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Figure 2. Experiment 2a. Mean distance traveled (±SEM) on the pretreatment 

and test day. On the preinjection day (PD 18), rats were injected with prazosin (5 

mg/kg), ritanserin (5 mg/kg), prazosin+ritanserin, or saline in the home cage. 

After 30 min, rats received a preinjection of EEDQ (15 mg/kg). On the 

pretreatment day (PD 19), rats were injected with saline or 30 mg/kg cocaine, 

immediately followed by 30 min of behavioral assessment. On the test day (PD 

21), all rats were injected with 20 mg/kg cocaine, immediately followed by 120 

min of behavioral assessment. * Significantly different from the Saline-DMSO 

Acute Control group (open bar). † Significantly different from the Saline-DMSO 

Sensitization group (filled bar, filled circles). 
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prazosin+ritanserin to enhance the locomotor activity of saline-pretreated rats 

and depress the locomotion of cocaine-pretreated rats. 

Experiment 3: Effects of EEDQ on the Expression of One-Trial  
Cocaine-Induced Behavioral Sensitization 

 On the pretreatment day, rats given cocaine (M = 8054.65 cm, SEM = 

343.22) had greater locomotor activity than rats given saline (M = 2118.44 cm, 

SEM = 217.77) [t(46)= 14.60, p<0.001]. On the test day, locomotor sensitization 

was apparent since the 0 mg/kg EEDQ-sensitization group exhibited significantly 

more locomotor activity than the 0 mg/kg EEDQ-acute control group [Preinjection 

× Drug Interaction, F(2,47)= 5.74, p<0.01; and Tukey tests, p<0.05] (Figure 4). 

Both the low (7.5 mg/kg) and high (15 mg/kg) doses of EEDQ significantly 

attenuated locomotor activity, because the 7.5 mg/kg EEDQ-sensitization group 

and the 15 mg/kg EEDQ-sensitization group had significantly less locomotor 

activity than the 0 mg/kg EEDQ-sensitization group [Preinjection × Drug 

Interaction]. Moreover, the EEDQ-sensitization groups were not different from the 

acute control group. 

Experiment 4a: The Use of 5-HT and/or α1-Adrenergic Receptor 
 Protection to Assess the Effects of EEDQ on the 

 Expression of One-Trial Cocaine-Induced  
Behavioral Sensitization 

 On the pretreatment day, rats that received cocaine (M = 7691.17 cm, SEM 

= 331.28) had significantly more locomotor activity than rats given saline (M = 

2593.23 cm, SEM = 219.26) [t(78)= 12.832, p<0.001]. On the test day, locomotor 

sensitization was not apparent since cocaine-pretreated rats (M = 28456.66 cm, 
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SEM = 1707.44) exhibited only marginally more locomotor activity than saline-

pretreated rats (M = 24026.85 cm, SEM = 1702.95) [Preinjection main effect, 

F(1,70)= 3.74, p=0.057] (right panels, Figure 5). A separate statistical analysis 

comparing only the saline-pretreated and cocaine-pretreated Sal-DMSO groups 

also indicated an absence of behavioral sensitization. Neither EEDQ or the 

protection treatments significantly affected performance on the test day 

[Preinjection main effect, F(4,70)= 2.49, p=0.052]. 

Experiment 4b: Effects of Ritanserin and Prazosin on the  
Expression of One-Trial Cocaine Sensitization 

 On the pretreatment day, rats given cocaine (M = 8214.45 cm, SEM = 

548.58) had significantly more locomotor activity than rats that received saline (M 

= 2788.30 cm, SEM = 383.31) [t(22)= 8.11, p<0.001]. On the test day, locomotor 

sensitization was evident since rats in the saline-sensitization group had 

significantly greater locomotor activity than rats in the saline-acute control group 

[Preinjection × Drug interaction, F(1,20)= 6.53, p<0.05] (right panels, Figure 6). 

In addition, sensitized rats preinjected with prazosin and ritanserin had 

significantly less locomotor activity than those that received a preinjection of 

saline [Preinjection × Drug interaction]. None of the interactions involving the 

time block variable were statistically significant.  
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Figure 3. Experiment 2b. Mean distance traveled (±SEM) on the pretreatment 

and test day. On the preinjection day (PD 18), rats were injected with 

prazosin+ritanserin or saline in the home cage. After 30 min, rats received an 

injection of vehicle. On the pretreatment day (PD 19), rats were injected with 

saline or 30 mg/kg cocaine, immediately followed by 30 min of behavioral 

assessment. On the test day (PD 21), all rats were injected with 20 mg/kg 

cocaine, immediately followed by 120 min of behavioral assessment. * 

Significantly different from the Saline control group (open bar). 



  

   64 

0

2,000

4,000

6,000

8,000

10,000

0 mg/kg EEDQ

7.5 mg/kg EEDQ

15 mg/kg EEDQ

Saline-Pretreated “Acute Control“ Groups

20,000

40,000

60,000

80,000

1 2 3 4 5 6 7 8 9 10 11 12

0

2,000

4,000

6,000

8,000

 

0 mg/kg EEDQ

7.5 mg/kg EEDQ

15 mg/kg EEDQ

Cocaine-Pretreated "Sensitized" Groups

10-Min Time Blocks

0 7.5 15

0

20,000

40,000

60,000

0

EEDQ (mg/kg)

D
is

ta
n

c
e

 T
ra

v
e
le

d
 (

c
m

)

Test Day

† †

*

 
 

 

 

 

Figure 4. Experiment 3. Mean Distance traveled (±SEM) on the test day. On 
the pretreatment day (PD19), rats were injected with saline or 30 mg/kg 
cocaine, immediately followed by 30 min of behavioral assessment. On the 
preinjection day (PD 20), rats were injected with EEDQ (0, 7.5, or 15 mg/kg) in 
the home cage. On the test day (PD 21), all rats were challenged with 20 
mg/kg cocaine followed immediately by 120 min of behavioral assessment. * 
Significantly different from 0 mg/kg EEDQ-Saline group (acute control group; 
open circles and open bars). † Significantly different from the 0 mg/kg EEDQ-
cocaine group (cocaine alone group; filled circles and black bars). 
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Figure 5. Experiment 4a. Mean distance traveled (±SEM) on the test day. On the 

pretreatment day (PD 19), rats were injected with saline or 30 mg/kg cocaine, 

immediately followed by 30 min of behavioral assessment. On the preinjection 

day (PD 20), rats were injected with prazosin (5 mg/kg), ritanserin (5 mg/kg), 

prazosin+ritanserin, or saline in the home cage. After 30 min, rats received a 

preinjection of EEDQ (15 mg/kg). On the test day (PD 21), all rats were injected 

with 20 mg/kg cocaine, immediately followed by 120 min of behavioral 

assessment.  
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Figure 6. Experiment 4b. Mean distance traveled (±SEM) on the test day. On the 

pretreatment day (PD 19), rats were injected with saline or 30 mg/kg cocaine, 

immediately followed by 30 min of behavioral assessment. On the preinjection 

day (PD 20), rats were injected with prazosin+ritanserin or saline in the home 

cage. After 30 min, rats received an injection of vehicle. On the test day (PD 21), 

all rats were injected with 20 mg/kg cocaine, immediately followed by 120 min of 

behavioral assessment. * Significantly different from the Saline control group 

(open bar). † Significantly different from the Saline Sensitization group (filled 

bar).  

  



  

   67 

CHAPTER TWELVE 

DISCUSSION 

 

 Prior to this thesis, research examining the mechanisms underlying 

cocaine-induced one-trial behavioral sensitization in preweanling rats was 

scarce (e.g., see McDougall et al., 2016; Mohd-Yusof et al., 2014; 2016); 

however, multiple studies using adult rats indicated that dopaminergic, 

serotonergic, and adrenergic receptor systems are involved in the mediation 

of behavioral sensitization (Auclair et al., 2004; O’Neill et al., 1999; 

Vanderschuren et al., 2003). Behavioral and neurochemical data using 

preweanling rats suggest that selective protection from the nonspecific 

irreversible antagonist EEDQ could be useful for investigating the role of 

individual receptor types in behavioral sensitization (McDougall et al., 2016). 

Therefore, in the present thesis I used EEDQ in conjunction with selective 

protection experiments to examine whether the serotonergic and adrenergic 

receptor systems mediate the induction and expression of cocaine-induced 

one-trial behavioral sensitization in preweanling rats. 

 Results from this thesis showed that cocaine was able to induce one-

trial behavioral sensitization in preweanling rats. By administering EEDQ 

prior to either the pretreatment day or the test day, it was apparent that 

general receptor inactivation blocked both the induction and expression of 

cocaine-induced one-trial behavioral sensitization. Importantly, administering 
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prazosin and ritanserin prior to EEDQ treatment did not protect the induction 

or expression of behavioral sensitization, which suggests that serotonergic 

and adrenergic receptors do not mediate cocaine-induced sensitized 

responding in preweanling rats. This negative result indicates that some 

other receptor type, or a combination of redundant receptor systems, 

mediates the induction and expression of behavioral sensitization (see also 

White et al., 1998). 

 Some findings from this study were unexpected. For example, it was 

concerning that cocaine did not induce a statistically significant sensitized 

response in Experiments 2b and 4a. In the case of Experiment 2b, there 

were only six subjects per group, as opposed to the eight subjects per group 

that we normally use. This lack of power may have been responsible for the 

inability to detect behavioral sensitization. Interestingly, the magnitude of the 

effect size between the Acute Control group and the Sensitization group of 

Experiment 2b is similar to, if not greater than, experiments in which 

statistically significant behavioral sensitization was observed. For example, 

the effect size magnitude was 18568.75 cm in Experiment 2b, which resulted 

in a nonsignificant difference; whereas, the effect size magnitude between 

the Acute Control and Sensitization group of Experiment 4b was 17137.88 

cm, which was sufficient for a statistically significant effect. In the case of 

Experiment 4a, the reason for the marginal sensitized responding is more 

unclear. Perhaps the fact that this experiment examined the expression 
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(rather than the induction) of behavioral sensitization was responsible for the 

weakened sensitization effect. More specifically, the nature of the expression 

paradigm may have led to increased stress on the control animals (i.e., the 

induction paradigm requires fewer injections on PD 20 and 21 than the 

expression paradigm), which may have affected our ability to detect cocaine-

induced behavioral sensitization. Indeed, stress-induced behavioral 

sensitization is a well known phenomenon that can be initiated by the 

injection protocol itself (for a review, see Robinson & Becker, 1986). That 

being said, Experiment 4b was also an expression experiment, with the 

same number and timing of injections, and statistically significant behavioral 

sensitization was achieved. Therefore, it is uncertain why cocaine-induced 

behavioral sensitization was not evident in Experiment 4a. In the same 

experiment, EEDQ did not block behavioral sensitization; however, since a 

statistically significant sensitized response did not occur, it is reasonable to 

argue that EEDQ could not block a phenomenon that was not present. Even 

so, close examination of the data reveals that EEDQ did not appear to cause 

a robust decline in the locomotor activity of the “sensitization” groups.  

 Finally, it is concerning that prazosin and ritanserin affected the 

locomotor activity and sensitized responding of cocaine-treated rats 

independent of the actions of EEDQ (see Experiments 2b and 4b). The 

results of Experiment 2a suggest that neither the serotonergic or adrenergic 

receptor systems are responsible for one-trial cocaine-induced behavioral 
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mechanisms mediating locomotor activity in preweanling rats are resistant to 

EEDQ, while the mechanisms mediating behavioral sensitization are not. 

The inability of EEDQ to block the locomotor activity of preweanling rats is 

interesting, and may be due to a compensatory mechanism involving an 

excess of high affinity D2-like receptors that is absent in older animals 

(McDougall et al., 2014). Consistent with this explanation, preweanling rats 

have a higher percentage of high affinity striatal D2-like receptors (i.e., D2High 

receptors) than adolescent or adult animals (McDougall et al., 2015). 

 Although thousands of studies have examined the neural bases of 

behavioral sensitization, it remains unclear which receptor systems are 

important for the induction and expression of cocaine-induced behavioral 

sensitization. Despite contradictory evidence, it is still possible that 

dopaminergic, serotonergic, and adrenergic receptor systems all play a role 

in behavioral sensitization. In the typical study, investigation of these 

receptor systems has been restricted to antagonism or stimulation of 

individual receptor types. Instead, it is probable that many neurotransmitter 

systems work simultaneously, and perhaps redundantly, to mediate the 

complex process that is behavioral sensitization. Since it is likely that there 

are many neurotransmitter systems involved in the mediation of behavioral 

sensitization, antagonizing only a single receptor type may not have a great 

effect on the overall sensitization process. In other words, when one 

particular neurotransmitter system is antagonized, another neurotransmitter 
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system may compensate in order to keep the behavior intact. For this 

reason, it will be necessary to study the combined actions of multiple 

receptor systems on behavioral sensitization, instead of assessing each 

system independently.  

 Although the dopamine, serotonin, and noradrenergic neurotransmitter 

systems may interact to mediate behavioral sensitization, it remains possible 

that other receptor types are also involved with this complex behavior. In 

terms of the present study, EEDQ may have blocked behavioral sensitization 

by affecting a receptor type that was not protected from alkylation. In addition 

to irreversibly antagonizing dopaminergic, serotonergic, and adrenergic 

receptors, EEDQ inhibits the release and high-affinity uptake of acetylcholine 

in the hippocampus (Vickroy & Malphurs, 1994). Therefore, besides 

examining the combined effects of monoamine neurotransmitter systems on 

behavioral sensitization, future experiments should also consider the roles 

played by other neural mechanisms.  

 In conclusion, EEDQ blocks the induction and expression of one-trial 

cocaine-induced behavioral sensitization. The protection experiments using 

ritanserin and prazosin indicate, but do not conclusively show, that the 

serotonergic and adrenergic receptor systems do not mediate the induction 

and expression of one-trial cocaine-induced behavioral sensitization in 

preweanling rats. Considering both past and present results, the most 

harmonious conclusion is that multiple receptor systems (i.e., dopaminergic, 
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serotonergic, adrenergic, etc.) work in unison to produce the complex 

phenomenon of behavioral sensitization.  
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