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ABSTRACT 
 
 
Data management has become an important challenge. Good data management 

requires an effective approach to collecting, storing, and accessing data across the 

enterprise. In this paper, a knowledge modeling approach to data management is 

introduced with an emphasis on data requirements analysis. A knowledge model 

can provide a high-level view of organizational data by specifying the structure and 

relationships of the knowledge contents used in business processes. The proposed 

knowledge modeling approach is business process oriented and decision oriented. 

The description of the knowledge contents in the model is based on ontological 

specification. The model is comprised of five elements: work product, work unit, 

producer, stage, and modeling language. The elements of the model and the 

modeling process are elaborated. The proposed modeling approach is applied to 

the vessel chartering process in a shipping company to demonstrate its application 

in real-world practices. 

 
Keywords: Data Management, Data Requirement, Business Process, Knowledge 

Model, Ontology, Vessel Chartering 

 
 

INTRODUCTION 

 
In today’s digital world, data has become a key word. With fierce global 

competition, business organizations are looking for new ways to gain competitive 

advantage. They need quality data that is timely and relevant for decision making 

and business operations.  
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Data provides business organizations with the capability to better understand the 

market and customer needs and translate them into products and services. Data 

guides business actions to cut costs, reduce time to market, and increase revenue 

opportunities. In fact, the ability to make quality business decisions is closely 

related to a company’s capability to collect, analyze and use data properly. 

Therefore, many business organizations dedicate a tremendous amount of time and 

money in capturing, storing, processing and using data. A major challenge facing 

business organizations is how to manage the data in an effective and efficient 

manner.  

 

As the importance of data increases, the need for an enterprise-wide approach to 

data management has also increased. Data management is the task of managing 

organizational data assets to meet the needs of organizations. Effective and efficient 

data management is crucial. The goals of data management are to create a long-

term plan and strategy for data resources, analyze data requirements, identify 

opportunities for data use and sharing, develop data standards and policies, and 

control data quality and security (Fleckenstein & Fellows, 2018). Since the advent 

of the Internet and WWW, the amount of data has grown exponentially, and a new 

breed of data has emerged. These have brought many unfamiliar problems to the 

people in charge of corporate data assets. Today managers are facing new 

challenges in data management (Kim, 2011).  

 

With the increased attention to data, there has been active research on the function 

of data management. A group of research emphasizes the data management 

framework. Examples include Data Management Association (DAMA)’s Data 

Management Body of Knowledge (DMBOK) model and Capability Maturity 

Model Integration (CMMI) Institute’s Data Management Maturity (DMM) model. 

Another group of research emphasizes more specific areas of data management 

such as data quality, data security, data governance, data analytics, and data 

modeling (Fleckenstein & Fellows, 2018). Whichever approach they take, the first 

step in effective data management is to ask a question about “what to manage.” 

Organizations assume that they fully understand what to manage and which data to 

capture. However, that may not be the case in many organizations. In data 

management, asking what to manage is a fundamental question. “Just because a set 

of data can be captured does not mean that it should be captured. Only data that can 

provide potentials to impact organizational behavior through their analysis should 

be included in an organizational data management frame” (Coronel & Morris, 2017, 

p. 654). Answering the question is closely tied to managing enterprise data 

requirement. The task of managing data requirements includes two activities: 

domain interpretation and model representation (Hadar & Soffer, 2006).  
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Domain interpretation is concerned with perceiving and interpreting a target 

domain and gathering requirements from the domain.  

 

The second task, model representation, is concerned with translating the gathered 

requirements into a model. Even though the second task of model representation is 

a well-established discipline (e.g., conceptual modeling using entity-relationship 

model, unified modeling language, or object role model), the overall process of 

managing data requirements (particularly domain interpretation) lacks a methodical 

and systematic approach, which results in fragmented, disparate view of data due 

to model misrepresentation and model variations (Davis et al., 2004; Hadar & 

Soffer, 2006; Sommerville, 2016).   

 

This paper introduces a knowledge-driven approach to data management, focusing 

on the analysis of data requirements. The approach uses a knowledge model to deal 

with data assets in various strategic, tactical and operational contexts, providing a 

more integrated view of data. The knowledge model allows users to determine and 

prioritize data requirements more methodically and systematically. The proposed 

knowledge modeling approach is business process oriented and decision oriented. 

It provides a single, enterprise-level description of data assets. Since it models on 

business processes, the knowledge model approach provides a more stable and 

enduring view of data assets. It creates an integrated structure of data assets and 

their management across the organization.  

 

The rest of this paper is organized as follows. The next section reviews related 

studies on data management and knowledge modeling. In the following section, our 

knowledge modeling approach is proposed as a tool for data management. The 

model elements and the modeling process are elaborated. Then, the proposed 

knowledge modeling approach is applied to a vessel chartering process in a 

shipping company for demonstration. Finally, a conclusion is presented.  

 

RELATED WORK 
 
Data Management 

 
In general, data is defined as raw facts about entities and events in the real world. 

Information is defined as data that has been processed. Processing represents the 

manipulation of data, such as averaging, totaling, grouping, sorting, and comparing. 

Therefore, information is more meaningful and valuable than raw data.  

 

In this paper, we use the term “data” in the broad context to include both raw data 

and their processed form, i.e., information. In data-driven business environments, 
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data is critical inputs to business operations and decision making in various 

contexts. Data should be managed as a critical resource.  

 

In general, management is a set of activities directed at an organization’s resources 

with the aim of achieving organizational goals in an effective and efficient manner 

(Griffin, 2017). It includes the activities of planning, organizing, directing, and 

controlling organizational resources to achieve the desired goals. Accordingly, data 

management can be defined as the activity of planning, organizing and coordinating 

data to accomplish corporate objectives. 

 

Traditionally, data management involves the policies, practices and technologies 

for acquiring, controlling, protecting, delivering and increasing the value of data 

(Pentek et al., 2017). More specifically, data management includes the activities for 

defining the data strategy; data management processes, standards, and measures; 

roles and responsibilities, data life cycle and architecture; and data model 

(Fleckenstein & Fellows, 2018). According to the Data Management Association 

(DAMA) Framework, data management is the collection of activities of developing 

and executing architectures, policies, practices and procedures that properly 

manage the full data lifecycle (DAMA, 2014). It involves many tasks such as 

developing a long-term plan, enforcing data standards and policies, determining 

data requirements, identifying opportunities for data use and sharing, and 

controlling data quality and security. Several data management frameworks have 

been developed. Two popular frameworks are CMMI’s DMM model and DAMA’s 

DMBOK model. 

 

DMM focuses on assessing organization’s maturity in given areas. This model 

divides data management into five high-level categories and one supporting 

process. The five high-level categories include data management strategy, data 

governance, data quality, data operations, and platform/architecture. The 

supporting process is a collection of activities that support adoption, execution, and 

improvement of data management practices, including measurement and analysis, 

process management, process quality assurance, risk management, and 

configuration management (Fleckenstein & Fellows, 2018). 

 

DMBOK highlights data management domains. According to DMBOK2 

Framework (DAMA, 2014), there are eleven data management knowledge areas: 

data governance, data architecture, data modeling and design, data storage and 

operation, data security, data integration and interoperability, document and 

content, reference and master data, data warehousing and business intelligence, 

metadata, and data quality. 
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Pentek et al. (2017) identifies eleven design areas in their reference model for data 

management, including business capabilities, data management capabilities, data 

strategy, performance management, people/roles/responsibilities, process and 

methods, data architecture, data lifecycle, data applications, data excellence,  

and business values. Other popular data management frameworks are MITRE’s 

Data Management Domain Framework (MITRE-DMDF), Enterprise Data 

Management Council’s Data Management Assessment Model (EDMC-DMAM), 

and Federal Enterprise Architecture Framework’s Data Reference Model (FEAF-

DRM) (Fleckenstein & Fellows, 2018). 

 

Despite the increased managerial attention, a majority of companies underutilize or 

misuse the data they store. According to Dallemule & Davenport (2017), less than 

half of an organization’s structured data is actively used in decision making, and 

less than 1% of its unstructured data is analyzed or used at all. They report many 

other data management problems including improper data access, data breaches, 

isolated data sets in silos, etc. There are many factors that inhibit successful data 

management such as lack of clear understanding of data requirements, 

misunderstanding of the data management concept, lack of strategic perspective, 

insufficient staff, technology-oriented mindset, and insufficient top management 

support (Kim, 2011). Poor data management results in fragmented and 

disconnected data. Consequently, data qualities are low. They are inconsistent, 

conflicting and confusing. These problems are critical concerns and must be 

resolved for effective and efficient data management function. In this paper, we 

particularly address the issue of lack of clear understanding of data requirements. 

 

Collecting data and managing them are two different tasks. To be successful, 

organizations first need to think about how they will get solutions and benefits from 

the data they are collecting. Organizations assume that they understand what they 

need to know, though it may not be the case in reality. Often companies capture, 

store and organize data without clearly defining the business questions to which 

they wish to answer with the data. The right approach is to define the business 

questions, analyze the data requirements and collect the data to answer the business 

questions. Therefore, effective data management should begin with the 

understanding of an organization’s need for data to support their business activities. 

To make truly data-driven business decisions, the entire process of data 

management must be driven by defining right business requirements and capturing 

the right data to meet the requirements. 

 

There is a clear need for data planning that puts the organization’s data needs first. 

Data planning creates a model of the business organization with its processes along 

with the data required. Formal data planning improves communication with users, 
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increases top management support, improves resource utilization, and develops an 

enterprise data architecture. The heart of data planning is the analysis of business 

processes and their data requirements (Goodhue et al., 1992). Identifying 

organizational data requirements is an essential part of data planning. Defining 

precisely what to build is one of the most challenging tasks in the development 

activities. Often the process is ambiguous and uncertain.  

 

Many requirements engineering process models have been developed for 

requirements management. In their comparative study, Batra and Bhatnagar (2017) 

examine eight existing requirement engineering process models using the 

parameters such as requirements prioritization, feedback, support for reverse 

engineering, and risk management. Those models focus on requirement elicitation, 

documentation and validation rather than domain interpretation or organizational 

requirements understanding. They are oriented toward developing a product-

specific project or application instead of identifying and synthesizing enterprise-

wide data requirements. 

 

There are also reference models concerned with the issue of requirements 

management on data level, such as CRISP-DM (Cross-Industry Standard Process 

for Data Mining), RAM (Requirements Abstraction Model), and REM 

(Requirements Engineering Reference Model). CRISP-DM (Chapman et al., 2000) 

is one of the most widely-used analytics models in data mining. It emphasizes in its 

business-understanding phase the importance of understanding the project 

objectives and requirements from a business perspective, and mentions in its  

data-understanding phase the need to evaluate whether the data acquired satisfies 

the requirements. However, it does not specify how to perform these tasks 

methodically. RAM (Gorschek & Wohlin, 2006) supports requirements 

management through the entire development process. It aims to refine the initially 

abstract and solution-independent requirements to software. REM (Geisberger et 

al., 2006) constitutes a methodic foundation for interdisciplinary development of 

requirements and system specification for embedded systems. One significant issue 

of these two reference models is that neither the requirements on different levels of 

abstraction nor the concretization of requirements is clear (Berkovich et al., 2012). 

To identify the potential business value and facilitate the collaboration between 

software engineers and data scientists, Altarturi et al. (2017) present a new 

requirement engineering model for big data systems, which sheds light on the 

importance and challenges to integrating organizational data and resources that may 

present in silos across the enterprise. 

 

Despite considerable advancement in the field of requirements management, many 

issues are not yet satisfactorily solved. Requirements are still incorrectly identified, 
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frequently misunderstood, and vaguely expressed, leading to reworking and issues 

at the later stages in the life cycle (Sommerville, 2016). Requirements errors still 

produce most of the errors in the development projects, and most companies 

consider requirements analysis as very significant (Batra & Bhatnagar, 2017). A 

clear definition of business requirements with an integrated view of the 

organizational data is critical. However, it is not apparent how the task is best 

accomplished. There is a need for a systematic and business goal-oriented approach 

to data requirements analysis.  

 

Knowledge Model 

 

A knowledge model can be used as a tool for identifying, defining, and managing 

data requirements. A knowledge model is the representation of organizational 

knowledge resources. It describes the structure of knowledge entities, their 

relationships, usages and constraints in an enterprise. Knowledge modeling is a 

systematic way of analyzing knowledge and thereby identifying data requirements. 

Knowledge modeling approach is different from existing data analysis frameworks 

in that its analysis unit is knowledge. The focus of the analysis is on knowledge 

instead of data. Knowledge includes more than data and is a more complex concept. 

Many researchers and practitioners have defined it in their respective terms. Still 

there is no standard definition. Davenport & Prusak (1998, p. 5) define knowledge 

as “a mix of framed experiences values, contextual information and expert insight 

that provides a framework for evaluating and incorporating new experiences and 

information.” Wang & Noe (2010, p. 117) define knowledge as “information 

processed by individuals including ideas, facts, expertise, and judgement relevant 

for individual, team, and organizational performance”. Sveiby (1997) includes a 

capacity to act as an element. Using these explanations, we define knowledge as 

information combined with understanding, know-how, expertise and judgement 

learned through experience or study and actionable in a specific context. Business 

organizations can get a comprehensive view of data requirements by examining the 

knowledge they use. By analyzing knowledge in use, one can find both explicit and 

implicit data requirements. When a developer focuses his/her analysis on 

knowledge instead of data, even hidden data needs can be revealed.  

 

Knowledge-driven analysis is more business process oriented than existing analysis 

approaches. As Ravesteyn and Batenburg (2010) pointed out, business process 

management influences many business and IT domains. This business-process 

oriented approach provides an effective way to our knowledge modeling process. 

We take the definition of business process used by Zoet et al. (2011), i.e., a set of 

linked procedures or activities which realizes a business goal within the context of 

organizational structure. Knowledge-driven approach is business process oriented 
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in that we create a knowledge model for a business process and focus on how the 

knowledge flows among activities to achieve business goals in the process.  

Since organizational processes do not change frequently, process-based knowledge 

models are more stable.  

 

Knowledge-driven analysis is also decision oriented in that modelers focus on the 

knowledge inputs for decision-making points in a process. Decision making is one 

of the fundamental processes for any business. A company has to make many 

decisions quickly and continuously.  Business organizations are filled with decision 

making at various levels. Nearly all managerial activities revolve around decision 

making. For managers to make decisions, they need knowledge. An individual’s 

problem-solving and decision-making capability is limited by the knowledge 

available. Having knowledge available to decision makers is crucial to improving 

individual and organizational performance. Therefore, the decision-oriented 

approach is a valid way of identifying knowledge requirements. 

 

In knowledge modeling, it is popular to use ontology to specify knowledge 

contents. Ontological approach to modeling at the conceptual level gained 

popularity with its representation capability and expression power (Wand & Weber, 

2004; Pinto et al., 2009). Ontology is the study of entities that exist in the world.  

It is a formal, explicit specification of a shared conceptualization (Gruber, 1993). 

In its philosophical sense, it is the study of being. In the context of knowledge 

modeling, ontology means a specification of knowledge that can be designed for 

knowledge sharing and reuse (Pinto et al., 2009). The knowledge concept represents 

knowing about an entity which can be a person, thing, concept, event, or 

organization. Ontological description specifies conceptualizations of such entities 

formally (Gómez-Pérez, 2001). Ontological specification typically includes the 

description of properties, relationships, constraints, and behaviors of entities.  

The properties describe the characteristics of an entity. The relationships explain 

how entities are related to each other. Constraints specify the rules governing the 

entities. Behaviors describe the actions the entities can take. Ontological study 

categorizes things that exist in the domain world. Ontology can be used as a means 

by which developers capture knowledge about a domain of interest. Ontology-

based modeling supports a shared and common understanding of a domain and 

improves communication between the stakeholders by removing semantic 

heterogeneity.   

 

Since ontology represents entities that exist conceptually or physically in reality, 

the ontological concepts remain constant as long as an enterprise stays in its 

business. Therefore, ontology-based knowledge modeling provides stability and 

reliability in representing and maintaining enterprise knowledge. The ontology-
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based modeling is more enduring. Some of the popular ontology-based enterprise 

modeling methodologies are TOVE (Toronto Virtual Enterprise) Ontology, 

Enterprise Ontology, IDEF (Integrated Definition Methods) Ontologies, PIF 

(Process Interchange Format), NIST (National Institute of Standards and 

Technology), PSL (Process Specification Language) Ontology, CIMOSA (CIM 

Open System Architecture), PERA (Purdue Enterprise Reference Architecture), 

and GERAM (Generic Enterprise Reference Architecture and Methodology). 

KAON (Karlsruhe Ontology) and Semantic Web project is a framework for the 

development of ontology-based Semantic Web applications (Kayed et al., 2008). 

MethOntology, WebODE, and On-To-Knowledge are used for creating ontologies 

for information system development (Fonceca, 2007).  

 

KNOWLEDGE MODELING METHOD 

 

We propose a knowledge modeling method that can provide an integrated view of 

organizational knowledge contents. A method is defined as “a way, technique or 

process for doing something” (Bengsch et al., 2019, p. 243). Employing a good 

method is critical to building a reliable knowledge model. Unfortunately, there is 

no standard method available in knowledge modeling. In other conceptual 

modeling areas such as process modeling or data modeling, there are a few well-

established and standardized methods, e.g., entity relationship model in data 

modeling, data flow diagram in process modeling, and unified modeling language 

in object-oriented modeling. Well-established standard methodologies often 

integrate best practices and provide an easy-to-use, yet expressive tool. Those 

methodologies provide a formal basis for designing and developing a knowledge 

model and facilitate the development process. In this section, we propose an 

ontology-based knowledge modeling approach to data management with an 

emphasis on data requirements analysis. Our approach renders an integrated view 

of organizational data. 

 

Model Elements 

One of the popular metamodels at the conceptual level is the OPF (Open Process 

Framework) metamodel (Firesmith & Henderson-Sellers, 2000; Henderson-Seller, 

2003). OPF defines five components a conceptual-level model should include: 

work product, producer, work unit, language, and stage.  A work product is any 

valuable result of modeling process. A producer is the one who creates, evaluates, 

and maintains work products.  A work unit is a functionally cohesive operation 

performed by a producer. A language is used to visualize and document work 
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products. A stage is an identifiable and manageable duration within the modeling 

process.    

 

We adapt the OPF to our knowledge modeling approach. In our model, there are 

two work products: knowledge diagram and knowledge specification.  

The knowledge diagram is the graphical representation of a knowledge model.  

It provides a high-level view of organizational knowledge contents and their 

relationships. Knowledge specification is a textual model.  

The text model is ontology-based and describes the details of knowledge contents 

including their structures, properties, behaviors, constraints, and managerial issues. 

The work unit in our model is a business process. A knowledge model is created 

for each business process. A producer in our model is any knowledge modeler who 

is responsible for developing the knowledge model.  As for a language, our choice 

is UML (Unified Modeling Language). Since its standardization by OMG (Object 

Management Group) in 1997, UML has become an industry standard mechanism 

for visualizing, specifying, constructing, and documenting software systems. UML 

has proven to be effective for conceptual modeling because it has a very rich set of 

tools. The last component of the metamodel is a stage. Our knowledge model 

consists of six stages: business process selection, decision node identification, 

knowledge input analysis, knowledge diagram creation, knowledge specification, 

and model evaluation. Figure 1 shows the metamodel of the proposed knowledge 

model. UML notations are used to describe the metamodel. Each white rectangle 

represents a component of the model. A triangle notation represents a generalization 

and specialization (i.e., super/subtype) relationship. A diamond notation is for the 

aggregation (i.e., component/assembly) relationship.    

     
Figure 1. Metamodel of the Proposed Knowledge Model 
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Knowledge Modeling Process 

 
As described in the previous section, our knowledge model consists of a knowledge 

modeler, a specific business process, six stages, the UML, and two work products. 

Knowledge modeling is basically a collection of activities in which the knowledge 

modeler selects a business process, and go through the six stages to create the work 

products. In this subsection, we elaborate each stage as well as the two work 

products. Figure 2 illustrates the knowledge modeling process.  

 
Figure 2. Knowledge Modeling Stages 

 

 

 
Business Process Selection 

 
The first stage in our knowledge modeling is to select a business process.  

A business process is a set of linked procedures or activities which realize a 

business goal within the context of organizational structure (Zoet et al., 2011).  
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A business process is used to coordinate and organize work activities, data, 

information, and knowledge to produce a valuable product or service. Identifying a 

business process defines a conceptual framework for which a knowledge model is 

being created. Each process requires various knowledge to accomplish its mission. 

A knowledge model is created for one process. Therefore, multiple knowledge 

models are needed since a business organization uses more than one process.  

In general, when multiple models are created, they are integrated into a single, 

integrated model.  

 
Decision Node Identification 

 
The next stage is to identify decision nodes in the business process. As indicated 

earlier, our knowledge modeling is decision oriented. A decision node is where a 

decision is made in the chosen process. A business process usually contains 

multiple decision nodes. To make quality decisions, decision makers need 

knowledge that provides context-specific intelligence. Having the relevant 

knowledge (both in quality and quantity) available to decision makers is crucial to 

improving individual and organizational performance. Therefore, the decision-

oriented approach is an effective way of identifying knowledge requirements. 

Decision-oriented models can be used to explain how and why the process 

proceeds. Thus, a decision-oriented modeling paradigm is considered to be 

appropriate for knowledge modeling process (Rolland et al., 1999). 

 
Knowledge-Input Analysis for Decision Nodes 

 

The next stage is to analyze the knowledge required for each decision node. 

Knowledge is a collection of related data, expertise, and skills necessary for 

decision making in a specific context. Knowledge for each decision node must be 

identified. Each decision node requires various types of knowledge inputs. This task 

of identifying knowledge inputs should be done with the domain experts. The 

emphasis should be put on the identification of the knowledge required for decision 

making, instead of the knowledge currently being used or available. The goal is to 

specify knowledge requirements no matter whether the knowledge is currently 

available or not. All the necessary knowledge inputs for each decision node in the 

process need to be analyzed and identified. 

 

Knowledge Diagram Creation 

 

The next stage is to create a knowledge diagram. It is used to visualize and organize 

all the knowledge contents identified. It is one of the two work products of our 
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knowledge model. A knowledge diagram is a graphical representation of 

knowledge contents. Specifically, the diagram shows a set of knowledge units with 

their ontological concepts and their relationships. Each knowledge unit represents 

a logically related group of knowledge needed for decision making at a specified 

decision node. The use of ontology promotes the knowledge reuse and sharing 

across multiple domains. To represent the ontological concepts, we apply the 

Ontology Generic model by Fox (1992). The relationships describe how knowledge 

units are related to each other. The typical relationships are generalization and 

specialization (e.g., student and undergraduate student), association (e.g., doctor 

and patient), and aggregation (e.g., car and engine). Any modeling languages that 

are able to express entities and their relationships can be used to create a knowledge 

diagram. We use UML (Unified Modeling Language). UML’s Class Diagram 

provides an excellent way for creating a knowledge diagram. An example of 

knowledge diagram is presented in the demonstration section.      
 

Knowledge Specification 

 

The next stage in our knowledge modeling process is knowledge content 

specification. All the knowledge contents identified in the previous stages are 

specified in detail. The formality of the documentation determines how the 

specification removes the ambiguity of natural languages. There are levels of 

formalization from the highly informal to the rigorously formal (Kayed et al., 

2008). Highly informal specification may use a natural language to express the 

knowledge contents. It is flexible and easy to understand for human beings. This 

approach has full representation power but is not efficient. It is not precise and 

therefore includes a lot of ambiguities. The rigorously formal approach specifies 

terms in formal semantics (e.g., logic-based language) so that their properties are 

well understood with the least ambiguity. However, this approach lacks the rich 

representation power of natural languages (Uschold & Gruninger, 2004; Kayed et 

al., 2008). As the formality increases, ambiguity is reduced. For each level of 

formalization, there is a tradeoff between the representational power of a language 

and the efficiency of the reasoning engines. We take an ontological specification. 

The knowledge concept represents knowing about an entity which can be a person, 

thing, concept, event, or organization. Ontological description specifies 

conceptualizations of such entities formally (Gómez-Pérez, 2001). Ontological 

specification typically includes the descriptions of properties, relationships, 

constraints, and behaviors of entities. Properties describe the characteristics of an 

entity. Relationships explain how entities are associated with each other. 

Constraints specify the rules governing the entities, and behaviors describe  

the actions the entities can take. This ontological approach provides a formality 

without losing expressive power. It maintains a certain level of formalization.  
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At the same time, it is appropriate for human communication purposes.  

 

A knowledge specification for each knowledge unit in our knowledge modeling 

approach is composed of five components: structured components, unstructured 

components, relationships, constraints, and managerial components. Structured 

components represent the explicit part of a knowledge unit, including all data that 

can be clearly defined, expressed, and communicated. They are the intrinsic 

properties of a knowledge unit and situation independent. For example, the 

knowledge unit, VESSEL, has properties such as name, class, dimensions, speed, 

tonnage, cargo holding capacity, and fuel consumption. Any composite properties 

are broken down into subcomponents. For example, the dimension of VESSEL is a 

composite property. It can be broken down into length, breadth, and depth. 

 

Unstructured components represent the implicit or behavioral part of a knowledge 

unit. They include actionable operations, expertise and experiential skills. They are 

implicit and context-specific characteristics of the knowledge unit. They can be 

learned from education/training, experiences, or trial and errors. Since they are 

implicit, the unstructured components of a knowledge unit are difficult to define 

and hard to communicate. Actually, these components are what distinguish 

knowledge from mere data or information.  

 

Any constraints on the use of specific knowledge contents should be described. 

Constraints are important because they help ensure data quality. For example, to 

deal with the knowledge about cargo demand and supply, a certain level of 

experience and training is required. This constraint ensures only qualified people 

can manage the knowledge contents.  

 

Managerial components describe how a knowledge unit is managed. From the 

managerial perspective, the answers to the following questions about a knowledge 

unit are critical for maintaining an accurate and reliable knowledge model: What is 

the managerial impact of the knowledge? How critical is the knowledge to the 

organization’s missions and objectives - strategic, tactical or operational? Where is 

it originated? Who produces the knowledge? Who consumes it?  Is it acquired from 

internal sources or external sources? In which format? Who maintains it? Is the 

knowledge current? How frequently is the knowledge evaluated and updated? All 

of these questions are essential for maintaining the relevance and accuracy of the 

knowledge model. An example of knowledge specification is presented in the 

demonstration section.  
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Model Evaluation 

 
The last stage in our knowledge modeling process is to evaluate the model. A good 

model represents the domain with accuracy and completeness. It should be 

validated rigorously (Shanks et al., 2003). Developers want to see if their model 

appropriately represents the corresponding reality and creates value. Kim (2014) 

proposed a model of four dimensions for evaluating a knowledge model: validation, 

representation, applicability and management. Validation and representation are 

used to evaluate the effectiveness of a model. Applicability and management are 

used to evaluate the efficiency of a model. 

 

The validation dimension evaluates the model’s correspondence with the problem 

domain for which the model is being constructed. Three constructs support the 

validation dimension: validity, completeness and accuracy. Validity confirms that 

the knowledge model corresponds to the domain that it is supposed to represent. 

Cooper & Schindler (2006) defines validity as the extent to which a test measures 

what it actually wishes to measure. Validity is achieved through a final review of 

the model with domain users to ensure that the model is an accurate representation 

of organizational knowledge. Completeness means that the model contains all the 

constructs and definitions that are correct and relevant within the domain. A model 

is complete if it covers all elements in the target domain. Accuracy measures the 

precision of a model’s conformity to the domain. It checks how precisely the model 

covers the elements in the domain. If the model represents the target domain well 

and accurately, it is functionally complete. (Wand & Webber, 2004; Siau & Rossi, 

2011).  

 

The representation dimension assesses the syntactical aspects of the model.  

It measures syntactical correctness, consistency, conciseness and richness of the 

modeling language. Syntactical correctness is an important criterion for evaluating 

representation quality. If all notations and their usages in the model conform to the 

grammar and constraints of the language, the model is said to be syntactically 

correct. Consistency refers to whether it is possible to obtain the same outcomes 

when valid inputs are given. A model is consistent if it does not produce conflicting 

results when valid inputs are given. Conciseness evaluates if a model does not store 

any unnecessary or useless definitions. For a model to be concise, there should be 

no redundancies in notations, definitions and axioms (Fox & Gruninger, 1998). 

Richness measures the expressive power of the model. A model should provide 

sufficient semantic concepts so that it can describe all relevant aspects of the 

problem domain. 
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The applicability dimension evaluates how useful the model is. The assessment 

focuses on evaluating the generality, usefulness, and usability of the model from 

the user point of view (Gómez-Pérez, 2001). Generality evaluates how well a model 

is applicable across different domains. The more general the model is, the more 

compatible and shareable it is with other domains (Fox & Gruninger, 1998). 

Usefulness evaluates the relevancy of the model to the user context. The more 

relevant the model is, the more applicable it is. Usability is a concept that assesses 

how easily a user can interact with the model. It also means how easy it is for users 

to accomplish basic tasks when the model is used for the first time (Nielsen, 2012).  

 

Most evaluation methods focus on the technical aspects of the model. There is a 

lack of emphasis on the managerial aspects of the model. Some of the managerial 

issues to be addressed are who will evaluate the model, when and how the 

evaluation process will be performed, and how the evaluation results will be 

accepted (Dieng et al., 1999). The concepts supporting this dimension include 

maintainability, reusability, mode and frequency.  Maintainability determines the 

ease with which the maintenance can be carried out. As knowledge evolves and 

changes inevitably, a knowledge model must be appropriately maintained. Regular 

audit and evaluation are necessary to maintain an effective model. Reusability 

refers to taking components of one product in order to facilitate the development of 

a different product with different functionality. This concept measures the extent to 

which all or part of the model can be reused in different model development. The 

mode and frequency of evaluation should be also considered. The evaluation mode 

can be informal or formal. A formal evaluation is performed by using a standard 

methodology while an informal evaluation can be conducted by a development 

team and users. A focus group of experts or a walkthrough by users and developers 

are excellent ways of evaluating a model. Determining the frequency of evaluation 

and the establishment of a mechanism that links the feedback to the model are also 

critical issues in the model evaluation.  

 

It is noted that our knowledge modeling process is not a one-time job. It is an 

iterative process. Not only does the modeler have to check back and forth between 

stages, but he/she may also have to get back to the business process selection stage 

from the model evaluation stage to ensure the model satisfies the original business 

process.  
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DEMONSTRATION 
 

In this section, we apply the knowledge modeling approach to a vessel chartering 

process in a Korean marine shipping company for demonstration. The company is 

affiliated with one of the major cement manufacturing companies in Korea. The 

company specializes in transporting cement products to domestic ports. It owns a 

dozen of cement tankers of various sizes for bulk cement transportation. One of the 

authors of this paper worked for the company as a manager in charge of vessel 

operations including vessel chartering. He has extensive experiences and is very 

knowledgeable about the process. Most shipping companies own less tonnage than 

actually needed for their cargos and depend on chartering vessels whenever 

necessary.  

 

A voyage charter is taken as an example. A voyage charter is a contract in which a 

vessel is hired for a voyage between a loading port and a discharging port. The 

charterer pays the vessel owner based on the cargo amounts or lump-sum basis. The 

owner is responsible for the port fees, fuel costs, and crew costs. Chartering is a 

complex process and requires a depth of knowledge. This example is not designed 

to accurately and completely represent the sophisticated process of chartering. 

Instead, it illustrates how the proposed approach can be applied to the real-world 

practice. For that purpose, the process has been simplified. 

 

Process Selection and Decision-Node Identification 

The first two stages in the knowledge modeling process are to select a business 

process and identify decision nodes in the process. The business process selected 

in this example is the chartering process that includes multiple decision nodes. Any 

decision nodes in the process need to be identified. They will be used to analyze 

knowledge inputs. Three decision nodes have been identified. The first one is to 

decide which route to choose. The charterer should choose where the cargo should 

be loaded and shipped (e.g., loading and discharging ports). The second decision 

node involves vessels. The charterer should decide on the type and size of a vessel 

to be hired. The third one involves a charter. The charter type should be decided.   

 

Knowledge-Input Analysis for Decision Nodes 

A decision maker needs many knowledge inputs to make decisions. By analyzing 

the knowledge inputs needed for decision making, developers can identify 

knowledge contents required. For example, to decide on the route, the charterer 
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needs to know the cargo demand such as inventory in a cement silo, daily 

consumption rate, and construction business in the cities where bulk cement is 

supplied.  

 

The charterer also needs to know about ports, such as loading/discharging facilities, 

water level, berth, and tidal change. To decide on vessel type to hire, the charterer 

needs to know about the voyage, the ports and the vessels. Particularly, the 

specifications of the knowledge about vessels, such as the type, tonnage, 

dimensions, engine type, speed, and fuel consumption, are important. To decide on 

the charter type, the charterer needs to know about the hire rate, terms and 

conditions, type of contract, voyage profitability, responsibilities, risks, liabilities, 

and so on. The charterer also needs knowledge about the chartering market 

including the brokers who arrange the chartering transaction. A knowledge input 

may be involved in one or more decision nodes. Figure 3 illustrates the three 

decision nodes and their knowledge inputs.   
 

Figure 3. Knowledge Input Analysis for Decision Nodes 
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Knowledge Diagram Creation 

The first work product of our knowledge modeling is a knowledge diagram. The 

knowledge diagram graphically shows all knowledge units identified in the 

previous stages. It also describes the relationships between them at a high level, 

providing a bird’s eye view of the knowledge contents for the selected business 

process. The typical relationships between knowledge units are generalization and 

specialization, aggregation and association. A modified UML class diagram is used 

for creating a knowledge diagram, which provides an effective way of depicting 

knowledge contents. Figure 4 shows a portion of the knowledge diagram for the 

vessel chartering process. In the figure, a white rectangle represents a knowledge 

unit. A shaded rectangle represents an ontological concept.  A triangle notation 

represents a generalization and specialization relationship, and a straight line 

represents an association relationship. 

 
Figure 4. Knowledge Diagram 
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Knowledge Specification 

The next stage in our knowledge modeling is to create knowledge specifications. 

The knowledge diagram shows the knowledge inputs and their relationships for the 

chosen process. However, it does not provide information about their internal 

structures and properties. A modeler needs to describe the structure and behaviors 

of each knowledge unit in the diagram. We take an ontological approach to the 

knowledge specification. Ontological specification typically includes the 

descriptions of properties, relationships, constraints, and behaviors of entities, 

which are the knowledge units in our knowledge model. The knowledge 

specification incorporates five components: structured components, unstructured 

components, relationships, constraints, and managerial components.  

 

As explained in the previous section, structured components include the explicit 

part of each knowledge unit. The attributes of a knowledge unit belong to this 

group. If there are any composite attributes, they should be broken down into 

smaller components. A vessel’s dimension is an example of a composite attribute. 

It can be further broken down into length, breath, and depth. Table 1 provides 

examples for the structured components of three knowledge units. 

 

 

Table 1. Examples of Structured Components 

 
Knowledge 

Units 
Structured Components 

Vessel 
name, class, flag, type, year built, builder, size, dimension, 

cargo capacity, speed, engine type, fuel consumption, etc. 

Voyage 

voyage number, cargo type, cargo quantity, freight rate, 

loading port, discharging port, departure and arrival time, 

despatch, demurrage, etc.  

Charter 
type, hire rate, port of delivery, time of delivery, broker, 

charter party, trade limitation, duration, responsibilities, etc.     

 
Unstructured components represent implicit and context-specific characteristics of 

a knowledge unit. Sea-worthiness evaluation is an example of the unstructured 

component of the knowledge unit, VESSEL. At the time the contract is made, the 

vessel must be fit to deal with ordinarily anticipated perils of the sea and incidental 

risks on a voyage. This task is complex and requires sophisticated knowledge such 

as assessment of the vessel’s condition and suitability for the planned voyage. Risk 

assessment and liability assessment provide another two examples. Risk assessment 
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includes the analysis of safety of ports/berth and delays during the charter due to 

stevedore strikes or war. Liability assessment involves the analysis of obligations 

from the loss or damage to cargo and damage to hull by cargo. These types of 

knowledge are based on the evaluator’s experience and expertise. By analyzing 

them, the evaluator may reveal data requirements that are not found in the explicitly 

structured data. 

 
Any constraints on handling a knowledge unit are also specified. For example, the 

person who handles the knowledge unit, VESSEL, must have a specific number of 

years’ experience and training as a ship officer or engineer. If other qualifications 

(e.g., certificate) are required, they must be specified as well. 

 

Managerial components of the knowledge unit are also described, including who 

owns the knowledge. For example, the knowledge unit, VESSEL, is owned by the 

marine affairs department. The knowledge unit, VOYAGE, is owned by the 

operation department. Format of the knowledge unit is specified as well. It can be 

in the form of document (e.g., manuals, policies, or any other reports) and can reside 

in the internal or external databases. The acquisition mode is documented. It can be 

produced internally by the employees or externally by outside experts. Managerial 

criticality is also documented. For example, the knowledge about VOYAGE has 

tactical implications. The knowledge about VESSEL may be operational. Finally, 

there are maintenance issues. Knowledge evolves and must be continuously 

updated. Table 2 provides an example of partially filled knowledge documentation 

for the VOYAGE knowledge unit.   

 

Table 2. Example of Knowledge Unit (KU) Specification 

 

KU Name VOYAGE 

Ontology Concept ACTIVITY 

Relationships CHARTER (Association), PROFITABILITY (Association) 

Description This unit includes the knowledge for a voyage. 
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Structured 

components 

(Properties) 

- Voyage number 

- Vessel name 

- Cargo type/quantity 

- Loading/discharging ports 

- Freight rate 

- Place and time of delivery 

- Agency fee 

- Port charges 

- Fuel costs 

- Demurrage and despatch (Dem/Des) 

Unstructured 

components 

(Behaviors) 

Calculate charter base 

Calculate Dem/Des 

Assess risks  

- Port safety 

- Delay during the charter 

- Cancellation of charter 

Assess liabilities 

- Loss or damage to cargo 

- Damage to hull by cargo 

- Measure of damages 

Constraints - At least 5 years of experience in chartering 

- Completion of vessel chartering training program 

Managerial 

components 

- Owner: operation department 

- Acquisition: internal 

- Format: internal database 

- Criticality: tactical 

- Maintenance: when, how, by whom, how often, which 

mode?  

 
 

CONCLUSION AND FUTURE WORK 

 

In this paper, we propose an ontology-based knowledge modeling approach as a 

data management tool for analyzing data requirements. Our approach provides a 

high-level, integrated view of organizational data by specifying the structure and 

relationships of knowledge contents used in business processes. In our model, the 

knowledge modelers use UML as the modeling language and go through six stages 

to create a knowledge diagram and associated knowledge specifications for each 

business process.  
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Our approach has three major strengths.  First, our model focuses on the data 

requirements at the knowledge level, even hidden data needs are disclosed. It 

models what is required instead of what is currently available. Therefore, future 

knowledge/data requirements can be planned and managed appropriately. If a 

business organization does not have the required knowledge, it is expected to 

trigger a system to acquire it. Data management should work in the knowledge 

management ecosystem because what a company really needs is knowledge, not 

mere data. Data themselves do not add values. Second, the proposed knowledge 

modeling highlights decision nodes in business processes. Focusing on critical 

decision nodes avoids distraction that can result from a too detailed or unnecessary 

analysis. In addition, since our knowledge model is ontology-based and 

decision/business-process oriented, our approach renders a more stable and 

enduring view of the organizational data assets. Finally, our approach examines the 

data requirements across the enterprise, and provides an integrated view of 

organizational data. It helps facilitate the integration of organizational 

data/resources and enterprise-wide collaboration. Moreover, our approach is 

domain independent. It can be applied to different domains in business.  

 
A modeling method can be validated by reviews via focus group or problem solving 

in the focal domain (Shanks et al., 2003). As demonstrated in this paper, our 

knowledge modeling approach has been applied to the vessel chartering process in 

a real-life shipping company. It works well. The vessel operations department of 

the company never adopted any model-driven approach to data management before. 

Using our knowledge modeling approach, the department is now able to 

systematically understand, elicit and visualize the data requirements (including 

their structures and relationships). This study provides insights and implications for 

both data-management research and real-world practice. 

 

There are some limitations of this research and interesting directions for the future 

work. Although the proposed knowledge modeling approach has been validated in 

the case study, more empirical and more rigorous evaluations are expected. The 

vessel chartering process is a small part of the entire vessel operations process. It is 

desirable to evaluate the model by applying it to the full context of the vessel 

operations. In the full context, multiple processes (e.g., vessel operating, voyage 

management, and crew management) interact and involve multiple departments in 

the shipping company. Since a knowledge model is created for each process, 

multiple knowledge models will be created. Integrating multiple models is a 

daunting task. There are a lot of merging and mapping issues to be resolved. 

Moreover, with multiple departments involved, maintaining the model with 

effective knowledge sharing mechanism is another important challenge. How to 

maintain the model integrity and reduce redundancy should be carefully planned. 
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This study is the first part of the larger comprehensive study. Improvement in the 

modeling method will be made with more real-world applications. A lot of 

interesting work can follow. 
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