
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

9-2017

NATURAL LANGUAGE PROCESSING BASED GENERATOR OF NATURAL LANGUAGE PROCESSING BASED GENERATOR OF

TESTING INSTRUMENTS TESTING INSTRUMENTS

Qianqian Wang

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Wang, Qianqian, "NATURAL LANGUAGE PROCESSING BASED GENERATOR OF TESTING INSTRUMENTS"
(2017). Electronic Theses, Projects, and Dissertations. 576.
https://scholarworks.lib.csusb.edu/etd/576

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/576?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

NATURAL LANGUAGE PROCESSING BASED GENERATOR

OF TESTING INSTRUMENTS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Qianqian Wang

September 2017

NATURAL LANGUAGE PROCESSING BASED GENERATOR

OF TESTING INSTRUMENTS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Qianqian Wang

September 2017

Approved by:

Dr. Kerstin Voigt, Advisor, Computer Science and Engineering

Dr. Tong Lai Yu, Committee Member

Dr. George M. Georgiou, Committee Member

© 2017 Qianqian Wang

iii

ABSTRACT

Natural Language Processing (NLP) is the field of study that focuses on

the interactions between human language and computers. By “natural language”

we mean a language that is used for everyday communication by humans.

Different from programming languages, natural languages are hard to be defined

with accurate rules. NLP is developing rapidly and it has been widely used in

different industries. Technologies based on NLP are becoming increasingly

widespread, for example, Siri or Alexa are intelligent personal assistants using

NLP build in an algorithm to communicate with people. “Natural Language

Processing Based Generator of Testing Instruments” is a stand-alone program

that generates “plausible” multiple-choice selections by analyzing word sense

disambiguation and calculating semantic similarity between two natural language

entities. The core is Word Sense Disambiguation (WSD), WSD is identifying

which sense of a word is used in a sentence when the word has multiple

meanings. WSD is considered as an AI-hard problem. The project presents

several algorithms to resolve WSD problem and compute semantic similarity,

along with experimental results demonstrating their effectiveness.

iv

ACKNOWLEDGEMENTS

I very gratefully acknowledge my advisor Dr. Kerstin Voigt for all her

guidance, for meeting with me every week, and patiently listening to me for

hours, for teaching me step by step how to program and test Python, for giving

me suggestions, for imparting so much valuable knowledge and for all her

encouragement and words of kindness. She is more than a professor for me, she

is more like a close friend.

I am also very grateful to Dr. Tong Lai Yu and Dr. George M. Georgiou

who agreed to serve on my master project committees. And Dr. Qingquan Sun

who took part in my proposal and final presentation. Thank you for your very

valuable time and suggestions

I would like to acknowledge the help of the Department of Computer

Science at California State University, San Bernardino. Specifically, I would like

to thank my graduate advisor Dr. Josephine Mendoza, who took the time from

her busy schedule to gave me a lot of help, and thank all my class instructors for

their help with infrastructure.

Finally, I would like to thank my parents and my fiancé, they gave me

support all the time, I love them.

v

TABLE OF CONTENTS

ABSTRACT ... iii	

ACKNOWLEDGEMENTS ... iv	

LIST OF TABLES ... vii	

LIST OF FIGURES .. viii	

CHAPTER ONE: STATEMENT OF PURPOSE .. 1	

CHAPTER TWO: INTRODUCTION	

Background .. 2	

Project Overview... 5	

CHAPTER THREE: NATURAL LANGUAGE TOOLKIT .. 6	

CHAPTER FOUR: TOKENIZATION	

Choose a Tokenizer ... 8	

CHAPTER FIVE: FILTER STOP WORDS .. 11	

CHAPTER SIX: PART-OF-SPEECH TAGGING ... 13	

CHAPTER SEVEN: WORD SENSE DISAMBIGUATION	

Background .. 15	

WordNet, Synset, Hypernym, and Hyponym .. 19	

WordNet ... 19	

Synset .. 19	

Hypernym and Hyponym ... 20	

Lesk Algorithm .. 21	

Methodology .. 22	

Example in Program .. 24	

vi

Limitation.. 27	

Resnik Algorithm .. 29	

Problem Statement .. 31	

Resnik Similarity .. 33	

Disambiguation Algorithm .. 37	

Examples ... 39	

JIGSAW Algorithm .. 43	

Methodology .. 43	

Gaussian Distribution ... 46	

Examples ... 47	

CHAPTER EIGHT: SEMANTIC SIMILARITY .. 51	

CHAPTER NINE: COMPARISON ... 58	

CHAPTER TEN: LIMITATION ... 62	

CHAPTER ELEVEN: CONCLUSION AND FUTURE WORK 63	

REFERENCES .. 65

vii

LIST OF TABLES

Table 1. Semantic Similarities from Our Program and “WS4J Demo” 16	

Table 2. Hypernyms Synsets of “Plant” ... 21	

Table 3. Average of Three Max Semantic Similarity Values for Sample1 27	

Table 4. Computation of Similarity for Several Pairs of Words 36	

Table 5. “State”:The Resnik Algorithm and The JIGSAW Algorithm 48	

Table 6. “Bank”: The Resnik Algorithm and The JIGSAW Algorithm 49	

Table 7. “Government”: The Resnik Algorithm and The JIGSAW Algorithm 50	

Table 8. Example1: New Version and Old Version. .. 58	

Table 9. Example2: New Version and Old Version. .. 60	

viii

LIST OF FIGURES

Figure 1. Different Types of Tokenizers ... 10	

Figure 2. Stop Words ... 12	

Figure 3. Part-of-Speech Tag Set .. 14	

Figure 4. Similarity Between “Nationalism0” and “Belief0” 17	

Figure 5. Similarity Between “Nationalism1” and “Belief0” 18	

Figure 6. Hypernyms of The Word “Car” .. 20	

Figure 7. Graphic Representation of Lesk Algorithm ... 22	

Figure 8. Using The Lesk Algorithm to Get Synset of “Book” 24	

Figure 9. Using The Lesk Algorithm to Get Synset of “Cotton” 28	

Figure 10. Using The Lesk Algorithm to Get Synset of “Gin” 29	

Figure 11. Fragment of The WordNet Hypernym Hierarchy. 30	

Figure 12. Fragment of The WordNet Taxonomy. .. 35	

Figure 13. Disambiguation Algorithm for Noun Groupings. 39	

Figure 14. The JIGSAW Algorithm for Noun Groupings. 45	

Figure 15. Gaussian Distribution. ... 47	

Figure 16. Average of Three Max Semantic Similarity for Sample2 55	

1

CHAPTER ONE

STATEMENT OF PURPOSE

The objective of this study is to improve an existing software QAW.py,

which is written by Dr. Voigt in Python programming language. This software is to

generate multiple-choice selections from a study guide with terms and definitions

or questions and answers. The old version of the program is functional, but

several aspects can be improved, the biggest issue is that the relevance between

multiple selections is not strong.

The input to the automated test generator is identical to the input to QAW

or Easy Notes, namely a study guide or set of flashcards with questions

associated with correct answers, or terms with matching definitions.

The automated system is to produce associations of questions with

plausible answer alternatives fully automatically, without the intervention or help

of a human judge. The core of accomplishing this goal is computer automated

natural language processing, and in particular, the core challenge of natural

language processing, automated word sense disambiguation.

2

CHAPTER TWO

INTRODUCTION

Background

Dr. Voigt developed a Python program, QAW.py, which takes as its input a

text file containing study guide of the sort that US high school students are

routinely asked to produced prior to their exams. Such study guides consist of

long lists of either terms and their definitions, or questions and answers on some

subjects’ matter. Given study guide, the QAW software produces a

comprehensive multiple choice test which can be taken online or in batch and

paper-based mode. The original QAW program, the starting point of this project,

is to be understood as a rapidly programmed, simple but functional prototype. As

such it has multiple shortcomings, and this project aims at ensuring that the

automatically generated test is appropriately challenging to the student who

studies with the test.

The original program generates choices randomly, which allows test

takers easy to use exclusion method to rule out the wrong answers and get the

correct answer, rather than understanding what they learned. Several quiz

generators online have the same function. For example, "Easy Notecards" [1] is

a website, which helps users in reading novels by generating multiple-choice

quizzes from notecards, but this website has the same problem as our old

version, it generates choices randomly, alternative selections are not closely

related resulting in a no challenging assessment. We focused on improving the

3

difficulty of questions by picking choices with smaller semantic distances, instead

of getting them randomly.

Here is an example which is generated by QAW.py program. In this

example, the question is obviously a name of a person, only answer 3 shows a

definition of a person, the other three random definitions have nothing to do with

the correct answer. In this situation, the test taker, even without having any

knowledge of the subject of the test, will be able to eliminate items that are very

obviously not plausible answers:

(1 of 5) Marie Currie/radioactivity:

[1] This was a style of realistic art that was being developed in the Soviet

Union and it was becoming a dominant style in other various socialist

countries. This was characterized by the glorified depiction of communist

values, such as the emancipation of the proletariat in a realistic manner.

[2] This is a group of entities that share has been motivated by at least

one common problem. They were working together so that they could

achieve a common object. These are different from cooperatives and they

are not really focused when it comes to economic benefit.

[3] She was a chemist who conducted the pioneering research on

radioactivity. She was the first person who won a Nobel Prize. She even

won twice in a row. Marie became a professor at the University of Paris.

[4] This was the Nazi propaganda term for annexing of Austria into Nazi

Germany in Mach 1938. It was also known as the Anschluss Osterreichs.

4

This stands in contrast to the Anschluss movement when the Republic of

German-Austria attempted the union with Germany.

Enter number: 3

... CORRECT!!!

SHE WAS A CHEMIST WHO CONDUCTED THE PIONEERING

RESEARCH ON RADIOACTIVITY. SHE WAS THE FIRST PERSON

WHO WON A NOBEL PRIZE. SHE EVEN WON TWICE IN A ROW.

MARIE BECAME A PROFESSOR AT THE UNIVERSITY OF PARIS.

Natural Language Processing is used everywhere [2]. Natural Language

Toolkit is a good tool would be used in Natural Language Processing. Since the

original program was written in Python Language, this project would be

generated in the same programming language. In this project, we used natural

language processing to analyze the semantic distances between choices,

thereby picking the other choices that are more plausible.

In the context of this project, “plausible choices” for the answer to a

question are text selections (extracted verbatim from the study guide) whose

meanings are or at least seem closely related to the posted question (or term to

be defined). The test taker should not be able to easily rule out any of the

potential answers based on their obvious lack of relatedness to the question.

Instead, the test taker should have to apply true knowledge of the subject matter

in order to distinguish the correct answer from a set of other seemly similar but

incorrect ones.

5

Project Overview

Given: term and correct definition, choose “plausible” alternative

definitions as follows:

1. Extract keywords:

• Tokenize the text of term and correct definition.

• Remove stop words.

• Tag and extract nouns using filter_insignificant () function, then

untag all words.

• Change plural nouns to singular nouns.

2. Get correct senses of words:

• Use the JIGSAW algorithm to extract correct synset for each word.

3. For all definitions of other terms in the study guide, we do the following:

• Determine semantic similarity between keywords of a term and the

keywords in all definitions.

4. Select alternative definitions, use the 3 to 4 with largest semantic similarity

to keywords of correct definition.

6

CHAPTER THREE

NATURAL LANGUAGE TOOLKIT

Natural Language Toolkit, which is always be called as NLTK is a leading

platform for building Python programs to work with human language data [3]. In

our program, NLTK is the most significant package. It was developed by Steven

Bird and Edward Loper in the Department of Computer and Information Science

at the University of Pennsylvania [3]. It provides easy-to-use interfaces to several

corpora and lexical resources [4]. It includes different libraries such as the one

we used to resolve semantic similarity and word sense disambiguation problem,

which is called Wordnet, and along with libraries for tokenization, stemming,

tagging, and so on.

These are the packages from NLTK that we used in our project:

1. From nltk.tokenize import RegexpTokenizer: This package provides

tokenizers to tokenize sentences into lists of words.

2. From nltk.corpus import stopwords: The nltk.corpus package defines a

collection of corpus reader classes, which can be used to access the

contents of a diverse set of corpora [5]. We used this package to remove

stopwords in lists.

3. From nltk.tag import untag: Interface for tagging each token in a sentence

with supplementary information, such as its part of speech [4].

7

4. From nltk.wsd import lesk: This package provides the Lesk algorithm to

solve word sense disambiguation problem.

5. From nltk.corpus import wordnet: WordNet is the most frequently used

package in our program. We imported several semantic similarity methods

in our program from this package.

6. From nltk.stem import WordNetLemmatizer: Lemmatize using WordNet’s

built-in morphy function [4]. We used this method to change plural nouns

to singular nouns.

7. From nltk.corpus import wordnet_ic: This package loads an information

content file from the wordnet_ic corpus. For example, we used Brown

Corpus as follows, brown_ic = wordnet_ic.ic('ic-brown.dat').

8

CHAPTER FOUR

TOKENIZATION

In this project, a study guide consists of terms and definitions, all terms

and definitions appear in form of sentences. After using tokenizer, we received a

list of words for each sentence. This process was called tokenization, and a list of

words would be treated as tokens of a sentence.

Choose a Tokenizer

NLTK provides different types of tokenizers, in this project, we need to

choose a tokenizer to split sentences into lists of individual words. Five types of

tokenizers and their basic functions are shown as follows:

• Word_tokenize provides very basic word tokenization, it is an

instance of the TreebankWordTokenizer class. It separates words

using spaces and punctuation, and it keeps the punctuation.

• PunktWordTokenizer splits words on punctuation but keeps the

punctuation with the word instead of creating separate tokens.

• WordPunctTokenizer is similar to PunktWordTokenizer, the only

difference is that it splits all punctuation into separate tokens [2].

• RegexpTokenizer uses regular expressions to complete control

over how to tokenize text. It can be used based on how we

construct the regular expression.

9

• Whitespace Tokenizer uses RegexpTokenizer to tokenize on

whitespace.

Here is an example to show the differences of five tokenizers. This is a

sentence, “I’m a student.”, and after tokenized, the results are shown as follows:

• word_tokenize: [' I ', " 'm ", ' a ', ' student ']

• PunktWordTokenizer: [' I ', " 'm ", ' a ', ' student. ']

• WordPunctTokenizer: [' I ', " ' ", ' m ', ' a ', ' student ', ‘. ']

• RegexpTokenizer: [" I'm ", ' a ', ' student ']

• Whitespace Tokenizer: [" I'm ", ' a ', ' student.']

10

Figure 1. Different Types of Tokenizers

To choose an appropriate tokenizer, we need to decide how we want to

tokenize a piece of text. In this project, what we need are lists of keywords, we

don't need to keep punctuation, and we need to keep the essential words that

can present the basic meaning of sentences. We chose RegexpTokenizer, which

can match our exception. This tokenizer matches alphanumeric tokens plus

single quotes so that we didn't split up contractions.

11

CHAPTER FIVE

FILTER STOP WORDS

After tokenizing all sentences, we got lists of words, the core objective we

would like to do at last step was to calculate semantic similarity between each

word in different terms and definitions, too many unrelated words in one list

would influence the final result, so we only wanted to keep the keywords, and

these keywords have special effects on the meaning of sentences. In this project,

we only kept nouns for analyzing.

To get the keywords, we should remove stop words. Stop words are the

“extremely common words” [6]. These words usually do not contain important

information, even these words are removed, the main meaning will not be

influenced. Such as “the” and “a”, they make no contribution to the meaning of a

sentence.

In NLTK stopwords corpus, words () method provide lists of stop words for

14 different languages, in this project only English list were used. It is worth

noting that before removing stop words, all words in lists need to be converted to

lowercase, the reason is that uppercase words will not be considered as stop

words, even they are in stop words list with lowercase form.

12

Figure 2. Stop Words

13

CHAPTER SIX

PART-OF-SPEECH TAGGING

The process of classifying words into their parts of speech and labeling

them accordingly is known as part-of-speech tagging, or POS-tagging [6]. NLTK

provides the method to attach a tag to each word. We used the tag () method,

the input should be a list of words, and after using this method, program would

return a list of tagged words as output. Figure2 shows tags we used in our

project.

We used these tags to extract nouns only, the nouns are tagged as “NN”,

“NNS”, “NNP”, or “NNPS.” After all nouns were extracted, we used the

nltt.tag.untag() function to untag all sentences.

14

Figure 3. Part-of-Speech Tag Set

15

CHAPTER SEVEN

WORD SENSE DISAMBIGUATION

Background

After we got all keywords successfully, we used WordNet to get the

synsets of each word in a list. The WordNet groups English words into sets of

synonyms, these synonyms are called synsets. And then we chose one synset

randomly. And then we used Wu-Palmer similarity model to calculate the

semantic similarities between terms and definitions. And we also tested the

results by using an online tool named “WS4J Demo” semantic similarity

calculator [7] and analyzing the definitions of each word, we found that the result

we got was far lower than we expected. Here is an example to show the

semantic similarity we got and the semantic similarity “WS4J Demo” calculator

got:

Term: ‘Nationalism’

Definition: ‘The belief that the interests of the nation as a whole are more

important than regional interests or the interests of other countries.’

Keywords of term: ['nationalism']

Keywords of definition: ['belief', 'interests', 'nation', 'whole', 'countries']

16

Table 1. Semantic Similarities from Our Program and “WS4J Demo”
 From our

Program
From “WS4J
Demo” Calculator

Defs/terms ‘nationalism’ ‘nationalism’

‘belief’ 0.3077 0.8751

‘interests’ 0.3750 0.6667

‘nation’ 0.2667 0.4286

‘whole’ 0.2667 0.6667

‘countries’ 0.2667 0.4286

From table1, we can see that the result from our program is much lower

than “WS4J Demo” Calculator. We analyzed semantic similarity between one

word from term ‘nationalism’ and one word from its correct definition ‘belief’ to

figure out the reason.

Synsets and definitions of ‘nationalism’:

0) Synset ('patriotism.n.01'), 'love of country and willingness to

sacrifice for it'

1) Synset ('nationalism.n.02'), 'the doctrine that your national culture

and interests are superior to any other'

2) Synset ('nationalism.n.03'), 'the aspiration for national

independence felt by people under foreign domination'

3) Synset ('nationalism.n.04'), 'the doctrine that nations should act

independently (rather than collectively) to attain their goals'

17

Synsets and definitions of ‘belief’:

0) Synset ('belief.n.01'), 'any cognitive content held as true'

1) Synset ('impression.n.01'), 'a vague idea in which some confidence

is placed'

Semantic similarity between nationalism with synset 0 and belief with synset 1 is

0.3077:

Figure 4. Similarity Between “Nationalism0” and “Belief0”

Semantic similarity between nationalism with Synset 0 and belief with Synset 1 is

0.8571:

18

Figure 5. Similarity Between “Nationalism1” and “Belief0”

After analyzing all possibilities, we found that each word had several

different senses, which sense would be used was due to the other words’ senses

in the same sentence. Humans have a natural ability to judge whether a word is

similar to another word. For instance, we all know that orange is a kind of fruit,

and orange is similar to fruit, not similar to computer. But this is hard for machine

language. Before analyzing word senses, in calculating the similarity between

two words, the senses were chosen randomly, that's why the result was too

different from we expected.

Accompanied by the generation of this problem, Word Sense

Disambiguation (WSD) problem became the core part of this project. “WSD is

one of the most important NLP tasks” [9]. To resolve WSD problem, the input

would be a given sentence or a context. We should use an algorithm to find the

most appropriate sense to a word in the particular sentence or context. And

these senses could be used from WordNet package, they appear as synsets. So

before calculating the semantic similarity, we need to use a WSD method to get

correct senses.

19

WordNet, Synset, Hypernym, and Hyponym

WordNet

WordNet is an NLTK corpus reader. It is a lexical database developed at

Princeton University with the attempt to model the lexical knowledge of a native

speaker of English, using synsets, helps to find conceptual relationships between

words such as hypernyms, hyponyms, synonyms, antonyms and so on. WordNet

groups nouns, verbs, adjectives and adverbs into sets of synsets, each

expressing a distinct concept. WordNet package contains several semantic

similarity methods functions. We could use one of them to compute semantic

similarity value.

WordNet has 117000 different synsets, each synset represents a

definition of a word, and each synset would be unique in the WordNet. And “a

synset contains one or more short sentences illustrating the use of the synset

members” [10]. A polysemous word has different synsets to represent distinct

meanings.

Synset

NLTK comes with a list of synset instances to look up words in WordNet.

To look up any word in WordNet, we should use wordnet. synsets(‘word’) to get a

list of Synsets.

Synset is a set of synonyms that share a common meaning. Each synset

contains one or more lemmas, which represent a specific sense of a specific

word [11]. Many words have only one synset, some have several.

20

Hypernym and Hyponym

One sense is a hyponym of another if the first sense is more specific,

denoting a subclass of the other, conversely is a hypernym. For example, a car is

a hyponym of a vehicle, a vehicle is a hypernym of a car, banana is a hyponym

of fruit, then fruit is a hypernym of banana. Figure 6 shows a WordNet function to

get the hypernyms of word car.

Figure 6. Hypernyms of The Word “Car”

21

If a word has different senses, then each sense will have different

hypernyms. Table2 [12] shows the hypernyms for different senses of the word

plant.

Table 2. Hypernyms Synsets of “Plant”

Lesk Algorithm

The Lesk algorithm is one of the most popular methods to solve WSD

problem, it was introduced by Michael E. Lesk in 1986. The Lesk algorithm uses

dictionary definitions to disambiguate a polysemous word in a sentence context.

In order to extract definitions, Lesk adopted the Oxford Advanced Learner’s

dictionary. The major objective of Lesk algorithm is to count the number of words

plant#1 plant#2 plant#3 plant#4
building complex
#1

life form#1 contrivance#3 actor#1

structure #1 entity#1 scheme#1 performance#1

artifact#1 plan of action#1 entertainer#1

object#1 plan#1 person#1

entity#1 idea#1 life form#1

 content#5 entity#1

 congnition#1

 psychological
feature#1

22

that are shared between two definitions [8] [13]. The more same words two

definitions shared, the more similar the senses are.

Methodology

To get the correct sense of a target word, the Lesk algorithm allows the

definition of the target word to compare with definitions of other words. A word is

assigned to the sense whose definition shares the largest number of words in

common with the definitions of the other words. Figure 7 [8] shows the graphic

representation of the Lesk Algorithm.

Figure 7. Graphic Representation of Lesk Algorithm

23

For example: In performing disambiguation for the word "book" in the

sentence "I want to book a hotel with cheaper price in Las Vegas." The word

"book" has 15 different synsets and definitions:

1) (Synset('book.n.01'), a written work or composition that has been

published (printed on pages bound together)'

2) (Synset('book.n.02'), physical objects consisting of a number of pages

bound together'

3) (Synset('record.n.05'), a compilation of the known facts regarding

something or someone'

4) (Synset('script.n.01'), a written version of a play or other dramatic

composition; used in preparing for a performance'

5) (Synset('ledger.n.01'), a record in which commercial accounts are

recorded'

6) (Synset('book.n.06'), collection of playing cards satisfying the rules of a

card game'

7) (Synset('book.n.07'), a collection of rules or prescribed standards on

the basis of which decisions are made'

8) (Synset('koran.n.01'), the sacred writings of Islam revealed by God to

the prophet Muhammad during his life at Mecca and Medina'

9) (Synset('bible.n.01'), the sacred writings of the Christian religions'

10) (Synset('book.n.10'), a major division of a long written composition'

24

11) Synset('book.n.11'), a number of sheets (ticket or stamps etc.) bound

together on one edge'

12) Synset('book.v.01'), engage for a performance'

13) Synset('reserve.v.04'), arrange for and reserve (something for

someone else) in advance'

14) Synset('book.v.03'), record a charge in a police register'

15) Synset('book.v.04'), unregister in a hotel booker'

Figure 8. Using The Lesk Algorithm to Get Synset of “Book”

The Lesk algorithm compared all senses of "book" with senses of other

words in this sentence, to see which sense has the largest number of the

common word are shared. So Synset 15 is declared to be the most appropriate

sense when the word "book" appears in this sentence.

Example in Program

We applied the Lesk algorithm to our program. After getting keywords, we

used the Lesk algorithm to get correct synsets of all words. Then calculated

25

semantic similarity between synsets of words in terms and synsets of words in

definitions. We used their maximum, minimum, average value, the average of

first three largest values and median to pick a typical value to represent a list of

semantic similarity values. For example, there is a text file which is called

sample1 with five terms and definitions as listed:

Q1: Cotton gin

A1: A machine that cleaned raw cotton. It automatically separated the

cotton seeds from the fluffy fibers.

Q2: Second National Bank

A2: This was the second national bank, established by Congress in 1816.

It was overseen by the federal government, and it was to oversee and

regulate the smaller state banks.

Q3: Nullification

A3: This was the theory that individual states had the right to reject federal

laws, for example, laws that required the paying of tariffs on foreign goods.

Southern states declared such laws null and void and threatened to leave

the union if they were forced to pay such tariffs.

Q4: Lowell System

A4: A system used by the textile industry in Lowell, Massachusetts. Using

farm girls as workers, they were the first ones to have an innovative way

to weave cloth from a thread.

Q5: Sectionalism

26

A5: This is the belief that one own section, or region, of the country, is

 more important than the whole.

We used the Lesk algorithm to get lists of synsets for terms and

definitions.

For example, this is a list of synsets for A1:

[Synset('machine.n.05'), Synset('scavenge.v.04'), Synset('raw.s.02'),

Synset('cotton.n.01'), Synset('disjointed.s.03'), Synset('cotton.n.01'),

Synset('seed.v.08'), Synset('downy.s.01'), Synset('character.n.03')].

Then we computed the semantic distance using these synsets. For

example, this is the list of semantic similarity values between Q1 and A1:

[0.3333333333333333, 0.3333333333333333, 0.3333333333333333,

0.2857142857142857, 0.2857142857142857, 0.2222222222222222,

0.2222222222222222, 0.2, 0.18181818181818182,

0.14285714285714285, 0.14285714285714285, 0.14285714285714285,

0.13333333333333333].

And in this example, we picked the first three greatest values out from the

list and calculated their average numbers. Table3 shows the result of first three

greatest semantic similarity values between each term and definition in sample1.

27

Table 3. Average of Three Max Semantic Similarity Values for Sample1
Defs
\Terms

Q1 Q2 Q3 Q4 Q5

A1 0.3333 0.3333 0.2543 0.2353 0.2719

A2 0.4421 0.7917 0.2103 0.4339 0.2593

A3 0.3333 0.5556 0.3497 0.2081 0.4955

A4 0.5545 0.6565 0.2013 0.7143 0.2143

A5 0.3651 0.3556 0.2679 0.3824 0.3316

Limitation

Using the Lesk algorithm to pick synsets is much better than getting

synsets randomly. To make sure all words get accurate senses, we analyzed all

synsets we got from the Lesk algorithm. But the result showed that only lower

than 50% of words got their correct senses in sentences.

For example: in Q1: [‘cotton’,’ gin’], word cotton has five senses, and word

gin has six senses, the senses we expected to get was synset1 of word cotton

and synset3 of word gin. But after using the Lesk algorithm, especially for the

word gin, the definition of its synset3 had most numbers of the common word

with word cotton, but the Lesk algorithm picked synset1, which made no sense in

this "cotton gin" phrasal.

Cotton:

1) Synset('cotton.n.01'), soft silky fibers from cotton plants in their raw

state'

2) Synset('cotton.n.02'), fabric woven from cotton fibers'

28

3) Synset('cotton.n.03'), erect bushy mallow plant or small tree bearing

bolls containing seeds with many long hairy fibers'

4) Synset('cotton.n.04'), thread made of cotton fibers'

5) Synset('cotton.v.01'), take a liking to'

Figure 9. Using The Lesk Algorithm to Get Synset of “Cotton”

Gin:

1) Synset('gin.n.01'), strong liquor flavored with juniper berries'

2) Synset('snare.n.05'), a trap for birds or small mammals; often has a

slip noose'

3) Synset('cotton_gin.n.01'), a machine that separates the seeds from

raw cotton fibers'

4) Synset('gin.n.04'), a form of rummy in which a player can go out if the

cards remaining in their hand total less than 10 points'

5) Synset('gin.v.01'), separate the seeds from (cotton) with a cotton gin'

6) Synset('gin.v.02'), trap with a snare'

29

Figure 10. Using The Lesk Algorithm to Get Synset of “Gin”

The major limitation of the Lesk algorithm is the low accuracy during

process and the type of a sample is limited by this algorithm. Since our input

would be randomly chosen by test taker, we could not make sure each word in

the test file would share same words in their definitions, even they appeared in

one sentence to represent a complete meaning. And a small sample, and a big

number of fine senses in WordNet, many of which are not that distinguishable

from each other. Only when the words in one context are most likely related to

each other, the Lesk algorithm could perform a better disambiguation.

Resnik Algorithm

The Resnik algorithm is also one of the most useful methods to solve

WSD problem. It was designed by Philip Resnik in 1995. Different from the Lesk

algorithm, this algorithm would not compare the same words between two

senses, it would pick the correct sense by analyzing the most informative

subsumer of two senses, if the two senses contain a more informative subsumer,

then these two senses would be more related to each other. “Their most

30

informative subsumer provides information about which sense of each word is

the relevant one” [19].

The most informative subsumer also called most specific subsumer or

least common subsumer is the most specific common ancestor of two concepts

found in a given ontology. It represents the commonality of the pair of concepts.

In a WordNet hypernym hierarchy, the most informative subsumer is the deepest

node in each path that covers all children. For example, in Figure 11,

"automobile" is the ancestor of "car", while "vehicle" is an ancestor of "car".

"Vehicle" is also an ancestor of "boat". In this case, the most informative

subsumer of both the "boat" and the "car" is "vehicle", since it's the most specific

concept which is an ancestor of both the "boat" and the "car".

Figure 11. Fragment of The WordNet Hypernym Hierarchy.

Objective

Vehicle

Boat Automobile

Car

31

This algorithm does not have a direct function can be used from NLTK

libraries as the Lesk algorithm. So we need to design a function ourselves based

on its algorithm.

Problem Statement

The problem is stated as follows. Given a set of words W = {w1, w2, …,

wn}, with each word wi having an associated set Si = {si1, si2, …, sim} of possible

senses. Assume that there exists some set W’	⊆∪	Si representing the set of word

senses that an ideal human judge would conclude belong to the group of senses

corresponding to the word grouping W [20].

The Resnik algorithm is to define a function that takes wi, sim and set W as

input and create a formula to analyze the relationship between wi in W and sim in

Si. Then compute a value between 0 and 1 to represent the confidence with

which one can state that sense sim belongs to W’.

For example, we picked a group of words from Brown cluster, this word

group contained lawyer, doctor, nurse. We treated this group as W. By getting

senses of these three words in WordNet, we found that word “lawyer” contained

only one sense: Synset('lawyer.n.01'), a professional person authorized to

practice law; conducts lawsuits or gives legal advice'. But both the word “doctor”

and the word “nurse” are polysemous.

Senses of “doctor”:

32

1) Synset('doctor.n.01'), a licensed medical practitioner'

2) Synset('doctor_of_the_church.n.01'), (Roman Catholic Church) a title

conferred on 33 saints who distinguished themselves through the

orthodoxy of their theological teaching'

3) Synset('doctor.n.03'), children take the roles of physician or patient or

nurse and pretend they are at the physician's office"

4) Synset('doctor.n.04'), a person who holds Ph.D. degree (or the

equivalent) from an academic institution'

5) Synset('sophisticate.v.03'), alter and make impure, as with the intention

to deceive'

6) Synset('doctor.v.02'), give medical treatment to'

7) Synset('repair.v.01'), restore by replacing a part or putting together

what is torn or broken'

Senses of “nurse”:

1) Synset('nurse.n.01'), one skilled in caring for young children or the sick

(usually under the supervision of a physician)'

2) Synset('nanny.n.01'), a woman who is the custodian of children'

3) Synset('nurse.v.01'), try to cure by special care of treatment, of an

illness or injury'

4) Synset('harbor.v.01'), maintain (a theory, thoughts, or feelings)'

5) Synset('nurse.v.03'), serve as a nurse; care for sick or handicapped

people'

33

6) Synset('nurse.v.04'), treat carefully'

7) Synset('breastfeed.v.01'), give suck to'

In this group, all three words are kinds of professional people. Especially

for the word “doctor” and the word “nurse”, they are professional people working

in the health professions. After using this algorithm, we should assign a high

value to the unique sense of “doctor” as Synset('doctor.n.01'), a licensed medical

practitioner. And it should also assign a high value to the sense of “nurse” as

Synset('nurse.n.01'), one skilled in caring for young children or the sick (usually

under the supervision of a physician). A low value should be assigned to other

senses.

Resnik Similarity

The Resnik similarity is the core of this disambiguation algorithm, it

evaluates semantic similarity in an IS-A taxonomy [14], based on the information

Content (IC) of the least Common Subsumer.

Given two words c1 and c2, the Resnik similarity is calculated as:

 (1)

For words c1 and c2, they have some different hypernyms as their

subsumers. For example, in Figure 12 [15], nurse1 and doctor1 has a lot of

different subsumers: health professional, professional, adult, person. Concept c

is a common subsumer of c1 and c2, and p(c) is the probability of c occurs in a

34

corpus. This probability is between 0 and 1. Let s1 and s2 be common subsumers

of c1 and c2. If s1 is-a s2, then p(s1) ≤ p(s2).

A frequent subsumer has a high value of probability, and an infrequent

subsumer has a low value of probability. And a subsumer that occurs rarely is

more special, it means that this subsumer carries more information. In Figure 12,

the person is more abstract than health professional to doctor1 and nurse1, so

health professional is a more informative subsumer to doctor1 and nurse1.

Words/concepts that appear frequently and in the context of many diverse

subject domains are not typical/indicative of a specific subject domain. When

such a common word is used in a communication, it is difficult to tell which

specific topic this word is meant to allude (because there are so many possible

contexts in which the word could be used). Thus high frequency words, that is,

words with high p(c), carry little informational content (“there is nothing special

about them”).

On the other hand, low frequency words, which are those that are used

only rarely and in some very specific contexts, are very indicative of the topic

being communicated. That is, low probability p(c) is synonymous with high

informational content.

Probabilities are numbers between 0.0 and 1.0; logarithms of such

numbers are negative, and numbers closer to 0.0 have smaller (“more negative”)

values than number closer to 1.0. By maximizing over the negative log p(c), this

will reverse. The result is that larger values are now indicative of concepts c with

35

larger information content. Thus, the subsuming concept that is least common (of

smallest probability) is the one that carries the greatest amount of information.

Figure 12. Fragment of The WordNet Taxonomy.

Probability p(c) estimates are derived from a corpus by computing [14]:

36

(2)
Where words(c) is the set of nouns having a sense subsumed by concept c. N is

the total number of nouns observed, probabilities are then computed simply as

relative frequency [14]:

(3)
Table 4 shows examples of semantic similarity computed by the Resnik

similarity for several word pairs. From Figure 12, we can see that word “doctor”

with sense 1 as a medical person has hypernyms: health professional,

professional, adult, and person. The doctor1 is similar to the word “lawyer”. They

have the least common subsumer as a professional person. But it is even similar

to nurse since both of them are the professional person working specifically

within the health professions. Moreover, the Resnik similarity is a more

specialized concept than association or relatedness. As we can see in Table 4,

even doctor and medicine are highly associated, but the Resnik similarity would

not judge them to be particularly similar.

Table 4. Computation of Similarity for Several Pairs of Words
Word1(c1) Word2(c2) Sim

(c1,c2)
Most informative
subsumer

doctor1(medical) nurse1(medical) 7.930359 health_professional

doctor1(medical) lawyer 6.394069 professional

37

doctor1(medical) adult 4.910252 adult

doctor1(medical) person 2.333545 person

doctor1(medical) medicine 0.000000 entity

Disambiguation Algorithm

When two polysemous words are similar, their most informative subsumer

provides information about which sense of each word is the relevant one [15].

Figure 13 is the disambiguation algorithm for noun groupings. The key idea is to

consider the nouns in a word group pairwise [14] [15]. For word group pairwise wi

and wj, the algorithm goes across all possible senses of both to get the most

informative subsumer of them. Word wi can potentially get support from each of

its k senses. And a sense supports wi if the corresponding synset has most

informative subsumer among its ancestors.

Here is an example, where W = {w1, w2, w3}, for w1 = doctor, w2 = nurse,

w3 = lawyer. The word “doctor” and the word “nurse” are polysemous, here we

considered two senses of the word doctor, we assumed doctor1= medical

person, doctor2 = a person who holds a Ph.D. degree. We also picked two

senses of the word “nurse”, we assumed nurse1 = medical person, nurse2 =

nanny. In this example, we want to get values of doctor1 and doctor2.

• Pairwise1: for w1 = doctor and w2 = nurse, the most subsumer c1,2 =

Health professional, and information content v1,2 = 7.930359. So the

support for doctor1 and nurse1 is incremented by 7.930359. And also, c1,2

38

is not an ancestor of doctor2 and nurse2, so neither doctor2 nor nurse2

receives increment for their support.

• Pairwise2: for w1 = doctor and w3 = lawyer, the most subsumer c1,3 =

professional, and the information content v1,3 = 6.394069. The support for

doctor1 and lawyer is incremented by 6.394069. And also, doctor2 cannot

receive any increment for support as c2,3 is not an ancestor of doctor2.

• Pairwise3: for w2 = nurse and w3 = lawyer, the most subsumer c2,3 =

professional, and the information content v2,3 = 6.394069. The support for

nurse1 and lawyer is incremented by 6.394069. And also, nurse2 cannot

receive any increment for support as c2,3 is not an ancestor of nurse2.

Doctor1 participated comparisons in pairwise1 and pairwise2, received

support 7.930359 + 6.394069 out of a possible of 7.930359 + 6.394069, support /

normalize = (7.930359 + 6.394069) / (7.930359 + 6.394069) = 1.000000, so the

value assigned to doctor1 is 1.000000. doctor2 received 0 out of 7.930359 +

6.394069, support / normalize =0 / (7.930359 + 6.394069) = 0.000000, so the

value assigned to doctor2 is 0.000000.

39

Figure 13. Disambiguation Algorithm for Noun Groupings.

Examples

We used two groups of words from Brown clusters as inputs. The first

group was W1, which contained the words “tie”, “jacket”, and “suit”. The second

group was W2, which contained the words “doctor”, “lawyer”, and “nurse”.

40

After using the Resnik algorithm, we got their senses and assigned values

to different senses. From the examples, we could see the function we defined by

the Resnik algorithm assigned different values to different senses. And in

example2, this algorithm assigned value of 1.0 to the unique sense of the word

“doctor” and the sense of the word “nurse” as we predicted before.

Example1:

Input: Given W1 = ['tie', 'jacket', 'suit']

Output:

jacket:

___ 1.000000 Synset('jacket.n.01'): a short coat

___ 0.000000 Synset('jacket.n.02'): an outer wrapping or casing

___ 0.000000 Synset('crown.n.11'): (dentistry) dental appliance consisting

of an artificial crown for a broken or decayed tooth

___ 0.000000 Synset('jacket.n.04'): the outer skin of a potato

___ 0.000000 Synset('jacket.n.05'): the tough metal shell casing for

certain kinds of ammunition

tie:

___ 1.000000 Synset('necktie.n.01'): neckwear consisting of a long narrow

piece of material worn (mostly by men) under a collar and tied in knot at

the front

___ 0.000000 Synset('affiliation.n.01'): a social or business relationship

___ 0.000000 Synset('tie.n.03'): equality of score in a contest

41

___ 0.000000 Synset('tie.n.04'): a horizontal beam used to prevent two

other structural members from spreading apart or separating

___ 0.000000 Synset('link.n.02'): a fastener that serves to join or connect

___ 0.000000 Synset('draw.n.03'): the finish of a contest in which the

score is tied and the winner is undecided

___ 0.000000 Synset('tie.n.07'): (music) a slur over two notes of the same

pitch; indicates that the note is to be sustained for their combined time

value

___ 0.000000 Synset('tie.n.08'): one of the cross braces that support the

rails on a railway track

___ 0.000000 Synset('tie.n.09'): a cord (or string or ribbon or wire etc.)

with which something is tied

suit:

___ 1.000000 Synset('suit.n.01'): a set of garments (usually including a

jacket and trousers or skirt) for outerwear all of the same fabric and color

___ 0.000000 Synset('lawsuit.n.01'): a comprehensive term for any

proceeding in a court of law whereby an individual seeks a legal remedy

___ 0.000000 Synset('suit.n.03'): (slang) a businessman dressed in a

business suit

___ 0.000000 Synset('courtship.n.01'): a man's courting of a woman;

seeking the affections of a woman (usually with the hope of marriage)

42

___ 0.000000 Synset('suit.n.05'): a petition or appeal made to a person of

superior status or rank

___ 0.000000 Synset('suit.n.06'): playing card in any of four sets of 13

cards in a pack; each set has its own symbol and color

Example 2:

Input: Given W2: ['doctor', 'lawyer', 'nurse']

Output:

nurse:

___ 1.000000 Synset('nurse.n.01'): one skilled in caring for young children

or the sick (usually under the supervision of a physician)

___ 0.000000 Synset('nanny.n.01'): a woman who is the custodian of

children

lawyer:

___ 0.446375 Synset('lawyer.n.01'): a professional person authorized to

practice law; conducts lawsuits or gives legal advice

doctor:

___ 1.000000 Synset('doctor.n.01'): a licensed medical practitioner

___ 0.000000 Synset('doctor_of_the_church.n.01'): (Roman Catholic

Church) a title conferred on 33 saints who distinguished themselves

through the orthodoxy of their theological teaching

___ 0.000000 Synset('doctor.n.03'): children take the roles of physician or

patient or nurse and pretend they are at the physician's office

43

___ 0.000000 Synset('doctor.n.04'): a person who holds Ph.D. degree (or

the equivalent) from an academic institution

JIGSAW Algorithm

The JIGSAW algorithm was improved based on the Resnik algorithm. The

JIGSAW algorithm takes a list of words as input, and then returns a list of

WordNet synsets S = {s1, s2, …, sk} in which each element si is obtained by

disambiguating the target word wi based on the information obtained from

WordNet about a few immediately surrounding words [16].

Methodology

The JIGSAW algorithm differs from the Resnik algorithm in three parts as follows:

• The using of Gaussian distribution, which takes into account the distance

between the words in the list to be disambiguated. In the Resnik similarity,

we need to compare every pair of words in a list, but for a long sentence,

or even a text with more words, not every pair of words are highly

associated. If the position of one word is far away from another word, their

senses may have low probability of influencing each other. We could see

from Figure 14, for each pair of words wi and wj, similarity = sim (wi and wj)

× G(pos(wi), pos(wj)). The closer their positions are, the larger their

Gaussian factor is, the larger their similarity is. Therefore, we put positions

of all words into a Gaussian function to choose the nearest most

informative subsumer in all pairs of synsets.

44

• Setting depth1 and depth2 to limit the search for most informative

subsumer to k ancestors. Although the limitation of depths of searching for

the ancestor may guarantees that "too abstract" most informative

subsumers will be ignored. We ignored this difference in our program.

Because our input was irregular, it leaded to the result that we could not

set values to depths stable. If the values of depths are inappropriate, in

other words, if one of the depths is too small, it may cause the most

specific subsumer of two words would not be found.

• Making use of factor R, which gives more importance to the synsets that

are more common than others, according to the frequency score in

WordNet [16] [17]. For word wi, sik is one sense of wi, the factor R(k) that

takes into account the rank of sik in WordNet. R(k) is computed as:

 (4)
Where n is the cardinality of the sense inventory Si for wi and k is the rank

of sik in Si, starting from 0 [16]. And the JIGSAW algorithm also assigned

two parameters 𝛼 and 𝛽 to control expression 4, where 𝛼 controls the

normalized support, and 𝛽 controls R(k). In this algorithm,	𝛼= 0.7 and 𝛽 =

0.3.

45

Figure 14. The JIGSAW Algorithm for Noun Groupings.

46

Gaussian Distribution

The normal (or Gaussian) distribution is a very common continuous

probability distribution [20]. The probability density of the normal distribution is:

(5)

In this algorithm, we used Gaussian distribution to take into account of the

difference between the positions of wi and wj. To build an appropriate Gaussian

function, we imported Numpy package to insert formula 5, and set 𝜇 = 0.0, 𝜎 =

0.7, then we got the Gaussian function [19] as Figure 15. We used expression 6

to evenly distribute positions of words to the Gaussian distribution we got in

Figure 15 from 0.0 to 3 × 0.7 = 2.1. In expression 6, “dist” represents the

distance between two positions, and “numwords” represents the total numbers of

words.

𝐺𝑎𝑢𝑠𝑠 = 	𝜇 + 0123∗5∗	6	
789:;<02

 (6)

And finally, we assigned G(pos(wi), pos(wj)) to the calculation of the

Resnik similarity between wi and wj.

47

Figure 15. Gaussian Distribution.

Examples

We picked A2 from sample1 as an example, and got a list of keywords as

follows: ['bank', 'government', 'state']. And then we compared results from both

the JIGSAW algorithm and the Resnik algorithm.

Comparing the Lesk algorithm to the Resnik algorithm, the JIGSAW

algorithm got the highest accuracy. Although it was not perfect, it was good

enough to be applied to our program.

48

Table 5. “State”: The Resnik Algorithm and The JIGSAW Algorithm
Synset Definition Resnik

algorithm
Jigsaw
algorithm

Synset('state.n.01') the territory occupied by one
of the constituent
administrative districts of a
nation.

0.000000 0.300000

Synset('state.n.02') the way something is with
respect to its main attributes

0.000000 0.270000

Synset('state.n.03') the group of people
comprising the government of
a sovereign state

0.117468 0.940000

Synset('state.n.04') a politically organized body of
people under a single
government

0.117468 0.910000

Synset('state of
_matter.n.01')

(chemistry) the three
traditional states of matter are
solids (fixed shape and
volume) and liquids (fixed
volume and shaped by the
container) and gases (filling
the container)

0.000000 0.180000

Synset('state.n.06') a state of depression or
agitation

0.000000 0.150000

Synset('country.n.02') the territory occupied by a
nation

0.000000 0.120000

Synset('department_of
_state.n.01')

the federal department in the
United States that sets and
maintains foreign policies

0.117468 0.790000

49

Table 6. “Bank”: The Resnik Algorithm and The JIGSAW Algorithm
Synset Definition The

Resnik
algorithm

The
Jigsaw
algorithm

Synset('bank.n.01'): sloping land (especially
the slope beside a body
of water)

0.000000 0.300000

Synset('depository_financial
_institution.n.01')

a financial institution that
accepts deposits and
channels the money into
lending activities

0.299483 1.676000

Synset('bank.n.03') a long ridge or pile 0.000000 0.252000

Synset('bank.n.04') an arrangement of
similar objects in a row or
in tiers

1.250000 0.228000

Synset('bank.n.05') a supply or stock held in
reserve for future use
(especially in
emergencies)

0.000000 0.204000

Synset('bank.n.06') the funds held by a
gambling house or the
dealer in some gambling
games

0.000000 0.180000

Synset('bank.n.07') a slope in the turn of a
road or track; the outside
is higher than the inside
in order to reduce the
effects of centrifugal
force

0.000000 0.156000

Synset('savings_bank.n.02')

a container (usually with
a slot in the top) for
keeping money at home

0.000000 0.132000

Synset('bank.n.09' a building in which the
business of banking
transacted

0.000000 0.108000

Synset('bank.n.10') a flight maneuver; aircraft
tips laterally about its
longitudinal axis
(especially in turning)

0.000000 0.084000

50

Table 7. “Government”: The Resnik Algorithm and The JIGSAW Algorithm
Synset Definition The

Resnik
algorithm

The
Jigsaw
algorithm

Synset('government.n.01') the organization that is the
governing authority of a
political unit

0.117468 1.000000

Synset('government.n.02') the act of governing;
exercising authority

0.000000 0.240000

Synset('government.n.03') (government) the system
or form by which a
community or other
political unit is governed

0.000000 0.180000

Synset('politics.n.02') the study of government
of states and other
political units

0.000000 0.120000

51

CHAPTER EIGHT

SEMANTIC SIMILARITY

Using the JIGSAW algorithm, we got a list of synsets with the highest

values. Then we used Wu-Palmer Similarity to calculate the semantic similarity

between terms and definitions. Wu-Palmer [21] similarity returns a score

denoting how similar two-word senses are, based on the depth of the two senses

in the taxonomy and that of their Least Common Subsumer [18].

𝑠𝑖𝑚	𝑤𝑢𝑝 𝑐1, 𝑐2 = 	2 ∗ EFGHI JKL
0MN3O PQ R0MN3O(PT)

 (7)

There are several models for computing semantic similarity, we chose

Wu-Palmer method for two reasons: Firstly, Wu-Palmer [21] computes similarity

by using words’ senses, the input should be a pair of synsets, so the output from

the JIGSAW algorithm could be used directly. And the second reason is that the

score returns from Wu-Palmer Similarity is between 0 and 1, it is easy for the

future comparison and analysis.

We created sample2 with ten terms and ten definitions. All terms and

definitions were picked from a high school history book. We picked the first five

terms and definitions from Spanish-American War chapter and the last five terms

and definitions from Vietnam War chapter.

Sample2:

Q1: Why was the United States interested in expanding its territories in the

late 1800s?

52

A1: The United States wanted new markets and military advantages.

Some Americans wanted to spread their Christian faith to other countries.

In addition, many Americans believed that expanding into the Pacific was

their manifest destiny.

Q2: What did the United States gain and lose in the Spanish-American

War?

A2: The United States gained control of Puerto Rico, Guam, and the

Philippines (for $20 million). The United States also became an imperialist

nation with more bases for trade and for resupplying its navy. The war

cost the United States about $250 million, and about 5,400 soldiers lost

their lives in the war.

Q3: Why did the United States support the Panamanian revolt against

Colombian rule?

A3: Colombia's Senate refused to ratify a treaty that would have allowed

the United States permanent use of the land needed to build a canal

through the Isthmus of Panama. When Panamanian rebels revolted

against Colombia, the United States supported them in hopes that after

their victory, they would agree to the U.S. canal plan. When Panama

declared independence, the United States swiftly recognized the new

country, and a new canal treaty was soon signed.

Q4: Why the United States withdrew its troops from Mexico in 1917?

53

A4: Possible answers include any two of the follows: Having the troops in

Mexico increased the risk of war between the United States and Mexico;

U.S. soldiers made no progress in capturing Pancho Villa, and Wilson was

compelled to pay attention to developments in the early years of World

War I.

Q5: Why did the United States support the Panamanian rebellion and

recognize the new Republic of Panama?

A5: The United States wanted a friendly government in Panama which

would support negotiations to allow the United States to build a canal

connecting the Atlantic and Pacific Oceans.

Q6: Why did President Kennedy initially send advisors and aid to

Vietnam?

A6: Kennedy was a firm believer in the domino theory, and after the two

Cold War disasters that began Kennedy’s presidency, he hoped that

aiding South Vietnam would be a sign of continued U.S. strength and

resolve.

Q7: Why was President Truman unwilling to back Vietnamese

independence from colonial rule?

A7: He was unwilling to back Vietnamese independence because he saw

the struggle as part of the much larger Cold War against communism. He

was unwilling to back the Vietminh because of Ho Chi Minh’s membership

in the Communist Party.

54

Q8: Why did President Johnson have difficulty reassessing his war

strategy in 1968?

A8: He had difficulty because his own advisers disagreed on the best

course to take. Some believed ground troops should invade North

Vietnam, and some believed Johnson’s war policies were too extreme.

Q9: How did the assassination of Robert Kennedy affect the 1968

presidential race?

A9: Kennedy had won the California primary and was a favorite to win the

Democratic nomination. In what turned out to be a very close presidential

election, had Kennedy, rather than Hubert Humphrey, faced Nixon, the

Democrats might have won the election.

Q10: Why did Ho Chi Minh believe the United States would support the

Vietnamese nationalist movement?

A10: He thought the movement would receive U.S. support because he

believed that Vietnam’s fight for independence from France was similar to

the American fight for independence from Britain.

55

Figure 16. Average of Three Max Semantic Similarity for Sample2

Figure 16 shows the result of sample2. Each term would select four

definitions with largest semantic similarity values from this result as alternative

choices:

• Q1: [0.82299499 0.83664021 0.86904762 0.91071429]

• Q2: [0.69395712 0.73504274 0.75 0.87179487]

• Q3: [0.82962963 0.85185185 0.91071429 0.96296296]

• Q4: [0.91534392 0.9212963 0.96296296 1.000000]

• Q5: [0.91071429 0.91534392 0.94736842 1. 000000]

• Q6: [0.84848485 0.85925926 0.88666667 0.98666667]

• Q7: [0.63896104 0.71515152 0.82769231 0.82769231]

56

• Q8: [0.74918301 0.83602564 0.96102564 0.96296296]

• Q9: [0.56825397 0.65410628 0.72380952 0.72380952]

• Q10: [0.43386243 0.64444444 0.73333333 0.88888889]

For example, the multiple selections for Q1are:

• A5: 'The United States wanted new markets and military advantages.

Some Americans wanted to spread their Christian faith to other countries.

In addition, many Americans believed that expanding into the Pacific was

their manifest destiny.' (SIM Q1 & A5: 0.82299499)

• A4: 'Colombia's Senate refused to ratify a treaty that would have allowed

the United States permanent use of the land needed to build a canal

through the Isthmus of Panama. When Panamanian rebels revolted

against Colombia, the United States supported them in hopes that after

their victory, they would agree to the U.S. canal plan. When Panama

declared independence, the United States swiftly recognized the new

country, and a new canal treaty was soon signed.' (SIM Q1 & A4:

0.83664021)

• A3: 'Possible answers include any two of the following: Having the troops

in Mexico increased the risk of war between the United States and

Mexico; U.S. soldiers made no progress in capturing Pancho Villa; and

Wilson was compelled to pay attention to developments in the early years

of World War I.' (SIM Q1 & A3: 0.86904762)

57

• A1: 'The United States wanted a friendly government in Panama which

would support negotiations to allow the United States to build a canal

connecting the Atlantic and Pacific Oceans.’ (SIM Q1 & A1: 0.91071429)

58

CHAPTER NINE

COMPARISON

We used sample2 as input, ran it with both the original program(old

version) and improved program(new version). The improved program selected

four choices based on calculated semantic similarities, and the original program

selected four choices randomly. Both versions of the program would add the

correct choice (definition or answer) to the list of choices to be presented to the

test taker.

Table 8. Example1: New Version and Old Version.
New Version Old Version

(1 of 5)
Why was the United States interested
in expanding its territories in the late
1800s?

[1] The United States wanted new
markets and military advantages.
Some Americans wanted to spread
their Christian faith to other countries.
In addition, many Americans believed
that expanding into the Pacific was
their manifest destiny.

[2] Possible answers include any two
of the following: Having the troops in
Mexico increased the risk of war
between the United States and
Mexico; U.S. soldiers made no
progress in capturing Pancho Villa,

(1 of 5)
Why was the United States interested in
expanding its territories in the late
1800s?

[1] The United States wanted new
markets and military advantages. Some
Americans wanted to spread their
Christian faith to other countries. In
addition, many Americans believed that
expanding into the Pacific was their
manifest destiny.

[2] Kennedy was a firm believer in the
domino theory, and after the two Cold
War disasters that began Kennedy’s
presidency, he hoped that aiding South
Vietnam would be a sign of continued
U.S. strength and resolve.

59

and Wilson was compelled to pay
attention to developments in the early
years of World War I.

[3] The United States wanted a
friendly government in Panama which
would support negotiations to allow
the United States to build a canal
connecting the Atlantic and Pacific
Oceans.

[4] Colombia's Senate refused to
ratify a treaty that would have
allowed the United States permanent
use of the land needed to build a
canal through the Isthmus of
Panama. When Panamanian rebels
revolted against Colombia, the United
States supported them in hopes that
after their victory, they would agree to
the U.S. canal plan. When Panama
declared independence, the United
States swiftly recognized the new
country, and a new canal treaty was
soon signed.

[3] He was unwilling to back
Vietnamese independence because he
saw the struggle as part of the much
larger Cold War against communism.
He was unwilling to back the Vietminh
because of Ho Chi Minh’s membership
in the Communist Party.

[4] The United States wanted a friendly
government in Panama which would
support negotiations to allow the United
States to build a canal connecting the
Atlantic and Pacific Oceans.

In example1, new version of the improved program selected Q1 as a

question, and selected four definitions with largest semantic similarity values as

choices: A5: 0.82299499, A4: 0.83664021, A3: 0.86904762, A1: 0.91071429. All

selections related to Spanish-American War. What's more, all four selections

were definitions of a "why" question, all of the selections were plausible, which

made this question hard to be used exclusion method to get the correct answer.

The old version of the original program got four selections randomly, in this

example, only selection1 and selection4 came from the chapter of Spanish-

60

American War, but selection2 and selection3 were about Vietnam War, they were

easy to be ruled out. So in this example, comparing to old version of the original

program, our new version of the improved program generated questions with

more plausible choices.

Table 9. Example2: New Version and Old Version.
New Version

Old Version

 How did the assassination of Robert
Kennedy affect the 1968 presidential
race?

[1] Kennedy had won the California
primary and was a favorite to win the
Democratic nomination. In what turned
out to be a very close presidential
election, had Kennedy, rather than
Hubert Humphrey, faced Nixon, the
Democrats might have won the election.

[2] Possible answers include any two of
the following: Having the troops in
Mexico increased the risk of war
between the United States and Mexico;
U.S. soldiers made no progress in
capturing Pancho Villa; and Wilson was
compelled to pay attention to
developments in the early years of
World War I.

[3] Kennedy was a firm believer in the
domino theory, and after the two Cold
War disasters that began Kennedy’s
presidency, he hoped that aiding South
Vietnam would be a sign of continued
U.S. strength and resolve.

How did the assassination of Robert
Kennedy affect the 1968 presidential
race?

[1] Possible answers include any two
of the following: Having the troops in
Mexico increased the risk of war
between the United States and
Mexico; U.S. soldiers made no
progress in capturing Pancho Villa;
and Wilson was compelled to pay
attention to developments in the early
years of World War I.

[2] The United States wanted a
friendly government in Panama which
would support negotiations to allow
the United States to build a canal
connecting the Atlantic and Pacific
Oceans.

[3] The United States wanted new
markets and military advantages.
Some Americans wanted to spread
their Christian faith to other countries.
In addition, many Americans believed
that expanding into the Pacific was
their manifest destiny.

61

[4] He had difficulty because his own
advisers disagreed on the best course
to take. Some believed ground troops
should invade North
Vietnam, and some believed Johnson’s
war policies were too extreme.

[4] Kennedy had won the California
primary and was a favorite to win the
Democratic nomination. In what
turned out to be a very close
presidential election, had Kennedy,
rather than Hubert Humphrey, faced
Nixon, the Democrats might have
won the election.

In example2, new version of the improved program selected Q9 as a

question, and selected four definitions with largest semantic similarity values as

choices: A8: 0.56825397, A4: 0.65410628, A6: 0.72380952, A9: 0.72380952.

Except for A4, the other three selections related to Vietnam War, especially

selection1 and selection3 are highly related. But for old version of the original

program, only correct answer related to question, the other three selections had

nothing to do with the keyword "Kennedy", they were all easy to be ruled out.

62

CHAPTER TEN

LIMITATION

Comparing to pick selections randomly, our new version program highly

improved the difficulty of questions. But natural language processing is not 100%

accurate, our program has three limitations:

• The JIGSAW program could not recognize some special nouns like

person names that were not in WordNet corpus. For example, Pablo

Picasso, who was a Spanish Painter, this name could not be processed by

the Resnik similarity model.

• The program worked better on long sentences than short sentences. The

reason was that we analyzed semantic similarity between each keyword of

sentences, more keywords we had, more accurate the result we got. Short

sentences might not have enough keywords to represent its full meaning.

• We did not have a system or statistical method to analyze if the choices

are hard enough, to decide which program could generate more

challenging tests that are less amenable to solving by elimination; subject

knowledge needed to make correct selection.

63

CHAPTER ELEVEN

CONCLUSION AND FUTURE WORK

This project has presented several natural language processing methods.

Several NLTK libraries have been imported, these libraries provided functions as

tokenizing sentence into words, removing stop words, tagging and extracting

nouns. The core of this project was to develop a word sense disambiguation

model. The Resnik similarity, as measured using information content and most

informative subsumer, was shown to be useful in resolving word sense

disambiguation problem in the Resnik algorithm. Based on the Resnik algorithm,

the JIGSAW algorithm was developed by inserting Gaussian distribution and

computing a factor R that takes into account the rank of senses in WordNet. We

experimented with these WSD algorithms and semantic similarity measures for

keywords in terms and definitions and evaluated their performance on several

samples. Based on the comparison between our experimental results and old

version program results, we find that our new version is performing much better

than the original version of the program.

 For this project, the author of the project (and advisor Dr. Voigt) were the

judges who determined that the multiple choice questions generated by the new

program were superior to the questions produced by the original QAW program.

In virtually each instance we have tested, the improvement was very obvious,

and it is difficult to imagine that anyone would disagree with our findings.

64

Naturally, further improvements to QAW, which would likely be more subtle,

would warrant an independent and more objective evaluation.

As discussed earlier, there are several limitations in our program, a library

named StanfordNERTagger can be used to tag special names has not been

used yet, many other factors are not taken into account for solving WSD

problem. Making use of these libraries and factors we may able to design better

multiple-choice generator.

65

REFERENCES

[1] “Easy Notecards”, a quiz generator website.

http://www.easynotecards.com/quiz/2307. (Accessed 22 January 2017)

[2] J. Perkins, “Python 3 Text Processing with NLTK 3 Cookbook”, Birmingham,

UK: Packt Publishing Ltd, ISBN: 978-1-78216-785-3, November 2010.

[3] S. Bird, K. Ewan, J. Baldridge, and E. Loper, "Multidisciplinary instruction with

the Natural Language Toolkit", Proceedings of the Third Workshop on Issues in

Teaching Computational Linguistics, ACL, June 2008.

[4] Y. Duan, C. Cruz, “Formalizing Semantic of Natural Language through

Conceptualization from Existence”, International Journal of Innovation,

Management and Technology, pp. 37-42, 2011.

[5] K. Wolk, K. Marasek. "A Sentence Meaning Based Alignment Method for

Parallel Text Corpora Preparation", Advances in Intelligent Systems and

Computing. Springer, ISBN 978-3-319-05950-1. ISSN 2194-5357, pp. 107-114.

[6] S. Bird, K. Ewan, and E. Loper, “Natural Language Processing with Python”,

Sebastopol, CA: O’Reilly Media, Inc., June 2009.

[7] “WS4J Demo” semantic similarity calculator. http://ws4jdemo.appspot.com.

(Accessed 15 March 2017)

[8] S. Torres, A. Gelbukh, “Comparing Similarity Measures for Original WSD Lesk

Algorithm”, Vol.43, pp. 155-166, 2009.

66

[9] E. Agirre and P. Edmonds, "Word Sense Disambiguation: Algorithms and

Applications", Text, Speech and Language Technology Series, Springer, Vol. 33,

ISBN: 978-1-4020-6870-6, 2007.

[10] G. A. Miller, R. Beckwith, C. D. Fellbaum, D. Gross, K. Miller, “WordNet: An

online lexical database”. pp. 235-244, 1990.

[11] G. Hirst, D. Stonge, “Lexical chains as representations of context for the

detection and correction of malapropisms”, in Fellbaum, pp. 305-332, 1998.

[12] Disambiguation Algorithm.

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume23/montoyo05a-

html/node9.html. (Accessed 20 March 2017)

[13] G. Ramakrishnan, B. Prithviraj, and P. Bhattacharyya, “A Gloss Centered

Algorithm for Word Sense Disambiguation”, Barcelona, Spain: Proceedings of

the ACL SENSEVAL, pp. 217-221, 2004.

[14] P. Resnik, “Disambiguating Noun groupings with respect to WordNet

Senses”, In Proceedings of the Third Workshop on Very Large Corpora, pp. 54-

68. Association for Computational Linguistics, 1995.

[15] P. Resnik, "Semantic Similarity in a Taxonomy: An Information-Based

Measure and its Application Natural to Problems Language of Ambiguity in

Natural Language”, in College Park, MD, pp. 96-130, 1999.

[16] P. Basile, M. de Gemmis, A.L. Gentile, P. Lops and G. Semeraro, "UNITA:

JIGSAW algorithm for Word Sense Disambiguation", Bari, ITALY, Proceedings of

67

the 4th International Workshop on Semantic Evaluations, pp. 398-401.

Association for Computational Linguistics, June 2007.

[17] C. Leacock, M. Chodorow, “Combining Local Context and WordNet

Similarity for Word Sense Identification”, In C. Fellbaum, editor, “WordNet: An

Electronic Lexical Database”, pp. 266-283. MIT Press, 1998.

[18] WordNet Interface. http://www.nltk.org/howto/wordnet.html. (Accessed 2

April 2017)

[19] Numpy function of Gaussian distribution.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.ht

ml. (Accessed 16 April 2017)

[20] B. Wlodzimierz, “The Normal Distribution: Characterizations with

Applications”, Springer-Verlag, ISBN 0-387-97990-5, 1995.

[21] Z. Wu, M. Palmer, “Verb semantics and lexical selection”. In Proceedings of

the 32nd Annual Meeting of the Associations for Computational Linguistics, pp.

133-138, Las Cruces, New Mexico, 1994.

[22] O. Dameron, C. Bettembourg, and L. Joret, “Quantitative cross-species

comparison of GO annotations: advantages and limitations of semantic similarity

measure”, INSERM U936, France, 2010.

[23] M. Lesk. “Automatic sense disambiguation using machine readable

dictionaries: How to tell a pine cone from an ice cream cone”. In Proceedings of

SIGDOC ’86, pp. 20-29, 1986.  

68

[24] J. Singh, M. Saini, S. Siddiqi, “Graph Based Computational Model for

Computing Semantic Similarity”, India, Elservier Publications, pp. 501-507, 2013.

[25] K. Voigt, QAW.py, a Python program, October 2015.

[26] K. Voigt, Resnik.py, a Python program, February 2017.

	NATURAL LANGUAGE PROCESSING BASED GENERATOR OF TESTING INSTRUMENTS
	Recommended Citation

	Microsoft Word - after second review.docx

