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ABSTRACT 

Natural Language Processing (NLP) is the field of study that focuses on 

the interactions between human language and computers. By “natural language” 

we mean a language that is used for everyday communication by humans. 

Different from programming languages, natural languages are hard to be defined 

with accurate rules. NLP is developing rapidly and it has been widely used in 

different industries. Technologies based on NLP are becoming increasingly 

widespread, for example, Siri or Alexa are intelligent personal assistants using 

NLP build in an algorithm to communicate with people. “Natural Language 

Processing Based Generator of Testing Instruments” is a stand-alone program 

that generates “plausible” multiple-choice selections by analyzing word sense 

disambiguation and calculating semantic similarity between two natural language 

entities. The core is Word Sense Disambiguation (WSD), WSD is identifying 

which sense of a word is used in a sentence when the word has multiple 

meanings. WSD is considered as an AI-hard problem. The project presents 

several algorithms to resolve WSD problem and compute semantic similarity, 

along with experimental results demonstrating their effectiveness.  
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CHAPTER ONE 

STATEMENT OF PURPOSE 

 

The objective of this study is to improve an existing software QAW.py, 

which is written by Dr. Voigt in Python programming language. This software is to 

generate multiple-choice selections from a study guide with terms and definitions 

or questions and answers. The old version of the program is functional, but 

several aspects can be improved, the biggest issue is that the relevance between 

multiple selections is not strong. 

The input to the automated test generator is identical to the input to QAW 

or Easy Notes, namely a study guide or set of flashcards with questions 

associated with correct answers, or terms with matching definitions.  

The automated system is to produce associations of questions with 

plausible answer alternatives fully automatically, without the intervention or help 

of a human judge. The core of accomplishing this goal is computer automated 

natural language processing, and in particular, the core challenge of natural 

language processing, automated word sense disambiguation. 

  



2 
 

CHAPTER TWO 

INTRODUCTION 

Background 

Dr. Voigt developed a Python program, QAW.py, which takes as its input a 

text file containing study guide of the sort that US high school students are 

routinely asked to produced prior to their exams. Such study guides consist of 

long lists of either terms and their definitions, or questions and answers on some 

subjects’ matter. Given study guide, the QAW software produces a 

comprehensive multiple choice test which can be taken online or in batch and 

paper-based mode. The original QAW program, the starting point of this project, 

is to be understood as a rapidly programmed, simple but functional prototype. As 

such it has multiple shortcomings, and this project aims at ensuring that the 

automatically generated test is appropriately challenging to the student who 

studies with the test.  

The original program generates choices randomly, which allows test 

takers easy to use exclusion method to rule out the wrong answers and get the 

correct answer, rather than understanding what they learned. Several quiz 

generators online have the same function. For example, "Easy Notecards" [1] is 

a website, which helps users in reading novels by generating multiple-choice 

quizzes from notecards, but this website has the same problem as our old 

version, it generates choices randomly, alternative selections are not closely 

related resulting in a no challenging assessment. We focused on improving the 
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difficulty of questions by picking choices with smaller semantic distances, instead 

of getting them randomly.  

Here is an example which is generated by QAW.py program. In this 

example, the question is obviously a name of a person, only answer 3 shows a 

definition of a person, the other three random definitions have nothing to do with 

the correct answer. In this situation, the test taker, even without having any 

knowledge of the subject of the test, will be able to eliminate items that are very 

obviously not plausible answers: 

(1 of 5) Marie Currie/radioactivity:  

[1] This was a style of realistic art that was being developed in the Soviet 

Union and it was becoming a dominant style in other various socialist 

countries. This was characterized by the glorified depiction of communist 

values, such as the emancipation of the proletariat in a realistic manner. 

[2] This is a group of entities that share has been motivated by at least 

one common problem. They were working together so that they could 

achieve a common object. These are different from cooperatives and they 

are not really focused when it comes to economic benefit. 

[3] She was a chemist who conducted the pioneering research on 

radioactivity. She was the first person who won a Nobel Prize. She even 

won twice in a row. Marie became a professor at the University of Paris. 

[4] This was the Nazi propaganda term for annexing of Austria into Nazi 

Germany in Mach 1938. It was also known as the Anschluss Osterreichs. 



4 
 

This stands in contrast to the Anschluss movement when the Republic of 

German-Austria attempted the union with Germany. 

Enter number: 3 

... CORRECT!!! 

SHE WAS A CHEMIST WHO CONDUCTED THE PIONEERING 

RESEARCH ON RADIOACTIVITY. SHE WAS THE FIRST PERSON 

WHO WON A NOBEL PRIZE. SHE EVEN WON TWICE IN A ROW. 

MARIE BECAME A PROFESSOR AT THE UNIVERSITY OF PARIS. 

Natural Language Processing is used everywhere [2]. Natural Language 

Toolkit is a good tool would be used in Natural Language Processing. Since the 

original program was written in Python Language, this project would be 

generated in the same programming language. In this project, we used natural 

language processing to analyze the semantic distances between choices, 

thereby picking the other choices that are more plausible.  

In the context of this project, “plausible choices” for the answer to a 

question are text selections (extracted verbatim from the study guide) whose 

meanings are or at least seem closely related to the posted question (or term to 

be defined). The test taker should not be able to easily rule out any of the 

potential answers based on their obvious lack of relatedness to the question. 

Instead, the test taker should have to apply true knowledge of the subject matter 

in order to distinguish the correct answer from a set of other seemly similar but 

incorrect ones. 
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Project Overview 

Given: term and correct definition, choose “plausible” alternative 

definitions as follows: 

1. Extract keywords: 

• Tokenize the text of term and correct definition.  

• Remove stop words. 

• Tag and extract nouns using filter_insignificant () function, then 

untag all words.  

• Change plural nouns to singular nouns. 

2. Get correct senses of words: 

• Use the JIGSAW algorithm to extract correct synset for each word.  

3. For all definitions of other terms in the study guide, we do the following: 

• Determine semantic similarity between keywords of a term and the 

keywords in all definitions. 

4. Select alternative definitions, use the 3 to 4 with largest semantic similarity 

to keywords of correct definition.  
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CHAPTER THREE 

NATURAL LANGUAGE TOOLKIT 

 

Natural Language Toolkit, which is always be called as NLTK is a leading 

platform for building Python programs to work with human language data [3]. In 

our program, NLTK is the most significant package. It was developed by Steven 

Bird and Edward Loper in the Department of Computer and Information Science 

at the University of Pennsylvania [3]. It provides easy-to-use interfaces to several 

corpora and lexical resources [4]. It includes different libraries such as the one 

we used to resolve semantic similarity and word sense disambiguation problem, 

which is called Wordnet, and along with libraries for tokenization, stemming, 

tagging, and so on. 

These are the packages from NLTK that we used in our project:  

1. From nltk.tokenize import RegexpTokenizer: This package provides 

tokenizers to tokenize sentences into lists of words.  

2. From nltk.corpus import stopwords: The nltk.corpus package defines a 

collection of corpus reader classes, which can be used to access the 

contents of a diverse set of corpora [5]. We used this package to remove 

stopwords in lists.  

3. From nltk.tag import untag: Interface for tagging each token in a sentence 

with supplementary information, such as its part of speech [4].  
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4. From nltk.wsd import lesk: This package provides the Lesk algorithm to 

solve word sense disambiguation problem.  

5. From nltk.corpus import wordnet: WordNet is the most frequently used 

package in our program. We imported several semantic similarity methods 

in our program from this package.  

6. From nltk.stem import WordNetLemmatizer: Lemmatize using WordNet’s 

built-in morphy function [4]. We used this method to change plural nouns 

to singular nouns.  

7. From nltk.corpus import wordnet_ic: This package loads an information 

content file from the wordnet_ic corpus. For example, we used Brown 

Corpus as follows, brown_ic = wordnet_ic.ic('ic-brown.dat'). 
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CHAPTER FOUR 

TOKENIZATION 

 

In this project, a study guide consists of terms and definitions, all terms 

and definitions appear in form of sentences. After using tokenizer, we received a 

list of words for each sentence. This process was called tokenization, and a list of 

words would be treated as tokens of a sentence.  

Choose a Tokenizer 

NLTK provides different types of tokenizers, in this project, we need to 

choose a tokenizer to split sentences into lists of individual words. Five types of 

tokenizers and their basic functions are shown as follows:  

• Word_tokenize provides very basic word tokenization, it is an 

instance of the TreebankWordTokenizer class. It separates words 

using spaces and punctuation, and it keeps the punctuation.  

• PunktWordTokenizer splits words on punctuation but keeps the 

punctuation with the word instead of creating separate tokens. 

• WordPunctTokenizer is similar to PunktWordTokenizer, the only 

difference is that it splits all punctuation into separate tokens [2]. 

• RegexpTokenizer uses regular expressions to complete control 

over how to tokenize text. It can be used based on how we 

construct the regular expression.  



9 
 

• Whitespace Tokenizer uses RegexpTokenizer to tokenize on 

whitespace. 

Here is an example to show the differences of five tokenizers. This is a 

sentence, “I’m a student.”, and after tokenized, the results are shown as follows: 

• word_tokenize: [' I ', " 'm ", ' a ', ' student '] 

• PunktWordTokenizer: [' I ', " 'm ", ' a ', ' student. '] 

• WordPunctTokenizer: [' I ', " ' ", ' m ', ' a ', ' student ', ‘. '] 

• RegexpTokenizer: [" I'm ", ' a ', ' student '] 

• Whitespace Tokenizer: [" I'm ", ' a ', ' student.'] 
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Figure 1.  Different Types of Tokenizers 
 

 

To choose an appropriate tokenizer, we need to decide how we want to 

tokenize a piece of text. In this project, what we need are lists of keywords, we 

don't need to keep punctuation, and we need to keep the essential words that 

can present the basic meaning of sentences. We chose RegexpTokenizer, which 

can match our exception. This tokenizer matches alphanumeric tokens plus 

single quotes so that we didn't split up contractions. 
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CHAPTER FIVE 

FILTER STOP WORDS 

 

After tokenizing all sentences, we got lists of words, the core objective we 

would like to do at last step was to calculate semantic similarity between each 

word in different terms and definitions, too many unrelated words in one list 

would influence the final result, so we only wanted to keep the keywords, and 

these keywords have special effects on the meaning of sentences. In this project, 

we only kept nouns for analyzing.  

To get the keywords, we should remove stop words. Stop words are the 

“extremely common words” [6]. These words usually do not contain important 

information, even these words are removed, the main meaning will not be 

influenced. Such as “the” and “a”, they make no contribution to the meaning of a 

sentence. 

In NLTK stopwords corpus, words () method provide lists of stop words for 

14 different languages, in this project only English list were used. It is worth 

noting that before removing stop words, all words in lists need to be converted to 

lowercase, the reason is that uppercase words will not be considered as stop 

words, even they are in stop words list with lowercase form.  
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Figure 2.  Stop Words 
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CHAPTER SIX 

PART-OF-SPEECH TAGGING 

 

The process of classifying words into their parts of speech and labeling 

them accordingly is known as part-of-speech tagging, or POS-tagging [6]. NLTK 

provides the method to attach a tag to each word. We used the tag () method, 

the input should be a list of words, and after using this method, program would 

return a list of tagged words as output. Figure2 shows tags we used in our 

project.  

We used these tags to extract nouns only, the nouns are tagged as “NN”, 

“NNS”, “NNP”, or “NNPS.” After all nouns were extracted, we used the 

nltt.tag.untag() function to untag all sentences. 
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Figure 3.  Part-of-Speech Tag Set 
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CHAPTER SEVEN 

WORD SENSE DISAMBIGUATION 

Background 

After we got all keywords successfully, we used WordNet to get the 

synsets of each word in a list. The WordNet groups English words into sets of 

synonyms, these synonyms are called synsets. And then we chose one synset 

randomly. And then we used Wu-Palmer similarity model to calculate the 

semantic similarities between terms and definitions. And we also tested the 

results by using an online tool named “WS4J Demo” semantic similarity 

calculator [7] and analyzing the definitions of each word, we found that the result 

we got was far lower than we expected. Here is an example to show the 

semantic similarity we got and the semantic similarity “WS4J Demo” calculator 

got: 

Term: ‘Nationalism’ 

Definition: ‘The belief that the interests of the nation as a whole are more 

important than regional interests or the interests of other countries.’ 

Keywords of term: ['nationalism'] 

Keywords of definition: ['belief', 'interests', 'nation', 'whole', 'countries'] 
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Table 1. Semantic Similarities from Our Program and “WS4J Demo” 
 From our 

Program  
From “WS4J 
Demo” Calculator 

Defs/terms ‘nationalism’ ‘nationalism’ 

‘belief’ 0.3077 0.8751 

‘interests’ 0.3750 0.6667 

‘nation’ 0.2667 0.4286 

‘whole’ 0.2667 0.6667 

‘countries’ 0.2667 0.4286 

 
 

From table1, we can see that the result from our program is much lower 

than “WS4J Demo” Calculator. We analyzed semantic similarity between one 

word from term ‘nationalism’ and one word from its correct definition ‘belief’ to 

figure out the reason. 

Synsets and definitions of ‘nationalism’: 

0) Synset ('patriotism.n.01'), 'love of country and willingness to 

sacrifice for it' 

1) Synset ('nationalism.n.02'), 'the doctrine that your national culture 

and interests are superior to any other' 

2) Synset ('nationalism.n.03'), 'the aspiration for national 

independence felt by people under foreign domination' 

3) Synset ('nationalism.n.04'), 'the doctrine that nations should act 

independently (rather than collectively) to attain their goals' 
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Synsets and definitions of ‘belief’: 

0) Synset ('belief.n.01'), 'any cognitive content held as true' 

1) Synset ('impression.n.01'), 'a vague idea in which some confidence 

is placed' 

Semantic similarity between nationalism with synset 0 and belief with synset 1 is 

0.3077: 

 

 

 
 
Figure 4.  Similarity Between “Nationalism0” and “Belief0” 

 

 

Semantic similarity between nationalism with Synset 0 and belief with Synset 1 is 

0.8571: 
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Figure 5.  Similarity Between “Nationalism1” and “Belief0” 

 

 

After analyzing all possibilities, we found that each word had several 

different senses, which sense would be used was due to the other words’ senses 

in the same sentence. Humans have a natural ability to judge whether a word is 

similar to another word. For instance, we all know that orange is a kind of fruit, 

and orange is similar to fruit, not similar to computer. But this is hard for machine 

language. Before analyzing word senses, in calculating the similarity between 

two words, the senses were chosen randomly, that's why the result was too 

different from we expected. 

Accompanied by the generation of this problem, Word Sense 

Disambiguation (WSD) problem became the core part of this project. “WSD is 

one of the most important NLP tasks” [9]. To resolve WSD problem, the input 

would be a given sentence or a context. We should use an algorithm to find the 

most appropriate sense to a word in the particular sentence or context. And 

these senses could be used from WordNet package, they appear as synsets. So 

before calculating the semantic similarity, we need to use a WSD method to get 

correct senses.  
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WordNet, Synset, Hypernym, and Hyponym 

WordNet 

WordNet is an NLTK corpus reader. It is a lexical database developed at 

Princeton University with the attempt to model the lexical knowledge of a native 

speaker of English, using synsets, helps to find conceptual relationships between 

words such as hypernyms, hyponyms, synonyms, antonyms and so on. WordNet 

groups nouns, verbs, adjectives and adverbs into sets of synsets, each 

expressing a distinct concept. WordNet package contains several semantic 

similarity methods functions. We could use one of them to compute semantic 

similarity value.  

WordNet has 117000 different synsets, each synset represents a 

definition of a word, and each synset would be unique in the WordNet. And “a 

synset contains one or more short sentences illustrating the use of the synset 

members” [10]. A polysemous word has different synsets to represent distinct 

meanings. 

Synset 

NLTK comes with a list of synset instances to look up words in WordNet. 

To look up any word in WordNet, we should use wordnet. synsets(‘word’) to get a 

list of Synsets. 

Synset is a set of synonyms that share a common meaning. Each synset 

contains one or more lemmas, which represent a specific sense of a specific 

word [11]. Many words have only one synset, some have several.  
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Hypernym and Hyponym 

One sense is a hyponym of another if the first sense is more specific, 

denoting a subclass of the other, conversely is a hypernym. For example, a car is 

a hyponym of a vehicle, a vehicle is a hypernym of a car, banana is a hyponym 

of fruit, then fruit is a hypernym of banana. Figure 6 shows a WordNet function to 

get the hypernyms of word car.  

 

 

 
 
Figure 6.  Hypernyms of The Word “Car” 
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If a word has different senses, then each sense will have different 

hypernyms. Table2 [12] shows the hypernyms for different senses of the word 

plant. 

 

 

Table 2. Hypernyms Synsets of “Plant” 
 

 
 

Lesk Algorithm 

The Lesk algorithm is one of the most popular methods to solve WSD 

problem, it was introduced by Michael E. Lesk in 1986. The Lesk algorithm uses 

dictionary definitions to disambiguate a polysemous word in a sentence context. 

In order to extract definitions, Lesk adopted the Oxford Advanced Learner’s 

dictionary. The major objective of Lesk algorithm is to count the number of words 

plant#1 plant#2 plant#3 plant#4 
building complex 
#1 

life form#1 contrivance#3 actor#1 

structure #1 entity#1 scheme#1 performance#1 

artifact#1  plan of action#1 entertainer#1 

object#1  plan#1 person#1 

entity#1  idea#1 life form#1 

  content#5 entity#1 

  congnition#1  

  psychological 
feature#1 
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that are shared between two definitions [8] [13]. The more same words two 

definitions shared, the more similar the senses are.  

Methodology 

To get the correct sense of a target word, the Lesk algorithm allows the 

definition of the target word to compare with definitions of other words. A word is 

assigned to the sense whose definition shares the largest number of words in 

common with the definitions of the other words. Figure 7 [8] shows the graphic 

representation of the Lesk Algorithm. 

 

 

 
 
Figure 7.  Graphic Representation of Lesk Algorithm 
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For example: In performing disambiguation for the word "book" in the 

sentence "I want to book a hotel with cheaper price in Las Vegas." The word 

"book" has 15 different synsets and definitions: 

1) (Synset('book.n.01'), a written work or composition that has been 

published (printed on pages bound together)' 

2) (Synset('book.n.02'), physical objects consisting of a number of pages 

bound together' 

3) (Synset('record.n.05'), a compilation of the known facts regarding 

something or someone' 

4) (Synset('script.n.01'), a written version of a play or other dramatic 

composition; used in preparing for a performance' 

5) (Synset('ledger.n.01'), a record in which commercial accounts are 

recorded' 

6) (Synset('book.n.06'), collection of playing cards satisfying the rules of a 

card game' 

7) (Synset('book.n.07'), a collection of rules or prescribed standards on 

the basis of which decisions are made' 

8) (Synset('koran.n.01'), the sacred writings of Islam revealed by God to 

the prophet Muhammad during his life at Mecca and Medina' 

9) (Synset('bible.n.01'), the sacred writings of the Christian religions' 

10) (Synset('book.n.10'), a major division of a long written composition' 
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11) Synset('book.n.11'), a number of sheets (ticket or stamps etc.) bound 

together on one edge' 

12) Synset('book.v.01'), engage for a performance' 

13) Synset('reserve.v.04'), arrange for and reserve (something for 

someone else) in advance' 

14) Synset('book.v.03'), record a charge in a police register' 

15) Synset('book.v.04'), unregister in a hotel booker' 

 

 

 
 
Figure 8.  Using The Lesk Algorithm to Get Synset of “Book” 
 

 

The Lesk algorithm compared all senses of "book" with senses of other 

words in this sentence, to see which sense has the largest number of the 

common word are shared. So Synset 15 is declared to be the most appropriate 

sense when the word "book" appears in this sentence. 

Example in Program 

We applied the Lesk algorithm to our program. After getting keywords, we 

used the Lesk algorithm to get correct synsets of all words. Then calculated 
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semantic similarity between synsets of words in terms and synsets of words in 

definitions. We used their maximum, minimum, average value, the average of 

first three largest values and median to pick a typical value to represent a list of 

semantic similarity values. For example, there is a text file which is called 

sample1 with five terms and definitions as listed: 

Q1: Cotton gin 

A1: A machine that cleaned raw cotton. It automatically separated the 

cotton seeds from the fluffy fibers. 

Q2: Second National Bank 

A2: This was the second national bank, established by Congress in 1816. 

It was overseen by the federal government, and it was to oversee and 

regulate the smaller state banks. 

Q3: Nullification 

A3: This was the theory that individual states had the right to reject federal 

laws, for example, laws that required the paying of tariffs on foreign goods. 

Southern states declared such laws null and void and threatened to leave 

the union if they were forced to pay such tariffs. 

Q4: Lowell System 

A4: A system used by the textile industry in Lowell, Massachusetts. Using 

farm girls as workers, they were the first ones to have an innovative way 

to weave cloth from a thread. 

Q5: Sectionalism 
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A5: This is the belief that one own section, or region, of the country, is 

 more important than the whole.  

We used the Lesk algorithm to get lists of synsets for terms and 

definitions.  

For example, this is a list of synsets for A1: 

[Synset('machine.n.05'), Synset('scavenge.v.04'), Synset('raw.s.02'), 

Synset('cotton.n.01'), Synset('disjointed.s.03'), Synset('cotton.n.01'), 

Synset('seed.v.08'), Synset('downy.s.01'), Synset('character.n.03')]. 

Then we computed the semantic distance using these synsets. For 

example, this is the list of semantic similarity values between Q1 and A1: 

[0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 

0.2857142857142857, 0.2857142857142857, 0.2222222222222222, 

0.2222222222222222, 0.2, 0.18181818181818182, 

0.14285714285714285, 0.14285714285714285, 0.14285714285714285, 

0.13333333333333333]. 

And in this example, we picked the first three greatest values out from the 

list and calculated their average numbers. Table3 shows the result of first three 

greatest semantic similarity values between each term and definition in sample1. 
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Table 3. Average of Three Max Semantic Similarity Values for Sample1 
Defs 
\Terms 

Q1 Q2 Q3 Q4 Q5 

A1 0.3333 0.3333 0.2543 0.2353 0.2719 

A2 0.4421 0.7917 0.2103 0.4339 0.2593 

A3 0.3333 0.5556 0.3497 0.2081 0.4955 

A4 0.5545 0.6565 0.2013 0.7143 0.2143 

A5 0.3651 0.3556 0.2679 0.3824 0.3316 

 
 
Limitation 

Using the Lesk algorithm to pick synsets is much better than getting 

synsets randomly. To make sure all words get accurate senses, we analyzed all 

synsets we got from the Lesk algorithm. But the result showed that only lower 

than 50% of words got their correct senses in sentences.  

For example: in Q1: [‘cotton’,’ gin’], word cotton has five senses, and word 

gin has six senses, the senses we expected to get was synset1 of word cotton 

and synset3 of word gin. But after using the Lesk algorithm, especially for the 

word gin, the definition of its synset3 had most numbers of the common word 

with word cotton, but the Lesk algorithm picked synset1, which made no sense in 

this "cotton gin" phrasal.  

Cotton:  

1) Synset('cotton.n.01'), soft silky fibers from cotton plants in their raw 

state' 

2) Synset('cotton.n.02'), fabric woven from cotton fibers' 
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3) Synset('cotton.n.03'), erect bushy mallow plant or small tree bearing 

bolls containing seeds with many long hairy fibers' 

4) Synset('cotton.n.04'), thread made of cotton fibers' 

5) Synset('cotton.v.01'), take a liking to' 

 

 

 
 
Figure 9.  Using The Lesk Algorithm to Get Synset of “Cotton” 

 

 

Gin: 

1) Synset('gin.n.01'), strong liquor flavored with juniper berries' 

2) Synset('snare.n.05'), a trap for birds or small mammals; often has a 

slip noose' 

3) Synset('cotton_gin.n.01'), a machine that separates the seeds from 

raw cotton fibers' 

4) Synset('gin.n.04'), a form of rummy in which a player can go out if the 

cards remaining in their hand total less than 10 points' 

5) Synset('gin.v.01'), separate the seeds from (cotton) with a cotton gin' 

6) Synset('gin.v.02'), trap with a snare' 

 



29 
 

 

 
Figure 10.  Using The Lesk Algorithm to Get Synset of “Gin” 

 

 

The major limitation of the Lesk algorithm is the low accuracy during 

process and the type of a sample is limited by this algorithm. Since our input 

would be randomly chosen by test taker, we could not make sure each word in 

the test file would share same words in their definitions, even they appeared in 

one sentence to represent a complete meaning. And a small sample, and a big 

number of fine senses in WordNet, many of which are not that distinguishable 

from each other. Only when the words in one context are most likely related to 

each other, the Lesk algorithm could perform a better disambiguation.  

Resnik Algorithm 

The Resnik algorithm is also one of the most useful methods to solve 

WSD problem. It was designed by Philip Resnik in 1995. Different from the Lesk 

algorithm, this algorithm would not compare the same words between two 

senses, it would pick the correct sense by analyzing the most informative 

subsumer of two senses, if the two senses contain a more informative subsumer, 

then these two senses would be more related to each other. “Their most 



30 
 

informative subsumer provides information about which sense of each word is 

the relevant one” [19].  

The most informative subsumer also called most specific subsumer or 

least common subsumer is the most specific common ancestor of two concepts 

found in a given ontology. It represents the commonality of the pair of concepts. 

In a WordNet hypernym hierarchy, the most informative subsumer is the deepest 

node in each path that covers all children. For example, in Figure 11, 

"automobile" is the ancestor of "car", while "vehicle" is an ancestor of "car". 

"Vehicle" is also an ancestor of "boat". In this case, the most informative 

subsumer of both the "boat" and the "car" is "vehicle", since it's the most specific 

concept which is an ancestor of both the "boat" and the "car". 

 

 

 

Figure 11.  Fragment of The WordNet Hypernym Hierarchy. 

Objective

Vehicle

Boat Automobile

Car



31 
 

 

 

This algorithm does not have a direct function can be used from NLTK 

libraries as the Lesk algorithm. So we need to design a function ourselves based 

on its algorithm. 

Problem Statement 

The problem is stated as follows. Given a set of words W = {w1, w2, …, 

wn}, with each word wi having an associated set Si = {si1, si2, …, sim} of possible 

senses. Assume that there exists some set W’	⊆∪	Si representing the set of word 

senses that an ideal human judge would conclude belong to the group of senses 

corresponding to the word grouping W [20].  

The Resnik algorithm is to define a function that takes wi, sim and set W as 

input and create a formula to analyze the relationship between wi in W and sim in 

Si. Then compute a value between 0 and 1 to represent the confidence with 

which one can state that sense sim belongs to W’.  

For example, we picked a group of words from Brown cluster, this word 

group contained lawyer, doctor, nurse. We treated this group as W. By getting 

senses of these three words in WordNet, we found that word “lawyer” contained 

only one sense: Synset('lawyer.n.01'), a professional person authorized to 

practice law; conducts lawsuits or gives legal advice'. But both the word “doctor” 

and the word “nurse” are polysemous.  

Senses of “doctor”: 
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1) Synset('doctor.n.01'), a licensed medical practitioner' 

2) Synset('doctor_of_the_church.n.01'), (Roman Catholic Church) a title 

conferred on 33 saints who distinguished themselves through the 

orthodoxy of their theological teaching' 

3) Synset('doctor.n.03'), children take the roles of physician or patient or 

nurse and pretend they are at the physician's office" 

4) Synset('doctor.n.04'), a person who holds Ph.D. degree (or the 

equivalent) from an academic institution' 

5) Synset('sophisticate.v.03'), alter and make impure, as with the intention 

to deceive' 

6) Synset('doctor.v.02'), give medical treatment to' 

7) Synset('repair.v.01'), restore by replacing a part or putting together 

what is torn or broken' 

Senses of “nurse”: 

1) Synset('nurse.n.01'), one skilled in caring for young children or the sick 

(usually under the supervision of a physician)' 

2) Synset('nanny.n.01'), a woman who is the custodian of children' 

3) Synset('nurse.v.01'), try to cure by special care of treatment, of an 

illness or injury' 

4) Synset('harbor.v.01'), maintain (a theory, thoughts, or feelings)' 

5) Synset('nurse.v.03'), serve as a nurse; care for sick or handicapped 

people' 
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6) Synset('nurse.v.04'), treat carefully' 

7) Synset('breastfeed.v.01'), give suck to' 

In this group, all three words are kinds of professional people. Especially 

for the word “doctor” and the word “nurse”, they are professional people working 

in the health professions. After using this algorithm, we should assign a high 

value to the unique sense of “doctor” as Synset('doctor.n.01'), a licensed medical 

practitioner. And it should also assign a high value to the sense of “nurse” as 

Synset('nurse.n.01'), one skilled in caring for young children or the sick (usually 

under the supervision of a physician). A low value should be assigned to other 

senses. 

Resnik Similarity 

The Resnik similarity is the core of this disambiguation algorithm, it 

evaluates semantic similarity in an IS-A taxonomy [14], based on the information 

Content (IC) of the least Common Subsumer. 

Given two words c1 and c2, the Resnik similarity is calculated as:  

 (1) 

For words c1 and c2, they have some different hypernyms as their 

subsumers. For example, in Figure 12 [15], nurse1 and doctor1 has a lot of 

different subsumers: health professional, professional, adult, person. Concept c 

is a common subsumer of c1 and c2, and p(c) is the probability of c occurs in a 
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corpus. This probability is between 0 and 1. Let s1 and s2 be common subsumers 

of c1 and c2. If s1 is-a s2, then p(s1) ≤ p(s2).  

A frequent subsumer has a high value of probability, and an infrequent 

subsumer has a low value of probability. And a subsumer that occurs rarely is 

more special, it means that this subsumer carries more information. In Figure 12, 

the person is more abstract than health professional to doctor1 and nurse1, so 

health professional is a more informative subsumer to doctor1 and nurse1. 

Words/concepts that appear frequently and in the context of many diverse 

subject domains are not typical/indicative of a specific subject domain. When 

such a common word is used in a communication, it is difficult to tell which 

specific topic this word is meant to allude (because there are so many possible 

contexts in which the word could be used). Thus high frequency words, that is, 

words with high p(c), carry little informational content (“there is nothing special 

about them”).  

On the other hand, low frequency words, which are those that are used 

only rarely and in some very specific contexts, are very indicative of the topic 

being communicated. That is, low probability p(c) is synonymous with high 

informational content.  

Probabilities are numbers between 0.0 and 1.0; logarithms of such 

numbers are negative, and numbers closer to 0.0 have smaller (“more negative”) 

values than number closer to 1.0. By maximizing over the negative log p(c), this 

will reverse. The result is that larger values are now indicative of concepts c with 
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larger information content. Thus, the subsuming concept that is least common (of 

smallest probability) is the one that carries the greatest amount of information. 

 

 

 

Figure 12.  Fragment of The WordNet Taxonomy. 

 

 

Probability p(c) estimates are derived from a corpus by computing [14]: 
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(2) 
Where words(c) is the set of nouns having a sense subsumed by concept c. N is 

the total number of nouns observed, probabilities are then computed simply as 

relative frequency [14]: 

(3) 
Table 4 shows examples of semantic similarity computed by the Resnik 

similarity for several word pairs. From Figure 12, we can see that word “doctor” 

with sense 1 as a medical person has hypernyms: health professional, 

professional, adult, and person. The doctor1 is similar to the word “lawyer”. They 

have the least common subsumer as a professional person. But it is even similar 

to nurse since both of them are the professional person working specifically 

within the health professions. Moreover, the Resnik similarity is a more 

specialized concept than association or relatedness. As we can see in Table 4, 

even doctor and medicine are highly associated, but the Resnik similarity would 

not judge them to be particularly similar. 

 

 

Table 4. Computation of Similarity for Several Pairs of Words 
Word1(c1) Word2(c2) Sim 

(c1,c2) 
Most informative 
subsumer 

doctor1(medical) nurse1(medical) 7.930359 health_professional 

doctor1(medical) lawyer 6.394069 professional 
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doctor1(medical) adult 4.910252 adult 

doctor1(medical) person 2.333545 person 

doctor1(medical) medicine 0.000000 entity 

 
 
Disambiguation Algorithm 

When two polysemous words are similar, their most informative subsumer 

provides information about which sense of each word is the relevant one [15]. 

Figure 13 is the disambiguation algorithm for noun groupings. The key idea is to 

consider the nouns in a word group pairwise [14] [15]. For word group pairwise wi 

and wj, the algorithm goes across all possible senses of both to get the most 

informative subsumer of them. Word wi can potentially get support from each of 

its k senses. And a sense supports wi if the corresponding synset has most 

informative subsumer among its ancestors. 

Here is an example, where W = {w1, w2, w3}, for w1 = doctor, w2 = nurse, 

w3 = lawyer. The word “doctor” and the word “nurse” are polysemous, here we 

considered two senses of the word doctor, we assumed doctor1= medical 

person, doctor2 = a person who holds a Ph.D. degree. We also picked two 

senses of the word “nurse”, we assumed nurse1 = medical person, nurse2 = 

nanny. In this example, we want to get values of doctor1 and doctor2. 

• Pairwise1: for w1 = doctor and w2 = nurse, the most subsumer c1,2 = 

Health professional, and information content v1,2 = 7.930359. So the 

support for doctor1 and nurse1 is incremented by 7.930359. And also, c1,2 
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is not an ancestor of doctor2 and nurse2, so neither doctor2 nor nurse2 

receives increment for their support. 

• Pairwise2: for w1 = doctor and w3 = lawyer, the most subsumer c1,3 = 

professional, and the information content v1,3 = 6.394069. The support for 

doctor1 and lawyer is incremented by 6.394069. And also, doctor2 cannot 

receive any increment for support as c2,3 is not an ancestor of doctor2. 

• Pairwise3: for w2 = nurse and w3 = lawyer, the most subsumer c2,3 = 

professional, and the information content v2,3 = 6.394069. The support for 

nurse1 and lawyer is incremented by 6.394069. And also, nurse2 cannot 

receive any increment for support as c2,3 is not an ancestor of nurse2. 

Doctor1 participated comparisons in pairwise1 and pairwise2, received 

support 7.930359 + 6.394069 out of a possible of 7.930359 + 6.394069, support / 

normalize = (7.930359 + 6.394069) / (7.930359 + 6.394069) = 1.000000, so the 

value assigned to doctor1 is 1.000000. doctor2 received 0 out of 7.930359 + 

6.394069, support / normalize =0 / (7.930359 + 6.394069) = 0.000000, so the 

value assigned to doctor2 is 0.000000. 
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Figure 13.  Disambiguation Algorithm for Noun Groupings. 

 

 

Examples 

We used two groups of words from Brown clusters as inputs. The first 

group was W1, which contained the words “tie”, “jacket”, and “suit”. The second 

group was W2, which contained the words “doctor”, “lawyer”, and “nurse”. 
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After using the Resnik algorithm, we got their senses and assigned values 

to different senses. From the examples, we could see the function we defined by 

the Resnik algorithm assigned different values to different senses. And in 

example2, this algorithm assigned value of 1.0 to the unique sense of the word 

“doctor” and the sense of the word “nurse” as we predicted before. 

Example1: 

Input: Given W1 = ['tie', 'jacket', 'suit'] 

Output: 

jacket: 

___ 1.000000 Synset('jacket.n.01'): a short coat 

___ 0.000000 Synset('jacket.n.02'): an outer wrapping or casing 

___ 0.000000 Synset('crown.n.11'): (dentistry) dental appliance consisting 

of an artificial crown for a broken or decayed tooth 

___ 0.000000 Synset('jacket.n.04'): the outer skin of a potato 

___ 0.000000 Synset('jacket.n.05'): the tough metal shell casing for 

certain kinds of ammunition 

tie: 

___ 1.000000 Synset('necktie.n.01'): neckwear consisting of a long narrow 

piece of material worn (mostly by men) under a collar and tied in knot at 

the front 

___ 0.000000 Synset('affiliation.n.01'): a social or business relationship 

___ 0.000000 Synset('tie.n.03'): equality of score in a contest 
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___ 0.000000 Synset('tie.n.04'): a horizontal beam used to prevent two 

other structural members from spreading apart or separating 

___ 0.000000 Synset('link.n.02'): a fastener that serves to join or connect 

___ 0.000000 Synset('draw.n.03'): the finish of a contest in which the 

score is tied and the winner is undecided 

___ 0.000000 Synset('tie.n.07'): (music) a slur over two notes of the same 

pitch; indicates that the note is to be sustained for their combined time 

value 

___ 0.000000 Synset('tie.n.08'): one of the cross braces that support the 

rails on a railway track 

___ 0.000000 Synset('tie.n.09'): a cord (or string or ribbon or wire etc.) 

with which something is tied 

suit: 

___ 1.000000 Synset('suit.n.01'): a set of garments (usually including a 

jacket and trousers or skirt) for outerwear all of the same fabric and color 

___ 0.000000 Synset('lawsuit.n.01'): a comprehensive term for any 

proceeding in a court of law whereby an individual seeks a legal remedy 

___ 0.000000 Synset('suit.n.03'): (slang) a businessman dressed in a 

business suit 

___ 0.000000 Synset('courtship.n.01'): a man's courting of a woman; 

seeking the affections of a woman (usually with the hope of marriage) 
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___ 0.000000 Synset('suit.n.05'): a petition or appeal made to a person of 

superior status or rank 

___ 0.000000 Synset('suit.n.06'): playing card in any of four sets of 13 

cards in a pack; each set has its own symbol and color 

Example 2: 

Input: Given W2: ['doctor', 'lawyer', 'nurse'] 

Output: 

nurse: 

___ 1.000000 Synset('nurse.n.01'): one skilled in caring for young children 

or the sick (usually under the supervision of a physician) 

___ 0.000000 Synset('nanny.n.01'): a woman who is the custodian of 

children 

lawyer: 

___ 0.446375 Synset('lawyer.n.01'): a professional person authorized to 

practice law; conducts lawsuits or gives legal advice 

doctor: 

___ 1.000000 Synset('doctor.n.01'): a licensed medical practitioner 

___ 0.000000 Synset('doctor_of_the_church.n.01'): (Roman Catholic 

Church) a title conferred on 33 saints who distinguished themselves 

through the orthodoxy of their theological teaching 

___ 0.000000 Synset('doctor.n.03'): children take the roles of physician or 

patient or nurse and pretend they are at the physician's office 
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___ 0.000000 Synset('doctor.n.04'): a person who holds Ph.D. degree (or 

the equivalent) from an academic institution 

JIGSAW Algorithm 

The JIGSAW algorithm was improved based on the Resnik algorithm. The 

JIGSAW algorithm takes a list of words as input, and then returns a list of 

WordNet synsets S = {s1, s2, …, sk} in which each element si is obtained by 

disambiguating the target word wi based on the information obtained from 

WordNet about a few immediately surrounding words [16].  

Methodology 

The JIGSAW algorithm differs from the Resnik algorithm in three parts as follows: 

• The using of Gaussian distribution, which takes into account the distance 

between the words in the list to be disambiguated. In the Resnik similarity, 

we need to compare every pair of words in a list, but for a long sentence, 

or even a text with more words, not every pair of words are highly 

associated. If the position of one word is far away from another word, their 

senses may have low probability of influencing each other. We could see 

from Figure 14, for each pair of words wi and wj, similarity = sim (wi and wj) 

× G(pos(wi), pos(wj)). The closer their positions are, the larger their 

Gaussian factor is, the larger their similarity is. Therefore, we put positions 

of all words into a Gaussian function to choose the nearest most 

informative subsumer in all pairs of synsets.  
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• Setting depth1 and depth2 to limit the search for most informative 

subsumer to k ancestors. Although the limitation of depths of searching for 

the ancestor may guarantees that "too abstract" most informative 

subsumers will be ignored. We ignored this difference in our program. 

Because our input was irregular, it leaded to the result that we could not 

set values to depths stable. If the values of depths are inappropriate, in 

other words, if one of the depths is too small, it may cause the most 

specific subsumer of two words would not be found.  

• Making use of factor R, which gives more importance to the synsets that 

are more common than others, according to the frequency score in 

WordNet [16] [17]. For word wi, sik is one sense of wi, the factor R(k) that 

takes into account the rank of sik in WordNet. R(k) is computed as:  

 (4) 
Where n is the cardinality of the sense inventory Si for wi and k is the rank 

of sik in Si, starting from 0 [16]. And the JIGSAW algorithm also assigned 

two parameters 𝛼 and 𝛽 to control expression 4, where 𝛼 controls the 

normalized support, and 𝛽 controls R(k). In this algorithm,	𝛼= 0.7 and 𝛽 = 

0.3. 
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Figure 14.  The JIGSAW Algorithm for Noun Groupings. 
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Gaussian Distribution 

The normal (or Gaussian) distribution is a very common continuous 

probability distribution [20]. The probability density of the normal distribution is: 

(5) 

In this algorithm, we used Gaussian distribution to take into account of the 

difference between the positions of wi and wj. To build an appropriate Gaussian 

function, we imported Numpy package to insert formula 5, and set 𝜇 = 0.0, 𝜎 = 

0.7, then we got the Gaussian function [19] as Figure 15. We used expression 6 

to evenly distribute positions of words to the Gaussian distribution we got in 

Figure 15 from 0.0 to 3 × 0.7 = 2.1. In expression 6, “dist” represents the 

distance between two positions, and “numwords” represents the total numbers of 

words. 

𝐺𝑎𝑢𝑠𝑠 = 	𝜇 + 0123∗5∗	6	
789:;<02

 (6) 

And finally, we assigned G(pos(wi), pos(wj)) to the calculation of the 

Resnik similarity between wi and wj. 
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Figure 15.  Gaussian Distribution. 

 

 

Examples 

We picked A2 from sample1 as an example, and got a list of keywords as 

follows: ['bank', 'government', 'state']. And then we compared results from both 

the JIGSAW algorithm and the Resnik algorithm. 

Comparing the Lesk algorithm to the Resnik algorithm, the JIGSAW 

algorithm got the highest accuracy. Although it was not perfect, it was good 

enough to be applied to our program. 
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Table 5. “State”: The Resnik Algorithm and The JIGSAW Algorithm 
Synset  Definition Resnik 

algorithm 
Jigsaw 
algorithm 

Synset('state.n.01') the territory occupied by one 
of the constituent 
administrative districts of a 
nation. 

0.000000 0.300000 

Synset('state.n.02') the way something is with 
respect to its main attributes 

0.000000 0.270000 

Synset('state.n.03') the group of people 
comprising the government of 
a sovereign state 

0.117468 0.940000 

Synset('state.n.04') a politically organized body of 
people under a single 
government 

0.117468 0.910000 

Synset('state of 
_matter.n.01') 

(chemistry) the three 
traditional states of matter are 
solids (fixed shape and 
volume) and liquids (fixed 
volume and shaped by the 
container) and gases (filling 
the container) 

0.000000 0.180000 

Synset('state.n.06') a state of depression or 
agitation 

0.000000 0.150000 

Synset('country.n.02')  the territory occupied by a 
nation 

0.000000 0.120000 

Synset('department_of 
_state.n.01') 

the federal department in the 
United States that sets and 
maintains foreign policies 

0.117468 0.790000 
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Table 6. “Bank”: The Resnik Algorithm and The JIGSAW Algorithm 
Synset  Definition The 

Resnik 
algorithm 

The 
Jigsaw 
algorithm 

Synset('bank.n.01'):  sloping land (especially 
the slope beside a body 
of water) 

0.000000 0.300000 

Synset('depository_financial 
_institution.n.01') 

a financial institution that 
accepts deposits and 
channels the money into 
lending activities 

0.299483 1.676000 

Synset('bank.n.03') a long ridge or pile 0.000000 0.252000 

Synset('bank.n.04') an arrangement of 
similar objects in a row or 
in tiers 

1.250000 0.228000 

Synset('bank.n.05') a supply or stock held in 
reserve for future use 
(especially in 
emergencies) 

0.000000 0.204000 

Synset('bank.n.06') the funds held by a 
gambling house or the 
dealer in some gambling 
games 

0.000000 0.180000 

Synset('bank.n.07') a slope in the turn of a 
road or track; the outside 
is higher than the inside 
in order to reduce the 
effects of centrifugal 
force 

0.000000 0.156000 

Synset('savings_bank.n.02') 

 

a container (usually with 
a slot in the top) for 
keeping money at home 

0.000000 0.132000 

Synset('bank.n.09' a building in which the 
business of banking 
transacted 

0.000000 0.108000 

Synset('bank.n.10') a flight maneuver; aircraft 
tips laterally about its 
longitudinal axis 
(especially in turning) 

0.000000 0.084000 
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Table 7. “Government”: The Resnik Algorithm and The JIGSAW Algorithm 
Synset Definition The 

Resnik 
algorithm 

The 
Jigsaw 
algorithm 

Synset('government.n.01') the organization that is the 
governing authority of a 
political unit 

0.117468 1.000000 

Synset('government.n.02') the act of governing; 
exercising authority 

0.000000 0.240000 

Synset('government.n.03') (government) the system 
or form by which a 
community or other 
political unit is governed 

0.000000 0.180000 

Synset('politics.n.02') the study of government 
of states and other 
political units 

0.000000 0.120000 
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CHAPTER EIGHT 

SEMANTIC SIMILARITY 

 

Using the JIGSAW algorithm, we got a list of synsets with the highest 

values. Then we used Wu-Palmer Similarity to calculate the semantic similarity 

between terms and definitions. Wu-Palmer [21] similarity returns a score 

denoting how similar two-word senses are, based on the depth of the two senses 

in the taxonomy and that of their Least Common Subsumer [18].  

𝑠𝑖𝑚	𝑤𝑢𝑝 𝑐1, 𝑐2 = 	2 ∗ EFGHI JKL
0MN3O PQ R0MN3O(PT)

 (7) 

There are several models for computing semantic similarity, we chose 

Wu-Palmer method for two reasons: Firstly, Wu-Palmer [21] computes similarity 

by using words’ senses, the input should be a pair of synsets, so the output from 

the JIGSAW algorithm could be used directly. And the second reason is that the 

score returns from Wu-Palmer Similarity is between 0 and 1, it is easy for the 

future comparison and analysis.  

We created sample2 with ten terms and ten definitions. All terms and 

definitions were picked from a high school history book. We picked the first five 

terms and definitions from Spanish-American War chapter and the last five terms 

and definitions from Vietnam War chapter.  

Sample2:  

Q1: Why was the United States interested in expanding its territories in the 

late 1800s? 
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A1: The United States wanted new markets and military advantages. 

Some Americans wanted to spread their Christian faith to other countries. 

In addition, many Americans believed that expanding into the Pacific was 

their manifest destiny. 

Q2: What did the United States gain and lose in the Spanish-American 

War? 

A2: The United States gained control of Puerto Rico, Guam, and the 

Philippines (for $20 million). The United States also became an imperialist 

nation with more bases for trade and for resupplying its navy. The war 

cost the United States about $250 million, and about 5,400 soldiers lost 

their lives in the war. 

Q3: Why did the United States support the Panamanian revolt against 

Colombian rule? 

A3: Colombia's Senate refused to ratify a treaty that would have allowed 

the United States permanent use of the land needed to build a canal 

through the Isthmus of Panama. When Panamanian rebels revolted 

against Colombia, the United States supported them in hopes that after 

their victory, they would agree to the U.S. canal plan. When Panama 

declared independence, the United States swiftly recognized the new 

country, and a new canal treaty was soon signed. 

Q4: Why the United States withdrew its troops from Mexico in 1917? 
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A4: Possible answers include any two of the follows: Having the troops in 

Mexico increased the risk of war between the United States and Mexico; 

U.S. soldiers made no progress in capturing Pancho Villa, and Wilson was 

compelled to pay attention to developments in the early years of World 

War I. 

Q5: Why did the United States support the Panamanian rebellion and 

recognize the new Republic of Panama? 

A5: The United States wanted a friendly government in Panama which 

would support negotiations to allow the United States to build a canal 

connecting the Atlantic and Pacific Oceans. 

Q6: Why did President Kennedy initially send advisors and aid to 

Vietnam? 

A6: Kennedy was a firm believer in the domino theory, and after the two 

Cold War disasters that began Kennedy’s presidency, he hoped that 

aiding South Vietnam would be a sign of continued U.S. strength and 

resolve. 

Q7: Why was President Truman unwilling to back Vietnamese 

independence from colonial rule? 

A7: He was unwilling to back Vietnamese independence because he saw 

the struggle as part of the much larger Cold War against communism. He 

was unwilling to back the Vietminh because of Ho Chi Minh’s membership 

in the Communist Party. 
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Q8: Why did President Johnson have difficulty reassessing his war 

strategy in 1968? 

A8: He had difficulty because his own advisers disagreed on the best 

course to take. Some believed ground troops should invade North 

Vietnam, and some believed Johnson’s war policies were too extreme. 

Q9: How did the assassination of Robert Kennedy affect the 1968 

presidential race? 

A9: Kennedy had won the California primary and was a favorite to win the 

Democratic nomination. In what turned out to be a very close presidential 

election, had Kennedy, rather than Hubert Humphrey, faced Nixon, the 

Democrats might have won the election. 

Q10: Why did Ho Chi Minh believe the United States would support the 

Vietnamese nationalist movement? 

A10: He thought the movement would receive U.S. support because he 

believed that Vietnam’s fight for independence from France was similar to 

the American fight for independence from Britain. 
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Figure 16.  Average of Three Max Semantic Similarity for Sample2 

 

 

Figure 16 shows the result of sample2. Each term would select four 

definitions with largest semantic similarity values from this result as alternative 

choices: 

• Q1: [ 0.82299499  0.83664021  0.86904762  0.91071429] 

• Q2: [ 0.69395712  0.73504274  0.75  0.87179487] 

• Q3: [ 0.82962963  0.85185185  0.91071429  0.96296296] 

• Q4: [ 0.91534392  0.9212963   0.96296296  1.000000] 

• Q5: [ 0.91071429  0.91534392  0.94736842  1. 000000] 

• Q6: [ 0.84848485  0.85925926  0.88666667  0.98666667] 

• Q7: [ 0.63896104  0.71515152  0.82769231  0.82769231] 



56 
 

• Q8: [ 0.74918301  0.83602564  0.96102564  0.96296296] 

• Q9: [ 0.56825397  0.65410628  0.72380952  0.72380952] 

• Q10: [ 0.43386243  0.64444444  0.73333333  0.88888889] 

For example, the multiple selections for Q1are: 

• A5: 'The United States wanted new markets and military advantages. 

Some Americans wanted to spread their Christian faith to other countries. 

In addition, many Americans believed that expanding into the Pacific was 

their manifest destiny.' (SIM Q1 & A5: 0.82299499) 

• A4: 'Colombia's Senate refused to ratify a treaty that would have allowed 

the United States permanent use of the land needed to build a canal 

through the Isthmus of Panama. When Panamanian rebels revolted 

against Colombia, the United States supported them in hopes that after 

their victory, they would agree to the U.S. canal plan. When Panama 

declared independence, the United States swiftly recognized the new 

country, and a new canal treaty was soon signed.' (SIM Q1 & A4: 

0.83664021) 

• A3:  'Possible answers include any two of the following: Having the troops 

in Mexico increased the risk of war between the United States and 

Mexico; U.S. soldiers made no progress in capturing Pancho Villa; and 

Wilson was compelled to pay attention to developments in the early years 

of World War I.' (SIM Q1 & A3: 0.86904762) 
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• A1:  'The United States wanted a friendly government in Panama which 

would support negotiations to allow the United States to build a canal 

connecting the Atlantic and Pacific Oceans.’ (SIM Q1 & A1: 0.91071429) 
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CHAPTER NINE 

COMPARISON 

 

We used sample2 as input, ran it with both the original program(old 

version) and improved program(new version). The improved program selected 

four choices based on calculated semantic similarities, and the original program 

selected four choices randomly. Both versions of the program would add the 

correct choice (definition or answer) to the list of choices to be presented to the 

test taker. 

 

 

Table 8. Example1: New Version and Old Version. 
New Version  Old Version 

(1 of 5) 
Why was the United States interested 
in expanding its territories in the late 
1800s? 
 
[1] The United States wanted new 
markets and military advantages. 
Some Americans wanted to spread 
their Christian faith to other countries. 
In addition, many Americans believed 
that expanding into the Pacific was 
their manifest destiny.  
 
[2] Possible answers include any two 
of the following: Having the troops in 
Mexico increased the risk of war 
between the United States and 
Mexico; U.S. soldiers made no 
progress in capturing Pancho Villa, 

(1 of 5) 
Why was the United States interested in 
expanding its territories in the late 
1800s? 
 
[1] The United States wanted new 
markets and military advantages. Some 
Americans wanted to spread their 
Christian faith to other countries. In 
addition, many Americans believed that 
expanding into the Pacific was their 
manifest destiny.  
 
[2] Kennedy was a firm believer in the 
domino theory, and after the two Cold 
War disasters that began Kennedy’s 
presidency, he hoped that aiding South 
Vietnam would be a sign of continued 
U.S. strength and resolve.  



59 
 

and Wilson was compelled to pay 
attention to developments in the early 
years of World War I. 
 
[3] The United States wanted a 
friendly government in Panama which 
would support negotiations to allow 
the United States to build a canal 
connecting the Atlantic and Pacific 
Oceans.  
 
[4] Colombia's Senate refused to 
ratify a treaty that would have 
allowed the United States permanent 
use of the land needed to build a 
canal through the Isthmus of 
Panama. When Panamanian rebels 
revolted against Colombia, the United 
States supported them in hopes that 
after their victory, they would agree to 
the U.S. canal plan. When Panama 
declared independence, the United 
States swiftly recognized the new 
country, and a new canal treaty was 
soon signed. 

 
[3] He was unwilling to back 
Vietnamese independence because he 
saw the struggle as part of the much 
larger Cold War against communism. 
He was unwilling to back the Vietminh 
because of Ho Chi Minh’s membership 
in the Communist Party.  
 
[4] The United States wanted a friendly 
government in Panama which would 
support negotiations to allow the United 
States to build a canal connecting the 
Atlantic and Pacific Oceans.  
 

 

 

In example1, new version of the improved program selected Q1 as a 

question, and selected four definitions with largest semantic similarity values as 

choices: A5: 0.82299499, A4: 0.83664021, A3: 0.86904762, A1: 0.91071429. All 

selections related to Spanish-American War. What's more, all four selections 

were definitions of a "why" question, all of the selections were plausible, which 

made this question hard to be used exclusion method to get the correct answer. 

The old version of the original program got four selections randomly, in this 

example, only selection1 and selection4 came from the chapter of Spanish-
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American War, but selection2 and selection3 were about Vietnam War, they were 

easy to be ruled out. So in this example, comparing to old version of the original 

program, our new version of the improved program generated questions with 

more plausible choices. 

 

 

Table 9. Example2: New Version and Old Version. 
New Version  
 

Old Version 
 

 How did the assassination of Robert 
Kennedy affect the 1968 presidential 
race?  
 
[1] Kennedy had won the California 
primary and was a favorite to win the 
Democratic nomination. In what turned 
out to be a very close presidential 
election, had Kennedy, rather than 
Hubert Humphrey, faced Nixon, the 
Democrats might have won the election.  
 
[2] Possible answers include any two of 
the following: Having the troops in 
Mexico increased the risk of war 
between the United States and Mexico; 
U.S. soldiers made no progress in 
capturing Pancho Villa; and Wilson was 
compelled to pay attention to 
developments in the early years of 
World War I.  
 
[3] Kennedy was a firm believer in the 
domino theory, and after the two Cold 
War disasters that began Kennedy’s 
presidency, he hoped that aiding South 
Vietnam would be a sign of continued 
U.S. strength and resolve.  

How did the assassination of Robert 
Kennedy affect the 1968 presidential 
race?  
 
[1] Possible answers include any two 
of the following: Having the troops in 
Mexico increased the risk of war 
between the United States and 
Mexico; U.S. soldiers made no 
progress in capturing Pancho Villa; 
and Wilson was compelled to pay 
attention to developments in the early 
years of World War I.  
 
[2] The United States wanted a 
friendly government in Panama which 
would support negotiations to allow 
the United States to build a canal 
connecting the Atlantic and Pacific 
Oceans.  
 
[3] The United States wanted new 
markets and military advantages. 
Some Americans wanted to spread 
their Christian faith to other countries. 
In addition, many Americans believed 
that expanding into the Pacific was 
their manifest destiny.  
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[4] He had difficulty because his own 
advisers disagreed on the best course 
to take. Some believed ground troops 
should invade North  
Vietnam, and some believed Johnson’s 
war policies were too extreme.  

 
[4] Kennedy had won the California 
primary and was a favorite to win the 
Democratic nomination. In what 
turned out to be a very close 
presidential election, had Kennedy, 
rather than Hubert Humphrey, faced 
Nixon, the Democrats might have 
won the election. 

 

 

In example2, new version of the improved program selected Q9 as a 

question, and selected four definitions with largest semantic similarity values as 

choices: A8: 0.56825397, A4: 0.65410628, A6: 0.72380952, A9: 0.72380952. 

Except for A4, the other three selections related to Vietnam War, especially 

selection1 and selection3 are highly related. But for old version of the original 

program, only correct answer related to question, the other three selections had 

nothing to do with the keyword "Kennedy", they were all easy to be ruled out. 
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CHAPTER TEN 

LIMITATION 

 

Comparing to pick selections randomly, our new version program highly 

improved the difficulty of questions. But natural language processing is not 100% 

accurate, our program has three limitations:  

• The JIGSAW program could not recognize some special nouns like 

person names that were not in WordNet corpus. For example, Pablo 

Picasso, who was a Spanish Painter, this name could not be processed by 

the Resnik similarity model.  

• The program worked better on long sentences than short sentences. The 

reason was that we analyzed semantic similarity between each keyword of 

sentences, more keywords we had, more accurate the result we got. Short 

sentences might not have enough keywords to represent its full meaning. 

• We did not have a system or statistical method to analyze if the choices 

are hard enough, to decide which program could generate more 

challenging tests that are less amenable to solving by elimination; subject 

knowledge needed to make correct selection.  
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CHAPTER ELEVEN 

CONCLUSION AND FUTURE WORK 

 

This project has presented several natural language processing methods. 

Several NLTK libraries have been imported, these libraries provided functions as 

tokenizing sentence into words, removing stop words, tagging and extracting 

nouns. The core of this project was to develop a word sense disambiguation 

model. The Resnik similarity, as measured using information content and most 

informative subsumer, was shown to be useful in resolving word sense 

disambiguation problem in the Resnik algorithm. Based on the Resnik algorithm, 

the JIGSAW algorithm was developed by inserting Gaussian distribution and 

computing a factor R that takes into account the rank of senses in WordNet. We 

experimented with these WSD algorithms and semantic similarity measures for 

keywords in terms and definitions and evaluated their performance on several 

samples. Based on the comparison between our experimental results and old 

version program results, we find that our new version is performing much better 

than the original version of the program. 

 For this project, the author of the project (and advisor Dr. Voigt) were the 

judges who determined that the multiple choice questions generated by the new 

program were superior to the questions produced by the original QAW program. 

In virtually each instance we have tested, the improvement was very obvious, 

and it is difficult to imagine that anyone would disagree with our findings.  
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Naturally, further improvements to QAW, which would likely be more subtle, 

would warrant an independent and more objective evaluation. 

As discussed earlier, there are several limitations in our program, a library 

named StanfordNERTagger can be used to tag special names has not been 

used yet, many other factors are not taken into account for solving WSD 

problem. Making use of these libraries and factors we may able to design better 

multiple-choice generator.   
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