
Communications of the IIMA Communications of the IIMA

Manuscript 1452

Risk Identification and Mitigation In Agile Software Re-Risk Identification and Mitigation In Agile Software Re-

Engineering: A Case Study Engineering: A Case Study

Chiara Fasching

Peggy Gregory

Nicholas Mitchell

Charlie Frowd

Follow this and additional works at: https://scholarworks.lib.csusb.edu/ciima

 Part of the Management Information Systems Commons

https://scholarworks.lib.csusb.edu/ciima
https://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol22%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol22%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

International Information Management Association (IIMA) Conference Proceedings 2024

©IIMA, Inc. 2024 44 Communications of the IIMA

Risk Identification and Mitigation In Agile Software

Re-Engineering: A Case Study

Chiara M. Fasching

University of Central Lancashire

Peggy Gregory

University of Glasgow

Nicholas P. Mitchell

University of Central Lancashire

Charlie Frowd

University of Central Lancashire

ABSTRACT

Legacy software is becoming increasingly common, and many companies

nowadays are facing the challenges associated with this phenomenon. In certain

circumstances, re-engineering is the only logical way to deal with legacy software.

Such projects, by their very nature, are subject to a wide variety of risks. The aim

of this study was to begin building the basis of a risk framework that will support

future re-engineering projects within Agile (Scrum) environments. An interpretive

case study approach has been followed, where the case study was the first phase of

a re-engineering process, with the method of analysis being inductive and reflexive

Thematic Analysis. The dataset comprises a list of different risks that occurred

during the re-engineering process. The risks observed were themed around people,

processes, and technology. While technical and procedural risks are discussed in

the literature, it was found that the presence of risks in social situations relating to

re-engineering has been overlooked. Although these risks do not necessarily have

a higher individual impact, they were found to outnumber those encountered in

other aspects of the project by a significant factor. Furthermore, the social risks

were often either underestimated or not even recognised. It has also been found

that Scrum is an appropriate approach to re-engineering projects. Since many of

the re-engineering tasks in the case study were unknown at the beginning, the

flexibility brought by Scrum was an important factor in the timely and successful

mitigation of emerging risks. The first contribution of this study is a comprehensive

analysis of identified risks associated with one particular re-engineering project.

The potential impact of those risks over a given development phase of the project,

along with their actual impact, have been analysed. The second contribution

discusses a proposed methodology for managing and mitigating risks in software

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 45 Communications of the IIMA

re-engineering. It is intended that the identified risk categories form the basis of

further research into different types of re-engineering projects in order to produce

a more generalised framework. It is anticipated that the results presented here will

help future project teams to prioritise areas of re-engineering and put adequate

risk mitigation into place.

Keywords: agile, software re-engineering, legacy software, risks.

INTRODUCTION

Legacy applications can be described as old, but well-established software systems,

which are also essential for business process support (Sommerville, 2000). Legacy

software does not only describe outdated technology which has accumulated

technical debt, but also inherited software, which can be inflexible and with which

software engineers do not know how to cope ((Bennett, 1995) and (Birchall,

2016)). Both, academics and practitioners understand that legacy applications are

inflexible and expensive to maintain, although practitioners often hesitate to

upgrade a system if it is not broken (Khadka et al., 2014). Besides inflexibility and

the cost of maintenance, Fanelli et al. (2016) identified that “faster time to market”

and “lack of experts/documentation” are the biggest drivers for practitioners to

modernise legacy systems.

The source of high maintenance is often so-called technical debt, which describes

numerous software quality problems. If technical debt is ignored, it may get worse

(Ernst et al., 2015). It is agreed that technical debt is tightly connected to software

quality (Wolff & Johann, 2015).

Sommerville (2000) states that it is necessary for companies to re-engineer legacy

applications to keep them in service. The term re-engineering applies to a set of

activities and techniques to tidy up the underlying structure of the application code

without affecting its functionality. These activities include the analysis, redesign,

restructuring, and re-implementing of the software system (Jain & Chana, 2015).

The general aim of such activity is to reduce the ongoing maintenance cost of a

system by improving its quality (Singh et al., 2019).

Re-engineering processes are often abandoned (Fanelli et al., 2016), which leads

us to ask why, when there are so many strong drivers to modernise legacy systems.

The reason for the reluctance to upgrade software can be summarised in one word:

risk. Rashid et al. (2013) identify six categories of risks: user satisfaction, cost,

forward engineering, reverse engineering, performance, and maintenance.

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 46 Communications of the IIMA

Clemons et al. (1995) suggests a framework for the identification and management

of risks by supporting re-engineering as well as achieving strategic advantage by

maintaining consistency between the needs of the organisation and the external

environment.

Rajavat and Tokekar (2011) propose a framework for decision-driven risk

engineering called ReeRisk. This theoretical framework serves to identify and

eliminate risks in the early stages of the development cycle.

Another major challenge for software re-engineering is to make improvements

whilst simultaneously mitigating risks and keeping the legacy application up and

running. Agile, especially Scrum, is designed to deliver incremental additions

while the software is in use as Scrum emphasises a working product (fully

integrated and tested) at the end of every Sprint. Agile is described as a “lighter

approach to building software”. Instead of requirements being fixed at the

beginning, in Agile the cost and the time are fixed, while the features are estimated

and more flexible. This enables the software developers to prioritise the features of

the application according to the business needs, which leads to on-time delivered

quality software with the biggest value for the money.

This leads to the two research questions which will be answered in this paper:

• RQ1: What types of risks are encountered in a software re-engineering

project?

• RQ2: How helpful are Scrum practices to support a software re-engineering

process?

In this paper, we present the approach of a framework to mitigate risks in re-

engineering using Scrum. Even though Agile has been described in the literature

as useful for re-engineering work ((Masood & Ali, 2014) and (Holvitie et al.,

2018)), there is a paucity of published research concerning Agile in re-engineering.

Some grey literature sources even suggest that Agile is an inappropriate approach

(Diana, 2010). Moreover, we have discovered that re-engineering risks are an

uncharted area as the risks mentioned in the literature barely overlap with each

other as well as our findings.

CASE STUDY

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 47 Communications of the IIMA

This research was conducted through a case study exploring the first phase of the

re-engineering process of a legacy application. The two goals for the first phase

were to eliminate vulnerabilities and to turn it into a modern development

environment while keeping it functional, both of which were achieved.

The development of the software application under consideration started 25 years

ago. The system was written in non-standard C++ and was built by a single

developer for a research project. Over time it was frequently expanded, not just for

additional commercial functionality, but also for research purposes. Due to the

absence of a planned architecture, and the many extensions, the code quality

worsened over time and the code base became very messy as it included numerous

redundant elements. All of this contributed to the accumulating technical debt, on

top of which there was a constant need for quick bug fixes.

The re-engineering approach taken used Scrum with a team comprising five people,

only one of whom was working full-time on this project (this developer was also

the primary researcher). The team also included a part-time developer. The Product

Owner was the researcher who had initially written the software, but who was now

not in a position to do further development or modernisation on the product. The

role of the Scrum Master was shared by two people from a consultant company

hired to support the project.

The re-engineering work undertaken was based on a technical debt audit conducted

by the consulting company. They presented their findings in two categories:

software and process. The software part consisted of five different categories:

coding standard, testing, build and deploy, architecture and system design, and

collaboration. The re-engineering work undertaken in the category software

included redundant code, breaking down and re-structuring large files, creating and

automating detailed and documented user acceptance tests, updating the C++ code

to conform to a language standard, and creating an installer. The modernisation of

the process included migrating the system to a modern IDE, assessing external

libraries as well as putting a façade on them, and implementing a Scrum process.

TOWARDS A RISK FRAMEWORK

This study aims to build the basis of a risk framework to support future re-

engineering projects within Agile (Scrum) environments. The framework will be

novel as it suggests using an Agile environment for re-engineering work.

Research method

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 48 Communications of the IIMA

The dataset comprises a list of different risks that occurred during the re-

engineering process. They were collected from the Kanban board by looking for

tasks undertaken to mitigate risks. Other sources were meeting notes as well as the

field journal which held information about decisions, including the mitigation of

risks. Also, the source code gave good insights into certain risks and how they were

tackled.

Each of these risks was summarised in a single sentence. These risk descriptions

were analysed using inductive Thematic Analysis (TA) (Clarke et al., 2015). This

project used an inductive, and reflexive TA. This process resulted in 44 different

codes. The themes, into which the sub-themes were grouped, reflect the different

parts of the project. Three distinct parts could be identified, which formed the

themes: Technology, Process and People. The Technology theme contains all the

risks related to the technical side of programming and different technologies. Its

sub-themes are legacy technology, insufficient technology, and legacy

application. Process consists of all the risks which were related to managing the

re-engineering work. Its sub-themes are testing, time constraints, and lack of

documentation. People holds all the risks which are caused by human failure. Its

sub-themes are lack of knowledge, process engagement, methodology

engagement, and social.

Moreover, two weightings were added to each risk code to indicate a) the potential

impact it could have had, and b) the actual impact it had on the project. The

potential impact stated here was not assessed before the start of the project, but

retrospectively, at the same time as the rest of the analysis was conducted. The

potential impact was reconstructed as accurately as possible by referring to meeting

notes and the Sprint board. Each weighting was assigned a logarithmic value to

make the higher-impact risks stand out in the resultant graph. Risks with the

weighting “none” received the value 0, with the weighting “low” the value 1, with

the weighting “medium” 2, and with the weighting “high” they obtained the value

4.

Results

Combining all sub-themes to display them under their themes, resulted in Figure 1

(below). This highlights the greater impact of the risk codes in the theme People,

seen in red shadings. The impact was high throughout the project with only a little

dip at the end. The initial high impact can be explained by risks related to team

members lacking knowledge, which were resolved by getting to know the

technologies. The methodology risks were resolved during the project as the team

members got used to Scrum. The impact rose in the second half as the team started

to neglect the methodology. However, more risks occurred because of an

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 49 Communications of the IIMA

inconsistent approach to some tasks (for example: testing). Two noteworthy risks

which were underestimated are “lack of team” and “lack of face-to-face working”.

It was expected that having such a small team would cause stress and more work

for the few team members, however, this was exacerbated by the lack of colleagues

to share ideas with or discuss problems. Also, some issues would have profited

from having meetings in person. Most risk codes in this theme were marked as

having a low or medium impact, however, the substantial number of risk codes

made it a considerable threat to the success of the project. Moreover, most of the

risk codes remained a constant threat throughout the first phase.

Figure 1. Weighted risk codes frequency within a theme per Sprint

Another striking detail in this diagram is that the theme Technology had a high

expected impact in the beginning as there was a risk that the software would not

work on a newer OS, so it needed to be migrated to a new IDE. This risk included

the difficulty of integrating the code and the possibility it might not work as

intended because changes were necessary to meet new language standards.

However, the impact of these risks did not transpire. Moreover, the risk impact of

this theme peaked in Sprint 8. This was due to the difficulty and eventual failure of

integrating specific new technology into the legacy system. The fact that less

coding was undertaken than expected meant that some risks had no impact at all.

The lack of documentation posed a high-impact risk at the beginning of the theme

Process. This risk was resolved after documentation was added. It is also notable

that the impact suddenly increased in Sprint 10 due to not having the application

tested thoroughly at the end of Phase 1. Moreover, due to running out of time at the

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 50 Communications of the IIMA

end of Phase 1, some tasks could not be executed and therefore risk codes related

to having a lack of time emerged.

AGILE IN RE-ENGINEERING

As Scrum is a part of Agile, Scrum follows Agile practices as well as its guidelines.

As mentioned, Scrum was chosen for this re-engineering project because its

flexibility is a good response to the unpredictability of challenges and risks.

Table 1 highlights the risks, which were mitigated by different Scrum techniques.

Table 1. Summary of risks mitigated by using Scrum practices

LIMITATIONS

This study is based on a single case study, it is therefore difficult to generalise the

risks found here to those that might occur in other re-engineering projects. Also,

few conclusions about the probability of the risks can be made without observing

multiple re-engineering processes. Some risk categories discussed in the literature

are absent from this study, because it was based on one phase of a re-engineering

project. Furthermore, the presentation of findings in Figure 1 does not show when

each risk became apparent.

Another major drawback of this study is that the potential impact was not assessed

at the beginning of the project but retrospectively. This made it impossible to

evaluate how well the team estimated risks. Finally, there was a strong subjective

element to this work as the primary researcher was directly involved in this project

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 51 Communications of the IIMA

as a software engineer, which could be considered as a limitation. The weightings

for each impact were subjective as they were determined solely by the primary

researcher.

DISCUSSION AND CONCLUSION

To answer the first research question, a set of risks including their impact on a re-

engineering project has been produced. This makes it interesting to look at the risk

categories of previous papers and compare them with my results. Risks mentioned

in previous papers (for example: Rashid et al. (2013) and Clemons et al. (1995))

barely overlapped with mine.

Social risks seem to be ignored in some papers, e.g.: (Rashid et al., 2013). Other

papers mention certain team or social risks, such as (Khadka et al., 2014). They

describe the reluctance of software developers to modernise legacy applications as

they often conceive them as their “baby”, or they fear redundancy following the

modernisation process, so they refuse to share their knowledge. Further social risks

addressed in the paper are the non-understanding of managers for the need for

modernisation, and the reluctance of providing a sufficient budget for it. However,

they do not mention any risks which could occur within the team or even related to

a single person. This proves that social risks are often overlooked or forgotten

about. Even though they might not be directly related to the project - in the form of

the actual software development work – and do not seem to be obvious, they are as

critical, or even more, than other risks. The novelty of this study stems from the

fact that social risks were taken into consideration, as they were found to have a

major impact, and are not just being mentioned as a side issue.

It may be the case that some risks which appeared at specific junctures in this

project could be persistent threats in others, such as inconsistent testing. Also, some

risks are not time-bound, such as the risk code fix is worse than problem.

Comparing the risk categories from Rashid et al. (2013) and Clemons et al. (1995)

to mine, the reasons for the differences can be justified. Financial risks did not

appear in my analysis as the budget for the project had already been approved when

the contribution of the primary researcher started. Forward and reverse

engineering, maintenance, and performance risks did not appear as the re-

engineering process was not advanced enough in the First Phase. As the original

system designer was part of the re- engineering team, functionality risks, such as

the system not meeting present or future needs, were not perceived as a threat.

Finally, political conflicts did not endanger the success of the project as the re-

engineering work was of high importance to the organisation.

Addressing the second research question, although Scrum has been traditionally

viewed as a mechanism to manage and prioritise the implementation of new

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 52 Communications of the IIMA

functionality, it was found that by treating the mitigation of technical debts as

functional requirements, Scrum could be equally well applied. Alongside this, the

management and mitigation of the uncovered risks, especially social risks, made

Scrum an appropriate approach for re-engineering legacy software. Suggesting an

Agile environment for re-engineering work is the second novel feature of this

study.

Although Agile has been mentioned in the context of re-engineering before, it has

not to our knowledge been suggested as the preferred approach. Holvitie et al.

(2018) surveyed practitioners and found that Agile practices are perceived to have

a generally positive effect on managing technical debts. Some of their findings

overlap with mine e.g.: most practitioners perceived iteration

reviews/retrospectives and adhering to coding standards as having a positive effect

on managing technical debt. However, practices I viewed as useful, such as on-site

customers, were mostly perceived as neutral, and core practices of Agile, like

iterations, backlogs, and daily meetings, were rated as having a positive impact by

only 50-60% of the participants. The differences between my results and Holvitie

et al.’s may emerge from the fact that their participants were software engineers

who did not specifically work on legacy applications. Only 40% of the participants

had good knowledge about technical debt.

Singh et al. (2019) proposed a framework, which is supported by a case study,

using Agile methodology as the flexible methodology fits nicely to the

requirements of a re-engineering process. A serious limitation of this work is that

the authors only tested their framework over a single Sprint while reducing a set of

code complexity.

The set of risks, alongside an Agile approach to their management, has the potential

to form the basis of further research into different types of re-engineering projects,

leading further towards a more generalised framework.

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 53 Communications of the IIMA

REFERENCES

Abu, M. S., Selamat, S. R., Ariffin, A., & Yusof, R. (2018). Cyber threat

intelligence–issue and challenges. Indonesian Journal of Electrical Engineering

and Computer Science, 10(1), 371-379.

Bennett, K. (1995). Legacy Systems: Coping with success [Article]. IEEE

Software, 12(1), 19- 23. https://doi.org/10.1109/52.363157

Birchall, C. (2016). Re-engineering legacy software. Simon and Schuster.

Clarke, V., Braun, V., & Hayfield, N. (2015). Thematic analysis. Qualitative

psychology: A practical guide to research methods, 222, 248.

Clemons, E. K., Row, M. C., & Thatcher, M. E. (1995). An integrative framework

for identifying and managing risks associated with large scale reengineering

efforts. Proceedings of the Annual Hawaii International Conference on System

Sciences,

Diana, R. (2010). Re-Engineering In Agile Development Can Just Be Refactoring.

In Agile Zone.

Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015). Measure

it? Manage it? Ignore it? software practitioners and technical debt Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo,

Italy. https://doi.org/10.1145/2786805.2786848

Fanelli, T. C., Simons, S. C., & Banerjee, S. (2016). A systematic framework for

modernizing legacy application systems. 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering, SANER 2016,

Holvitie, J., Licorish, S. A., Spínola, R. O., Hyrynsalmi, S., MacDonell, S. G.,

Mendes, T. S., Buchan, J., & Leppänen, V. (2018). Technical debt and agile

software development practices and processes: An industry practitioner survey

[Article]. Information and Software Technology, 96, 141-160.

https://doi.org/10.1016/j.infsof.2017.11.015

Jain, S., & Chana, I. (2015). Modernization of Legacy Systems: A Generalised

Roadmap Proceedings of the Sixth International Conference on Computer and

Communication Technology 2015, Allahabad, India.

https://doi.org/10.1145/2818567.2818579

Risk in Agile Software Re-Engineering Fasching– Gregory – Mitchell - Frowd

©IIMA, Inc. 2021 54 Communications of the IIMA

Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., & Hage, J. (2014). How do

professionals perceive legacy systems and software modernization? Proceedings

of the 36th International Conference on Software Engineering, Hyderabad, India.

https://doi.org/10.1145/2568225.2568318

Masood, A., & Ali, M. A. (2014). Applying Agile Requirements Engineering

Approach for Re-engineering & Changes in existing Brownfield Adaptive

Systems. arXiv preprint arXiv:1410.6902.

Rajavat, A., & Tokekar, V. (2011). ReeRisk–A Decisional Risk Engineering

Framework for Legacy System Rejuvenation through Reengineering. Computer

Networks and Information Technologies: Second International Conference on

Advances in Communication, Network, and Computing, CNC 2011, Bangalore,

India, March 10-11, 2011. Proceedings 2,

Rashid, N., Salam, M., Sani, R. K. S., & Alam, F. (2013). Analysis of risks in re-

engineering software systems. International Journal of Computer Applications,

73(11), 5-8.

Singh, J., Singh, K., & Singh, J. (2019). Reengineering framework to enhance the

performance of existing software [Article]. International Journal of Advanced

Computer Science and Applications, 10(5), 536-543.

https://doi.org/10.14569/ijacsa.2019.0100570

Sommerville, I. (2000). 28. Software Re-engineering.

Wolff, E., & Johann, S. (2015). Technical Debt. 32(04), 94-c93.

https://doi.org/10.1109/ms.2015.95

https://doi.org/10.14569/ijacsa.2019.0100570

	Risk Identification and Mitigation In Agile Software Re-Engineering: A Case Study
	Risk Identification and Mitigation In Agile Software Re-Engineering: A Case Study

