
Communications of the IIMA Communications of the IIMA

Volume 15 Issue 2 Article 2

2017

Code Generation on Mobile Devices for Mobile Apps Code Generation on Mobile Devices for Mobile Apps

Nathan Amanquah
Ashesi University College, Ghana

Susana Ndede
Ashesi University College, Ghana

Follow this and additional works at: https://scholarworks.lib.csusb.edu/ciima

 Part of the Management Information Systems Commons

Recommended Citation Recommended Citation
Amanquah, Nathan and Ndede, Susana (2017) "Code Generation on Mobile Devices for Mobile Apps,"
Communications of the IIMA: Vol. 15: Iss. 2, Article 2.
DOI: https://doi.org/10.58729/1941-6687.1382
Available at: https://scholarworks.lib.csusb.edu/ciima/vol15/iss2/2

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion
in Communications of the IIMA by an authorized editor of CSUSB ScholarWorks. For more information, please
contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/ciima
https://scholarworks.lib.csusb.edu/ciima/vol15
https://scholarworks.lib.csusb.edu/ciima/vol15/iss2
https://scholarworks.lib.csusb.edu/ciima/vol15/iss2/2
https://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol15%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol15%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.58729/1941-6687.1382
https://scholarworks.lib.csusb.edu/ciima/vol15/iss2/2?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol15%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

 1

Code Generation on Mobile Devices for Mobile Apps

Nathan Amanquah

Ashesi University College

namanquah@ashesi.edu.gh

Susana Ndede

Ashesi University College
susana.ndede@gmail.com

ABSTRACT

There is both a demand and a need for rapidly developing mobile apps for data management as

well as apps for conducting surveys. Much of the code for data management operations – create,

retrieve, update and delete (CRUD) is the same, except for the parameters passed. Such boilerplate

type code is well suited for code generation. Many tools are available for creating apps for

conducting surveys, but are ill suited for data management scenarios since CRUD operations are

not supported. The tools available generally require a PC to access the web-based build tool, and

do not provide source code for the application created. This paper extends that, and proposes a

mobile app for creating a full data management app to run on Android devices, as well as the

generation of all the code for the native app, the supporting PHP pages for a web application, and

the SQL scripts for the associated normalized database. An example app created by this mobile

app code generator and app builder is also given.

Keywords: mobile app, code generation, database application, tools

INTRODUCTION

Developing countries and emerging economies have a dire need for data management and

information systems. They lag significantly behind advanced countries in the collection and use of

data in business processes, and in decision-making. Data is required for meaningful analysis to be

made in the decision making process. There is also a lack of supporting infrastructure in terms of

computer hardware for most applications. Recent years have seen mobile phones and tables outsell

PCs. It is known that whereas many individuals (and small businesses) have access to, or own

mobile terminals and phones, they do not always have PCs. There is nevertheless a growing need

and desire to automate business processes.

Applications for more traditional activities like organizing and tracking customers, inventory, and

employee management can all be done from a mobile terminal. There are numerous stories of

additional ways in which mobiles are being used innovatively to address new and emerging

challenges. These range from money transfer schemes, improving agricultural outcomes by

disseminating information on the weather, improving farmer profits by monitoring market prices,

improving community health by automating health management records (Dafla, Amanquah, &

mailto:namanquah@ashesi.edu.gh
mailto:namanquah@ashesi.edu.gh
mailto:t.goette@gc.edu

 2

Osafo-Maafo, 2015), and the list is endless. Many of these applications mostly have one thing in

common: they essentially are database management systems made to run on mobiles and backed

by cloud based back-end systems. They may also work offline in disconnected environments. It is

believed that adoption of ICT including the use of mobile apps by Small and Medium Enterprises

(SMEs) will dramatically boost economic growth and productivity (Boston Consulting Group,

2013).

The mobile device1 is a natural choice for many small organizations for a number of reasons: They

are much cheaper than a PC, and can thus be afforded even in difficult economic circumstances.

For some applications, mobile terminals represent the best use case. Mobiles can be used to collect

a wider range of data types more easily. For example, location information (GPS), multimedia data

(audio and video recordings and photos), and the use of sensors and instruments on a mobile

present a compelling use case. A mobile can easily be used to scan QR codes in the field. Mobiles

are portable and can be carried by field staff. For example, a debt collector out in the fields

collecting money from clients can record their transactions in real time with little or no setup time

required, compared to using a PC or perhaps using a paper and transcribing that information

subsequently onto a PC. Mobile terminals can be always connected, and do not require an

additional accessory to get online, compared to using a bulky laptop and a modem for the cellular

network. Length of life on a battery is a crucial factor. Many environments where these

applications will be used in a developing country either have no reliable power or may have very

frequent long lasting power outages - for example, 12 hours of power followed by 24 hours

without. A desktop will be of no use without a generator when power goes out, and a laptop will

run out in 3 to 8 hours. A mobile phone could work for 24 hours or more (up to 14 days on a

popular feature phone (Quarter, 2015). Thus the mobile device wins on many fronts.

As more organizations see the benefit of adopting ICTs, particularly the use of mobiles in their

operations, they seek mobile apps that meet their needs. The apps may be complemented by a

supporting backend, a web based application. It may be argued that users could make use of web

hosted applications from within the browser. However, cellular coverage is patchy and quality is

not uniform even where there is coverage. While GSM coverage for voice calls may be present,

there may be poor data coverage. (EDGE, GPRS and 3G technologies may have spotty

provisioning). There is thus often the need to be able work offline and synchronize with online

database, if such are used.

To drive the adoption of mobile app use for data management, it is imperative that rapid app

development options be available to developers and novices alike to be able to meet the needs of

the growing mobile data management app market. Organizations seeking data management apps

for their operations are often unwilling to pay more that the customary $0.99. There is a perception

based on pricing in app stores that mobile apps should be cheap or free, even if custom built. Either

way, there is pressure on developers’ time to churn out apps in reasonable time but at minimal

cost. This is where rapid application development (RAD) tools and code generation technologies

enter the discussion.

This work proposes the development of a mobile tool to create mobile apps (data collection apps)

with or without knowledge of programming. It additionally provides code for the generated app

1 ‘Mobile device’ is also alternately referred to simply as ‘mobile.’

 3

so that a programmer can customize the app further if desired. It is an end-to-end tool that creates

code for native android apps, the database required, as well as PHP scripts for the web backend.

The rest of this paper as organized as follows: Section II discusses related work done in this space

and points out the gap that this work fills. Section III goes on to describe how the proposed

application has been built. Section IV describes how it works while section V demonstrates how

it has been used practically. Section VI concludes with a discussion of the results and points out

limitations and work for the future.

The objective is to make the development of mobile data collection tools on mobile devices not

only possible but easy. This paper describes a cross platform application which can be used by the

designer or developer to specify the data descriptions and logic to develop an android data

management app. The user will only specify the variety of input types to be collected. The result

will be more than a data collection tool –one that allows viewing, editing, and deletion of data on

mobile devices.

RELATED WORK

There is a long history of using code generation tools for rapid application development. The

Symbian platform used by Nokia smart phones in the early days was a particularly challenging

development environment. There were no easy to use IDEs with the requisite tools integrated, and

required developers to have specialist knowledge. The work done by Forstner et al (2005)

highlights the complexity of writing code for Symbian, and demonstrates the use of a visual control

flow language to aid in the generation of code for that platform. Their approach is to employ an

easier to use class library and a modeling tool to make the GUI easier to build. The developer must

still hand-code much of the event handler. Another proposed approach focuses on building the

structure of the visual interaction with the user only (Carboni, Sanna, Giroux, & Paddeu, 2002),

but the developer has to implement the concrete tasks.

Mobile cloud computing offers many advantages (Shamim, Sarker, Bahar, & Rahman, 2015),

(Warhekar & Gaikwad, 2013). These include extending battery lifetime since heavy processing is

offloaded to the cloud servers, storage capacity is significantly enhanced – the mobile device need

not store all the data required or captured, but can upload data captured to a cloud hosted database.

Other advantages include scalability of the backend, and ease of integration with other services. A

variety of models have been proposed to take advantage of cloud computing power (Kahoro,

Kahoro and Kanyi, 2015). The availability of mobile apps, broadband and cloud hosted services

make this a significant part of the future of computing in emerging markets.

The data collection process can be expensive. Tools have been created for building data collection

apps. A good overview of over 40 of them is provided by Humanitarian Nomad (Humanitarian

Normad, 2016), and includes an online tool for selecting the most appropriate app generating tool

for a task. However, many limitations can be identified.

The apps created by the existing tools generally allow a user to do survey type data collection

where each visit represents one data point. The most popular of the lot is Open Data Kit tool (ODK)

(Open Data Kit , n.d.) and there are several others based on it such as Kobo ToolBox (Kobo

 4

Toolbox, n.d.) and Enketo Smart Paper (Enketo LLC, n.d.). The ODK toolkit is made up of a

number of tools including

i. ODK build which a user uses to specify what data will be collected. The data collection is

done online in a web browser,

ii. ODK collect which is a mobile app that is used in the filed for collected the data. It runs an

application created by the ODK build. The ODK collect app fetches the previously created

“survey” from the cloud to the mobile. These are made up of the questions, possible answer

types, and skip logic (i.e. navigation between the questions). Data can often be saved

locally on the device.

iii. Data can be saved offline and modified while still offline.

iv. ODK aggregate holds the data uploaded from the ODK collect app. Once data is submitted

to ODK aggregate, it can no longer be edited from the mobile easily.

There is however a lack of master-detail among relationships created. Thus if data must be

collected on the same subject, each record added is entirely new, and unrelated to any previous

data (e.g. it is not possible to record patient visits and attach it to a previous patient record). There

has been effort recently to create ODK Tables (Open Data Kit , n.d.) to enable the retrieval of data,

editing of submitted data, and the creation of master-detail relationships. However, these still fall

short of a true data management system. Two or three different applications are needed to simply

modify data previously saved, and the user must switch between them to accomplish basic CRUD

functions. It is not straightforward to search data collected by the app. Certainly, not by using ODK

collect.

The process of creating the data collection apps is also challenging. The existing tools require

desktops or laptops, and generally use web interfaces to build the mobile data collection tools.

However, reliable, cheap, internet connectivity and a PC are not always easily accessible to a small

scale or micro enterprise business user. Developers may own a laptop but can often run out of

power because of recurrent, persistent power outages. Such a potential user will nevertheless most

likely own a mobile device. Developers may also be on the move, seeking to address the needs of

potential clients. A mobile device presents an interesting platform on which to do mobile app

development on the go, or with little additional resources.

Besides using the web based ODK build tool, a user may also specify the data collection

requirements for building the app using XForms (The World Wide Web Consortium (W3C),

2017), a spreadsheet-like specification, or XLSForm, an XML format. While it is human readable,

it is not quite friendly to use, and certainly not quick to use for rapid application development.

In the process of building a mobile data collection tool, the user must specify the details (meta

data) of the data to be collected. Data collection tools are essentially database applications. From

a developer perspective, the process of development can be very repetitive since such apps have a

lot of boilerplate code, but the context in which it is to be used may be different.

Code generation is a mechanism to produce computer programs in some automatic manner. Code

generation is the act of writing or using existing programs that build applications and system code.

Code generation can occur at two levels of detail. The lower level involves generation of code by

 5

compilers. In compilers, code generation is the translation of high‐level code that is written by a

human or some other means into machine code.

This work focuses on the higher layer of code generation. Higher level code generation also termed

as Generative Programming involves the generation of actual source code that is used by a

programmer to build an application. As defined by Stephen Marr (2006), “Generative

programming is a software engineering paradigm based on modelling software families such that,

given a particular requirements specification, a highly customized and optimized intermediate or

end-product can be automatically manufactured on demand from elementary, reusable

implementation components by means of configuration knowledge.” In general terms, generative

programming involves the generation of actual source code that is used by a Programmer to build

an application. This technique can enhance software development in different ways by improving

developer productivity, producing complete quality code and save time spent on application

development.

Generative programming is the method adopted for creating apps in this project. It is possible to

generate code for data management apps because there is a lot of similar boiler plate code for all

kinds of data management apps, irrespective of the particular use case. The aim is thus to reduce

the drudgery of writing such code by providing high quality code that works correctly always,

given a description of the data to be managed.

Work in (Amanquah & Eporwei, 2009) describes a code generator that accepts the data

specification and proceeds to create a J2ME app, along with supporting PHP pages and database

script. That was a desktop based java application and not suited for the current use case. Besides,

creating a J2ME app is fairly simple as all the code for the mobile app can be made to reside in

one file. It is a simpler development case compared to an Android application with its variety of

files needed to build a one app.

Unlike ODK other apps built on the same framework which use HTML+CSS+Javacript in an

attempt to build cross platform apps, but which mostly run on android, this project seeks to build

native Android apps since they are significantly more responsive.

DESIGN

The work consists of four main modules as shown in Figure 1. A cross platform mobile app is

used to collect meta data for the mobile app to be built. The meta data is kept in a database. A code

generator reads this meta data and proceeds to output a usable Android app. The modules are

described below:

The App: The Mobile Data Management App Builder (mDMAB) is a cross-platform application

that will aid users specify the desired fields in the mobile app to be created. The objective is to

create a “Field Data Collection and Management” application (FDCAM app). Users must specify

input fields/questions for the forms of the FDCAM app they intend to build. The specification may

be kept on the mobile and modified at will. The mDMAB is built with Phonegap (Phonegap, n.d.),

a cross platform tool.

 6

The Specification Database: The specification obtained from the user by the mDMAB app is

uploaded to a cloud based database. It is from this database that the target FDCAM app will be

built and code will be generated. This “specification database” is designed to hold metadata, a

blueprint for any application.

The Code Generator: This module is responsible for reading specifications from the database

and generating scripts that the user can download and re- use for future purposes. This generator

creates code that android Development SDKs can build and run. The code includes a number of

different file types.

• The XML files are responsible for management of layouts and resources in android. These

files include, the manifest files, XML files for the layout for each activity and xml files for

String resources.

• The Java files determine the behavior of the User Interface (activities). These files include

the class files for each activity and may contain multiple classes that are related.

• SQL scripts for the application database that will hold data to be managed by the FDCAM

app, and it is kept online. However, there is provision for offline storage on the mobile (by

the FDCAM app) when internet not available. The code generated in the second setep

makes provision for offline storage.

• The PHP scripts to handle requests from the FDCAM app are also generated. These scripts

mostly interact with the online database, receive requests for CRUD operations.

• PHP scripts for a web application. These allow a human to review data on the site that hosts

the database.

The output app: The Android Field Data Collection and Management application (FDCAM app):

This is the mobile data management app (the output app, the result of code generation) that will

be used to collect and manage data. This app can retrieve and list data stored on the server for the

user to view, edit and delete. The output app (FDCAM) allows offline storage of data where there

is no internet connectivity, and can capture a variety of data types including GPS coordinates, and

has a barcode/QR code scanner.

Figure 1 Parts of the code generation system.

 7

Figure 2 illustrates what a user goes through from specification of app to its generation.

Figure 2 Steps in code generation process.

The application has a wizard type navigation that guides the user from screen to screen and prompts

them for what data to enter. Key functional requirements of the mDMAB are as follows:

a. User Login: This allows the user to login to the phone gap application to view forms he

has previously developed. The user can choose to make new forms or edit old ones to save

as new form. Login is important in identifying records belonging to a user, as data is held

on a shared database.

b. Create new data management app and data entry forms: User creates new form in the new

app by specifying form name as well as form description. User can create many forms with

this application.

c. Edit old forms and save as new forms: If a user needs to make changes to a form that has

already been developed into an APK, the user is given the option to retrieve this form,

make changes and save this form as a new form. This will also allow users wish to clone

an existing app to do so without having to specify all form details again. It is also important

that changes are saved as a new application (unless the app has not yet been built). This is

to safeguard against the possibility that an app that has been used to collect some data

already has a subsequent version with a different database schema, and therefore

incompatible.

d. Specify Number of data items per form: This allows the user to add on as many fields as

possible to a form (or number of questions per screen in the case of a survey type app). The

user can select the number of fields to appear on a screen, otherwise the default of one data

item/question per page is applied.

 8

e. Specify Input Types for field types/questions: When drafting input prompts, the user

specifies the input type the particular data type accepted. The allowed input types are text,

Long Texts, numbers, emails, decimals, GPS, Locations.

f. Specify Widget Types: The user can choose the widget for data entry. This is useful in

designing the User Interface. The allowed widgets are date and time pickers, textboxes for

different input types, radio buttons, Spinner, QR and barcode reader

g. Review fields: The user can review fields before the final submission when the information

supplied are used to develop the android application.

h. Build APK for android data collection tool: The user can obtain an APK that can run the

android data collection tool developed.

i. Obtain generated code for the application: The user can obtain a set of files that represent

the code used to build the android application. The files include java files, xml files and

SQL and PHP files.

IMPLEMENTATION

The mDMAB app was built with JQuery Mobile and Javascript, and built as a cross platform

application. The backend on the cloud that does the code generation of the app was written in PHP.

A MYSQL database was used to hold the data. An apache ANT script (a build.xml file) is

generated which can be executed on the command line to generate an android APK, or

automatically by the PHP script.

The mDMAB app makes use of an interactive user interface and a number of form widgets to fetch

the specification from the user. Unlike the XForms or XLS forms which requires a strict format,

which a user may provide incorrectly, in this case, the user makes selections mostly from options

provided in drop down boxes and is unlikely to provide an incompatible specification. A high level

navigation chart for the mDMAB is shown in Figure 3.

Figure 3 Navigation chart for mDMAB.

 9

RESULTS

mDMAB was tested with a scenario where a user would like to create a questionnaire to determine

how helpful School Feeding Program has been. This is not unlike the survey type applications, but

was also to illustrate the capabilities and features of the mDMAB. The general overview of steps

involved in this process are illustrated in Figure 4.

Figure 4 Overview of steps for creating an app with mDMAB.

The specification to be provided to the app for testing purposes are illustrated in

Figure 5. Figure 6 to Figure 10 illustrates some of the screen shots on mDMAB in the app

creation process.

Figure 5 Specification for sample database app to be create.

 10

Figure 6 Form creation or editing page.

Figure 7 Form description.

Figure 8 Options to create or modify a

field on a form.

Figure 9 Specification for a field –a

textfield entry type.

Figure 10 Specification for a field –a radio button type.

 11

The high level set of activities of the resulting FDCAM app is illustrated in Figure 11. The

resulting normalized database schema for the simple setup is shown in Figure 12.

Figure 11 Activities in the resulting android FDCAM app.

Figure 12 Database schema created for the simple scenario.

 12

The output of the resulting app is shown in Figure 13. It shows multiple questions on a single

form, and is a native Android app. There is even a splash of color, although the theming is currently

fixed, but can be modified by any developer who compiles the code themselves.

Figure 13 Add page in the generated application

Figure 14 List of previously collected data

The following shows an edit screen, and the resulting changed list of entries after deleting one

entry (last response, response 35 is deleted).

 1

Figure 15 Editing of previously collected data

Figure 16 Updated list after deletion

3

DISCUSSION AND FUTURE WORK

This paper has proposed and demonstrated an app that offers significant advantages over what is

presently available.

• Unlike the output of other tools that create mobile data apps, this one allows users to

actually mange the data- doing not only add operations (data collection operations), but

also edit, delete and search operations, even if the data has already been uploaded to a

server.

• The ability to develop mobile data management apps on the go using a mobile app will

enable the proliferation of data management tools. Many will to build their own database

to manage their small operations. Developers will use this a basis for their work. They will

quickly generate all the boilerplate code and have fully functioning code, which they can

then proceed to apply theme it, to make it unique. It will be a great time saver, and they

will thus be able to churn out apps faster and more cheaply.

• Apps can be specified on the go as no internet access is required until it is time to build the

app.

• App specifications can be done with significant accuracy. The mDMAB app makes use of

prompts and drop down boxes that make it difficult if not impossible to specify data types

and responses types incorrectly, compared to making out a properly formed xml file for

the XLSForm, or using a spread sheet to prepare the specification. Also, no drag and drop

is required.

• The output app (FDCAM) supports not just surveys type applications, but full data

management

• FDCAM allows a page to have more than one question or data entry field, compared to

the other apps which typically have one question per page.

• A normalized relational database is created out of the specification for storing the data.

Data that shows up a combo boxes in the generated app come from a separate lookup table

unlike other apps that keep all that data a fixed data. First, this will allow the options in the

combo box to be extended without having to recreate the app. Second, the normalized

nature of the data collected is easier to analyze and use for further processing, compared to

a single spreadsheet of data that is not normalized.

There are a few limitations however. mDMAB is a mobile app that can run on small terminals.

Drag and drop is not enabled in this application for the specification of widgets because of screen

size. Perhaps it may be useful to have an alternative that has drag and drop enabled, for use on

bigger screen tablets.

Although the specification phase requires no Internet access, the build process requires internet

access since the meta data collected must be uploaded to the build server in the cloud.

Currently, when the specifications in the mDMAB app are changed, it must be saved as a new app

because it is likely that data previously collected by the app will use a different schema from the

new one. It will be useful to provide an upgrade path for the old data if there is some measure of

compatibility that can be attained.

4

It will be useful to completely automate the process of APK creation, and perhaps explore

possibility of signing and deploying directly into the app store, or to push directly on to a target

mobile device. This will make it particularly easy for the novice or casual user to build and deploy

data management apps. The apps built were often compiled in an IDE using the source code

generated, but the command line option could be extended to cater for different versions of android

API, made more robust.

Other minor updates needed include allowing the user to specify the server on which to deploy the

php pages and automatically uploading the pages to the intended server. It would be desirable to

extend the generator to produce source code and also build native apps for other platforms include

iOS and Windows mobile platforms.

REFERENCES

Amanquah, N., & Eporwei, O. T. (2009). Rapid Application Development for Mobile Terminals.

2nd IEEE International Conference on Adaptive Science and Technology (ICAST'09),

December 14-16, 2009, Accra.

Boston Consulting Group. (2013). Lessons on Technology and Growth from Small-Business

Leaders. Retrieved January 29, 2017 from

https://www.bcg.com/publications/2013/technology-software-globalization-ahead-curve-

lessons-technology-growth-small-business-leaders.aspx

Carboni, D., Sanna, S., Giroux, S., & Paddeu, G. (2002). Interactionss Model and Code

Generation for J2ME Applications . In Proc Proceedings of the 4th International

Symposium on Mobile Human-Computer Interaction, (pp. 286-290).

Dafla, A., Amanquah, N., & Osafo-Maafo, K. G. (2015). A Mobile Devices Health Information

Application for Community Based Health Services. 2015 Conference on Raising

Awareness for the Societal and Environmental Role of Engineering and (Re)Training

Engineers for Participatory Design (Engineering4Society), June 18-19, Leuven,

Belgium.

Enketo LLC. (n.d.). Overview for Developers. Retrieved January 15, 2017, from Enketo Smart

Paper: https://enketo.org/develop/

Forstner, B., & et al. (Nov 2005). Supporting Rapid Application Development on Symbian

Platform. in Proc of The International Conference on Computer as a tool (EUROCON

2005), Belgrade.

Humanitarian Normad. (2016). Find the Right Mobile Solution. Retrieved 06 15, 2016, from

Humanitarian Operations Mobile Acquisition of Data: https://humanitarian-nomad.org

Kahoro, P. K., Kahoro, P., & Kanyi, G. (2015). Mobile Cloud Computing Models,

Infrastructures, & Approaches. Conference on Cloud Computing, Vol 4.0, January, 2015.

5

Retrieved February 6, 2018 from

https://www.researchgate.net/publication/270574846_Mobile_Cloud_Computing_Model

s_Infrastructures_Approaches

Kobo Toolbox. (n.d.). Data collection Tools for Challenging Environments. Retrieved from

www.kobotoolbox.org

Marr, S. (2006). Feature Charts and Variability, Grin Verlag Publishing, 2006. Retrieved from

https://www.grin.com/document/110351.

Open Data Kit . (n.d.). Open Data Kit. Retrieved 10 15, 2014, from https://opendatakit.org/

Phonegap. (n.d.). Phonegap. Retrieved from www.phonegap.com

Phonegap. (n.d.). Phonegap. Retrieved January 15, 2016, from www.phonegap.com

Quartey, E. (2015). The Mystery of the Power Bank Phone Taking Over Accra.Quartz Africa,

May 26, 2015. Retrieved February 6, 2018 from https://qz.com/411330/the-mystery-of-

the-power-bank-phone-taking-over-ghana/

Shamim, S. M., Sarker, A., Bahar, A. N., & Rahman, M. A. (2015). A Review on Mobile Cloud

Computing, International Journal of Computer Applications, Vol 113, No. 16. Retrievd

February 6, 2018 from

http://research.ijcaonline.org/volume113/number16/pxc3901883.pdf

The World Wide Web Consortium (W3C). (2017). XForms 1.1 W3C Recommendation 20

October 2009. Retrieved from The World Wide Web Consortium (W3C):

https://www.w3.org/TR/xforms/

Warhekar, S. P., & Gaikwad, V. T. (2013). Mobile Cloud Computing: Approaches and Issues.

International Journal of emerging trends & Technology in computer science, Vol 2 (2).

Retrieved February 6, 2018 from

https://pdfs.semanticscholar.org/034b/d7b1cf79af4ece336b51a74a8aced90bce0d.pdf

Wikipedia. (n.d.). Dumsor. Retrieved December 2, 2016, from

https://en.wikipedia.org/wiki/Dumsor

https://www.abebooks.com/servlet/BookDetailsPL?bi=19186182033

	Code Generation on Mobile Devices for Mobile Apps
	Recommended Citation

	tmp.1520727279.pdf.ZWLUN

