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ABSTRACT 

The post-firing variability of fire-affected rock (FAR) recovered from a 

stone-cooking platform within a prehistoric stone grill was examined. This 

examination tested the physical properties of FAR recovered from site CA-SBR-

3773, located the Crowder Canyon Archaeological District in San Bernardino 

County, California. There is a lack of archaeological research in this area of 

Southern California; however, this project established a fundamental perspective 

of thermal feature reuse and episodes of firing activity for prehistoric cooking 

features by examining the physical changes FAR experienced due to various 

heat exposures. Regional archaeologists often encounter these features as they 

speckle the landscape of upland desert regions in California.  

This research is an experimental project that compares the cultural stones’ 

properties to those of non-cultural origin, which have been fired various times 

during controlled replicative experimentation. The end comparison identifies the 

FARs’ change in physical conditions. Repeated exposure to high temperatures 

has a direct relationship to the stability and matrices of rock, in this particular 

case, schist (Yavuz et al. 2010). As the stone is repeatedly exposed to high 

temperatures, its durability and structural components begin to deteriorate. This 

deterioration can be measured and compared to pre-fired physical properties. 

One of these physical properties is the stones’ porosity, which is calculated using 

the measured absorption rate of stone before and after exposure to firing 

episodes. These firing episodes are meant to approximate the cultural use of 
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these stones during prehistoric cooking episodes. The results of the experiment 

show that FAR may have some diagnostic capabilities to infer multiple firing 

episodes, confirm facility reuse, and support suggested mobility with respect to 

available resources and temporal episodes through accelerator mass 

spectrometry (AMS) dating and other analyses such as micro-botanical analysis.  

  



v 

  ACKNOWLEDGEMENTS  

As the famous proverb states “It takes a village.”  It has, indeed, taken a 

village to produce this manuscript, and I would like to acknowledge those who 

have helped me along this two-and-a-half-year journey. 

I owe my sincere gratitude to Dr. Amy Gusick. Without her I would not 

have a been inspired to give back to the community, be an active member of the 

University, nor would I have a piece of coherent research to present in this 

thesis. I consider myself lucky to have had her as an advisor and professor. 

 I want to extend my deepest gratitude to Dr. Robertshaw for his belief in 

me academically, and for allowing me the opportunity to advance my education. 

Without the opportunity he has given me the research presented here would not 

have been possible.  

 I would like to thank Laura Chatterton, John Eddy, and Bill Sapp, for 

providing access to my experimental materials, for eliciting the line of research 

questions, and for inspiring my overall thesis research, respectively.  

 I owe a great deal to Julie Scrivner, who inspired my overall love and 

appreciation for California archaeology. 

 I would also like to thank the faculty and staff of the Anthropology 

Department at California State University San Bernardino. This department has 

helped mold me into an exceptional student, and productive archaeologist. For 

these reasons I am very grateful for the time and energy this department 

invested in my academic success. 



 

DEDICATION 

I dedicate this manuscript to the three most important people in my life: 

 To my Mother, Debra Holmes, for her continuous faith and support both 

physically and emotionally throughout my life. She was and will remain the 

strongest woman I have ever met.  

To my grandfather, John Thomas Holmes, for always inspiring me to be a 

compassionate person, and for his undying confidence in me and my pursuit of 

higher education.  

 To my daughter, Sloane, although she is new to my life, she has ignited a 

fire in me that no one had been able to do. The completion and editing of this 

manuscript was motivated by my desire to inspire her one day.



vii 
 

TABLE OF CONTENTS 

ABSTRACT .......................................................................................................... iii 

ACKNOWLEDGEMENTS ..................................................................................... v 

LIST OF TABLES ................................................................................................. x 

LIST OF FIGURES ...............................................................................................xi 

CHAPTER ONE: INTRODUCTION ...................................................................... 1 

CHAPTER TWO: STUDY AREA BACKGROUND 

Environmental Background ........................................................................ 5 

Important Resources: Yucca and Manzanita .................................. 7 

           Cultural Background .................................................................................. 9 

Archaeological Background ..................................................................... 13 

Study Area: Crowder Canyon (Formerly Coyote Canyon) ............ 13 

CHAPTER THREE: THERMAL FEATURE BACKGROUND 

The Development of Prehistoric Cooking in Upland Desert Regions          
of Inland Southern California ................................................................... 17 

Models of Hot-Rock Cookery ................................................................... 18 

Distribution of Identified Cooking Features in Region of Study ..... 21 

General Thermal Feature Typology .............................................. 23 

CHAPTER FOUR: THE PHYSICS OF STONES IN THERMAL FEATURES 

Fundamental Thermal Feature Mechanisms ........................................... 29 

Porosity as a Measurement of Firing ....................................................... 32 

CHAPTER FIVE: THEORETICAL FRAMEWORK 

Human Behavioral Ecology and Optimal Foraging Theory ...................... 35 

Reoccurring Site Occupation......................................................... 38 



viii 
 

CHAPTER SIX: METHODS 

Geological Referencing and Sourcing of Schist ....................................... 41 

Collection of Non-Cultural Material .......................................................... 43 

Collection of Cultural Material .................................................................. 44 

Mathematical Formulations ...................................................................... 46 

Cultural Porosity ............................................................................ 46 

Non-cultural Porosity ..................................................................... 49 

Replicating Prehistoric Cooking Features ................................................ 50 

Grilling Platforms ........................................................................... 51 

Fuel ............................................................................................... 52 

Experimental Firing of Non-Cultural Material ................................ 53 

Implementation of Design and Function................................................... 54 

CHAPTER SEVEN: RESULTS ........................................................................... 56 

Limitations and Further Considerations ................................................... 58 

Upper Firing Limit .......................................................................... 59 

Small-scale Experimentation ......................................................... 60 

Considering Further Optimal Foraging Theories and Human 
Behavioral Ecological Approaches ................................................ 61 

Considering Carbon Staining of Stones and Soil .......................... 62 

CHAPTER EIGHT: DISCUSSION ...................................................................... 64 

Fire-Affected Rock Analysis in Action ...................................................... 65 

Examination into the Utility of Fire-Affected Rock .................................... 70 

CHAPTER NINE: SIGNIFICANCE 

Theoretical Significance ........................................................................... 72 



ix 

 

Regional Significance .............................................................................. 73 

APPENDIX A: SCHIST PERMIT ........................................................................ 74 

REFERENCES ................................................................................................... 77 

  

  



x 

 

LIST OF TABLES 

Table 1. Experimental Yucca schidigera Cooking Times per Plant Portion, from 

McCarthy (2017) ................................................................................................. 50 

Table 2. Porosity Results per Number of Firings ................................................ 56 

 
  



xi 
 

LIST OF FIGURES 

Figure 1. Crowder Canyon Archaeological District / Study Area........................... 6 

Figure 2. Schist Eroding out of Crowder Canyon.................................................. 6 

Figure 3. Expected Temporal Patterns, from Thoms (2009) ............................... 19 

Figure 4. Thermal Feature Distribution, from Milburn (2009) .............................. 22 

Figure 5. Roasting Pit, from Milburn (2009) ........................................................ 24 

Figure 6. Location of Transverse and Peninsular Mountain Ranges with      
Regard to the Study Area .................................................................... 25 

 
Figure 7. Earth Oven, From Milburn (2009) ........................................................ 26 

Figure 8. Stone Grill, from Milburn (2009) .......................................................... 27 

Figure 9. Non-Cultural Collection Area in Crowder Canyon ............................... 41 

Figure 10. Satellite Image: San Andreas Fault, from Back Road West (2011) ... 42 

Figure 11. San Andreas Fault Zone, San Bernardino Mountains Segment,       
from United States Geological Survey (2004) .................................... 44 

 
Figure 12. Stone Grill from which Cultural Material was Collected ..................... 46 

Figure 13. Initial Submersion .............................................................................. 47 

Figure 14. Max Resting Porosity ......................................................................... 47 

Figure 15. Unfired Non-Cultural Material. ........................................................... 51 

Figure 16. Cultural Material: Examples 1 and 2. ................................................. 52 

Figure 17. Porosity per Number of Firings .......................................................... 58 

Figure 18. My 2015 Excavated Thermal Feature with Stained Soil .................... 63 

Figure 19. Baldy Mesa Thermal Feature ............................................................ 66 



1 

 

CHAPTER ONE 

INTRODUCTION 

 

There are many archaeological sites across upland desert regions of 

Inland Southern California that can contain thermal features, or as some 

archaeologist call them, “cooking facilities” (Thoms 2009). Different terms have 

been used to categorize these thermal features. Terms such as hearth, cooking 

feature, earthen ovens, roasting pits, etc., have been used by regional 

archaeologists to differentiate between the typologies of these thermodynamic 

features. While these thermal features differ in composition they are very 

common within mountainous regions of Southern California and are the focus of 

this thesis. One major component of a stone grill is its stone cooking platform. 

These platforms produce fire-affected rock (FAR), and its subcategory, fire-

cracked-rock (FCR). These features, and the FAR contained therein have been 

studied broadly, but these studies have yet to yield information beyond the scope 

of rudimentary descriptions, typologies, and terminologies, most of which, only 

describe the possible functions of these features. Because FAR has been 

considered a catch-all category of non-diagnostic artifacts that are normally 

considered of little analytical value, typical recordation of FAR consists of 

recording bulk weight and sometimes count. Recordation and other 

archaeological writings, including drawings, typically depict these features as a 

sign of cooking activity (Crawford 2011). Hildebrandt and Darcangelo (2008:59) 
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argue this point with the following examples, “the feature was likely to represent 

an earth oven for cooking or drying fish,” or “the hearth was not associated with 

structural remains, which probably means that some cooking activities took place 

outside during the warm seasons.”    

White (1980) discussed clusters of FAR identified in Southern California 

and commented on the lack of interest in these features by some archaeologists. 

He noted the general application of terms such as “fire-pit,” “oven” or “cluster” to 

thermal features. White further argued that these terms were utilized as a 

common way to record the feature’s form and function. He stated, “if projectile 

points and other artifacts are composed of traits which make them significant 

enough to systematically categorize, describe, and discuss at length, why then 

should a site feature with every bit as much claim to functional importance be 

handled in such a cavalier manner?” (White1980:67). 

Current writings and research suggest that archaeologists will continue to 

normalize the catch-all terms and definitions that merely suggest function while 

continuing to negate further analysis on thermal features and their FAR 

constituents. It is my opinion that in negating further analysis of FAR, the 

archaeological record loses valuable data that may contribute to an understating 

of the subsistence economy and mobility practices of the region in which clusters 

of FAR occur.  

During the past twenty years, archaeological labs in California have been 

carefully processing microscopic materials recovered from thermal features in 
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situ with FAR and have been analyzing these particles through various 

techniques such as flotation and fine-mesh screening. These techniques recover 

the remains of resource particles too small to identify while in the field, and 

identify floral and faunal remains that facilitate research questions and studies 

which can infer seasonal movements, seasonal occupations, and food 

procurement strategies. Many times, these inferences are made within a human 

behavioral ecological framework. This same type of attention to analytical detail 

has not been paid to the thermal feature itself or its FAR constituents. 

The purpose of this research is to provide additional analytical capabilities 

to FAR by determining if identification of thermal feature reuse is possible by 

testing the physical properties of FAR specimens recovered from thermal 

features in the Crowder Canyon Archaeological District. Crowder Canyon is a 

region in San Bernardino County where prehistoric inhabitants left hundreds of 

thermal features across the landscape. These features are thought to have been 

used to process yucca (Yucca schidigera) using manzanita (Arctostaphylos sp.) 

as fuel, both species of which are abundant in the region. The experimental 

portion of the current research consisted of measuring the physical properties of 

FAR recovered from a stone grill and then comparing these stones’ properties to 

those of a control group of non-cultural origin that have been fired various times 

during replicative experiments. This comparison was used to describe the 

change in physical properties of the stones found in archaeological contexts, 

focusing on the porosity of the stone.  
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My initial inquiries into the phenomenon of site reuse were formulated by 

my curiosity and drive to convert a piece of material culture, in this case FAR 

within prehistoric grills, into a diagnostic tool, which may ultimately infer site use 

and reuse. The cooking platform within the stone grill is a cultural mainstay and is 

typically recycled, with only the fill being thrown out (Milburn 1998). As such, the 

stones comprising a grilling platform are selected and arranged to withstand 

multiple uses, and this research is an attempt to create a new method that can 

inform on the number of firings of a stone grill. Considered in conjunction with 

additional site information, the data generated from this analytical technique may 

contribute to the understanding of prehistoric cultures that inhabited the upland 

desert regions, and similar landscapes within Southern California, through 

inferences into site reuse. 
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CHAPTER TWO 

STUDY AREA BACKGROUND 

 

Environmental Background 

The Crowder Canyon Archaeological District is located in the Cajon Pass 

(Figure 1). The Cajon Pass is a break in the San Bernardino and San Gabriel 

Mountain Ranges. In the past these two mountain ranges were connected, 

however the “pass” as local call it, was created by the San Andreas Fault. The rift 

in the mountain ranges occurred when two tectonic movements caused the North 

American Plate and the Pacific Plate to collide with each other. Over the years 

the rift between the two plates expanded into a valley carved out by flowing water 

and additional tectonic activity (Feller 2017). The plates continued to move, 

pulling away and against one another producing new water sources and 

canyons. The West Cajon Valley or “amphitheater” was created by these natural 

processes and yielded the schist bearing canyons seen in Figure 2 (Feller 2017). 

The Crowder Canyon archaeological district, which is the focus of the current 

research, is found in this passage called the Cajon Pass. “Cajon” is a Spanish 

translation of “box”, and this term is used in the geographical community to 

convey box-like canyons.  
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Figure 1. Crowder Canyon Archaeological District / Study Area 

 

 
Figure 2. Schist Eroding out of Crowder Canyon 
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Important Resources: Yucca and Manzanita 

Based on the ethnographic record for the Crowder Canyon area, yucca 

and manzanita were widely available and relatively easy to obtain. These two 

resources are still found today in great quantities within the project area. 

Manzanita can range in size from small bush like clusters and they can occupy 

various climate zones. There are over 40 native species of manzanita in 

California. The species that is most commonly found in the Cajon Pass, is 

(Arctostaphylos glauca). This type of manzanita can exceed 13 feet in height and 

can be found at elevations starting at 2,209 feet up to the pass’s summit. Besides 

the red trunk, this species of manzanita has foliage that begins as sticky leaves; 

later their surfaces smoothen and they stand erect on the branches. Manzanita is 

a viable and excellent fuel source because it is a very heavy dense wood that 

can burn longer and hotter than other local woody sources (Milburn 2004).  

Yucca is very important in terms of subsistence, ritual, and social 

organization for the Serrano people of the Transverse mountain regions and the 

Cahuilla people of the Peninsular mountain regions of Southern California (Bean 

and Saubel 1972; Sutton 1988; Sobolik 1996). McCarthy’s (2011) comparative 

and experimental research in the Cahuilla ancestral territory, just southeast of the 

study area, focused on the varying forms of cooking features and processing 

techniques surrounding yucca as an article of subsistence and represents the 

most extensive research on this subject conducted to date. This thesis utilizes 
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McCarthy’s (2011) research as an analogy for resource preparations practiced by 

the Serrano, who occupied Crowder Canyon. 

Research which details the types of cooking features utilized for certain 

portions of the yucca plant, and includes contemporary harvesting of yucca, 

provides a clear picture of the types of cooking features needed to process this 

resource (McCarthy 2011). McCarthy’s research also suggests that Native 

American groups that inhabited the region processed yucca as part of a social 

ritual (McCarthy 2011). Consideration of this research in conjunction with 

ethnographic accounts and biological and environmental data provides an overall 

view of how yucca usage evolved into a significant facilitator of cultural tradition. 

Its specific processing and consumption may constitute a form of social ritual in 

which all members of the community were involved.  

Land use and resource exploitation by the prehistoric inhabitants of 

Crowder Canyon were largely driven by subsistence decisions and clan 

organization on a landscape scale. Culturally significant plant resources such as 

yucca were integral in both subsistence decisions as well as trade (Bean and 

Saubel 1972). As a food item, yucca was an important resource for the groups in 

the region, but its elevation-specific growth and tribal territory considerations 

limited its availability to specific tribes in the region, making it an excellent trade 

item. Both McCarthy’s research and the ethnographic record suggest that 

prehistoric peoples of Crowder Canyon exploited yucca as a dietary staple, for 
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utilitarian purposes, and as a trade item for generations (Bean and Saubel 1972; 

McCarthy 2011; Kowta 1969).  

 

Cultural Background 

Human occupation of mainland Southern California is believed to have its 

origins approximately 12,000 years ago. The following sections will detail five 

cultural periods of occupation within California that span 12,000 years B.P. to the 

present. These periods include: The Paleo-Indian Period, the Early Archaic 

Period, the Archaic or Milling Stone Period, the Intermediate Period, and the Late 

Prehistoric Period.  

Paleo-Indian Period/Terminal Pleistocene (12,000 to 10,000 B.P.).  

The first Southern Californians are described as gatherers who also 

practiced big-game-hunting. Gathering, a staple of smaller logistical patterned 

communities, gave way to the exploitation of megafauna which included species 

like mammoths. Fluted point assemblages included spears and blades and were 

identified locally and compared to Clovis Paleo Indian manufactured materials. 

These manufactured items were found to be similar both temporally and 

morphologically. This typological and temporal similarity produced an analogous 

date for the local California lithics (Moratto 2004). However, archaeological 

evidence of occupation during the Paleo Indian Period in California rests within a 

few assemblages producing very few fluted points identified within temporary 

camp sites. luted points have been identified and recorded in Imperial County as 
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well as San Diego County. Most of the assemblages containing multiple fluted 

points are located near Pleistocene lake shores like those found in the Mojave 

Desert and San Juaquin Valley (Rondeau 2009).  

Early Archaic Period/Early Holocene (10,000 to 8,000 B.P.).  

Around 10,000 B.P. a warming trend facilitated a shift in subsistence 

strategies from the exploitation of big-game-hunting to gathering with an 

intermittent reliance on small game. During this period, the Mojave Desert lakes, 

where assemblages were once accompanied by points, present less evidence of 

Early Holocene occupations. However, coastal sites in Santa Barbara and San 

Diego Counties, as well as sites further inland in Riverside County have 

produced further evidence of occupation during the Early Holocene (Erlandson 

2001; Goldberg 2001; Grenda 1997; Gallegos 1991; Koerper et al. 1991; Warren 

1967). These sites contain artifacts such as leaf-shaped points and knives, and 

other artifacts associated with this period (Koerper et al. 1991).  

Archaic or Milling Stone Horizon/Middle Holocene (8,000 to 3,000 B.P.) 

 This period in Southern California prehistory is associated with milling tools such 

as those found in coastal sites in San Diego County including those at the Harris 

site (CA-SDI-149) (Gallegos 1991; Koerper et al. 1991). Typical archaeological 

sites located on the coast during this period are comprised of shell middens and 

thermal features. Milling artifacts such as hand stones or “manos”, “choppers” 

and other ground stone tools and “gaming pieces” are prevalent throughout these 
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sites and indicate the Milling Stone Horizon. The period’s funerary practices were 

categorized by internment, with the inclusion of milling tools.  

As mentioned previously The Milling Stone Horizon was categorized by 

the cultural material identified in sites along the coast, however, there are inland 

manifestations of this temporal period with sites containing similar artifacts, 

minus the shell middens, located in Rancho Cucamonga, The Cajon Pass and 

Prado Basin (Wallace 1955; Salls 1983; Goldberg and Arnold 1988; Kowta 1969; 

Basgall and True 1985). The shift in subsistence practices to plant procurement 

suggests smaller populations during the period. These populations consisted of 

small groups moving in seasonal rounds from the coast to inland settlements and 

vice versa.  

Intermediate Period/Late Holocene (3,000 to 1,350 B.P.)   

“Metates” and “Manos” were a mainstay during the Milling Stone Horizon 

occupation; however, the presence of mortars and pestles characterizes the Late 

Holocene Period and suggests a focus on acorn processing. The identification of 

these artifacts implies more sedentary patterns of mobility due to the laborious 

nature of acorn processing. Acorns are considered a high-ranking food source in 

terms of caloric intake and can be stored for long periods of time in case of 

seasonal resource pressures. Settlement patterns began to shift towards 

sedentary systems, but seasonal rounds continued to take place. The winters 

consisted of camping near main water sources with temporary camps utilized for 

resource procurement during the rest of the year (Kowta 1969).  
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It is postulated that the inland areas utilized acorn processing later in the 

period than coastal occupations. The evidence behind this assumption stems 

from the absence of mortars and pestles and the continued frequency of metates 

and manos in the beginning of the period (Kowta 1969; Goldberg and Arnold 

1988). Based on the assemblages identified on the coast, which contain several 

examples of acorn processing tools, it can be assumed that the manufacture of 

these tools and processing of acorns occurred first within coastal communities 

and was adopted by inland inhabitants later in the period (Goldberg 2001). 

Late Prehistoric Period/Late Holocene (1,350 B.P. to Spanish Contact [A.D. 
1769]). 
 

The introduction of the bow and arrow, along with further warming trends 

during the Late Holocene, helped to facilitate a major shift in settlement patterns. 

The period began with a semi-sedentary strategy and shifted to permanent 

village communities situated by permanent water sources near several types of 

exploitable local resources. By the time the Spanish arrived these villages were 

populated by upwards of 250 people. These villagers set up strategic logistical 

hunting and foraging strategies that consisted of small gathering and hunting 

parties who built temporary camps outside of the village, in areas of high 

resource availability. Keeping within territorial boundaries inhabitants would 

procure food resources and process them in these temporary camps (Goldberg 

et al. 1988). These temporary sites can be identified archaeologically by the 

presence of milling stations, manos, and metates. The presence of FAR at these 
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temporary campsites suggests food preparation in thermal features and thus 

multiple-day stays.  

The Medieval Climatic Anomaly (MCA) is postulated to be the cause of the 

intense warming period and was accompanied an extremely dry climate, 

facilitating the strategic decision to settle near permanent water sources. 

“Droughts during the MCA were severe enough to cause problems for residents 

of poorly watered areas of Native California” (Jones and Klar 2007:302).  

 

Archaeological Background 

Study Area: Crowder Canyon (Formerly Coyote Canyon) 

Crowder Canyon is considered a “corridor” that was produced by natural 

processes allowing trade and movement between upland desert regions and 

coastal settlements. The study and collection areas are located near Crowder 

Creek which holds enough water on a seasonal basis to support a variety of food 

resources, plant and animal alike. The Crowder Canyon Archaeological District 

includes several prehistoric sites. These sites include “short-term habitation 

sites,” “working/ processing sites,” and “temporary camp sites” (Kowta 1969). 

Furthermore, this area is considered by local archaeologists as the “furthest 

inland manifestation of the Milling Stone Horizon discovered in California” (Kowta 

1969). 

In the 1940s the San Bernardino County Museum Association began 

investigations at Crowder Canyon and identified several sites. Surveys and small 
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excavations were conducted; however, the information gained from these early 

investigations have yet to be analyzed and a report has never been written. The 

Crowder Canyon collections currently held at the San Bernardino County 

Museum, do not include material identified during the 1940s investigations 

(Basgall and True 1985; Kowta 1969). 

Later excavations, conducted in the 1960s, contracted by the Gas 

Company, unearthed Late Milling Stone Horizon artifacts. In 1969, Kowta drafted 

a report detailing the results of the Gas Company’s investigation and proposed 

that the high frequency of tools, such as scraper planes, suggest the exploitation 

of fibrous plant material which categorizes the Milling Stone Horizon Period.  

In the 1970s, the California Department of Transportation (Caltrans) 

entered the archaeological fray. During this decade Caltrans contracted 

archaeologists to survey the canyon, under the newly implemented Section 106 

regulations, in preparation for infrastructure improvements. The final report from 

this work consisted of what current archaeological technicians would call site 

updates or site monitoring. The previously recorded archaeological sites and 

their constituents were relocated and recorded in what amounts to a shortened 

memo of recommendation. The memo did, however, jump-start more interest in 

the area and facilitated further evaluation of the sites located in Crowder Canyon. 

This evaluation required extensive testing of the area which began in 1973. Over 

a three-year span, Crowder Canyon archaeological testing initiatives took place 

and produced the most extensive investigations the canyon would experience for 
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decades to come (Basgall and True 1985). The initial report generated from 

these intense investigations was fundamental and constituted the background 

information in forthcoming Caltrans reports.  

In 1975, Crowder Canyon Archaeological District was nominated for listing 

on the National Register of Historic Places (NRHP) by Alan Garfinkel. His 

argument for significance lay with the integrity of the associated sites with 

periods of occupation spanning across the Milling Stone Horizon. He further 

argued the significance of the district’s ability to produce future data that could 

provide information and understanding pertaining to the prehistory of the region. 

The Crowder Canyon District was listed on the National Register of Historic 

Places (NRHP) in 1976 (Eddy and Garfinkel 2009). 

In their 2009 paper presented at the Society for California Archaeology 

annual meeting, Eddy and Garfinkel clearly state that the investigations 

conducted throughout the sixties, seventies, and eighties in Crowder Canyon 

constitute an ushering in of further developments and research practices in 

Cultural Resource Management:  

These early Crowder canyon studies nurtured cultural 

resource management from an agency-sponsored volunteer 

practiced salvage exercise, to a full-fledged archaeo-

business with justly compensated professional and validly 

framed research that provides numerous jobs to 

archaeologists and historians who otherwise would not have 
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found an outlet to practice their skills [Eddy and Garfinkel 

2009:6-7]. 

It is important to note the importance of the archaeological investigations 

conducted within Crowder Canyon, especially those studies from the 1970s 

which produced significant prehistoric knowledge of the region and led to the 

District’s listing on the NRHP. This information, as argued by Peregrine (2004), 

allows cross-cultural analogies that regional archaeologists can use to 

differentiate or compare cultural traditions. As such, previous studies, as made 

clear by Kowta (1969), attempted to explain the difference in material culture 

found in sites associated with the Milling Stone Horizon. The work completed in 

The Crowder Canyon Archaeological District provides further understanding of 

the region, and we now have the ability to contrast and compare the 

characteristics of these sites to those of various temporal periods and various 

cultural traditions across the region and California more broadly.  
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CHAPTER THREE 

THERMAL FEATURE BACKGROUND 

 

The Development of Prehistoric Cooking in Upland Desert Regions of Inland 
Southern California 

Thermal features, enter the archeological record of the Transverse 

Mountain Range by approximately 7600 years B.P. (Milburn 2016). These 

thermal features found can be attributed to food processing done by Native 

Americans in the region. During the Archaic Period, (10,000-5000 B.P.), Native 

Americans procured and processed food from mountain regions, focusing mainly 

on acorn, juniper berries, roots/tubers, yucca, and agave. The utilization of 

thermal features saw a significant expansion by 2300 B.P (Thoms 2009). This 

increase can be observed throughout the archaeological record of the region as 

researchers identified and recorded an increase in frequency of occurrences 

(Black and Thoms 2014; Schneider et al.1996; Thoms 2008, 2009). This 

increase is postulated to have a direct correlation with increased populations, 

sedentary settlement patterns, and areas that experienced resource 

intensification (Thoms 2009).  

During the Late Archaic Period (6000-40000 B.P.) Native American 

subsistence strategies in the upland regions of the Santa Rosa Mountains shifted 

to primary plant foods, including yucca and piñon nuts. By 2000 B.P., earth 

ovens became obsolete, and stone grills were more prevalent in the 

archaeological record. These grills proved to be fuel efficient and became 
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prevalent across the upland desert landscape of the Cajon Pass and eastern 

portions of the Transverse Mountain Range (Milburn 2016).  

 

Models of Hot-Rock Cookery 

As stated previously, the stone-lined ovens appear in the archaeological 

record of the Transverse Ranges by at least 2000 B.P. (Milburn 1998, 2004). The 

introduction of this new cooking technology facilitated the replacement of earlier 

cooking technologies, such as earthen pits, in the eastern San Gabriel Mountains 

and in the Cajon Pass (Milburn 1998, 2006a). Stone-lined thermal features 

require less fuel and are more efficient in radiating higher temperatures for longer 

periods of time. Conservation of fuel appeared to be important during periods of 

resource intensification, and the efficiency of the newly adapted technology 

provided more time for food procurement and processing in locations that yield 

multiple features across the landscape (King 1993; King et al. 1974:17). The lack 

of thermal features in the archaeological record after about 400 B.P suggests a 

decrease in the utilization of these features just before European contact. It is 

possible that this decrease in stone grills is related to an introduction of even 

more efficient cooking technologies during the Protohistoric Period that required 

even less fuel. It is also possible that Native populations decreased during this 

period (Thoms 2003).  

In Thoms’ proposed model (Figure 3), “intensification of cook-stone 

technology is a manifestation of land-use intensification triggered by population 
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packing” (Thoms 2009:573). Here Thoms makes the argument that the presence 

of more features identified in the archaeological can be used to infer two 

correlations: an increase in population density and a shift in available resources. 

Figure 3 expresses Thoms’ 2009 model for the “expected temporal patterns in 

the use of different kinds of hot-rock cooking features,” taking into consideration 

the change in morphology of the thermal features over time with respect to labor 

costs.  

 

 
Figure 3. Expected Temporal Patterns, from Thoms (2009) 



20 

 

 

 According to Thoms’ model, the use of stones within cooking features 

increases as land use intensifies. As such, an increase in thermal features 

suggests an overall increase in the appearance of FAR across time. Following 

Thoms’ line of thinking, we should expect to observe an increase of more 

efficient features over time, and shifts in substance procurement and mobility 

patterns by the inhabitants of the associated period.  

The Great Basin experienced a shift in subsistence strategies just after the 

Pleistocene period. Populations during this period situated themselves in small 

groups dispersed across the landscape. This required a highly focused strategy 

that utilized high caloric food resources including yucca, as well as smaller 

animals hunted within the boundaries of their territories at lower elevations 

(Jones et al. 2003:6-8, 30-31). This early strategy utilized crude thermal features 

such as open-air firing pits, which are terrible in terms of archaeological 

preservation. This form of inefficient thermal feature was utilized through most of 

California prehistory, but this form of feature type decreases in frequency the 

archaeological record as more efficient thermal features became more prevalent 

(Thoms 2009).  

In the Mojave Desert, open firing pits make an appearance in the 

archaeological record at approximately 8000 B.P. as evident at CA-KER-3939 

(Gardner et al. 2006). Several hundred years later, about 7600 B.P., they appear 

in the San Gabriel Mountains at CA-LAN-3013 (Milburn 2002, 2004). As Thoms’ 



21 

 

model and the aforementioned examples prove, thermal feature technology can 

identify shifts in strategies pertaining to mobility and resource procurement from 

low elevations to higher elevations where food requires more intense heat and 

longer cooking times.  

The upland desert regions of The Transverse Ranges experienced a 

notable rise in the number of thermal features that include FAR at approximately 

2300 B.P. During this time, the focus of most upland desert inhabitants still relied 

on strategies that utilize a broad variety of resources. However, some 

populations of these regions still actively sought out the high caloric primary 

foods such as yucca (Earle et al. 1995:2.14-2.23). It is important to note once 

more that the majority of resources cooked in thermal features appear to have 

been sourced from yucca, an important regional staple that can be stored for 

over a year after cooking (Zigmond 1981).  

Distribution of Identified Cooking Features in Region of Study 

Milburn’s 2009 study area within the Transverse Mountain Range 

comprised 160 locations containing FAR within thermal features, and overlaps 

the study area that is the focus of this thesis. Milburn (2004, 2009) documented 

features over three different geographical locations including 16 thermal feature 

sites in the Cajon Pass (Figure 4). His distribution model of thermal features finds 

higher densities in upper mountain areas between 3,000 feet (ft) and 5,000 ft. 

Clusters of FAR were identified in several mountain areas, such as the Cajon 
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Pass, however, just one location was observed below 3,000 ft and only six 

thermal features containing FAR were documented above 5000 ft.  

 
Figure 4. Thermal Feature Distribution, from Milburn (2009) 

 

Various topographic locations within Milburn’s study have been shown to 

yield FAR containing thermal features. These locations include: “valley floors, 

terraces, saddles, benches, ridgelines,” (Milburn et al. 2009). The variables that 

remain similar across the board regarding thermal feature location relate to the 

leveling of surfaces and are the makeup of the soil and the ability to dig to the 

desired depth. The most important variable in thermal feature location is its 

proximity to valued food and fuel resources (King et al. 1974:16-17). Milburn 
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points out that yucca appears consistently within the vicinity of thermal features 

at most locations and elevations (Milburn 2004). 

General Thermal Feature Typology 

The terminology used to characterize and describe thermal features 

changes regionally, as well as between archaeological writings. The following list 

of terms was compiled by Milburn and spans over 30 decades of archaeological 

writing:  “earth oven,’ “pit oven,” “stone-lined oven,” “slab-lined oven,” “grill,” 

“hearth,” “central hearth,” “rock hearth,” “lined hearth,” “rock-lined pit,” “fire pit,” 

“roasting pit,” “roasting platform,” “roasting processing station,” “processing 

station,” “yucca oven,” “yucca roasting oven,” “piñon oven,” and “burned rock 

midden,” ( Milburn et al. 2009:3). Currently, terms such as hearth, thermal 

feature, and pit have been used locally. Berryman et al. (2001:13) acknowledge 

the difficulty when making regional thermal feature comparisons due to a 

plethora of terms utilized within literature and local research. Throughout 

Milburn’s writings, he personally refers to thermal features containing FAR as 

“earth ovens,” “grills,” and “burnt-rock middens,” (Milburn 2006a, 1998, 2004:105-

106). Although there are several ways to refer or describe thermal features, there 

has been no definite regional agreement on terms and characteristics applied to 

them that is based on archaeological evidence. Regional archaeologists also do 

not often use the term “hearth” when features are encountered, preferring 

“thermal feature”. The regional use of the term “thermal feature” encompasses a 

wider range of FAR feature categories including roasting pits, earth ovens, and 
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stone grills (Figures 5, 6, and 8), while “hearth” is a term that applies to a specific 

typological structure that has yet to receive satisfactory morphological 

description.  

Roasting Pits. A “roasting pit” or “pit” had been used by regional 

archaeologists as a designation for thermal features whether it be an open-air pit 

or large agave roasting pit as seen in the Santa Rosa Mountains (McCarthy 

2011). Typically, the foods are wrapped in local foliage, then placed in the pit and 

covered with a layer of soil (Figure 5). Post firing activities include removing the 

layer of soil to reclaim the foliage packaged food. These features do not include a 

platform cooking surface (Milburn 2009).  

 

 
Figure 5. Roasting Pit, from Milburn (2009) 
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Milburn claims that true roasting pits have not been identified within the 

Transverse Ranges. While they are not documented in the Transverse Ranges 

roasting pits are wide-spread throughout the Peninsular Mountain Range, as 

reported by early 1900’s accounts of agave roasting in the Santa Rosa 

Mountains (Sanders 1923:184-186). Figure 6 shows the locational relationship 

between the Transverse and Peninsular Mountain ranges. 

 

 
Figure 6. Location of Transverse and Peninsular Mountain Ranges with Regard 
to the Study Area 
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 Earth Ovens. An earth oven refers to a thermal feature that has a cooking 

platform, which is then covered with soil, providing indirect heat to the cooked 

item (Figure 7). The soil placed over the platforms helps to contain ambient heat 

(Milburn 2004). Milburn has identified and recorded these features in the 

Transverse Mountain Range (Milburn 1998, 2004, 2005a,2005b, 2006a).  

 

 
Figure 7. Earth Oven, From Milburn (2009) 

 

Other earth ovens have an ovoid shape and are unlined, like pits 

mentioned previously, however they have small dugouts removed from the side 

soil. These feature’s diameters vary from 1.5 meters (m) to 3 m, and their depth 

ranges from 30 to 100 centimeters (cm) (Milburn 2004:105).  
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Stone Grills. Grills are similar to pit ovens; however, a grill includes 

several similar-sized stones placed in a single layer inside of a smaller pit that 

measures anywhere between 0.5 m and 3.0 m in diameter and has a depth of 

approximately 40 cm or less (Figure 8). The platform cooking surfaces are not 

covered by soil as in the earth oven, do not contain a stone liner as some ovens 

do, and do not retain as much heat as the oven has been proven to do. The grill-

type thermal features studied by Milburn were characterized by extremely 

shallow pits with unlined firing zones (Milburn 2006a).  

 

 
Figure 8. Stone Grill, from Milburn (2009) 

 

The background presented provides regional information regarding 

thermal feature chronology, location, distribution, terminology, and general 

typology. All of which were important during my investigation of the study area 

(Figure 1). A detailed understanding of thermal features and their regional 
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importance facilitated the initial enquiries proposed in later chapters. The 

foundations of my replicative experimentation and theoretic framework utilize 

specific information pertaining to thermal feature information and typologies set 

forth by Milburn’s (1998, 2004, 2005a,2005b, 2006a) works, and Thoms’ (2009) 

temporal pattern model respectively. 
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CHAPTER FOUR 

THE PHYSICS OF STONES IN THERMAL FEATURES 

 

Fundamental Thermal Feature Mechanisms 

Essentially all thermal features utilized for cooking purposes have two 

major elements a cooking surface and a fire. If the functionality of these elements 

is examined closely it can be said that the surface delivers archaeological 

information regarding the function of the feature. The surface size can indicate 

what resources were prepared, and how long they were cooked. The third 

element of functionality is associated stones. The orientation of stone can 

provide information regarding the degree of use. The feature lining, or lack 

thereof, can provide information on the amount of heat needed which can also be 

used to infer resource type (Siegel and Howell 2001). Thermal features can be 

examined and characterized in various ways through these three elements. It is 

important to note that these are not the only three elements capable of delivering 

further information through examination. There are many facets to thermal 

features, and many ways to approach the study of the features. This may be the 

reason that only general typologies have been published, like those from Milburn 

(2009) and Thoms (2009), and why regional archaeologists have yet to agree on 

a specific morphologic orientation that categorizes these typologies.  

The second element mentioned briefly above is the fire itself. The fire can 

be broken down by its important components (Rehder 2000), the first of which is 
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intensity or temperature. This element of fire essentially determines its capacity 

to alter plants, rocks, soil, etc. Thermodynamic laws contain the second and third 

important components of fire. The second component is related to the second 

law of thermodynamics. This component takes into consideration that heat 

passes through areas of high temperature to low temperature (Atkins 2010). The 

third component is considered under the first law of thermodynamics and 

explains that heat cannot be contained. Essentially, there is nothing in this 

material world that does not conduct or radiate heat in some form. The moment 

thermodynamic processes start, heat escapes in all directions into the 

atmosphere at a constant rate (Rehder 2000; Atkins 2010).  

The first component of fire discussed above - temperature and intensity -

has an underlying component of its own - duration. These elements ascribed to 

the first component share a direct relationship with fuel type. The convection 

process perfectly describes the relationship of fires’ three components. As 

combustion (burning) continues, the intensity of the fire is dependent on the fuel 

and how it is contained. A small space would create more intense heat, while a 

larger contained space would radiate less heat into the atmosphere. With these 

considerations in mind, convection constitutes a continuous loop of 

thermodynamic energy. Fire burns in its containment, the intensity of the fire 

causes heat to move from the container to the cooler atmosphere. As heat 

leaves, the system’s oxygen enters the system, thus beginning the cycle again 

(Siegel and Howell 2001).  
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The containment of fire is a way to control or direct heat loss due to 

thermodynamic processes. While the loss of heat is inevitable, fire may be 

controlled by containment. Ataer (2006:207) states that the “most basic way to 

contain a fire is to build it in a pit.” The main idea behind prehistoric cooking is to 

essentially generate a large amount of heat quickly, while at the same time 

producing a way to slow the release of heat in a controlled manner. Stones with 

dense structures are ideal heat containers. They can store heat and release it 

slowly over long spans of time depending on their internal structural matrix. 

However, one caveat exists, the thermodynamic process produces stresses on 

the stones in the form of expanding and contracting which will eventually degrade 

the stone (Ataer 2006). We see evidence of this in cases of FCR. This 

degradation is the main signifier in my research. The degradation or thermal 

stress of stone due to thermodynamic processes should cause the material to 

become more porous as it experiences multiple firing episodes which changes its 

ability to absorb water. The ratio of empty spaces within the stone and the ability 

to absorb water constitutes the stone’s porosity which will be described later 

(Schalk and Meatte 1993).  

Certain variables determine the structural stability of a stone’s capacity to 

withstand thermal stresses. These variables include the stone’s size, shape, and 

rock type (Jackson 1998). Stones of various types - metamorphic, igneous and 

sedimentary - withstand thermodynamic processed differently; however, 

prehistoric inhabitants of Crowder Canyon were limited to nearby material. 
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Resource decisions, in this case stone choice, amount to selecting stones that 

were in the vicinity and small enough to carry. The type of stone was most likely 

decided upon by the utilization process. Through use and experience, it was 

possible for Native peoples to select stones that could withstand multiple firing 

episodes (Stark 2002). The ethnographic record attributes the use of pits to 

house the stones, providing a form of insulation that would retain heat (Ellis 

1997; Driver and Massy 1957). This type of thermal feature orientation is the 

basis of my research. Theoretically, this type of feature suggests intensification of 

food preparation and a shift in dietary resources (Thoms 2009). 

Cooking technologies changed over time throughout the archaeological 

record, as shown by Thoms (2009). The thermodynamic properties of stones are 

important for facilitating various prehistoric cooking technologies across every 

continent. Ethnographic documentation suggests the most prevalent form of 

thermal feature containing stones are pit-type features (Driver and Massy 

1957:227–230; Nelson 2010).  

 

Porosity as a Measurement of Firing 

The phrase and song lyrics “solid as a rock” may need an overhaul. As 

this research has shown, stones are not the solid mass one might expect. 

Stones, whether they be of metamorphic, igneous, or sedimentary, have matrices 

with tiny pores. These tiny pores trap oxygen (Science Budies 2012) and the 

various types of stones each have their own measurable capacity to store 
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oxygen and water. When the discussion turns to water absorption the discussion 

of porosity begins. The more pores a stone has the larger amount of water it can 

absorb. Stones with more pores or larger pores than others are said to be less 

dense than stones with fewer or smaller pores, thus porosity is directly related to 

the density of a given stone (Manger 1963:3-4). In the same vein, more pores are 

equivalent to higher porosity. Density is a property of stone; therefore, we can 

extrapolate the idea that porosity can also detail differences between stones.  

As mentioned in previous sections, a stone’s matrix determines its 

capacity to withstand thermal stresses. The matrix is comprised of very small 

particles that are tightly packed with intermittent air pockets throughout. Tightly 

packed particles have several correlates; first, the stone is less porous; second, 

the stone is denser; third, the stone can withstand more thermal stresses; and 

fourth, the stone can retain more heat (Manger 1963; Rehder 2000; Atkins 2010). 

This project constitutes an examination into the porosity of schist stones and how 

that porosity changes due to thermal stresses. The thermal stresses are 

presented in the form of the episodic firing of the stones within grills comparable 

to prehistoric examples constructed for the purposes of evaluating cultural 

material collected from the Crowder Canyon study area. The ability of the stone 

to store water is important in this examination as it is this ability that will be used 

to measure the changes in the stone’s structural matrices. A stone’s ability to 

store water can be determined by the ratio between its total volume and its pore 

volume (Yavuz et al. 2010; Manger 1963:45).  
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Theoretically, a stone’s porosity will increase as the stone degrades due to 

thermal pressures (Somerton 1992:6). In theory, this increased porosity should 

provide some data on a heated vs. a non-heated rock of the same type. That is 

the basis for the experimentation in this project, which required a baseline of 

absorption that was established for a control group of non-fired rock. Then 

subsequent absorption values for stones that had been fired 1, 3, 5, and 7 times 

were tested for absorption values. Because absorption is a function of porosity, 

this project directly calculates porosity with respect to a stone’s capacity to 

absorb water in pre-firing and various post-firing conditions.  

This information poses several lines of questions that can be answered 

through experimentation: Does a stone’s porosity change with firing? How does a 

stone’s porosity change with multiple firings? This line of questioning can be 

answered theoretically, but the replicative experiment provides support to the 

theoretical approaches when answering these questions. Should these questions 

be answered and supported by this research then future considerations can be 

made for further research when determining ecological factors associated with 

the reuse of thermal features.  
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CHAPTER FIVE 

THEORETICAL FRAMEWORK 

 

Human Behavioral Ecology and Optimal Foraging Theory  

Human behavioral ecology (HBE) can be utilized in this examination as 

the study of human behavioral choices and activities that facilitate processes of 

adaptation and change due to ecological pressures (West and Burton-Chellew 

2013). Ecological pressures, such as the changing availability of resources, 

increasing population sizes, and changes in climate conditions, can cause 

varying choices pertaining to mobility patterns, seasonal rounds, and resource 

procurement. When processes of behavioral change across spaces and time are 

examined within a cultural tradition or across cultural traditions, it is obvious that 

the nature of these systems is extremely fluid.  

In theory, if the process of behavioral change is considered fluid and ever-

changing due to ecological stresses, then it makes sense to extrapolate that idea 

to ecological stresses itself. By this I mean the entire system of behavioral 

changes and ecological stresses share a relationship with ebbs and flows. They 

both act on each other. For example, when a population increases due to 

plentiful resource availability, the ecological effect to the environment could be 

resource intensification that could later lead to depletion of resources and thus 

the population would have to utilize movement, a behavioral change, to acquire 

new resources. 
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  Optimal Foraging Theory (OFT) can demonstrate a fundamental 

understanding of behavioral ecology within my study region and the need to 

survive efficiently on available resources. Through my analysis of regional FAR 

and future research considerations outlined in this section, it should be possible 

to present a coherent and multifaceted inference on the phenomena of 

prehistoric site use and reuse. 

Inferences on the analytical capabilities of FAR were derived from data 

produced by this research and considered using an OFT framework with respect 

to settlement location and subsistence strategies. OFT directly involves foraging 

theories, and these theories are based on the decisions of foragers which are 

ultimately influenced by natural selection (Smith 1982). This means that foragers 

will select locations and patterns of mobility that will maximize population 

efficiency, in terms of foraging time, resource processing, and movement (Smith 

1983). The locational and seasonal availability of resources, in particular, yucca, 

can be correlated with decisions regarding patterns of mobility of groups across 

particular landscapes.  

The choice of processing yucca using manzanita fuel and the procurement 

of schist stones can also be considered using OFT. Under this theoretical 

approach, foraging decisions are made to maximize the net rate of return. The 

choice of resource, yucca, and fuel choice of manzanita have been identified in 

previous studies as the main plant resources utilized in the area (Milburn 1998). 

Previous excavations conducted in the research area included microbotanical 
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analysis that identified traces of these resources within subsurface thermal 

features (Milburn 2009). Additionally, ethnographic studies suggest that the 

prehistoric Serrano who occupied the region were organized into a logistical 

settlement pattern (Bean and Saudel 1972). The shift in diet when occupying 

upland desert regions essentially means a shift into more fibrous resources that 

need further processing which costs more in terms of calories and time to 

process. Thus, choices need to be made concerning efficiency in the processing 

of acquired fibrous resources.  

As OFT decisions are made, such as the choice of yucca as a food source 

and manufacturing material, more efficient means of processing must take place. 

In this case, the fibrous yucca needs longer processing times, so it makes sense 

that Thoms’ (2009) model, depicts changes in thermal feature morphology and 

efficiency over time (see Figure 3). This model supplies an overview of the 

changes in thermal features as time moves forward and as various resources 

requiring more cooking time are utilized. Thoms’ model also incorporates HBE 

and posits that behavioral changes can be monitored by looking at the changes 

and placement of thermal features across the landscape. For example, he notes 

that higher frequencies of features imply shifts to more plant-based processing 

and indicate population growth, possibly due to the availability of a chosen 

resource. These are all behavioral shifts that can be detected over time.  

The theoretical approaches I have outlined regarding OFT can provide 

data on foraging strategies, resource availability, seasonality, and resource 
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choice within a given area. The stone grills considered in this project are 

prominent features within archaeological sites in this region. A plethora of these 

features were reused through time (Milburn 1998), as the stones selected to build 

the prehistoric grills are typically chosen to withstand multiple uses. The reasons 

for the reuse of these sites can be explored using an HBE approach. Future 

considerations include behavioral choices across the landscape and over time, 

specifically regarding resources deemed significant for survival. Essentially, the 

availability of significant resources in each area drive the inhabitant’s decision-

making processes. FAR and its analytical properties can be used to inform on 

these processes, specifically as they pertain to site use, reuse, and mobility 

patterns. Considering data from absorption rates along with knowledge of 

resource availability and AMS dating of associated charcoal can provide 

information regarding site reuse and information regarding firing episodes. 

Theoretically, these data can be used to understand mobility patterns, site use, 

and subsistence strategies. 

Reoccurring Site Occupation 

In my area of interest, a choice was made by prehistoric peoples to utilize 

yucca and manzanita as resources during occupation. The availability of yucca 

and manzanita is directly reflected in the occupants foraging strategy according 

to previous research and ethnographic accounts for the area (Bean et al. 1972; 

Basgall and True 1985). The choice of local yucca in terms of food resource and 

choice of local manzanita in terms of fuel resource regarding processing time is 
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ideal when focusing on maximum net return. Examination within the broader 

scope of HBE regarding my research recognizes the change of thermal features 

throughout the archaeological timeline as an adaptive strategy, as shown in 

Figure 3.  
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CHAPTER SIX 

METHODS 

 

Stone porosity was determined by calculating the stone’s ability to store 

water. The derivation of the equations used is based on the bulk volume of the 

stones (dry weight of the stone) and the total porosity of the stone (ratio of bulk 

volume to total pore volume) (Yavuz et al. 2010; Manger 1963:45). The methods 

utilized to find bulk volume and total pore volume of both the experimental 

materials and cultural materials, as well as the calculations performed, are 

detailed in the calculations sections below.  

The comprehensive values for absorption and porosity from the controlled 

experiment were analyzed against the average porosity value of the cultural 

samples collected from archaeological thermal features located in Crowder 

Canyon. This comparison allowed the determination of the number of times the 

archaeological samples had been fired. This type of absorption data may be 

used in conjunction with AMS dating to help identify episodic reuse of site and 

possibly habitation intensity at individual sites at specific intervals in time. 

Previous research has shown that repeated firings of stones over time indicate 

multiple repeated site use and occupations (Eddy and Garfinkel 2009). 
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 Geological Referencing and Sourcing of Schist  

The replicative experiment required the recovery of several schist stones 

which match the cultural material in approximate size. The non-cultural schist 

was collected from a large wash located in the Crowder Canyon Archaeological 

District (Figure 9). The cultural material analyzed in this project is local to the 

Cajon pass and originates from the same formation as the non-cultural material 

that was used during the experimental firing phase. This section will detail the 

formation of schist and its prevalence throughout the study area.  

 

 
Figure 9. Non-Cultural Collection Area in Crowder Canyon 
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This specific formation of schist within the study area is considered by 

most geologists to have formed in the Mesozoic Era, which means in terms of 

geological time, the formation is approximately 66 to 252 million years old. The 

most notable natural feature within the Cajon Pass is the San Andreas Fault 

(Figure 10). It stands as the largest fault across California and causes the most 

seismic activity in Southern California. The fault orients itself through the “Pass” 

and separates the Pacific Plate and the North American Plate (Bandringa 2009). 

The Cajon Pass was originally created when the Pacific and North American 

Plate collided then separated millions of years ago, with stable water sources 

carving out a canyon through several millennia. 

 

 
Figure 10. Satellite Image: San Andreas Fault, from Back Road West (2011) 
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The San Andreas fault’s seismic activities have pushed lower plate rock 

and lower amphibolite to the surface. Both sections of stone include outcrops of 

schist-granitic stones. The thick green schist, locally called Blue Cut Schist, and 

metamorphic grade schist, locally called Pelona Schist, are the types of schist 

native to the area of The Cajon Pass. (Morton 2000).  

 

Collection of Non-Cultural Material 

The non-cultural material collected for this experimentation was Pelona 

Schist found in in Crowder Canyon where it erodes out of the canyon walls (see 

Figure 2). The cultural collection area depicted in Figure 1 is located just north of 

the lower plate of the Vincent Thrust, which produces Pelona Schist (Figure 11). 

Pelona Schist was identified within the prehistoric thermal feature excavated in 

Crowder Canyon. To replicate the cultural firing as closely as possible, Pelona 

Schist was desired for experimentation. It was located and collected from the 

non-cultural collection area depicted in Figure 9, and utilized for the experimental 

firings. A permit issued by the Lytle Creek Ranger Station permitted the collection 

of Pelona Schist stones from the non-cultural collection area. After the permit 

was issued, 40 stones of similar size and weight to the cultural material, were 

collected from the canyon walls within the collection area.  
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Figure 11. San Andreas Fault Zone, San Bernardino Mountains Segment, from 
United States Geological Survey (2004) 

 

Collection of Cultural Material 

The cultural material was collected in tandem with an excavation 

contracted by the U.S.D.A. Forest Service (USFS) and conducted by Applied 

Earthworks. The project constitutes one of the few projects conducted in the 

Crowder Canyon Archaeological District as stated previously in this paper. 

Initially, the project began as a form of mitigation that intended to salvage 

information from subsurface cultural deposits from an area of potential effect, 

outlined in a road widening project proposed by California Department of 

Transportation (Caltrans). As an intern with the USFS, I was given entry into site 
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CA-SBR-3773, and was granted permission by USFS and San Manuel Band of 

Mission Indians (SMBMI), to remove a portion of a stone grill from a thermal 

feature located within the site. While I was not involved in the excavation of the 

stone grill, the field technicians placed a portion of the cooking platform, 

consisting of 13 samples of FAR, aside in preparation for my investigation.  

SMBMI requested repatriation of the excavated material; however, they 

granted the collection of a portion of the material under the USFS permit issued 

to Applied Earthworks. The collected FAR comprised random portions of the 

cooking platform, from the thermal feature located five meters from the open road 

that was to be widened. This thermal feature is a single-course rock grilling 

platform with a general typology similar to the descriptions provided by Milburn’s 

previous typology regarding stone grills (Figures 8 and 12). The thermal feature 

excavation was underway at the time of collection, with analysis, complete 

typology including depth measurements, unavailable at the time of drafting and 

editing this thesis. As such, Milburn’s 2009 previous descriptions of thermal 

features associated with the study area was utilized analogously during this 

research.  
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Figure 12. Stone Grill from which Cultural Material was Collected 

 

Mathematical Formulations 

Cultural Porosity 

The post-firing porosity of the cultural material was calculated for each 

stone by first determining the pore volume of the stone. To find the poor volume 

of the stone, the difference in saturated weight and dry weight was recorded in 

grams. This follows the ratio explanation earlier stating that porosity is equal to 

the ratio of the stone’s empty space volume to its total volume. Because the ratio 

of grams to milliliters (ml) is 1:1, grams was easily converted to ml. Next, the total 

volume of the stone was calculated by measuring the amount of displaced fluid 

after submersion of the stone. It is important to note that during initial submersion 

the stone began to bubble, taking on characteristics of an alka seltzer tablet 

(Figure 13), as the spaces in between the stones structural matrix were filled with 
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air. As the stone is submerged into the fluid, the air or any other gases in those 

spaces are displaced by the fluid and begin to escape into the atmosphere which 

causes the “fizzing” activity. The fizzing activity subsided approximately an hour 

after submersion. At that point, I determined this to be the max resting porosity 

(Figure 14).  

 

 
Figure 13. Initial Submersion 

 

 
Figure 14. Max Resting Porosity 
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The final step in calculating total porosity of the object was to assign the values 

for pore volume and total volume into the porosity equation:  

 Porosity (Pt) =
𝑉𝑝

𝑉𝑡
𝑥 100 =

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
𝑥 100; (Gane et al. 2004) 

Pore Volume (Vp) =Saturated weight - Dry weight 

Total Volume (Vt) = Volume of Displaced Water. 

 The total was then multiplied by 100 to provide a porosity percentage after 

firing.  

This process was completed once per cultural stone. In total, I ended the 

calculations with 13 porosity percentage values, which were then combined as 

an average porosity value for collected cultural material. The following sample 

calculation was completed using the saturated weights, dry weights, and fluid 

displacement for the cultural material collected from the stone grill depicted in 

Figure 12.  

Example 1:   

1088.97g-1088.62g x (1𝑚𝐿/1𝑔) = 0.35mL= (Vp) Pore volume 

2855mL-2500mL= 355mL= (Vt) Total volume 

(0.35/355) x 100 = 0.0986% (Pt) Porosity 

The average porosity was calculated for the cultural material which 

includes all 13 cultural stones collected from the prehistoric feature. The Average 

(Pt) = 0.138%, will be utilized later in the Results chapter.  
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Once the porosity for the cultural stones was determined, I could then use 

this for a comparison for the non-cultural stones that I fired a varying number of 

times. To acquire comparative data for the non-cultural stones, I needed to 

determine the porosity of the stone material before it was fired.  

Non-cultural Porosity 

The porosity for the non-cultural material was determined eight times, 

which represents each of the four firing groups. Group 1 represents material fired 

once. Group 2 represents material fired three times. Group 3 represents material 

fired five times. Group 4 represents material fired seven times. The difference 

between the pre- and post-fire porosity of these stones was determined. From 

these data, it was possible to plot the porosity values against the number of 

firings in a graph. The graph was used to create a trend line which formulated an 

equation to best fit the 10 data points recorded during experimentation. The 

formula generated from the graph, presents the direct relationship between 

porosity and number of firings. Utilizing this relationship, it was possible to solve 

for the missing variable, in this case the number of firings. Essentially the 

replicative experimentation allowed me to create an equation in order to calculate 

the number of times the cultural stones were fired, based on their porosity 

values. 
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Replicating Prehistoric Cooking Features  

The regional replicative study found in McCarthy’s (2011) reconnaissance 

report, provide cooking times for certain plant parts as they pertain to thermal 

feature characteristics. This replicative information details the cooking times for 

specific portions of agave and yucca including: the heart, stalk, blossoms, fruit 

pods, and seeds, and offers examples of what kind of morphology of thermal 

features would be ideal when cooking each portion. These cooking times were 

used as a baseline for yucca cooking times in this project (Table 1). 

 

Table 1. Experimental Yucca schidigera Cooking Times per Plant Portion, from 
McCarthy (2017) 

Plant Part Type of Thermal Feature Used Approximate Cooking Time 

Heart Roasting Pit 30 to 40 Hours 

Young Stalk Hearth or Grill  60 Minutes 

Blossom Eaten fresh/parboiled in ceramic vessel Several Minutes 

Fruit Pod Baked in small, rock lined oven/roasted directly 
over coals 20 to 35 Minutes 

Seed Ground to a four and added to soups or stews 15 Minutes 

 

 

The thermal features outlined in McCarthy’s (2011) previous agave and 

yucca replicative study incorporated stones that were determined to be grills and 

roasting pits based on the size and orientation of FAR within the features; 

however, clear standardized categories and characteristics have yet to be 

determined in California (McCarthy 2011). At time of this investigation, Milburn’s 

2009 thermal feature typology stands as the most complete list of characteristics 

in the region of study and currently stands as the foundation of my research.  
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Grilling Platforms 

Grilling platforms are composed of several similar sized schisty-granitc 

stones (Figures 15 and 16) placed single-course in a shallow depression in the 

soil. The single-course placement of the stones, within the depression, creates a 

cooking platform. Yucca stalks were laid across the platform and the fuel placed 

on top. In some cases, fill, constituting smaller stones, were place on the fuel 

layer to retain more heat, otherwise the resource was prepared as described.  

 

 
Figure 15. Unfired Non-Cultural Material. 
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Figure 16. Cultural Material: Examples 1 and 2. 

 

Fuel 

The fuel was sourced from the same area as the cultural material. 

Millburn’s 2009 work previously explained that micro-botanical analysis 

completed for previously analyzed thermal features resulted in identification of 

manzanita as the local fuel source. I received approval from Caltrans to collect 

several hundred pounds of manzanita that had been cut as part of a 

development project, and was slated to be discarded. Once the manzanita was 

uprooted by Caltrans, I was escorted onto the property to remove the material 

that I needed. This material was then taken to the location for the firing 

experiment in Lucerne Valley. Approximately 60 lbs. of the manzanita were used 

in a preliminary and replicative experimentation, which will be explained in further 

detail below.  
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Experimental Firing of Non-Cultural Material  

As mentioned above, small wood fires typically reach temperatures of well 

over 500°F and the typical modern barbecue cooking temperatures can reach 

well over 700°F. Considering this variation preliminary experimentation was 

conducted to determine a controllable temperature range, which was identified at 

600-700°F. Because manzanita is an extremely efficient fuel source that burns 

longer and hotter than other woody material present in the study area, the wide 

temperature range reported allowed temperature maintenance during the 

replicative experimentations. The temperature was maintained using an infrared 

thermometer gun, along with the addition of fill where needed. Cooking times 

were determined following McCarthy’s (2011) experimentation. The FAR 

collected from the study area was determined by Milburn’s (2009) typology to be 

a stone grill (Figures 8 and 12), and based on McCarthy’s experimentation yucca 

stalk was cooked in stone grills for 60 minutes (Table 1). The presence of yucca 

identified in thermal features within the study area, presented by Milburn (2009), 

further supports this method of approach. A cooling period of 3 hours was 

determined by the average time the stones temperature changed from post firing 

temperature (after one hour of cooking time) to pre-fired-resting temperature.  

The experimental firing groups below were all fired between 600-700°F for 

60 minutes, and allowed to cool for three hours. These experimental parameters 

were based on the analogous information provided by Milburn (2009), McCarthy 
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(2011) and preliminary experimentation as described above. Groups Two 

through Four including cooling periods of three hours between firings. 

Firing Group One. This group of two stones was fired one time and the 

temperature and the porosity was calculated for each stone.  

Firing Group Two. This group of two stones was fired three times and the 

final porosity was calculated for each stone.  

Firing Group Three. This group of two stones was fired five times and the 

final porosity was calculated for each stone.  

Firing Group Four. This group of two stones was fired seven times and the 

final porosity was calculated for each stone. 

The final porosity values for each of these non-cultural stones were then 

used as a baseline for comparison with the porosity values of the cultural FAR to 

determine approximate porosity values that can indicate number of firing.  

 

Implementation of Design and Function 

I made several typology adjustments regarding the grill for this research. 

First, I needed to scale down the experiment. I was unable at the allotted time to 

procure all materials needed for large-scale experimentation and manzanita in 

bulk is extremely hard to come by because this particular species is protected in 

the study area. For this reason, it was prudent to initiate small scale 

experimentation by only utilizing 10 sample stones in total. The results represent 

a small facet of the investigation into the utility of FAR. These stones were fired 
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in a controlled environment (e.g. modern grill) with every other variable including 

the fuel, temperature, and cooking times consistent with known prehistoric 

examples. 
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CHAPTER SEVEN 

RESULTS 

 

The results shown below in Table 2 represent the various firing groups 

from zero to seven individual firing episodes and their corresponding 

experimental porosity percentages. These figures were placed into a histogram 

(Figure 17) to define a pattern. An equation was generated from the data points, 

which was then applied to the cultural material to formulate an approximate 

number of firings for the entire prehistoric stone grill. It is important to note that 

the following results are based on a sample of the cultural material and small-

scale experimental firings of the non-cultural material. While the data presented 

in this section is precise with regard to the small-scale experimental parameters, 

the limitations of the replicative experiments and results are discussed below in 

the Limitations and Further Considerations section, as well as the Discussion 

section.  

 

Table 2. Porosity Results per Number of Firings 
# of Firings Sample 1 Sample 2 

0 0.0527 0.0499 

1 0.0549 0.0668 

3 0.0622 0.0598 

5 0.0794 0.0802 

7 0.0889 0.0796 
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Figure 17 shows the linear relationship between the data points, from 

which an equation can be generated. If the known value of the cultural stone 

grilling platform average porosity is (Pt) = 0.138% as described in the 

Mathematical Formulations section of Chapter 5, then solving for X provides the 

missing variable of the generated equation. The data range between 0.057% - 

0.308% porosity. The standard deviation (σ)= 0.079 for the 13 cultural porosity 

values. All porosity values fall between ± 1σ (0.059% - 0.217%) accept one data 

point, 0.308, constituting a numerically distant value; however, this value falls 

within 3σ of the average, and is still considered within normal distribution range. 

The equation formulated from Figure 17 below provides the missing variable: X= 

(Number of firings): 

Where X= Number of firings, and Y = Porosity (%) 

y = 0.0039x + 0.0547 

0.138 = 0.0039x + 0.0547 

0.138 - 0.0547= 0.0039x  

0.138 − 0.0547

0.0039
= 

0.0039x

0.0039
  

X =
0.138 − 0.0547

0.0039
 

X = 21.26 firings; because there is no such thing as partial firing, this 

number will be rounded up to the nearest firing, i.e. 22. On average this collection 

of cultural material was fired approximately 22 times. This extrapolation of the 

data is only based on the limited experimentation conducted and represents the 

extrapolation of inferred information possible if the line of regression for further 
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firings, remains consistent with this research. However, is safe to state, 

categorically, that based on the information provided by the small-scale 

experimentation and equation from Figure 17, the cultural material was fired no 

less than seven times. This suggests that the stones from the grill were reused 

many times and can provide additional data with which to determine site use and 

reuse patterns. 

 

 
Figure 17. Porosity per Number of Firings 

 

Limitations and Further Considerations  

 I considered limitations throughout this experiment, in particular, the fact 

that my analysis as it stands can only determine the probable number of firings 
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within a habitation episode. Alone it does not determine site reuse over long 

chronologic periods of repeat occupation; this specific information can be inferred 

through carbon AMS dating and the identification of associated cultural material. 

If carbon samples are collected and tested in a unit with FAR and multiple date 

ranges are identified then we can infer that the thermal feature was utilized 

several times over a span of time (Milburn 2011). AMS dates, from charcoal 

collected in situ, that return with one associated date will confirm that the feature 

was used multiple times during one episodic occupation. While this method of 

FAR analysis is valuable when no other associated artifacts are identified and as 

an identifier of multiple firings per feature, it is important to note that 

chronological occupation over vast periods of time will need to be confirmed 

using multiple variables. 

My technique has answered, although not categorically nor equivocally, 

the enquiries posed in Chapter 3, which questions the change in porosity due to 

firing. Tentatively, the answer to this question is yes. Based on my 

experimentation, porosity does change with firing, and it continues to change as 

the stones experience multiple firings as shown in Table 2 and Figure 17 of the 

results section. It is important to note that my replicative experiments contain 

some shortcomings and further consideration, which are discussed below.  

Upper Firing Limit 

There were a limited number of firings conducted that do not account for 

an upper firing limit. The upper firing limit provides a concrete range of change in 
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porosity the stones experience over repeated firings. It is possible that the upper 

firing limit will provide insight into the maximum number of firings a stone can 

withstand, and what happens to a stone physically as it reaches its maximum 

firing limit. These physical changes may account for discarded FCR identified in 

the archaeological record. 

Ethnographic documentation details situations where overtly damaged 

stones were thrown out and replaced by new ones. These overtly damaged 

stones may be the origination of the FCR mentioned earlier. The FCR may 

represent an upper firing limit. There was no FCR visible during the excavation of 

the thermal feature at Crowder Canyon, so no FCR was obtained for this 

analysis. If FCR indicates an upper firing limit, this would help to create a 

gradient of porosity and physical characteristics that may aid in the determination 

of repeat use without laboratory analysis. By this I mean that it may be possible 

to determine the number of firings based on the presence of FCR, however; 

further investigation is warranted in this case. 

Small-scale Experimentation 
 

The presented data (Table 2, Figure 17) provides a linear function and it is 

possible that future firings can uncover an exponential relationship between 

porosity and the number of firings. Figure 17 depicts the results of the 

experimental firings. There is a clear linear relationship between porosity and the 

number of firings experienced by the stones. The small-scale replicative 

experimentation supports the theoretical information in Chapter 3. Porosity does 
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increase as the number of firings increase according to the limited 

experimentation; however, porosity may decrease as the stones are continuously 

fired beyond that of the small-scale replicative experiment conducted for this 

research.  

Considering Further Optimal Foraging Theories and Human Behavioral 

Ecological Approaches 

The facet of OFT that can be utilized in future investigations ascribes 

importance to foraging strategies regarding yucca and manzanita. Yucca 

constitutes a main plant food source for the Cahuilla (Barrows 1900; Bean and 

Saudel 1972; Bean et. al. 1991). Although yucca heart harvesting is seasonal, 

portions of the plant are available for consumption all year round (McCarthy 

2011). Manzanita has been found to be the primary source of fuel as it is readily 

available in the area and is extremely efficient, burning at higher temperatures 

and for longer periods of time than any other available fuel source (Milburn 

1998). These two important resources are very abundant on the ridges 

surrounding Crowder Canyon.  

Future research can consider multiple variables of adaptive choice and 

efficiency strategies and correlate these choices with site reuse using FAR 

analysis. By considering the choice of yucca and manzanita as beneficial to the 

fitness of the individual using OFT, it is possible to correlate this benefit to a 

settlement pattern that maximizes procurement of these two important resources. 

However, while individual fitness is essential, it may not always be the driving 
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factor in group decisions such as settlement and site reuse. Incorporating an 

HBE theoretical perspective allows insight into the decisions of occupying groups 

over a temporal span, thus facilitating a diverse line of questioning for a future 

project. 

Considering Carbon Staining of Stones and Soil 

While conducting the experimental firings it was observed that both the 

stones and surrounding soil were left with carbon staining. This staining may be 

useful in inferring the number of firings a feature has experienced when fully 

analyzed over a long span of time experimentally. Further investigation into this 

observation may provide a glimpse into the archaeological signature a thermal 

feature may leave behind. This firing signature may be used to distinguish 

between single-use and multi-use as well if the staining is the result of a non-

cultural fire. Although it may be argued that this type of carbon staining will not 

survive in the archaeological record, it is my experience that on the occasion 

when a thermal feature is identified within its original context, (i.e. backfilled after 

final use), there is a staining that occurs on both the stones and the surrounding 

soil, that is preserved and can be identified archaeologically, as seen in Figure 

18. 
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Figure 18.My 2015 Excavated Thermal Feature with Stained Soil 
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CHAPTER EIGHT 

DISCUSSION 

 

Thermal features, especially those utilized for cooking during prehistoric 

periods of occupation in Crowder Canyon, are encountered at almost every site 

in upland desert regions of southern California and many regions around the 

world. Yet these features have had little attention paid to them with limited 

archaeological analysis performed on them, when compared to other 

archaeological material and features. If they are encountered and recorded, the 

terminology used to categorize them is often vague and non-descriptive. This is 

likely because thermal features rarely have the preservation or associated 

material that provides data to assist in the determination of their function. Certain 

types of specialized analysis, such as microbotanical analysis, can sometimes 

provide data on the types of food processed or fuel used in the grill; however, 

beyond generalized assumptions, i.e. cooking and heating, it can be difficult to 

interpret a thermal feature beyond a vaguely assumed processing of food by fire 

(Milburn 1998). While this is an important base-line assumption that provides 

subsistence data, FAR may be able to add to our understanding of the episodic 

site use of prehistoric people.  

When an entire thermal feature is examined from a multifaceted 

perspective, including the analysis presented in this thesis, FAR’s utility becomes 

more apparent. This thesis has presented a method to gain information from the 
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oft discarded artifact. The typical analysis of the FAR from thermal features 

consists of weighing and possibly counting, and then discarding the stones. This 

process negates these important site constituents and does not consider that the 

FAR itself may contain a reservoir of valuable information. As discussed in my 

theoretical framework I consider a fundamental understanding of HBE and the 

need to survive efficiently. By conducting my replicative experiment, I have 

produced a way to test the analytical capabilities of FAR adding another 

analytical capability to explore and infer patterns of mobility and subsistence 

choices. As such, episodic habitation can be investigated based on the analysis 

of FAR. This information along with AMS dates, Thoms’ (2009) basic temporal 

model of cooking facilities that connect adaptive efficiency (HBE) and procuration 

strategies (OFT) can cultivate a more detailed understanding of strategic 

subsistence choices in the study area and similar areas in southern California.  

 

Fire-Affected Rock Analysis in Action 

Archaeological visibility is very important. If an artifact cannot be seen, it 

cannot be considered in the archaeological record. As an example, the feature 

shown in Figure 19 was identified in Baldy Mesa, an area adjacent to the 

Crowder canyon district. It was recorded as a probable thermal feature but it was 

never determined if the feature was prehistoric, modern, or even if it was indeed 

cultural. With my proposed analytical process, it would be possible to determine if 
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it was a naturally occurring feature due to a passing fire, a prehistoric feature 

utilized a multitude of times, or if it was a single use modern campsite.  

 

 
Figure 19. Baldy Mesa Thermal Feature 

 

A natural occurring feature that has been deposited due to a passing fire 

will have associated FAR that will be in a more dispersed pattern than the tighter 

intact deposits identified as archaeological thermal features. These dispersed 

natural occurring deposits can also be mistaken as middens at the surface. 

However, middens have depth, a distinct greasy slip about them, as well as 

associated archaeological debris such as faunal remains and other associated 

artifacts (Schneider et al. 1996; Thoms 2009; Yavuz et al. 2010).  

My method of analysis not only sheds light on the change in porosity 

values for stone fired x number of times, but I also observed what I might call an 
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archaeological imprint left at the completion of x number of firings, which I 

discussed briefly in the Limitations and Further Considerations section of this 

thesis.  

This analysis provided more information regarding the cultural material 

from Crowder Canyon. This comparative experiment was able to postulate that 

the feature excavated in Crowder Canyon (see Figure 12), was possibly fired 22 

times, if the linear relationship of the data remains consistent through further 

experimentation. Through my process of approximately one hour of firing and 

three hours of cooling, I concluded that even firing back to back 22 times would 

take over 88 hours, which in theory, is not practical to do within one episode of 

firing. Even if the excavated thermal feature which produced my cultural material 

was utilized to cook an average of three meals per day this episodic firing would 

consist of at least a seven-day occupation. If inferring the same theoretical line of 

thinking for seven firings, back to back firings would span over 28 hours. 

Considering three meals per day, seven firings suggest at least a two-day 

occupation. If mass firing was required for a large quantity of food, a large 

roasting pit would have been utilized for food preparation (McCarthy 2011). Due 

to the small size of the excavated feature and the fact that yucca stalks were 

identified as the utilized resource in adjacent features of the same type, we can 

assume that small-scale firing took place in this feature and that those who 

occupied the site did so for at least a week or more. While this extrapolation of 

the data offers sound interpretation, the presented method does not constitute a 
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categorically precise analysis as of yet. However, it does provide a launching pad 

for further investigation and supports the idea that FAR has analytic utility.  

As an archaeologist, I have encountered quite a few cultural thermal 

features, as well as modern campsites featuring burned rock rings. I have 

observed through personal observation and recordation in the Transverse 

Mountain region that modern utilization of burned rock such as modern 

campsites will be shallow in depth, and include various types of stones placed in 

a ring formation. Most culturally significant thermal features with a FAR element, 

however, are predominately the same type of rock, have a depth of 20 cm or 

more, and have stones that are comparable in size with smoother surfaces that 

reflect heat more efficiently (Black and Thoms 2014; Crawford 2011). Through 

my experimental firings, I have been able to provide an additional analytical 

technique to accompany the identification of cultural thermal features by visual 

characteristics.  

My analytical technique may be important when determining single or 

multiple uses and can determine firings over time with associated AMS dates of 

charcoal samples collected in situ. This process can be used with multiple forms 

of archaeological data such as knowledge of available resources, and 

seasonality of said resources. This process opens the door to comparative 

analysis with previously studied thermal features in the immediate and adjacent 

areas and facilitates identification of typological changes between features, 

providing insight into efficient adaptions over time or within small chronological 
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spans. All of these analyses can be considered within an HBE framework as the 

basis for resource and settlement patterning decisions. This line of thought would 

add more contexts to these types of features. 

Based on previous research in the Crowder Canyon Archaeological 

District, we know that the prehistoric inhabitants practiced a logistical settlement 

pattern with seasonal rounds (Bean and Saudel 1972; Milburn 1998). 

Excavations such as the one which yielded my cultural material add validity to 

these previous works. The previous research has uncovered the various 

resources utilized at these seasonal campsites through microbotanical traces 

found in situ, but my analytical process may answer more in-depth lines of 

questioning. Can FAR analysis be utilized as a mechanism for determining 

reuse? The probable answer is yes. While I may not have conclusively 

determined this as fact, I have shown that through my experimentation there is a 

practical use for my analysis. I have found that it is possible that the cultural 

material collected could have been fired at least 22 times, and that extrapolates 

to at least a week-long stay at that site. If further firings and an upper firing limit 

were completed on the comparative non-cultural material, it would be possible to 

determine the exact number of firings. If thermal feature associated charcoal 

AMS dates ever become available it would be possible to determine the time 

frame of use or a range of multiple uses. For instance, had more experimental 

firings taken place including an upper firing limit, and the results from further 

experimentation resulted in stones that were fired several hundred times on 
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average, we can assume with charcoal AMS date ranges, that it was likely this 

thermal feature was reused over several seasons within the date range. This 

theoretical line of thought can answer questions pertaining to seasonal mobility 

rounds and site reuse. Other thermal features can be analyzed the same way. At 

that point, we would have a sample of features with analyzed FAR completed. 

From this information we could extrapolate technological variations that would 

provide insight into a change in strategies or a change in dietary resources if the 

stones were fired for shorter periods of time, indicating a shorter processing time.  

Future questions that can be investigated through my analysis include: Is 

it possible to isolate a seasonal round based on the number of firings of a single 

grill? How many times might the thermal feature have been reused over time? 

How long was a single habitation episode? My results have shown that FAR 

analysis does indeed constitute a mechanism for further determination. By 

investigating the accompanying questions my analysis can better detail and 

prove patterns of occupation and mobility by the inhabitants of Crowder Canyon 

and elsewhere.  

 

Examination into the Utility of Fire-Affected Rock  

FAR has been thrown out and considered of limited analytical capacity 

over the last few decades. A paradigm shift into FAR interest started with Thoms’ 

(2009) replicative work into “hot-rock-cooking facilities” that noted they were 

utilized throughout western North America and identified archaeological 
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signatures for various types of features. While his research focused on the 

archaeological signature of these features it provides little more than quasi-

typological information of generic features. His work may help archaeologists 

identify a broad spectrum of thermal features which include FAR, however it does 

not deal with FAR directly. The feature is taken into consideration more so than 

its constituents. These stones were still no more than an attribute of a feature’s 

typology. My hope is that this experimental analytical process stands as one of 

the first steps in a paradigm shift into an archaeological future where FAR is 

more than a catch-all throw-a-way category of artifact. I have shown that it is 

possible for FAR to carry diagnostic utility. With further experimentation, it can be 

considered a diagnostic tool and given more consideration in future analytical 

studies. 
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CHAPTER NINE 

SIGNIFICANCE 

 

Theoretical Significance 

Throughout North American and on every continent thermal features have 

entered the archaeological record. While they have been given little more than 

vague typological inferences, I do consider them to be a specialized processing 

facility. They range in size from small nuclear family utilized grills designed to 

process small amounts of food resources to very large roasting pits designed to 

accommodate large communities during harvesting periods. The implications of 

such obviously significant variation within and between sites and across space 

and time merit far more scrutiny (Black and Thoms 2014). Very little has been 

done to associate FAR from thermal features with the archaeological record. 

Often, these items are excavated from a feature, measured, weighed, and 

discarded.  

This research, however, shows that FAR may have important analytical 

capabilities that can aid in understanding important cultural components such as 

mobility, site use, and seasonal patterns. We can also gain insight into episodic 

site use. We can calculate the number of firings for these stones, and with the 

use of other analytical means such as AMS dates, we can infer temporal factors 

to episodic firing.  
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Regional Significance 

As mentioned previously there are hundreds of recorded sites in this 

region of southern California that have some sort of FAR element to them. 

Hundreds of sites could yield thousands of individual features containing FAR. As 

White (1980) previously argued, the continual disregard of numerous artifacts 

and cultural material constitutes a cavalier way of documenting the 

archaeological record. My research offers a new tool for providing context, and 

temporal significance to the mobility information on the inhabitants of the region, 

and provides support or infer shifts in behaviors, such as changes in subsistence 

patterns. There is a variety of questions FAR can answer, even if identified with 

no associated artifact or material, or if found associated with viable carbon 

samples, diagnostic artifacts or other associated features. FAR is 

underappreciated and should be reconsidered as a diagnostic artifact. After all, it 

is one of the most abundant artifacts present in the Southern California region. 
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