parameters. With a p-value of

0.05, 95% of our intervals will trap the true parameter, but 5% of the intervals will not.

Thus, we can only say, “95% of my intervals will capture the true parameter.” This is
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why these intervals come with the possibility of a Type I or Type II error. Secondly,

Bayesians construct probabilistic distributions using the data that did occur to make

inferences about the population parameters, not on hypothetical random samples that

could have occurred. Thirdly, data doesn’t depend on the experimental set up. We do not

need to specify the number of trials needed for our experiment before collecting data. In

the frequentist approach, data is based on a prespecified experimental set up that depend

on a specific number of trials. Even though there are clear advantages to using Bayesian

statistical methods, it is not free of criticism.

There are two main criticisms to the Bayesian approach that we discuss here,

the use of priors and the intensive calculations required to carry out its analysis. Priors

are criticized because they are subjective and they can vary from researcher to researcher.

However, it is the use of priors that makes Bayesian statistics a powerful tool for data

analysis. It was because of the ability to use different priors that AF 447 was found within

a week of using Bayesian statistical techniques. Bayesian analyses are also criticized

because they are harder to compute due to having to integrate over many parameters.

However, due to the advancement of technology, we now have sophisticated computer

software that can handle the complicated computations involved in analyzing large data.

The frequentist and Bayesian paradigms clearly have some distinctions, with

the first relying on priors and the second on relative frequencies; however, the advantages

of the Bayesian approach makes it a good addition to statistical inference. Determining

which approach is best to use depends both on the type of data being observed and

on the researcher. There are criticism against the Bayesian approach, but there are

characteristics about this approach that makes it easier to work with. For one, credible

intervals are easier to interpret than confidence intervals; it is easier to update our beliefs

as new data comes in, than to have to re do the analyses; and it is more logical to analyze

data that did occur, than to analyze hypothetical data that did not occur. It took years

to develop Bayesian statistical methods and to get statistician on board, but today it

continues to grow as an alternative when the classical frequentist approach falls short.
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Chapter 3

Linear Regression

3.1 Frequentist Regression

A common interest in statistics is to compare two variables to determine if

there is a relationship. Usually, one variable is known, say x and the other isn’t, say

y. We call X = x1, x2, . . . , xn the predictor variable or the independent variable, and

Y = y1, y2, . . . , yn the response variable or the dependent variable [Ver05]. We usually

have n pair of observations (x1, y1), (x2, y2), . . . , (xn, yn) where X is used to predict Y

for a given x, E(Y |x). The method used by the frequentist to estimate the mean of Y

is linear regression. Mathematically, the linear regression model is of the form α + βx,

where the parameters α and β are linear [HT77]. Without making some assumptions the

simple linear regression model can only be used to analyze bivariate data. In order to

make inferences we need the following assumptions taken from Introduction to Bayesian

Statistics by Bolstad:

1. Mean assumption. The conditional mean of y given x is an unknown linear function

of x.

µy|µ = α0 + βx,

where β is the unknown slope and α0 is the unknown y intercept of the vertical line

x = 0. In the alternate parameterization we have

µy|µ = αx̄ + β(x− x̄),

where αx̄ is the unknown intercept of the regression line with the vertical line
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x = x̄. In this parameterization the least squares estimates αx̄ = ȳ and β will

be independent under our assumptions, so the likelihood will factor into a part

depending on αx̄ and a part depending on β.

2. Error assumption. Observation equals mean plus error, which is normally dis-

tributed with mean 0 and known variance σ2. All errors have equal variance.

3. Independence assumption. The errors for all of the observations are independent of

each other.

Therefore, to predict the value of E(Y |x) we need to take into account the error

associated with each value of X in predicting the mean of Y . To account for this error ε

we include it in the simple linear regression model,

Y = α0 + βX + εi, for i = 1, 2, . . . n,

where α0 and β are the regression coefficients and ε is N(0, σ2).

Estimating the values for the regression coefficients α̂0 and β̂ gives the estimated

regression line, also known as the prediction line [Ver05]. We use prediction line to make

future predictions about the values of Y . In this case, the error term is called the residual,

ε = yi − ŷi. Thus, the prediction line is

Ŷ = α̂0 + β̂X.

To estimate α̂0, β̂ and σ̂2 we use maximum likelihood estimates. We find the

maximum likelihood estimates through the method of least squares, which involves taking

the sum of the squared vertical distance between each point (xi, yi) for i = 1, 2, . . . , n and

the line Y = α0 + βX. The sum of the squares of those distances is given by

H(αx̄, β) =
n∑
i=1

[yi − αx̄ − β(xi − x̄)]2.

We pick the values for αx̄ and β to be those that minimize the square distances

so that we can fit a straight line through our data [HT77]. Thus, α̂0 = α̂x̄+ β̂x̄ and β̂ are

the least squared estimates, also called the maximum likelihood estimates [HT77]. These

estimates are given by,
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α̂x̄ = ȳ, β̂ =

n∑
i=1

yi(xi − x̄)

n∑
i=1

(xi − x̄)2

and σ̂2 = 1
n

n∑
i=1

[Y − α̂x̄ − β̂(xi − x̄)]2.

Note that the difference between Y − Ŷ is the residual εi = Y − Ŷ , which is

equal to

Y − Ŷ =
n∑
i=1

[Y − α̂x̄ − β̂(xi − x̄)]2.

Also note that the sum of this difference will be zero or, due to rounding error,

close to zero.

We can rewrite the sum of the squares of the residuals as

SSyy =
n∑
i=1

[Y − (α̂x̄ + β̂(xi − x̄)]2.

Furthermore, we can construct confidence interval for the point estimates by

using a Student’s t critical value:

α̂x̄ ± t γ
2
× SE(α̂) and β̂ ± t γ

2
× SE(β̂),

where γ is the confidence level. [HT77].

3.2 Frequentist Regression Example

In this section we will present a simple linear regression example using the

frequentist approach. The data comes from NCHS and was gathered using the NHANES

questionnaire. The variables of interest are “HomeRooms” and “Poverty”. The data was

analyzed using the software R.

Suppose we are interested in knowing if there is a relationship between poverty

level and the number of rooms in the residing household. Thus, we let Poverty be the

predictor variable and HomeRooms be the response variable. According to the NHANES

R document, Poverty is defined as “a ratio of family income to poverty guidelines,”

where “smaller numbers indicate more poverty.” Please see the U.S Department of Health

and Human Services web page for the 2009 through 2012 poverty guide lines for all

50 U.S. States; here is the link for the guideliness in 2009, https://aspe.hhs.gov/
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2009-hhs-poverty-guidelines. Also, HomeRooms is defined as “[the number of] rooms

[that] are in the home of [the] study participant (counting kitchen but not bathroom)”

where “13 = 13 or more rooms.” A sample of n = 500 U.S. adults with no replacement

was used. After running the data through R and using it’s built in linear model function

lm() for basic frequentist linear regression, we obtained the following output, see Table

3.1.

Call: lm(formula = HomeRooms ∼ Poverty, data = sampleage)

Residuals:

Min IQ Median 3Q Max
-5.0994 -1.3088 -0.2177 1.0536 7.3641

Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 4.48302 0.18686 23.99 < 2e− 16 ***

Poverty 0.56516 0.05571 10.14 < 2e− 16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.031 on 463 degrees of freedom
(35 observations deleted due to missingness)
Multiple R-squared: 0.1819, Adjusted R-squared: 0.1801
F-statistic: 102.9 on 1 and 463 DF, p-value: < 2.2e− 16

Table 3.1: Frequentist linear regression R output.

The point estimates for the regression coefficients are α̂ = 4.48 and β̂ = 0.57,

with the following respective 95% confidence intervals (4.12, 4.85) and (0.46, 0.67). In this

traditional approach we can be confident that 95% of th time our intervals will capture

the true parameters. Thus, the prediction line is

HomeRooms = 4.48 + 0.57Poverty.
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Figure 3.1: Relationship between “Poverty Level” and “Number of Home Rooms” in the

frequentist model.

In Figure 3.1 we can see that there is a positive linear relationship between

poverty level and number of home rooms. The results are not surprising, we would expect

that as poverty level goes up, so does the number of rooms in the residing household. In

the next section we will present the same example, but from a Bayesian approach.

3.3 Bayesian Regression

There are some similarities between the frequentists’ regression and the Bayesians’

regression, except for some obvious differences like the use of priors and updating func-

tions in the Bayesian approach. Recall that in general Bayes’ rule is given by

posterior ∝ prior × likelihood.

Furthermore, since the Bayesian approach makes use of conjugate priors, we first deter-

mine the distribution for the likelihood function and then decide on the prior for the

model.

In the Bayesian approach, data is considered fix, therefore, in simple Bayesian

linear regression the ordered pairs (xi, yi) for i = 1, 2, . . . , n observations are fixed. The



26

likelihood of all the observations as a function of the parameters αx̄ = α and β is given

as a product of the individual likelihoods, which are all independent, thus we have,

f(yi|α, β) ∝
n∏
i=1

e−
1

2σ2
[yi−(α+β(xi−x̄))]2 .

Since this product can be found by summing the exponents, we can rewrite it as

f(yi|α, β) ∝ e−
1

2σ2

∑n
i=1[yi−(α+β(xi−x̄))]2 .

Then β ∼ N(B, σ2

SSxx
), where B =

Sxy
Sxx

=
∑n
i=1(xi−x̄)(yi−ȳ)∑n

i=1(xi−x̄)2
and SSxx =

∑n
i=1(xi − x̄)2,

and α ∼ N(Ax̄,
σ2

n ), where Ax̄ = ȳ.

Since the likelihood has a normal distribution we can chose the normal distri-

bution for the prior or a non-informative prior like the uniform distribution. If we select

a uniform prior, the prior will be equal to 1; however, if we select normal priors, this will

be

g(α, β) = g(α)× g(β) ∝ e−
1

s2α
(µ−mα) × e

− 1

s2
β

(µ−mβ)

,

where α ∼ N(mα, s
2
α) and β ∼ N(mβ, s

2
β). Note that to find the variances s2

α and s2
β

we pick a possible upper and lower bound for y, take their difference, and divide by 6

[Bol07]. Using Bayes’ rule, the posterior is

g(α, β|yi) ∝ g(α, β)f(yi|α, β).

Then α ∼ N(m′α, (s
′
α)2) and β ∼ N(m′β, (s

′
β)2). Since we use a prior conjugate to the

posterior, then as new observations are made we can use the updating functions to find

the mean and variance for the new posterior. Thus, for α ∼ N(m′α, (s
′
α)2) we have

1

(s′α)2
=

1

s2
α

+
n

σ2

for the posterior precision, which is the reciprocal of the variance, and the posterior mean

m′α =

1
s2α
1

(s′α)2

×mα +
n
σ2

1
(s′α)2

×Ax̄.

Also, for β ∼ N(m′β, (s
′
β)2) we get

1

(s′β)2
=

1

s2
β

+
SSx
σ2
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and

m′β =

1
s2β
1

(s′β)2

×mβ +
SSx
σ2

1
(s′β)2

×B,

for posterior precision and posterior mean, respectively.

Recall that the posterior distribution summarizes our belief for the parameter’s

true value. In Bayesian statistics we can construct a credible interval to describe the range

of possible parameters, which captures this true value. In Bayesian linear regression, we

can construct a credible interval for both the intercept, here at x = x̄, and the slope β.

When σ2 is unknown, which it usually isn’t, we use the estimated population variance σ̂2

calculated from the residuals

σ̂2 =

∑n
i=1(yi − (Ax̄ +B(xi − x̄)))2

n− 2
.

The credible interval will be

m′β ± z γ2 ×
√

(σ′β)2.

However, to account for the unknown σ2 we can widen our credible interval and use a

Student’s t critical value instead of the normal critical value z. In this case, we use

m′β ± t γ2 ×
√

(s′β)2

[Bol07].

3.4 Bayesian Regression Examples

Here we present a simple Bayesian linear regression example using the NHANES

data. Our variables of interest are the same as in the previous section, “HomeRooms”

and “Poverty”. In order to make a comparison between the frequentist approach and the

Bayesian approach, we will be asking the same question as before, “Is there a relationship

between poverty level and the number of home rooms in the residing household?”. Again,

we analyze the data using the software R. However, this time we use the library package

MCMCglmm for Bayesian linear regression analyses. We will present two models, the

first using a non-informative prior and the second using an informative, also known as

subjective, prior. In each case we use a sample size of n = 500 of U.S. adults with no

replacement, just like before.
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Example 3.4.1. In the non-informative prior model, we select a uniform prior distribu-

tion. This means that we give each parameter an equal probability of occurrence, thus,

α = 0.5 and β = 0.5. After running the model we obtain the output in Table 3.2.

post.mean l-95% CI u-95% CI eff.samp pMCMC

Intercept 4.49 4.09 4.80 1000.00 0.00
sampleage.Poverty 0.56 0.47 0.68 1104.25 0.00

Table 3.2: Bayesian linear regression R output with non-informative prior.

The point estimates for the Bayesian regression coefficients are α̂ = 4.49, with

credible interval (4.09, 4.80), and β̂ = 0.56, with credible interval (0.47, 0.68). These

estimates closely resemble the point estimates from the frequentist linear regression model.

This is to be expected since we used a non-informative prior, so the model from both

approaches should be similar. The Bayesian model here is

HomeRooms = 4.49 + 0.56Poverty.

However, the credible intervals are interpreted differently. Here we are saying that we are

95% confident that our intervals contain the parameters.

In Bayesian statistics we can also run diagnostics on our models, in the form

of a trace plot and a density plot. A trace plot shows the history of a parameter value

across iterations of the chain along the x-axis, while a density plot shows the distribution

of the data. Figure 3.2 shows the trace plot for the intercept and Poverty. As we can see,

the trace for the intercept and for Poverty have a caterpillar shape, which means that the

iterations were consistent throughout the chain. Also, the density plots show a normal

distribution around the parameter estimates. Thus, we can be fairly confident that we

have a good model for our data.
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Figure 3.2: Trace and density plots for Intercept and Poverty for the Bayesian model

with non-informative prior.

The positive linear relationship between poverty level and the number of home

rooms in the residing household is presented in Figure 3.3. Again, as the poverty level

increases so does the number of rooms in the residing household. Recall that lower values

indicate more poverty.
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Figure 3.3: Relationship between “Poverty Level” and “Number of Home Rooms” in the

Bayesian model with non-informative prior.

The Bayesian approach using a non-informative prior yield a similar model using

the frequentist approach. However, with the Bayesian approach it is simpler to interpret

the credible intervals, and as we gather more data we are able to add it to our model by

making the posterior distribution our new prior distribution.

Example 3.4.2. Here we present the Bayesian linear regression model with an informa-

tive priors α = 6 and β = 1, and variance σ2 = 0.02. See Table 3.3 for the R output.

post.mean l-95% CI u-95% CI eff.samp pMCMC

Intercept 5.55 5.39 5.73 388.84 0.00
sampleage.Poverty 0.35 0.28 0.42 893.21 0.00

Table 3.3: Bayesian linear regression R output with informative prior.

The estimated regression coefficients for the model are α̂ = 5.55 and β̂ =

0.35 with corresponding critical intervals (5.39, 5.73) and (0.28, 0.42), respectively. The

Bayesian linear regression model is

HomeRooms = 5.55 + 0.35Poverty.
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In this case, since we used an informative prior, the posterior distribution was

more heavily influenced by the prior than by the data. Notice that our estimated alpha

value, â = 5.55, closely resembles the alpha in our chosen prior, α = 6. This yield a higher

value compared to when we chose a non-informative prior in the previous example.

In Figure 3.4 we can see the trace and density plots for the intercept and for

Poverty. Again we see a caterpillar shape for the trace and a normal distribution for the

density. Therefore, we can again be confident in our model.
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Figure 3.4: Trace and density plots for Intercept and Poverty for the Bayesian model

with informative prior.

In Figure 3.5 we see the positive relationship between both of our variables, as

poverty level increases so does the number of rooms in the residing household.
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Figure 3.5: Relationship between “Poverty Level” and “Number of Home Rooms” in the

Bayesian model with informative prior.

In this chapter we saw three simple linear regression models. One from the

frequentist perspective and two from the Bayesian perspective. In the next chapter we

will present a Bayesian hierarchical linear regression model.
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Chapter 4

Hierarchical Linear Regression

4.1 Bayesian Hierarchical Linear Regression

When we involve multiple predictor variables, each with different levels, we need

a hierarchical model to account for the multiple parameters. Recall that the Bayesian

model in its proportional form is

posterior ∝ prior × likelihood.

In Bayesian hierarchical models, each prior has its own distribution with its own param-

eters, which we call hyperparameters. If we let φ represent the hyperparameters and θ

represent the parameters of interest, then p(φ) is the hyperprior distribution and p(θ|φ)

is the likelihood function. Thus, their joint distribution is p(φ, θ) = p(φ)× p(θ|φ). Then

by Bayes rule, in its proportional form, we have

p(φ, θ|y) ∝ p(φ, θ)p(y|φ, θ),

where y is a vector of data points, and p(φ, θ|y) is the posterior. Note that the right hand

side can be simplified to p(φ, θ)p(y|θ)–since the hyperparameters φ affect y through θ,

the data only depends on θ.

Next we describe the random effects model (also known as simple varying coef-

ficients model) and the mixed-effects model were the regression coefficients are exchange-

able and normally distributed. For these models we use a prior distribution of the form

β ∼ N(µ, τ2I), where I is the identity matrix [GCS+14]. We also use a normal linear
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regression model for the likelihood, y ∼ N(Xβ,
∑
y), where X is the J × J matrix, and

regression coefficients are relabeled as βi for i = 1, . . . , J [GCS+14].

In the random effects model, the β are exchangeable and their distributions

are in the form β ∼ N(1µ, τ2I), where 1 is the J × 1 vector of ones [GCS+14]. This

means that we can condition on the indicator variables, which represent subgroups of the

population. Thus, we can have different mean outcomes at each level. In general, the

hierarchical random effects model is,

Yij = βj + εij for εij ∼ N(0, σ2).

In the mixed-effects model, the first J1 components of β are assigned an infinite

prior variance and the remaining J2 = J − J1 are exchangeable with a common mean µ

and a standard deviation σ [GCS+14]. We can then write βj = µ + sj , where µ is the

overall mean and sj is some normal random effect. The mixed-effect model is

Yij = µ+ sj + εij for εij ∼ N(0, σ2),

where µ is the fixed effect, sj is the random effects, and εij are the individual effects.

Here we discuss a Bayesian generalized linear mixed model (GLM), specifically,

the Poisson regression model. The Poisson model is used for count data with over-

dispersion, that is, for data that has more variation than is expected [Had10]. Note that

the Poisson density function is of the form

P (θ) =
1

θ
λθ exp(−λ)

for θ = 0, 1, 2, . . . with mean and variance

E(θ) = λ and var(θ) = λ.

The Poisson model uses a log link function, thus the model is

log Y = α+ βX

or alternatively,

Y = eα+βX .

In the next section we will present an example of a Bayesian hierarchical Poisson

linear regression model with a random effect.
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4.2 Bayesian Hierarchical Linear Regression Example

In this section we present a Bayesian hierarchical Poisson linear regression model.

We will also compare the hierarchical model to a basic linear regression model to show

the effect of adding a random variable. Here we continue to use the NHANES data for

2009-2012. We will use “HomeRooms”, “HHIncomeMid”, and “MaritalStatus” as our

variables. HomeRooms is defined as before. HHIncomeMid is the middle income of the

“total annual gross income for the household in U.S. dollars,” which ranges from 0 to

100, 000 or more [Pru15]. MaritalStatus is the marital status of the study participant,

which falls under one of the following categories: Married, Widowed, Divorced, Separated,

NeverMarried, or LivePartner (living with partner)[Pru15]. For all the models in this

section we used a sample of n = 400 U.S. adults with no replacement.

We first present a basic linear regression model using the frequentist approach.

In this model we use HHIncomeMid as the prediction variable and HomeRooms as the

response variable. To analyze our data we use the R software and its built in generalized

linear model function glm(). After running the data we obtained the following output,

see Table 4.1.

glm(formula = HomeRooms ∼ HHIncomeMid,
family = poisson, data = sample df):

Deviance Residuals:

Min 1Q Median 3Q Max
-2.9824 -0.5523 -0.1070 0.3523 2.8453

Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.555e+00 4.578e-02 33.960 < 2e− 16 ***

HHIncomeMid 4.544e-06 6.349e-07 7.158 8.2e-13 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 322.37 on 399 degrees of freedom
Residual deviance: 270.63 on 398 degrees of freedom
AIC: 1730.1

Number of Fisher Scoring iterations: 4

Table 4.1: Frequentist Poisson linear regression R output.

This yields the regression coefficients α̂ = 1.555 and β̂ = 0.000004544 with 95%
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confidence intervals (1.46, 1.64) and (0.000003, 0.000006), respectively. Thus we have,

logHomeRooms = 1.56 + 0.000005HHIncomeMid

or by exponentiating the coefficients, we have

HomeRooms = e1.56+0.000005HHIncomeMid.

As we can see in Figure 4.1, there is a positive linear relationship between median

income and number of home rooms. As the median income increases there is also a slight

increase in the number of home rooms in the residing household.
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Figure 4.1: Relationship between “Median Income” and “Number of Home Rooms” in

the frequentist and Bayesian Poisson models.

The second model that we present here is a basic Bayesian linear regression

model with a Poisson distribution. We look at the relationship of the same variables

as before, “HomeRooms” and “HHIncomeMid”. We use a Poisson regression instead of

ordinary least squares because the response variable (HomeRooms) consists of counts.

We also used the default prior, which consists of a mean of 0 and a variance of 1. Next

is the R output obtained by applying the MCMCglmm() function, see Table 4.2.



37

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 1.572e+00 1.548e+00 1.584e+00 17.48 0.00
HHIncomeMid 4.314e-06 4.189e-06 4.706e-06 22.12 0.00

Table 4.2: R output for basic Bayesian Poisson linear regression.

In the R output we can see that the estimated coefficients for the regres-

sion model are α̂ = 1.572 and β̂ = 0.000004, with credible intervals (1.55, 1.58) and

(0.0000004, 0.000005), respectively. Thus we have the following model,

logHomeRooms = 1.57 + 0.000004HHIncomeMid.

This gives a positive linear relationship between median income and the number of home

rooms in the residing household. Note that this Bayesian model and the frequentist model

yield similar coefficients so their graphs are nearly identical, therefore, Figure 4.1 is also

the graph for the Bayesian model.

We now describe the Bayesian hierarchical Poisson linear regression model. In

this model we include a random effect variable, “MaritalStatus”. For the purposes of

simplicity we recategorized the variable to only include two levels. We grouped “Mar-

ried”, “Widowed”, and “LivePartner” into one category (m status.TRUE) and “Di-

vorced”, “Separted”, and “NeverMarried” into another category (m status.FALSE). We

then looked at how medium income (HHIncomeMid) affects the number of rooms in the

residing household (HomeRooms). We also used a prior, which consisted of a mean of

0.002 and a variance of 1 for the random effects and the error terms. In this case we used

the library package MCMCglmm to analyze the data in R. See the R output in Table 4.3.

post.mean l-95% CI u-95% CI eff.samp pMCMC

HHIncomeMid 4.479e-06 3.712e-06 5.359e-06 35.85 0.00

Table 4.3: R output for hierarchical Bayesian Poisson linear regression.

This gives the following model,

logHomeRooms = 0.000004HHIncomeMid.

For this model we also ran some diagnostics, see Figure 4.2. The trace for

HHIncomeMid, m status.FALSE and m statust.TRUE did not produce the shape that
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we expected. We wanted the trace to produce a more caterpillar look, like the trace that

we saw for our models in section 3.4. The density, on the other hand, looked good for all

three variables.
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Figure 4.2: Diagnostics plots for Bayesian hierarchical Poisson linear regression model.

The next graph displays the relationship between median income and number

of home rooms in the residing household as determined by marital status, see Figure 4.3.

As we can see, the positive relationship between median income and number of home

rooms does not differ by much due to marital status. This indicates that our model isn’t

improved by adding the random variable MaritalStatus.
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Figure 4.3: Relationship between “HHIncomeMid” and “HomeRooms” based on marital

status.

In this section we presented three models. The first two used median income

as a predictor for number of homerooms. As we saw, there was a very minor difference

between the frequentist model and the Bayesian model. If we compare their log functions,

they are nearly identical. This suggest that we can take a Bayesian approach over a

traditional frequentist approach and obtain similar results. An added benefit of the

Bayesian approach is that credible intervals give us a 95% confidence that they contain

the parameters. Finally, the last model had an added variable (MaritalStatus). This

Bayesian hierarchical Poisson linear regression model ignores the intercept and includes

marital status as a random effect. Notice that we got a slope that is similar to the Bayesian

Poisson linear regression model, this suggests that our hierarchical model wasn’t improved

by adding the random variable MaritalStatus. Also, we did not get the shape that we

wanted in the trace. It is possible that we need to run the model differently. We might

need to run it as a variable or mix slope model.
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Chapter 5

Conclusion

In this thesis we talked about Bayesian statistics, from its historical develop-

ment to its application. We demonstrated that Bayesian statistical techniques can be

used for something as simple as finding the probabilities of selecting the “pascal” die, to

determining the relationship between median income and the number of rooms in some-

one’s home, to something more complicated like constructing a hierarchical model. It’s

because of its broad range of application that we find value in Bayes’ theory of “inverse

probability” or was is modernly known as Bayes’ rule.

We started this paper by presenting important historical facts about how Bayesian

statistics came to be. We listed some of the important contributers like Laplace, Jeffreys,

Good, Lindley and Savage, as well as some of its most famous opposers like Fisher,

Neyman and Pearson. We described Bayes’ rule and provided a basic example of its

application using three dice (pascal, pastel, and castle). We also described how we can

make inferences using Bayesian statistics and applied these techniques to the NHANES

data. We concluded chapter 2 by providing a comparison between the frequentist and

the Bayesian approach.

In chapter 3 we compared the frequentist linear regression to the Bayesian linear

regression. We first described the theory behind frequentist linear regression and pro-

vided a basic example of a linear model using the NHANES data. We then described the

Bayesian approach to linear regression and applied the techniques to the same NHANES

variables. In both cases we came up with a model that showed a positive linear relation-

ship between poverty level and the number of home rooms in the residing household.
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In the final chapter we described the techniques for a hierarchical Bayesian linear

regression model. In particular, we used a hierarchical Bayesian Poisson linear regression

model for the NHANES data. We found a model for the relationship between median

income and the number of rooms in the residing household as determined by marital

status. However, we did observed that it is worth further investigating if a variable or

mixed slope model is more fitting than the random effects model.

Bayesian statistics may have only become popular in the last 60 years, but it

has proven itself useful when other techniques have failed. With modern statistical tools

we are now able to apply its techniques to large data sets. It is not clear what the future

holds for Bayesian statistics, but one thing is true, Bayes’ rule has stood the test of time.
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