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Abstract

In this thesis, we have presented our discovery of true finite homomorphic

images of various permutation and monomial progenitors, such as 2∗7 : D14, 2∗7 : (7 : 2),

2∗6 : (S3 × 2), 2∗8 : S4, 2∗72 : (32 : (2·S4)), and 11∗2 :m D10. We have given delightful

symmetric presentations and very nice permutation representations of these images

which include, the Mathieu groups M11, M12, the 4-fold cover of the Mathieu group M22,

2 × L2(8), and L2(13). Moreover, we have given constructions, by using the technique

of double coset enumeration, for some of the images, including M11 and M12. We have

given proofs, either by hand or computer-based, of the isomorphism type of each image.

In addition, we use Iwasawa’s Lemma to prove that L2(13) over A5, L2(8) over D14,

L2(13) over D14, L2(27) over 2·D14, and M11 over 2·S4 are simple groups. All of the

work presented in this thesis is original to the best of our knowledge.
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Introduction

Group theory is the study of symmetry of objects. Symmetric presentations

provide a uniform way of constructing finite groups. In this thesis, we are particularly

interested in symmetric presentations of finite simple groups, since these can be used

to obtain all finite groups. The process to obtain finite homomorphic images is through

the use of a progenitor, m∗n : N , where N is transitive on n letters. The objective is

to factor the progenitor by relations, that equate elements of N to the product of tis,

that give finite homomorphic images. An isomorphism is a homomorphism that is also

a bijection. We say that group G is isomorphic to group H, denoted by G ∼= H, if there

exists an isomorphism f : G→ H.

In Chapter 1, we describe the process of creating permutation progenitors

and monomial progenitors. In addition, we factor these progenitors by all first order

relations and suitable relations. In Chapter 2, we apply the technique of double coset

enumeration, resulting in the construction of Cayley diagrams, and give by hand or

computer-based proofs for the isomorphism type of each group. We also, explain the

technique of factoring by the center. In Chapter 3, we use Iwasawa’s lemma and the

transitive action of a group on the set of single cosets to prove that a group is simple.

Similarly, in Chapter 4, we apply the technique of double coset enumeration over a

maximal subgroup and apply Iwasawa’s lemma to prove that a group simple. In Chapter

5, we compute an extension problem, by looking at the composition factors to find

the isomorphic type. In Chapter 6, we construct M11 over the subgroup S4 with an

imprimitivite action. We then construct this group over the maximal subgroup 2·S4 with

a primitive action and thus apply Iwasawa’s lemma to prove that this group is simple.

Similarly, in Chapter 7, we construct M12 by performing the double coset enumeration,

and our goal is to show that the group is simple, however, at the time of writing our
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proof, we did not have time to apply Iwasawa’s lemma, it is still in progress. Finally, in

Chapter 8, we give progenitors tables with homomorphic images.
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Chapter 1

Writing Progenitors

1.1 Writing Progenitors Preliminaries

Definition 1.1. (Permutation). If X is a nonemty set, a permutation of X is a

bijection α : X → X. We denote the set of all permutations of X by SX . [Rot12]

Definition 1.2. (Operation). Let G be a set. A (binary) operation on G is a

function that assigns each ordered pair of elements of G an element on G. [Rot12]

Definition 1.3. (Semigroup). A semigroup (G,∗) is a nonempty set G equipped

with an associative operation ∗. [Rot12]

Definition 1.4. (Group). A group is a semigroup G containing an element e such

that

(i) e ∗ a = a = a ∗ e for all a ∈ G
(ii) for every a ∈ G, there is an element b ∈ G with a ∗ b = e = b ∗ a. [Rot12]

Definition 1.5. (Abelian). A pair of elements a and b in a semigroup commutes if

a∗b = b∗a. A group (or a semigroup) is abelian if every pair of its elements commutes.

[Rot12]

Theorem 1.6. If K ≤ H and [H : K] = n, then there is a homomorphism φ : H → Sn

with kerφ ≤ K. [Rot12]

Definition 1.7. (Free Group). If X is a nonempty subset of a group F , then F is

a free group with basis X if, for every group G and every function f : X → G, there
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exists a unique homomorphism φ : F → G extending f . Moreover, X generates F .

[Rot12]

Definition 1.8. (Presentation). Let X be a nonempty set and let ∆ be a family of

words on X. A group G has generators X and relations ∆ if G ∼= F/R, where F

is the free group with basis X and R is the normal subgroup of F generated by ∆. The

ordered pair (X|∆) is called a presentation of G. [Rot12]

Definition 1.9. (Progenitor). Let G be a group and T = {t1, t2, ..., tn} be a symmetric

generating set for G with |ti| = m. Then if N = NG(T̄ ), then we define the progenitor

to be the semi direct product m∗n : N , where m∗n is the free product of n copies of the

cyclic group Cm. [Cur07]

Definition 1.10. (Normalizer). If H ≤ G, then the normalizer of H in G, denoted

by NG(H), is

NG(H) = {a ∈ G : aHa−1 = H}. [Rot12]

Definition 1.11. (Centralizer). If a ∈ G, then the centralizer of a in G, denoted

by CG(a), is the set of all x ∈ G which commute with a. [Rot12]

Note 1.12. An isomorphism is a homomorphism that is also bijection. We say that

G is isomorphic to H denoted by G ∼= H, if there exist an isomorphism φ : G → H.

[Rot12]

Definition 1.13. (Homomorphism). Let G and H be groups. A map φ : G→ H is

a homomorphism if, for all α, β ∈ G,

φ(αβ) = φ(α)φ(β). [Rot12]

Theorem 1.14. (First Isomorphism Theorem (F.I.T)). Let φ : G → H be a

homomorphism with kerφ. Then

•kerφ E G

•G/kerφ ∼= imgφ. [Rot12]

Theorem 1.15. (Second Isomorphism Theorem).

Let N and T be subgroups of G with N normal. Then N ∩ T is normal in T and

T/(N ∩ T ) ∼= NT/N. [Rot12]
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Theorem 1.16. (Third Isomorphism Theorem).

Let K ≤ H ≤ G, where both K and H are normal subgroups of G. Then H/K is a

normal subgroup of G/K and

(G/K)(H/K) ∼= G/H. [Rot12]

Definition 1.17. (Monomial Character). Let G be a finite group and H ≤ G. The

character X of G is monomial if X = λG , where λ is a linear character of H. [Led87]

Definition 1.18. (Character). Let A(x) = (aij(x)) be a matrix representation of G

of degree m. We consider the characteristic polynomial of A(x), namely

det(λI −A(x)) =


λ− a11(x) −a12(x) · · · −a1m(x)

λ− a11(x) −a12(x) · · · −a1m(x)

· · · · · · · · ·
λ− am1(x) −am2(x) · · · λ− amm(x)


This is a polynomial of degree m in λ, and inspection shows that the coefficient of −λm−1

is equal to

φ(x) = a11(x) + a22(x) + ..+ amm(x)

It is customary to call the right-hand side of this equation the trace of A(x), abbreviated

to trA(x), so that

φ(x) = trA(x)

We regard φ(x) as a function on G with values in K, and we call it the character of

A(x). [Led87]

Theorem 1.19. The number of irreducible character of G is equal to the number of

conjugacy classes of G. [Led87]

Definition 1.20. (Degree of a Character). The sum of squares of the degrees of

the distinct irreducible characters of G is equal to |G|. The degree of a character χ

is χ(1). Note that a character whose degree is 1 is called a linear character. [Led87]
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Definition 1.21. (Lifting Process). Let N be a normal subgroup of G and suppose

that A0(Nx) is a representation of degree m of the group G/N . Then A(x) = A0(Nx)

defines a representation of G/N lifted from G/N . If φ0(Nx) is a character of A0(Nx),

then φ(x) = φ0(Nx) is the lifted character of A(x). Also, if u ∈ N , then A(u) = Im,

φ(u) = m = φ(1). The lifting process preserves irreducibility. [Led87]

Definition 1.22. (Induced Character)

Let H ≤ G and φ(u) be a character of H and define φ(x) = 0 if x ∈ H, then

φG(x) =

φ(x), x ∈ H

0, x /∈ H

is an induced character of G. [Led87]

Definition 1.23. (Formula for Induced Character).

Let G be a finite group and H be a subgroup such that [G : H] = n. Let Cα,

α = 1, 2, · · ·m be the conjugacy classes of G with |Cα| = hα, α = 1, 2, · · ·m. Let φ be a

character of H and φG be the character of G induced from the character φ of H up to

G. The values of φG on the m classes of G are given by:

φGα =
n

hα

∑
w∈Cα∩H

φ(w), α = 1, 2, 3, · · · ,m. [Led87]

1.2 Permutation Progenitor of A5

We want to write a permutation progenitor of 2∗5 : A5, where our control

group is N = A5. First, we write a presentation of A5 which is G < x, y >=< x, y|x2 =

y3 = (xy)5 = 1 >. We check in Magma if the above presentation gives A5.

> G<x,y>:=Group< x,y | xˆ2 = yˆ3 = (x*y)ˆ5 = 1 >;
> f,G1,k:=CosetAction(G,sub<G|Id(G)>);
> s,t:=IsIsomorphic(G1,Alt(5));s;
true
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Moreover, the corresponding permutation representation is N =< x, y >, where x =

(1, 2)(3, 4) and y = (1, 3, 5). Now we add the free product 2∗5 (|t′is| = 2) to this group

to form our progenitor. Hence, a presentation for the progenitor 2∗5 : N is given by

< x, y, t|x2, y3, (xy)5, t2, (t,N1) >, where t ∼ t1. N1 is the point stabilizer of 1, and

(t,N1) = 1 means that 1g = 1 ∀ g ∈ N1. Note that 1g = 1 ∀ g ∈ N1 implies t has

[N : N1] conjugates in N. Using Magma, we can see that the point stabilizer of 1 in N is

equal to < (2, 3, 4), (3, 4, 5). Now we use the Schreier System to convert the permutations

into words. Thus, N1 =< yxy−1xy−1, y−1xy−1xyxy−1 > (see below).

> G<x,y>:=Group< x,y | xˆ2 = yˆ3 = (x*y)ˆ5 = 1>;
> S:=Alt(5);
> xx:=S!(1,2)(3,4);
> yy:=S!(1,3,5);
> N:=sub<S|xx,yy>;
> N1:=Stabiliser(N,1);
> N1;
Permutation group N1 acting on a set of cardinality 5
Order = 12 = 2ˆ2 * 3

(2, 3, 4)
(3, 4, 5)

> Sch:=SchreierSystem(G,sub<G|Id(G)>);
> ArrayP:=[Id(N): i in [1..60]];
> for i in [2..60] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> for i in [1..60]do if ArrayP[i] eq N!(2,3,4) then Sch[i];
end if;
for> end for;
y * x * yˆ-1 * x * yˆ-1
> for i in [1..60]do if ArrayP[i] eq N!(3,4,5) then Sch[i];
end if;
for> end for;
yˆ-1 * x * yˆ-1 * x * y * x * yˆ-1
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So, a presentation of the progenitor G = 2∗4 : N is given by G < x, y, t >:=

Group < x, y, t|x2, y3, (xy)5, t2, (t, yxy−1xy−1), (t, y−1xy−1xyxy−1) > . This progenitor

is infinite. In order to find find finite images of 2∗5 : N we must factor it by the first

order relations.

1.2.1 Factoring 2∗5 : A5 by First Order Relations

The first order relations are written of the form (πtai )
b = 1, where π ∈ N and

w is word in the t′is. In order to find these relations, we compute the conjugacy classes

of N = A5, as show below:

Table 1.1: Conjugacy Classes of A5

Class Number Order Class Representative Length

[1] 1 e 1

[2] 2 (1,2)(3,4) 15

[3] 3 (1,2,3) 20

[4] 5 (1,2,3,4,5) 12

[4] 5 (1,3,4,5,2) 12

Next, we need to compute the centralizer of each class representative inN = A5

and then find the orbits of the corresponding centralizer. The centralizer and their orbits

on {1, 2, 3, 4, 5} are given below.

Table 1.2: Centralizer of A5

Class Num Class Rep Cent(N,Class Rep) Orbits

[2] (1,2)(3,4) < (1, 2)(3, 4), (1, 3)(2, 4) > {1,2,3,4}, {4}, {5}
[3] (1,2,3) < (1, 2, 3) > {1,2,3} {4}, {5}
[4] (1,2,3,4,5) < (1, 2, 3, 4, 5) > {1,2,3,4,5}
[5] (1,3,4,5,2) < (1, 3, 4, 5, 2) > {1,3,4,5,2}

Thus, we use the table above to obtain the following relations of N = A5:

(1, 2)(3, 4)t1 = xt,

(1, 2)(3, 4)t4 = xtyx,

(1, 2)(3, 4)t5 = xty
−1
,

(1, 2, 3)t1 = yxyxy−1xt,
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(1, 2, 3)t4 = yxyxy−1xtyx,

(1, 2, 3)t5 = yxyxy−1xty
−1
,

(1, 2, 3, 4, 5)t1 = xyt,

(1, 3, 4, 5, 2)t1 = xy−1xyxy−1xt.

Thus, a presentation of the progenitor of G = 2∗5 : A5 factored by all relations

of the first order is

G < x, y, t >:= Group < x, y, t|x2, y3, (x ∗ y)5, t2, (t, yxy−1xy−1), (t, y−1xy−1xyxy−1),

(xt)a, (xty
−1

)b, (yxyxy−1xt)c, (yxyxy−1xt(yx))d, (yxyxy−1xt(y
−1))e, (xyt)f ,

(xy−1xyxy−1xt)g >

Hence, the table below shows some finite images of the progenitor 2∗5 : A5

factored by all relations of the first order.

Table 1.3: Some Finite Images of the Progenitor 2∗5 : A5

a b c d e f g Order of G Shape of G

0 0 0 0 0 0 5 1920 2·(A5 : 24)

0 0 0 0 0 0 6 720 A6 : 2

0 0 0 0 0 0 7 175560 J1

1.3 Monomial Progenitor 11∗2 :m D10

Given that D10 has a monomial irreducible representation in dimension 2,

write a progenitor for 11∗2 :m D10. Lets show that a presentation for D10 is given as

< x, y|x5 = y2 = (xy)2 = 1 > .

Proof. Given D10 =< (1, 2, 3, 4, 5), (1, 5)(2, 4) >. Let F be a free group with basis

X = {x, y}. Define a homomorphism

φ : F −→ D10

by φ(x) = (1, 2, 3, 4, 5) and φ(y) = (1, 5)(2, 4).

From Theorem 1.6, we have φ is an onto homomorphism. Let G = F/R, where R =<

x5, y2, (xy)2 > (in G, x5 = 1, y2 = 1, (xy)2 = 1). Thus,

φ : F
homo.−−−−→
onto

D10.
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We know F/kerφ ∼= D10. Now we want to show that R ≤ kerφ. We compute the

following:

φ(x5) = (φ(x))5 = ((1, 2, 3, 4, 5))5 = 1

=⇒ x5 ∈ kerφ,
φ(y2) = (φ(y))2 = ((1, 5)(2, 4))2 = 1

=⇒ y2 ∈ kerφ,
φ((xy)2) = (φ(x)φ(y))2 = ((1, 2, 3, 4, 5)(1, 5)(2, 4))2 = 1

=⇒ (xy)2 ∈ kerφ.
So, x5, y2, (xy)2 ∈ kerφ. Thus, < x5, y2, (xy)2 >= R ∼= kerφ,

|F/R| ≥ |F/kerφ| (since R and kerφ are normal)

=⇒ |F/R| ≥ |D10| = 10

=⇒ |G| ≥ 10.

Now we need to show |G| ≤ 10. That is to show

G = F/R ≤ {R,Rx,Rx2, Rx3, Rx4, Ry,Rxy,Rx2y,Rx3y,Rx4y}.
We need to show that the above set is closed under right multiplication by x

and y.

(i) Show {R,Rx,Rx2, Rx3, Rx4, Ry,Rxy,Rx2y,Rx3y,Rx4y} is closed

under right multiplication by y.

(1) (Rxy)y = Rxy2 = xRy2 (since R is normal)

= xR (since y2 ∈ R)

= Rx belongs to the set above.

(2) (Rx2y)y = Rx2y2 = x2Ry2 (since R is normal)

= x2R (since y2 ∈ R)

= Rx2 belongs to the set above.
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(3) (Rx3y)y = Rx3y2 = x3Ry2 (since R is normal)

= x3R (since y2 ∈ R)

= Rx3 belongs to the set above.

(4) (Rx4y)y = Rx4y2 = x4Ry2 (since R is normal)

= x4R (since y2 ∈ R)

= Rx4 belongs to the set above.

So {R,Rx,Rx2, Rx3, Rx4, Ry,Rxy,Rx2y,Rx3y,Rx4y} is closed

under right multiplication by y.

(ii) Show {R,Rx,Rx2, Rx3, Rx4, Ry,Rxy,Rx2y,Rx3y,Rx4y} is closed

under right multiplication by x.

(1) Note: R(xy)2 = R (since (xy)2 ∈ R)

=⇒ Rxyxy = R

=⇒ xRyx = Ry−1

=⇒ Ryx = x−1Ry−1

=⇒ Ryx = Rx−1y−1.

Then Ryx = Rx4Ry since Rx5 = R =⇒ Rx4 = Rx−1 and Ry2 = R =⇒ Ry = Ry−1.

Thus, Ryx = Rx4y belongs to the set above.

(2) Rxyx = xRyx (since R is normal)

= xRx4y

= Rx5y

= Ry belongs to the set above.
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(3) (Rx2y)x = Rx2yx (since R is normal)

= x2Ryx

= x2Rx4y

= Rx6y

= Rxy belongs to the set above.

(4) (Rx3y)x = Rx3yx (since R is normal)

= x3Ryx

= x3Rx4y

= Rx7y

= Rx2y belongs to the set above.

(5) (Rx4y)x = Rx4yx (since R is normal)

= x4Ryx

= x4Rx4y

= Rx8y

= Rx3y belongs to the set above.

So {R,Rx,Rx2, Rx3, Rx4, Ry,Rxy,Rx2y,Rx3y,Rx4y} is closed

under right multiplication by x.

Hence |G| = 10. So G ∼= D10,

φ : F
homo−−−→
onto

D10

F/kerφ ∼= D10.

By Third Isomorphism Theorem, we have an onto homomorphism

ψ : F/R
homo−−−→
onto

F/kerφ

R ≤ kerφ ≤ F

|F/R| ≤ |F/kerφ|

F/R
/
kerψ ∼= F/kerφ

with F/R = 10 and F/kerφ = 10. So kerψ = 1. Thus, F/R ∼= F/kerφ ∼= D10.
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So D10 has a presentation of {x, y|x5 = y2 = (xy)2 = 1}.

Given a presentation for D10 is G < x, y >=< x, y|x5 = y2 = (xy)2 = 1 > and

a corresponding permutation representation is N =< x, y >, where x = (1, 2, 3, 4, 5)

and y = (1, 5)(2, 4). By using Magma we get the character table of G = D10.

Table 1.4: Character Table of G = D10

Conjugacy Classes = Cα 1 (1,5)(2,4) (1,2,3,4,5) (1,3,5,2,4)
Order = hα 1 5 2 2

λ1 1 1 1 1
λ2 1 -1 1 1
λ3 2 0 W1 W1#2
λ4 2 0 W1#2 W1

Explanation of Character Value Symbol

# denotes algebraic conjugation, that is,

#k indicates replacing the root of unity w by wk

W1 = zeta(5)35 + zeta(5)25

W1#2 = zeta(5)5 + zeta(5)45

Now we find a subgroup H of D10 of index n = 2. We use the following

formula, n = |D5|
|H| = 10

|H| = 2, that implies |H| = 5. Let H =
〈
1, (1, 2, 3, 4, 5)

〉
. The

character table of H = Z5 is given below.

Table 1.5: Character Table of H = Z5

Conjugacy Classes 1 (1,2,3,4,5) (1,3,5,2,4) (1,4,2,5,3) (1,5,4,3,2)
Order 1 1 1 1 1

φ1 1 1 1 1
φ2 1 Z1 Z1#2 Z1#3 Z1#4
φ3 1 Z1#2 Z1#4 Z1 Z1#3
φ4 1 Z1#3 Z1 Z1#4 Z1#2
φ5 1 Z1#4 Z1#3 Z1#2 Z1

where Z1 = zeta(5)5.

Now we look at the finite smallest field that has fifth roots of unity, which is

Z11\{0} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Let Z1 = zeta(5)5 = 4.



14

So Z1#2 = (zeta(5)5)
2 ≡ 5 (mod 11),

Z1#3 = (zeta(5)5)
3 ≡ 9 (mod 11), and

Z1#4 = (zeta(5)5)
4 ≡ 3 (mod 11).

Next we use the following formula

φGα = n
hα

∑
w∈Cα∩H

φ(w),

to induce the character φ2 of H up to D10. We get

φG2 (1) = n
h1

∑
w∈C1∩H

φ2(w) = 2
1

∑
w∈1∩H

φ2(w)

= 2
∑

w∈{1}
φ2(w) = 2φ2(1) = 2(1)

= 2.

φG2 ((1, 5)(2, 4)) = n
h2

∑
w∈C2∩H

φ2(w) = 2
5

∑
w∈(1,5)(2,4)∩H

φ2(w)

= 2
5

∑
w∈(1,5)(2,4)∩H=∅

φ2(w) = 2
5(0)

= 0.

φG2 ((1, 2, 3, 4, 5)) = n
h3

∑
w∈C3∩H

φ2(w) = 2
2

∑
w∈(1,2,3,4,5)∩H

φ2(w)

= 1
∑

w∈{(1,2,3,4,5),(1,5,4,3,2)}
φ2(w)

= 1(φ2(1, 2, 3, 4, 5) + φ2(1, 5, 4, 3, 2))

= Z1 + Z1#4

= zeta(5)5 + zeta(5)45

= W1#2.

φG2 ((1, 3, 5, 2, 4)) = n
h4

∑
w∈C4∩H

φ2(w) = 2
2

∑
w∈(1,3,5,2,4)∩H

φ2(w)

= 1
∑

w∈{(1,3,5,2,4),(1,4,2,5,3)}
φ2(w)

= 1(φ2(1, 3, 5, 2, 4) + φ2(1, 4, 2, 5, 3))

= Z1#2 + Z1#3

= zeta(5)35 + zeta(5)25

= W1.

Thus, φG2 = λ4.
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Hence the representation of H (respect to φ2) yields:

B(1) = 1

B(1, 2, 3, 4, 5) = 4

B(1, 3, 5, 2, 4) = 5

B(1, 4, 2, 5, 3) = 9

B(1, 5, 4, 3, 2) = 3

B(g) = 0 if g /∈ G.

Since H ≤ G, the right transversals of H in G (or a complete set of right coset repre-

sentatives) are t1 = e and t2 = (1, 5)(2, 4)

=⇒ G = He ∪H(1, 5)(2, 4).

Now we use the formula for monomial representation to find A(x) and A(y),

where x = (1, 2, 3, 4, 5) and y = (1, 5)(2, 4) :

A(x) =

 B(t1xt
−1
1 ) B(t1xt

−1
2 )

B(t2xt
−1
1 ) B(t2xt

−1
2 )


=

 B(1, 2, 3, 4, 5) B((1, 2, 3, 4, 5)(1, 5)(2, 4))

B((1, 5)(2, 4)(1, 2, 3, 4, 5)) B((1, 5)(2, 4)(1, 2, 3, 4, 5)(1, 5)(2, 4))


=

 B(1, 2, 3, 4, 5) B((1, 4)(3, 2))

B((5, 2)(3, 4)) B(1, 5, 4, 3, 2)


=

 4 0

0 3

 .
Thus, A(x) =

 4 0

0 3

 .
This matrix has 2 columns: label the columns 1, and 2 as t1, and t2, respec-

tively. The entries of the matrix are in Z11. Hence, t′is are of order 11.

We label t21 and t22 as 3 and 4; t31 and t32 as 5 and 6; t41 and t42 as 7 and 8; t51 and t52 as 9

and 10; t61 and t62 as 11 and 12 ; t71 and t72 as 13 and 14; t81 and t82 as 15 and 16; t91 and
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t92 as 17 and 18; t101 and t102 as 19 and 20. As shown below:

Table 1.6: Labeling tis of Order 11

1. t1 2. t2 3. t21 4. t22 5. t31
6. t32 7. t41 8. t42 9. t51 10. t52
11. t61 12. t62 13. t71 14. t72 15. t81
16. t82 17. t91 18. t92 19. t101 20. t102

Now A(x) is a monomial automorphism of < t1 > ∗ < t2 > given by aij =

a ⇐⇒ ti → taj Thus, a11 = 4 or t1 → t41 and a22 = 3 or t2 → t32. We use the chart

above, to write down the permutation representation for A(x).

Table 1.7: Permutations of the t′is using A(x)

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52
1 2 3 4 5 6 7 8 9 10
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
7 6 15 12 1 18 9 2 17 8

t61 t62 t71 t72 t81 t82 t91 t92 t101 t102
11 12 13 14 15 16 17 18 19 20
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 14 11 20 19 4 5 10 13 16

So, A(x) = (t1, t
4
1, t

5
1, t

9
1, t

3
1)(t

2
1, t

8
1, t

10
1 , t

7
1, t

6
1)(t2, t

3
2, t

9
2, t

5
2, t

4
2)(t

2
2, t

6
2, t

7
2, t

10
2 , t

8
2).

Then A(x) = (1, 7, 9, 17, 5)(3, 15, 19, 13, 11)(2, 6, 18, 10, 8)(4, 12, 14, 20, 16).

Now A(y) =

 B(t1yt
−1
1 ) B(t1yt

−1
2 )

B(t2yt
−1
1 ) B(t2yt

−1
2 )


=

 B((1, 5)(2, 4)) B((1, 5)(2, 4)(1, 5)(2, 4))

B((1, 5)(2, 4)(1, 5)(2, 4)) B((1, 5)(2, 4)(1, 5)(2, 4)(1, 5)(2, 4))


=

 B((1, 5)(2, 4)) B(1)

B(1) B((1, 5)(2, 4))


=

 0 1

1 0

.
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Thus, A(y) =

 0 1

1 0

 .
Now A(y) is an automorphism (permutation) of < t1 > ∗ < t2 > given by

aij = a ⇐⇒ ti → taj Thus, a12 = 1 or t1 → t2 and a21 = 1 or t2 → t1.

Table 1.8: Permutations of the t′is using A(y)

t1 t2 t21 t22 t31 t32 t41 t42 t51 t52
1 2 3 4 5 6 7 8 9 10
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 1 4 3 6 5 8 7 10 9

t61 t62 t71 t72 t81 t82 t91 t92 t101 t102
11 12 13 14 15 16 17 18 19 20
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

12 11 14 13 16 15 18 17 20 19

Using the chart above, we get the following permutation representation for

A(y) = (t1, t2)(t
2
1, t

2
2)(t

3
1, t

3
2)(t

4
1, t

4
2)(t

5
1, t

5
2)(t

6
1, t

6
2)(t

7
1, t

7
2)(t

8
1, t

8
2)(t

9
1, t

9
2)(t

10
1 , t

10
2 ).

Then

A(y) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20).

Thus, D10 =< A(x), A(y) >

=< (1, 7, 9, 17, 5)(3, 15, 19, 13, 11)(2, 6, 18, 10, 8)(4, 12, 14, 20, 16),

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20) >.

We are now in a position to give a monomial presentation of the progen-

itor 11?2 :m D10. A presentation of D10 is < x, y|x5 = y2 = (x ∗ y)2 = 1 >.

We fix one of the two t′is, say t1 and call it t. Next, we compute the normalizer

of the subgroup < t1 > in D10. Therefore we compute the set stabilizer in D10

of the set {t1, t21, t31, t41, t51, t61, t71, t81, t91, t101 } = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} which is <

(1, 9, 5, 7, 17)(2, 18, 8, 6, 10)(3, 19, 11, 15, 13)(4, 14, 16, 12, 20) > and that

x2 = (1, 9, 5, 7, 17)(2, 18, 8, 6, 10)(3, 19, 11, 15, 13)(4, 14, 16, 12, 20). Hence, a presentation

for the monomial progenitor 11?2 :m D10 is given by

G < x, y, t >:= Group < x, y, t|x5 = y2 = (x ∗ y)2 = 1, t11, tx
2

= t5 > .

Next we add the relation, t ∗ ty = ty ∗ t to the progenitor of D10, to verify if

the monomial progenitor 11?2 :m D10 is correct. By using MAMGA we verified that

the monomial progenitor, G < x, y, t >:= Group < x, y, t|x5, y2, (x ∗ y)2, t11, tx
2

=
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t5, (t, ty) > is correct :

> G< x,y,t >:= Group< x,y,t|xˆ5 = yˆ2 = (x*y)ˆ2 = 1,tˆ11,
tˆ(xˆ2)=tˆ5, t*tˆy=tˆy*t>;

> f, G1,k:=CosetAction(G,sub<G|x,y>);
> #G;
1210
> #k;
1
> IN:=sub<G1|f(x),f(y)>;
> T:=sub<G1|f(t)>;
> #T;
11
> Normaliser(IN,T);
Permutation group acting on a set of cardinality 121
Order = 5
> Index(IN,Normaliser(IN,T));
2

Hence, we have a presentation of the progenitor 11∗2 :m D10

G< x,y,t >:= Group< x,y,t|xˆ5 = yˆ2 = (x*y)ˆ2 = 1,tˆ11,
tˆ(xˆ2)=tˆ5>

Next, we apply the first order relation to the progenitor 11∗2 :m D10.

1.3.1 11∗2 :m D10 Factor by First Order Relations

Given a progenitor of the form m∗n : N and p∗n : N .

All relations of the first order that m∗n : N and p∗n : N can be factored by are obtain

as follows. Compute the conjugacy classes on N . Now we compute the centralizers

of the representatives of each non-identity class. Then, we determine the orbits of the

centralizer. Once we have the orbits we take the representative from each class and we

right multiply by a ti.

Consider the monomial progenitor of 11∗2 :m D10 that has the following pre-

sentation

G< x,y,t >:= Group< x,y,t|xˆ5 = yˆ2 = (x*y)ˆ2 = 1,tˆ11,
tˆ(xˆ2)=tˆ5>.
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To compute all first order relations for the monomial progenitor 11∗2 :m D10,

we run the following code in MAGMA.

C:= Classes(N);
C;
C2:=Centraliser(N,N!(1,5)(2,4));
C2;
C3:=Centraliser(N,N!(1,2,3,4,5));
C3;
C4:=Centraliser(N,N!(1,3,5,2,4));
C4;
Set(C2);
Orbits(C2);
Set(C3);
Orbits(C3);
Set(C4);
Orbits(C4);

Then, we summarize the result in the table below.

Table 1.9: Conjugacy Classes of D10

Classes Centralizer Orbits

C2 = (1, 5)(2, 4) < y > {1,5},{2,4},{3}
C3 = (1, 2, 3, 4, 5) < x > {1,2,3,4,5}
C4 = (1, 3, 5, 2, 4) < x2 > {1,3,5,2,4}

Next, we pick a representative from each orbit and we multiply by the

representative from each class. Thus, the all first order relations are

(yt)a, (ytx)b, (ytx
2
)c, (xt)d, and (x2t)e, where t ∼ t1.

Hence, we factor the monomial progenitor 11∗2 :m D10 by the relations

(yt)a, (ytx)b, (ytx
2
)c, (xt)d, and (x2t)e,

to obtained the following homomorphic images:

Table 1.10: Some Finite Images of the Progenitor 11∗2 :m D10

a b c d e Order of G Shape of G

0 0 3 0 0 660 L2(11)

0 0 4 0 0 6600 (5× L2(11)) : 2

0 5 6 0 0 435600 L2(11)× L2(11)

0 6 5 0 0 1351680 2·(210 : L2(11))



20

1.4 Progenitor of 2∗7 : D14

We want to write a permutation progenitor of 2∗7 : D14 where our control

group is N = D14. A presentation of D14 is {x, y|x7 = y2 = (xy)2 = 1}. We are going

to prove the presentation of D14.

Proof. Given D14 =< (1, 2, 3, 4, 5, 6, 7), (1, 6)(2, 5)(3, 4) >. Let F be a free group with

basis X = {x, y}. Define a homomorphism

φ : F −→ D14

by φ(x) = (1, 2, 3, 4, 5, 6, 7) and φ(y) = (1, 6)(2, 5)(3, 4).

From Theorem 1.6, we have φ is an onto homomorphism. Let G = F/R, where R =<

x7, y2, (xy)2 > (in G, x7 = 1, y2 = 1, (xy)2 = 1). Thus,

φ : F
homo.−−−−→
onto

D14.

We know F/kerφ ∼= D14. Now we want to show that R ≤ kerφ. We compute the

following:

φ(x7) = (φ(x))7 = ((1, 2, 3, 4, 5, 6, 7))5 = 1

=⇒ x7 ∈ kerφ,
φ(y2) = (φ(y))2 = ((1, 6)(2, 5)(3, 4))2 = 1

=⇒ y2 ∈ kerφ,
φ((xy)2) = (φ(x)φ(y))2 = ((1, 2, 3, 4, 5, 6, 7)(1, 6)(2, 5)(3, 4))2 = 1

=⇒ (xy)2 ∈ kerφ.
So x7, y2, (xy)2 ∈ kerφ. Thus, < x7, y2, (xy)2 >= R ∼= kerφ,

|F/R| ≥ |F/kerφ| (since R and kerφ are normal)

=⇒ |F/R| ≥ |D14| = 14

=⇒ |G| ≥ 14.

Now we need to show |G| ≤ 14. That is to show

G = F/R ≤ {R,Rx,Rx2, Rx3, Rx4, Rx5, Rx6, Ry,Rxy,Rx2y,

Rx3y,Rx4y,Rx5y,Rx6y}.

We need to show that the above set is closed under right multiplication by x and y.
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(i) Show

{R,Rx,Rx2, Rx3, Rx4, Rx5, Rx6, Ry,Rxy,Rx2y,Rx3y,Rx4y,Rx5y,Rx6y}
is closed under right multiplication by y.

(1) (Rxy)y = Rxy2 = xRy2 (since R is normal)

= xR (since y2 ∈ R)

= Rx belongs to the set above.

(2) (Rx2y)y = Rx2y2 = x2Ry2 (since R is normal)

= x2R (since y2 ∈ R)

= Rx2 belongs to the set above.

(3) (Rx3y)y = Rx3y2 = x3Ry2 (since R is normal)

= x3R (since y2 ∈ R)

= Rx3 belongs to the set above.

(4) (Rx4y)y = Rx4y2 = x4Ry2 (since R is normal)

= x4R (since y2 ∈ R)

= Rx4 belongs to the set above.

(5) (Rx5y)y = Rx5y2 = x5Ry2 (since R is normal)

= x5R (since y2 ∈ R)

= Rx5 belongs to the set above.

(6) (Rx6y)y = Rx6y2 = x6Ry2 (since R is normal)

= x6R (since y2 ∈ R)

= Rx6 belongs to the set above.

So {R,Rx,Rx2, Rx3, Rx4, Rx5, Rx6, Ry,Rxy,Rx2y,Rx3y,Rx4y,Rx5y,Rx6y}
is closed under right multiplication by y.
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(ii) Show

{R,Rx,Rx2, Rx3, Rx4, Rx5, Rx6, Ry,Rxy,Rx2y,Rx3y,Rx4y,Rx5y,Rx6y} is closed un-

der right multiplication by x.

(1) Note: R(xy)2 = R (since (xy)2 ∈ R)

=⇒ Rxyxy = R

=⇒ xRyx = Ry−1

=⇒ Ryx = x−1Ry−1

=⇒ Ryx = Rx−1y−1.

Then Ryx = Rx6Ry since Rx6 = R =⇒ Rx6 = Rx−1 and Ry2 = R =⇒ Ry = Ry−1.

Thus, Ryx = Rx6y belongs to the set above.

(2) Rxyx = xRyx (since R is normal)

= xRx6y

= Rx7y

= Ry belongs to the set above.

(3) (Rx2y)x = Rx2yx (since R is normal)

= x2Ryx

= x2Rx6y

= Rx8y

= Rxy belongs to the set above.

(4) (Rx3y)x = Rx3yx (since R is normal)

= x3Ryx

= x3Rx6y

= Rx9y

= Rx2y belongs to the set above.
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(5) (Rx4y)x = Rx4yx (since R is normal)

= x4Ryx

= x4Rx6y

= Rx10y

= Rx3y belongs to the set above.

(6) (Rx5y)x = Rx5yx (since R is normal)

= x5Ryx

= x5Rx6y

= Rx11y

= Rx4y belongs to the set above.

(7) (Rx6y)x = Rx6yx (since R is normal)

= x6Ryx

= x6Rx6y

= Rx12y

= Rx5y belongs to the set above.

So {R,Rx,Rx2, Rx3, Rx4, Rx5, Rx6, Ry,Rxy,Rx2y,Rx3y,Rx4y,Rx5y,Rx6y}
is closed under right multiplication by x.

Hence |G| = 14. So G ∼= D14,

φ : F
homo−−−→
onto

D14

F/kerφ ∼= D14.

By Third Isomorphism Theorem, we have an onto homomorphism

ψ : F/R
homo−−−→
onto

F/kerφ

R ≤ kerφ ≤ F
|F/R| ≤ |F/kerφ|

F/R
/
kerψ ∼= F/kerφ

with F/R = 14 and F/kerφ = 14. So kerψ = 1. Thus,

F/R ∼= F/kerφ ∼= D14.
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So D14 has a presentation of {x, y|x7 = y2 = (xy)2 = 1}.

Moreover, the corresponding permutation representation is N = D14 =<

x, y >, where x = (1, 2, 3, 4, 5, 6, 7) and y = (1, 6)(2, 5)(3, 4). Now we add the free

product 2∗7 (|t′is| = 2) to this group to form our progenitor. Hence, a presentation for

the progenitor 2∗7 : N is given by < x, y, t|x7, y2, (xy)2, t2, (t,N7) >, where t ∼ t7. N
7

is the point stabilizer of 7, and (t,N7) = 1 means that 7g = 7 ∀ g ∈ N7. Note that

7g = 7 ∀ g ∈ N7 implies t has [N : N7] conjugates in N. Using Magma, we can see that

the point stabilizer of 7 in N is equal to N7 =< (1, 6)(2, 5)(3, 4) >=< y > .

Hence, a presentation of the progenitor 2∗7 : D14 is given by G < x, y, t >:=

Group < x, y, t|x7, y2, (xy)2, t2, (t, y) > . Now we factor this progenitor by the following

relations: (xt)a, (xttx)b, (xytxt)c, (ttxt)d

In conclusion we obtained the following progenitor:

< x, y, t|x7, y2, (xy)2, t2, (t, y), (xt)a, (xttx)b, (xytxt)c, (ttxt)d > . The table below shows

some finite images of the progenitor 2∗7 : D14.

Table 1.11: Some Finite Images of the Progenitor 2∗7 : D14

a b c d Order of G Shape of G

0 7 2 0 196 ((7× 7) : 2) 2

6 0 3 6 79464 PGL2(43)

0 7 3 7 9828 L7(27)

0 5 3 0 68880 PGL2(41)

3 8 6 9 336 PGL2(7)

3 0 7 3 1092 L2(13)

3 9 9 3 504 L2(8)

3 0 10 0 24360 PGL2(29)

4 3 8 8 672 PGL2(7)× 2

0 2 9 0 1008 L2(8)× 2

3 7 0 9 2184 L2(13)× 2

3 0 9 3 5040 A7 : 2

3 8 0 3 21504 (26 • L2(7)) : 2

0 2 10 0 48720 PGL2(29)× 2

0 3 4 0 4368 PGL2(13)× 2

In later chapter, we will construct some of the simple groups, given above,

using the technique of double coset enumeration and prove their simplicity.
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Chapter 2

Double Coset Enumeration and

Factoring by the Center

2.1 Double Coset Enumeration Preliminaries

Definition 2.1. (Normal Subgroup). A subgroup H ≤ G is a normal subgroup,

denoted by H E G, if gHg−1 = H for every g ∈ G. [Rot12]

Definition 2.2. (Right Coset). If H ≤ G and if k ∈ G, then a right coset of H in

G is the subset of G

Hk = {hk : h ∈ H},

where k is a representative of Hk. [Rot12]

Definition 2.3. (Index). If H ≤ G, then the index of H ∈ G, denoted by [G : H], is

the number of single cosets of H in G. [Rot12]

Definition 2.4. (Order). If G is a group, then the order of G, denoted by [G], is the

number of elements in G. [Rot12]

Theorem 2.5. (Lagrance). If G is a finite group and H ≤ G, then |H| divides |G|
and [G : H] = |G|/|H|. [Rot12]

Definition 2.6. (Double Coset). Let H and K be subgroups of the group G and

define a relation on G as follows:
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x ∼ y ⇐⇒ ∃ h ∈ H and k ∈ K such that y = hxk

where ∼ is an equivalence relation and the equivalence classes are sets of the following

form

HxK = {hxk|h ∈ H, k ∈ K} = ∪k∈KHxk = ∪h∈HhxK

Such a subset of G is called a double coset. [Cur07]

Definition 2.7. (Point Stabilizer). Let G be a group of permutations of a set S. For

each g, s ∈ S, let gs = g, then we call the set of s ∈ S the point stabilizer of g ∈ G.

[Cur07]

Definition 2.8. (Coset Stabilizing Group). The coset stabilizing group of a

coset Nw is defined as

N (w) = {π ∈ N |Nwπ = Nw}

where n ∈ N and w is a reduced word in the t′is. [Cur07]

Theorem 2.9. (Number of single cosets in NwN). From above we see that,

N (w) = {π ∈ N |Nwπ = Nw} = {π ∈ N |Nwπw−1 = N}

= {π ∈ N |(Nw)π = Nw}

and the number of single cosets in NwN is given by [N : N (w)]. [Cur07]

Definition 2.10. (Orbits). Let G be a group of permutations of a set S. For each

s ∈ S, let orbG(s) = {φ(s)|φ ∈ G}. The set orbG(s) is a subset of S called the orbits

of s under G. We use |orbG(s)| to denote the number of elements in orbG(s). [Rot12]

Definition 2.11. (Transversal). If K ≤ G, then a (right) transversal of K in G

(or a complete set of right coset representatives) is a subset T of G consisting of one

element from each right coset of K in G. [Rot12]

Definition 2.12. (Center). The center of a group G, denoted by Z(G), is the set of

all a ∈ G that commute with every element of G. [Rot12]
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2.2 2× A5 as a Homomorphic Image of 2∗3 : S3

2.2.1 Construction of 2× A5 over S3

Consider the group G = 2∗3 : S3 factored by the relator [(0, 1, 2)t3]
5. Note:

N = S3 = {e, (1, 2), (1, 0), (2, 0), (1, 2, 0), (1, 0, 2)}, where x ∼ (0, 1, 2) and y ∼ (1, 2).

Let t ∼ t3 ∼ t0. Let us expand the relator:

[(0, 1, 2)t0]
5 = 1 with π = (0, 1, 2) becomes

1 = [πt0]
5 = π5t0

π4
t0
π3
t0
π2
t0
πt0

= (0, 2, 1)t
(0,1,2)
0 t0t

(0,2,1)
0 t

(0,1,2)
0 t0

= (3, 2, 1)t1t0t2t1t0

=⇒ 1 = (0, 2, 1)t1t0t2t1t0

=⇒ t0t1 = (0, 2, 1)t1t0t2

=⇒ Nt0t1 = Nt1t0t2.

Moreover if we conjugate the previous relation by all elements of S3, we otbain the

following relations:

(t0t1)
(1,2) = (0, 2, 1)(1,2)(t1t0t2)

(1,2) =⇒ t0t2 = (0, 1, 2)t2t0t1

(t0t1)
(1,0) = (0, 2, 1)(1,0)(t1t0t2)

(1,0) =⇒ t1t0 = (1, 2, 0)t0t1t2

(t0t1)
(2,0) = (0, 2, 1)(2,0)(t1t0t2)

(2,0) =⇒ t2t1 = (2, 0, 1)t1t2t0

(t0t1)
(1,2,0) = (0, 2, 1)(1,2,0)(t1t0t2)

(1,2,0) =⇒ t1t2 = (1, 0, 2)t2t1t0

(t0t1)
(1,0,2) = (0, 2, 1)(1,0,2)(t1t0t2)

(1,0,2) =⇒ t2t0 = (2, 1, 0)t0t2t1.

We want to find the index of N in G. To do this, we perform a manual double coset

enumeration of G over N . We take G and express it as a union of double cosets NgN ,

where g is an element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ... where gi’s words in ti’s.

We need to find all double cosets [w] and find out how many single cosets

each of them contains, where [w] = [Nwn|n ∈ N ]. The double cosets enumeration is

complete when the set of right cosets obtained is closed under right multiplication by

ti’s. We need to identify, for each [w], the double coset to which Nwti belongs for one
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symmetric generator ti from each orbit of the coset stabilising group N (w)

NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the

single coset, namely N . Since N is transitive on {t0, t1, t2}, the orbit of N on {0, 1, 2}
is:

O = {0, 1, 2}.

We choose t0 as our symmetric generator from O and find to which double

coset Nt0 belongs. Nt0N will be a new double coset, denoted by [0]. Hence, three

symmetric generators will go the new double coset [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find the coset stabilizer

N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now, N (0) = N0

=< e, (1, 2) > so the number of the single cosets in Nt0N is |N |
|N(0)| = 6

2 = 3. These three

single cosets in [0] are {Ntn0 |n ∈ N} = {Nt0, Nt1, Nt2}. Furthermore, the orbits of N (0)

on {t0, t1, t2} are:

O = {0} and {1, 2}.

We take t0 and t1 from each orbit, respectively, and to see which double coset

Nt0t0 and Nt0t1 belong to. Now Nt0t0 = N ∈ [∗], so one element will go back to NeN

and two symmetric generators will go to a new double coset Nt0t1N, denoted by [01].

Nt0t1N

Now Nt0t1N is a new double coset. We determine how many single cosets are in the

double coset. However, N (01) = N01 =< e >. Only identity (e) will fix 0 and 1. Hence

the number of single cosets in Nt0t1N is |N |
|N(01)| = 6

1 = 6. These six single cosets in [01]

are {Nt0t1, Nt1t0, Nt0t2, Nt2t0, Nt1t2, Nt2t1}. The orbits of N (01) on {t0, t1, t2} are:

O = {0}, {1}, and {2}.

Take a representative ti from each orbit and see which double cosets Nt0t1ti belongs to.
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We have:

Nt0t1t1 = Nt0 ∈ [0]

relation: (0, 2, 1)(0,1)(t1t0t2)
(0,1) = (t0t1)

(0,1)

=⇒ (1, 2, 0)t0t1t2 = t1t0

=⇒ Nt0t1t2 = Nt1t0 ∈ [01]

Nt0t1t0 ∈ [010].

The new double cosets have single coset representatives Nt0t1t0, which is denoted by

[010].

Nt0t1t0N

Now Nt0t1t0N in N is a new double coset. However, N (010) = N010 =< e >. Only

identity (e) will fix 0, and 1. Hence the number of single cosets contained in Nt0t1t0N

is |N |
|N(010)| = 6

1 = 6. These six single cosets in [010] are

{Nt0t1t0, Nt1t0t1, Nt0t2t0, Nt2t0t2, Nt1t2t1, Nt2t1t2}. The orbits of N (010) on {0, 1, 2}
are:

O = {0}, {1}, and {2}.

Take a representative ti from each orbit and see which double cosets Nt0t1t0ti belongs

to. We have:

Nt0t1t0t0 = N ∈ [01]

relation: t1(0, 2, 1)t1t0t2 = t1t0t1

=⇒ (0, 2, 1)(0, 2, 1)−1t1(0, 2, 1)t1t0t2 = t1t0t1

=⇒ (0, 2, 1)t
(0,2,1)
1 t1t0t2 = t1t0t1

=⇒ (0, 2, 1)t0t1t0t2 = t1t0t1

=⇒ Nt0t1t0t2 = Nt1t0t1 ∈ [010]

Nt0t1t0t1 ∈ [0101].

The new double coset is Nt0t1t0t1N , denoted by [0101].

Nt0t1t0t1N



30

Now Nt0t1t0t1N is a new double coset. We determine how many single cosets are

in this double coset. We have N (0101) = N0101 =< e >. But Nt0t1t0t1 is not dis-

tinct. Using the retlation: t0t1 = (0, 2, 1)t1t0t2 =⇒ t0t1t0t1 = (0, 2, 1)t1t0t2t0t1 =

(0, 2, 1)t1t0(2, 1, 0)t0t2 = (1, 2, 0)t0t2t0t2. Now t0t1t0t1 = (1, 2, 0)t0t2t0t2

=⇒ Nt0t1t0t1 = Nt0t2t0t2. Thus N(t0t1t0t1)
n = Nt0t2t0t2. Then N(t0t1t0t1)

(1,2) =

Nt0t2t0t2. But Nt0t2t0t2 = Nt0t1t0t1 =⇒ (1, 2) ∈ N (0101) since N(t0t1t0t1)
(1,2) =

Nt0t2t0t2. We conclude:

N (0101) ≥< e, (1, 2) > .

Hence |N (0101)| = 2 so the number of single cosets in N (0101) is |N |
|N(0101)| = 6

2 = 3. These

three single cosets in [010] are Nt0t1t0t1 = Nt0t2t0t2, Nt1t0t1t0 = Nt1t2t1t2, and

Nt2t1t2t1 = Nt2t0t2t0. The orbits of N (0101) on {0, 1, 2} are:

O = {0} and {1, 2}.

Take a representative ti from each orbit and see which double cosets Nt0t1t0t1ti belongs

to. We have:

Nt0t1t0t1t0 ∈ [01010]

Nt0t1t0t1t1 = Nt0t1t0 ∈ [010].

Nt0t1t0t1t0N

Now Nt0t1t0t1t0N is indeed a new double coset. We determine how many single cosets

are in this double coset. We have N (01010) = N01010 =< e >. Nt0t1t0t1t0 has six names.

We have the following:

Nt0t1t0t1 = Nt0t2t0t2 =⇒ Nt0t1t0t1t0 = Nt0t2t0t2t0

Nt1t0t1t0 = Nt1t2t1t2 =⇒ Nt1t0t1t0t1 = Nt1t2t1t2t1

Nt2t1t2t1 = Nt2t0t2t0 =⇒ Nt2t1t2t1t2 = Nt2t0t2t0t2.

Now we want to show that the six names are the same. We have the following:

t0t1t0t1t0 = t0t1t0t1t0t2t2

= t0t1t0(2, 0, 1)t0t1t2 = t1t2t1t0t1t2

= t1(2, 0, 1)t1t2t1t2 = (2, 0, 1)t2t1t2t1t2

=⇒ t0t1t0t1t0 = (2, 0, 1)t2t1t2t1t2 (1)
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=⇒ Nt0t1t0t1t0 = Nt2t1t2t1t2,

t0t2t0t2t0 = t0t2t0t2t0t1t1

= t0t2t0(2, 1, 0)t0t2t1 = t2t1t2t0t2t1

= t2(1, 0, 2)t2t1t2t1 = (1, 0, 2)t1t2t1t2t1

=⇒ t0t2t0t2t0 = (1, 0, 2)t1t2t1t2t1 (2)

=⇒ Nt0t2t0t2t0 = Nt1t2t1t2t1.

Now by (1) and (2) we have that the six names are equal. Hence,

t0t1t0t1t0 ∼ t0t2t0t2t0 ∼ t1t0t1t0t1 ∼ t1t2t1t2t1 ∼ t2t1t2t1t2 ∼ t2t0t2t0t2
Therefore, N (01010) = n ∈ N |N(01010)n = N(01010). Thus, N (01010) ≥< (1, 2), (0, 2, 1) >

then N (01010) = N. Hence |N (01010)| = 6, so the number of single cosets in N (01010) is
|N |

|N(01010)| = 6
6 = 1. The orbit of N (01010) on {1, 2, 0} is {1, 2, 0}. Take a representa-

tive from this orbit, say t0. Hence Nt0t1t0t1t0t0 ∈ [0101]. Therefore, three symmetric

generators will go back to Nt0t1t0t1N .

We have completed the double coset enumeration since the set of right cosets

is closed under right multiplication, hence, the index of N in G is 20. We conclude:

G = N ∪Nt0N ∪Nt0t1N ∪Nt0t1t0N ∪Nt0t1t0t1N ∪Nt0t1t0t1t0N , where

G =
2∗3 : S3

t0t1 = (0, 2, 1)t1t0t2

|G| ≤
(
|N |+ |N |

N(0) + |N |
N(01) + |N |

N(010) + |N |
N(0101) + |N |

N(01010)

)
× |N |

|G| ≤ (1 + 3 + 6 + 6 + 3 + 1)× 6

|G| ≤ 20× 6

|G| ≤ 120.

A Cayley diagram that summarizes the above information is given below:

Figure 2.1: Cayley Diagram of 2×A5 over S3
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2.2.2 Permutation Representation of 2× A5 over S3

In order to find the permutation representation of G = 2∗3 : S3, in terms of x,

y, and t0, we create a table in which we conjugate the twenty single cosets by x and y

and we right multiply them by t0.

Table 2.1: Permutation Representation of 2×A5 over S3
Cosets x ∼ (0, 1, 2) y ∼ (1, 2) t ∼ t0
1. N 1. N 1. N 2. Nt0
2. Nt0 3. Nt1 2. Nt0 1. N

3. Nt1 4. Nt2 4. Nt2 6. Nt1t0
4. Nt2 2. Nt0 3. Nt1 8. Nt2t0
5. Nt0t1 9. Nt1t2 7. Nt0t2 11. Nt0t1t0
6. Nt1t0 10. Nt2t1 8. Nt2t0 3. Nt1
7. Nt0t2 6. Nt1t0 5. Nt0t1 13. Nt0t2t0
8. Nt2t0 5. Nt0t1 6. Nt1t0 4. Nt2
9. Nt1t2 8. Nt2t0 10. Nt2t1 10. Nt1t2t0
10. Nt2t1 7. Nt0t2 9. Nt1t2 9. Nt2t1t0
11. Nt0t1t0 15. Nt1t2t1 13. Nt0t2t0 5. Nt0t1
12. Nt1t0t1 16. Nt2t1t2 14. Nt2t0t2 18. Nt1t0t1t0
13. Nt0t2t0 12. Nt1t0t1 11. Nt0t1t0 7. Nt0t2
14. Nt2t0t2 11. Nt0t1t0 12. Nt1t0t1 19. Nt2t0t2t0
15. Nt1t2t1 14. Nt2t0t2 16. Nt2t1t2 16. Nt1t2t1t0
16. Nt2t1t2 13. Nt0t2t0 15. Nt1t2t1 15. Nt2t1t2t0
17. Nt0t1t0t1 18. Nt1t2t1t2 17. Nt0t2t0t2 20. Nt0t1t0t1t0
18. Nt1t0t1t0 19. Nt2t1t2t1 19. Nt2t0t2t0 12. Nt1t0t1
19. Nt2t1t2t1 17. Nt0t2t0t2 18. Nt1t2t1t2 14. Nt2t1t2t1
20. Nt0t1t0t1t0 20. Nt1t2t1t2t1 20. Nt0t2t0t2t0 17. Nt0t1t0t1

We have:

φ(x) = (2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)

φ(y) = (3, 4)(5, 7)(6, 8)(9, 10)(11, 13)(12, 14)(15, 16)(18, 19)

φ(t) = (1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20).

Thus, we have a homomorphism φ : 2∗3 : S3 −→ S20. Then φ(G) =< φ(x), φ(y), φ(t) >.

In order for us to prove that φ(G) =< φ(x), φ(y), φ(t) > is a homomorphic image of
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G = 2∗3 : S3, we must have the the following conditions met:

(1) φ(N) ∼= S3

(2) φ(t) has three conjugates under conjugation by φ(N)

(3) φ(N) acts as S3 on the three congugates of φ(t) by conjugates.

Proof. We have φ(N) =< φ(x), φ(y) >.

(1) φ(N) =< φ(x), φ(y) >

=< (2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19),

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20) >

∼= S3 since |φ(x)φ(y)| = |(2, 4)(5, 10)(6, 9)(7, 8)(11, 16)(12, 15)(13, 14)(17, 19)|

= 2.

Thus, φ(N) ∼= S3.

(2) We need to compute φ(t)φ(N) :

φ(t)φ(x) = {(1, 2)(3, 6) . . . (15, 16)(17, 20)(2,3,4)(5,9,8)...(12,16,13)(17,18,19)}

= {(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)}

= t1.

φ(t)φ(x
2) = {(1, 2)(3, 6) . . . (15, 16)(17, 20)(2,4,3)(5,9,8)...(12,13,16)(17,19,18)}

= {(1, 4)(2, 7)(3, 9)(8, 14)(10, 16)(5, 6)(13, 17)(15, 18)(11, 12)(19, 20)}

= t2.

φ(t)φ(x
3) = {(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)e}

= {(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)}

= t0.

Thus, φ(t)φ(N) = {t0, t1, t2}.
(3) We need to show that φ(N) acts as S3 on the three conjugates of φ(t) by conjugates.

First, we have to conjugate by φ(x):
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t
φ(x)
0 = t1

t
φ(x)
1 = (t

φ(x)
0 )φ(x) = t

φ(x2)
0 = t2

t
φ(x)
2 = (t

φ(x)
1 )φ(x) = t

φ(x2)
1 = (t

φ(x)
0 )φ(x

2) = t
φ(x3)
0 = t0.

Thus, φ(x) = (t0, t1, t2).

Next, we have to conjugate by φ(y):

t
φ(y)
1 = {(1, 3)(4, 10) . . . (14, 13)(18, 20)(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)}

= {(1, 4)(2, 7)(3, 9)(8, 14)(10, 16)(5, 6)(13, 17)(15, 18)(11, 12)(19, 20)}

= t2

t
φ(y)
2 = (t

φ(y)
1 )φ(y) = t

φ(y2)
1 = t1.

Thus, φ(y) = (t1, t2).

Hence, φ(G) =< φ(x), φ(y), φ(t) > is a homomorphic image of G = 2∗3 : S3.

We have:

G =
2∗3 : S3

(0, 2, 1)t1t0t2 = t0t1
.

Now, we want to verify if φ(0, 2, 1) = φ(t0t1t2t0t1) then < φ(x), φ(y), φ(t) > is a homo-

morphic image of G.

Verify: φ(x−1) = φ(t0t1t2t0t1) :

φ(t0t1t2t0t1) =(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 4)(2, 7)(3, 9)(8, 14)(10, 16)(5, 6)(13, 17)(15, 18)(11, 12)(19, 20)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

=(2, 4, 3)(5, 8, 9)(6, 7, 10)(11, 14, 15)(12, 13, 16)(17, 19, 18)

=φ(x−1).

Hence, φ : G
homo.−→ S20 with φ(G) =< φ(x), φ(y), φ(t) > . By FIT we have:

G/kerφ ∼= φ(G)
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=⇒ |G/kerφ| ∼= |φ(G)|
=⇒ |G| = |kerφ||φ(G)|.
By completing the double coset enumeration we know |G| ≤ 120. Moreover, by Magma,

|φ(G)| = | < φ(x), φ(y), φ(t0) > | = 120.

So, |G| = |kerφ|120

=⇒ |G| ≥ 120.

Hence, |G| = 120.

2.2.3 Prove G ∼= 2× A5

We use two different methods to prove that G ∼= 2×A5.

(1) We will prove by hand that G ∼= 2×A5.

Proof. Given:

φ(x) = (2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)

φ(y) = (3, 4)(5, 7)(6, 8)(9, 10)(11, 13)(12, 14)(15, 16)(18, 19)

t0 = (1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

t1 = (1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

Note:

•|φ(y)φ(x)t0t1t0t1t0| = |(3, 4)(5, 7)(6, 8)(9, 10)(11, 13)(12, 14)(15, 16)(18, 19)

(2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)|

=|(1, 20)(2, 17)(3, 18)(4, 19)(5, 11)(6, 12)(7, 13)(8, 14)(9, 15)(10, 16)|
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Thus, |φ(y)φ(x)t0t1t0t1t0| = 2, which is the center of order two.

•|φ(x)t0| = |(2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)|

= |(2, 6, 9, 4, 1), (3, 8, 11, 16, 7)(5, 10, 13, 18, 14)(12, 15, 19, 20, 17)|

= 5.

•|t0| = (1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20) = 2.

•|φ(x)t0t0| = |φ(x)|

= |(2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)|

= 3.

Hence, < φ(x)t0, t0 >= A5.

Now, < φ(x)t0, t0, φ(y)φ(x)t0t1t0t1t0 >≤ φ(G) =< φ(x), φ(y), φ(t) >

=⇒ 2×A5 ≤ φ(G). But |φ(G)| = 120 and |2×A5| = 120.

Thus, φ(G) = 2×A5.

(2) We use the composition factors of G to construct a computer based proof

to show that G ∼= 2×A5.

Proof. Given:

G =< x, y, t|x3, y2, (xy)2, t2, (t, y), ttx = x−1txttx
2
>= 2∗3:S3

(0,2,1)t1t0t2=t0t1
.

We use Magma, to obtain the following composition factors:

> CompositionFactors(G1);
G
| Alternating(5)

*
| Cyclic(2)
1

Hence, G has the following composition series G ⊃ G1 ⊃ 1, where G = (G/G1)(G1/1) =

A5C2. The normal lattice of G is:

> NL:=NormalLattice(G1);
> NL;
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Normal subgroup lattice
-----------------------

[4] Order 120 Length 1 Maximal Subgroups: 2 3
---
[3] Order 60 Length 1 Maximal Subgroups: 1
---
[2] Order 2 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

First, we look at the center of G and we find it is of order 2. In addition, by looking

at the normal lattice, we find that the normal subgroup NL[2] is of order 2. Hence,

we might have a direct product of NL[2] by the Alternating group NL[3]= A5. Note:

NL[2] EG1 and A5 EG1 then A5 ∩NL[2] = 1.

> D:=DirectProduct(CyclicGroup(2),NL[3]);
> s:=IsIsomorphic(D,G1);s;
true

We use the above loops to confirm that G is a direct product of a cyclic group of order

2 by A5. By using ATLAS, the presentation of the Alternating group (A5) is:

< a, b|a2, b3, (a ∗ b)5 > .

Now, the element of NL[2] commutes with the element of NL[3]= A5, since G is a direct

product extension. Thus, we have the following presentation for G:

> H<a,b,c>:=Group<a,b,c|aˆ2,bˆ3,(a*b)ˆ5,cˆ2,(c,a),(c,b)>; #H;
120
> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);
> s:=IsIsomorphic(H1,G1);s;
true

Hence, G ∼= 2×A5.

2.3 Finding and Factoring by the Center (Z(G)) of 2× A5

over S3

LetG acts onX = {N∪Nt0N∪Nt0t1N∪Nt0t1t0N∪Nt0t1t0t1N∪Nt0t1t0t1t0N}
where |X| = 20. From the Cayley Diagram of 2 × A5 over S3 we see that G is tran-

sitive. Moreover, from the DCE and the Cayley diagram it is clear that the dou-
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ble coset Nt0t1t0t1t0N contains one single coset. We stabilize the coset N then an-

other coset Nt0t1t0t1t0N at the maximal distance from N also stabilize. This means

{N,Nt0t1t0t1t0N} is a nontrivial block of size 2. Let B be a nontrivial block and N ∈ B.

If Nt0t1t0t1t0 ∈ B. Then

B = {N,Nt0t1t0t1t0} = {1, 20}

Bt0 = {Nt0, Nt0t1t0t1} = {2, 17}

Bt1 = {Nt1, Nt0t1t0t1t0t1} = {Nt1, Nt1t0t1t0t1t1}

= {Nt1, Nt1t0t1t0} = {3, 18}

Bt2 = {Nt2, Nt0t1t0t1t0t2} = {Nt2, Nt2t1t2t1t2t2}

= {Nt2, Nt2t1t2t1} = {4, 19}

Bt0t1 = {Nt0t1, Nt0t1t0} = {5, 11}

Bt1t0 = {Nt1t0, Nt0t1t0t1t0t1t0} = {Nt1t0, Nt1t0t1t0t1t1t0}

= {Nt1t0, Nt1t0t1} = {6, 12}

Bt2t0 = {Nt2t0, Nt0t1t0t1t0t2t0} = {Nt2t0, Nt2t0t2t0t2t2t0}

= {Nt2t0, Nt2t0t2} = {8, 14}

Bt0t2 = {Nt0t2, Nt0t1t0t1t2} = {Nt0t2, Nt0t2t0t2t2}

= {Nt0t2, Nt0t2t0} = {7, 13}

Bt1t2 = {Nt1t2, Nt0t1t0t1t0t1t2} = {Nt1t2, Nt1t0t1t0t1t1t2}

= {Nt1t2, Nt1t0t1t0t2} = {Nt1t2, Nt1t2t1t2t2}

= {Nt1t2, Nt1t2t1} = {9, 15}

Bt2t1 = {Nt2t1, Nt0t1t0t1t0t2t1} = {Nt2t1, Nt2t1t2t1t2t2t1}

= {Nt2t1, Nt2t1t2} = {10, 16}

We can see that {Bt0, Bt1, Bt2, Bt0t1, Bt1t0, Bt2t0, Bt0t2, Bt1t2, Bt2t1} ∩ B = ∅ and

{Bt0, Bt1, Bt2, Bt0t1, Bt1t0, Bt2t0, Bt0t2, Bt1t2, Bt2t1} 6= B. Hence, we have blocks of

imprimitive of size two. Therefore, |Z(G)|=2 where

Z(G) =< nw > (central elements permute the elements of each block of imprimitive)

= {(1, 20)(2, 17)(3, 18)(4, 19)(5, 11)(6, 12)(7, 13)(8, 14)(9, 15)(10, 16)}.
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Now, we are going to find the central element of order 2 in G not in its homo-

morphic image G1. Consider nt0t1t0t1t0 = 1 ∈ G;

In addition, t0t1t0t1t0 = n−1. Let r = n−1. Then t0t1t0t1t0 = r. We now compute r by

its action on the cosets {Nt0, Nt1, Nt2}. Recall that our relation is t0t1 = (0, 2, 1)t1t0t2.

In addition, if we conjugate this relation by the elements of N = S3, we obtain the

following relations:

t0t1 = (0, 2, 1)t1t0t2

t0t2 = (0, 1, 2)t2t0t1

t1t0 = (1, 2, 0)t0t1t2

t2t1 = (2, 0, 1)t1t2t0

t1t2 = (1, 0, 2)t2t1t0

t2t0 = (2, 1, 0)t0t2t1.

Compute r by its action on the coset Nt0:

Ntr0 = Ntt0t1t0t1t00 = N(t0t1t0t1t0)
−1t0t0t1t0t1t0

= Nt0t1t0t1t0t1t0t1t0 = Nt1t0t2t0t1t0t1t0t1t0

= Nt1t0(2, 1, 0)t0t2t0t1t0t1t0

= Nt0t2t0t2t0t1t0t1t0 = Nt0t2t0(2, 1, 0)t0t2t0t1t0

= Nt2t1t2t0t2t0t1t0 = Nt2(1, 0, 2)t2t1t2t0t1t0

= Nt1t2t1t2t0t1t0 = Nt1t2(1, 0, 2)t2t1t1t0

= Nt0t1t2t0 = Nt1t0t0

= Nt1.

Now, compute r by its action on the coset Nt1:

Ntr1 = Ntt0t1t0t1t01 = N(t0t1t0t1t0)
−1t1t0t1t0t1t0

= Nt0t1t0t1t0t1t0t1t0t1t0 = Nt0t1t0t1t0t1t0t1t0(1, 2, 0)t0t1t2

= Nt1t2t1t2t1t2t1t2t1t0t1t2 = Nt1t2t1t2t1t2t1(2, 0, 1)t1t2t1t2

= Nt2t0t2t0t2t0t2t1t2t1t2 = Nt2t0t2t0t2(0, 1, 2)t2t0t2t1t2

= Nt0t1t0t1t0t2t0t2t1t2 = Nt0t1t0(1, 2, 0)t0t1t0t2t1t2
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= Nt1t2t1t0t1t0t2t1t2 = Nt1(2, 0, 1)t1t2t1t0t2t1t2

= Nt2t1t2t1t0t2t1t2 = Nt2t1(2, 0, 1)t1t2t2t1t2

= Nt0t2t2

= Nt0.

Next, compute r by its action on the coset Nt2:

Ntr2 = Ntt0t1t0t1t02

= N(t0t1t0t1t0)
−1t2t0t1t0t1t0

= Nt0t1t0t1t0t2t0t1t0t1t0

= Nt0t1t0(1, 2, 0)t0t1t0t1t0t1t0

= Nt1t2t1t0t1t0t1t0t1t0

= Nt1(2, 0, 1)t1t2t1t0t1t0t1t0

= Nt2t1t2t1t0t1t0t1t0

= Nt2t1(2, 0, 1)t1t2t1t0t1t0

= Nt0t2t1t2t1t0t1t0

= Nt2t0t2t1t0t1t0

= Nt2t0(2, 0, 1)t1t2t1t0

= Nt0t1t1t2t1t0

= Nt0t2t1t0

= Nt0(2, 0, 1)t1t2

= Nt1t1t2

= Nt2.

Thus, Ntr0 = t1, Nt
r
1 = t0, and Ntr2 = t2. Therefore, r = (0, 1), and the

generator of the center is t0t1t0t1t0 = (0, 1). Hence, the center of G is Z(G) =<

(0, 1)t0t1t0t1t0 > .

Now, we factor

G ∼=
2∗3 : S3

(0, 2, 1)t1t0t2 = t0t1
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by the center Z(G), that is:

G ∼=
2∗3 : S3

(0, 2, 1)t1t0t2 = t0t1, (0, 1)t0t1t0t1t0
.

The Cayley diagram of G over N shown below illustrates that [∗] consists of

N only. Moreover, [0] consists of three cosets, Nt0N = {Nt0, Nt1, Nt2} and the orbits

of N (0) on {0, 1, 2} are: O = {0} and {1, 2}. Take a representative ti from each orbit

and see which double coset Nt0ti belongs to. We have: Nt0t0 ∈ [∗] and Nt0t1 ∈ [01].

In addition, [01] consists of six cosets,

Nt0t1N = {Nt0t1, Nt1t0, Nt2t0, Nt0t2, Nt1t2, Nt2t1} and the orbits N (01) on {0, 1, 2}
are: O = {0}, {1}, and {2}. Now we take a representative ti from each orbit and

see which double coset Nt0t1ti belongs to. We have: Nt0t1t1 ∈ [0], by using the main

relation (0, 2, 1)t1t0t2 = t0t1 =⇒ Nt1t0 = Nt0t1t2, thus, Nt0t1t2 ∈ [01]. Moreover, by

using the center (0, 1)t0t1 = t0t1t0 =⇒ Nt0t1 = Nt0t1t0, hence, Nt0t1t0 ∈ [01]. This

completes our double coset enumeration of G factor by the center Z(G) and our Cayley

diagram is as follows:

Figure 2.2: Cayley Diagram of A5 over S3
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2.4 Converting Symmetric and Permutation

Representation of 2× A5 over S3

Now we want to convert symmetric representation of G = 2 × A5 over S3 to

permutation representation. Note: every element of G is of the form nw where n is a

permutation of S3 on three letters and w is a word in {t0, t1, t2} of length at most four

and every element of G is also a permutation of the set of 20 cosets of N in G.

The following examples are converting symmetric representation to its permu-

tation representation of G.

Example 2.13. (0, 1, 2)t0t1t0

= φ(x)φ(t)φ(tφ(x))φ(t)

= (2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

= (1, 11, 14)(2, 18, 7)(3, 13, 17)(4, 6, 16)(5, 8, 20)(10, 19, 12)

Thus, (0, 1, 2)t0t1t0 = (1, 11, 14)(2, 18, 7)(3, 13, 17)(4, 6, 16)(5, 8, 20)(10, 19, 12).

Example 2.14. (2, 0)t0t1t2

= φ(y)φ(x)φ(t)φ(tφ(x))φ(tφ(x
2))

= (3, 4)(5, 7) . . . (15, 16)(18, 19)(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 4)(2, 7)(3, 9)(8, 14)(10, 16)(5, 6)(13, 17)(15, 18)(11, 12)(19, 20)

= (1, 6)(3, 11)(4, 9)(5, 18)(7, 16)(10, 13)(12, 20)(15, 19)

Hence, (2, 0)t0t1t2 = (1, 6)(3, 11)(4, 9)(5, 18)(7, 16)(10, 13)(12, 20)(15, 19).

Next, we want to convert permutation representation of G = 2 × A5 over S3

to symmetric representation. Let p be a permutation on twenty letters. We write it in

the form nw, where n ∈ S3 and w is a word in at most three t′is. Note: Np = 1p = Nw,

where

p ∈ Np
=⇒ p ∈ Nw
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=⇒ p = nw for some n ∈ N
=⇒ n = pw−1.

The following examples are converting permutation representation to its sym-

metric representation of G.

Example 2.15. Let p = (1, 11, 14)(2, 18, 7)(3, 13, 17)(4, 6, 16)(5, 8, 20)(10, 19, 12). Note:

p = nw =⇒ n = pw−1.

Np = 1p = 11 = Nt0t1t0

=⇒ Np = Nt0t1t0

=⇒ p = nt0t1t0

=⇒ n = pt0t1t0

n = (1, 11, 14)(2, 18, 7)(3, 13, 17)(4, 6, 16)(5, 8, 20)(10, 19, 12)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

=⇒ n = (2, 3, 4)(5, 9, 8)(6, 10, 7)(11, 15, 14)(12, 16, 13)(17, 18, 19)

Next, we compute n in the actions on {Nt0, Nt1, Nt2}:
Ntn0 = Nt

(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)
0

= 2(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)

= 3

= Nt1.

Ntn1 = Nt
(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)
1

= 3(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)

= 4

= Nt2.

Ntn2 = Nt
(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)
2

= 4(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)

= 2

= Nt0.

Thus, n = (0, 1, 2). We know that p = nt0t1t0 =⇒ p = (0, 1, 2)t0t1t0. Hence,

p = (1, 11, 14)(2, 18, 7)(3, 13, 17)(4, 6, 16)(5, 8, 20)(10, 19, 12) = (0, 1, 2)t0t1t0.
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Example 2.16. Let p = (1, 5, 14, 20, 11, 8)(2, 3, 7, 17, 18, 13)(4, 12, 16, 19, 6, 10)(9, 15).

Note: p = nw =⇒ n = pw−1.

Np = 1p = 5 = Nt0t1

=⇒ Np = Nt0t1

=⇒ p = nt0t1

=⇒ n = pt1t0

n = (1, 5, 14, 20, 11, 8)(2, 3, 7, 17, 18, 13)(4, 12, 16, 19, 6, 10)(9, 15)

(1, 3)(4, 10)(2, 5)(9, 15)(6, 12)(8, 7)(16, 19)(11, 17)(14, 13)(18, 20)

(1, 2)(3, 6)(4, 8)(5, 11)(7, 13)(9, 10)(12, 18)(14, 19)(15, 16)(17, 20)

=⇒ n = (3, 4)(5, 7)(6, 8)(9, 10)(11, 13)(12, 14)(15, 16)(18, 19)

Next, we compute n in the actions on {Nt0, Nt1, Nt2}:
Ntn0 = Nt

(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)
0

= 2(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)

= 2

= Nt0.

Ntn1 = Nt
(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)
1

= 3(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)

= 4

= Nt2.

Ntn2 = Nt
(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)
2

= 4(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)

= 3

= Nt1.

Thus, n = (1, 2). We know that p = nt0t1 =⇒ p = (1, 2)t0t1. Hence,

p = (1, 5, 14, 20, 11, 8)(2, 3, 7, 17, 18, 13)(4, 12, 16, 19, 6, 10)(9, 15) = (1, 2)t0t1.

2.5 2× S5 as a Homomorphic Image of 2∗4 : S4

2.5.1 Construction of 2× S5 over S4

Consider the group G = 2∗4 : S4 factored by the relator [(0, 1, 2) = t0t1t2t0.

Note: N = S4 = {e, (3, 0), (1, 3, 0, 2), (1, 3, 0), (1, 0, 3), (1, 0)(2, 3), (1, 2), (1, 0, 2), (1, 2, 3, 0),

(1, 3), (1, 0), (2, 3), (2, 0, 3), (1, 3, 2, 0), (2, 3, 0), (1, 2, 3), (1, 2, 0, 3), (1, 0, 2, 3), (1, 2, 0),
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(1, 3)(2, 0), (1, 0, 3, 2), (2, 0), (1, 2)(3, 0), (1, 3, 2)}, where x ∼ (0, 1, 2, 3) and y ∼ (0, 1).

Let N =< (0, 1, 2, 3), (0, 1) >. and t ∼ t4 ∼ t0.
We will begin the manual double coset enumeration by looking at our first

double coset. Note the definition of a double coset is as follows: NwN = {Nwn|n ∈ N}.

NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the single

coset, namely N . Since N is transitive on {t0, t1, t2, t3}, the orbit of N on {0, 1, 2, 3} is:

O = {0, 1, 2, 3}.

We choose t0 as our symmetric generator from O and find to which double coset Nt0

belongs. Nt0N will be a new double coset, denoted by [0]. Hence, four symmetric

generators will go the new double coset [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find the coset stabilizer

N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now,

N (0) = N0

=< (1, 3, 2), (1, 2) >

so the number of the single cosets in Nt0N is |N |
|N(0)| = 24

6 = 4. These four single cosets

in [0] are {Ntn0 |n ∈ N} = {Nt0, Nt1, Nt2, Nt3}. Furthermore, the orbits of N (0) on

{t0, t1, t2, t3} are:

O = {0} and {1, 2, 3}.

We take t0 and t1 from each orbit, respectively, and to see which double coset Nt0t0

and Nt0t1 belong to. Now Nt0t0 = N ∈ [∗], so one element will go back to NeN and

three symmetric generators will go to a new double coset Nt0t1N, denoted by [01].

Nt0t1N

Now Nt0t1N is a new double coset. We determine how many single cosets are in this

double coset. We have N (01) = N01 =< e >. But Nt0t1 is not distinct. If we conjugate
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the relation by N we get that:

Nt0t1 = Nt0t2 = Nt0t3

Nt1t0 = Nt1t2 = Nt1t3.

Nt2t1 = Nt2t0 = Nt2t3.

Nt3t1 = Nt3t2 = Nt3t0.

Thus, there exist {n ∈ N |N(t0t1)
n = Nt0t1} such that

N(t0t1)
(1,2,3) = Nt0t2 = Nt0t1 =⇒ (1, 2, 3) ∈ N (01)

Nt0t1 = Nt0t2 = Nt0t2t3t3 = N(0, 2, 3)t0t3 = Nt0t3

Nt0t
(2,3)
2 = Nt0t3 = Nt0t2 = Nt0t1 =⇒ (2, 3) ∈ N (01)

So, N (01) =< (1, 2, 3), (2, 3) >. The number of the single cosets in Nt0t1N is |N |
|N(01)| =

24
6 = 4. These four single cosets in [01] are {Nt01n|n ∈ N} = {Nt0t1, Nt1t0, Nt2t1, Nt3t1}.

Furthermore, the orbits of N (01) on {t0, t1, t2, t3} are:

O = {0} and {1, 2, 3}.
Nt0t1t1 ∈ [0] (three symmetric generators will go back to the coset [0])

Nt0t1t0 ∈ [010] (one symmetric generator go to the double coset [010])

Nt0t1t0N

Consider Nt0t1t0N denoted by [010]. We determine how many single cosets are in this

double coset. We have N (010) = N010 =< e >. But Nt0t1t0 is not distinct. From the

relation we know that:

Nt0t1t0 = Nt0t2t
(2,3)
0 = Nt0t3t0 = Nt0t2t0 = Nt0t1t0 =⇒ (2, 3) ∈ N (010)

Nt0t1t0 = Nt0t2t0 = Nt0t2t0t1t1 = Nt0(2, 0, 1)t2t1 = Nt1t2t1

Nt0t1t
(0,1,2)
0 = Nt1t2t1 = Nt0t1t0 =⇒ (0, 1, 2) ∈ N (010)

So, N (010) =< (0, 1, 2), (2, 3) >. The number of the single cosets inNt0t1t0N is |N |
|N(010)| =

24
24 = 4. The single coset in [01] are {Nt01n|n ∈ N} = {Nt0t1t0}. Furthermore, the orbits

of N (011) on {t0, t1, t2, t3} are:

O = {0, 1, 2, 3}.

Take a representative from this orbit, say t0. Hence Nt0t1t0t0 ∈ [01]. Therefore, four

symmetric generators will go back to Nt0t1N .
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We have completed the double coset enumeration since the set of right cosets

is closed under right multiplication, hence, the index of N in G is 10. We conclude:

G = N ∪Nt0N ∪Nt0t1N ∪Nt0t1t0N , where

G =
2∗4 : S4

(0, 1, 2) = t0t1t2t0

|G| ≤
(
|N |+ |N |

N(0) + |N |
N(01) + |N |

N(010)

)
× |N |

|G| ≤ (1 + 4 + 4 + 1)× 24

|G| ≤ 10× 24

|G| ≤ 240.

A Cayley diagram that summarizes the above information is given below:

Figure 2.3: Cayley Diagram of 2× S5 over S4
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2.5.2 Permutation Representation of 2× S5 over S4

In order to find the permutation representation of G = 2∗4 : S4, in terms of x,

y, and t0, we create a table in which we conjugate the twenty single cosets by x and y

and we right multiply them by t0.

Table 2.2: Permutation Representation of 2× S5 over S4
Cosets x ∼ (0, 1, 2, 3) y ∼ (0, 1) t ∼ t0
1. N 1. N 1. N 2. Nt0
2. Nt0 3. Nt1 3. Nt1 1. N

3. Nt1 4. Nt2 2. Nt0 7. Nt1t0
4. Nt2 5. Nt3 4. Nt2 8. Nt2t0
5. Nt3 2. Nt0 5. Nt3 9. Nt3t0
6. Nt0t1 7. Nt1t2 7. Nt1t0 10. Nt0t1t0
7. Nt1t0 8. Nt2t1 6. Nt0t1 3. Nt1
8. Nt2t1 9. Nt3t2 8. Nt2t0 4. Nt2t1t0
9. Nt3t1 6. Nt0t2 9. Nt3t0 5. Nt3t1t0
10. Nt0t1t0 10. Nt1t2t1 10. Nt1t0t1 6. Nt0t1

We have:

φ(x) = (2, 3, 4, 5)(6, 7, 8, 9)

φ(y) = (2, 3)(6, 7)

φ(t) = (1, 2)(3, 7)(4, 8)(5, 9)(6, 10).

Thus, we have a homomorphism φ : 2∗4 : S4 −→ S10. Then φ(G) =< φ(x), φ(y), φ(t) >.

In order for us to prove that φ(G) =< φ(x), φ(y), φ(t) > is a homomorphic image of

G = 2∗4 : S4, we must have the following conditions met:

(1) φ(N) ∼= S4

(2) φ(t) has four conjugates under conjugation by φ(N)

(3) φ(N) acts as S4 on the three conjugates of φ(t) by conjugates.

Proof. We have φ(N) =< φ(x), φ(y) >.

(1) φ(N) =< φ(x), φ(y) >

=< (2, 3, 4, 5)(6, 7, 8, 9), (2, 3)(6, 7) >

∼= S4 since |φ(x)φ(y)| = |(3, 4, 5)(7, 8, 9)| = 3.

Thus, φ(N) ∼= S4.
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(2) We need to compute φ(t)φ(N) :

φ(t)φ(x) = {(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(2,3,4,5)(6,7,8,9)}

= {(1, 3)(4, 8)(5, 9)(2, 6)(7, 10)}

= t1

φ(t)φ(x
2) = {(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(2,4)(3,5)(6,8)(7,9)}

= {(1, 4)(5, 9)(2, 6)(3, 7)(8, 10)}

= t2

φ(t)φ(x
3) = {(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(2,5,4,3)(6,9,8,7)}

= {(1, 5)(2, 6)(3, 7)(4, 8)(9, 10)}

= t3

φ(t)φ(x
4) = {(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)e}

= {(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)}

= t0

Thus, φ(t)φ(N) = {t0, t1, t2, t3}.
(3) We need to show that φ(N) acts as S4 on the four conjugates of φ(t) by conjugates.

First, we have to conjugate by φ(x):

t
φ(x)
0 = t1

t
φ(x)
1 = (t

φ(x)
0 )φ(x) = t

φ(x2)
0 = t2

t
φ(x)
2 = (t

φ(x)
1 )φ(x) = t

φ(x2)
1 = (t

φ(x)
0 )φ(x

2) = t
φ(x3)
0 = t3

t
φ(x)
3 = (t

φ(x)
2 )φ(x) = t

φ(x2)
2 = (t

φ(x)
1 )φ(x

2) = t
φ(x3)
1 = (t

φ(x)
0 )φ(x

3) = t
φ(x4)
0 = t0.

Thus, φ(x) = (t0, t1, t2, t3).

Next, we have to conjugate by φ(y):

t
φ(y)
0 = {(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(2,3)(6,7)}

= {(1, 3)(2, 6)(4, 8)(5, 9)(7, 10)}

= t1

t
φ(y)
1 = (t

φ(y)
0 )φ(y) = t

φ(y2)
0 = t0.

Thus, φ(y) = (t0, t1).

Hence, φ(G) =< φ(x), φ(y), φ(t) > is a homomorphic image of G = 2∗4 : S4.
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We have:

G =
2∗4 : S4

(0, 1, 2) = t0t1t2t0
.

Now, we want to verify if φ(0, 1, 2) = φ(t0t1t2t0) then < φ(x), φ(y), φ(t) > is a homo-

morphic image of G.

Verify: φ(x)φ(y) = φ(t0t1t2t0) :

φ(t0t1t2t0) =(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)

(1, 3)(4, 8)(5, 9)(2, 6)(7, 10)

(1, 4)(5, 9)(2, 6)(3, 7)(8, 10)

(1, 2)(3, 7)(4, 8)(5, 9)(6, 10)

=φ(x)φ(y).

Hence, φ : G
homo.−→ S10 with φ(G) =< φ(x), φ(y), φ(t) > . By FIT we have:

G/kerφ ∼= φ(G)

=⇒ |G/kerφ| ∼= |φ(G)|
=⇒ |G| = |kerφ||φ(G)|.
By completing the double coset enumeration we know |G| ≤ 240. Moreover, by Magma,

|φ(G)| = | < φ(x), φ(y), φ(t0) > | = 240.

So, |G| = |kerφ|240

=⇒ |G| ≥ 240.

Hence, |G| = 240.

2.5.3 Prove G ∼= 2× S5

We use the composition factors of G to construct a computer based proof to

show that G ∼= 2× S5.

Proof. Given:

< x, y, t|x4, y2, (xy)3, t2, (t, yx), (t, xy), (xy)y
x3

= ttxtx
2
t >= 2∗4:S4

(0,1,2)=t0t1t2t0
.

We use Magma, to obtain the following composition factors:

> CompositionFactors(G1);
G
| Cyclic(2)

*
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| Alternating(5)

*
| Cyclic(2)
1

Hence, G has the following composition series G ⊃ G1 ⊃ G2 ⊃ 1, where

(G/G1)(G1/G2)(G2/1) = C2A5C2. The normal lattice of G is:

> NL:=NormalLattice(G1);
> NL;

Normal subgroup lattice
-----------------------

[7] Order 240 Length 1 Maximal Subgroups: 4 5 6
---
[6] Order 120 Length 1 Maximal Subgroups: 3
[5] Order 120 Length 1 Maximal Subgroups: 2 3
[4] Order 120 Length 1 Maximal Subgroups: 3
---
[3] Order 60 Length 1 Maximal Subgroups: 1
---
[2] Order 2 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

First, we look at the center of G and we find it is of order 2. In addition, by

looking at the normal lattice, we find that the normal subgroup NL[2] is of order 2.

Now, we factor G by NL[2] to find H such that G/NL[2] ∼= H.

> q,ff:=quo<G1|NL[2]>;
> s:=IsIsomorphic(q,Sym(5));s;
true

We show that H ∼= S5 and a presentation for H is < a, b|a2, b4, (a ∗ b)5, (a, b)3 >.

> H<a,b>:=Group< a,b| aˆ2,bˆ4,(a*b)ˆ5,(a,b)ˆ3>;
> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);
> s:=IsIsomorphic(H1,q);s;
true

Thus, we might have a direct product of a cyclic group of order 2 by S5.

> D:=DirectProduct(CyclicGroup(2),q);
> s:=IsIsomorphic(D,G1);s;
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true

Now, the element of NL[2] commutes with the element of S5, since G is a direct product

extension. Thus, we have the following presentation for G:

> HH<a,b,c>:=Group< a,b,c| aˆ2,bˆ4,(a*b)ˆ5,(a,b)ˆ3,cˆ2,(c,a),(c,b)>;
> f2,H2,k2:=CosetAction(HH,sub<HH|Id(HH)>);
> s:=IsIsomorphic(H2,G1);s;
true

Hence, G ∼= 2× S5.

2.6 Finding and Factoring by the Center (Z(G)) of 2 × S5

over S4

Let G acts on X = {N ∪Nt0N ∪Nt0t1N ∪Nt0t1t0N} where |X| = 10. From

the Cayley Diagram of 2 × S5 over S4 we see that G is transitive. Moreover, from the

DCE and the Cayley diagram it is clear that the double coset Nt0t1t0N contains one

single coset. We stabilize the coset N then another coset Nt0t1t0N at the maximal

distance from N also stabilize. This means {N,Nt0t1t0N} is a nontrivial block of size

2. Let B be a nontrivial block and N ∈ B. If Nt0t1t0 ∈ B. Then

B = {N,Nt0t1t0} = {1, 10}

Bt0 = {Nt0, Nt0t1} = {2, 6}

Bt1 = {Nt1, Nt0t1t0t1} = {Nt1, Nt1t0t1t1} = {Nt1, Nt1t0} = {3, 7}

Bt2 = {Nt2, Nt0t1t0t2} = {Nt2, Nt2t0t2t2} = {Nt2, Nt2t0} = {Nt2, Nt2t1} = {4, 8}

Bt3 = {Nt3, Nt0t1t0t3} = {Nt3, Nt3t1t3t3} = {Nt3, Nt3t1} = {5, 9}.
We can see that {Bt0, Bt1, Bt2, Bt3} ∩ B = ∅ and {Bt0, Bt1, Bt2, Bt3} 6= B.Hence, we

have blocks of imprimitive of size two. Therefore, |Z(G)|=2 where

Z(G) =< nw > (central elements permute the elements of each block of imprimitive)

= {(1, 10)(2, 6)(3, 7)(4, 8)(5, 9)}.
Now, we are going to find the central element of order 2 in G, not in its

homomorphic image G1. Consider nt0t1t0 = 1 ∈ G;
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in addition, t0t1t0 = n−1. Let r = n−1. Then t0t1t0 = r. We now compute r by its

action on the cosets {Nt0, Nt1, Nt2, Nt3}.
Compute r by its action on the coset Nt0:

Ntr0 = Ntt0t1t00 = N(t0t1t0)
−1t0t0t1t0

= Nt0t1t0t1t0

= Nt0t1t0t1t0t2t2 = Nt0t1t0(1, 0, 2)t1t2

= Nt2t0t2t1t2 = Nt2(0, 2, 1)t0t2

= Nt1t0t2

= Nt1.

Now, compute r by its action on the coset Nt1:

Ntr1 = Ntt0t1t01

= N(t0t1t0)
−1t1t0t1t0

= Nt0t1t0t1t0t1t0

= Nt0t1t0t1t0(0, 2, 1)t1t2

= Nt2t0t2t0t2t1t2

= Nt2t0t2(0, 2, 1)t0t2

= Nt1t2t1t0t2

= Nt1(2, 1, 0)t2t2 = Nt0.

Next, compute r by its action on the coset Nt2:

Ntr2 = Ntt0t1t02

= N(t0t1t0)
−1t2t0t1t0

= Nt0t1t0t2t0t1t0

= Nt0t1t0(2, 0, 1)t2t0

= Nt1t2t1t2t0

= Nt1t2(1, 2, 0)t1

= Nt2t0t1

= N(2, 0, 1)t2

= Nt2.
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Finally, compute r by its action on the coset Nt3:

Ntr3 = Ntt0t1t03

= N(t0t1t0)
−1t3t0t1t0

= Nt0t1t0t3t0t1t0

= Nt0t1t0(3, 0, 1)t3t0

= Nt1t3t1t3t0

= Nt1t3(1, 3, 0)t1

= Nt3t0t1

= Nt3.

Thus, Ntr0 = t1, Nt
r
1 = t0, Nt

r
2 = t2, and Ntr3 = t3 . Therefore, r = (0, 1),

and the generator of the center is t0t1t0 = (0, 1). Hence, the center of G is Z(G) =<

(0, 1)t0t1t0 > .

Now, we factor

G ∼=
2∗4 : S4

(0, 1, 2) = t0t1t2t0

by Z(G) =< (0, 1)t0t1t0 > . Now the question is whether the new relation (0, 1)t0t1t0

implies the original relation, (0, 1, 2) = t0t1t2t0.

We have t0t1t2 = t0t1t2t1t1 = t0(1, 2)t1 = (1, 2)t0t1t0t0 = (1, 2)(1, 0)t0 =

(0, 1, 2)t0. Hence, (0, 1)t0t1t0 =⇒ t0t1t0 = (0, 1, 2)t0.

Thus, G factor by the center Z(G) is

G ∼=
2∗4 : S4

(0, 1, 2) = t0t1t2t0, (0, 1) = t0t1t0
∼=

2∗4 : S4
(0, 1) = t0t1t0

.

Now we construct a double coset enumeration of G ∼= 2∗4:S4
(0,1)=t0t1t0

. Our first

double coset, Ne = {Nen|n ∈ N} = {N} denoted by [∗] contains one single coset.

Since N is transitive on {t0, t1, t2, t4}, the orbit of N on {0, 1, 2, 4} is: O = {0, 1, 2, 4}.
We take a representative from the orbit, say t0, and find to which double coset Nt0

belongs. Nt0N will be a new double coset, denoted by [0]. Hence, four symmetric

generators will go the new double coset [0].

In order to find how many single cosets [0] contains, we must first find the coset stabilizer
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N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now, N (0) = N0 =<

(1, 2, 3), (1, 2) >, so the number of the single cosets in Nt0N is |N |
|N(0)| = 24

6 = 4. These

four single cosets in [0] are {Ntn0 |n ∈ N} = {Nt0, Nt1, Nt2, Nt3}. Furthermore, the

orbits of N (0) on {t0, t1, t2} are: O = {0} and {1, 2, 3}. We take t0 and t1 from each

orbit, respectively, and to see which double coset Nt0t0 and Nt0t1 belong to. Now

Nt0t0 = N ∈ [∗], so one element will go back to NeN and by our relation we have

(0, 1)t0t1t0 = e =⇒ (0, 1)t0t1 = t0 =⇒ Nt0t1 = Nt0. Hence, Nt0t1 ∈ [0], so three

elements will loop back to [0]. A Cayley diagram that summarizes the above information

is given below:

Figure 2.4: Cayley Diagram of S5 over S4
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Chapter 3

Iwasawa’s Lemma

In this chapter, we will apply Iwasawa’s lemma to prove that a group G is

simple.

3.1 Iwasawa’s Lemma Preliminaries

Definition 3.1. (G-set).

If X is a set and G is a group, then X is a G-set if there is a function α : G×X → X

(called an action), denoted by α : (g, x) 7→ gx, such that:

(i) 1x = x for all x ∈ X and

(ii) g(hx) = (gh)x for all g, h ∈ G and x ∈ X. We also say that G acts on X. If

|X| = n, then n is called the degree of the G-set X. [Rot12]

Definition 3.2. (Transitive G-set).

A G−set X is transitive if it has only one orbit; that is, for every x, y ∈ X, there exists

σ ∈ G with y = σx. [Rot12]

Definition 3.3. If X is a transitive G-set of degree n, and if x ∈ X, then |G| = n|Gx|.
[Rot12]

Definition 3.4. A G − set X is transitive if it has only one orbit; that is, for every

x, y ∈ X, there exists σ ∈ G with y = σx. [Rot12]

Definition 3.5. (Block).

If X is a G − set, then a block is a subset B of X such that, for each g ∈ G, either
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gB = B or gB ∩ B = ∅. Note gB = {gx : x ∈ B}. Trivial blocks are ∅, X, and

one-point subsets; any other other block is called nontrivial. [Rot12]

Definition 3.6. A G − set X with action α is faithful if ᾱ : G → Sx is injective.

[Rot12]

Definition 3.7. (Primitive).

A transitive G − set X is primitive if it contains no nontrivial block; otherwise, it is

imprimitive. [Rot12]

Definition 3.8. Let X be a finite G− set, and let H ≤ G act transitively on X. Then

G = HGx for each x ∈ X. [Rot12]

Definition 3.9. Let X be a G− set and x, y ∈ X.

(i) If H ≤ G, then Hx ∩Hy 6= ∅ =⇒ Hx = Hy

(ii) If H is normal in G, then the subsets Hx are blocks of X. [Rot12]

Definition 3.10. If X is a faithful primitive G− set of degree n ≥ 2. If H is normal

in G and if H 6= 1, then X is a transitive H − set. [Rot12]

Theorem 3.11. Let X be a transitive G− set. Then X is primitive if and only if, for

each x ∈ X, the stabilizer Gx is a maximal subgroup. [Rot12]

Definition 3.12. (Commutator). If a, b ∈ G, the commutator of a and b, denoted

by[a, b], is

[a, b] = aba−1b−1.[Rot12]

Definition 3.13. (Derived Group). The commutator subgroup (or derived group)

of G, denoted by G′, is the subgroups of G generated by all the commutators. [Rot12]

Definition 3.14. (Simple). A group G 6= 1 is simple if it has no normal subgroups

other than G and 1. [Rot12]

Theorem 3.15. (Iwasawa’s Lemma). Let G′ = G (such a group is called perfect)

and let X be a faithful primitive G − set. If there is x ∈ X and an abelian normal

subgroup K of Gx whose conjugates {ghg−1} generate G, then G is simple. [Rot12]
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3.2 Iwasawa’s Lemma to Prove L2(13) over A4 is Simple

We consider

G ∼=
2∗4 A4

[(0, 1, 2)t0]7, [(0, 1)(2, 3)t0]7, [(0, 1, 2)t0t1t2t3]2
∼= L2(13),

where A4 is maximal in L2(13) and the index of A4 in G equals 91.

Note N = A4
∼=< x, y|x3, y3, (x∗y)2 >, where x = (1, 2, 3) and y = (1, 2, 0). Let t4 ∼ t0.

The manual double coset enumeration and the Cayley diagram was done by

Maria de la Luz Torres [dlLT05]. The Cayley diagram is shown below:

Figure 3.1: Cayley Diagram of L2(13) over A4

We use Iwasawa’s lemma to prove G ∼= L2(13) is simple. Iwasawa’s lemma has three

sufficient conditions that we must satisfied:
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(1) G acts on X faithfully and primitively

(2) G is perfect (G = G′)

(3) There exist x ∈ X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

Proof. 3.2.1 G = L2(13) acts on X Faithfully

Let G acts on X = {N,Nt0N,Nt0t1N,Nt0t1t0N,Nt0t1t0t3N,Nt0t1t0t2N,
Nt0t1t2N,Nt0t1t3N,Nt0t1t3t2N,Nt0t1t2t3N,Nt0t1t0t2t0N}, where |X| = 91. G acts

on X implies there exist homomorphism

f : G −→ S91 (|X| = 91).

By First Isomorphic Theorem we have:

G/kerf ∼= f(G).

If kerf = 1 then G ∼= f(G). Only elements of N fix N implies G1 = N . Since X is a

transitive G− set of degree 91, we have:

|G| = 91× |G1|

= 91× |N |

= 91× 12

= 1092

=⇒ |G| = 1092.

From Cayley diagram, |G| ≤ 1092. However, from above |G| = 1092 implying ker(f) =

1. Since kerf = 1 then G acts faithfully on X.

3.2.2 G = L2(13) acts on X Primitively

In order to show thatG is primitive, we must show thatG = L2(13) is transitive

on X = 91 and there exists no nontrivial blocks of X. From the Cayley diagram of

G = L2(13) over A4, we see that G is transitive. Let B be a nontrivial block, then

|B|||X|. Note if we had a nontrivial block it would have to be of size 7 or 13. Let B be

a nontrivial block and N ∈ B since G is transitive on the coset of N . Now we look at

different cases:
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Case(1): Assume Nt0 ∈ B, then

B = {N,Nt0}

B = {N,Nt0N} (since N ∈ B,BN = B)

B = {N,Nt0, Nt1, Nt2, Nt3}

Bt1 = {Nt1, Nt0t1, N,Nt2t1, Nt3t1}

=⇒ N ∈ B ∩Bt1

=⇒ B = Bt1.

Now B = {N,Nt0N,Nt0t1N}, where |B| = 17 (passed size 7 and 13). Note if Nt0 ∈ B
then B = X. So B is a trivial block.

Case(2): Assume Nt0t1 ∈ B, then

B = {N,Nt0t1}

B = {N,Nt0t1N} (since N ∈ B,BN = B)

B = {N,Nt0t1, Nt2t1, Nt3t1, . . . , Nt2t0, Nt1t0, Nt3t0} where |B| = 13

Bt0t2 = {Nt0t2, Nt0t1t0t2, Nt2t1t0t2, . . . , N,Nt1t2, Nt3t2}

=⇒ N ∈ B ∩Bt0t2

=⇒ B = Bt0t2.

So B = {N,Nt0t1N,Nt0t1t0t2N}, where |B| = 25 (passed size 7 and 13). Hence, B is

a no nontrivial block of X under the action G.

Case(3): Assume Nt0t1t0 ∈ B, then

B = {N,Nt0t1t0}

B = {N,Nt0t1t0N} (since N ∈ B,BN = B)

B = {N,Nt0t1t0, Nt2t1t2, Nt3t1t3, . . . , Nt2t0t2, Nt1t0t1, Nt3t0t3} where |B| = 13

Bt1 = {Nt1, Nt0t1t0t1, Nt2t1t2t1, . . . , Nt2t0t2t1, Nt1t0, Nt3t0t3t1}

= {Nt1, Nt0t1t0, Nt2t1t2t1, . . . , Nt2t0t2t1, Nt1t0, Nt3t0t3t1}

=⇒ Nt0t1t0 ∈ B ∩Bt1

=⇒ B = Bt1.

SoB = {N,Nt1N,Nt0t1N,Nt0t1t0N,Nt0t1t0t2N,Nt0t1t0t3N}, where |B| = 52. Hence,

B is a no nontrivial block of X under the action G.
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Case(4): Assume Nt0t1t2 ∈ B, then

B = {N,Nt0t1t2}

B = {N,Nt0t1t2N} (since N ∈ B,BN = B)

B = {N,Nt0t1t2, Nt2t1t3, Nt3t1t0, . . . , Nt0t3t1, Nt1t0t3, Nt3t0t2} where |B| = 13

Bt2t1t0 = {Nt2t1t0, N,Nt2t1t3t2t1t0, . . . , Nt0t3t1t2t1t0, Nt1t0t3t2t1t0, Nt3t0t1t0}

= {Nt2t1t0, N,Nt2t1t3t2t1t0, . . . , Nt2t3t0t1t1t0, Nt1t0t3t2t1t0, Nt3t0t1t0}

= {Nt2t1t0, N,Nt2t1t3t2t1t0, . . . , Nt2t3, Nt1t0t3t2t1t0, Nt3t0t1t0}

=⇒ N ∈ B ∩Bt2t1t0

=⇒ B = Bt2t1t0.

So B = {N,Nt0t1N,Nt0t1t2N}, where |B| = 25. Hence, B is a no nontrivial block of

X under the action G.

Case(5): Assume Nt0t1t3 ∈ B, then

B = {N,Nt0t1t3}

B = {N,Nt0t1t3N} (since N ∈ B,BN = B)

B = {N,Nt0t1t3, Nt2t1t0, Nt3t1t2, . . . , Nt2t0t3, Nt1t0t2, Nt3t0t1} where |B| = 13

Bt3t1t0 = {Nt3t1t0, N,Nt2t1t0t3t1t0, . . . , Nt2t0t1t0, Nt1t0t2t3t1t0, Nt3t0t1t3t1t0}

= {Nt3t1t0, N,Nt0t1t3t2t1t0, . . . , Nt2t0t1t0, Nt1t0t2t3t1t0, Nt3t0t1t3t1t0}

= {Nt3t1t0, N,Nt0t1t2t3t1t1t0, . . . , Nt2t0t1t0, Nt1t0t2t3t1t0, Nt3t0t1t3t1t0}

= {Nt3t1t0, N,Nt0t1t2t3t0, . . . , Nt2t0t1t0, Nt1t0t2t3t1t0, Nt3t0t1t3t1t0}

= {Nt3t1t0, N,Nt0t1t2, . . . , Nt2t0t1t0, Nt1t0t2t3t1t0, Nt3t0t1t3t1t0}

=⇒ N ∈ B ∩Bt3t1t0

=⇒ B = Bt3t1t0.

So B = {N,Nt3t1t0N,Nt0t1t2N}, where |B| = 25. Hence, B is a no nontrivial block of

X under the action G.
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Case(6): Assume Nt0t1t0t3 ∈ B, then

B = {N,Nt0t1t0t3}

B = {N,Nt0t1t0t3N} (since N ∈ B,BN = B)

B = {N,Nt0t1t0t3, Nt2t1t2t0, Nt3t1t3t2, . . . , Nt2t0t2t3, Nt1t0t1t2, Nt2t3t2t1}

Bt1t2t0t1t0 = {Nt1t2t0t1t0, Nt0t1t0t3t1t2t0t1t0, . . . , Nt2t3t0t1t0}

= {Nt0t1t0t3, Nt0t1t0t2t1t1t2t0t1t0, . . . , Nt1t3t2t0t0}

= {Nt0t1t0t3, N, . . . , Nt1t3t2}

=⇒ N ∈ B ∩Bt1t2t0t1t0

=⇒ B = Bt1t2t0t1t0.

So B = {N,Nt0t1t0N,Nt0t1t0t3N}, where |B| = 25. Hence, B is a no nontrivial block

of X under the action G.

Case(7): Assume Nt0t1t0t2 ∈ B, then

B = {N,Nt0t1t0t2}

B = {N,Nt0t1t0t2N} (since N ∈ B,BN = B)

B = {N,Nt0t1t0t2, Nt2t1t2t3, . . . , Nt3t2t3t1}

Bt1t3t0t1t0 = {Nt1t3t0t1t0, Nt0t1t0t2t1t3t0t1t0, . . . , Nt3t2t0t1t0}

= {Nt0t1t0t2, Nt0t1t0t3t1t1t3t0t1t0, . . . , Nt1t2t3t0t0}

= {Nt0t1t0t2, N, . . . , Nt1t2t3}

=⇒ N ∈ B ∩Bt1t3t0t1t0

=⇒ B = Bt1t3t0t1t0.

So B = {N,Nt0t1t0N,Nt0t1t0t2N}, where |B| = 25. Hence, B is a no nontrivial block

of X under the action G.
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Case(8): Assume Nt0t1t0t2t0 ∈ B, then

B = {N,Nt0t1t0t2t0}

B = {N,Nt0t1t0t2t0N} (since N ∈ B,BN = B)

B = {N,Nt0t1t0t2t0, Nt2t1t2t3t2, . . . , Nt3t2t3t1t3} where |B| = 7

Bt0 = {Nt0, Nt0t1t0t2, Nt2t1t2t3t2t0, . . . , Nt3t2t3t1t3t0}

Bt1 = {Nt1, Nt0t1t0t2t0t1, Nt2t1t2t3t2t1, . . . , Nt3t2t3t1t3t1}

= {Nt1, Nt0t1t0t2, Nt2t1t2t3t2t1, . . . , Nt3t2t3t1t3t1}

Since B∩Bt0 = ∅. Then B is a block and Bt0 is also a block. Moreover, B∩Bt1 = ∅ so

Bt1 is a block. But Nt0t1t0t2 ∈ Bt0∩Bt1. So B = {N,Nt0N,Nt0t1t0t2N,Nt0t1t0t2t0}.
Hence, B is a no nontrivial block of X under the action G.

Case(9): Assume Nt0t1t3t2 ∈ B, then

B = {N,Nt0t1t3t2}
B = {N,Nt0t1t3t2N} (since N ∈ B,BN = B)

B = {N,Nt0t1t3t2, Nt0t2t1t3, Nt0t3t2t1, Nt3t0t1t2} where |B| = 5

Hence B is not a block since size of |B| = 5 does not divide |X| = 91.

Case(10): Assume Nt0t1t2t3 ∈ B, then

B = {N,Nt0t1t2t3}
B = {N,Nt0t1t2t3N} (since N ∈ B,BN = B)

B = {N,Nt0t1t2t3, Nt0t2t3t1, Nt0t3t1t2, Nt3t0t2t1} where |B| = 5

Hence B is not a block since size of |B| = 5 does not divide |X| = 91. In conclusion,

from the cases above we show that we cannot create nontrivial block of size 7 or 13.

Thus G acts primitively on X.

3.2.3 G = L2(13) is Perfect

Next we want to show that G = G′. Now A4 ⊆ G =⇒ A4
′ ⊆ G′.
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A4
′ =< [a, b]|a, b ∈ A4 >. Now the derived group,

A4
′ =< (1, 3)(20), (1, 2)(3, 0) >

=⇒ {e, (1, 3)(2, 0), (1, 2)(3, 0), (1, 0)(2, 3)} ⊆ G′.
Now x = (1, 2, 3) and y = (0, 1, 2).

Then [x, y] = x−1y−1xy = (1, 3, 2)(0, 2, 1)(1, 2, 3)(0, 1, 2) = (1, 2)(3, 0) ∈ G′. If we con-

jugate (1, 2)(3, 0) by (1, 2, 3) we get (2, 3)(1, 0) ∈ G′.
Now by expanding the relation [(0, 1, 2)t0]

7 = 1, we get

(0, 1, 2)t0t2t1t0t2t1t0 = 1

=⇒ y = t0t1t2t0t1t2t0.

Also by expanding the relation [(0, 1)(2, 3)t0]
7 = 1, we get

(0, 1)(2, 3)t0t1t0t1t0t1t0 = 1

=⇒ xy = t0t1t0t1t0t1t0

Now we use the second relation to solve for x. We replace y = t0t1t2t0t1t2t0.

xy = t0t1t0t1t0t1t0

xt0t1t2t0t1t2t0 = t0t1t0t1t0t1t0

=⇒ x = t0t1t0t1t0t1t2t1t0t2t1t0.

So G =< x, y, t >=< t0, t1, t2, t3 > . Our goal is to show that one of the t′is ∈ G′, then

we can conjugate. Since (0, 1)(2, 3) ∈ G′. Then

(0, 1)(2, 3) = t0t1t0t1t0t1t0 ∈ G′

(0, 1)(2, 3)(t0t1) = (t0t1t0t1t0t1t0)
(t0t1) ∈ G′ (since G′ EG)

= (t0t1)
−1(t0t1t0t1t0t1t0)(t0t1)

= (t1t0)(t0t1t0t1t0t1t0)(t0t1)

= t0t1t0

= t0t1t0t1t1t1

= [t0, t1]t1 ∈ G′ (since [t0, t1] ∈ G′)

=⇒ t1 ∈ G.′

So t1 ∈ G′

=⇒ ty1, t
y−1

1 ∈ G′ (since y, y−1 ∈ G and G′ EG)

ty1 = t
(0,1,2)
1 = t2 ∈ G′

ty
−1

1 = t
(1,0,2)
1 = t0 ∈ G′
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=⇒ t2, t0 ∈ G′.
So tx2 ∈ G′ ( since x ∈ G, t2 ∈ G′, and G′ EG)

tx2 = t
(1,2,3)
2 = t3 ∈ G′.

Thus G ⊇ G′ ⊇< t0, t1, t2, t3 >= G

=⇒ G′ = G. Hence G is perfect.

3.2.4 Conjugates of a Normal Abelian K

Generate G = L2(13) over A4

Now we require x ∈ X and a K EGx, where K is a normal abelian subgroup

such that the conjugates of K in G generate G. Recall, G1 = N = A4. Let K =<

(0, 1)(2, 3), (0, 2)(1, 3) >. Since K is normal abelian subgroup in G then for any s ∈ K
and for all g ∈ G implies sg ∈ K. Since (0, 1)(2, 3) = t0t1t0t1t0t1t0 ∈ K. Now

t0t1t0 ∈ G and t0t1t0t1t0t1t0 ∈ K

=⇒ (t0t1t0t1t0t1t0)
(t0t1t0) ∈ KG

=⇒ (t0t1t0)
−1(t0t1t0t1t0t1t0)(t0t1t0) ∈ KG

=⇒ t0t1t0t0t1t0t1t0t1t0t0t1t0 ∈ KG

=⇒ t1 ∈ KG

=⇒ tG1 ∈ KG

=⇒ KG ⊇ {t1, ty
−1

1 , ty1, (t
y
1)x}

=⇒ KG ⊇ {t1, ty
−1

1 , ty1, (t
y
1)x} =< t1, t0, t2, t3 >= G

Hence, the conjugates of K generate G. Therefore, by Iwasawa’s lemma, G ∼= L2(13) is

simple.

3.3 2× L2(8) as a Homomorphic Image of 2∗7 : D14

3.3.1 Construction of 2× L2(8) over D14

Consider the group G = 2∗7 : D14 factored by the relators (xttx)2 and (ttxt)9.

Note N = D14, where x ∼ (1, 2, 3, 4, 5, 6, 7) and y ∼ (1, 6)(2, 5)(3, 4). Let t ∼ t7 ∼ t0.

Let us expand the relators:
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1 = (xttx)2 = (xt0t1)
2

= x2(t0t1)
xt0t1 = x2t1t2t0t1

=⇒ 1 = x2t1t2t0t1

=⇒ t1t0 = x2t1t2 =⇒ Nt1t0 = Nt1t2

and

e = (ttxt)9

= (t0t0xt0)
9

= (xt0)
9

= x9tx
8

0 t
x7

0 t
x6

0 t
x5

0 t
x4

0 t
x3

0 t
x2

0 t
x
0t0

= x2t1t0t6t5t4t3t2t1t0

=⇒ e = x2t1t0t6t5t4t3t2t1t0

=⇒ t7t1t2t3 = x2t1t7t6t5t4

=⇒ Nt7t1t2t3 = Nt1t7t6t5t4

We want to find the index of N in G. To do this, we perform a manual double

coset enumeration of G over N .

NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the

single coset, namely N . Since N is transitive on {0, 1, 2, 3, 4, 5, 6}, the orbit of N on

{0, 1, 2, 3, 4, 5, 6} is: O = {0, 1, 2, 3, 4, 5, 6}. We choose t0 as our symmetric generator

from this orbit O and find to which double coset Nt0 belongs. Nt0N will be a new

double coset, denoted by [0], so seven symmetric generators will go to [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find N (0). Then the

number of single coset in [0] is equal to |N |
|N(0)| . Now,

N (0) = N0
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=< e, (1, 6)(2, 5)(3, 4) >

so the number of the single cosets in Nt0N is |N |
|N(0)| = 14

2 = 7. The orbits of N (0) on

{0, 1, 2, 3, 4, 5, 6} are: O = {0}, {1, 6}, {2, 5}, and {3, 4}. We take t0, t1, t2 and t3 from

each orbit respectively and find to which double coset Nt0t0, Nt0t1, Nt0t2, and Nt0t3

belong to. Now Nt0t0 = N ∈ [∗], so one element will go back to [∗]. Two symmetric

generators will go to new double cosets Nt0t1, denoted by [01], Nt0t2, denoted by [02],

and Nt0t3, denoted by [03].

Nt0t1N

Now Nt0t1N in N is a new double coset. We determine how many single cosets are

in the double coset. Well N (01) = N01 =< Id(N) >. But Nt0t1 is not distinct.

Now Nt0t6 ∈ [01] since (1, 6)(2, 5)(3, 4) ∈ N and N(t0t1)
(1,6)(2,5)(3,4) = Nt0t6. Thus,

(1, 6)(2, 5)(3, 4) ∈ N (01). We conclude:

N (01) ≥< (1, 6)(2, 5)(3, 4) > .

Hence |N (01)| = 2 so the number of single cosets in N (01) is |N |
|N(01)| = 14

2 = 7. The orbits

of N (01) on {0, 1, 2, 3, 4, 5, 6} are: O = {0}, {1, 6}, {2, 5}, {3, 4}. Take a representative ti

from each orbit and see which double cosets Nt0t1ti belongs to. We have:

Nt0t1t1 ∈ [0]

Nt0t1t2 ∈ [012]

Nt0t1t3 ∈ [013]

Nt0t1t0 ∈ [010].

The new double cosets have single coset representatives Nt0t1t2, Nt0t1t3, Nt0t1t0, we

represent them as [012], [013], [010], respectively.

Nt0t2N

Now Nt0t2N in N is a new double coset. We determine how many single cosets are

in the double coset. Well N (02) = N02 =< Id(N) >. But Nt0t2 is not distinct.

Now Nt3t1 ∈ [02] since (1, 2)(3, 0)(4, 6) ∈ N and N(t0t2)
(1,2)(3,0)(4,6) = Nt3t1. Thus,

(1, 2)(3, 0)(4, 6) ∈ N (02). We conclude:

N (02) ≥< (1, 2)(3, 0)(4, 6) > .

Hence |N (02)| = 2 so the number of single cosets in N (02) is |N |
|N(02)| = 14

2 = 7. The orbits

of N (02) on {0, 1, 2, 3, 4, 5, 6} are: O = {0, 3}, {1, 2}, {4, 6}, {5}. Take a representative ti
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from each orbit and see which double cosets Nt0t2ti belongs to. We have

t0t2t3 = x−3t5t4t2 =⇒ Nt0t2t3 = Nt5t4t2 ∈ [013]

Nt0t2t2 = Nt0 ∈ [0]

t0t2t4 = xt4t1 =⇒ Nt0t2t4 = Nt4t1 ∈ [03]

Nt0t2t5 ∈ [025].

The new double coset have single coset representative Nt0t2t5, denoted by [025].

Nt0t3N

Now Nt0t3N in N is a new double coset. However, N (03) = N03 =< Id(N) >. Only

identity e will fix 0 and 3. Hence the number of single cosets living in Nt0t3 is |N |
|N(03)| =

14
1 = 14. The orbits ofN (03) on {0, 1, 2, 3, 4, 5, 6} are: O = {0}, {1}, {2}, {3}, {4}, {5}, {6}.

Take a representative ti from each orbit and see which double cosets Nt0t3ti belongs to.

We have:

t0t3t1 = x−1t2t6 =⇒ Nt0t3t1 = Nt2t6 ∈ [03]

t0t3t2 = x2t2t3t4 =⇒ Nt0t3t2 = Nt2t3t4 ∈ [012]

Nt0t3t3 = Nt0 ∈ [0]

t0t3t4 = xt0t1t3 =⇒ Nt0t3t4 = Nt0t1t3 ∈ [013]

t0t3t5 = et3t5t1 =⇒ Nt0t3t5 = Nt3t5t1 ∈ [025]

Nt0t3t6 ∈ [036]

t0t3t0 = xt4t2 =⇒ Nt0t3t0 = Nt4t2 ∈ [02].

The new double coset have single coset representative Nt0t3t6, denoted by [036].

Nt0t1t2N

Consider Nt0t1t2N in N is a new double coset. We determined how many

single cosets are in the double coset. Well N (012) = N012 =< e >. But Nt0t1t2 is not

distinct. Now Nt3t2t1 ∈ [012] since (1, 2)(3, 7)(4, 6) ∈ N and N(t0t1t2)
(1,2)(3,0)(4,6) =

t3t2t1. Thus, (1, 2)(3, 0)(4, 6) ∈ N (012). we conclude:

N (012) ≥< (1, 2)(3, 0)(4, 6) > .
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Hence |N (012)| = 2 so the number of single cosets in N (012) is |N |
|N(012)| = 14

2 = 7. The

orbits of N (012) on {0, 1, 2, 3, 4, 5, 6} are: O = {0, 3}, {1, 2}, {4, 6}, {5} Take a represen-

tative ti from each orbit and see which double cosets Nt0t1t2ti belongs to.

t0t1t2t0 = x−2t5t1 =⇒ Nt0t1t2t0 = Nt5t1 ∈ [03]

Nt0t1t2t2 = Nt0t1 ∈ [01]

t0t1t2t4 = x−2t4t3t1 =⇒ Nt0t1t2t4 = Nt4t3t1 ∈ [013]

t0t1t2t5 = et5t1t4 =⇒ Nt0t1t2t5 = Nt5t1t4 ∈ [036].

Nt0t1t3N

Consider Nt0t1t3N in N is a new double coset. However, N (013) = N013 =<

Id(N) >. Only identity e will fix 0,1, and 3. Hence the number of single cosets

living in Nt0t1t3 is |N |
|N(013)| = 14

1 = 14. The orbits of N (013) on {0, 1, 2, 3, 4, 5, 6} are:

O = {0}, {1}, {2}, {3}, {4}, {5}, {6}. Take a representative ti from each orbit and see

which double cosets Nt0t1t3ti belongs to.

t0t1t3t0 = x−2t4t3t2 =⇒ Nt0t1t3t0 = Nt4t3t2 ∈ [012]

t0t1t3t1 = x−4t2t1t6 =⇒ Nt0t1t3t1 = Nt2t1t6 ∈ [013]

t0t1t3t2 = x2t2t4 =⇒ Nt0t1t3t2 = Nt2t4 ∈ [02]

Nt0t1t3t3 = Nt0t1 ∈ [01]

t0t1t3t4 = x−1t0t3 =⇒ Nt0t1t3t4 = Nt0t3 ∈ [03]

t0t1t3t5 = x−1t1t4t0 =⇒ Nt0t1t3t5 = Nt1t4t0 ∈ [036]

t0t1t3t6 = x−1t5t3t0 =⇒ Nt0t1t3t6 = Nt5t3t0 ∈ [02].

Nt0t1t0N

Now Nt0t1t0N is indeed a new double coset. We determine how many single

cosets are in this double coset. Well N (010) = N010 =< Id(N) >. Well N (010) =

N010 =< Id(N) >. We have these two relations t0t1t0 = (0, 5, 3, 1, 6, 4, 2)t5t6t5 and

t0t1t0 = (1, 0)(2, 6)(3, 5)t0t6t0. Since (0, 5, 3, 1, 6, 4, 2) ∈ N and N(t0t1t0)
(0,5,3,1,6,4,2) =

Nt5t6t5. Thus, (0, 5, 3, 1, 6, 4, 2) ∈ N (010) and N (010) ≥< (0, 5, 3, 1, 6, 4, 2) >. Since
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(1, 0)(2, 6)(3, 5) ∈ N and N(t0t1t0)
(1,0)(2,6)(3,5) = t1t0t1. Thus, (1, 0)(2, 6)(3, 5) ∈ N (010).

We conclude:

N (010) ≥< (1, 0)(2, 6)(3, 5), (0, 1, 2, 3, 4, 5, 6) > .

Then N (010) = N . Hence |N (010)| = 14, so the number of single cosets in N (010) is
|N |

|N(010)| = 14
14 = 1. The orbit of N (010) on {0, 1, 2, 3, 4, 5, 6} is O = {0, 1, 2, 3, 4, 5, 6}.

Take a representative from this orbit, say t0. Hence Nt0t1t0t0 ∈ [01]. Therefore, seven

symmetric generators will go back to Nt0t1N .

Nt0t2t5N

Now consider Nt0t2t5N in N is a new double coset. We determined how many single

cosets are in the double coset. Well N (025) = N025 =< Id(N) >. But Nt0t2t5 is not

distinct. Now Nt3t1t5 ∈ [025] since (0, 3)(1, 2)(4, 6) ∈ N and N(t0t2t5)
(0,3)(1,2)(4,6) =

t3t1t5. Thus, (3, 0)(1, 2)(4, 6) ∈ N (025). We conclude:

N (025) ≥< (0, 3)(1, 2)(4, 6) > .

Hence |N (025)| = 2 so the number of single cosets in N (025) is |N |
|N(025)| = 14

2 = 7. The

orbits of N (025) on {0, 1, 2, 3, 4, 5, 6} are: O = {0, 3}, {1, 2}, {4, 6}, {5}. Take a represen-

tative ti from each orbit and see which double cosets Nt0t2t5ti belongs to.

t0t2t5t0 = x−4t4t6t2 =⇒ Nt0t2t5t0 = Nt4t6t2 ∈ [025]

t0t2t5t1 = x2t6t3 =⇒ Nt0t2t5t1 = Nt6t3 ∈ [03]

t0t2t5t4 = x−4t5t6t1 =⇒ Nt0t2t5t4 = Nt5t6t1 ∈ [013]

Nt0t2t5t5 ∈ [02].

Nt0t3t6N

Now consider Nt0t3t6N in N is a new double coset. We determined how many

single cosets are in the double coset. Well N (036) = N036 =< Id(N) >. But Nt0t3t6 is

not distinct. Now Nt0t4t1 ∈ [036] since (1, 6)(2, 5)(3, 4) ∈ N and N(t0t3t6)
(1,6)(3,4)(2,5) =

t0t4t1. Thus, (1, 6)(3, 4)(2, 5) ∈ N (036). We conclude:

N (036) ≥< (1, 6)(3, 4)(2, 5) > .

Hence |N (036)| = 2 so the number of single cosets in N (036) is |N |
|N(036)| = 14

2 = 7. The

orbits of N (036) on {0, 1, 2, 3, 4, 5, 6} are: O = {1, 6}, {3, 4}, {2, 5}, {0}. Take a represen-
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tative ti from each orbit and see which double cosets Nt0t3t6ti belongs to.

Nt0t3t6t6 ∈ [03]

t0t3t6t3 = xt1t0t5 =⇒ Nt0t3t6t3 = Nt1t0t5 ∈ [013]

t0t3t6t5 = x2t3t6t2 =⇒ Nt0t3t6t5 = Nt3t6t2 ∈ [036]

t0t3t6t0 = et2t3t4 =⇒ Nt0t3t6t0 = Nt2t3t4 ∈ [036].

We have completed the double coset enumeration since the right coset is closed

under multiplication, hence, the index of N in G is 72 single cosets. We conclude:

G = N ∪ Nt0N ∪ Nt0t1N ∪ Nt0t2N ∪ Nt0t3N ∪ Nt0t1t2N ∪ Nt0t1t3N ∪ Nt0t1t0N ∪
Nt0t2t5N ∪Nt0t3t6N , where

G =
2∗7 : D14

(xttx)2, (ttxt)9 = 1

|G| ≤ |N |+ |N |
N(0) + |N |

N(01) + |N |
N(02) + |N |

N(03) + |N |
N(012) + |N |

N(013) + |N |
N(010) + |N |

N(025)

+ |N |
N(036) × |N |
|G| ≤ (1 + 7 + 7 + 7 + 14 + 7 + 14 + 1 + 7 + 7)× 14

|G| ≤ 72× 14

|G| ≤ 1008

The Cayley diagram that summarizes the above information is given below:

3.3.2 Factoring 2× L2(8) by the Center

Consider G = 2∗7:D14
(xttx)2,(ttxt)9=1

∼= 2 × L2(8). We are going to factor G by the

center, to do so, we use the following loops in Magma:

> D:=DihedralGroup(7);
> xx:=D!(1,2,3,4,5,6,7);
> yy:=D!(1, 6)(2, 5)(3, 4);
> N:=sub<D|xx,yy>;
> G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
(x*t*tˆx)ˆ2,(t*t*x*t)ˆ9>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> Center(G1);
Permutation group acting on a set of cardinality 72
Order = 2

(1, 20)(2, 12)(3, 6)(4, 7)(5, 11)(8, 13)(9, 18)(10, 19)
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Figure 3.2: Cayley Diagram of 2× L2(8) over D14

(14, 21)(15, 22)(16, 29)(17, 30)(23, 31)(24, 32)
(25, 38)(26, 33)(27, 43)(28, 35)(34, 44)(36,45)
(37, 52)(39, 46)(40, 56)(41, 55)(42, 48)(47, 57)
(49, 58)(50, 62)(51,63)(53, 68)(54, 67)(59, 69)(60, 65)
(61, 71)(64, 66)(70, 72)

By Magma, we know that the center of G is of order 2. We let aa equals to the

Center(G1). Now to convert the center in term of word, we use the Schreier System:

> A:=f(x);
> B:=f(y);
> C:=f(t);
> N:=sub<G1|A,B,C>;
> NN<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
> (x*t*tˆx)ˆ2, (t*t*x*t)ˆ9>;
> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
> ArrayP:=[Id(N): i in [1..#N]];
> for i in [2..#N] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
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for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
for|for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=Aˆ-1; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
for|for> if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> for i in [1..#N] do if ArrayP[i] eq aa
then print Sch[i]; end if; end for;
x * y * t * x * t * xˆ-1 * t

Thus, the center of G is Z(G) =< xytxtx−1t > . Now we factor G by the center and we

obtain the following:

> G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
(x*t*tˆx)ˆ2,(t*t*x*t)ˆ9,x*y*t*x*t*xˆ-1*t>;

> f,G1,k:=CosetAction(G,sub<G|x,y>);
> CompositionFactors(G1);

G
| A(1, 8) = L(2, 8)
1

Now, G = 2∗7 : D14 is factored by the relators (xttx)2,(ttxt)9 and the center Z(G) =<

xytxtx−1t >.

3.3.3 Construction of L2(8) over D14

Consider the group G ∼=< x7, y2, (x ∗ y)2, t2, (t, y) > factored by (xttx)2,(ttxt)9

and the center Z(G) =< xytxtx−1t >. Recall, G = 2∗7 : D14, N = D14 =< x, y >=<

(0, 1, 2, 3, 4, 5, 6), (1, 6)(2, 5)(3, 4) >, and t ∼ t7 ∼ t0. Also, by expanding the two rela-

tions we have:

(xttx)2 = x2t1t2t0t1 = 1 =⇒ x2t1t2 = t1t0

(ttxt)9 = x2t1t0t6t5t4t3t2t1t0 = 1 =⇒ x2t1t0t6t5 = t0t1t2t3t4.

Now lets expand the center Z(G) =< xytxtx−1t >:

xytxtx−1t = xyt0xt0x
−1t0 = xyt0t6t0 = 1 =⇒ xyt0t6 = t0.

Now, we begin the construction of L2(8) over D14.
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NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the

single coset, namely N . Since N is transitive on {0, 1, 2, 3, 4, 5, 6}, the orbit of N on

{0, 1, 2, 3, 4, 5, 6} is: O = {0, 1, 2, 3, 4, 5, 6}. We choose t0 as our symmetric generator

from this orbit O and find to which double coset Nt0 belongs. Nt0N will be a new

double coset, denoted by [0], so seven symmetric generators will go to [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find N (0). Then the

number of single coset in [0] is equal to |N |
|N(0)| . Now,

N (0) = N0 =< e, (1, 6)(2, 5)(3, 4) >

so the number of the single cosets in Nt0N is |N |
|N(0)| = 14

2 = 7. The orbits of N (0)

on {0, 1, 2, 3, 4, 5, 6} are: O = {0}, {1, 6}, {2, 5}, and {3, 4}. We take t0, t6, t2 and t3

from each orbit respectively and find to which double coset Nt0t0, Nt0t6, Nt0t2, and

Nt0t3 belong to. Now Nt0t0 = N ∈ [∗], so one element will go back to [∗]. We have

the relation t0t6 = xyt0 =⇒ Nt0t6 = Nt0 ∈ [0], since xy ∈ N and Nt0 ∈ [0]. Thus,

Nt0t6 = Nt0 ∈ [0], so two elements will loop back to [0]. On the other hand, two

symmetric generators will go to new double cosets Nt0t2, denoted by [02], and Nt0t3,

denoted by [03].

Nt0t2N

Now Nt0t2N in N is a new double coset. We determine how many single cosets are

in the double coset. Well N (02) = N02 =< Id(N) >. But Nt0t2 is not distinct.

Now Nt3t1 ∈ [02] since (1, 2)(3, 0)(4, 6) ∈ N and N(t0t2)
(1,2)(3,0)(4,6) = Nt3t1. Thus,

(1, 2)(3, 0)(4, 6) ∈ N (02). We conclude, N (02) ≥< (1, 2)(3, 0)(4, 6) > . Hence |N (02)| = 2

so the number of single cosets in N (02) is |N |
|N(02)| = 14

2 = 7. The orbits of N (02) on

{0, 1, 2, 3, 4, 5, 6} are: O = {1, 2}, {3, 0}, {4, 6}, {5}. Take a representative ti from each

orbit and see which double cosets Nt0t2ti belongs to. We have
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Nt0t2t2 = Nt0 ∈ [0]

t0t2t3 = x2yt5t2 =⇒ Nt0t2t3 = Nt5t2 ∈ [03]

t0t2t4 = xt4t1 =⇒ Nt0t2t4 = Nt4t1 ∈ [03]

Nt0t2t5 ∈ [025].

The new double coset have single coset representative Nt0t2t5, denoted by [025].

Nt0t3N

Now Nt0t3N in N is a new double coset. However, N (03) = N03 =< Id(N) >. Only

identity e will fix 0 and 3. Hence the number of single cosets living in Nt0t3 is |N |
|N(03)| =

14
1 = 14. The orbits ofN (03) on {0, 1, 2, 3, 4, 5, 6} are: O = {0}, {1}, {2}, {3}, {4}, {5}, {6}.

Take a representative ti from each orbit and see which double cosets Nt0t3ti belongs to.

We have:

t0t3t1 = x−1t2t6 =⇒ Nt0t3t1 = Nt2t6 ∈ [03]

t0t3t2 = x2yt5t3 =⇒ Nt0t3t2 = Nt5t3 ∈ [02]

Nt0t3t3 = Nt0 ∈ [0]

t0t3t4 = yt0t3 =⇒ Nt0t3t4 = Nt0t3 ∈ [03]

t0t3t5 = et3t5t1 =⇒ Nt0t3t5 = Nt3t5t1 ∈ [025]

t0t3t6 = yt5t3t0 =⇒ Nt0t3t6 = Nt5t3t0 ∈ [025]

t0t3t0 = xt4t2 =⇒ Nt0t3t0 = Nt4t2 ∈ [02].

Nt0t2t5N

Now consider Nt0t2t5N in N is a new double coset. We determined how many single

cosets are in the double coset. Well N (025) = N025 =< Id(N) >. But Nt0t2t5 is not

distinct. Now Nt3t1t5 ∈ [025] since (0, 3)(1, 2)(4, 6) ∈ N and N(t0t2t5)
(0,3)(1,2)(4,6) =

t3t1t5. Thus, (3, 0)(1, 2)(4, 6) ∈ N (025). We conclude, N (025) ≥< (0, 3)(1, 2)(4, 6) >

. Hence |N (025)| = 2 so the number of single cosets in N (025) is |N |
|N(025)| = 14

2 = 7.

The orbits of N (025) on {0, 1, 2, 3, 4, 5, 6} are: O = {0, 3}, {1, 2}, {4, 6}, {5}. Take a
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representative ti from each orbit and see which double cosets Nt0t2t5ti belongs to.

t0t2t5t1 = x2t6t3 =⇒ Nt0t2t5t1 = Nt6t3 ∈ [03]

t0t2t5t3 = x6t6t4t1 =⇒ Nt0t2t5t3 = Nt6t3 ∈ [025]

t0t2t5t4 = x6yt5t1 =⇒ Nt0t2t5t4 = Nt5t1 ∈ [013]

Nt0t2t5t5 ∈ [02].

We have completed the double coset enumeration since the right coset is closed

under multiplication, hence, the index of N in G is 36 single cosets. We conclude:

G = N ∪Nt0N ∪Nt0t2N ∪Nt0t3N ∪Nt0t2t5N , where

G =
2∗7 : D14

(xttx)2, (ttxt)9, xytxtx−1t = 1

|G| ≤ |N |+ |N |
N(0) + |N |

N(02) + |N |
N(03) + |N |

N(025)

|G| ≤ (1 + 7 + 7 + 14 + 7)× 14

|G| ≤ 36× 14

|G| ≤ 504

The Cayley diagram that summarizes the above information is given below:

Figure 3.3: Cayley Diagram of L2(8) over D14
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3.4 Iwasawa’s Lemma to Prove L2(8) over D14 is Simple

We consider

G ∼=
2∗7 D14

[(xt0t1]2, [t0t0xt0]9, xyt0xt0x−1t0
∼= L2(8),

Now we use Iwasawa’s lemma to prove G ∼= L2(8) is simple. We use Iwasawa’s

lemma to prove G ∼= L2(8) is simple. Iwasawa’s lemma has three sufficient conditions

that we must satisfied:

(1) G acts on X faithfully and primitively

(2) G is perfect (G = G′)

(3) There exist x ∈ X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

Proof. 3.4.1 G = L2(8) acts on X Faithfully

Let G acts on X = {N,Nt0N,Nt0t2N,Nt0t3N,Nt0t2t5N, where |X| = 36. G

acts on X implies there exist homomorphism

f : G −→ S36 (|X| = 36).

By First Isomorphic Theorem we have:

G/kerf ∼= f(G).

If kerf = 1 then G ∼= f(G). Only elements of N fix N implies G1 = N . Since X is a

transitive G− set of degree 36, we have:

|G| = 36× |G1|

= 36× |N |

= 36× 14

= 508

=⇒ |G| = 508.

From Cayley diagram, |G| ≤ 508. However, from above |G| = 508 implying ker(f) = 1.

Since kerf = 1 then G acts faithfully on X.
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3.4.2 G = L2(8) acts on X Primitively

In order to show that G is primitive, we must show that G = L2(8) is transitive

on X = |36| and there exists no nontrivial blocks of X. From the Cayley diagram of

G = L2(8) over D14, we see that G is transitive. Let B be a nontrivial block, then

|B|||X|. Note if we had a nontrivial block it would have to be of size 2, 3, 4, 6, 9, 12, or

18. By inspection, of our Cayley diagram we ca see that we cannot create a nontrivial

block of these sizes.

3.4.3 G = L2(8) is Perfect

Next we want to show that G = G′. Now D14 ⊆ G =⇒ D14
′ ⊆ G′.

D14
′ =< [a, b]|a, b ∈ D14 >. Now the derived group,

D14
′ =< (0, 1, 2, 3, 4, 5) >=< x >

=⇒ {e, x, x2, x3, x4, x5, x6)} ⊆ G′.
Now x = (0, 1, 2, 3, 4, 5, 6) and y = (1, 6)(2, 5)(3, 4).

Then [x, y] = x−1y−1xy

= (0, 1, 2, 3, 4, 5, 6)(1, 6)(2, 5)(3, 4)(0, 6, 5, 4, 3, 2, 1)(1, 6)(2, 5)(3, 4)

= (0, 2, 4, 6, 1, 3, 5) ∈ G′.
If we conjugate (0, 2, 4, 6, 1, 3, 5) by (0,1,2,3,4,5,6) we get (1, 3, 5, 0, 2, 4, 6) ∈ G′.
Main relation:

x2 = t1t0t2t1 (∗)

(x2)3 = (t1t0t2t1)
3

x6 = t1t0t2t0t2t0t2t1

x−1 = t1t0t2t0t2t0t2t1

x = t1t2t0t2t0t2t0t1

Now, we use the relation that we obtained by factoring by the center:

xy = t0t6t0

x−1xy = t1t0t2t0t2t0t2t1t0t6t0

y = t1t0t2t0t2t0t2t1t0t6t0
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So G =< x, y, t >=< t0, t1, t2, t3, t4, t5, t6 > . Our goal is to show that one of the

t′is ∈ G′, then we can conjugate. Since x ∈ G′. Then from our double coset relation we

have:

x = t0t2t4t1t4 ∈ G′

= t0t2t1t1t4t1t4 ∈ G′

= t0t2t1[t1, t4] ∈ G′ (since [t1, t4] ∈ G′)

= t0t2t1 ∈ G′

Now, we multiply t0t2t1 by the inverse of (*):

t0t2t1t1t2t0t1 = t1 ∈ G′ (since x ∈ G′ and (x2)−1 ∈ G′).

So t1 ∈ G′

=⇒ tx1 , t
x2
1 , t

x3
1 , t

x4
1 , t

x5
1 , t

x6
1 , t

x7
1 ∈ G′ (since x ∈ G and G′ EG)

=⇒ < t2, t3, t4, t5, t6, t0, t1 >∈ G′

Thus G ⊆ G′ ⊆< t2, t3, t4, t5, t6, t0, t1 >∈ G =⇒ G′ = G.

Hence G is perfect.

3.4.4 Conjugates of a Normal Abelian K

Generate G = L2(8) over D14

Now we require x ∈ X and a K EGx, where K is a normal abelian subgroup

such as the conjugates of K in G generate G. Recall, G1 = N = D14. Let K =< x >.

Since K is normal abelian subgroup in G′ then for any s ∈ K and for all g ∈ G implies

sg ∈ K. Since x ∈ K =⇒ x2 ∈ K. Now from (*) we have:

x2 = t1t0t2t1 ∈ K

(x2)t1 = (t1t0t2t1)
t1 ∈ KG

t1(x
2)t1 = t1(t1t0t2t1)t1 ∈ KG

x2t3t1 = t0t2 ∈ KG

=⇒ t0t2 ∈ KG

So, the inverse t2t0 ∈ KG. Moreover, from the double coset we have the following
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relation:

x = t0t2t4t1t4 ∈ K.

Now, we multiply the above relation by t2t0:

t0t2t4t1t4t2t0 ∈ K

(t0t2t4t1t4t2t0)
t0t2t4 ∈ KG

= t4t2t0(t0t2t4t1t4t2t0)t0t2t4 = t1 ∈ KG

Thus, t1 ∈ KG

=⇒ tG1 ∈ KG

=⇒ KG ⊇ {tx1 , tx
2

1 , t
x3
1 , t

x4
1 , t

x5
1 , t

x6
1 }

=⇒ KG ⊇ {tx1 , tx
2

1 , t
x3
1 , t

x4
1 , t

x5
1 , t

x6
1 } =< t1, t0, t2, t3, t4, t5, t6 >= G

Hence, the conjugates of K generate G. Therefore, by Iwasawa’s lemma, G ∼= L2(8) is

simple.

3.5 L2(13) as a Homomorphic Image of 2∗7 : D14

3.5.1 Construction of L2(13) over D14

Factoring the progenitor 2∗7 : D14 by the following relations

[(1, 5)(2, 4)(6, 0)t1t0]
7 and [(1, 2, 3, 4, 5, 6, 0)t0]

3

yields the finite homomorphic image:

G ∼=
2∗7 : D14

[(1, 5)(2, 4)(6, 0)t1t0]7, [t0t0(1, 2, 3, 4, 5, 6, 0)t0]3
,

where D14 is a maximal in L2(13) and the index of D14 in G equals 78. G ∼= L2(13),

the projective special linear group.

A symmetric representation for the above image is given by:

< x, y, t|x7, y2, (x ∗ y)2, t2, (t, y), (x ∗ y ∗ tx ∗ t)7, (t ∗ t ∗ x ∗ t)3 >,



81

where N = D14
∼=< x7, y2, (x∗y)2 >, and the action of x, y on the symmetric generators

is given by

x ∼ (1, 2, 3, 4, 5, 6, 0),

y ∼ (1, 6)(2, 5)(3, 4).

The relation

((1, 5)(2, 4)(6, 0)t1t0)
7 = 1 with (1, 5)(2, 4)(6, 0) = π becomes

(πt1t0)
7 = 1

=⇒ πt1t0πt1t0πt1t0πt1t0πt1t0πt1t0πt1t0 = 1

=⇒ π7(t1t0)
π6

(t1t0)
π5

(t1t0)
π5

(t1t0)
π3

(t1t0)
π2

(t1t0)
π(t1t0) = 1

=⇒ π(t1t0)(t1t0)
π(t1t0)(t1t0)

π(t1t0)
(t1t0)

π(t1t0) = 1

=⇒ (1, 5)(2, 4)(6, 0)t1t0t5t6t1t0t5t6t1t0t5t6t1t0 = 1

=⇒ (1, 5)(2, 4)(6, 0)t1t0t5t6t1t0t5t6 = t0t1t6t5t0t1

=⇒ Nt1t0t5t6t1t0t5t6 = Nt0t1t6t5t0t1.

The relation

((1, 2, 3, 4, 5, 6, 0)t0)
3 = ((1, 2, 3, 4, 5, 6, 0)t0)

3 = 1

=⇒ x3tx
2

0 t
x
0t0 = 1

=⇒ (1, 4, 0, 3, 5, 2, 5)t2t1t0 = 1

=⇒ (1, 4, 0, 3, 5, 2, 5)t2 = t0t1

=⇒ Nt2 = Nt0t1.

We want to find the index of N in G. To do this, we perform a manual double

coset enumeration of G over N . We take G and express it as a union of double cosets

NgN , where g is an element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ... where gi’s words

in ti’s.

We need to find all double cosets [w] and find out how many single cosets each

of them contains, where [w] = [Nwn|n ∈ N ]. The double cosets enumeration is complete

when the set of right cosets obtained is closed under right multiplication by ti’s. We

will identify, for each [w], the double coset to which Nwti belongs for one symmetric

generator ti from each orbit of the coset stabilising group N (w)

NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the
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single coset, namely N . Since N is transitive on {t1, t2, t3, t4, t5, t6, t0}, the orbit of N

on {t1, t2, t3, t4, t5, t6, t0} is:

O = {{1, 2, 3, 4, 5, 6, 0}}.

We choose t0 as our symmetric generator from O and find to which double coset Nt0

belongs. Nt0N will be a new double coset, denote it [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find the coset stabiliser

N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now,

N (0) = N0

=< (1, 6)(2, 5)(3, 4) >

so the number of the single cosets in Nt0N is |N |
|N(0)| = 14

2 = 7. Furthermore, the orbits

of N (0) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{0}, {1, 6}, {2, 5}, {3, 4}}.

We take t0, t1, t2 and t3 from each orbit, respectively, and to see which double coset

Nt0t0, Nt0t1, Nt0t2, and Nt0t3 belong to. We have:

Nt0t0 = N ∈ [∗]

t0t1 = x3t2 =⇒ Nt0t1 = Nt2 ∈ [0]

Nt0t2 ∈ [02]

Nt0t3 ∈ [03].

The new double cosets have single coset representatives Nt0t2 and Nt0t3, which we

represent them as [02] and [03] respectively.

Nt0t2N

Now Nt0t2N is a new double coset. We determine how many single cosets are in

the double coset. However, N (02) = N02 =< e >. But Nt0t2 is not distinct. We

have Nt5t3 ∈ [02] since (1, 4)(3, 2)(0, 5) ∈ N and N(t0t2)
(1,4)(3,2)(0,5) = Nt5t3. Thus,

(1, 4)(3, 2)(0, 5) ∈ N (02). We conclude:

N (02) ≥< (1, 4)(3, 2)(0, 5) > .
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Hence |N (02)| = 2. So the number of single cosets in N (02)N is |N |
|N(02)| = 14

2 = 7. The

orbits of N (02) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{1, 4}, {3, 2}, {0, 5}, {6}}.

Take a representative ti from each orbit and see which double cosets Nt0t2ti belongs to.

We have:

t0t2t4 = x2t1t5 =⇒ Nt0t2t4 = Nt1t5 ∈ [03]

Nt0t2t2 = Nt0 ∈ [0]

Nt0t2t0 ∈ [020]

Nt0t2t6 ∈ [026].

The new double coset are Nt0t2t0 and Nt0t2t6, which we represent them as [020] and

[026] respectively.

Nt0t3N

Consider Nt0t3N is a new double coset. We determine how many single cosets are in

the double coset. However, N (03) = N03 =< e >. Only identity (e) will fix 0 and 3.

Hence the number of single cosets living in Nt0t3N is |N |
|N(03)| = 14

1 = 14. The orbits of

N (03) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {0}}.
Take a representative ti from each orbit and see which double cosets Nt0t3ti belongs to.

We have:

Nt0t3t1 ∈ [031]

t0t3t2 = x4t4t1 =⇒ Nt0t3t2 = Nt4t1 ∈ [03]

Nt0t3t3 = Nt0 ∈ [0]

t0t3t4 = x2t1t6 =⇒ Nt0t3t4 = Nt1t6 ∈ [02]

t0t3t5 = x6t6t1t6 =⇒ Nt0t3t5 = Nt6t1t6 ∈ [020]

Nt0t3t6 ∈ [036]

Nt0t3t0 ∈ [030].

The new double coset are Nt0t3t1, Nt0t3t6, and Nt0t3t0, which we represent them as

[031], [036], and [030] respectively.
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Nt0t2t0N

Now consider Nt0t2t0N is a new double coset. We determine how many single cosets

are in the double coset. However, N (020) = N020 =< e >. Only identity (e) will fix 0

and 2. Hence the number of single cosets living in Nt0t2t0N is |N |
|N(020)| = 14

1 = 14. The

orbits of N (020) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {0}}.

Take a representative ti from each orbit and see which double cosets Nt0t2t0ti belongs

to. We have:

t0t2t0t1 = x2t1t6t2 =⇒ Nt0t2t0t1 = Nt1t6t2 ∈ [026]

t0t2t0t2 = x5yt0t2t0 =⇒ Nt0t2t0t2 = Nt0t2t0 ∈ [020]

t0t2t0t3 = yt4t2t5 =⇒ Nt0t2t0t3 = Nt4t2t5 ∈ [026]

t0t2t0t4 = xyt2t5t1 =⇒ Nt0t2t0t4 = Nt2t5t1 ∈ [036]

t0t2t0t5 = (x2)−1t5t1t4 =⇒ Nt0t2t0t5 = Nt5t1t4 ∈ [036]

t0t2t0t6 = xt1t4 =⇒ Nt0t2t0t6 = Nt1t4 ∈ [03]

Nt0t2t0t0 = Nt0t2 ∈ [02].

Nt0t2t6N

Now Nt0t2t6N is a new double coset. We determine how many single cosets are in

the double coset. Now N (026) = N026 =< e >. But Nt0t2t6 is not distinct. Now

Nt5t3t6 ∈ [026] since (1, 4)(3, 2)(0, 5) ∈ N and N(t0t2t6)
(1,4)(3,2)(0,5) = Nt5t3t6. Thus,

(1, 4)(3, 2)(0, 5) ∈ N (026). We conclude:

N (026) ≥< (1, 4)(3, 2)(0, 5) > .

Hence |N (026)| = 2. So the number of single cosets in N (026)N is |N |
|N(026)| = 14

2 = 7. The

orbits of N (026) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{1, 4}, {3, 2}, {0, 5}, {6}}.
Take a representative ti from each orbit and see which double cosets Nt0t2t6ti belongs



85

to. We have:

t0t2t6t1 = x6yt4t2t4 =⇒ Nt0t2t6t1 = Nt4t2t4 ∈ [020]

t0t2t6t3 = x2t0t3t6 =⇒ Nt0t2t6t3 = Nt0t3t6 ∈ [036]

t0t2t6t0 = x2t1t6t1 =⇒ Nt0t2t6t0 = Nt1t6t1 ∈ [020]

Nt0t2t6t6 = Nt0t2 ∈ [02].

t0t3t1N

Now Nt0t3t1N is a new double coset. We determine how many single cosets are in

the double coset. Now N (031) = N031 =< e >. But Nt0t3t1 is not distinct. Now

Nt1t5t0 ∈ [031] since (1, 0)(5, 3)(2, 6) ∈ N and N(t0t3t1)
(1,0)(5,3)(2,6) = Nt1t5t0. Thus,

(1, 0)(5, 3)(2, 6) ∈ N (031). We conclude:

N (031) ≥< (1, 0)(5, 3)(2, 6) > .

Hence |N (031)| = 2. So the number of single cosets in N (031)N is |N |
|N(031)| = 14

2 = 7. The

orbits of N (031) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{1, 0}, {5, 3}, {2, 6}, {4}}.
Take a representative ti from each orbit and see which double cosets Nt0t3t1ti belongs

to. We have:

Nt0t3t1t1 = Nt0t3 ∈ [03]

t0t3t1t5 = x5yt0t3t1 =⇒ Nt0t3t1t5 = Nt0t3t1 ∈ [031]

t0t3t1t2 = x3t3t6t3 =⇒ Nt0t3t1t2 = Nt3t6t3 ∈ [030]

t0t3t1t4 = x3yt6t2t6 =⇒ Nt0t3t1t4 = Nt6t2t6 ∈ [030].

Nt0t3t6N

Now consider Nt0t3t6N is a new double coset. We determine how many single cosets

are in the double coset. However, N (036) = N036 =< e >. Only identity (e) will fix 0

and 3. Hence the number of single cosets living in Nt0t3t6N is |N |
|N(036)| = 14

1 = 14. The

orbits of N (036) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{1}, {2}, {3}, {4}, {5}, {6}, {0}}.

Take a representative ti from each orbit and see which double cosets Nt0t3t6ti belongs
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to. We have:

t0t3t6t1 = x3yt0t3t6 =⇒ Nt0t3t6t1 = Nt0t3t6 ∈ [036]

t0t3t6t2 = x5yt5t0t5 =⇒ Nt0t3t6t2 = Nt5t0t5 ∈ [020]

t0t3t6t3 = (x2)−1t0t2t6 =⇒ Nt0t3t6t3 = Nt0t2t6 ∈ [026]

t0t3t6t4 = (x2)−1t1t5t2 =⇒ Nt0t3t6t4 = Nt1t5t2 ∈ [036]

t0t3t6t5 = x4t4t0t4 =⇒ Nt0t3t6t5 = Nt4t0t4 ∈ [030]

Nt0t3t6t6 = Nt0t3 ∈ [03]

t0t3t6t0 = x2t2t4t2 =⇒ Nt0t3t6t0 = Nt2t4t2 ∈ [020].

Nt0t3t0N

Now Nt0t3t0N is a new double coset. We determine how many single cosets are in

the double coset. Now N (030) = N030 =< e >. But Nt0t3t0 is not distinct. Now

Nt3t0t3 ∈ [030] since (0, 3)(1, 2)(6, 4) ∈ N and N(t0t3t0)
(0,3)(1,2)(6,4) = Nt3t0t3. Thus,

(0, 3)(1, 2)(6, 4) ∈ N (030). We conclude:

N (030) ≥< (0, 3)(1, 2)(6, 4) > .

Hence |N (030)| = 2. So the number of single cosets in N (030)N is |N |
|N(030)| = 14

2 = 7. The

orbits of N (030) on {t1, t2, t3, t4, t5, t6, t0} are:

O = {{0, 3}, {1, 2}, {6, 4}, {5}}.
Take a representative ti from each orbit and see which double cosets Nt0t3t0ti belongs

to. We have:

Nt0t3t0t0 = Nt0t3 ∈ [03]

t0t3t0t1 = x3t3t6t2 =⇒ Nt0t3t0t1 = Nt3t6t2 ∈ [036]

t0t3t0t6 = (x2)−1t5t2t4 =⇒ Nt0t3t0t6 = Nt5t2t4 ∈ [031]

t0t3t0t5 = yt)2t6t1 =⇒ Nt0t3t0t5 = Nt2t6t1 ∈ [031].

We have completed the double coset enumeration since the right coset is closed

under multiplication, hence, the index of N in G is 78 single cosets. We conclude:

G = N ∪ Nt0N ∪ Nt0t1N ∪ Nt0t2N ∪ Nt0t3N ∪ Nt0t1t2N ∪ Nt0t1t3N ∪ Nt0t1t0N ∪
Nt0t2t5N ∪Nt0t3t6N , where

G =
2∗7 : D14

(xttx)2, (ttxt)9 = 1

|G| ≤ |N |+ |N |
N(0) + |N |

N(02) + |N |
N(03) + |N |

N(020) + |N |
N(026) + |N |

N(031) + |N |
N(036)

+ |N |
N(030) × |N |
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|G| ≤ (1 + 7 + 7 + 14 + 14 + 7 + 7 + 14 + 7)× 14

|G| ≤ 78× 14

|G| ≤ 1092.

The Cayley diagram that summarizes the above information is given below:

Figure 3.4: Cayley Diagram of L2(13) over D14

3.6 Iwasawa’s Lemma to Prove L2(13) over D14 is Simple

We use Iwasawa’s lemma and the transitive action of G on the set of single cosets to

prove G ∼= L2(13) over D14 is a simple group. Iwasawa’s lemma has three sufficient

conditions that we must satisfied:

(1) G acts on X faithfully and primitively

(2) G is perfect (G = G′)
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(3) There exist x ∈ X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

Proof. 3.6.1 G = L2(13) over D14 acts on X Faithfully

Let G acts on X = {N,Nt0N,Nt0t2N,Nt0t3N,Nt0t2t0N,Nt0t2t6N,
Nt0t3t1N,Nt0t3t6N,Nt0t3t0N}, where X = 78. G acts on X implies there exist homo-

morphism

f : G −→ S78 (|X| = 78).

By First Isomorphic Theorem we have:

G/kerf ∼= f(G).

If kerf = 1 then G ∼= f(G). Only elements of N fix N implies G1 = N . Since X is

transitive G− set of degree 78, we have:

|G| = 78× |G1|

= 78× |N |

= 78× 12

= 1092

=⇒ |G| = 1092.

From Cayley diagram, |G| ≤ 1092. However, from above |G| = 1092 implying ker(f) =

1. Since kerf = 1 then G acts faithfully on X.

3.6.2 G = L2(13) over D14 acts on X Primitively

Since G = L2(13) is transitive on |X| = 78, if B is a nontrivial block then

we may assume that N ∈ B. However, |B| must divide |X| = 78. The only nontrivial

blocks must be of size 2,3,6,13,26, or 39. Note if Bt0 ∈ B then B = X. So B is a

trivial block. By inspection, we can see from the Cayley diagram that we cannot create

a nontrivial block of size 2, 3, 6, 13, 26, or 13. Thus, G acts primitively on X.

3.6.3 G = L2(13) over D14 is Perfect

.
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Next we want to show that G = G′. Since G =< N, t >, we have that N ≤ G′.
Now D14 ≤ G =⇒ D14

′ ≤ G′. The commutators subgroup of D14 is:

D14
′ =< (1, 2, 3, 4, 5, 6, 0) >=< x >

= {e, x, x2, x3, x4, x5, x6} ≤ G′.
Now by expanding the relation [t0t0(1, 2, 3, 4, 5, 6, 0)t0]

3 = 1, we get:

(1, 4, 0, 3, 5, 2, 5)t2 = t0t1

=⇒ x3 = t0t1t2

=⇒ x6 = t0t1t2t0t1t2

=⇒ x−1 = t0t1t2t0t1t2

=⇒ x = t2t1t0t2t1t0.

Also by expanding the relation [(1, 5)(2, 4)(6, 0)t1t0]
7 = 1, we get:

(1, 5)(2, 4)(6, 0) = t0t1t6t5t0t1t6t5t0t1t6t5t0t1

=⇒ xy = t0t1t6t5t0t1t6t5t0t1t6t5t0t1

Now we use the above relation to solve for y. We multiply by x−1 = t0t1t2t0t1t2.

xy = t0t1t6t5t0t1t6t5t0t1t6t5t0t1

x−1xy = t0t1t2t0t1t2t0t1t6t5t0t1t6t5t0t1t6t5t0t1

=⇒ y = t0t1t2t0t1t2t0t1t6t5t0t1t6t5t0t1t6t5t0t1.

Now D14 ≤ G =⇒ D14
′ ≤ G′. D14

′ =< (1, 2, 3, 4, 5, 6, 0) >=< x >

= {e, x, x2, x3, x4, x5, x6} ≤ G′. Note G =< x, y, t >=< t1, t2, t3, t4, t5, t6, t0 > . Our

goal is to show that one of the t′is ∈ G′, then we can conjugate by < x, y > to obtain

all of the t′is in G′. Consider, the relation:

x2 = t0t2t6t0t1t6t1

= t0t2t6t0t6t6t1t6t1

= t0t2t6t0t6[6, 1]

= t0t2t0t0t6t0t6[6, 1]

= t0t2t0[0, 6][6, 1]

= t2t2t0t2t0[0, 6][6, 1]

= t2[2, 0][0, 6][6, 1] ∈ G′.
We see that t2 ∈ G′. So G′ ≥< x, t2 >=< t1, t2, t3, t4, t5, t6, t0 >= G. But G ≥ G′. We

conclude that G = G′ and G is perfect.
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3.6.4 Conjugates of a Normal Abelian K

Generate G = L2(13) over D14

Now we require x ∈ X and a normal abelian subgroup K of Gx, the point

stabilizer of x in G, such that the conjugates of K in G generate G.

Now G1 = N = D14 possesses a normal abelian subgroup K =< x > . We have the

relation

x3 = t0t1t2 ∈ K

(x3)y = (t0t1t2)
y ∈ KG

(x3)−1 = t0t6t5 ∈ K. (3.1)

Now conjugate the relation x3 = t0t1t2 by t0 yields:

(x3)t0 = (t0t1t2)
t0 ∈ KG

t0(x
3)t0 = t0t0t1t2t0 ∈ K

x3t3t0 = t1t2t0 ∈ k

x3 = t1t2t3 ∈ K. (3.2)

Now conjugate the relation x3 = t0t1t2 by t1 yields:

(x3)t1 = (t0t1t2)
t1 ∈ KG

t1(x
3)t1 = t1t0t1t2t1 ∈ K

x3t4t1 = t1t0t1t2t1 ∈ K

(x3t4t1)
t1t2t1 = (t1t0t1t2t1)

t1t2t1 ∈ KG

t1t2t1(x
3t4t1)t1t2t1 = t1t2t1(t1t0t1t2t1)t1t2t1 ∈ K

x3t4t5t2t1 = t1t2t0 ∈ k.
We have t1t2t0 ∈ K so the inverse is in K. Thus

t0t2t1 ∈ K. (3.3)

Multiplying (3.3) and (3.2) yields:

t0t2t1t1t2t3 ∈ K

= t0t3 ∈ K. (3.4)

Now we use the relation t0t3t0t1 = x3t3t6t2 that we obtained from the double coset
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enumeration.

t0t3t0t1 = x3t3t6t2

x3 = t0t3t0t1t2t6t3 ∈ K

x3 = t3t0t3t1t2t6t3 ∈ K (since t0t3t0 = t3t0t3). (3.5)

Multiplying (3.5) and (3.4) yields:

x3t0t3 = t3t0t3t1t2t6t3t0t3 ∈ K

(x3t0t3)
t3t0t3 = (t3t0t3t1t2t6t3t0t3)

t3t0t3 ∈ KG

t3t0t3(x
3t0t3)t3t0t3 = t3t0t3(t3t0t3t1t2t6t3t0t3)t3t0t3 ∈ K

x3t6t3t6t3 = t1t2t6 ∈ K. (3.6)

Multiplying (3.6) and (3.3) yields:

t1t2t6t0t2t1 ∈ K

(t1t2t6t0t2t1)
t1t2 ∈ KG

t2t1(t1t2t6t0t2t1)t1t2 ∈ K

t6t0 ∈ k. (3.7)

Multiplying (3.1) and (3.7) yields:

t0t6t5t6t0 ∈ K

(t0t6t5t6t0)
t0t6 ∈ KG

t6t0(t0t6t5t6t0)t0t6 ∈ K

t5 ∈ K.
Thus t5 ∈ K

=⇒ tG5 ∈ KG

=⇒ KG ≤ {t5, tx5 , tx
2

5 , t
x3
5 , t

x4
5 , t

x5
5 , t

x6
5 }

=⇒ KG ≤ {t5, tx5 , tx
2

5 , t
x3
5 , t

x4
5 , t

x5
5 , t

x6
5 } =< t5, t6, t0, t1, t2, t3, t4 >= G

So G = KG.

Hence, the conjugates of K generate G. Therefore, by Iwasawa’s lemma, G ∼= L2(13) is

simple.
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Chapter 4

Double Coset Enumeration over a

Maximal Subgroup

In this chapter, we will construct a double coset enumeration over a maximal

subgroup and apply Iwasawa’s lemma to prove G ∼= L2(27) is a simple group.

4.1 Construction of L2(27) over M = 2·D14

Definition 4.1. (Maximal Subgroup). A subgroup M 6= 1 ≤ G is a maximal

normal subgroup of G if there is no normal subgroup N of G with M < N < G.

[Rot12]

We start by factoring the progenitor 2∗7 : D14 by the relations (xytxt)3, (xt)7

to obtain the homomorphic image:

G ∼=
2∗7 : D14

(xytxt)3, (xt)7
∼= L2(27),

where x ∼ (0, 1, 2, 3, 4, 5, 6), y ∼ (1, 6)(2, 5)(3, 4), and t ∼ t0 ∼ t7 .

Let π = xy = (1, 5)(2, 4)(6, 0), then (xytxt)3 = 1 can be written as

1 = (πt1t0)
3, which yields the following calculation:

1 = (πt1t0)
3

= π3(t1t0)
π2

(t1t0)
πt1t0

= πt1t0t5t6t1t0.
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Thus we have the relation:

πt1t0t5 = t0t1t6.

Now (xt)7 = 1 can be written as 1 = (xt0)
7 = x7tx

6

0 t
x5
0 t

x4
0 t

x3
0 t

x2
0 t

x
0t0. Then

t6t5t4 = t0t1t2t3.

Let M be the maximal subgroup generated by the control group N = D14 and

t2t4t5t4t2 = tx
2
tx

4
tx

5
tx

4
tx

2
. That is,

M =
〈
N, tx

2
tx

4
tx

5
tx

4
tx

2〉
, = 2·D14 where |M | = 28.

Then M is the maximal subgroup.

We proceed to do a manual double coset enumeration of G over M and N .

Denote [w] to be the double coset MwN , where w is a word in the t′is.

MeN

We begin with the double coset MeN , denote [∗]. This double coset contains only one

single coset, namely M . The single coset stabilizer of M is N , which is transitive on

{t0, t1, t2, t3, t4, t5, t6} and therefore, has a single orbit,

O = {{0, 1, 2, 3, 4, 5, 6}}.
Take an element from O say t0 and multiply the single coset representative M by it to

obtain Mt0. This is a new double coset Mt0N , denote it [0].

Mt0N

Continuing with the double coset Mt0N , we find the point stabilizer N0. This is

N0 =
〈
(1, 6)(2, 5)(3, 4)

〉
.

The coset stabiliser:

N (0) ≥
〈
(1, 6)(2, 5)(3, 4)

〉
.

Since
∣∣N (0)

∣∣ = 2, the number of single cosets in [0] is

∣∣N∣∣∣∣N(0)
∣∣ = 14

2 = 7. The orbits of

N (0) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1, 6}, {2, 5}, {3, 4}}.
Take an element from each orbit and multiply on the right by the single coset represen-
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tative Mt0 of the double coset Mt0N . We have:

Mt0t0 = M ∈ [∗],

Mt0t1 ∈ [01],

Mt0t2 ∈ [02],

Mt0t3 ∈ [03].

The new double cosets have single coset representatives Mt0t1, Mt0t2, and

Mt0t3, we represent them as [01], [02], and [03], respectively.

Mt0t1N

Continuing with the double coset Mt0t1N , we find the coset stabilizer N (01) =

N01 =
〈
e
〉
. Only e will fix 0 and 1. Hence the number of single cosets in [01] is∣∣N∣∣∣∣N(01)

∣∣ = 14
1 = 14. The orbits of N (01) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t1 of the double coset Mt0t1N . We have:

Mt0t1t1 = Mt0 ∈ [0],

Mt0t1t0 ∈ [010],

Mt0t1t2 ∈ [012],

Mt0t1t3 ∈ [013],

Mt0t1t4 ∈ [014],

Mt0t1t5 ∈ [015],

t0t1t6 = xyt1t0t5

=⇒ Mt0t1t6 = Mt1t0t5 ∈ [013] = {N(t0t1t3)
n|n ∈ N}.

The new double cosets have single coset representatives Mt0t1t0, Mt0t1t2,

Mt0t1t3,Mt0t1t4, and Mt0t1t5, we represent them as [010], [012], [013], [014], and [015],

respectively.

Mt0t2N

Continuing with the double coset Mt0t2N , we find the coset stabilizer N (02) = N02 =
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〈
e
〉
. Only e will fix 0 and 2. Hence the number of single cosets in [02] is

∣∣N∣∣∣∣N(02)
∣∣ = 14

1 =

14. The orbits of N (02) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t2 of the double coset Mt0t2N . We have:

Mt0t2t2 = Mt0 ∈ [0],

t0t2t1 = x2t2t0t1t2t0t2t0 =⇒ Mt0t2t1 = Mt2t0 ∈ [02] = {N(t0t2)
n|n ∈ N},

t0t2t3 = t0t2t3t2t0t0t2 =⇒ Mt0t2t3 = Mt0t2 ∈ [02],

Mt0t2t4 ∈ [024],

Mt0t2t5 ∈ [025],

Mt0t2t6 ∈ [026],

Mt0t2t0 ∈ [020].

The new double cosets have single coset representatives Mt0t2t4, Mt0t2t5,

Mt0t2t6, and Mt0t2t0, we represent them as [024], [025], [026], and [020], respectively.

Mt0t3N

Continuing with the double coset Mt0t3N , we find the coset stabilizer N (03) = N03 =〈
e
〉
. Only e will fix 0 and 3. Hence the number of single cosets in [03] is

∣∣N∣∣∣∣N(03)
∣∣ = 14

1 =

14. The orbits of N (03) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t3 of the double coset Mt0t3N . We have:

Mt0t3t3 = Mt0 ∈ [0],

t0t3t1 = t0t2t3t2t0t6t0t6 =⇒ Mt0t3t1 = Mt6t0t6 ∈ [010] = {N(t0t1t0)
n|n ∈ N},

Mt0t3t2 ∈ [032],

Mt0t3t4 ∈ [034],

t0t3t5 = t3t5t1 =⇒ Mt0t3t5 = Mt3t5t1 ∈ [025] = {N(t0t2t5)
n|n ∈ N},
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t0t3t6 = yx−2t5t0t6t5t0t6t5t3 =⇒ Mt0t3t6 = Mt6t5t3 ∈ [013]

(since {N(t0t1t3)
n|n ∈ N} and yx−2t5t0t6t5t0 ∈M),

Mt0t3t0 ∈ [030].

The new double cosets have single coset representatives Mt0t3t2, Mt0t3t4, and

Mt0t3t0, we represent them as [032], [034], and [030], respectively.

Mt0t1t0N

Continuing with the double cosetMt0t1t0N , we find the coset stabilizerN (010) =

N010 =
〈
e
〉
. Only e will fix 0 and 1. Hence the number of single cosets in [010] is∣∣N∣∣∣∣N(010)

∣∣ = 14
1 = 14. The orbits of N (010) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t1t0 of the double coset Mt0t1t0N . We have:

Mt0t1t0t0 = Mt0t1 ∈ [01],

t0t1t0t1 = yxt4t2t4 =⇒ Mt0t1t0t1 = Mt4t2t4 ∈ [020] = {(Nt0t2t0)n|n ∈ N},

t0t1t0t2 = xt0t5t4t5t0t1t4 =⇒ Mt0t1t0t2 = Mt1t4 ∈ [03]

(since {N(t0t3)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t1t0t3 = x2t6t3t4t5t2t4t6 =⇒ Mt0t1t0t3 = Mt6t3t4t5t2t4t6 ∈ [0321420]

(since {N(t0t3t2t1t4t2t0)
n|n ∈ N}),

t0t1t0t4 = yxt0t5t4t5t0t1t0t1 =⇒ Mt0t1t0t4 = Mt1t0t1 ∈ [010]

(since {N(t0t1t0)
n|n ∈ N} and yxt0t5t4t5 ∈M),

t0t1t0t5 = xt3t0t3t1t0 =⇒ Mt0t1t0t5 = Mt3t0t3t1t0 ∈ [03023]

= {N(t0t3t0t2t3)
n|n ∈ N},

t0t1t0t6 = x2t1t4t5t1t0 =⇒ Mt0t1t0t6 = Mt1t4t5t1t0 ∈ [03406]

= {N(t0t3t4t0t6)
n|n ∈ N}.

Mt0t1t2N

Continuing with the double cosetMt0t1t2N , we find the coset stabilizerN (012) = N012 =
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〈
e
〉
. Only e will fix 0, 1, and 2. Hence the number of single cosets in [012] is

∣∣N∣∣∣∣N(012)
∣∣ =

14
1 = 14. The orbits of N (012) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t1t2 of the double coset Mt0t1t2N . We have:

Mt0t1t2t2 = Mt0t1 ∈ [01],

t0t1t2t1 = xt0t5t4t5t0t6t2t1t0t3t1t6t5

=⇒ Mt0t1t2t1 = Mt6t2t1t0t3t1t6t5 ∈ [03214206]

(since {N(t0t3t2t1t4t2t0t6)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t1t2t3 = t6t5t4 =⇒ Mt0t1t2t3 = Mt6t5t4 ∈ [012] = {N(t0t1t2)
n|n ∈ N},

t0t1t2t4 = xt0t5t4t5t0t3t6t0t3 =⇒ Mt0t1t2t4 = Mt3t6t0t3 ∈ [0340]

(since {N(t0t3t4t0)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t1t2t5 = xt1t3t4t3t1t0t5t0 =⇒ Mt0t1t2t5 = Mt0t5t0 ∈ [020]

(since {N(t0t2t0)
n|n ∈ N} and xt1t3t4t3t1 ∈M),

t0t1t2t6 = xt0t2t3t2t0t4t3t0 =⇒ Mt0t1t2t6 = Mt4t3t0 ∈ [014]

(since {N(t0t1t4)
n|n ∈ N} and xt0t2t3t2t0 ∈M),

t0t1t2t0 = yx2t4t1t4t2t1 =⇒ Mt0t1t2t0 = Mt4t1t4t2t1 ∈ [03023]

= {N(t0t3t0t2t3)
n|n ∈ N}.

Mt0t1t3N

Continuing with the double cosetMt0t1t3N , we find the coset stabiliserN (013) =

N013 =
〈
e
〉
. Only e will fix 0, 1, and 3. Hence the number of single cosets in [013] is∣∣N∣∣∣∣N(013)

∣∣ = 14
1 = 14. The orbits of N (013) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t1t3 of the double coset Mt0t1t3N . We have:
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Mt0t1t3t3 = Mt0t1 ∈ [01],

t0t1t3t1 = xt6t2t6t1t0 =⇒ Mt0t1t3t1 = Mt6t2t6t1t0 ∈ [03021]

= {N(t0t3t0t2t1)
n|n ∈ N},

t0t1t3t2 = yx3t1t0 =⇒ Mt0t1t3t2 = Mt1t0 ∈ [01] = {N(t0t1)
n|n ∈ N},

t0t1t3t4 = xt0t2t3t2t0t0t4t3t6t0 =⇒ Mt0t1t3t4 = Mt0t4t3t6t0 ∈ [03410]

(since {N(t0t3t4t1t0)
n|n ∈ N} and xt0t2t3t2t0 ∈M),

t0t1t3t5 = t2t6t2t0t1t3 =⇒ Mt0t1t3t5 = Mt2t6t2t0t1t3 ∈ [030216]

= {N(t0t3t0t2t1t6)
n|n ∈ N},

t0t1t3t6 = x3t4t1t2t1 =⇒ Mt0t1t3t6 = Mt4t1t2t1 ∈ [0323]

= {N(t0t3t2t3)
n|n ∈ N},

t0t1t3t0 = yx−2t5t7t6t5t6t3 =⇒ Mt0t1t3t0 = Mt6t3 ∈ [03]

(since {N(t0t3)
n|n ∈ N} and yx−2t5t7t6t5 ∈M).

Mt0t1t4N

Continuing with the double cosetMt0t1t4N , we find the coset stabiliserN (014) = N014 =〈
e
〉
. Only e will fix 0, 1, and 4. Hence the number of single cosets in [014] is

∣∣N∣∣∣∣N(014)
∣∣ =

14
1 = 14. The orbits of N (014) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t1t4 of the double coset Mt0t1t4N . We have:

Mt0t1t4t4 = Mt0t1 ∈ [01],

t0t1t4t1 = x−1t5t0t6t5t0t2t6t0t1t5 =⇒ Mt0t1t4t1 = Mt2t6t0t1t5 ∈ [03214],

(since {N(t0t3t2t1t4)
n|n ∈ N} and x−1t5t0t6t5t0 ∈M)

t0t1t4t2 = yxt0t1t4 =⇒ Mt0t1t4t2 = Mt0t1t4 ∈ [014]

t0t1t4t3 = t0t5t4t5t0t0t6t2t5 =⇒ Mt0t1t4t3 = Mt0t6t2t5 ∈ [0152],

(since {N(t0t1t5t2)
n|n ∈ N} and t0t5t4t5t0 ∈M),
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t0t1t4t5 = x2t0t2t3t2t0t4t3t2 =⇒ Mt0t1t4t5 = Mt4t3t2 ∈ [012]

(since {N(t0t1t2)
n|n ∈ N} and x2t0t2t3t2t0 ∈M),

t0t1t4t6 = xt1t3t4t3t1t0t4t3t0t1 =⇒ Mt0t1t4t6 = Mt0t4t3t0t1 ∈ [03406]

(since {N(t0t3t4t0t6)
n|n ∈ N} and xt1t3t4t3t1 ∈M),

t0t1t4t0 = x2yt3t0t6t2 =⇒ Mt0t1t4t0 = Mt3t0t6t2 ∈ [0341]

= {N(t0t3t4t1)
n|n ∈ N}.

Mt0t1t5N

Continuing with the double coset Mt0t1t5N we find the single coset stabilizer is trivial.

However, the relation

t0t1t5 = yx−2t5t0t6t5t0t6t5t1

=⇒ Mt0t1t5 = Mt6t5t1 since yx−2t5t0t6t5t0 ∈M
Then M(t0t1t5)

(0,6)(1,5)(2,4) = Mt6t5t1. But Mt6t5t1 = Mt0t1t5 =⇒ (0, 6)(1, 5)(2, 4) ∈
N (015) since M(t0t1t5)

(0,6)(1,5)(2,4) = Mt6t5t1

=⇒ N (015) ≥
〈
(0, 6)(1, 5)(2, 4)

〉
.

Since
∣∣N (015)

∣∣ = 2, the number of single cosets in [015] is

∣∣N∣∣∣∣N(015)
∣∣ = 14

2 = 7. The orbits

of N (015) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{3}, {0, 6}, {1, 5}, {2, 4}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t1t5 of the double coset Mt0t1t5N . We have:

Mt0t1t5t5 = Mt0t1 ∈ [01],

t0t1t5t3 = x3t6t5t1 =⇒ Mt0t1t5t3 = Mt6t5t1 ∈ [015] = {N(t0t5)
n|n ∈ N},

t0t1t5t0 = xt1t3t4t3t1t0t5t3 =⇒ Mt0t1t5t0 = Mt0t5t3 ∈ [024]

(since {N(t0t2t4)
n|n ∈ N} and xt1t3t4t3t1 ∈M),

Mt0t1t5t2 ∈ [0152].

The new double coset is Mt0t1t5t2N , which we represent by [0152],

respectively.

Mt0t1t5t2N

Now with the double coset Mt0t1t5t2N , we find the coset stabilizer N (0152) = N0152 =
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〈
e
〉
. Only e will fix 0, 1, 5, and 2. Hence the number of single cosets in [0152] is∣∣N∣∣∣∣N(0152)

∣∣ = 14
1 = 14. The orbits of N (0152) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t1t5t2 of the double coset Mt0t1t5t2N . We have:

Mt0t1t5t2t2 = Mt0t1t5 ∈ [015],

t0t1t5t2t1 = xt0t2t3t2t0t0t4t5t4 =⇒ Mt0t1t5t2t1 = Mt0t4t5t4 ∈ [0323]

(since {N(t0t3t2t3)
n|n ∈ N} and xt0t2t3t2t0 ∈M),

t0t1t5t2t3 = x2t2t0t1t2t0t2t4t1 =⇒ Mt0t1t5t2t3 = Mt2t4t1 ∈ [026]

(since {N(t0t2t6)
n|n ∈ N} and x2t2t0t1t2t0 ∈M),

t0t1t5t2t4 = t0t2t3t2t0t0t6t3 =⇒ Mt0t1t5t2t4 = Mt0t6t3 ∈ [014]

(since {N(t0t1t4)
n|n ∈ N} and t0t2t3t2t0 ∈M),

t0t1t5t2t5 = x2t6t3t4t5t2t4t6t0 =⇒ Mt0t1t5t2t5 = Mt6t3t4t5t2t4t6t0 ∈ [03214206]

= {N(t0t3t2t1t4t2t0t6)
n|n ∈ N},

t0t1t5t2t6 = xt0t5t4t5t0t0t1t2t5 =⇒ Mt0t1t5t2t6 = Mt0t1t2t5 ∈ [0152]

(since {N(t0t1t5t2)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t1t5t2t0 = t0t2t3t2t0t5t1t2t6t5 =⇒ Mt0t1t5t2t0 = Mt5t1t2t6t5 ∈ [03410]

(since {N(t0t3t4t1t0)
n|n ∈ N} and t0t2t3t2 ∈M).

Mt0t2t4N

Continuing with the double cosetMt0t2t4N , we find the coset stabilizerN (024) = N024 =〈
e
〉
. Only e will fix 0, 2, and 4. Hence the number of single cosets in [024] is

∣∣N∣∣∣∣N(024)
∣∣ =

14
1 = 14. The orbits of N (024) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t2t4 of the double coset Mt0t2t4N . We have:

Mt0t2t4t4 = Mt0t2 ∈ [02],
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t0t2t4t1 = x−2t3t6t3t4 =⇒ Mt0t2t4t1 = Mt3t6t3t4 ∈ [0301]

= {N(t0t3t0t1)
n|n ∈ N},

t0t2t4t2 = xt6t4t6 =⇒ Mt0t2t4t2 = Mt6t4t6 ∈ [020]

= {N(t0t2t0)
n|n ∈ N},

t0t2t4t3 = yxt0t5t4t5t0t5t1t2t6t5 =⇒ Mt0t2t4t3 = Mt5t1t2t6t5 ∈ [03410]

(since {N(t0t3t4t1t0)
n|n ∈ N} and yxt0t5t4t5t0 ∈M),

t0t2t4t5 = xt0t5t4t5t0t1t4t5t1t0 =⇒ Mt0t2t4t5 = Mt1t4t5t1t0 ∈ [03406]

(since {N(t0t3t4t0t6)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t2t4t6 = xt6t1t4 =⇒ Mt0t2t4t6 = Mt6t1t4 ∈ [025]

= {N(t0t2t5)
n|n ∈ N},

t0t2t4t0 = xt0t5t4t5t0t0t6t2 =⇒ Mt0t2t4t0 = Mt0t6t2 ∈ [015]

(since {N(t0t1t5)
n|n ∈ N} and xt0t5t4t5t0 ∈M).

Mt0t2t5N

Continuing with the double cosetMt0t2t5N , we find the coset stabilizerN (025) = N025 =〈
e
〉
. Only e will fix 0, 2, and 5. Hence the number of single cosets in [025] is

∣∣N∣∣∣∣N(025)
∣∣ =

14
1 = 14. The orbits of N (025) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t2t5 of the double coset Mt0t2t5N . We have:

Mt0t2t5t5 = Mt0t2 ∈ [02],

t0t2t5t1 = x4t2t0t1t2t0t3t0t6t3t4 =⇒ Mt0t2t5t1 = Mt3t0t6t3t4 ∈ [03406]

(since {N(t0t3t4t0t6)
n|n ∈ N} and x4t2t0t1t2t0 ∈M),

t0t2t5t2 = t4t0 =⇒ Mt0t2t5t2 = Mt4t0 ∈ [03]

= {N(t0t3)
n|n ∈ N},

t0t2t5t3 = xt6t2t1t0t3t1t6 =⇒ Mt0t2t5t3 = Mt6t2t1t0t3t1t6 ∈ [0321420],

= {N(t0t3t2t1t4t2t0)
n|n ∈ N},
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t0t2t5t4 = yt0t5t4t5t0t0t3t2 =⇒ Mt0t2t5t4 = Mt0t3t2 ∈ [032],

(since {N(t0t3t2)
n|n ∈ N} and yt0t5t4t5t0 ∈M),

t0t2t5t6 = x2t3t6t3t5t4t2 =⇒ Mt0t2t5t6 = Mt3t6t3t5t4t2 ∈ [030216]

= {N(t0t3t0t2t1t6)
n|n| ∈ N},

t0t2t5t0 = x−1t1t3t5 =⇒ Mt0t2t5t0 = Mt1t3t5 ∈ [024]

= {N(t0t2t4)
n|n ∈ N}.

Mt0t2t6N

Continuing with the double cosetMt0t2t6N , we find the coset stabilizerN (026) = N026 =〈
e
〉
. Only e will fix 0, 2, and 6. Hence the number of single cosets in [026] is

∣∣N∣∣∣∣N(026)
∣∣ =

14
1 = 14. The orbits of N (026) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t2t6 of the double coset Mt0t2t6N . We have:

Mt0t2t6t6 = Mt0t2 ∈ [02],

t0t2t6t1 = x−2t5t0t6t5t0t5t6t3t0 =⇒ Mt0t2t6t1 = Mt5t6t3t0 ∈ [0152]

(since {N(t0t1t5t2)
n|n ∈ N} and x−2t5t0t6t5t0 ∈M),

t0t2t6t2 = t2t5t2t4 =⇒ Mt0t2t6t2 = Mt2t5t2t4 ∈ [0302]

= {N(t0t3t0t2)
n|n ∈ N},

t0t2t6t3 = x2yt6t3t6t5 =⇒ Mt0t2t6t3 = Mt6t3t6t5 ∈ [0301]

= {N(t0t3t0t1)
n|n ∈ N},

t0t2t6t4 = x−3t3t6t5t6 =⇒ Mt0t2t6t4 = Mt3t6t5t6 ∈ [0323]

= {N(t0t3t2t3)
n|n ∈ N},

t0t2t6t5 = t0t5t4t5t0t4t1t0 =⇒ Mt0t2t6t5 = Mt4t1t0 ∈ [034]

(since {N(t0t3t4)
n|n ∈ N} and t0t5t4t5t0 ∈M),
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t0t2t6t0 = yx−2t5t0t6t5t0t3t0t6t3 =⇒ Mt0t2t6t0 = Mt3t0t6t3 ∈ [0340]

(since {N(t0t3t4t0)
n|n ∈ N} and yx−2t5t0t6t5t0 ∈M).

Mt0t2t0N

Continuing with the double cosetMt0t2t0N , we find the coset stabilizerN (020) = N020 =〈
e
〉
. Only e will fix 0, and 2. Hence the number of single cosets in [020] is

∣∣N∣∣∣∣N(020)
∣∣ =

14
1 = 14. The orbits of N (020) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t2t0 of the double coset Mt0t2t0N . We have:

Mt0t2t0t0 = Mt0t2 ∈ [02],

t0t2t0t1 = yx−2t5t0t6t5t0t0t2t0 =⇒ Mt0t2t0t1 = Mt0t2t0 ∈ [020]

(since {N(t0t2t0)
n|n ∈ N} and yx−2t5t0t6t5t0 ∈M),

t0t2t0t2 = xt0t5t4t5t0t0t6t5 =⇒ Mt0t2t0t2 = Mt0t6t5 ∈ [012]

(since {N(t0t1t2)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t2t0t3 = yt4t3t4 =⇒ Mt0t2t0t3 = Mt4t3t4 ∈ [010]

= {N(t0t1t0)
n|n ∈ N},

t0t2t0t4 = xt6t4t2 =⇒ Mt0t2t0t4 = Mt6t4t2 ∈ [024]

= {N(t0t2t4)
n|n ∈ N},

t0t2t0t5 = x−1t3t1t3 =⇒ Mt0t2t0t5 = Mt3t1t3 ∈ [020]

= {N(t0t2t0)
n|n ∈ N},

t0t2t0t6 = x3t6t2t6t1t0 =⇒ Mt0t2t0t6 = Mt6t2t6t1t0 ∈ [03021]

= {N(t0t3t0t2t1)
n|n ∈ N}.

Mt0t3t2N

Continuing with the double coset Mt0t3t2N we find the single coset stabilizer is trivial.

However, the relation
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t0t3t2 = x−2t5t0t6t5t0t2t6t0

=⇒ Mt0t3t2 = Mt2t6t0 since x−2t5t0t6t5t0 ∈M
Then M(t0t3t2)

(0,2)(3,6)(4,5) = Mt2t6t0. But Mt2t6t0 = Mt0t3t2 =⇒ (0, 2)(3, 6)(4, 5) ∈
N (032) since M(t0t3t2)

(0,2)(3,6)(4,5) = Mt2t6t0

=⇒ N (032) ≥
〈
(0, 2)(3, 6)(4, 5)

〉
.

Since
∣∣N (032)

∣∣ = 2, the number of single cosets in [032] is

∣∣N∣∣∣∣N(032)
∣∣ = 14

2 = 7. The orbits

of N (032) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{1}, {0, 2}, {3, 6}, {4, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t2 of the double coset Mt0t3t2N . We have:

Mt0t3t2t2 = Mt0t3 ∈ [03],

Mt0t3t2t1 ∈ [0321],

Mt0t3t2t3 ∈ [0323],

t0t3t2t4 = x3t2t0t1t2t0t0t2t5 =⇒ Mt0t3t2t4 = Mt0t2t5 ∈ [025]

(since {N(t0t2t5)
n|n ∈ N} and x3t2t0t1t2t0 ∈M).

The new double cosets have single coset representatives Mt0t3t2t1N and Mt0t3t2t3N ,

we represent them as [0321] and [0323], respectively.

Mt0t3t2t1N

Continuing with the double coset Mt0t3t2t1N we find the single coset stabilizer is trivial.

However, the relation

t0t3t2t1 = x−2t5t0t6t5t0t2t6t0t1

=⇒ Mt0t3t2t1 = Mt2t6t0t1 since x−2t5t0t6t5t0 ∈M.

Then M(t0t3t2t1)
(0,2)(3,6)(4,5) = Mt2t6t0t1.

But Mt2t6t0t1 = Mt0t3t2t1 =⇒ (0, 2)(3, 6)(4, 5) ∈ N (0321)

since M(t0t3t2t1)
(0,2)(3,6)(4,5) = Mt2t6t0t1

=⇒ N (0321) ≥
〈
(0, 2)(3, 6)(4, 5)

〉
.

Since
∣∣N (0321)

∣∣ = 2, the number of single cosets in [0321] is

∣∣N∣∣∣∣N(0321)
∣∣ = 14

2 = 7. The

orbits of N (0321) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{1}, {0, 2}, {3, 6}, {4, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-



105

tative Mt0t3t2t1 of the double coset Mt0t3t2t1N . We have:

Mt0t3t2t1t1 = Mt0t3t2 ∈ [032],

t0t3t2t1t3 = x3yt1t4t1t2 =⇒ Mt0t3t2t1t3 = Mt1t4t1t2 ∈ [0301]

= {N(t0t3t0t1)
n|n ∈ N},

Mt0t3t2t1t4 ∈ [03214],

t0t3t2t1t0 = t0t4t5t6 =⇒ Mt0t3t2t1t0 = Mt0t4t5t6 ∈ [0321]

= {N(t0t3t2t1)
n|n ∈ N},

The new double coset is Mt0t3t2t1t4N , which we represent by [03214], respectively.

Mt0t3t2t3N

Continuing with the double coset Mt0t3t2t3N , we find the coset stabilizer N (0323) =

N0323 =
〈
e
〉
. Only e will fix 0, 2, and 3. Hence the number of single cosets in [0323] is∣∣N∣∣∣∣N(0323)

∣∣ = 14
1 = 14. The orbits of N (0323) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t3t2t3 of the double coset Mt0t3t2t3N . We have:

Mt0t3t2t3t3 = Mt0t3t2 ∈ [032],

t0t3t2t3t1 = x3t4t6t3 =⇒ Mt0t3t2t3t1 = Mt4t6t3 ∈ [026]

= {N(t0t2t6)
n|n ∈ N},

t0t3t2t3t2 = xyt4t0t4t6t5 =⇒ Mt0t3t2t3t2 = Mt4t0t4t6t5 ∈ [03021]

= {N(t0t3t0t2t1)
n|n ∈ N},

t0t3t2t3t4 = x2t2t0t1t2t0t0t3t0t1 =⇒ Mt0t3t2t3t4 = Mt0t3t0t1 ∈ [0301]

(since {N(t0t3t0t1)
n|n ∈ N} and x2t2t0t1t2t0 ∈M),

t0t3t2t3t5 = x3t4t3t1 =⇒ Mt0t3t2t3t5 = Mt4t3t1 ∈ [013]

= {N(t0t1t3)
n|n ∈ N},

t0t3t2t3t6 = yx−2t5t0t6t5t0t0t6t2t5 =⇒ Mt0t3t2t3t6 = Mt0t6t2t5 ∈ [0152]

(since {N(t0t1t5t2)
n|n ∈ N} and yx−2t5t0t6t5t0 ∈M),
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t0t3t2t3t0 = xt0t2t3t2t0t2t5t4t3t6t4 =⇒ Mt0t3t2t3t0 = Mt2t5t4t3t6t4 ∈ [032142]

(since {N(t0t3t2t1t4t2)
n|n ∈ N} and xt0t2t3t2t0 ∈M).

Mt0t3t2t1t4N

Continuing with the double coset Mt0t3t2t1t4N we find the single coset stabilizer is

trivial. However, the relation

t0t3t2t1t4 = t4t1t2t3t0

=⇒ Mt0t3t2t1t4 = Mt4t1t2t3t0

Then M(t0t3t2t1t4)
(0,4)(3,1)(5,6) = Mt4t1t2t3t0. But Mt4t1t2t3t0 = Mt0t3t2t1t4 =⇒

(0, 4)(3, 1)(5, 6) ∈ N (03214)

since M(t0t3t2t1t4)
(0,4)(3,1)(5,6) = Mt4t1t2t3t0

=⇒ N (03214) ≥
〈
(0, 4)(3, 1)(5, 6)

〉
.

Since
∣∣N (03214)

∣∣ = 2, the number of single cosets in [03214] is

∣∣N∣∣∣∣N(03214)
∣∣ = 14

2 = 7. The

orbits of N (03214) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{2}, {0, 4}, {3, 1}, {5, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t2t1t4 of the double coset Mt0t3t2t1t4N . We have:

Mt0t3t2t1t4t4 = Mt0t3t2t1 ∈ [0321],

Mt0t3t2t1t4t2 ∈ [032142],

t0t3t2t1t4t3 = x−1t5t0t6t5t0t2t3t6 =⇒ Mt0t3t2t1t4t3 = Mt2t3t6 ∈ [014]

(since {N(t0t1t4)
n|n ∈ N} and x−1t5t0t6t5t0 ∈M),

t0t3t2t1t4t5 = x4t2t0t1t2t0t1t5t1t6t0 =⇒ Mt0t3t2t1t4t5 = Mt1t5t1t6t0 ∈ [03021]

(since {N(t0t3t0t2t1)
n|n ∈ N} and x4t2t0t1t2t0 ∈M),

The new double coset is Mt0t3t2t1t4t2N , which we represent by [032142], respectively.

Mt0t3t2t1t4t2N

Continuing with the double coset Mt0t3t2t1t4t2N we find the single coset stabilizer is

trivial. However, the relation

t0t3t2t1t4t2 = t4t1t2t3t0t2
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=⇒ Mt0t3t2t1t4t2 = Mt4t1t2t3t0t2.

Then M(t0t3t2t1t4t2)
(0,4)(3,1)(5,6) = Mt4t1t2t3t0t2.

But Mt4t1t2t3t0t2 = Mt0t3t2t1t4t2 =⇒ (0, 4)(3, 1)(5, 6) ∈ N (032142)

since M(t0t3t2t1t4t2)
(0,4)(3,1)(5,6) = Mt4t1t2t3t0t2

=⇒ N (032142) ≥
〈
(0, 4)(3, 1)(5, 6)

〉
.

Since
∣∣N (032142)

∣∣ = 2, the number of single cosets in [032142] is

∣∣N∣∣∣∣N(032142)
∣∣ = 14

2 = 7.

The orbits of N (032142) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{2}, {0, 4}, {3, 1}, {5, 6}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t2t1t4t2 of the double coset Mt0t3t2t1t4t2N . We have:

Mt0t3t2t1t4t2t2 = Mt0t3t2t1t4 ∈ [03214],

t0t3t2t1t4t2t3 = yx3t0t4t3t0 =⇒ Mt0t3t2t1t4t2t3 = Mt0t4t3t0 ∈ [0340]

= {N(t0t3t4t0)
n|n ∈ N},

t0t3t2t1t4t2t5 = xt0t5t4t5t0t5t1t0t1 =⇒ Mt0t3t2t1t4t2t5 = Mt5t1t0t1 ∈ [0323]

(since {N(t0t3t2t3)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

Mt0t3t2t1t4t2t0 ∈ [0321420].

The new double coset is Mt0t3t2t1t4t2t0N , which we represent by [0321420],

respectively.

Mt0t3t2t1t4t2t0N

Continuing with the double coset Mt0t3t2t1t4t2t0N we find the single coset stabilizer is

trivial. However, the relation

t0t3t2t1t4t2t0 = yt0t5t4t5t0t5t2t3t4t1t3t5

=⇒ Mt0t3t2t1t4t2t0 = Mt5t2t3t4t1t3t5 since yt0t5t4t5t0.

Now M(t0t3t2t1t4t2t0)
n = Mt5t2t3t4t1t3t5.

Then M(t0t3t2t1t4t2t0)
(0,5)(2,3)(1,2) = Mt5t2t3t4t1t3t5.

But Mt5t2t3t4t1t3t5 = Mt0t3t2t1t4t2t0 =⇒ (0, 5)(2, 3)(1, 2) ∈ N (0321420)

since M(t0t3t2t1t4t2t0)
(0,5)(2,3)(1,2) = Mt5t2t3t4t1t3t5

=⇒ N (0321420) ≥
〈
(0, 5)(2, 3)(1, 2)

〉
.

Since
∣∣N (0321420)

∣∣ = 2, the number of single cosets in [0321420] is

∣∣N∣∣∣∣N(0321420)
∣∣ = 14

2 = 7.
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The orbits of N (0321420) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{6}, {0, 5}, {2, 3}, {1, 4}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t2t1t4t2t0 of the double coset Mt0t3t2t1t4t2t0N . We have:

Mt0t3t2t1t4t2t0t0 = Mt0t3t2t1t4t2 ∈ [032142],

t0t3t2t1t4t2t0t1 = x−2t5t0t6t5t0t4t2t6 =⇒ Mt0t3t2t1t4t2t0t1 = Mt4t2t6 ∈ [025]

(since {N(t0t2t5)
n|n ∈ N} and x−2t5t0t6t5t0 ∈M),

t0t3t2t1t4t2t0t2 = x4t2t0t1t2t0t6t0t6 =⇒ Mt0t3t2t1t4t2t0t2 = Mt6t0t6 ∈ [010]

(since {N(t0t1t0)
n|n ∈ N} and x4t2t0t1t2t0 ∈M),

Mt0t3t2t1t4t2t0t6 ∈ [03214206].

The new double coset is Mt0t3t2t1t4t2t0t6N , which we represent by [03214206],

respectively.

Mt0t3t2t1t4t2t0t6N

Continuing with the double coset Mt0t3t2t1t4t2t0t6N we find the single coset stabilizer

is trivial. However, the relation

t0t3t2t1t4t2t0t6 = yt0t5t4t5t0t5t2t3t4t1t3t5t6

=⇒ Mt0t3t2t1t4t2t0t6 = Mt5t2t3t4t1t3t5t6 since yt0t5t4t5t0 ∈M
Then M(t0t3t2t1t4t2t0t6)

(0,5)(2,3)(1,2) = Mt5t2t3t4t1t3t5t6.

But Mt5t2t3t4t1t3t5t6 = Mt0t3t2t1t4t2t0t6 =⇒ (0, 5)(2, 3)(1, 2) ∈ N (0321406)

since M(t0t3t2t1t4t2t0t6)
(0,5)(2,3)(1,2) = Mt5t2t3t4t1t3t5t6

=⇒ N (03214206) ≥
〈
(0, 5)(2, 3)(1, 2)

〉
.

Since
∣∣N (03214206)

∣∣ = 2, the number of single cosets in [03214206] is

∣∣N∣∣∣∣N(03214206)
∣∣ = 14

2 = 7.

The orbits of N (03214206) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{6}, {0, 5}, {2, 3}, {1, 4}}.
Take an element from each orbit and multiply on the right by the single coset represen-
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tative Mt0t3t2t1t4t2t0t6 of the double coset Mt0t3t2t1t4t2t0t6N . We have:

Mt0t3t2t1t4t2t0t6t6 = Mt0t3t2t1t4t2t0 ∈ [0321420],

t0t3t2t1t4t2t0t6t1 = x2t6t5t1t4 =⇒ Mt0t3t2t1t4t2t0t6t1 = Mt6t5t1t4 ∈ [0152]

= {N(t0t1t5t2)
n|n ∈ N},

t0t3t2t1t4t2t0t6t2 = yx−2t5t0t6t5t0t1t2t3 =⇒ Mt0t3t2t1t4t2t0t6t2 = Mt1t2t3 ∈ [012]

(since {N(t0t1t2)
n|n ∈ N} and yx−2t5t0t6t5t0 ∈M),

t0t3t2t1t4t2t0t6t0 = t0t2t3t2t0t1t4t1t2 =⇒ Mt0t3t2t1t4t2t0t6t0 = Mt1t4t1t2 ∈ [0301]

(since {N(t0t3t0t1)
n|n ∈ N} and t0t2t3t2t0 ∈M).

Mt0t3t4N

Continuing with the double coset Mt0t3t4N we find the single coset stabilizer is trivial.

However, the relation

t0t3t4 = x2t2t0t1t2t0t2t6t5

=⇒ Mt0t3t4 = Mt2t6t5 since x2t2t0t1t2t0 ∈M .

Then M(t0t3t4)
(0,2)(3,6)(4,5) = Mt2t6t5.

But Mt0t6t5 = Mt0t3t4 =⇒ (0, 2)(3, 6)(4, 5) ∈ N (034)

since M(t0t3t4)
(0,2)(3,6)(4,5) = Mt2t6t5

=⇒ N (034) ≥
〈
(0, 2)(3, 6)(4, 5)

〉
.

Since
∣∣N (034)

∣∣ = 2, the number of single cosets in [034] is

∣∣N∣∣∣∣N(034)
∣∣ = 14

2 = 7. The orbits

of N (034) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{1}, {0, 2}, {3, 6}, {4, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t4 of the double coset Mt0t3t4N . We have:

Mt0t3t4t4 = Mt0t3 ∈ [03],

Mt0t3t4t1 ∈ [0341],

Mt0t3t4t0 ∈ [0340],

t0t3t4t6 = xt1t3t4t3t1t4t2t5 =⇒ Mt0t3t4t6 = Mt4t2t5 ∈ [026]

(since {N(t0t2t6)
n|n ∈ N} and xt1t3t4t3t1 ∈M).
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The new double cosets have single coset representatives Mt0t3t4t1N and

Mt0t3t4t0N , we represent them as [0341] and [0340], respectively.

Mt0t3t4t1N

Continuing with the double coset Mt0t3t4t1N we find the single coset stabilizer is trivial.

However, the relation

t0t3t4t1 = x2t2t0t1t2t0t2t6t5t1

=⇒ Mt0t3t4t1 = Mt2t6t5t1 since x2t2t0t1t2t0 ∈M .

Then M(t0t3t4t1)
(0,2)(3,6)(4,5) = Mt2t6t5t1.

But Mt0t6t5t1 = Mt0t3t4t1 =⇒ (0, 2)(3, 6)(4, 5) ∈ N (0341)

since M(t0t3t4t1)
(0,2)(3,6)(4,5) = Mt2t6t5t1

=⇒ N (0341) ≥
〈
(0, 2)(3, 6)(4, 5)

〉
.

Since
∣∣N (0341)

∣∣ = 2, the number of single cosets in [0341] is

∣∣N∣∣∣∣N(0341)
∣∣ = 14

2 = 7. The

orbits of N (0341) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{1}, {0, 2}, {3, 6}, {4, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t4t1 of the double coset Mt0t3t4t1N . We have:

Mt0t3t4t1t1 = Mt0t3t4 ∈ [034],

t0t3t4t1t3 = yxt3t2t6 =⇒ Mt0t3t4t1t3 = Mt3t2t6 ∈ [014]

= {N(t0t1t4)
n|n ∈ N},

t0t3t4t1t4 = x−2t6t2t3t0 =⇒ Mt0t3t4t1t4 = Mt6t2t3t0 ∈ [0341]

= {N(t0t3t4t1)
n|n ∈ N},

Mt0t3t4t1t0 ∈ [03410].

The new double coset have single coset representative Mt0t3t4t1t0N , we rep-

resent it as [03410], respectively.

Mt0t3t4t1t0N

Continuing with the double coset Mt0t3t4t1t0N , we find the coset stabiliser N (03410) =

N03410 =
〈
e
〉
. Only e will fix 0, 1, 3, and 4. Hence the number of single cosets in [03410]

is

∣∣N∣∣∣∣N(03410)
∣∣ = 14

1 = 14. The orbits of N (03410) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset
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representative Mt0t3t4t1t0 of the double coset Mt0t3t4t1t0N . We have:

Mt0t3t4t1t0t0 = Mt0t3t4t1 ∈ [0341],

t0t3t4t1t0t1 = yx3t5t1t2t5t4 =⇒ Mt0t3t4t1t0t1 = Mt5t1t2t5t4 ∈ [03406],

t0t3t4t1t0t2 = yx−2t5t0t6t5t0t2t3t0t4

=⇒ Mt0t3t4t1t0t2 = Mt2t3t0t4 ∈ [0152],

t0t3t4t1t0t3 = yx−2t5t0t6t5t0t0t6t4 =⇒ Mt0t3t4t1t0t3 = Mt0t6t4 ∈ [013],

t0t3t4t1t0t4 = yxt0t3t4t1t0 =⇒ Mt0t3t4t1t0t4 = Mt0t3t4t1t0 ∈ [03410],

t0t3t4t1t0t5 = x4t2t0t1t2t0t2t4t6 =⇒ Mt0t3t4t1t0t5 = Mt2t4t6 ∈ [024],

t0t3t4t1t0t6 = x3t2t0t1t2t0t0t3t0t2t3

=⇒ Mt0t3t4t1t0t6 = Mt0t3t0t2t3 ∈ [03023].

Mt0t3t4t0N

Continuing with the double coset Mt0t3t4t0N , we find the coset stabiliser N (0340) =

N0340 =
〈
e
〉
. Only e will fix 0, 3, and 4. Hence the number of single cosets in [0340] is∣∣N∣∣∣∣N(0340)

∣∣ = 14
1 = 14. The orbits of N (0340) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t3t4t0 of the double coset Mt0t3t4t0N . We have:

Mt0t3t4t0t0 = Mt0t3t4 ∈ [034],

t0t3t4t0t1 = t0t5t4t5t0t4t5t6 =⇒ Mt0t3t4t0t1 = Mt4t5t6 ∈ [012]

(since {N(t0t1t2)
n|n ∈ N} and t0t5t4t5t0 ∈M),

t0t3t4t0t2 = x−2t6t3t6t4t5 =⇒ Mt0t3t4t0t2 = Mt6t3t6t4t5 ∈ [03021]

= {N(t0t3t0t2t1)
n|n ∈ N},

t0t3t4t0t3 = x2t0t2t3t2t0t3t1t4 =⇒ Mt0t3t4t0t3 = Mt3t1t4 ∈ [026]

(since {N(t0t2t6)
n|n ∈ N} and x2t0t2t3t2t0 ∈M),
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t0t3t4t0t4 = x3yt0t4t5t6t3t0 =⇒ Mt0t3t4t0t4 = Mt0t4t5t6t3t0 ∈ [032142]

= {N(t0t3t2t1t4t2)
n|n ∈ N},

t0t3t4t0t5 = yt0t3t4t0 =⇒ Mt0t3t4t0t5 = Mt0t3t4t0 ∈ [0340]

= {N(t0t3t4t0)
n|n ∈ N},

Mt0t3t4t0t6 ∈ [03406].

The new double coset have single coset representative Mt0t3t4t0t6N , we represent it as

[03406], respectively.

Mt0t3t4t0t6N

Continuing with the double coset Mt0t3t4t0t6N , we find the coset stabilizer N (03406) =

N03406 =
〈
e
〉
. Only e will fix 0, 3, 4, and 6. Hence the number of single cosets in [03406]

is

∣∣N∣∣∣∣N(03406)
∣∣ = 14

1 = 14. The orbits of N (03406) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t3t4t0t6 of the double coset Mt0t3t4t0t6N . We have:

Mt0t3t4t0t6t6 = Mt0t3t4t0 ∈ [0340],

t0t3t4t0t6t1 = xt0t5t4t5t0t0t6t3 =⇒ Mt0t3t4t0t6t1 = Mt0t6t3 ∈ [014]

(since {N(t0t1t4)
n|n ∈ N} and xt0t5t4t5t0 ∈M),

t0t3t4t0t6t2 = x4t2t0t1t2t0t3t1t5 =⇒ Mt0t3t4t0t6t2 = Mt3t1t5 ∈ [025]

(since {N(t0t2t5)
n|n ∈ N} and x4t2t0t1t2t0 ∈M),

t0t3t4t0t6t3 = yt2t5t6t3t2 =⇒ Mt0t3t4t0t6t3 = Mt2t5t6t3t2 ∈ [03410]

= {N(t0t3t4t1t0)
n|n ∈ N},

t0t3t4t0t6t4 = t0t2t3t2t0t6t1t3 =⇒ Mt0t3t4t0t6t4 = Mt6t1t3 ∈ [024]

(since {N(t0t2t4)
n|n ∈ N} and t0t2t3t2t0 ∈M),

t0t3t4t0t6t5 = x−2t6t0t6 =⇒ Mt0t3t4t0t6t5 = Mt6t0t6 ∈ [010]

= {N(t0t1t0)
n|n ∈ N},

t0t3t4t0t6t0 = x2yt0t4t0t6 =⇒ Mt0t3t4t0t6t0 = Mt0t4t0t6 ∈ [0301]

= {N(t0t3t0t1)
n|n ∈ N}.

Mt0t3t0N
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Continuing with the double coset Mt0t3t0N we find the single coset stabilizer is trivial.

However, the relation

t0t3t0 = t5t2t5

=⇒ Mt0t3t0 = Mt5t2t5.

Then M(t0t3t0)
(0,5)(2,3)(1,4) = Mt5t2t5.

But Mt5t2t5 = Mt0t3t0 =⇒ (0, 5)(2, 3)(1, 4) ∈ N (030)

since M(t0t3t0)
(0,5)(2,3)(1,4) = Mt5t2t5

=⇒ N (030) ≥
〈
(0, 5)(2, 3)(1, 4)

〉
.

Since
∣∣N (030)

∣∣ = 2, the number of single cosets in [030] is

∣∣N∣∣∣∣N(030)
∣∣ = 14

2 = 7. The orbits

of N (030) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{6}, {0, 5}, {2, 3}, {1, 4}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t0 of the double coset Mt0t3t0N . We have:

Mt0t3t0t0 = Mt0t3 ∈ [03],

Mt0t3t0t1 ∈ [0301],

Mt0t3t0t2 ∈ [0302],

t0t3t0t6 = x−1t5t0t6t5t0t0t3t0 =⇒ Mt0t3t0t6 = Mt0t3t0 ∈ [030]

(since {N(t0t3t0)
n|n ∈ N} and x−1t5t0t6t5t0 ∈M).

The new double cosets have single coset representatives Mt0t3t0t1N and Mt0t3t0t2N ,

we represent them as [0301] and [0302], respectively.

Mt0t3t0t1N

Continuing with the double coset Mt0t3t0t1N , we find the coset stabiliser N (0301) =

N0301 =
〈
e
〉
. Only e will fix 0, 1, and 3. Hence the number of single cosets in [0301] is∣∣N∣∣∣∣N(0301)

∣∣ = 14
1 = 14. The orbits of N (0301) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t3t0t1 of the double coset Mt0t3t0t1N . We have:
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Mt0t3t0t1t1 = Mt0t3t0 ∈ [030],

t0t3t0t1t2 = yx2t6t2t1t0 =⇒ Mt0t3t0t1t2 = Mt6t2t1t0 ∈ [0321]

= {N(t0t3t2t1)
n|n ∈ N},

t0t3t0t1t3 = yt6t4t0 =⇒ Mt0t3t0t1t3 = Mt6t4t0 ∈ [026]

= {N(t0t2t6)
n|n ∈ N},

t0t3t0t1t4 = x−2t5t0t6t5t0t0t3t2t3 =⇒ Mt0t3t0t1t4 = Mt0t3t2t3 ∈ [0323]

(since {N(t0t3t2t3)
n|n ∈ N} and x−2t5t0t6t5t0 ∈M),

t0t3t0t1t5 = x2t4t6t1 =⇒ Mt0t3t0t1t5 = Mt4t6t1 ∈ [024]

= {N(t0t2t4)
n|n ∈ N},

t0t3t0t1t6 = x2t0t2t3t2t0t6t2t1t0t3t1t6t5

=⇒ Mt0t3t0t1t6 = Mt6t2t1t0t3t1t6t5 ∈ [03214206]

(since {N(t0t3t2t1t4t2t0t6)
n|n ∈ N} and x2t0t2t3t2t0 ∈M),

t0t3t0t1t0 = yx2t0t4t3t0t1 =⇒ Mt0t3t0t1t0 = Mt0t4t3t0t1 ∈ [03406]

= {N(t0t3t4t0t6)
n|n ∈ N}.

Mt0t3t0t2N

Continuing with the double coset Mt0t3t0t2N we find the single coset stabilizer is trivial.

However, the relation

t0t3t0t2 = x−2t6t3t6t4

=⇒ Mt0t3t0t2 = Mt6t3t6t4.

Then M(t0t3t0t2)
(0,6)(2,4)(1,5) = Mt3t6t3t4.

But Mt3t6t3t4 = Mt0t3t0t2 =⇒ (0, 6)(2, 4)(1, 5) ∈ N (0302)

since M(t0t3t0t2)
(0,6)(2,4)(1,5) = Mt3t6t3t4

=⇒ N (0302) ≥
〈
(0, 6)(2, 4)(1, 5)

〉
.

Since
∣∣N (0302)

∣∣ = 2, the number of single cosets in [0302] is

∣∣N∣∣∣∣N(0302)
∣∣ = 14

2 = 7. The

orbits of N (0302) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{3}, {0, 6}, {2, 4}, {1, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-
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tative Mt0t3t0t2 of the double coset Mt0t3t0t2N . We have:

Mt0t3t0t2t2 = Mt0t3t0 ∈ [030],

Mt0t3t0t2t1 ∈ [03021],

Mt0t3t0t2t3 ∈ [03023],

t0t3t0t2t0 = t5t0t4 =⇒ Mt0t3t0t2t0 = Mt5t0t4 ∈ [026]

= {N(t0t2t6)
n|n ∈ N}.

The new double cosets have single coset representativesMt0t3t0t2t1N andMt0t3t0t2t3N ,

we represent them as [03021] and [03023], respectively.

Mt0t3t0t2t1N

Continuing with the double coset Mt0t3t0t2t1N , we find the coset stabiliser N (03021) =

N03021 =
〈
e
〉
. Only e will fix 0, 1, 2, and 3. Hence the number of single cosets in [03021]

is

∣∣N∣∣∣∣N(03021)
∣∣ = 14

1 = 14. The orbits of N (03021) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}}.
We now take an element from each orbit and multiply on the right by the single coset

representative Mt0t3t0t2t1 of the double coset Mt0t3t0t2t1N . We have:

Mt0t3t0t2t1t1 = Mt0t3t0t2 ∈ [0302],

t0t3t0t2t1t2 = x−1t1t2t4 =⇒ Mt0t3t0t2t1t2 = Mt1t2t4 ∈ [013]

= {N(t0t1t3)
n|n ∈ N},

t0t3t0t2t1t3 = x4t2t0t1t2t0t4t0t6t5t1 =⇒ Mt0t3t0t2t1t3 = Mt4t0t6t5t1 ∈ [03214]

(since {N(t0t3t2t1t4)
n|n ∈ N} and x4t2t0t1t2t0 ∈M),

t0t3t0t2t1t4 = x−2t6t3t2t6 =⇒ Mt0t3t0t2t1t4 = Mt6t3t2t6 ∈ [0340]

= {N(t0t3t4t0)
n|n ∈ N},

t0t3t0t2t1t5 = x2yt3t6t5t6 =⇒ Mt0t3t0t2t1t5 = Mt3t6t5t6 ∈ [0323]

= {N(t0t3t2t3)
n|n ∈ N},

Mt0t3t0t2t1t6 ∈ [030216],
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t0t3t0t2t1t0 = x−3t1t3t1 =⇒ Mt0t3t0t2t1t0 = Mt1t3t1 ∈ [020]

= {N(t0t2t0)
n|n ∈ N},

The new double coset have single coset representative Mt0t3t0t2t1t6N , we represent it

as [030216], respectively.

Mt0t3t0t2t1t6N

Continuing with the double coset Mt0t3t0t2t1t6N we find the single coset stabilizer is

trivial. However, the relation

t0t3t0t2t1t6 = x3t2t0t1t2t0t4t1t4t2t3t5

=⇒ Mt0t3t0t2t1t6 = Mt4t1t4t2t3t5 since x3t2t0t1t2t0 ∈M .

Then M(t0t3t0t2t1t6)
(0,4)(3,1)(5,6) = Mt4t1t4t2t3t5.

But Mt4t1t4t2t3t5 = Mt0t3t0t2t1t6 =⇒ (0, 4)(3, 1)(5, 6) ∈ N (030216)

since M(t0t3t0t2t1t6)
(0,4)(3,1)(5,6) = Mt4t1t4t2t3t5

=⇒ N (030216) ≥
〈
(0, 4)(3, 1)(5, 6)

〉
.

Since
∣∣N (030216)

∣∣ = 2, the number of single cosets in [030216] is

∣∣N∣∣∣∣N(030216)
∣∣ = 14

2 = 7.

The orbits of N (030216) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{2}, {0, 4}, {3, 1}, {5, 6}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t0t2t1t6 of the double coset Mt0t3t0t2t1t6N . We have:

Mt0t3t0t2t1t6t6 = Mt0t3t0t2t1 ∈ [03021],

t0t3t0t2t1t6t2 = yx2t0t3t0t2t1t6 =⇒ Mt0t3t0t2t1t6t2 = Mt0t3t0t2t1t6 ∈ [030216]

= {N(t0t3t0t2t1t6)
n|n ∈ N},

t0t3t0t2t1t6t3 = x−2t4t6t2 =⇒ Mt0t3t0t2t1t6t3 = Mt4t6t2 ∈ [025]

= {N(t0t2t5)
n|n ∈ N},

t0t3t0t2t1t6t0 = x3t2t0t1t2t0t2t3t5 =⇒ Mt0t3t0t2t1t6t0 = Mt2t3t5 ∈ [013]

(since {N(t0t1t3)
n|n ∈ N} and x3t2t0t1t2t0 ∈M).

Mt0t3t0t2t3N

Continuing with the double coset Mt0t3t0t2t3N we find the single coset stabilizer is
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trivial. However, the relation

t0t3t0t2t3 = x−2t6t3t6t4t3

=⇒ Mt0t3t0t2t3 = Mt6t3t6t4t3.

Then M(t0t3t0t2t3)
(0,6)(2,4)(1,5) = Mt6t3t6t4t3.

But Mt6t3t6t4t3 = Mt0t3t0t2t3 =⇒ (0, 6)(2, 4)(1, 5) ∈ N (03023)

since M(t0t3t0t2t3)
(0,6)(2,4)(1,5) = Mt3t6t6t4t3

=⇒ N (03023) ≥
〈
(0, 6)(2, 4)(1, 5)

〉
.

Since
∣∣N (03023)

∣∣ = 2, the number of single cosets in [03023] is

∣∣N∣∣∣∣N(03023)
∣∣ = 14

2 = 7. The

orbits of N (03023) on {t0, t1, t2, t3, t4, t5, t6} are:

O = {{3}, {0, 6}, {2, 4}, {1, 5}}.
Take an element from each orbit and multiply on the right by the single coset represen-

tative Mt0t3t0t2t3 of the double coset Mt0t3t0t2t3N . We have:

Mt0t3t0t2t3t3 = Mt0t3t0t2 ∈ [0302],

t0t3t0t2t3t1 = x−3t3t4t3 =⇒ Mt0t3t0t2t3t1 = Mt3t4t3 ∈ [010]

= {N(t0t1t0)
n|n ∈ N},

t0t3t0t2t3t4 = xyt4t3t2 =⇒ Mt0t3t0t2t3t4 = Mt4t3t2 ∈ [012]

= {N(t0t1t2)
n|n ∈ N},

t0t3t0t2t3t0 = x−1t5t0t6t5t0t6t3t2t5t6 =⇒ Mt0t3t0t2t3t0 = Mt6t3t2t5t6 ∈ [03410]

(since {N(t0t3t4t1t0)
n|n ∈ N} and x−1t5t0t6t5t0 ∈M).

We have completed the double coset enumeration since the set of right cosets is closed

under right multiplication, hence, the index of M in G is 351. We conclude:

G = MeN ∪Mt0N ∪Mt0t1N ∪Mt0t2N ∪Mt0t3N ∪Mt0t1t0N ∪Mt0t1t2N ∪
Mt0t1t3N ∪Mt0t1t4N ∪Mt0t1t5N ∪Mt0t1t5t2N ∪Mt0t2t4N ∪Mt0t2t5N ∪Mt0t2t6N ∪
Mt0t2t0N ∪Mt0t3t2N ∪Mt0t3t2t1N ∪Mt0t3t2t3N ∪Mt0t3t2t1t4N ∪Mt0t3t2t1t4t2N ∪
Mt0t3t2t1t4t2t0N ∪Mt0t3t2t1t4t2t0t6N ∪Mt0t3t4N

∪Mt0t3t4t1N ∪Mt0t3t4t1t0N ∪Mt0t3t4t0N ∪Mt0t3t4t0t6N ∪Mt0t3t0N ∪Mt0t3t0t1N ∪
Mt0t3t0t2N ∪Mt0t3t0t2t1N ∪Mt0t3t0t2t1t6N ∪Mt0t3t0t2t3N , where

G =
2∗7 : 2·D14

(xytxt)3, (xt)7
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|G| ≤ |N | + |N |
N(0) + |N |

N(01) + |N |
N(02) + |N |

N(03) + |N |
N(010) + |N |

N(012) + |N |
N(013) + |N |

N(014) + |N |
N(015) +

|N |
N(0152) + |N |

N(024) + |N |
N(025) + |N |

N(026) + |N |
N(020) + |N |

N(032) + |N |
N(0321) + |N |

N(0323) + |N |
N(03214) + |N |

N(032142)

+ |N |
N(0321420) + |N |

N(03214206) + |N |
N(034) + |N |

N(0341) + |N |
N(03410) + |N |

N(0340) + |N |
N(03406) + |N |

N(030) + |N |
N(0301) +

|N |
N(0302) + |N |

N(03021) + |N |
N(030216) + |N |

N(03023) × |M |
|G| ≤ (1 + 7 + 14 + 14 + 14 + 14 + 14 + 14 + 14 + 7 + 14 + 14 + 14 + 14 + 14 + 7 + 7

+14 + 7 + 7 + 7 + 7 + 7 + 7 + 14 + 14 + 14 + 7 + 14 + 7 + 14 + 7 + 7)× 28

|G| ≤ 351× 28

|G| ≤ 9828.

A Cayley diagram that summarizes the above information is given on the next page.

Figure 4.1: Cayley Diagram of L2(27) over M = 2·D14



119

4.2 Iwasawa’s Lemma to Prove L2(27) over M = 2·D14 is

Simple

Again, we use Iwasawa’s lemma and the transitive action of G on the set of

single cosets to prove G ∼= L2(27) over M = 2·D14 is a simple group. Iwasawa’s lemma

has three sufficient conditions that we must satisfied:

(1) G acts on X faithfully and primitively

(2) G is perfect (G = G′)

(3) There exist x ∈ X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

Proof. 4.2.1 G = L2(27) over M = 2·D14 acts on X Faithfully

Let G acts on X = {M,Mt0N,Mt0t1N,Mt0t2N,Mt0t3N, . . . ,Mt0t3t0t2t3N},
where X is a transitive G-set of degree 351. G acts on X implies there exist homomor-

phism

f : G −→ S351 (|X| = 351).

By First Isomorphic Theorem we have:

G/kerf ∼= f(G).

If kerf = 1 then G ∼= f(G). Only elements of N fix N implies G1 = N . Since X is

transitive G− set of degree 351, we have:

|G| = 351× |G1|

= 351× |M |

= 351× 28

= 9828

=⇒ |G| = 9828.

From Cayley diagram, |G| ≤ 9828. However, from above |G| = 9828 implying ker(f) =

1. Since kerf = 1 then G acts faithfully on X.
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4.2.2 G = L2(27) over M = 2·D14 acts on X Primitively

Since G = L2(27) is transitive on |X| = 351, if B is a nontrivial block then

we may assume that M ∈ B. However, |B| must divide |X| = 351. The only nontrivial

blocks must be of size 3, 9, 13, 27, 39, or 117. Note if Bt0 ∈ B then B = X. So B is a

trivial block. By inspection, we can see from the Cayley diagram that we cannot create

a nontrivial block of size 3,9,13,27,39, or 117. Thus, G acts primitively on X.

4.2.3 G = L2(27) over M = 2·D14 is Perfect

.

Next we want to show that G = G′. Since G =< N, t >, we have that N ≤ G′.
Now D14 ≤ G =⇒ D14

′ ≤ G′. The commutators subgroup of D14 is

D14
′ =< (1, 2, 3, 4, 5, 6, 0) >=< x >

= {e, x, x2, x3, x4, x5, x6} ≤ G′.
Consider the relations obtained through the double coset enumeration, previously given.

t0t2t0t4 = xt6t4t2 =⇒ x = t0t2t0t4t2t4t6,

t0t2t0t3 = yt4t3t4 =⇒ y = t0t2t0t3t4t3t4.

NowD14 ≤ G =⇒ D14
′ ≤ G′. D14

′ =< (1, 2, 3, 4, 5, 6, 0) >=< x >= {e, x, x2, x3, x4, x5, x6} ≤
G′. Note G =< x, y, t >=< t1, t2, t3, t4, t5, t6, t0 > . Our goal is to show that one of the

t′is ∈ G′, then we can conjugate by < x, y > to obtain all the t′is in G′. Consider, the

relation:

x = t0t2t0t4t2t4t6

= t0t2t0t2t2t4t2t4t6

= [t0, t2][t2, t4]t6 ∈ G′

We see that t6 ∈ G′. So G′ ≥< x, t6 >=< t1, t2, t3, t4, t5, t6, t0 >= G. But G ≥ G′. We

conclude that G = G′ and G is perfect.

4.2.4 Conjugates of a Normal Abelian K

Generate G = L2(27) over M = 2·D14

Now we require x ∈ X and a normal abelian subgroup K of Gx,-the point

stabilizer of x in G, such that the conjugates of K in G generate G.
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Now G1 = M = 2·D14 possesses a normal abelian subgroup K =< x > . Since x ∈
K =⇒ x−3, x−1 ∈ K. Now we have the following relations:

x−3 = t0t3t0t2t1t0t1t3t1 ∈ K and

x−1 = t0t3t0t2t1t2t4t2t1 ∈ K =⇒ x = t1t2t4t2t1t2t0t3t0 ∈ K.

Now we multiply x−3 by x:

x−3x = x−2 = t0t3t0t2t1t0t1t3t1t1t2t4t2t1t2t0t3t0 ∈ K.

We conjugate both sides by t0t3t0t2t1 :

(x−2)t0t3t0t2t1 = (t0t3t0t2t1t0t1t3t2t4t2t1t2t0t3t0)
t0t3t0t2t1 ∈ KG

t1t2t0t3t0x
−2t0t3t0t2t1 = t1t2t0t3t0t0t3t0t2t1t0t1t3t2t4t2t1t2t0t3t0t0t3t0t2t1

x−2t6t0t5t1t5t0t3t0t2t1 = t0t1t3t2t4t2 ∈ KG

Thus, t0t1t3t2t4t2 ∈ KG. (4.1)

Consider the relation:

x = t0t2t4t2t6t4t6 ∈ K

(x)t0 = (t0t2t4t2t6t4t6)
t0 ∈ KG

t0xt0 = t0t0t2t4t2t6t4t6t0

xt1t0 = t2t4t2t6t4t6t0 ∈ KG

Thus, t2t4t2t6t4t6t0 ∈ KG. (4.2)

Now we multiply (4.1) and (4.2):

x−2t6t0t5t1t5t0t3t0t2t1xt1t0 = t0t1t3t2t4t2t2t4t2t6t4t6t0 ∈ KG

x−1t0t1t6t2t6t1t4t1t3t2t1t0 = t0t1t3t6t4t6t0 ∈ KG

(x−1t0t1t6t2t6t1t4t1t3t2t1t0)
t0 = (t0t1t3t6t4t6t0)

t0 ∈ KG

t0x
−1t0t1t6t2t6t1t4t1t3t2t1t0t0 = t0t0t1t3t6t4t6t0t0 ∈ KG

x−1t6t0t1t6t2t6t1t4t1t3t2t1 = t1t3t6t4t6 ∈ KG
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Thus, t1t3t6t4t6 ∈ KG. (4.3)

Consider the relations:

x3 = t0t3t2t3t1t3t6t4 ∈ K =⇒ x−3 = t4t6t3t1t3t2t3t0 ∈ K and

x3 = t0t3t2t3t5t1t3t4 ∈ K.

Now,

e = x3x−3 = t0t3t2t3t5t1t3t4t4t6t3t1t3t2t3t0 ∈ K
=⇒ e = t0t3t2t3t5t1t3t6t3t1t3t2t3t0 ∈ K

(e)t0t3t2t3 = (t0t3t2t3t5t1t3t6t3t1t3t2t3t0)
t0t3t2t3 ∈ KG

t3t2t3t0et0t3t2t3 = t3t2t3t0t0t3t2t3t5t1t3t6t3t1t3t2t3t0t0t3t2t3

e = t5t1t3t6t3t1 ∈ KG

Thus, t5t1t3t6t3t1 ∈ KG. (4.4)

Next, we multiply (4.3) & (4.4):

x−1t6t0t1t6t2t6t1t4t1t3t2t1 = t1t3t6t4t6t5t1t3t6t3t1 ∈ K

(x−1t6t0t1t6t2t6t1t4t1t3t2t1)
t1t3t6 = (t1t3t6t4t6t5t1t3t6t3t1)

t1t3t6 ∈ KG

t6t3t1x
−1t6t0t1t6t2t6t1t4t1t3t2t1t1t3t6 = t6t3t1t1t3t6t4t6t5t1t3t6t3t1t1t3t6 ∈ KG

x−1t5t2t0t6t0t1t6t2t6t1t4t1t3t2t1t1t3t6 = t4t6t5t1t3 ∈ KG

Thus, t4t6t5t1t3 ∈ KG. (4.5)

Consider the relations:

x = t0t2t4t2t6t4t6 ∈ K and

x = t0t2t4t6t4t1t6 ∈ K =⇒ x−1 = t6t1t4t6t4t2t0 ∈ K.
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Now, we multiply both relation:

xx−1 = e = t0t2t4t2t6t4t6t6t1t4t6t4t2t0 ∈ K

e = t0t2t4t2t6t4t1t4t6t2t0 ∈ K

(e)t0t2t4 = (t0t2t4t2t6t4t1t4t6t4t2t0)
t0t2t4 ∈ KG

t4t2t0et0t2t4 = t4t2t0t0t2t4t2t6t4t1t4t6t4t2t0t0t2t4 ∈ KG

e = t2t6t4t1t4t6 ∈ KG

(e)t2t6 = (t2t6t4t1t4t6)
t2t6 ∈ KG

t6t2et2t6 = t6t2t2t6t4t1t4t6t2t6 ∈ KG

e = t4t1t4t6t2t6 ∈ KG

Thus, t4t1t4t6t2t6 ∈ KG. (4.6)

Consider the relation:

x−2 = t0t2t4t1t4t3t6t3 ∈ K

(x−2)t0t2 = (t0t2t4t1t4t3t6t3)
t0t2 ∈ KG

t2t0x
−2t0t2 = t2t0t0t2t4t1t4t3t6t3t0t2 ∈ KG

x−2t0t5t0t2 = t4t1t4t3t6t3t0t2 ∈ KG

=⇒ t4t1t4t3t6t3t0t2 ∈ KG

=⇒ (t4t1t4t3t6t3t0t2)
−1 ∈ KG

So,

t2t0t3t6t3t4t1t4 ∈ KG. (4.7)

Now, we multiply (4.6) & (4.7):

et2t0t5t0x
2 = t4t1t4t6t2t6t2t0t3t6t3t4t1t4 ∈ K

(x2t4t2t0t2)
t4t1t4 = (t4t1t4t6t2t6t2t0t3t6t3t4t1t4)

t4t1t4 ∈ KG

t4t1t4x
2t4t2t0t2t4t1t4 = t4t1t4t4t1t4t6t2t6t2t0t3t6t3t4t1t4t4t1t4 ∈ KG

x2t6t3t6t4t2t0t2t4t1t4 = t6t2t6t2t0t3t6t3 ∈ KG
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(x2t6t3t6t4t2t0t2t4t1t4)
t3t6t3 = (t6t2t6t2t0t3t6t3)

t3t6t3 ∈ KG

t3t6t3x
2t6t3t6t4t2t0t2t4t1t4t3t6t3 = t3t6t3t6t2t6t2t0t3t6t3t3t6t3 ∈ KG

x2t5t1t5t6t3t6t4t2t0t2t4t1t4t3t6t3 = t3t6t3t6t2t6t2t0 ∈ KG

Thus, t3t6t3t6t2t6t2t0 ∈ KG. (4.8)

Consider the relation

x−3 = t0t2t6t4t6t5t6t3 ∈ K. (4.9)

Now, we multiply (4.9) & (4.8):

x−3x2t5t1t5t6t3t6t4t2t0t2t4t1t4t3t6t3 = t0t2t6t4t6t5t6t3t3t6t3t6t2t6t2t0 ∈ K
=⇒ x−1t5t1t5t6t3t6t4t2t0t2t4t1t4t3t6t3 = t0t2t6t4t6t5t3t6t2t6t2t0 ∈ K

(x−1t5t1t5t6t3t6t4t2t0t2t4t1t4t3t6t3)
t0t2t6 = (t0t2t6t4t6t5t3t6t2t6t2t0)

t0t2t6 ∈ KG

=⇒ t6t2t0x
−1t5t1t5t6t3t6t4t2t0t2t4t1t4t3t6t3t0t2t6

= t6t2t0t0t2t6t4t6t5t3t6t2t6t2t0t0t2t6 ∈ KG

=⇒ x−1t5t1t6t5t1t5t6t3t6t4t2t0t2t4t1t4t3t6t3t0t2t6 = t4t6t5t3t6t2 ∈ KG.

So the inverse

t2t6t3t5t6t4 ∈ KG (4.10)

Now, we multiply (4.5) & (4.10):

t4t6t5t1t3t2t6t3t5t6t4 ∈ K.

Next, we conjugate by t4t6t5:

(t4t6t5t1t3t2t6t3t5t6t4)
t4t6t5 = t5t6t4t4t6t5t1t3t2t6t3t5t6t4t4t6t5 ∈ KG

= t1t3t2t6t3 ∈ KG.

Now, we conjugate t1t3t2t6t3 by t1 :

(t1t3t2t6t3)
t1 = t1t1t3t2t6t3t1 ∈ KG

Thus, t3t2t6t3t1 ∈ KG (4.11)

Now, we need to multiply (4.11) & (4.3):

t3t2t6t3t1t1t3t6t4t6 = t3t2t4t6 ∈ K.
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Then

(t3t2t4t6)
t3 = t3t3t2t4t6t3 ∈ KG

Thus, t2t4t6t3 ∈ KG. (4.12)

Now we multiply (4.1) & (4.12) to obtain the following:

t0t1t3t2t4t2t2t4t6t3 = t0t1t3t2t6t3 ∈ K (4.13)

By (4.11) we have the following:

t3t2t6t3t1 ∈ K

(t3t2t6t3t1)
t1 = t1t3t2t6t3t1t1

= t1t3t2t6t3 ∈ KG.

So, (t1t3t2t6t
−1
3 ∈ KG

=⇒ t3t6t2t3t1 ∈ KG (4.14)

Finally, we multiply (4.13) & (4.14) to obtain the following:

t0t1t3t2t6t3t3t6t2t3t1 = t0 ∈ K
Thus, t0 ∈ K

=⇒ tG0 ∈ KG

=⇒ KG ≤ {t0, tx0 , tx
2

0 , t
x3
0 , t

x4
0 , t

x5
0 , t

x6
0 }

=⇒ KG ≤ {t0, tx0 , tx
2

0 , t
x3
0 , t

x4
0 , t

x5
0 , t

x6
0 } =< t0, t1, t2, t3t4, t5, t6 >= G.

Hence, the conjugates of K generate G. Therefore, by Iwasawa’s lemma, G ∼= L2(27) is

simple.
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Chapter 5

Extension Problem

5.1 Extension Problem Preliminaries

Definition 5.1. (Extension). G is an extension of K by Q if G has a normal

subgroup K1
∼= K such that

G/K1
∼= Q

where G is a product of KQ, G = KQ. [Rot12]

Definition 5.2. (Normal series). A chain of subgroups of G, G0 = G ⊇ G1 ⊇
G2 · · · ⊇ Gn = 1 such that

Gi DG ∀ i, 1 ≤ i ≤ n
is called a normal series of G. [Rot12]

Definition 5.3. (Subnormal series). A chain of subgroups of G, G0 = G ⊇ G1 ⊇
G2 · · · ⊇ Gn = 1 such that

Gi+1 DGi ∀ i, 0 ≤ i ≤ n− 1

is called a subnormal series of G. [Rot12]

Definition 5.4. (Composition series). A composition series is a normals series

G0 = G ⊇ G1 ⊇ G2 · · · ⊇ Gn = 1

in which, for all i, either Gi+1 is a maximal normals subgroup of Gi or Gi+1 = Gi.

[Rot12]

Definition 5.5. (Composition factors). If G has a composition series, them the

factor groups of this series is called the composition factors of G. [Rot12]
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Note 5.6. Any two composition series of a group are isomorphic.

Note 5.7. The composition factors G0/G, G1/G2, · · · Gn−1/Gn of the composition

series G0 = G ⊇ G1 ⊇ G2 · · · ⊇ Gn−1 ⊇ Gn are simple (A group G is simple if G and 1

are the only normal subgroups of G).

There are four possible extensions a group can have namely:

Definition 5.8. (Direct Product). A group G is direct product of N by H if N

and H are both normal in G, denoted by G = N ×H. [Rot12]

Definition 5.9. (Semi-direct Product). A group G is a semi-direct product of N

by H if there exist a complement H1
∼= H and N is normal in G, denoted by G = N : H.

[Rot12]

Definition 5.10. (Central Extension). A group G is a central extension of N by

H if G is perfect, normal, and is also the center of G, denoted G = N ·H. [Rot12]

Definition 5.11. (Mixed Extension). A group G is a mixed extension if N is an

abelian group which is not the center of G, denoted by G = N · : H. [Rot12]

5.2 Mixed Extension (G ∼=
(
26· : L2(7)

)
: 2)

From an original progenitor we have found the following group

G =< x, y, t|x7, y2, (xy)2, t2, (t, y), (xttx)8, (ttxt)3 > .

We will now prove that
(
26
·

: L2(7)
)

: 2 is the homomorphic image of the progenitor

mentioned above.

Proof. Using MAGMA we get the following composition factors.

> CompositionFactors(G1);
G
| Cyclic(2)

*
| A(1, 7) = L(2, 7)

*
| Cyclic(2)

*
| Cyclic(2)

*
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| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1

Therefore we have the following composition series,

G ⊇ G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊇ G5 ⊇ G6 ⊇ G7 ⊇ 1,

where G = (G1/G2) · (G2/G3) · (G3/G4) · (G4/G5) · (G5/G6) · (G6/G7) · (G7/1)

= C2 · L2(7) · C2 · C2 · C2 · C2 · C2 · C2. The normal lattice of G is

> NL:=NormalLattice(G1);
> NL;
Normal subgroup lattice
-----------------------

[4] Order 21504 Length 1 Maximal Subgroups: 3
---
[3] Order 10752 Length 1 Maximal Subgroups: 2
---
[2] Order 64 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

By inspection we find that the center of this group is order 1 which indicates

that we do not have a central extension. Next we find that the minimal normal subgroup

of G is of order 64. Since the minimal normal subgroup of G is an abelian p-group, it

must be elementary abelian. Thus, NL[2] is isomorphic to C2×C2×C2×C2×C2×C2 =

(C2)
6.

We now haveG2 is isomorphic to (C2)
6. Thus, G1/G2 = L2(7) givesG1/(C2)

6 =

L2(7). So G1 = (C2)
6 ·L2(7), with (C2)

6= NL[2] normal in G2. Note that |L2(7)| = 168.

Therefore, we must find a normal subgroup of order 168. By inspection we look at the

normal lattice of NL[3] to see that it does not have a normal subgroup of order 168.

Since N = (C2)
6 is an abelian group and is not the center of G thus G1 is a mixed

extension. Thus, NL[3] is isomorphic to 26
·
: L2(7).
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Next, we will show that G1 = (C2)
6· : L2(7).

Let N = (C2)
6. We note that N= < k, l,m, n, o, p >=< k > × < l > × < m > × <

n > × < o > × < p > where k, l,m, n, o is of order 2. A presentation for N is

< k, l,m, n, o, p|k2, l2,m2, n2, o2, p2, (k, l), (k,m), (k, n), (k, o), (k, p), (l,m), (l, n), (l, o)

(l, p), (m,n), (m, o), (m, p), (n, o), (n, p), (o, p) > .

Now we have to write elements of G1/N = L2(7) in terms of the generators of N. Note

a presentation for L2(7) is

< r, s|r2, s4, (rs)7, (r, s)4, (rs2)3 > .

We now find the set of right coset of N in G2. Let s and t denoted by NT [i] where i

goes from 1 to 168. There is an isomorphism from G1/N to L2(7). In this isomorphism

NT [2] 7→ r and NT [3] 7→ s.

Since the permutations are very large, permutation group acting on a set of cardinality

10750, we use the Schreier System in Magma to find the actions. Note in Magma we

must store T [2] = NT [2], T [3] = NT [3], and T [3]4 = N(T [3])4 so they do not change

everytime.

> N:=sub<G1|A,B,C,D,E,F>;
> NN<k,l,m,n,o,p>:=Group<k,l,m,n,o,p|kˆ2,lˆ2,mˆ2,
nˆ2,oˆ2,pˆ2,(k,l),(k,m),(k,n),(k,o),(k,p),(l,m),(l,n),
(l,o),(l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p)>;
> #NN;
64
> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
> ArrayP:=[Id(N): i in [1..64]];
> for i in [2..64] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
for|for> if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
for|for> if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
for|for> if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
for|for> if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
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We let

NT [2] = r and NT [3] = s.

Note that (NT [3])4 = N(T [3])4 = NT34 = N . We run the following loops to convert

the elements of L2(7) in terms of the generators of N .

> for i in [1..64] do if ArrayP[i] eq T34 then Sch[i];
end if; end for;
l * m * p
> for i in [1..64] do if ArrayP[i] eq (T2,T3)ˆ4 then Sch[i];
end if; end for;
k * l * m * o * p

So (T [3])4 ∈ N ; that is;

s4 = lmp.

Also (NT [2], NT [3])4 = N(T [2], T [3])4 = N. So (T [2], T [3])4 ∈ N ; that is;

(r, s)4 = klmop.

Thus, the elements of L2(7) in terms of the generators of N are:

s4 = lmp and (r, s)4 = klmop.

Now we need to conjugate the generators of N by the generators of L2(7) to determine

the resulting elements of N . We use the following loops to find the resulting elements

of N .

> for i in [1..64] do if ArrayP[i] eq AˆT2
then Sch[i]; I[2]:=Sch[i]; end if; end for;
k * m * o
> for i in [1..64] do if ArrayP[i] eq BˆT2
then Sch[i]; I[3]:=Sch[i]; end if; end for;
n * o * p
> for i in [1..64] do if ArrayP[i] eq CˆT2
then Sch[i]; I[4]:=Sch[i]; end if; end for;
m
> for i in [1..64] do if ArrayP[i] eq DˆT2
then Sch[i]; I[5]:=Sch[i]; end if; end for;
m * n * o
> for i in [1..64] do if ArrayP[i] eq EˆT2
then Sch[i]; I[6]:=Sch[i]; end if; end for;
o
> for i in [1..64] do if ArrayP[i] eq FˆT2
then Sch[i]; I[7]:=Sch[i]; end if; end for;
l * m * n
> for i in [1..64] do if ArrayP[i] eq AˆT3
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then Sch[i]; I[8]:=Sch[i]; end if; end for;
k * m * n * o * p
> for i in [1..64] do if ArrayP[i] eq BˆT3
then Sch[i]; I[9]:=Sch[i]; end if; end for;
n * p
> for i in [1..64] do if ArrayP[i] eq CˆT3
then Sch[i]; I[10]:=Sch[i]; end if;end for;
k
> for i in [1..64] do if ArrayP[i] eq DˆT3
then Sch[i]; I[11]:=Sch[i]; end if;end for;
k * l * n * p
> for i in [1..64] do if ArrayP[i] eq EˆT3
then Sch[i]; I[12]:=Sch[i]; end if;end for;
p
> for i in [1..64] do if ArrayP[i] eq FˆT3
then Sch[i]; I[13]:=Sch[i]; end if;end for;

k * l * m * n

Thus, kr = kmo, lr = nop,mr = m,nr = mno, or = o, pr = lmn, ks = kmnop, ls =

np,ms = k, ns = klnp, os = p, and ps = klmn. In addition, we check in Magma the

presentation of G1:

> NN<k,l,m,n,o,p,r,s>:=Group<k,l,m,n,o,p,r,s|kˆ2,lˆ2,mˆ2,
nˆ2,oˆ2,pˆ2,(k,l),(k,m),(k,n),(k,o),(k,p),(l,m), (l,n),(l,o),
(l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p),rˆ2,
sˆ4=l*m*p,(r*s)ˆ7,(r,s)ˆ4=k*l*m*o*p,(r*sˆ2)ˆ3,
kˆr=k*m*o,lˆr=n*o*p,mˆr=m,
nˆr=m*n*o,oˆr=o,pˆr=l*m*n,kˆs=k*m*n*o*p,
lˆs=n*p,mˆs=k,nˆs=k*l*n*p,oˆs=p,pˆs=k*l*m*n>;
> #NN;
10752
> f1,g,k1:=CosetAction(NN,sub<NN|Id(NN)>);
> s,t:=IsIsomorphic(NL[3],g);
> s;
true

Thus, we have G1 is isomorphic to 26
·
: L2(7). Hence, G/G1 = C2 gives G/26

·
: L2(7) =

C2. So G = 26
·
: L2(7) · C2, with 26

·
: L2(7) =NL[3] normal in G1.

Note C2 is not a normal subgroup of G, therefore, G cannot be a direct product. By

further inspection we find that it must be a semi-direct product. So we find an element

of order 2 in G but outside NL[3], say g. So we run the following loop:

> for g in G1 do if Order(g) eq 2 and sub<G1|NL[3],g> eq G1
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then Z:=g;break; end if; end for;
> G1 eq sub<G1|NL[3],Z>;
true

Now we use the following loops in Magma to find the action of g on the generators

k,l,m,n,o,p,r,s of NL[3].

> for i in [1..10752] do if ArrayP[i] eq AˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k
> for i in [1..10752] do if ArrayP[i] eq BˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * s * o * sˆ-1
> for i in [1..10752] do if ArrayP[i] eq CˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
n * o
> for i in [1..10752] do if ArrayP[i] eq DˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * m * o * p
> for i in [1..10752] do if ArrayP[i] eq EˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * o * p
> for i in [1..10752] do if ArrayP[i] eq FˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
p
> for i in [1..10752] do if ArrayP[i] eq T2ˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * r * n * s * r * sˆ-1 * r
> for i in [1..10752] do if ArrayP[i] eq T3ˆZ
then Sch[i]; I[1]:=Sch[i]; end if; end for;
r * s * r * k * s * r * sˆ-1 * r * s * r

Thus we have:

g2, kg = ln, lg = sos−1,mg = ns, ng = ksos−1,

og = kmnp, pg = ps, rg = ksrlsrs−1rs−1, sg = rksrsrs−1r.

Hence, we have the following presentation:

H1 < k, l,m, n, o, p, r, s, g >:= Group < k, l,m, n, o, p, r, s, g|k2, l2,m2, n2, o2, p2,

(k, l), (k,m), (k, n), (k, o), (k, p), (l,m), (l, n), (l, o), (l, p), (m,n), (m, o), (m, p), (n, o),

(n, p), (o, p), r2, s4 = lmp, (rs)7, (r, s)4 = klmop, (rs2)3, kr = kmo, lr = nop,

mr = m,nr = mno, or = o, pr = lmn, ks = kmnop, ls = np,ms = k, ns = klnp,

os = p, ps = klmn, g2, kg = ln, lg = sos−1,mg = ns, ng = ksos−1,
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og = kmnp, pg = ps, rg = ksrlsrs−1rs−1, sg = rksrsrs−1r > .

Finally, we check if it is isomorphic to G1.

> #H1;
21504
> f,h1,k1:=CosetAction(H1,sub<H1|Id(H1)>);
> s:=IsIsomorphic(h1,G1);
> s;
true

Thus we have solved the extension problem for this group and we can conclude that

G =
(
26
·
: L2(7)

)
: 2

∼=< k, l,m, n, o, p, r, s, g|k2, l2,m2, n2, o2, p2, (k, l), (k,m), (k, n), (k, o), (k, p), (l,m),

(l, n), (l, o), (l, p), (m,n), (m, o), (m, p), (n, o), (n, p), (o, p), r2, s4 = lmp, (rs)7,

(r, s)4 = klmop, (rs2)3, kr = kmo, lr = nop,mr = m,nr = mno, or = o, pr = lmn,

ks = kmnop, ls = np,ms = k, ns = klnp, os = p, ps = klmn, g2, kg = ln, lg = sos−1,

mg = ns, ng = ksos−1, og = kmnp, pg = ps, rg = ksrlsrs−1rs−1, sg = rksrsrs−1r > .
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Chapter 6

Double Coset Enumeration of M11

over S4

6.1 G Factor by a Subgroup of Order 12

Consider the group G ∼=< a, b, c, d, t|a2, b3, c4, d4, b−1aba, c−1ac−1, d−1ad−1, bc−1b−1d−1,
c−1d−1cd−1, d−1c−1b−1cb, t2, (t, b), (ctc)6, (abtcb

−1
)6, (ab−1t)3 > . Note N = S4, where

a ∼ (1, 5)(2, 8)(3, 6)(4, 7), b ∼ (1, 2, 4)(5, 8, 7), c ∼ (1, 4, 5, 7)(2, 6, 8, 3) and

d ∼ (1, 3, 5, 6)(2, 4, 8, 7). Now we look at the composition factors of this group:

G
| M11

*
| Cyclic(3)

*
| Cyclic(2)

*
| Cyclic(2)
1

Note the center of G is of order 1. Now we look at the normal lattice of G :

Normal subgroup lattice
-----------------------

[6] Order 95040 Length 1 Maximal Subgroups: 3 5
---
[5] Order 31680 Length 1 Maximal Subgroups: 2 4



135

---
[4] Order 7920 Length 1 Maximal Subgroups: 1
---
[3] Order 12 Length 1 Maximal Subgroups: 2
---
[2] Order 4 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

We can see clearly that [3] is of order 12, therefore we are going to factor G

by a subgroup of order 12, to obatin G ∼= M11 :

>q,ff:=quo<G1|NL[3]>;
>CompositionFactors(q);

G
| M11
1

Now, we convert the action of the generators of [3] into word, to do so, we use the

Shcreier System:

x:=NL[3].1;
y:=NL[3].2;
z:=NL[3].3;
A:=f(a);
B:=f(b);
C:=f(c);
D:=f(d);
E:=f(t);
N:=sub<G1|A,B,C,D,E>;
e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=6;l:=0;m:=6;n:=3;o:=0;
NN<a,b,c,d,t> := Group<a,b,c,d,t |aˆ2,bˆ3,cˆ4,dˆ4, bˆ-1*a*b*a,
cˆ-1*a*cˆ-1, dˆ-1*a*dˆ-1, b*cˆ-1*bˆ-1*dˆ-1,
cˆ-1*dˆ-1*c*dˆ-1, dˆ-1*cˆ-1*bˆ-1*c*b,tˆ2,(t,b),(c*tˆc)ˆ6,

(a*b*tˆ(c*bˆ-1))ˆ6,(a*bˆ-1*t)ˆ3,>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=Bˆ-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
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if Eltseq(Sch[i])[j] eq -3 then P[j]:=Cˆ-1; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
if Eltseq(Sch[i])[j] eq -4 then P[j]:=Dˆ-1; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
>for i in [1..#N] do if ArrayP[i] eq x then print Sch[i];
end if; end for;
b * d * t * cˆ-1 * t * c * dˆ-1 * t * d * t * cˆ-1 * t

>for i in [1..#N] do if ArrayP[i] eq y then print Sch[i];
end if; end for;
b * d * t * d * t * c * t * dˆ-1 * t * bˆ-1 * c * t * c

* t * d * t * cˆ-1 * t
>for i in [1..#N] do if ArrayP[i] eq z then print Sch[i];
end if; end for;
b * c * t * c * t * dˆ-1 * t * c * t * dˆ-1 * t * dˆ-1

* t * bˆ-1 * cˆ-1 * t * cˆ-1 * t

Thus, by factoring the group of G by a subgroup of order 12, we obtain the following:

G ∼=< a, b, c, d, t|a2, b3, c4, d4, b−1aba, c−1ac−1, d−1ad−1, bc−1b−1d−1,
c−1d−1cd−1, d−1c−1b−1cb, t2, (t, b), (ctc)6, (abtcb

−1
)6, (ab−1t)3, bdtc−1tcd−1tdtc−1t,

bdtdtctd−1tb−1ctctdtc−1t, bctctd−1tctd−1td−1tb−1c−1tc−1t >∼= M11.

6.2 Construction of M11 over S4

We start by factoring the progenitor 2∗8 : S4 by the relations

(ctc)6, (abtcb
−1

)6, (ab−1t)3,

bdtc−1tcd−1tdtc−1t, bdtdtctd−1tb−1ctctdtc−1t, bctctd−1tctd−1td−1tb−1c−1tc−1t

to obtain the homomorphic image G ∼= M11, where

a ∼ (1, 5)(2, 8)(3, 6)(4, 7), b ∼ (1, 2, 4)(5, 8, 7), c ∼ (1, 4, 5, 7)(2, 6, 8, 3),

d ∼ (1, 3, 5, 6)(2, 4, 8, 7), and t ∼ t0 ∼ t3. The index of S4 in G equals 330. Now we

expand the relations:

1 = (ctc)6 = (ct2)
6 = c6tc

5

2 t
c4
2 t

c3
2 t

c2
2 t

c
2t2 = c2t6t2t8t3t2t6

=⇒ c2t6t2 = t2t6t8t0,
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1 = (abtcb
−1

)6 = (abt1)
6 = (ab)6t

(ab)5

1 t
(ab)4

1 t
(ab)3

1 t
(ab)2

1 t
(ab)
1 t1 = t7t2t5t4t8t1

=⇒ t7t2 = t1t8t4t5,

1 = (ab−1t)3 = (ab−1)3t
(ab−1)2

0 t0(ab
−1)t0 = at0t6t0

=⇒ at0 = t0t6,

1 = bdtc−1tcd−1tdtc−1t = bdc−1t8t0t4t8t3

=⇒ bdc−1t8t0 = t3t8t4,

1 = bdtdtctd−1tb−1ctctdtc−1t = dt8t1t0t7t1t4t8t0

=⇒ dt8t1t0 = t0t8t4t1,

1 = bctctd−1tctd−1td−1tb−1c−1tc−1t = c−1t4t2t1t0t7t6t8t0

=⇒ c−1t4t2t1t0 = t0t8t6t7.

We want to find the index of N in G. To do this, we perform a manual double

coset enumeration of G over N . We take G and express it as a union of double cosets

NgN , where g is an element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ... where gi’s words

in ti’s.

We need to find all double cosets [w] and find out how many single cosets each

of them contains, where [w] = [Nwn|n ∈ N ]. The double cosets enumeration is complete

when the set of right cosets obtained is closed under right multiplication by ti’s. We

will identify, for each [w], the double coset to which Nwti belongs for one symmetric

generator ti from each orbit of the coset stabilising group N (w)

NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the

single coset, namely N . Since N is transitive on {t1, t2, t0, t4, t5, t6, t7t8}, the orbit of N

on {t1, t2, t0, t4, t5, t6, t7t8} is:

O = {{1, 2, 0, 4, 5, 6, 7, 8}}.
We choose t0 as our symmetric generator from O and find to which double coset Nt0

belongs. Nt0N will be a new double coset, denote it [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find the coset stabiliser

N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now,

N (0) = N0 =< (1, 2, 4)(5, 8, 7) >

so the number of the single cosets in Nt0N is |N |
|N(0)| = 24

3 = 8. Furthermore, the orbits
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of N (0) on {t1, t2, t0, t4, t5, t6, t7t8} are:

O = {{1, 2, 4}, {5, 8, 7}, {0}, {6}}.
We take t1, t5, t0, and t6 from each orbit, respectively and to see which double coset

Nt0t1, Nt0t5, Nt0t0, and Nt0t6 belong to. We have:

Nt0t1 ∈ [01]

Nt0t5 ∈ [05]

Nt0t0 = N ∈ [∗]
at0t6 = t0 =⇒ Nt0t6 = Nt0 ∈ [0]

The new double cosets have single coset representatives Nt0t1 and Nt0t5, which we

represent them as [01] and [05] respectively.

Nt0t1N

Consider Nt0t1N is a new double coset. We determine how many single cosets are in

the double coset. However, N (01) = N01 =< e >. Only identity (e) will fix 0 and 1.

Hence the number of single cosets living in Nt0t1N is |N |
|N(01)| = 24

1 = 24. The orbits of

N (01) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1ti belongs to.

We have:

Nt0t1t1 ∈ [0]

Nt0t1t2 ∈ [012]

Nt0t1t0 ∈ [010]

Nt0t1t4 ∈ [014]

t0t1t5 = at6t1 =⇒ Nt0t1t5 = Nt6t1 ∈ [05]

Nt0t1t6 ∈ [016]

t0t1t7 = bd−1t1t0 =⇒ Nt0t1t7 = Nt1t0 ∈ [05]

Nt0t1t8 ∈ [018].

The new double coset are Nt0t1t2N , Nt0t1t0N , Nt0t1t4N , Nt0t1t6N and Nt0t1t8N ,

which we represent them as [012], [010], [014], [016], and [018] respectively.

Nt0t5N

Consider Nt0t5N is a new double coset. We determine how many single cosets are in
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the double coset. However, N (05) = N05 =< e >. Only identity (e) will fix 0 and 5.

Hence the number of single cosets living in Nt0t5N is |N |
|N(05)| = 24

1 = 24. The orbits of

N (05) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t5ti belongs to.

We have:

t0t5t1 = at6t5 =⇒ Nt0t5t1 = Nt6t5 ∈ [01]

t0t5t2 = bct5t0 =⇒ Nt0t5t2 = Nt5t0 ∈ [01]

Nt0t5t0 ∈ [050]

t0t5t4 = d−1b−1t7t5t6 =⇒ Nt0t5t4 = Nt7t5t6 ∈ [018]

Nt0t5t5 = Nt0 ∈ [0]

t0t5t6 = at5t0t1 =⇒ Nt0t5t6 = Nt5t0t1 ∈ [016]

t0t5t7 = t4t1t6 =⇒ Nt0t1t7 = Nt4t1t6 ∈ [012]

t0t5t8 = bc−1t1t6t2 =⇒ Nt0t5t8 = Nt1t6t2 ∈ [014].

The new double coset is Nt0t5t0, denoted by [050].

Nt0t1t0N

Consider Nt0t1t0N is a new double coset. We determine how many single cosets are in

the double coset. However, N (010) = N010 =< e >. Only identity (e) will fix 0 and 1.

Hence the number of single cosets living in Nt0t1t0N is |N |
|N(010)| = 24

1 = 24. The orbits

of N (010) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t0ti belongs

to. We have:

Nt0t1t0t1 ∈ [0101]

Nt0t1t0t2 ∈ [0102]

Nt0t1t0t0 ∈ [01]

Nt0t1t0t4 ∈ [0104]
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t0t1t0t5 = t6t1t6 =⇒ Nt0t1t0t5 = Nt6t1t6 ∈ [050]

t0t1t0t6 = at6t5t0 =⇒ Nt0t1t0t6 = Nt6t5t0 ∈ [016]

t0t1t0t7 = bd−1t1t3t1 =⇒ Nt0t1t0t7 = Nt1t3t1 ∈ [050]

Nt0t1t0t8 ∈ [0108].

The new double coset are Nt0t1t0t1N , Nt0t1t0t2N , Nt0t1t0t4N , and Nt0t1t0t8N , which

we represent them as [0101], [0102], [0104], and [0108] respectively.

Nt0t1t2N

Consider Nt0t1t2N is a new double coset. We determine how many single cosets are in

the double coset. However, N (012) = N012 =< e >. Only identity (e) will fix 0,1, and 2.

Hence the number of single cosets living in Nt0t1t2N is |N |
|N(012)| = 24

1 = 24. The orbits

of N (012) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t2ti belongs

to. We have:

t0t1t2t1 = bct5t0t5t8 =⇒ Nt0t1t2t1 = Nt5t0t5t8 ∈ [0104]

Nt0t1t2t2 ∈ [01]

t0t1t2t0 = b−1dt0t1t8 =⇒ Nt0t1t2t0 = Nt0t1t8 ∈ [018]

t0t1t2t4 = b−1t0t2t1 =⇒ Nt0t1t2t4 = Nt0t2t1 ∈ [014]

t0t1t2t5 = bc−1t2t5t2t6 =⇒ Nt0t1t2t5 = Nt2t5t2t6 ∈ [0104]

t0t1t2t6 = t8t5 =⇒ Nt0t1t2t6 = Nt8t5 ∈ [05]

Nt0t1t2t7 ∈ [0127]

t0t1t2t8 = at0t5t2 =⇒ Nt0t1t2t8 = Nt0t5t2 ∈ [018].

The new double coset is Nt0t1t2t7N , denoted by [0127].

Nt0t1t4N

Consider Nt0t1t4N is a new double coset. We determine how many single cosets are in

the double coset. However, N (014) = N014 =< e >. Only identity (e) will fix 0,1, and 4.

Hence the number of single cosets living in Nt0t1t4N is |N |
|N(014)| = 24

1 = 24. The orbits

of N (014) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
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Take a representative ti from each orbit and see which double cosets Nt0t1t4ti belongs

to. We have:

t0t1t4t1 = t7t5t7t0 =⇒ Nt0t1t4t1 = Nt7t5t7t0 ∈ [0102]

t0t1t4t2 = bt0t4t1 =⇒ Nt0t1t4t2 = Nt0t4t1 ∈ [012]

t0t1t4t0 = bd−1t4t6t1 =⇒ Nt0t1t4t0 = Nt4t6t1 ∈ [014]

Nt0t1t4t4 ∈ [01]

t0t1t4t5 = db−1t5t4t3 =⇒ Nt0t1t4t5 = Nt5t4t3 ∈ [014]

t0t1t4t6 = bdt1t6t1t7 =⇒ Nt0t1t4t6 = Nt1t6t1t7 ∈ [0102]

t0t1t4t7 = d−1b−1t5t6 =⇒ Nt0t1t4t7 = Nt5t6 ∈ [05]

t0t1t4t8 = bat6t7t5t2 =⇒ Nt0t1t4t8 = Nt6t7t5t2 ∈ [0127].

Nt0t1t6N

Consider Nt0t1t6N is a new double coset. We determine how many single cosets are in

the double coset. However, N (016) = N016 =< e >. Only identity (e) will fix 0,1, and 6.

Hence the number of single cosets living in Nt0t1t6N is |N |
|N(016)| = 24

1 = 24. The orbits

of N (016) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t6ti belongs

to. We have:

t0t1t6t1 = t5t6t5 =⇒ Nt0t1t6t1 = Nt5t6t5 ∈ [050]

t0t1t6t2 = bc−1t6t5t0 =⇒ Nt0t1t6t2 = Nt6t5t0 ∈ [016]

t0t1t6t0 = at6t5t6 =⇒ Nt0t1t6t0 = Nt6t5t6 ∈ [010]

t0t1t6t4 = bd−1t6t7t1 =⇒ Nt0t1t6t4 = Nt6t7t1 ∈ [018]

t0t1t6t5 = at1t0 =⇒ Nt0t1t6t5 = Nt1t0 ∈ [05]

Nt0t1t6t6 ∈ [01]

t0t1t6t7 = t0t4t0t5 =⇒ Nt0t1t6t7 = Nt0t4t0t5 ∈ [0108]

t0t1t6t8 = cb−1t6t5t0 =⇒ Nt0t1t6t8 = Nt6t5t0 ∈ [016].

Nt0t1t8N

Consider Nt0t1t8N is a new double coset. We determine how many single cosets are in

the double coset. However, N (018) = N018 =< e >. Only identity (e) will fix 0,1, and 8.
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Hence the number of single cosets living in Nt0t1t8N is |N |
|N(018)| = 24

1 = 24. The orbits

of N (018) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t8ti belongs

to. We have:

t0t1t8t1 = cb−1t0t1t0t8 =⇒ Nt0t1t8t1 = Nt0t1t0t8 ∈ [0108]

t0t1t8t2 = at6t5t8 =⇒ Nt0t1t8t2 = Nt6t5t8 ∈ [012]

t0t1t8t0 = bct0t1t2 =⇒ Nt0t1t8t0 = Nt0t1t2 ∈ [012]

t0t1t8t4 = b−1ct8t7t6t5 =⇒ Nt0t1t8t4 = Nt8t7t6t5 ∈ [0187]

t0t1t8t5 = b−1dt6t8t0 =⇒ Nt0t1t8t5 = Nt6t8t0 ∈ [016]

t0t1t8t6 = bc−1t2t1 =⇒ Nt0t1t8t6 = Nt2t1 ∈ [05]

Nt0t1t8t7 ∈ [0187]

Nt0t1t8t8 ∈ [01].

The new double coset is Nt0t1t8t7N , denoted by [0187].

Nt0t5t0N

Consider Nt0t5t0N is a new double coset. We determine how many single cosets are in

the double coset. However, N (050) = N050 =< e >. Only identity (e) will fix 0, and 5.

Hence the number of single cosets living in Nt0t5t0N is |N |
|N(050)| = 24

1 = 24. The orbits

of N (050) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t5t0ti belongs

to. We have:

t0t5t0t1 = t6t5t6 =⇒ Nt0t5t0t1 = Nt6t5t6 ∈ [010]

t0t5t0t2 = b−1dt5t0t5 =⇒ Nt0t5t0t2 = Nt5t3t5 ∈ [010]

Nt0t5t0t0 ∈ [05]

t0t5t0t4 = at7t5t7t6 =⇒ Nt0t5t0t4 = Nt7t5t7t6 ∈ [0108]

t0t5t0t5 = at0t1t0t1 =⇒ Nt0t5t0t5 = Nt0t1t0t1 ∈ [0101]

t0t5t0t6 = t1t6t5 =⇒ Nt0t5t0t6 = Nt1t6t5 ∈ [016]
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t0t5t0t7 = db−1t4t1t4t6 =⇒ Nt0t5t0t7 = Nt4t1t4t6 ∈ [0102]

t0t5t0t8 = cb−1t1t6t1t2 =⇒ Nt0t5t0t8 = Nt1t6t1t2 ∈ [0104].

Nt0t1t0t1N

Consider Nt0t1t0t1N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0101) = N0101 =< e >. But Nt0t1t0t1 is not distinct.

We have Nt0t1t0t1 = Nt0t2t0t2 = Nt0t4t0t4. Thus, there exist {n ∈ N |N(t0t1t0t1)
n =

Nt0t2t0t2 = Nt0t4t0t4} such that

Nt0t1t0t
(1,2,4)(5,8,7)
1 = Nt0t2t0t2 =⇒ (1, 2, 4)(5, 8, 7) ∈ N (0101)

Nt0t2t0t
(1,2,4)(5,8,7)
2 = Nt0t4t0t4 =⇒ (1, 2, 4)(5, 8, 7) ∈ N (0101)

=⇒ Nt0t1t0t1 = Nt0t2t0t2 = Nt0t4t0t4.

Thus, (1, 2, 4)(5, 8, 7) ∈ N (0101). We conclude:

N (0101) ≥< (1, 2, 4)(5, 8, 7) >

so the number of the single cosets in Nt0t1t0t1N is |N |
|N(0101)| = 24

3 = 8. Furthermore, the

orbits of N (0101) on {t1, t2, t0, t4, t5, t6, t7t8} are:

O = {{1, 2, 4}, {5, 8, 7}, {0}, {6}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t0t1ti

belongs to. We have:

Nt0t1t0t1t1 ∈ [010]

t0t1t0t1t5 = at0t5t0 =⇒ Nt0t1t0t1t5 = Nt0t5t0 ∈ [050]

Nt0t1t0t1t0 ∈ [01010]

t0t1t0t1t6 = at0t1t0t1 =⇒ Nt0t1t0t1t6 = Nt0t1t0t1 ∈ [0101]

The new double coset is Nt0t1t0t1t0N , denoted by [01010].

Nt0t1t0t2N

Consider Nt0t1t0t2N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0102) = N0102 =< e >. Only identity (e) will fix 0,1,

and 2. Hence the number of single cosets living in Nt0t1t0t2N is |N |
|N(0102)| = 24

1 = 24.

The orbits of N (0102) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t0t2ti belongs
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to. We have:

t0t1t0t2t1 = cb−1t5t0t8 =⇒ Nt0t1t0t2t1 = Nt5t0t8 ∈ [014]

Nt0t1t0t2t2 ∈ [010]

t0t1t0t2t0 = bct0t1t0t8 =⇒ Nt0t1t0t2t0 = Nt0t1t0t8 ∈ [0108]

t0t1t0t2t4 = cd−1t0t2t0t1 =⇒ Nt0t1t0t2t4 = Nt0t2t0t1 ∈ [0104]

t0t1t0t2t5 = t2t5t6 =⇒ Nt0t1t0t2t5 = Nt2t5t6 ∈ [014]

t0t1t0t2t6 = bct8t5t8 =⇒ Nt0t1t0t2t6 = Nt8t5t8 ∈ [050]

t0t1t0t2t7 = bt5t3t7t2 =⇒ Nt0t1t0t2t7 = Nt5t3t7t2 ∈ [0187]

t0t1t0t2t8 = at6t5t6t2 =⇒ Nt0t1t0t2t8 = Nt6t5t6t2 ∈ [0108].

Nt0t1t0t4N

Consider Nt0t1t0t4N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0104) = N0104 =< e >. Only identity (e) will fix 0,1,

and 4. Hence the number of single cosets living in Nt0t1t0t4N is |N |
|N(0104)| = 24

1 = 24.

The orbits of N (0104) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t0t4ti belongs

to. We have:

t0t1t0t4t1 = d−1b−1t7t5t0 =⇒ Nt0t1t0t4t1 = Nt7t5t0 ∈ [012]

t0t1t0t4t2 = ct0t4t0t1 =⇒ Nt0t1t0t4t2 = Nt0t4t0t1 ∈ [0102]

t0t1t0t4t0 = t4t6t4t1 =⇒ Nt0t1t0t4t0 = Nt4t6t4t1 ∈ [0104]

Nt0t1t0t4t4 ∈ [010]

t0t1t0t4t5 = t5t4t5t3 =⇒ Nt0t1t0t4t5 = Nt5t4t5t3 ∈ [0104]

t0t1t0t4t6 = db−1t1t6t7 =⇒ Nt0t1t0t4t6 = Nt1t6t7 ∈ [012]

t0t1t0t4t7 = bdt5t6t5 =⇒ Nt0t1t0t4t7 = Nt5t6t5 ∈ [050]

t0t1t0t4t8 = db−1t7t2t5t6 =⇒ Nt0t1t0t4t8 = Nt7t2t5t6 ∈ [0187].

Nt0t1t0t8N

Consider Nt0t1t0t8N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0108) = N0108 =< e >. Only identity (e) will fix 0,1,

and 8. Hence the number of single cosets living in Nt0t1t0t8N is |N |
|N(0108)| = 24

1 = 24.
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The orbits of N (0108) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t0t8ti belongs

to. We have:

t0t1t0t8t1 = bc−1t0t1t8 =⇒ Nt0t1t0t8t1 = Nt0t1t8 ∈ [018]

t0t1t0t8t2 = at6t5t6t8 =⇒ Nt0t1t0t8t2 = Nt6t5t6t8 ∈ [0102]

t0t1t0t8t0 = b−1dt0t1t0t2 =⇒ Nt0t1t0t8t0 = Nt0t1t0t2 ∈ [0102]

t0t1t0t8t4 = db−1t7t2t5t6 =⇒ Nt0t1t0t8t4 = Nt7t2t5t6 ∈ [0127]

t0t1t0t8t5 = t0t2t6 =⇒ Nt0t1t0t8t5 = Nt0t2t6 ∈ [016]

t0t1t0t8t6 = at2t1t2 =⇒ Nt0t1t0t8t6 = Nt2t1t2 ∈ [050]

t0t1t0t8t7 = abt1t6t7t8 =⇒ Nt0t1t0t8t7 = Nt1t6t7t8 ∈ [0127]

Nt0t1t0t8t8 ∈ [010].

Nt0t1t2t7N

Consider Nt0t1t2t7N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0127) = N0127 =< e >. Only identity (e) will fix 0,1,7,

and 2. Hence the number of single cosets living in Nt0t1t2t7N is |N |
|N(0127)| = 24

1 = 24.

The orbits of N (0127) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t2t7ti belongs

to. We have:

t0t1t2t7t1 = at7t5t0t8 =⇒ Nt0t1t2t7t1 = Nt7t5t0t8 ∈ [0127]

t0t1t2t7t2 = b−1ct5t0t5t7 =⇒ Nt0t1t2t7t2 = Nt5t0t5t7 ∈ [0108]

t0t1t2t7t0 = d−1b−1t2t4t6t1 =⇒ Nt0t1t2t7t0 = Nt2t4t6t1 ∈ [0127]

t0t1t2t7t4 = b−1at6t8t5 =⇒ Nt0t1t2t7t4 = Nt6t8t5 ∈ [014]

t0t1t2t7t5 = at2t5t4t2 =⇒ Nt0t1t2t7t5 = Nt2t5t4t3 ∈ [0127]

t0t1t2t7t6 = cbt4t8t4t5 =⇒ Nt0t1t2t7t6 = Nt4t8t4t5 ∈ [0108]

Nt0t1t2t7t7 ∈ [012]

t0t1t2t7t8 = bat8t7t0t5 =⇒ Nt0t1t2t7t8 = Nt8t7t0t5 ∈ [0127].

Nt0t1t8t7N
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Consider Nt0t1t8t7N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0187) = N0187 =< e >. Only identity (e) will fix 0, 1,

7, and 8. Hence the number of single cosets living in Nt0t1t8t7N is |N |
|N(0187)| = 24

1 = 24.

The orbits of N (0187) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Nt0t1t8t7ti belongs

to. We have:

t0t1t8t7t1 = bct8t7t6t5 =⇒ Nt0t1t8t7t1 = Nt8t7t6t5 ∈ [0187]

t0t1t8t7t2 = b−1d−1t5t4t5t3 =⇒ Nt0t1t8t7t2 = Nt5t4t5t3 ∈ [0104]

t0t1t8t7t0 = bd−1t6t7t1t2 =⇒ Nt0t1t8t7t0 = Nt6t7t1t2 ∈ [0187]

t0t1t8t7t4 = b−1c−1t2t4t3t1 =⇒ Nt0t1t8t7t4 = Nt2t4t3t1 ∈ [0187]

t0t1t8t7t5 = bc−1t2t4t0 =⇒ Nt0t1t8t7t5 = Nt2t4t0 ∈ [018]

t0t1t8t7t6 = b−1dt6t8t4t1 =⇒ Nt0t1t8t7t6 = Nt6t8t4t1 ∈ [0187]

Nt0t1t8t7t7 ∈ [018]

Nt0t1t8t7t8 = b−1c−1t1t6t1t7 =⇒ t0t1t8t7t8 = Nt1t6t1t7 ∈ [0102].

Nt0t1t0t1t0N

Now Nt0t1t0t1t0N is indeed a new double coset. We determine how many single cosets

are in this double coset. We have N (01010) = N01010 =< e >. Nt0t1t0t1t0 has twenty

four names. We have the following:

Nt0t1t0t
(1,2,4)(5,8,7)
1 = Nt0t2t0t2t0 =⇒ (1, 2, 4)(5, 8, 7) ∈ N (01010)

Nt0t2t0t
(1,4,5,7)(2,6,8,0)
2 = Nt2t6t2t6t2 =⇒ (1, 4, 5, 7)(2, 6, 8, 0) ∈ N (01010)

Therefore, N (01010) = n ∈ N |N(01010)n = N(01010).

Thus, N (01010) ≥< (1, 2, 4)(5, 8, 7), (1, 4, 5, 7)(2, 6, 8, 0) > then N (01010) = N.

Hence |N (01010)| = 24, so the number of single cosets in N (01010) is |N |
|N(01010)| = 24

24 = 1.

The orbit of N (01010) on {1, 2, 0, 4, 5, 6, 7, 8} is {1, 2, 0, 4, 5, 6, 7, 8}. Take a representa-

tive from this orbit, say t0. Hence Nt0t1t0t1t0t0 ∈ [0101]. Therefore, eight symmetric

generators will go back to Nt0t1t0t1N .

We have completed the double coset enumeration since the set of right cosets

is closed under right multiplication, hence, the index of N in G is 330. We conclude:

G = N ∪ Nt0N ∪ Nt0t1N ∪ Nt0t5N ∪ Nt0t1t0N ∪ Nt0t1t2N ∪ Nt0t1t4N ∪



147

Nt0t1t6N∪Nt0t1t8N∪Nt0t5t0N∪Nt0t1t0t1N∪Nt0t1t0t2N∪Nt0t1t0t4N∪Nt0t1t0t8N∪
Nt0t1t2t7N ∪Nt0t1t8t7N ∪Nt0t1t0t1t0N , where

G ∼= 2∗8 : S4/(ct
c)6, (abtcb

−1
)6, (ab−1t)3, bdtc−1tcd−1tdtc−1t,

bdtdtctd−1tb−1ctctdtc−1t, bctctd−1tctd−1td−1tb−1c−1tc−1t

|G| ≤
(
|N |+ |N |

N(0) + |N |
N(01) + |N |

N(05) + |N |
N(010) + |N |

N(012) + |N |
N(014) + |N |

N(016) + |N |
N(018) +

|N |
N(050) + |N |

N(0101) + |N |
N(0102) + |N |

N(0104) + |N |
N(0108) + |N |

N(0127) + |N |
N(0187) + |N |

N(01010)

)
× |N |

|G| ≤ (1+8+24+24+24+24+24+24+24+24+8+24+24+24+24+24+1)×24

|G| ≤ 330× 24

|G| ≤ 7920.

A Cayley diagram that summarizes the above information is given below:

Figure 6.1: Cayley Diagram of M11 over S4
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Our goal is to apply Iwasawa’s lemma to prove that G ∼= M11 over S4 is

a simple group. However, by inspection, we can see from the Cayley diagram that

Iwasawa’s lemma fails since we have imprimitive blocks of size 2. Thus, G ∼= M11 over

S4 is not a simple group.

In the next section, we will look at the maximal subgroup of G ∼= M11 and

construct a Cayley diagram of M11 over M .

6.3 Construction of M11 over M = 2·S4

We start by factoring the progenitor 2∗8 : S4 by the relations

(ctc)6, (abtcb
−1

)6, (ab−1t)3,

bdtc−1tcd−1tdtc−1t, bdtdtctd−1tb−1ctctdtc−1t, bctctd−1tctd−1td−1tb−1c−1tc−1t

to obtain the homomorphic image G ∼= M11, where

a ∼ (1, 5)(2, 8)(3, 6)(4, 7), b ∼ (1, 2, 4)(5, 8, 7), c ∼ (1, 4, 5, 7)(2, 6, 8, 3),

d ∼ (1, 3, 5, 6)(2, 4, 8, 7), and t ∼ t0 ∼ t3. In the previous section, we expanded the above

relations.

Let M be the group generated by the control group N = S4 and dt0t5t0t5t0 =

d ∗ t ∗ d−1 ∗ t ∗ d ∗ t ∗ d−1 ∗ t ∗ d ∗ t. That is,

M =
〈
N, dt0t5t0t5t0

〉
, = 2·S4 where |M | = 48.

Then M is the maximal subgroup.

We decompose G into the double cosets MwN , where w is a word in t′is, via

double coset enumeration.

We proceed to do a manual double coset enumeration of G over M and N .

Denote [w] to be the double coset MwN , where w is a word in the t′is.

MeN

We begin with the double coset MeN , denote [∗]. This double coset contains only one

single coset, namely M . The single coset stabilizer of M is N , which is transitive on

{t1, t2, t0, t4, t5, t6, t7, t8} and therefore has a single orbit,

O = {{1, 2, 0, 4, 5, 6, 7, 8}}.
Take an element from O say t0 and multiply the single coset representative M by it to

obtain Mt0. This is a new double coset Mt0N , denote it [0].
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Mt0N

In order to find how many single cosets [0] contains, we must first find the coset stabiliser

N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now,

N (0) = N0 =< (1, 2, 4)(5, 8, 7) >

so the number of the single cosets in Mt0N is |N |
|N(0)| = 24

3 = 8. Furthermore, the orbits

of N (0) on {t1, t2, t0, t4, t5, t6, t7t8} are:

O = {{1, 2, 4}, {5, 8, 7}, {0}, {6}}.
We take t1, t5, t0, and t6 from each orbit, respectively and to see which double coset

Mt0t1,Mt0t5,Mt0t0, and Mt0t6 belong to. We have:

Mt0t1 ∈ [01],

Mt0t5 ∈ [05],

Mt0t0 = M ∈ [∗],

at0t6 = t0 =⇒ Mt0t6 = Mt0 ∈ [0].

The new double cosets have single coset representatives Mt0t1 and Mt0t5, which we

represent them as [01] and [05] respectively.

Mt0t1N

Consider Mt0t1N is a new double coset. We determine how many single cosets are in

the double coset. However, N (01) = N01 =< e >. Only identity (e) will fix 0 and 1.

Hence the number of single cosets living in Mt0t1N is |N |
|N(01)| = 24

1 = 24. The orbits of

N (01) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Mt0t1ti belongs

to. We have:

Mt0t1t1 ∈ [0],

Mt0t1t2 ∈ [012],

t0t1t0 = t0t1t0t1t0t0t1 =⇒ Mt0t1t0 = Mt0t1t0 ∈ [01],

Mt0t1t4 ∈ [014]

t0t1t5 = at6t1 =⇒ Mt0t1t5 = Mt6t1 ∈ [05] = {N(t0t5)
n|n ∈ N},

Mt0t1t6 ∈ [016],
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t0t1t7 = db−1t1t0 =⇒ Nt0t1t7 = Nt1t0 ∈ [05] = {N(t0t5)
n|n ∈ N},

Mt0t1t8 ∈ [018].

The new double coset are Mt0t1t2N , Mt0t1t4N , Mt0t1t6N and Mt0t1t8N , which we

represent them as [012], [014], [016], and [018] respectively.

Mt0t5N

Consider Mt0t5N is a new double coset. We determine how many single cosets are in

the double coset. However, N (05) = N05 =< e >. Only identity (e) will fix 0 and 5.

Hence the number of single cosets living in Mt0t5N is |N |
|N(05)| = 24

1 = 24. The orbits of

N (05) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Mt0t5ti belongs

to. We have:

t0t5t1 = at6t5 =⇒ Mt0t5t1 = Mt6t5 ∈ [01] = {N(t0t5)
n|n ∈ N},

t0t5t2 = bct5t0 =⇒ Mt0t5t2 = Mt5t0 ∈ [01] = {N(t0t5)
n|n ∈ N},

t0t5t0 = t0t5t0t5t0t0t5 =⇒ Mt0t5t0 = Mt0t5 ∈ [05]

(since {N(t0t5)
n|n ∈ N} and t0t5t0t5t0 ∈M),

t0t5t4 = d−1b−1t7t5t6 =⇒ Mt0t5t4 = Mt7t5t6 ∈ [018] = {N(t0t1t8)
n|n ∈ N},

Mt0t5t5 = Mt0 ∈ [0]

t0t5t6 = at5t0t1 =⇒ Mt0t5t6 = Mt5t0t1 ∈ [016] = {N(t0t1t6)
n|n ∈ N},

t0t5t7 = t4t1t6 =⇒ Mt0t1t7 = Mt4t1t6 ∈ [012] = {N(t0t1t2)
n|n ∈ N},

t0t5t8 = bc−1t1t6t2 =⇒ Mt0t5t8 = Mt1t6t2 ∈ [014] = {N(t0t1t4)
n|n ∈ N}.

Mt0t1t2N

Consider Mt0t1t2N is a new double coset. We determine how many single cosets are in

the double coset. However, N (012) = N012 =< e >. Only identity (e) will fix 0,1, and 2.

Hence the number of single cosets living in Mt0t1t2N is |N |
|N(012)| = 24

1 = 24. The orbits

of N (012) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Mt0t1t2ti belongs
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to. We have:

t0t1t2t1 = t0t2t0t2t0t5t0t8 =⇒ Mt0t1t2t1 = Mt0t5t8 ∈ [014]

(since {N(t0t1t4)
n|n ∈ N} and t0t2t0t2 ∈M),

Mt0t1t2t2 ∈ [01]

t0t1t2t0 = b−1dt0t1t8 =⇒ Mt0t1t2t0 = Mt0t1t8 ∈ [018] = {N(t0t1t8)
n|n ∈ N},

t0t1t2t4 = b−1t0t2t1 =⇒ Mt0t1t2t4 = Mt0t2t1 ∈ [014] = {N(t0t1t4)
n|n ∈ N},

t0t1t2t5 = t0t1t0t1t0t2t5t6 =⇒ Mt0t1t2t5 = Mt2t5t6 ∈ [014]

(since {N(t0t1t4)
n|n ∈ N} and t0t1t0t1t0 ∈M),

t0t1t2t6 = t8t5 =⇒ Mt0t1t2t6 = Mt8t5 ∈ [05] == {N(t0t5)
n|n ∈ N},

Mt0t1t2t7 ∈ [0127]

t0t1t2t8 = at0t5t2 =⇒ Mt0t1t2t8 = Mt0t5t2 ∈ [018] = {N(t0t1t8)
n|n ∈ N}.

The new double coset is Mt0t1t2t7N , denoted by [0127].

Mt0t1t4N

Consider Mt0t1t4N is a new double coset. We determine how many single cosets are in

the double coset. However, N (014) = N014 =< e >. Only identity (e) will fix 0,1, and 4.

Hence the number of single cosets living in Mt0t1t4N is |N |
|N(014)| = 24

1 = 24. The orbits

of N (014) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Mt0t1t4ti belongs

to. We have:

t0t1t4t1 = ct0t8t0t8t0t7t5t0 =⇒ Mt0t1t4t1 = Mt7t5t0 ∈ [012]

(since {N(t0t1t2)
n|n ∈ N} and ct0t8t0t8t0 ∈M),

t0t1t4t2 = bt0t4t1 =⇒ Mt0t1t4t2 = Mt0t4t1 ∈ [012] = {N(t0t1t2)
n|n ∈ N},

t0t1t4t0 = bd−1t4t6t1 =⇒ Mt0t1t4t0 = Mt4t6t1 ∈ [014]

Mt0t1t4t4 ∈ [01]

t0t1t4t5 = db−1t5t4t3 =⇒ Mt0t1t4t5 = Mt5t4t3 ∈ [014] = {N(t0t1t4)
n|n ∈ N},
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t0t1t4t6 = ct0t2t0t2t0t1t6t7 =⇒ Mt0t1t4t6 = Mt1t6t7 ∈ [012]

(since {N(t0t1t2)
n|n ∈ N} and ct0t2t0t2t0 ∈M),

t0t1t4t7 = d−1b−1t5t6 =⇒ Mt0t1t4t7 = Mt5t6 ∈ [05] = {N(t0t5)
n|n ∈ N},

t0t1t4t8 = bat6t7t5t2 =⇒ Mt0t1t4t8 = Mt6t7t5t2 ∈ [0127] = {N(t0t1t2t7)
n|n ∈ N}.

Mt0t1t6N

Consider Mt0t1t6N is a new double coset. We determine how many single cosets are in

the double coset. However,

Mt0t1t6 = Mt6t5t0

Then N(t0t1t0)
(1,5)(2,8)(0,6) = Nt6t5t1. But Nt6t5t1 = Nt0t1t6 =⇒ (1, 5)(2, 8)(0, 6) ∈

N (015) since N(t0t1t5)
(0,6)(1,5)(2,4) = Nt6t5t1

=⇒ N (015) ≥
〈
(1, 5)(2, 8)(0, 6)

〉
.

Hence the number of single cosets living in Mt0t1t6N is |N |
|N(016)| = 24

2 = 24. The orbits

of N (016) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1, 5}, {2, 8}, {0, 6}, {4, 7}}.
Take a representative ti from each orbit and see which double cosets Mt0t1t6ti belongs

to. We have:

t0t1t6t1 = t0t1t0t1t0t5t6 =⇒ Mt0t1t6t1 = Mt5t6 ∈ [05]

(since {N(t0t5)
n|n ∈ N} and t0t1t0t1t0 ∈M),

t0t1t6t2 = t0t8t0t8t0t0t6t1t6 =⇒ Mt0t1t6t2 = Mt0t1t6 ∈ [016]

(since {N(t0t1t6)
n|n ∈ N} and t0t8t0t8t0 ∈M),

t0t1t6t4 = bd−1t6t7t1 =⇒ Mt0t1t6t5 = t6t7t1 ∈ [018] = {N(t0t1t8)
n|n ∈ N},

Mt0t1t6t6 ∈ [01].

Mt0t1t8N

Consider Mt0t1t8N is a new double coset. We determine how many single cosets are in

the double coset. However, N (018) = N018 =< e >. Only identity (e) will fix 0,1, and 8.

Hence the number of single cosets living in Mt0t1t8N is |N |
|N(018)| = 24

1 = 24. The orbits

of N (018) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Mt0t1t8ti belongs



153

to. We have:

t0t1t8t1 = bct0t2t0t2t0t0t1t8 =⇒ Mt0t1t8t1 = Mt0t1t0t8 ∈ [018]

(since {N(t0t1t8)
n|n ∈ N} and bct0t2t0t2t0 ∈M),

t0t1t8t2 = at6t5t8 =⇒ Mt0t1t8t2 = Mt6t5t8 ∈ [012] = {N(t0t1t2)
n|n ∈ N},

t0t1t8t0 = bct0t1t2 =⇒ Mt0t1t8t0 = Mt0t1t2 ∈ [012] = {N(t0t1t2)
n|n ∈ N},

t0t1t8t4 = ct0t2t0t2t0t7t2t5t6 =⇒ Mt0t1t8t4 = Mt7t2t5t6 ∈ [0127]

(since {N(t0t1t2t7)
n|n ∈ N} and ct0t2t0t2t0 ∈M),

t0t1t8t5 = t0t1t0t1t0t0t2t6 =⇒ Mt0t1t8t5 = Mt0t2t6 ∈ [016]

(since {N(t0t1t6)
n|n ∈ N} and t0t1t0t1t0 ∈M),

t0t1t8t6 = bc−1t2t1 =⇒ Mt0t1t8t6 = Mt2t1 ∈ [05] = {N(t0t5)
n|n ∈ N},

t0t1t8t7 = bt0t8t0t8t0t1t6t7t8 =⇒ Mt0t1t8t7 = Mt1t6t7t8 ∈ [0127]

(since {N(t0t1t2t7)
n|n ∈ N} and bt0t8t0t8t0 ∈M),

Mt0t1t8t8 ∈ [01].

Mt0t1t2t7N

Consider Mt0t1t2t7N is a new double coset. We determine how many single cosets are

in the double coset. However, N (0127) = N0127 =< e >. Only identity (e) will fix 0,1,7,

and 2. Hence the number of single cosets living in Mt0t1t2t7N is |N |
|N(0127)| = 24

1 = 24.

The orbits of N (0127) on {t1, t2, t0, t4, t5, t6, t7, t8} are:

O = {{1}, {2}, {0}, {4}, {5}, {6}, {7}, {8}}.
Take a representative ti from each orbit and see which double cosets Mt0t1t2t7ti belongs

to. We have:

t0t1t2t7t1 = at7t5t0t8 =⇒ Mt0t1t2t7t1 = Mt7t5t0t8 ∈ [0127] = {N(t0t1t2t7)
n|n ∈ N},

t0t1t2t7t2 = bt0t2t0t2t0t5t0t7 =⇒ Mt0t1t2t7t2 = Mt5t0t7 ∈ [018]

(since {N(t0t1t8)
n|n ∈ N} and bt0t2t0t2t0 ∈M),

t0t1t2t7t0 = d−1b−1t2t4t6t1 =⇒ Mt0t1t2t7t0 = Mt2t4t6t1 ∈ [0127]

t0t1t2t7t4 = b−1at6t8t5 =⇒ Mt0t1t2t7t4 = Mt6t8t5 ∈ [014] = {N(t0t1t4)
n|n ∈ N},

t0t1t2t7t5 = at2t5t4t2 =⇒ Mt0t1t2t7t5 = Mt2t5t4t3 ∈ [0127] = {N(t0t1t2t7)
n|n ∈ N},



154

t0t1t2t7t6 = t0t8t0t8t0t4t8t5 =⇒ Mt0t1t2t7t6 = Mt4t8t5 ∈ [018]

(since {N(t0t1t8)
n|n ∈ N} and t0t8t0t8t0 ∈M),

Mt0t1t2t7t7 ∈ [012]

t0t1t2t7t8 = bat8t7t0t5 =⇒ Mt0t1t2t7t8 = Mt8t7t0t5 ∈ [0127] = {N(t0t1t2t7)
n|n ∈ N}.

We have completed the double coset enumeration since the set of right cosets

is closed under right multiplication, hence, the index of M in G is 165. We conclude:

G = MeN ∪Mt0N ∪Mt0t1N ∪Mt0t5N ∪Mt0t1t2N ∪Mt0t1t4N ∪Mt0t1t6N ∪
Mt0t1t8N ∪Mt0t1t2t7N, where

G ∼= 2∗8 : S4/(ct
c)6, (abtcb

−1
)6, (ab−1t)3, bdtc−1tcd−1tdtc−1t,

bdtdtctd−1tb−1ctctdtc−1t, bctctd−1tctd−1td−1tb−1c−1tc−1t

|G| ≤ |N |+ |N |
N(0) + |N |

N(01) + |N |
N(05) + |N |

N(012) + |N |
N(014) + |N |

N(016) + |N |
N(018) + |N |

N(0127) × |M |
|G| ≤ (1 + 8 + 24 + 24 + 24 + 12 + 24 + 24)× 28

|G| ≤ 165× 48

|G| ≤ 7920.

A Cayley diagram that summarizes the above information is given below:

Figure 6.2: Cayley Diagram of M11 over 2·S4
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6.4 Iwasawa’s Lemma to Prove M11 over M = 2·S4 is Simple

Again, we use Iwasawa’s lemma and the transitive action of G on the set of

single cosets to prove G ∼= M11 over M = 2·S4 is a simple group. Iwasawa’s lemma has

three sufficient conditions that we must satisfied:

(1) G acts on X faithfully and primitively

(2) G is perfect (G = G′)

(3) There exist x ∈ X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

Proof. 6.4.1 G = M11 over M = 2·S4 acts on X Faithfully

Let G acts on X = M,Mt0N,Mt0t1N,Mt0t5N,Mt0t1t2N,Mt0t1t4,Mt0t1t6,Mt0t1t8,

Mt0t1t2t7N, where X is a transitive G-set of degree 165. G acts on X implies there

exist homomorphism

f : G −→ S165 (|X| = 165).

By First Isomorphic Theorem we have:

G/kerf ∼= f(G).

If kerf = 1 then G ∼= f(G). Only elements of N fix N implies G1 = N . Since X is

transitive G− set of degree 165, we have:

|G| = 165× |G1|

= 165× |M |

= 165× 48

= 7920

=⇒ |G| = 7920.

From Cayley diagram, |G| ≤ 7920. However, from above |G| = 7920 implying ker(f) =

1. Since kerf = 1 then G acts faithfully on X.
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6.4.2 G = M11 over M = 2·S4 acts on X Primitively

Since G = M11 is transitive on |X| = 165, if B is a nontrivial block then we

may assume that M ∈ B. However, |B| must divide |X| = 165. The only nontrivial

blocks must be of size 3, 5, 11, 15, 33, or 55, since |B| must divide |X|.
Case (1): If Mt0 ∈ B then B = {M,Mt0} = {M,Mt0N} (since N ∈ B,BM = B)

=⇒ B = {M,Mt0,Mt1,Mt2,Mt3,Mt4,Mt5,Mt6,Mt7,Mt8}
Bt1 = {M,Mt0t1,M,Mt2t1,Mt3t1,Mt4t1,Mt5t1,Mt6t1,Mt7t1,Mt8t1}
=⇒ M ∈ B ∩Bt1.
Now B = {M,Mt0N,Mt0t1N,Mt0t5N}, where |B| = 57 (passed all possible nontrivial

blocks).

Note if Bt0 ∈ B then B = X.

Case (2): ConsiderB = {M,Mt0N,Mt0t1N}, where |B| = 33 but if we have {M,Mt0N}
we are going to have the entire group B = X. Thus, G acts primitively on X.

6.4.3 G = M11 over M = 2·S4 is Perfect

Next we want to show that G = G′. Since G =< N, t >, we have that N ≤ G′.
Now S4 ≤ G =⇒ S4

′ ≤ G′. The commutators subgroup of S4 is

S4
′ =< [a, b]|a, b ∈ S4 >=< a, b, c, d >≤ G′.

Now by expanding the main relations we get the following:

a = t0t6t0

d = t0t8t4t1t7t0t1t8

c = t4t2t1t0t7t6t8t0

bdc−1t8t0t4t8t0 = 1

Now we use the above relation and we solve for b by replacing d = t0t8t4t1t7t0t1t8 and

c−1 = t0t8t6t7t0t1t2t4 :

bdc−1t8t0t4t8t0 = 1

=⇒ b = t0t8t4t0t8t4t2t1t0t7t6t8t0t8t1t0t7t1t4t8t0

So, G =< a, b, c, d, t >=< t0, t1, t2, t3, t5, t6, t7, t8 > . Our goal is to show that one of

the t′is ∈ G′, then we can conjugate by < a, b, c, d > to obtain all of the t′is in G′. Since
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a ∈ G′. Then

a = t0t6t0 ∈ G′

= t0t6t0t6t6 ∈ G′ (since |t′is|=2)

= [t0, t6]t6 ∈ G′

=⇒ t6inG
′

So t6 ∈ G′ =⇒ tc6, t
c2
6 , t

c3
6 ∈ G′ (since c, c2, c3 ∈ G and G′ EG) also

tad6 , t
bd
6 , t

dc3
6 , tc

3d
6 ∈ G′ (since ad, bd, dc3, c3d ∈ G and G′ EG)

=⇒ G′ =< t6, t8, t0, t2, t5, t1, t7, t4 > .

Thus, G ≥ G′ ≥< t0, t1, t2t4, t5t6t7t8 >= G. We conclude that G′ = G and G is perfect.

6.4.4 Conjugates of a Normal Abelian K

Generate G = M11 over M = 2·S4

Now we require x ∈ X and a normal abelian subgroup K of Gx,-the point

stabilizer of x in G, such that the conjugates of K in G generate G.

Now G1 = M = 2·S4 possesses a normal abelian subgroup K =< a > . We use the same

relation, as we did in the previous part:

a = t0t6t0 ∈ K

=⇒ at0 = (t0t6t0)
t0 ∈ KG

=⇒ t0at0 = t0t0t6t0t0 ∈ K

=⇒ at6t0 = t6 ∈ K

So tG6 ∈ KG

=⇒ KG ≥ {t6, tc6, tc
2

6 , t
c3
6 , t

ad
6 , t

bd
6 , t

dc3
6 , tc

3d
6 }

=⇒ KG ≥ {t6, t8, t0, t2, t5, t1, t7, t4} = G

Hence, the conjugates of K generate G. Therefore, by Iwasawa’s lemma, G ∼= M11 is a

simple group.
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Chapter 7

Double Coset Enumeration of M12

over (32 : 2·S4)

7.1 Factoring by the Center (Z(G)) of 2∗72 : (32 : 2·S4)

Consider the groupG = 2∗72 : (32 : 2·S4) factored by the relator [ac−1b−1cb2t2]
3.

Note: N = (32 : 2·S4) =< a, b, c > and |N | = 432, where

a ∼ (2, 8)(3, 15)(4, 20) . . . (59, 65)(60, 64)(68, 72),

b ∼ (1, 2, 9, 13, 6, 8)(3, 16, 25, 10, 40, 23) . . . (33, 70, 65, 54, 63, 51)(43, 72, 68, 62, 60, 64),

and c ∼ (1, 3, 5, 15)(2, 10, 12, 42) . . . (48, 58, 65, 72)(49, 63, 68, 59).

Let t ∼ t1 ∼ t0.
Now we look at the composition factors of G given below:

G
| M12

*
| Cyclic(2)
1

Thus, G ∼= 2×M12. Now, we use Magma to factor the group by the center Z(G) and

we get that Z(G) =< ab3ctbtb−1tbtc > .

Hence,

G = 2∗72:(32:2·S4)
[ac−1b−1cb2t2]3,ab3ctbtb−1tbtc

∼= M12.
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7.2 Construction of M12 over (32 : 2·S4)

Now consider the group

G = 2∗72:(32:2·S4)
[ac−1b−1cb2t2]3,ab3ctbtb−1tbtc.

Note: N = (32 : 2·S4) =< a, b, c > and |N | = 432, where

a ∼ (2, 8)(3, 15)(4, 20) . . . (59, 65)(60, 64)(68, 72),

b ∼ (1, 2, 9, 13, 6, 8)(3, 16, 25, 10, 40, 23) . . . (33, 70, 65, 54, 63, 51)(43, 72, 68, 62, 60, 64),

and c ∼ (1, 3, 5, 15)(2, 10, 12, 42) . . . (48, 58, 65, 72)(49, 63, 68, 59).

Let t ∼ t1 ∼ t0.
Let us expand the relations:

[ac−1b−1cb2t2]
3 = 1 with π = ac−1b−1cb2 becomes

1 = [πt2]
3 = π3tπ

2

2 t
π
2 t2 = acbt23t54t2

=⇒ 1 = acbt23t54t2

=⇒ acbt23t54 = t2,

1 = ab3ctbtb−1tbtc = ab3cbct10t3t10t3

=⇒ ab3cbt10t3 = t3t10.

We want to find the index of N in G. To do this, we perform a manual double coset

enumeration of G over N . We take G and express it as a union of double cosets NgN ,

where g is an element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ... where gi’s words in ti’s.

We need to find all double cosets [w] and find out how many single cosets

each of them contains, where [w] = [Nwn|n ∈ N ]. The double cosets enumeration is

complete when the set of right cosets obtained is closed under right multiplication by

ti’s. We need to identify, for each [w], the double coset to which Nwti belongs for one

symmetric generator ti from each orbit of the coset stabilising group N (w)

NeN

First, the double coset NeN , is denoted by [∗]. This double coset contains only the

single coset, namely N . Since N is transitive on {t0, t2, t3, . . . , t70, t71, t72}, the orbit of

N on {t0, t2, t3, . . . , t70, t71, t72} is:

O = {t0, t2, t3, . . . , t70, t71, t72}
We choose t0 as our symmetric generator from O and find to which double coset

Nt0 belongs. Nt0N will be a new double coset, denoted by [0]. Hence, 72 symmetric
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generators will go the new double coset [0].

Nt0N

In order to find how many single cosets [0] contains, we must first find the coset stabilizer

N (0). Then the number of single coset in [0] is equal to |N |
|N(0)| . Now, N (0) = N0

=< a, acb−1c−1b−1c > so the number of the single cosets in Nt0N is |N |
|N(0)| = 43

6 = 72.

Furthermore, the orbits of N (0) on {t0, t2, t3, . . . , t70, t71, t72} are:

O = {0}, {7}, {35}, {2, 8, 34}, {5, 28, 14}, {13, 39, 31}, {3, 15, 70, 66, 46, 27},
{4, 20, 11, 71, 44, 52}, {6, 9, 32, 12, 26, 37}, {10, 19, 72, 57, 68, 24}, {16, 30, 67, 51, 50, 41},
{17, 38, 29, 36, 61, 40}, {18, 54, 60, 53, 64, 47}, {21, 23, 55, 49, 33, 58}, {25, 45, 48, 62, 63, 43},
and {22, 23, 55, 49, 33, 58}.
Take a representative ti from each orbit and see which double cosets Nt0ti belongs to.

We have:

Nt0t0 = N ∈ [∗]

t0t7 = t35 =⇒ Nt0t7 = Nt35 ∈ [0] = {Ntn0 |n ∈ N}

t0t35 = t7 =⇒ Nt0t35 = Nt7 ∈ [0] = {Ntn0 |n ∈ N}

Nt0t2 ∈ [02]

Nt0t5 ∈ [05]

Nt0t13 ∈ [013]

t0t3 = c−1b−1t2t6 =⇒ Nt0t3 = Nt2t6 ∈ [013] = {N(t0t13)
n|n ∈ N}

t0t4 = bcbt14t19 =⇒ Nt0t4 = Nt14t19 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t6 = abt18t55 =⇒ Nt0t6 = Nt18t55 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t10 = b3t15t62 =⇒ Nt0t10 = Nt15t62 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t16 = ac−1b−1cb2ct28t37 =⇒ Nt0t16 = Nt28t37 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t17 = abcbt15t29 =⇒ Nt0t17 = Nt15t29 ∈ [013] = {N(t0t13)
n|n ∈ N}

t0t18 = ab−1c−1b−1cbt59t41 =⇒ Nt0t18 = Nt59t41 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t21 = ab−1c−1b−1cbt17 =⇒ Nt0t21 = Nt17 ∈ [0] = {N(t0)
n|n ∈ N}

t0t25 = ac−1bcbt53t58 =⇒ Nt0t25 = Nt53t58 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t22 = ab−1c−1bcbt36 =⇒ Nt0t22 = Nt36 ∈ [0] = {N(t0)
n|n ∈ N}.
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The new double cosets have single coset representatives Nt0t2, Nt0t5, and

Mt0t13, we represent them as [02], [05], and [013], respectively.

Nt0t2N

Continuing with the double coset Nt0t2N , we find the point stabilizer N02. This is

N02 =< acb−1c−1b−1c > . Also, with the relation t0t2 = abcb−2cbt16t40 =⇒ Nt0t2 =

Nt16t40. Then N(t0t2)
(0,16,6,17,32,57)(2,40,13,44,39,66)···=abcb−2

= Nt16Nt40. But Nt16t40 =

Nt0t2 =⇒ abcb−2 ∈ N (02) since N(t0t2)
abcb−2

= Nt16t40. Thus the coset stabiliser is

N (02) ≥< acb−1c−1b−1c, abcb−2 > .

Since
∣∣N (02)

∣∣ = 36, the number of single cosets in [02] is

∣∣N∣∣∣∣N(02)
∣∣ = 432

36 = 12.

O = {0, 16, 67, 52, 6, 44, 39, 19, 32, 57, 17, 13, 66, 61, 29, 15, 2, 40},
{3, 70, 26, 10, 37, 60, 45, 72, 28, 18, 43, 7, 62, 55, 5, 22, 63, 31},
{4, 11, 36, 30, 38, 65, 47, 51, 27, 24, 69, 68, 25, 64, 49, 46, 23, 48},
{8, 34, 53, 41, 54, 71, 50, 33, 14, 20, 35, 21, 58, 12, 56, 42, 9, 59.}
Take a representative ti from each orbit and see which double cosets Nt0t2ti belongs to.

We have:

Nt0t2t2 = Nt0 ∈ [0]

t0t2t3 = cb−1c−1b−1c−1b−1t61t33 =⇒ Nt0t2t3 = Nt61t33 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t2t4 = cb−2cbct28t37 =⇒ Nt0t2t4 = Nt28t37 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t2t8 = c−1bcbt71t43 =⇒ Nt0t2t8 = Nt71t43 ∈ [013] = {N(t0t13)
n|n ∈ N}

Nt0t5N

Continuing with the double coset Nt0t5N , we find the point stabilizer N05. This is

N05 =< a > . Also, with the relation t0t5 = at5t0 =⇒ Nt0t5 = Nt5t0.

Then N(t0t5)
(0,5)(2,12)(3,15)···=c2 = Nt5Nt0. But Nt5t0 = Nt0t5 =⇒ c2 ∈ N (02) since

N(t0t5)
c2 = Nt5t0. Thus the coset stabiliser is

N (05) ≥< a, c2 > .

Since
∣∣N (05)

∣∣ = 4, the number of single cosets in [05] is

∣∣N∣∣∣∣N(05)
∣∣ = 432

4 = 108. The orbits

of N (05) on {t0, t2, t3, . . . , t70, t71, t72} are:

O = {0, 5}, {3, 15}, {7, 34}, {13, 35}, {33, 55}, {50, 67}, {2, 8, 12, 37}, {4, 20, 23, 22},
{6, 9, 31, 39}, {10, 19, 42, 21}, {11, 44, 46, 70}, {14, 28, 26, 32}, {16, 30, 53, 47}, {17, 38, 56, 69},
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{18, 54, 61, 29}, {24, 57, 51, 41}, {25, 45, 36, 40}, {27, 66, 64, 60}, {43, 62, 71, 52},
{48, 63, 65, 59}, {49, 58, 68, 72}.
Take a representative ti from each orbit and see which double cosets Nt0t5ti belongs to.

We have:

Nt0t5t5 = Nt0 ∈ [0]

t0t5t3 = cb−2t63t60 =⇒ Nt0t5t3 = Nt63t60 ∈ [02] = {N(t0t2)
n|n ∈ N}

t0t5t7 = abc2b−1t72t17 =⇒ Nt0t5t7 = Nt72t17 ∈ [013] = {N(t0t13)
n|n ∈ N}

t0t5t13 = ac−1b3c−1t68t46 =⇒ Nt0t5t13 = Nt68t46 ∈ [02] = {N(t0t2)
n|n ∈ N}

t0t5t33 = ac2b−1c−1t2t37 =⇒ Nt0t5t33 = Nt2t37 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t50 = b2cb−1c−1t37t2 =⇒ Nt0t5t50 = Nt37t2 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t2 = acb−2t44t59 =⇒ Nt0t5t2 = Nt44t59 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t4 = bcb2t72t57 =⇒ Nt0t5t4 = Nt72t57 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t6 = ab−1cbc2t24t68 =⇒ Nt0t5t6 = Nt24t68 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t10 = b3cb−1t20t53 =⇒ Nt0t5t10 = Nt20t53 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t11 = ac−1bcb−2t63 =⇒ Nt0t5t11 = Nt63 ∈ [0] = {N(t0)
n|n ∈ N}

t0t5t14 = ac−1b3ct60 =⇒ Nt0t5t14 = Nt60 ∈ [0] = {N(t0)
n|n ∈ N}

t0t5t16 = acb3c−1t28 =⇒ Nt0t5t16 = Nt28 ∈ [0] = {N(t0)
n|n ∈ N}

t0t5t17 = cb−1c−1b−1c−1t71t21 =⇒ Nt0t5t17 = Nt71t21 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t18 = ab2cb−1c−1t49 =⇒ Nt0t5t18 = Nt49 ∈ [0] = {N(t0)
n|n ∈ N}

t0t5t24 = acb−2t42t50 =⇒ Nt0t5t24 = Nt42t50 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t25 = ab−1cb−1t64t23 =⇒ Nt0t5t25 = Nt64t23 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t27 = acb2ct48 =⇒ Nt0t5t27 = Nt48 ∈ [0] = {N(t0)
n|n ∈ N}

t0t5t43 = b2c−1b−1c−1t50t42 =⇒ Nt0t5t25 = Nt64t23 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t5t48 = bct14 =⇒ Nt0t5t48 = Nt14 ∈ [0] = {N(t0)
n|n ∈ N}

t0t5t49 = ac−1b−1c−1b2t54t42 =⇒ Nt0t5t49 = Nt54t42 ∈ [013] = {N(t0t13)
n|n ∈ N.}

Nt0t13N

Continuing with the double coset Nt0t13N , we find the point stabilizer N013. This is
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N013 =< a > . Also, with the relation t0t13 = b3t69t49 =⇒ Nt0t13 = Nt69t49. Then

N(t0t13)
(1,69,13,49)(2,38,6,27)···=b−1cbc = Nt69Nt49. But Nt69t49 = Nt0t13 =⇒ b−1cbc ∈

N (013) since N(t0t13)
b−1cbc = Nt69t49. Thus the coset stabiliser is

N (013) ≥< a, b−1cbc > .

Since
∣∣N (013)

∣∣ = 16, the number of single cosets in [013] is

∣∣N∣∣∣∣N(013)
∣∣ = 432

16 = 27.

The orbits of N (013) on {t0, t2, t3, . . . , t70, t71, t72} are:

O = {1, 69, 56, 13, 61, 49, 29, 58}, {5, 30, 16, 7, 62, 36, 43, 40}, {21, 42, 70, 63, 46, 35, 48, 34},
{2, 8, 38, 24, 17, 6, 67, 57, 9, 71, 27, 11, 50, 66, 52, 44},
{3, 15, 22, 60, 23, 10, 31, 64, 19, 32, 45, 72, 39, 25, 26, 68},
{4, 20, 37, 18, 12, 47, 51, 54, 53, 59, 28, 55, 41, 14, 65, 33}.
Take a representative ti from each orbit and see which double cosets Nt0t13ti belongs

to. We have:

Nt0t13t13 = Nt0 ∈ [0]

t0t13t7 = cb3ct66t59 =⇒ Nt0t13t7 = Nt66t59 ∈ [02] = {N(t0t2)
n|n ∈ N}

t0t13t21 = t29t43 =⇒ Nt0t13t21 = Nt29t43 ∈ [05] = {N(t0t5)
n|n ∈ N}

t0t13t2 = ab−1cbcb−1t44 =⇒ Nt0t13t2 = Nt44 ∈ [0] = {N(t0)
n|n ∈ N}

t0t13t3 = c−1b2t27 =⇒ Nt0t13t3 = Nt27 ∈ [0] = {N(t0)
n|n ∈ N}

t0t13t4 = bcb−1c−1b−1c−1t62t15 =⇒ Nt0t13t4 = Nt62t15 ∈ [05] = {N(t0t5)
n|n ∈ N}.

We have completed the double coset enumeration since the set of right cosets

is closed under right multiplication, hence, the index of N in G is 220. We conclude:

G = N ∪Nt0N ∪Nt0t2N ∪Nt0t5N ∪Nt0t13N, where

G = 2∗72:(32:2·S4)
[ac−1b−1cb2t2]3,ab3ctbtb−1tbtc.

|G| ≤
(
|N |+ |N |

N(0) + |N |
N(01) + |N |

N(05) + |N |
N(013)

)
× |N |

|G| ≤ (1 + 72 + 12 + 108 + 27)× 432

|G| ≤ 220× 432

|G| ≤ 95040.

A Cayley diagram that summarizes the above information is given on the next page.
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Figure 7.1: Cayley Diagram of M12 over (32 : 2·S4)
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Chapter 8

Tabulated Images

8.1 2∗7 : (7 : 2)

It can be proved that the progenitor given above has M23 as a homomorphic

image. While looking to find the Mathieu M23 group, we ran the following progenitor

and what we found is listed below:

G<a,b,t> := Group<a,b,t |aˆ3, bˆ(-2)*aˆ-1*b*a,tˆ2,(t,a),
((a*bˆ2)*tˆ(bˆ-2))ˆc,((a*bˆ2)*tˆ(bˆ-1))ˆd,
((a*bˆ2)*tˆ(b*a*b))ˆe,((a*bˆ2)ˆ-1*tˆ(bˆ-2))ˆf,
((a*bˆ2)ˆ-1*tˆ(bˆ-1))ˆg,((a*bˆ2)ˆ-1*tˆ(b*a*b))ˆh,
(b*tˆ(bˆ-1))ˆi,(bˆ3*tˆ(bˆ-1))ˆj>;

Table 8.1: Some Finite Images of the Progenitor 2∗7 : (7 : 2)

c d e f g h i j Order of G Shape of G

0 0 0 0 0 5 0 8 1774080 4·M22

0 0 0 0 6 10 0 6 15120 3 : (A7 : 2)

0 0 0 0 7 7 0 6 20160 A8

8.2 2∗6 : (S3 × 2)

It can be proved that the progenitor given above has M24 as a homomorphic

image. While looking to find the Mathieu M24 group, we ran the following progenitors

and what we found is listed below:
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G<a,b,c,t> := Group<a,b,c,t |aˆ2,bˆ2,cˆ3, (a*b)ˆ2,(a*cˆ-1)ˆ2,
b*cˆ-1*b*c,tˆ2,(t,a*b),(b*t)ˆd,(b*tˆc)ˆe,(b*tˆ(a*cˆ-1))ˆf,
(a*t)ˆg,(a*tˆc)ˆh,(a*tˆ(a*c))ˆi,(a*b*t)ˆj,(a*b*tˆa)ˆk,
(a*b*tˆc)ˆl,(a*b*tˆ(a*c))ˆm,(c*t)ˆn,(c*tˆa)ˆo,
(b*c*t)ˆp>;

Table 8.2: Some Finite Images of the Progenitor 2∗6 : (S3 × 2)

d e . . . m n o p Order of G Shape of G

0 0 . . . 0 0 3 4 240 (2× 45) : 2

0 0 . . . 0 0 3 4 2184 PGL2(13)

0 0 . . . 3 0 0 7 24360 PGL2(29)

0 0 . . . 5 5 0 5 1267200 2·((24)· : L2(11)) : A5

for d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,u in [0..10] do
G<a,b,c,t> := Group<a,b,c,t |aˆ2,bˆ2,cˆ3, (a*b)ˆ2,(a*cˆ-1)ˆ2,
b*cˆ-1*b*c,tˆ2,(t,a*b),(b*t)ˆd,(b*tˆc)ˆe,
(b*tˆ(a*cˆ-1))ˆf,(a*t)ˆg,(a*tˆc)ˆh,
(a*tˆ(a*c))ˆi,(a*b*t)ˆj,(a*b*tˆa)ˆk,(a*b*tˆc)ˆl,
(a*b*tˆ(a*c))ˆm,(c*t)ˆn,(c*tˆa)ˆo,(b*c*t)ˆp,
(a*t)ˆq,(b*t)ˆr,(t*tˆa)ˆs,(t*tˆa)ˆu=a*b>;

Table 8.3: Some Finite Images of the Progenitor 2∗6 : (S3 × 2)

d e . . . o p q r s u Order of G Shape of G

0 0 . . . 0 7 4 8 8 7 336 PGL2(7)

0 0 . . . 0 9 0 4 2 3 4896 PGL2(17)

0 0 . . . 4 6 0 0 6 3 1140480 6× (M12 : 2) : 2

0 0 . . . 4 10 0 0 4 2 6635520 (27
·
: S4(3)) : 2

0 0 . . . 5 0 8 0 4 9 120 2×A5

8.3 2∗8 : S4

It can be proved that the progenitor given above has M11 as a homomorphic

image. While looking to find the Mathieu M11 group, we ran the following progenitor

and what we found is listed below:

G<a,b,c,d,t> := Group<a,b,c,d,t |aˆ2,bˆ3,cˆ4,dˆ4,
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bˆ-1*a*b*a, cˆ-1*a*cˆ-1, dˆ-1*a*dˆ-1,
b*cˆ-1*bˆ-1*dˆ-1, cˆ-1*dˆ-1*c*dˆ-1,dˆ-1*cˆ-1*bˆ-1*c*b,
tˆ2,(t,b),(a*tˆ(c*bˆ-1))ˆe,(c*b*tˆ(c*bˆ-1))ˆf,
(c*b*tˆc)ˆg,(bˆ-1*cˆ-1*tˆ(c*bˆ-1))ˆh,(bˆ-1*cˆ-1*tˆc)ˆi,
(c*tˆ(c*bˆ-1))ˆj,(c*tˆc)ˆk,(a*b*t)ˆl,(a*b*tˆ(c*bˆ-1))ˆm,
(a*bˆ-1*t)ˆn,(a*bˆ-1*tˆ(c*bˆ-1))ˆo>;

Table 8.4: Some Finite Images of the Progenitor 2∗8 : S4
e f . . . j k l m n o Order of G Shape of G

0 0 . . . 0 0 0 0 0 4 120 2×A5

0 0 . . . 0 6 0 6 3 0 95040 (22 × 3)M11

8.4 2∗8 : (23 : 2)

It can be proved that the progenitor given above has M12 as a homomorphic

image. While looking to find the Mathieu M12 group, we ran the following progenitor

and what we found is listed below:

G<a,b,c,d,t> := Group<a,b,c,d,t |aˆ2,bˆ4,cˆ2,dˆ2,
bˆ-2*d, (bˆ-1*a)ˆ2,(bˆ-1*c)ˆ2,a*c*bˆ-1*a*c,tˆ2,
(t,a), (d*t)ˆe,(c*t)ˆf,(c*tˆb)ˆg,(a*t)ˆh,
(a*tˆb)ˆi,(a*tˆc)ˆj,(b*t)ˆk,(a*c*t)ˆl,(a*c*b*t)ˆm>;

Table 8.5: Some Finite Images of the Progenitor 2∗8 : (23 : 2)

e f g h i j k l m Order of G Shape of G

0 0 0 0 0 3 3 0 9 2448 L2(17)

0 0 0 0 0 3 3 0 10 2160 3 : (A6 × 2)

0 0 0 0 0 4 0 5 6 80640 2 : (A8 × 2)

8.5 2∗72 : (32 : (2·S4))

It can be proved that the progenitor given above has M12 as a homomorphic

image. While looking to find the Mathieu M12 group, we ran the following progenitor

and what we found is listed below:
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G<a,b,c,t>:=Group<a,b,c,t| aˆ2,bˆ6,cˆ4,(bˆ-1 * a)ˆ2,
(a*cˆ-1)ˆ2,bˆ-1*cˆ-2*bˆ2*cˆ2*bˆ-1,(cˆ-1*b)ˆ3,
cˆ-1*bˆ-1*cˆ-2*bˆ-1*cˆ2*bˆ-1*cˆ-1,
tˆ2,(t,a),(t,a * c * bˆ-1 * cˆ-1 * bˆ-1 * c),(bˆ3*t)ˆd,
(bˆ3*tˆ(bˆ3*cˆ2))ˆe,(bˆ3*tˆc)ˆf,(a*t)ˆg,(a*tˆc)ˆh,
(a*tˆ(bˆ2))ˆi,(a*tˆ(a*cˆ-1*bˆ-1*c*b))ˆj,(a*tˆ(bˆ2*c))ˆk,
(a*tˆ(bˆ-1*c*bˆ-1))ˆl,(bˆ3*cˆ2*t)ˆm,(bˆ3*cˆ2*tˆb)ˆn,
(bˆ3*cˆ2*tˆc)ˆo,(bˆ2*t)ˆp,(bˆ2*tˆc)ˆq,
(bˆ2*tˆ(a*cˆ-1*bˆ-1*c*b))ˆr,(b*cˆ-1*t)ˆs,
(b*cˆ-1*tˆ(b))ˆu,(b*cˆ-1*tˆ( c))ˆv,(b*cˆ-1*tˆ(cˆ2))ˆw,
(b*cˆ-1*tˆ(bˆ-1*c*bˆ-1))ˆx,(c*t)ˆy,
(c*tˆb)ˆz,(c*tˆ(bˆ-1*c*bˆ-1))ˆhh,
(b*t)ˆii,(b*tˆc)ˆjj;(b*tˆ(bˆ2))ˆkk,
(b*tˆ(bˆ2*c))ˆll,(b*tˆ(bˆ-1*c*bˆ-1))ˆmm,
(a*b*cˆ2*t)ˆnn,(a*b*cˆ2*tˆ(b))ˆoo,
(a*b*cˆ2*tˆ(bˆ2*c))ˆpp,(a*b*c*t)ˆqq,
(a*b*c*tˆb)ˆrr,(a*b*c*tˆ(bˆ2))ˆss,(a*cˆ-1*bˆ-1*c*bˆ2*t)ˆuu,
(a*cˆ-1*bˆ-1*c*bˆ2*tˆ(b))ˆvv,
(a*cˆ-1*bˆ-1*c*bˆ2*tˆ(bˆ2*c))ˆww>;

Table 8.6: Some Finite Images of the Progenitor 2∗72 : (32 : (2·S4))

d e . . . qq rr ss uu vv ww Order of G Shape of G

0 0 . . . 0 0 0 0 3 0 190080 2·M12
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Appendix A: MAGMA Code for

Permutation Progenitor of A5

G<x,y>:=Group< x,y | xˆ2 = yˆ3 = (x*y)ˆ5 = 1>;
S:=Alt(5);
xx:=S!(1,2)(3,4);
yy:=S!(1,3,5);
N:=sub<S|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..60]];
for i in [2..60] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..60] do Sch[i], ArrayP[i]; end for;
N1:=Stabiliser(N,1);N1;
C:= Classes(N);C;
C2:=Centraliser(N,N!(1,2)(3,4));C2;
C3:=Centraliser(N,N!(1,2,3));C3;
C4:=Centraliser(N,N!(1,2,3,4,5));C4;
C5:=Centraliser(N,N!(1,3,4,5,2));C5;
Set(C2);Orbits(C2);
Set(C3);Orbits(C3);
Set(C4);Orbits(C4);
Set(C5);Orbits(C5);
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Appendix B: MAGMA Code for

Monomial Progenitor of

11∗2 :m D10

D:=DihedralGroup(5);D;
xx:=D! (1,2,3,4,5);
yy:=D!(1,5)(2,4);
G:=sub<D|xx,yy>;
H:=sub<G|(1,2,3,4,5)>;
Set(H);
C:=Classes(G);C;
Cprime:=Classes(H);
Cprime;
CT:=CharacterTable(D);
ch:=CharacterTable(H);
CT;
ch;
I:=Induction(ch[2],D);
Norm(I);
for i in [1..#CT] do if I eq CT[i] then i; end if; end for;
I eq CT[4];
T:=Transversal(G,H);T;
C:=CyclotomicField(5: Sparse := true);
A:=[0: i in [1..4]];
for i in [1..2] do if xx*T[i]ˆ-1 in H
then if ch[2](xx*T[i]ˆ-1) eq C.1
then A[i]:=2; else if ch[2](xx*T[i]ˆ-1) eq C.1ˆ2
then A[i]:=4; else
A[i]:= ch[2](xx*T[i]ˆ-1); end if; end if; end if;
end for;
for i in [1..2] do if T[2]*xx*T[i]ˆ-1 in H
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then if ch[2](T[2]*xx*T[i]ˆ-1) eq C.1
then A[2+i]:=2; else if ch[2](T[2]*xx*T[i]ˆ-1) eq C.1ˆ2
then A[2+i]:=4; else
A[2+i]:= ch[2](T[2]*xx*T[i]ˆ-1); end if; end if; end if;
end for;
B:=[0: i in [1..4]];
for i in [1..2] do if yy*T[i]ˆ-1 in H
then if ch[2](yy*T[i]ˆ-1) eq C.1
then B[i]:=2; else if ch[2](yy*T[i]ˆ-1) eq C.1ˆ2
then B[i]:=4; else
B[i]:= ch[2](yy*T[i]ˆ-1); end if; end if; end if;
end for;
for i in [1..2] do if T[2]*yy*T[i]ˆ-1 in H
then if ch[2](T[2]*yy*T[i]ˆ-1) eq C.1
then B[2+i]:=2; else if ch[2](T[2]*yy*T[i]ˆ-1) eq C.1ˆ2
then B[2+i]:=4; else
B[2+i]:= ch[2](T[2]*yy*T[i]ˆ-1); end if; end if; end if;
end for;
G:=GL(2,11);
A:=G!A;A;
B:=G!B;B;
M:=sub<G|A,B>;
#M;
Order(A);
Order(B);
s:=IsIsomorphic(M,DihedralGroup(5)); s;
/*Monomial Progenitor on 20 letters */
G < x,y >:= Group< x,y|xˆ5 = yˆ2 = (x*y)ˆ2 = 1 >;
S:=Sym(20);
xx:=S!(1,7,9,17,5)(3,15,19,13,11)
(2,6,18,10,8)(4,12,14,20,16);
yy:=S!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)
(15,16)(17,18)(19,20);
N:=sub<S|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..10]];
for i in [2..10] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
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for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..10] do Sch[i], ArrayP[i]; end for;
Normaliser:=Stabiliser(N,{1,3,5,7,9,11,13,15,17,19});
Normaliser;
Normaliser eq sub<N| (1, 9, 5, 7, 17)(2, 18, 8, 6, 10)
(3, 19, 11, 15, 13)(4, 14, 16, 12, 20)>;
G < x,y,t >:= Group< x,y,t|xˆ5 = yˆ2 = (x*y)ˆ2 = 1,
tˆ11, tˆ(xˆ2)=tˆ5>;
/*Verify*/
G< x,y,t>:= Group< x,y,t|xˆ5 = yˆ2 = (x*y)ˆ2 = 1,
tˆ11, (t,y*x), t*tˆx=tˆx*t>;

f, G1,k:=CosetAction(G,sub<G|x,y>);
#G;#k;
IN:=sub<G1|f(x),f(y)>;
T:=sub<G1|f(t)>;#T;
#Normaliser(IN,T);
Index(IN,Normaliser(IN,T));
/* here is the progenitor adding relations with first
order relation */
G< x,y>:= Group< x,y|xˆ5 = yˆ2 = (x*y)ˆ2 = 1>;
D:=DihedralGroup(5);D;
xx:=D! (1,2,3,4,5);
yy:=D!(1,5)(2,4);
N:=sub<D|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..10]];
for i in [2..10] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..10] do Sch[i], ArrayP[i]; end for;
C:= Classes(N); C;
C2:=Centraliser(N,N!(1,5)(2,4));C2;
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C3:=Centraliser(N,N!(1,2,3,4,5));C3;
C4:=Centraliser(N,N!(1,3,5,2,4));C4;
Set(C2);Orbits(C2);
Set(C3);Orbits(C3);
Set(C4);Orbits(C4);
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Appendix C: MAGMA Code for

Progenitor of 2∗7 : D14

G<x,y>:=Group<x,y|xˆ7, yˆ2,(x*y)ˆ2>;
D:=DihedralGroup(7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6)(2, 5)(3, 4);
N:=sub<D|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..14]];
for i in [2..14] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..14] do Sch[i], ArrayP[i]; end for;
N7:=Stabiliser(N,7);
N7;
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y)>;
/* Give all first order relations that this progenitor
can be factored by */
C:= Classes(N);C;
C2:=Centraliser(N,N!(1,6)(2,5)(3,4));C2;
C3:=Centraliser(N,N!(1,2,3,4,5,6,7));C3;
C4:=Centraliser(N,N!(1,3,5,7,2,4,6));C4;
C5:=Centraliser(N,N!(1,4,7,3,6,2,5));C5;
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Set(C2);Orbits(C2);
Set(C3);Orbits(C3);
Set(C4);Orbits(C4);
Set(C5);Orbits(C5);
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Appendix D: MAGMA Code for

DCE of 2∗3 : S3

G<x,y,t>:=Group<x,y,t|xˆ3,yˆ2,(x*y)ˆ2,
tˆ2,(t,y),t*tˆx=xˆ-1*tˆx*t*tˆ(xˆ2)>;
#G;
S:=Sym(3);
xx:=S!(1,2,3);
yy:=S!(1,2);
N:=sub<S|xx,yy>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
IN:=sub<G1|f(x),f(y)>;
ts := [Id(G1): i in [1 .. 3] ];
ts[3]:=f(t); ts[1]:=f(tˆx); ts[2]:=f(tˆ(xˆ2));
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
Q[I] applied sequentially.

*/
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];

for i := 1 to 3 do
cst[prodim(1, ts, [i])] := [i];

end for;
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m:=0;
for i in [1..20] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

N31:=Stabiliser (N,[3,1]);
SSS:={[3,1]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N31; #N31;
T31:=Transversal(N,N31);
for i in [1..#T31] do
ss:=[3,1]ˆT31[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N31);

for g in IN do for h in IN do
if ts[3]*ts[1]*ts[2] eq g*(ts[3]*ts[1])ˆh then g,h;
end if; end for; end for;

for i in [1..10] do i, cst[i]; end for;
ts[3]*ts[1]*ts[2] eq f(xˆ-1)*ts[1]*ts[3];

N313:=Stabiliser (N,[3,1,3]);
SSS:={[3,1,3]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
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N313s:=N313;
T313:=Transversal(N,N313);
for i in [1..#T313] do
ss:=[3,1,3]ˆT313[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N313);

N3131:=Stabiliser (N,[3,1,3,1]);
SSS:={[3,1,3,1]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1]*ts[3]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;

N3131s:=N3131;
for n in N do if 3ˆn eq 3 and 1ˆn eq 2
then N3131s:=sub<N|N3131s,n>; end if; end for;
#N3131s;
N3131s;
[3,1,3,1]ˆN3131s;

N3131:=Stabiliser (N,[3,1,3,1]);
N3131;
N3131:=sub<N| (1,2)>;
#N3131;
[3,1,3,1]ˆN3131;

T:=Transversal(N,N3131);
for i in [1..#T] do

{[3,1,3,1]ˆN3131}ˆT[i];
end for;
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for n in IN do if ts[3]*ts[2]*ts[3]*ts[2] eq
n*ts[3]*ts[1]*ts[3]*ts[1] then n; end if; end for;
for i in [1..10] do i, cst[i]; end for;
ts[3]*ts[2]*ts[3]*ts[2] eq f(xˆ-1)*ts[3]*ts[1]*ts[3]*ts[1];

T3131:=Transversal(N,N3131);
for i in [1..#T3131] do
ss:=[3,1,3,1]ˆT3131[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N3131);

N31313:=Stabiliser (N,[3,1,3,1,3]);
SSS:={[3,1,3,1,3]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1]*ts[3]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]] then print Rep(Seqq[i]);
end if; end for; end for;

N31313s:=N31313;
for n in N do if 3ˆn eq 3 and 1ˆn eq 2
then N31313s:=sub<N|N31313s,n>; end if; end for;
#N31313s;
N31313s;
[3,1,3,1,3]ˆN31313s;

N31313:=Stabiliser (N,[3,1,3,1,3]);
N31313;
N31313:=sub<N| (1,2,3),(1,2)>;
#N31313;
[3,1,3,1,3]ˆN31313;

T:=Transversal(N,N31313);
for i in [1..#T] do
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{[3,1,3,1,3]ˆN31313}ˆT[i];
end for;

T31313:=Transversal(N,N31313);
for i in [1..#T31313] do
ss:=[3,1,3,1,3]ˆT31313[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N31313);
/*Relations*/
for n in IN do if ts[1]*ts[2]*ts[1]*ts[2]*ts[1] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
for i in [1..10] do i, cst[i]; end for;
ts[1]*ts[2]*ts[1]*ts[2]*ts[1] eq f((xˆ-1)ˆy)

*ts[3]*ts[1]*ts[3]*ts[1]*ts[3];
for n in IN do if ts[2]*ts[3]*ts[2]*ts[3]*ts[2] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
ts[2]*ts[3]*ts[2]*ts[3]*ts[2] eq f(xˆ-1)*ts[3]

*ts[1]*ts[3]*ts[1]*ts[3];
for n in N do if 3ˆn eq 3 and 1ˆn eq 2 then
N31313s:=sub<N|N31313s,n>; end if; end for;
#N31313s;
[3,1,3,1,3]ˆN31313s;
for n in IN do if ts[3]*ts[2]*ts[3]*ts[2]*ts[3] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
for i in [1..10] do i, cst[i]; end for;
ts[3]*ts[2]*ts[3]*ts[2]*ts[3] eq f(xˆ-1)*ts[3]

*ts[1]*ts[3]*ts[1]*ts[3];
for n in IN do if ts[2]*ts[1]*ts[2]*ts[1]*ts[2] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
ts[2]*ts[1]*ts[2]*ts[1]*ts[2] eq f((xˆ-1)ˆy)*
ts[3]*ts[1]*ts[3]*ts[1]*ts[3];
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Appendix E: MAGMA Code for

DCE of 2× L2(8) over D14

S:=Sym(7);
xx:=S!(1,2,3,4,5,6,7);
yy:=S!(1, 6)(2, 5)(3, 4);
N:=sub<S|xx,yy>;

#N;
N7:=Stabiliser(N,7);
N7;
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
(x*t*tˆx)ˆ2,(t*t*x*t)ˆ9>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
#G;
IN:=sub<G1|f(x),f(y)>;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(tˆx);
ts[2] := f(tˆ(xˆ2)); ts[3] := f(tˆ(xˆ3));
ts[4] := f(tˆ(xˆ4)); ts[5] := f(tˆ(xˆ5));
ts[6] := f(tˆ(xˆ6));
f(xˆ2)*ts[1]*ts[2]*ts[7]*ts[1];
f(xˆ2)*ts[1]*ts[2] eq ts[1]*ts[7];
f(xˆ2)*ts[1]*ts[7]*ts[6]*ts[5]*ts[4]

*ts[3]*ts[2]*ts[1]*ts[7];
f(xˆ2)*ts[1]*ts[7]*ts[6]*ts[5]*ts[4]

*ts[3]*ts[2] eq ts[7]*ts[1];
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
Index(G,sub<G|x,y>);
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
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Q[I] applied sequentially.

*/
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];

for i := 1 to 7 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;

for i in [1..72] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
N7 := Stabiliser (N, [7]);
N7; #N7;
Orbits(N7);
N71:=Stabiliser (N,[7,1]);
SSS:={[7,1]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N71s := N71;
for n in N do if 7ˆn eq 7 and 1ˆn eq 6
then N71s:=sub<N|N71s,n>;
end if;end for;
#N71s;
[7,1]ˆN71s;
for n in IN do if ts[7]*ts[1] eq n*ts[7]*ts[6]
then n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
ts[7]*ts[1]eq f(((xˆ2)ˆ-1)ˆx)*ts[7]*ts[6];
N71:=Stabiliser (N,[7,1]);
N71;
N71:=sub<N| (1,6)(2,5)(3,4)>;
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#N71;
[7,1]ˆN71;
T:=Transversal(N,N71);
for i in [1..#T] do

{[7,1]ˆN71}ˆT[i];
end for;
T71:=Transversal(N,N71);
for i in [1..#T71] do
ss:=[7,1]ˆT71[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N71);
N72:=Stabiliser (N,[7,2]);
SSS:={[7,2]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N72s := N72;
for n in N do if 7ˆn eq 3 and 2ˆn eq 1
then N72s:=sub<N|N72s,n>; end if;\
end for;

#N72s;
[7,2]ˆN72s;
for n in IN do if ts[7]*ts[2] eq n*ts[3]*ts[1] then
n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
ts[7]*ts[2]eq f((xˆ2)ˆ((x)ˆ-1))*ts[3]*ts[1];

N72:=Stabiliser (N,[7,2]);
N72;
N72:=sub<N| (1,2)(4,6)(3,7)>;
#N72;
[7,2]ˆN72;
T:=Transversal(N,N72);
for i in [1..#T] do
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{[7,2]ˆN72}ˆT[i];
end for;
T72:=Transversal(N,N72);
for i in [1..#T72] do
ss:=[7,2]ˆT72[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N72);

N73:=Stabiliser (N,[7,3]);
SSS:={[7,3]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73; #N73;
T73:=Transversal(N,N73);
for i in [1..#T73] do
ss:=[7,3]ˆT73[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73);
/*
[71]

*/
N712:=Stabiliser (N,[7,1,2]);
SSS:={[7,1,2]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] *ts[2]eq
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n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N712s := N712;

for n in N do if 7ˆn eq 3 and 1ˆn eq 2 and 2ˆn
eq 1 then N712s:=sub<N|N712s,n>; end if;
end for;

#N712s;
[7,1,2]ˆN712s;
for n in IN do if ts[7]*ts[1]*ts[2] eq
n*ts[3]*ts[2]*ts[1] then
n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
ts[7]*ts[1]*ts[2]eq f((xˆ2)ˆ(xˆ-1))*ts[3]*ts[2]*ts[1];
N712:=Stabiliser (N,[7,1,2]);
N712;
N712:=sub<N| (1,2)(4,6)(3,7)>;
#N712;
[7,1,2]ˆN72;
T:=Transversal(N,N712);
for i in [1..#T] do

{[7,1,2]ˆN712}ˆT[i];
end for;
T712:=Transversal(N,N712);
for i in [1..#T712] do
ss:=[7,1,2]ˆT712[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N712);
N713:=Stabiliser (N,[7,1,3]);
SSS:={[7,1,3]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] *ts[3]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
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then print Rep(Seqq[i]);
end if; end for; end for;
N713s := N713;

#N713s;
[7,1,3]ˆN713s;

T713:=Transversal(N,N713);
for i in [1..#T713] do
ss:=[7,1,3]ˆT713[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N713);
N717:=Stabiliser (N,[7,1,7]);
SSS:={[7,1,7]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] *ts[7]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N717s := N717;
for n in N do if 7ˆn eq 1 and 1ˆn eq 7
then N717s:=sub<N|N717s,n>; end if;
end for;

for n in N do if 7ˆn eq 6 and 1ˆn eq 7
then N717s:=sub<N|N717s,n>; end if; end for;
#N717s;
[7,1,7]ˆN717s;
N717s;
for n in IN do if ts[7]*ts[1]*ts[7] eq
n*ts[1]*ts[7]*ts[1]then

n; end if; end for;
for n in IN do if ts[7]*ts[1]*ts[7] eq
n*ts[6]*ts[7]*ts[6]then
n; end if; end for;
for i in [1..15] do i, cst[i]; end for;



187

N717:=Stabiliser (N,[7,1,7]);
N717;
N717:=sub<N|(1, 7)(2, 6)(3, 5),

(1, 7, 6, 5, 4, 3, 2)>;
#N717;
[7,1,7]ˆN717;
T:=Transversal(N,N717);
for i in [1..#T] do

{[7,1,7]ˆN717}ˆT[i];
end for;
T717:=Transversal(N,N717);
for i in [1..#T717] do
ss:=[7,1,7]ˆT717[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N717);
/*
[72]

*/
N725:=Stabiliser (N,[7,2,5]);
SSS:={[7,2,5]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[2] *ts[5]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N725s := N725;
for n in N do if 7ˆn eq 3 and 2ˆn eq 1 and
5ˆn eq 5 then N725s:=sub<N|N725s,n>; end if;
end for;

#N725s;
[7,2,5]ˆN725s;
for n in IN do if ts[7]*ts[2]*ts[5] eq
n*ts[3]*ts[1]*ts[5] then n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
/*Add relation*/



188

N725:=Stabiliser (N,[7,2,5]);
N725;
N725:=sub<N| (1,2)(3,7)(4,6)>;
#N725;
[7,2,5]ˆN725;
T:=Transversal(N,N72);
for i in [1..#T] do

{[7,2]ˆN72}ˆT[i];
end for;
T725:=Transversal(N,N725);
for i in [1..#T725] do
ss:=[7,2,5]ˆT725[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;

/*
[73]

*/
N736:=Stabiliser (N,[7,3,6]);
SSS:={[7,3,6]}; SSS:=SSSˆN;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[3] *ts[6]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N736s := N736;
for n in N do if 7ˆn eq 7 and 4ˆn eq 3 and 1ˆn
eq 6 then N736s:=sub<N|N736s,n>; end if;
end for;

#N736s;
N736s;
[7,3,6]ˆN736s;
for n in IN do if ts[7]*ts[3]*ts[6] eq
n*ts[7]*ts[4]*ts[1] then n; end if; end for;
for i in [1..15] do i, cst[i]; end for;



189

N736:=Stabiliser (N,[7,3,6]);
N736;
N736:=sub<N| (1,6)(2,5)(3,4)>;
#N736;
[7,3,6]ˆN736;
T:=Transversal(N,N736);
for i in [1..#T] do

{[7,3,6]ˆN736}ˆT[i];
end for;
T736:=Transversal(N,N736);
for i in [1..#T736] do
ss:=[7,3,6]ˆT736[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N736);
/*Relations*/
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[3] eq g*(ts[7]*ts[1]*ts[3] )ˆh

then g,h;end if; end for; end for;
ts[7]*ts[2]*ts[3] eq f(xˆ-3)*ts[5]*ts[4]*ts[2];
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[4] eq g*(ts[7]*ts[3] )ˆh then g,h;

end if; end for; end for;
ts[7]*ts[2]*ts[4] eq f(x)*ts[4]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[1] eq g*(ts[7]*ts[3] )ˆh then

g,h; end if; end for; end for;
ts[7]*ts[3]*ts[1] eq f(xˆ-1)*ts[2]*ts[6];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[2] eq g*(ts[7]*ts[1]*ts[2] )ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[2] eq f(xˆ2)*ts[2]*ts[3]*ts[4];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[4] eq g*(ts[7]*ts[1]*ts[3] )ˆh
then g,h; end if; end for; end for;

ts[7]*ts[3]*ts[4] eq f(x)*ts[7]*ts[1]*ts[3];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[5] eq g*(ts[7]*ts[2]*ts[5] )ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[5] eq ts[3]*ts[5]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[7] eq g*(ts[7]*ts[2])ˆh
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then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[7] eq f(x)*ts[4]*ts[2];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[3]*ts[1] eq g*(ts[7]*ts[1]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[1] eq f(xˆ-4)*ts[2]*ts[1]*ts[6];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[3]*ts[2] eq g*(ts[7]*ts[2])ˆh
then g,h; end if; end for; end for;

ts[7]*ts[1]*ts[3]*ts[2] eq f(xˆ2)*ts[2]*ts[4];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[3]*ts[4] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[4] eq f(xˆ-1)*ts[7]*ts[3];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[3]*ts[4] eq g*(ts[7]*ts[3]*ts[6])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[5] eq f(xˆ-1)*ts[1]*ts[4]*ts[7];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[3]*ts[6] eq g*(ts[7]*ts[2]*ts[5])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[6] eq f(xˆ-1)*ts[5]*ts[3]*ts[7];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[3]*ts[7] eq g*(ts[7]*ts[1]*ts[2])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[7] eq f(xˆ-2)*ts[4]*ts[3]*ts[2];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[2]*ts[4] eq g*(ts[7]*ts[1]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[2]*ts[4] eq f(xˆ-2)*ts[4]*ts[3]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[2]*ts[5] eq g*(ts[7]*ts[3]*ts[6])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[2]*ts[5] eq ts[5]*ts[1]*ts[4];
for g in IN do for h in IN do
if ts[7]*ts[1]*ts[2]*ts[7] eq g*(ts[7]*ts[3])ˆh
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[2]*ts[7] eq f(xˆ-2)*ts[5]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[5]*ts[1] eq g*(ts[7]*ts[3])ˆh
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[1] eq f(xˆ2)*ts[6]*ts[3];
if ts[7]*ts[2]*ts[5]*ts[4] eq g*(ts[7]*ts[1]*ts[3])ˆh
then g,h; end if; end for; end for;
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ts[7]*ts[2]*ts[5]*ts[4] eq f(xˆ-4)*ts[5]*ts[6]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[5]*ts[7] eq g*(ts[7]*ts[2]*ts[5])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[7] eq f(xˆ-4)*ts[4]*ts[6]*ts[2];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[6]*ts[5] eq g*(ts[7]*ts[3]*ts[6])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6]*ts[5] eq f(xˆ2)*ts[3]*ts[6]*ts[2];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[6]*ts[3] eq g*(ts[7]*ts[1]*ts[3])ˆh
then g,h; end if; end for; end for;

ts[7]*ts[3]*ts[6]*ts[3] eq f(x)*ts[1]*ts[7]*ts[5];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[6]*ts[7] eq g*(ts[7]*ts[1]*ts[2])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6]*ts[7] eq ts[2]*ts[3]*ts[4];
/***********Factor by the center*****************/
D:=DihedralGroup(7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6)(2, 5)(3, 4);
N:=sub<D|xx,yy>;
#N;
Set(N);
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,
(t,y),(x*t*tˆx)ˆ2, (t*t*x*t)ˆ9>;
#G;

f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
Center(G1);
aa:= G1! (1, 20)(2, 12)(3, 6)(4, 7)(5, 11)(8, 13)
(9, 18)(10, 19)(14, 21)(15, 22)(16, 29)(17, 30)
(23, 31)(24, 32)(25, 38)(26, 33)(27, 43)(28, 35)
(34, 44)(36,45)(37, 52)(39, 46)(40, 56)(41, 55)
(42, 48)(47, 57)(49, 58)(50, 62)(51, 63)(53, 68)
(54, 67)(59, 69)(60, 65)(61, 71)(64, 66)(70, 72);
A:=f(x);
B:=f(y);
C:=f(t);
N:=sub<G1|A,B,C>;
NN<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
(x*t*tˆx)ˆ2, (t*t*x*t)ˆ9>;
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Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=Aˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

for i in [1..#N] do if ArrayP[i] eq aa
then print Sch[i]; end if; end for;
/* Gives me the center in terms of x, y, and t */
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,
(t,y), (x*t*tˆx)ˆ2,(t*t*x*t)ˆ9,x*y*t*x*t*xˆ-1*t>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
/**************************************************/
/* Now we need to construct the double
coset enumeration using the above presentation */
D:=DihedralGroup(7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6)(2, 5)(3, 4);
N:=sub<D|xx,yy>;
#N;
Set(N);
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,
(t,y),(x*t)ˆ0, (x*t*tˆx)ˆ2,(x*y*tˆx*t)ˆ0,
(t*t*x*t)ˆ9,x*y*t*x*t*xˆ-1*t>;

f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
Index(G,sub<G|x,y>);
IN:=sub<G1|f(x),f(y)>;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(tˆx); ts[2] := f(tˆ(xˆ2));
ts[3] := f(tˆ(xˆ3)); ts[4] := f(tˆ(xˆ4));
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ts[5] := f(tˆ(xˆ5)); ts[6] := f(tˆ(xˆ6));
f(xˆ2)*ts[1]*ts[2]*ts[7]*ts[1];
f(xˆ2)*ts[1]*ts[7]*ts[6]*ts[5]*ts[4]*ts[3]*ts[2]*ts[1]*ts[7];
f(x*y)*ts[7]*ts[6]*ts[7];
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
Q[I] applied sequentially.

*/
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];

for i := 1 to 7 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;

for i in [1..36] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
N7 := Stabiliser (N, [7]);
N7; #N7;
T7:=Transversal(N,N7);
for i in [1..#T7] do
ss:=[7]ˆT7[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7);
T71:=Transversal(N,N71);
for i in [1..#T71] do
ss:=[7,1]ˆT71[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IN do for h in IN do
if ts[7]*ts[6] eq g*(ts[7])ˆh then g,h;

end if; end for; end for;
for i in [1..15] do i, cst[i]; end for;
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/*Relation*/
ts[7]*ts[6] eq f(x*y)*ts[7];
for g in IN do for h in IN do
if ts[7]*ts[1] eq g*(ts[7])ˆh

then g,h; end if; end for; end for;
/*Relation*/
ts[7]*ts[1] eq f((xˆ6)*y)*ts[7];
N72:=Stabiliser (N,[7,2]);
SSS:={[7,2]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);
end if; end for; end for;
N72s := N72;
for n in N do if 7ˆn eq 3 and 2ˆn eq 1
then N72s:=sub<N|N72s,n>; end if; end for;
#N72s;
[7,2]ˆN72s;
for n in IN do if ts[7]*ts[2] eq n*ts[3]*ts[1] then
n; end if; end for;
for n in IN do if ts[7]*ts[2] eq n*ts[3]*ts[1] then
n; end if; end for;

/*RELATION */
ts[7]*ts[2] eq f(xˆ2)*ts[3]*ts[1];
N72:=Stabiliser (N,[7,2]);
N72;
N72:=sub<N| (1,2)(3,7)(4,6)>;
#N72;
[7,2]ˆN72;
T:=Transversal(N,N72);
for i in [1..#T] do

{[7,2]ˆN72}ˆT[i];
end for;
T72:=Transversal(N,N72);
for i in [1..#T72] do
ss:=[7,2]ˆT72[i];
cst[prodim(1, ts, ss)] := ss;
end for;
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m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N72);
N73:=Stabiliser (N,[7,3]);
SSS:={[7,3]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);
end if; end for; end for;
N73s := N73;
#N73s;
[7,3]ˆN73s;
T:=Transversal(N,N73);
for i in [1..#T] do

{[7,3]ˆN73}ˆT[i];
end for;
T73:=Transversal(N,N73);
for i in [1..#T73] do
ss:=[7,3]ˆT73[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73);
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[1] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[1] eq f(xˆ-1)*ts[2]*ts[6];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[2] eq g*(ts[7]*ts[2])ˆh
then g,h; end if; end for; end for;

ts[7]*ts[3]*ts[2] eq f((xˆ2)y)*ts[5]*ts[3];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[4] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[4] eq f(y)*ts[7]*ts[3];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[5] eq g*(ts[7]*ts[2]*ts[5])ˆh
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then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[5] eq ts[3]*ts[5]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[6] eq g*(ts[7]*ts[2]*ts[5])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6] eq f(y)*ts[5]*ts[3]*ts[7];
for g in IN do for h in IN do
if ts[7]*ts[3]*ts[7] eq g*(ts[7]*ts[2])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[7] eq f(x)*ts[4]*ts[2];
N723:=Stabiliser (N,[7,2,3]);
T723:=Transversal(N,N723);
for i in [1..#T723] do
ss:=[7,2,3]ˆT723[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[3] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[3] eq f(x)*ts[5]*ts[2];
N724:=Stabiliser (N,[7,2,4]);
T724:=Transversal(N,N724);
for i in [1..#T724] do
ss:=[7,2,4]ˆT724[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[4] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[4] eq f(x)*ts[4]*ts[1];

N725:=Stabiliser (N,[7,2,5]);
SSS:={[7,2,5]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[2]*ts[5] eq
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n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N725s := N725;
for n in N do if 7ˆn eq 3 and 2ˆn eq 1 and
5ˆn eq 5 then N725s:=sub<N|N725s,n>;
end if; end for;
#N725s;
[7,2,5]ˆN725s;
for n in IN do if ts[7]*ts[2]*ts[5] eq

n*ts[3]*ts[1]*ts[5] then
n; end if; end for;

ts[7]*ts[2]*ts[5] eq f(xˆ2)*ts[3]*ts[1]*ts[5];
N725:=Stabiliser (N,[7,2,5]);
N725;
N725:=sub<N| (1,2)(3,7)(4,6)>;
#N725;
[7,2,5]ˆN725;
T:=Transversal(N,N725);
for i in [1..#T] do

{[7,2,5]ˆN725}ˆT[i];
end for;
T725:=Transversal(N,N725);
for i in [1..#T725] do
ss:=[7,2,5]ˆT725[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N725);
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[5]*ts[1] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[1] eq f(xˆ2)*ts[6]*ts[3];
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[5]*ts[3] eq g*(ts[7]*ts[2]*ts[5])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[3] eq f(xˆ6)*ts[6]*ts[4]*ts[1];
for g in IN do for h in IN do
if ts[7]*ts[2]*ts[5]*ts[4] eq g*(ts[7]*ts[3])ˆh

then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[4] eq f((xˆ6)*y)*ts[5]*ts[1];
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Appendix F: MAGMA Code for

DCE of L2(27) over a Maximal

Subgroup

G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2,
tˆ2,(t,y),(x*t)ˆ0,(x*t*tˆx)ˆ0,(x*y*tˆx*t)ˆ3,

(t*t*x*t)ˆ7>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
M:=MaximalSubgroups(G1);
M;
#G1;
#G1/351;
M3:=M[3]‘subgroup;
f(x) in M3 and f(y) in M3;
C:=Conjugates(G1,M3);
CC:=SetToSequence(C);
for i in [1..#C] do if f(x) in CC[i] and f(y) in
CC[i] then
i; end if; end for;
H:=sub<G1|CC[124]>;#H;
f(x) in H and f(y) in H;
for g in G1 do if sub<G1|f(x),f(y)> eq
H then gg=g; end if; end for;
for i in [0..6] do for j in [0..1] do for k,l,m,n,o
in [0..6] do if gg eq
f(xˆi*yˆj*tˆ(xˆk)*tˆ(xˆl)*tˆ(xˆm)*tˆ(xˆn)*tˆ(xˆo))
then i,j,k,l,m,n,o; end if; end for; end for; end for;
sub<G1|f(tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)*tˆ(xˆ4)

*tˆ(xˆ2)),f(x),f(y)> eq H;
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
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(x*t)ˆ0,(x*t*tˆx)ˆ0,(x*y*t ˆx*t)ˆ3, (t*t*x*t)ˆ7>;
H:=sub<G|x,y,tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)*tˆ(xˆ4)

*tˆ(xˆ2)>;#H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:= sub<G1|IN,f(tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)

*tˆ(xˆ4)*tˆ(xˆ2))>;
#IN; #IM;
/****************************************/
D:=DihedralGroup(7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6)(2, 5)(3, 4);
N:=sub<D|xx,yy>;
#N;
Set(N);
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,
(t,y),(x*t)ˆ0,(x*t*tˆx)ˆ0,(x*y*tˆx*t)ˆ3, (t*t*x*t)ˆ7>;
H:=sub<G| x,y,tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)*tˆ(xˆ4)

*tˆ(xˆ2)>;
#H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|IN,f(tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)*tˆ(xˆ4)*tˆ(xˆ2))>;
#IN; #IM;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(tˆx); ts[2] := f(tˆ(xˆ2));
ts[3] := f(tˆ(xˆ3)); ts[4] := f(tˆ(xˆ4));

ts[5] := f(tˆ(xˆ5)); ts[6] := f(tˆ(xˆ6));
f(x*y)*ts[1]*ts[7]*ts[5] eq ts[7]*ts[1]*ts[6];
ts[6]*ts[5]*ts[4] eq ts[7]*ts[1]*ts[2]*ts[3];
DoubleCosets(G,H,sub<G|x,y>);
#DoubleCosets(G,H,sub<G|x,y>);
Index(G,H);
prodim := function(pt, Q, I)

v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
cst := [null : i in [1 .. Index(G,H)]]
where null is [Integers() | ];

for i := 1 to 7 do
cst[prodim(1, ts, [i])] := [i];
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end for;
m:=0;

for i in [1..351] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
N7 := Stabiliser (N, [7]);
N7; #N7;
T7:=Transversal(N,N7);
for i in [1..#T7] do
ss:=[7]ˆT7[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7);

N71:=Stabiliser (N,[7,1]);
SSS:={[7,1]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);
end if; end for; end for;
N71s := N71;
#N71s;
[7,1]ˆN71s;
T:=Transversal(N,N71);
for i in [1..#T] do

{[7,1]ˆN71}ˆT[i];
end for;
T71:=Transversal(N,N71);
for i in [1..#T71] do
ss:=[7,1]ˆT71[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N71);

N72:=Stabiliser (N,[7,2]);
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SSS:={[7,2]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);
end if; end for; end for;
N72s := N72;
#N72s;
[7,2]ˆN72s;
T:=Transversal(N,N72);
for i in [1..#T] do

{[7,2]ˆN72}ˆT[i];
end for;
T72:=Transversal(N,N72);
for i in [1..#T72] do
ss:=[7,2]ˆT72[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N72);

N73:=Stabiliser (N,[7,3]);
SSS:={[7,3]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);
end if; end for; end for;
N73s := N73;
#N73s;
[7,3]ˆN73s;
T:=Transversal(N,N73);
for i in [1..#T] do

{[7,3]ˆN73}ˆT[i];
end for;
T73:=Transversal(N,N73);



202

for i in [1..#T73] do
ss:=[7,3]ˆT73[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73);

N717:=Stabiliser (N,[7,1,7]);
SSS:={[7,1,7]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1]*ts[7] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N717s := N717;
#N717s;
[7,1,7]ˆN717s;
T:=Transversal(N,N717);
for i in [1..#T] do

{[7,1,7]ˆN717}ˆT[i];
end for;
T717:=Transversal(N,N717);
for i in [1..#T717] do
ss:=[7,1,7]ˆT717[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N717);

N712:=Stabiliser (N,[7,1,2]);
SSS:={[7,1,2]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1]*ts[2] eq



203

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for; end for;
N712s := N712;
#N712s;
[7,1,2]ˆN712s;
T:=Transversal(N,N712);
for i in [1..#T] do

{[7,1,2]ˆN712}ˆT[i];
end for;
T712:=Transversal(N,N712);
for i in [1..#T712] do
ss:=[7,1,2]ˆT712[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N712);

N713:=Stabiliser (N,[7,1,3]);
SSS:={[7,1,3]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N713s := N713;
#N713s;
[7,1,3]ˆN712s;
T:=Transversal(N,N713);
for i in [1..#T] do

{[7,1,3]ˆN713}ˆT[i];
end for;
T713:=Transversal(N,N713);
for i in [1..#T713] do
ss:=[7,1,3]ˆT713[i];
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cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N713);

N714:=Stabiliser (N,[7,1,4]);
SSS:={[7,1,4]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1]*ts[4] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N714s := N714;
#N714s;
[7,1,4]ˆN714s;
T:=Transversal(N,N714);
for i in [1..#T] do

{[7,1,4]ˆN714}ˆT[i];
end for;
T714:=Transversal(N,N714);
for i in [1..#T714] do
ss:=[7,1,4]ˆT714[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N714);

for g in IM do for h in IN do
if ts[7]*ts[1]*ts[6] eq g*(ts[7]*ts[1]*ts[3])ˆh

then g,h; end if; end for; end for;
/*Relation */
ts[7]*ts[1]*ts[6] eq f(x*y)*ts[1]*ts[7]*ts[5];
N715:=Stabiliser (N,[7,1,5]);
SSS:={[7,1,5]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
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Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1]*ts[5] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N715s := N715;
for n in N do if 7ˆn eq 6 and 1ˆn eq 5 and
5ˆn eq 1 then N715s:=sub<N|N715s,n>; end if;
end for;
#N715s;
[7,1,5]ˆN715s;
N715:=Stabiliser (N,[7,1,5]);
N715;
N715:=sub<N| (6,7)(1,5)(2,4)>;
#N715;
[7,1,5]ˆN715;
T:=Transversal(N,N715);
for i in [1..#T] do

{[7,1,5]ˆN715}ˆT[i];
end for;
T715:=Transversal(N,N715);
for i in [1..#T715] do
ss:=[7,1,5]ˆT715[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N715);

N726:=Stabiliser (N,[7,2,6]);
SSS:={[7,2,6]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[2]*ts[6] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
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end if; end for; end for;
N726s := N726;
#N726s;
[7,2,6]ˆN715s;
T:=Transversal(N,N726);
for i in [1..#T] do

{[7,2,6]ˆN726}ˆT[i];
end for;
T726:=Transversal(N,N726);
for i in [1..#T726] do
ss:=[7,2,6]ˆT726[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N726);

N727:=Stabiliser (N,[7,2,7]);
SSS:={[7,2,7]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[2]*ts[7] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N727s := N727;
#N727s;
[7,2,7]ˆN727s;
T:=Transversal(N,N727);
for i in [1..#T] do

{[7,2,7]ˆN727}ˆT[i];
end for;
T727:=Transversal(N,N727);
for i in [1..#T727] do
ss:=[7,2,7]ˆT727[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N727);
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N724:=Stabiliser (N,[7,2,4]);
SSS:={[7,2,4]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[2]*ts[4] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N724s := N724;
#N724s;
[7,2,4]ˆN724s;
T:=Transversal(N,N724);
for i in [1..#T] do

{[7,2,4]ˆN724}ˆT[i];
end for;
T724:=Transversal(N,N724);
for i in [1..#T724] do
ss:=[7,2,4]ˆT724[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N724);

N725:=Stabiliser (N,[7,2,5]);
SSS:={[7,2,5]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[2]*ts[5] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N725s := N725;
#N725s;
[7,2,5]ˆN725s;
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T:=Transversal(N,N725);
for i in [1..#T] do

{[7,2,5]ˆN725}ˆT[i];
end for;
T725:=Transversal(N,N725);
for i in [1..#T725] do
ss:=[7,2,5]ˆT725[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N725);
N737:=Stabiliser (N,[7,3,7]);
SSS:={[7,3,7]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N737s := N737;
for n in N do if 7ˆn eq 5 and 3ˆn eq 2
and 7ˆn eq 5 then N737s:=sub<N|N737s,n>;
end if; end for;
#N737s;
[7,3,7]ˆN737s;
N737:=Stabiliser (N,[7,3,7]);
N737;
N737:=sub<N| (1,4)(2,3)(5,7)>;
#N737;
[7,3,7]ˆN737;
T:=Transversal(N,N737);
for i in [1..#T] do

{[7,3,7]ˆN737}ˆT[i];
end for;
T737:=Transversal(N,N737);
for i in [1..#T737] do
ss:=[7,3,7]ˆT737[i];
cst[prodim(1, ts, ss)] := ss;
end for;



209

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N737);

N732:=Stabiliser (N,[7,3,2]);
SSS:={[7,3,2]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N732s := N732;
for n in N do if 7ˆn eq 2 and 3ˆn eq 6
and 2ˆn eq 7 then N732s:=sub<N|N732s,n>;
end if; end for;

#N732s;
[7,3,2]ˆN732s;
N732:=Stabiliser (N,[7,3,2]);
N732;
N732:=sub<N| (2,7)(3,6)(4,5)>;
#N732;
[7,3,2]ˆN732;
T:=Transversal(N,N732);
for i in [1..#T] do

{[7,3,2]ˆN732}ˆT[i];
end for;
T732:=Transversal(N,N732);
for i in [1..#T732] do
ss:=[7,3,2]ˆT732[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N732);

N734:=Stabiliser (N,[7,3,4]);
SSS:={[7,3,4]}; SSS:=SSSˆN;
SSS;

#(SSS);
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Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[4] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N734s := N734;
for n in N do if 7ˆn eq 2 and 3ˆn eq 6
and 4ˆn eq 5 then N734s:=sub<N|N734s,n>;
end if; end for;
#N734s;
[7,3,4]ˆN734s;
N734:=Stabiliser (N,[7,3,4]);
N734;
N732:=sub<N| (2,7)(3,6)(4,5)>;
#N732;
[7,3,2]ˆN732;
T:=Transversal(N,N734);
for i in [1..#T] do

{[7,3,4]ˆN734}ˆT[i];
end for;
T734:=Transversal(N,N734);
for i in [1..#T734] do
ss:=[7,3,4]ˆT734[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N734);

N7323:=Stabiliser (N,[7,3,2,3]);
SSS:={[7,3,2,3]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);



211

end if; end for; end for;
N7323s := N7323;
#N7323s;
[7,3,2,3]ˆN7323s;
T:=Transversal(N,N7323);
for i in [1..#T] do

{[7,3,2,3]ˆN7323}ˆT[i];
end for;
T7323:=Transversal(N,N7323);
for i in [1..#T7323] do
ss:=[7,3,2,3]ˆT7323[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7323);

N7321:=Stabiliser (N,[7,3,2,1]);
SSS:={[7,3,2,1]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7321s := N7321;
for n in N do if 7ˆn eq 2 and 3ˆn eq 6
and 2ˆn eq 7 and 1ˆn eq 1 then
N7321s:=sub<N|N7321s,n>; end if; end for;
#N7321s;
[7,3,2,1]ˆN7321s;
for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]

eq n*ts[2]*ts[6]*ts[7]*ts[1] then
n; end if; end for;

N7321:=Stabiliser (N,[7,3,2,1]);
N7321;
N7321:=sub<N| (2,7)(3,6)(4,5)>;
#N7321;
[7,3,2,1]ˆN7321;
T:=Transversal(N,N7321);
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for i in [1..#T] do
{[7,3,2,1]ˆN7321}ˆT[i];
end for;
T7321:=Transversal(N,N7321);
for i in [1..#T7321] do
ss:=[7,3,2,1]ˆT7321[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7321);

N7347:=Stabiliser (N,[7,3,4,7]);
SSS:={[7,3,4,7]}; SSS:=SSSˆN;
SSS;

#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[4]*ts[7] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7347s := N7347;
#N7347s;
[7,3,4,7]ˆN7347s;
T:=Transversal(N,N7347);
for i in [1..#T] do

{[7,3,4,7]ˆN7347}ˆT[i];
end for;
T7347:=Transversal(N,N7347);
for i in [1..#T7347] do
ss:=[7,3,4,7]ˆT7347[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7347);
N7341:=Stabiliser (N,[7,3,4,1]);
SSS:={[7,3,4,1]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);
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Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[4]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7341s := N7341;
N7341s := N7341;
for n in N do if 7ˆn eq 2 and 3ˆn eq 6
and 4ˆn eq 5 and 1ˆn eq 1 then

N7341s:=sub<N|N7341s,n>; end if;
end for;
#N7341s;
[7,3,4,1]ˆN7341s;
N7341:=Stabiliser (N,[7,3,4,1]);
N7341;
N7341:=sub<N| (2,7)(3,6)(4,5)>;
#N7341;
[7,3,4,1]ˆN7341;
T:=Transversal(N,N7341);
for i in [1..#T] do

{[7,3,4,1]ˆN7341}ˆT[i];
end for;
T7341:=Transversal(N,N7341);
for i in [1..#T7341] do
ss:=[7,3,4,1]ˆT7341[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7341);

N7371:=Stabiliser (N,[7,3,7,1]);
SSS:={[7,3,7,1]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
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then print Rep(Seqq[i]);
end if; end for; end for;
N7371s := N7371;
#N7371s;
[7,3,7,1]ˆN7371s;
T:=Transversal(N,N7371);
for i in [1..#T] do

{[7,3,7,1]ˆN7371}ˆT[i];
end for;
T7371:=Transversal(N,N7371);
for i in [1..#T7371] do
ss:=[7,3,7,1]ˆT7371[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7371);

N7372:=Stabiliser (N,[7,3,7,2]);
SSS:={[7,3,7,2]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7372s := N7372;
for n in N do if 7ˆn eq 6 and 3ˆn eq 3
and 7ˆn eq 6 and 2ˆn eq 4 then
N7372s:=sub<N|N7372s,n>; end if; end for;
#N7372s;
[7,3,7,2]ˆN7372s;
N7372:=Stabiliser (N,[7,3,7,2]);
N7372;
N7372:=sub<N| (6,7)(2,4)(1,5)>;
#N7372;
[7,3,7,2]ˆN7372;
T:=Transversal(N,N7372);
for i in [1..#T] do

{[7,3,7,2]ˆN7372}ˆT[i];



215

end for;
T7372:=Transversal(N,N7372);
for i in [1..#T7372] do
ss:=[7,3,7,2]ˆT7372[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7372);

N7152:=Stabiliser (N,[7,1,5,2]);
SSS:={[7,1,5,2]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[1]*ts[5]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7152s := N7152;
#N7152s;
[7,1,5,2]ˆN7152s;
T:=Transversal(N,N7152);
for i in [1..#T] do

{[7,1,5,2]ˆN7152}ˆT[i];
end for;
T7152:=Transversal(N,N7152);
for i in [1..#T7152] do
ss:=[7,1,5,2]ˆT7152[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7152);

N73417:=Stabiliser (N,[7,3,4,1,7]);
SSS:={[7,3,4,1,7]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
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for n in IM do
if ts[7]*ts[3]*ts[4]*ts[1]*ts[7] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73417s := N73417;
#N73417s;
[7,3,4,1,7]ˆN73417s;
T:=Transversal(N,N73417);
for i in [1..#T] do

{[7,3,4,1,7]ˆN73417}ˆT[i];
end for;

T73417:=Transversal(N,N73417);
for i in [1..#T73417] do
ss:=[7,3,4,1,7]ˆT73417[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73417);

N73214:=Stabiliser (N,[7,3,2,1,4]);
SSS:={[7,3,2,1,4]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2]*ts[1]*ts[4] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73214s := N73214;
for n in N do if 7ˆn eq 4 and 3ˆn eq 1
and 2ˆn eq 2 and 1ˆn eq 3 and 4ˆn eq 7 then
N73214s:=sub<N|N73214s,n>; end if; end for;
#N73214s;
[7,3,2,1,4]ˆN73214s;
for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]*ts[4] eq
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n*ts[4]*ts[1]*ts[2]*ts[3]*ts[7] then n; end if;
end for;
N73214:=Stabiliser (N,[7,3,2,1,4]);
N73214;
N73214:=sub<N| (4,7)(1,3)(5,6)>;
#N73214;
[7,3,2,1,4]ˆN73214;
T:=Transversal(N,N73214);
for i in [1..#T] do

{[7,3,2,1,4]ˆN73214}ˆT[i];
end for;
T73214:=Transversal(N,N73214);
for i in [1..#T73214] do
ss:=[7,3,2,1,4]ˆT73214[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73214);

N73723:=Stabiliser (N,[7,3,7,2,3]);
SSS:={[7,3,7,2,3]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7]*ts[2]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73723s := N73723;
for n in N do if 7ˆn eq 6 and 3ˆn eq 3 and
7ˆn eq 6 and 2ˆn eq 4 and 3ˆn eq 3

then N73723s:=sub<N|N73723s,n>;
end if; end for;
#N73723s;
[7,3,7,2,3]ˆN73723s;
for n in IM do if ts[7]*ts[3]*ts[7]*ts[2]*ts[3] eq
n*ts[6]*ts[3]*ts[6]*ts[4]*ts[3] then n;

end if; end for;
N73723:=Stabiliser (N,[7,3,7,2,3]);
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N73723;
N73723:=sub<N| (6,7)(2,4)(1,5)>;
#N73723;
[7,3,7,2,3]ˆN73723;
T:=Transversal(N,N73723);
for i in [1..#T] do

{[7,3,7,2,3]ˆN73723}ˆT[i];
end for;
T73723:=Transversal(N,N73723);
for i in [1..#T73723] do
ss:=[7,3,7,2,3]ˆT73723[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73723);

N732142:=Stabiliser (N,[7,3,2,1,4,2]);
SSS:={[7,3,2,1,4,2]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]
then print Rep(Seqq[i]);
end if; end for; end for;
N732142s := N732142;
for n in N do if 7ˆn eq 4 and 3ˆn eq 1
and 2ˆn eq 2 and 1ˆn eq 3 and 4ˆn eq 7
and 2ˆn eq 2 then N732142s:=
sub<N|N732142s,n>; end if; end for;
#N732142s;
[7,3,2,1,4,2]ˆN732142s;
for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2]

eq n*ts[4]*ts[1]*ts[2]*ts[3]*ts[7]*ts[2] then n;
end if; end for;
N732142:=Stabiliser (N,[7,3,2,1,4,2]);
N732142;
N732142:=sub<N| (4,7)(1,3)(5,6)>;
#N732142;
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[7,3,2,1,4,2]ˆN732142;
T:=Transversal(N,N732142);
for i in [1..#T] do

{[7,3,2,1,4,2]ˆN732142}ˆT[i];
end for;
T732142:=Transversal(N,N732142);
for i in [1..#T732142] do
ss:=[7,3,2,1,4,2]ˆT732142[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N732142);

N7321427:=Stabiliser (N,[7,3,2,1,4,2,7]);
SSS:={[7,3,2,1,4,2,7]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2]*ts[7] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]*
ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]*
ts[Rep(Seqq[i])[7]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7321427s := N7321427;
for n in N do if 7ˆn eq 5 and 3ˆn eq 2 and
2ˆn eq 3 and 1ˆn eq 4 and 4ˆn eq 1
and 2ˆn eq 3 then
N7321427s:=sub<N|N7321427s,n>;
end if; end for;

#N7321427s;
[7,3,2,1,4,2,7]ˆN7321427s;
for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]

*ts[4]*ts[2]*ts[7] eq n*ts[5]*ts[2]*ts[3]*ts[4]

*ts[1]*ts[3]*ts[5] then n; end if; end for;
N7321427:=Stabiliser (N,[7,3,2,1,4,2,7]);
N7321427;
N7321427:=sub<N| (5,7)(2,3)(1,4)>;
#N7321427;
[7,3,2,1,4,2,7]ˆN7321427;
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T:=Transversal(N,N7321427);
for i in [1..#T] do

{[7,3,2,1,4,2,7]ˆN7321427}ˆT[i];
end for;
T7321427:=Transversal(N,N7321427);
for i in [1..#T7321427] do
ss:=[7,3,2,1,4,2,7]ˆT7321427[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7321427);

N73214276:=Stabiliser (N,[7,3,2,1,4,2,7,6]);
SSS:={[7,3,2,1,4,2,7,6]}; SSS:=SSSˆN;
SSS;#(SSS);

Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2]*ts[7]*ts[6] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*

ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]*
ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]*
ts[Rep(Seqq[i])[7]]*ts[Rep(Seqq[i])[8]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73214276s := N73214276;
for n in N do if 7ˆn eq 5 and 3ˆn eq 2
and 2ˆn eq 3 and 1ˆn eq 4 and 4ˆn eq 1
and 2ˆn eq 3 and 7ˆn eq 5 and 6ˆn eq 6

then N73214276s:=sub<N|N73214276s,n>;
end if; end for;

#N73214276s;
[7,3,2,1,4,2,7,6]ˆN73214276s;
for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]

*ts[4]*ts[2]*ts[7]*ts[6] eq n*ts[5]*ts[2]

*ts[3]*ts[4]*ts[1]*ts[3]*ts[5]*ts[6]
then n; end if; end for;
N73214276:=Stabiliser (N,[7,3,2,1,4,2,7,6]);
N73214276;
N73214276:=sub<N| (5,7)(2,3)(1,4)>;
#N73214276;
[7,3,2,1,4,2,7,6]ˆN73214276;
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T:=Transversal(N,N73214276);
for i in [1..#T] do

{[7,3,2,1,4,2,7,6]ˆN73214276}ˆT[i];
end for;
T73214276:=Transversal(N,N73214276);
for i in [1..#T73214276] do
ss:=[7,3,2,1,4,2,7,6]ˆT73214276[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73214276);

N73476:=Stabiliser (N,[7,3,4,7,6]);
SSS:={[7,3,4,7,6]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[4]*ts[7]*ts[6] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*

ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73476s := N73476;
#N73476s;
[7,3,4,7,6]ˆN73476s;
T:=Transversal(N,N73476);
for i in [1..#T] do

{[7,3,4,7,6]ˆN73476}ˆT[i];
end for;
T73476:=Transversal(N,N73476);
for i in [1..#T73476] do
ss:=[7,3,4,7,6]ˆT73476[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73476);

N73721:=Stabiliser (N,[7,3,7,2,1]);
SSS:={[7,3,7,2,1]}; SSS:=SSSˆN;
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SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7]*ts[2]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*

ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73721s := N73721;
#N73721s;
[7,3,7,2,1]ˆN73721s;
T:=Transversal(N,N73721);
for i in [1..#T] do

{[7,3,7,2,1]ˆN73721}ˆT[i];
end for;
T73721:=Transversal(N,N73721);
for i in [1..#T73721] do
ss:=[7,3,7,2,1]ˆT73721[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73721);

N737216:=Stabiliser (N,[7,3,7,2,1,6]);
SSS:={[7,3,7,2,1,6]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7]*ts[2]*ts[1]*ts[6] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]
then print Rep(Seqq[i]);
end if; end for; end for;
N737216s := N737216;
for n in N do if 7ˆn eq 4 and 3ˆn eq 1 and 7ˆn
eq 4 and 2ˆn eq 2 and 1ˆn eq 3 and 6ˆn eq 5
then N737216s:=sub<N|N737216s,n>; end if; end for;

#N737216s;
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[7,3,7,2,1,6]ˆN737216s;
for n in IM do if ts[7]*ts[3]*ts[7]*ts[2]*ts[1]*ts[6]

eq n*ts[4]*ts[1]*ts[4]*ts[2]*ts[3]*ts[5] then
n; end if; end for;

N737216:=Stabiliser (N,[7,3,7,2,1,6]);
N737216;
N737216:=sub<N| (4,7)(1,3)(5,6)>;
#N737216;
[7,3,7,2,1,6]ˆN737216;
T:=Transversal(N,N737216);
for i in [1..#T] do

{[7,3,7,2,1,6]ˆN737216}ˆT[i];
end for;
T737216:=Transversal(N,N737216);
for i in [1..#T737216] do
ss:=[7,3,7,2,1,6]ˆT737216[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N737216);
/********************************************/
/*We use the Schreier System to convert
permutation into word*/
D:=DihedralGroup(7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6)(2, 5)(3, 4);
N:=sub<D|xx,yy>;#N;Set(N);
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,
(t,y),(x*t)ˆ0,(x*t*tˆx)ˆ0,(x*y*tˆx*t)ˆ3, (t*t*x*t)ˆ7>;
H:=sub<G| x,y,tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)*tˆ(xˆ4)*tˆ(xˆ2)>;
#H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|IN,f(tˆ(xˆ2)*tˆ(xˆ4)*tˆ(xˆ5)*
tˆ(xˆ4)*tˆ(xˆ2))>;
#IN; #IM;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(tˆx); ts[2] := f(tˆ(xˆ2));
ts[3] := f(tˆ(xˆ3)); ts[4] := f(tˆ(xˆ4));
ts[5] := f(tˆ(xˆ5)); ts[6] := f(tˆ(xˆ6));

A:=f(x);
B:=f(y);
C:=f(t);
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N:=sub<G1|A,B,C>;
NN<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2,
tˆ2,(t,y),(x*t)ˆ0,(x*t*tˆx)ˆ0,(x*y*tˆx*t)ˆ3,
(t*t*x*t)ˆ7>;

G1:=NN;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=Aˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
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Appendix G: MAGMA Code for

Mixed Extension (26
·
: L2(7)) : 2

a:=0; b:=8;c:=0; d:=3;
G<x,y,t>:=Group<x,y,t|xˆ7, yˆ2,(x*y)ˆ2, tˆ2,
(t,y),(x*t)ˆa,(x*t*tˆx)ˆb,(x*y*tˆx*t)ˆc,
(t*t*x*t)ˆd>;#G;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
Center(G1);
NL:=NormalLattice(G1);
NL;
MinimalNormalSubgroups(G1);
X:=AbelianGroup(GrpPerm,[2,2,2,2,2,2]);
s:=IsIsomorphic(X,NL[2]);s;
q,ff:=quo<NL[3]|NL[2]>;
CompositionFactors(q);
NumberOfGenerators(NL[3]);
T:=Transversal(NL[3],NL[2]);
/*Note we store the generators of NL[2] and the
transversals of NL[3]*/
NumberOfGenerators(NL[2]);
/* now write schreier system, you want the
action of 2ˆ6 so write it with that, you need N and NN,
check their number so you know they equal
64=2ˆ6 */
N:=sub<G1|A,B,C,D,E,F>;#N;
/*presentation for 2ˆ6=64 abelian they commute*/
NN<k,l,m,n,o,p>:=Group<k,l,m,n,o,p|kˆ2,lˆ2,mˆ2,
nˆ2,oˆ2,pˆ2,(k,l),(k,m),(k,n),(k,o),(k,p),(l,m),(l,n),
(l,o),(l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p)>;
#NN;
/* now you can run the system, [1..64] because 2ˆ6.
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then there are 6 generators so there will be six things,
in this case they’re all order 2 (2ˆ6) so you don not
include their inverses */
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..64]];
for i in [2..64] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
/* that’s the system, so now you can write T[3]ˆ4 as
elements of 2ˆ6, earlier we called T[3]ˆ4= T34 */
for i in [1..64] do if ArrayP[i] eq T34 then Sch[i];
end if; end for;
T34 eq D;
Order(ff(T2));
q;
#sub<q| ff(T2),ff(T3)>;
Order(ff(T2)*ff(T3));
H<r,s>:= Group<r,s|rˆ2,sˆ4,(r*s)ˆ7,(r,s)ˆ4,(r*sˆ2)ˆ3>;
/*PSL(2,7) Presentation*/
/* H<r,s>:= Group<r,s,|rˆ2,sˆ4=n,(r*s)ˆ7,(r,s)ˆ4,
(r*sˆ2)ˆ3>; */
I:=[Id(NN): i in [1..13]];
for i in [1..64] do if ArrayP[i] eq T34 then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq AˆT2 then
Sch[i]; I[2]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq BˆT2 then
Sch[i]; I[3]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq CˆT2
then Sch[i]; I[4]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq DˆT2
then Sch[i]; I[5]:=Sch[i]; end if; end for;
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for i in [1..64] do if ArrayP[i] eq EˆT2
then Sch[i]; I[6]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq FˆT2
then Sch[i]; I[7]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq AˆT3
then Sch[i]; I[8]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq BˆT3
then Sch[i]; I[9]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq CˆT3
then Sch[i]; I[10]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq DˆT3
then Sch[i]; I[11]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq EˆT3
then Sch[i]; I[12]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq FˆT3
then Sch[i]; I[13]:=Sch[i]; end if; end for;
I;
Order((T2,T3));
Order((T2*T3ˆ2));
I:=[Id(NN): i in [1..14]];
Order(ff((T2,T3)));
(T2,T3)ˆ4 in N;
for i in [1..64] do if ArrayP[i] eq (T2,T3)ˆ4

then Sch[i]; end if; end for;
NN<k,l,m,n,o,p,r,s>:=Group<k,l,m,n,o,p,r,s|kˆ2,lˆ2,

mˆ2,nˆ2,oˆ2,pˆ2,(k,l),(k,m),(k,n),(k,o),(k,p),(l,m), (l,
n),(l,o), (l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p),rˆ2,
sˆ4=l*m*p,(r*s)ˆ7,(r,s)ˆ4=k*l*m*o*p,(r*sˆ2)ˆ3,kˆr=k*m*o,
lˆr=n*o*p,mˆr=m,nˆr=m*n*o,oˆr=o,pˆr=l*m*n,
kˆs=k*m*n*o*p,lˆs=n*p,mˆs=k,nˆs=k*l*n*p,oˆs=p,
pˆs=k*l*m*n>;
#NN;
f1,g,k1:=CosetAction(NN,sub<NN|Id(NN)>);
s,t:=IsIsomorphic(NL[3],g);
s;

/*Now find an element of order 2 in G1 but outside NL[3]*/
for g in G1 do if Order(g) eq 2 and sub<G1|NL[3],g> eq G1
then Z:=g;break; end if; end for;
G1 eq sub<G1|NL[3],Z>;
/*-----------------------------------------*/

/*We find the action of Z on the generators
A,B,C,D,E,F,T2,T3 of NL[3]*/
N:=sub<G1|A,B,C,D,E,F,T2,T3>;#N;
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NN<k,l,m,n,o,p,r,s>:=Group<k,l,m,n,o,p,r,s|kˆ2,lˆ2,
mˆ2,nˆ2,oˆ2,pˆ2,(k,l),(k,m),(k,n),(k,o),(k,p),(l,m), (l,n),
(l,o), (l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p),rˆ2,sˆ4=
l*m*p,(r*s)ˆ7,(r,s)ˆ4=k*l*m*o*p,
(r*sˆ2)ˆ3,kˆr=k*m*o,lˆr=n*o*p,mˆr=m,nˆr=m*n*o,oˆr=o,
pˆr=l*m*n,kˆs=k*m*n*o*p,lˆs=n*p,mˆs=k,nˆs=k*l*n*p,
oˆs=p,pˆs=k*l*m*n>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..10752]];
for i in [2..10752] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;
if Eltseq(Sch[i])[j] eq 7 then P[j]:=T2; end if;
if Eltseq(Sch[i])[j] eq 8 then P[j]:=T3; end if;
if Eltseq(Sch[i])[j] eq -8 then P[j]:=T3ˆ-1; end if;
end for;
PP:=Id(N);for k in [1..#P] do
PP:=PP*P[k]; end for;ArrayP[i]:=PP;end for;
I:=[Id(NN): i in [1..8]];
for i in [1..10752] do if ArrayP[i] eq AˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq BˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq CˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq DˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq EˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq FˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq T2ˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq T3ˆZ then
Sch[i]; I[1]:=Sch[i]; end if; end for;
/*The presentation of the mixed estension */
H1<k,l,m,n,o,p,r,s,g>:=Group<k,l,m,n,o,p,r,s,g|

kˆ2,lˆ2,mˆ2,nˆ2,oˆ2,pˆ2,(k,l),(k,m),(k,n),(k,o),(k,p),
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(l,m), (l,n),(l,o), (l,p),(m,n),(m,o),(m,p),(n,o),(n,p),
(o,p),rˆ2,sˆ4=l*m*p,(r*s)ˆ7,(r,s)ˆ4=k*l*m*o*p,
(r*sˆ2)ˆ3,kˆr=k*m*o,lˆr=n*o*p,mˆr=m,nˆr=
m*n*o,oˆr=o,pˆr=l*m*n,kˆs=k*m*n*o*p,lˆs=
n*p,mˆs=k,nˆs=k*l*n*p,oˆs=p,pˆs=k*l*m*n,
gˆ2,kˆg=l * n,lˆg=s*o*sˆ-1,mˆg=nˆs,nˆg=
k*s*o*sˆ-1,oˆg=k*m*n*p,pˆg=pˆs,rˆg=
k * s * r * l * s * r * sˆ-1 * r * sˆ-1,sˆg=
r * k * s * r * s * r * sˆ-1 * r>;
#H1;
f,h1,k1:=CosetAction(H1,sub<H1|Id(H1)>);
s:=IsIsomorphic(h1,G1);s;
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Appendix H: MAGMA Code for

DCE of M12

S1:=Sym(72);
aa:=S1!(2, 8)(3, 15)(4, 20)(6, 9)(10, 19)(11, 44)(12, 37)
(14, 28)(16, 30)(17,38)(18, 54)(21, 42)(22, 23)(24, 57)
(25, 45)(26, 32)(27, 66)(29, 61)(31,39)(33, 55)(36, 40)
(41, 51)(43, 62)(46, 70)(47, 53)(48, 63)(49, 58)(50, 67)
(52, 71)(56, 69)(59, 65)(60, 64)(68, 72);
bb:=S1!(1, 2, 9, 13, 6, 8)(3, 16, 25, 10, 40, 23)
(4, 21, 53, 47, 42, 20)(5, 26, 39, 7, 31, 32)
(11, 29, 57, 24, 61, 44)(12, 28, 35, 14, 37, 34)
(15, 22, 36,19, 45, 30)(17, 49, 50, 66, 69, 71)
(18, 59, 46, 55, 41, 48)(27, 67, 58,38, 52, 56)
(33, 70, 65, 54, 63, 51)(43, 72, 68, 62, 60, 64);
cc:=S1!(1, 3, 5, 15)(2, 10, 12, 42)(4, 22, 23, 20)

(6, 29, 31, 54)(7, 33, 34, 55)(8, 21, 37, 19)
(9, 18, 39, 61)(11, 45, 46, 40)(13, 50, 35, 67)
(14, 52, 26,62)(16, 38, 53, 69)(17, 30, 56, 47)
(24, 41, 51, 57)(25, 44, 36, 70)(27,60, 64, 66)
(28, 43, 32, 71)(48, 58, 65, 72)(49, 63, 68, 59);
N:=sub<S1|aa,bb,cc>;
G<a,b,c>:=Group<a,b,c| aˆ2,bˆ6,cˆ4,
(bˆ-1 * a)ˆ2,
(a*cˆ-1)ˆ2,
bˆ-1*cˆ-2*bˆ2*cˆ2*bˆ-1,
(cˆ-1*b)ˆ3,
cˆ-1*bˆ-1*cˆ-2*bˆ-1*cˆ2*bˆ-1*cˆ-1>;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..432]];
for i in [2..432] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
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if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=bbˆ-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=ccˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [50..100] do Sch[i], ArrayP[i]; end for;
G<a,b,c,t>:=Group<a,b,c,t| aˆ2,bˆ6,cˆ4,
(bˆ-1 * a)ˆ2,
(a*cˆ-1)ˆ2,
bˆ-1*cˆ-2*bˆ2*cˆ2*bˆ-1,
(cˆ-1*b)ˆ3,
cˆ-1*bˆ-1*cˆ-2*bˆ-1*cˆ2*bˆ-1*cˆ-1,
tˆ2,(t,a),(t,a * c * bˆ-1 * cˆ-1 * bˆ-1 * c),
(a*cˆ-1*bˆ-1*c*bˆ2*tˆ(b))ˆ3>;
#G;
f,G1,k:=CosetAction(G,sub<G|a,b,c>);
CompositionFactors(G1);
Center(G1);
/*store center as ccc */
A:=f(a);
B:=f(b);
C:=f(c );
D:=f(t);
N:=sub<G1|A,B,C,D>;
NN<a,b,c,t>:=Group<a,b,c,t| aˆ2,bˆ6,cˆ4,
(bˆ-1 * a)ˆ2,
(a*cˆ-1)ˆ2,
bˆ-1*cˆ-2*bˆ2*cˆ2*bˆ-1,
(cˆ-1*b)ˆ3,
cˆ-1*bˆ-1*cˆ-2*bˆ-1*cˆ2*bˆ-1*cˆ-1,
tˆ2,(t,a),(t,a * c * bˆ-1 * cˆ-1 * bˆ-1 * c),
(a*cˆ-1*bˆ-1*c*bˆ2*tˆ(b))ˆ3>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
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if Eltseq(Sch[i])[j] eq -1 then P[j]:=Aˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=Bˆ-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=Cˆ-1; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..#N] do if ArrayP[i] eq ccc then
print Sch[i]; end if; end for; /* Gives me the center
in terms of a, b, c, and t */

/*********************************************************/
/* Now we need to construct the double coset
enumeration G=M12=9540*/
S1:=Sym(72);
aa:=S1!(2, 8)(3, 15)(4, 20)(6, 9)(10, 19)(11, 44)(12, 37)
(14, 28)(16, 30)(17,38)(18, 54)(21, 42)(22, 23)(24, 57)
(25, 45)(26, 32)(27, 66)(29, 61)(31,39)(33, 55)(36, 40)
(41, 51)(43, 62)(46, 70)(47, 53)(48, 63)(49, 58)(50, 67)
(52, 71)(56, 69)(59, 65)(60, 64)(68, 72);
bb:=S1!(1, 2, 9, 13, 6, 8)(3, 16, 25, 10, 40, 23)
(4, 21, 53, 47, 42, 20)(5, 26, 39, 7, 31, 32)
(11, 29, 57, 24, 61, 44)(12, 28, 35, 14, 37, 34)
(15, 22, 36,19, 45, 30)(17, 49, 50, 66, 69, 71)
(18, 59, 46, 55, 41, 48)(27, 67, 58,38, 52, 56)
(33, 70, 65, 54, 63, 51)(43, 72, 68, 62, 60, 64);
cc:=S1!(1, 3, 5, 15)(2, 10, 12, 42)(4, 22, 23, 20)

(6, 29, 31, 54)(7, 33, 34, 55)(8, 21, 37, 19)
(9, 18, 39, 61)(11, 45, 46, 40)(13, 50, 35, 67)
(14, 52, 26,62)(16, 38, 53, 69)(17, 30, 56, 47)
(24, 41, 51, 57)(25, 44, 36, 70)(27,60, 64, 66)
(28, 43, 32, 71)(48, 58, 65, 72)(49, 63, 68, 59);
N:=sub<S1|aa,bb,cc>;
G<a,b,c,t>:=Group<a,b,c,t| aˆ2,bˆ6,cˆ4,
(bˆ-1 * a)ˆ2,
(a*cˆ-1)ˆ2,
bˆ-1*cˆ-2*bˆ2*cˆ2*bˆ-1,
(cˆ-1*b)ˆ3,
cˆ-1*bˆ-1*cˆ-2*bˆ-1*cˆ2*bˆ-1*cˆ-1,
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tˆ2,(t,a),(t,a * c * bˆ-1 * cˆ-1 * bˆ-1 * c),
(a*cˆ-1*bˆ-1*c*bˆ2*tˆ(b))ˆ3,
a * bˆ3 * c * t * b * t * bˆ-1 * t * b * t * c>;
f,G1,k:=CosetAction(G,sub<G|a,b,c>);
CompositionFactors(G1);
#G1;
DoubleCosets(G,sub<G|a,b,c>,sub<G|a,b,c>);
#DoubleCosets(G,sub<G|a,b,c>,sub<G|a,b,c>);
Index(G,sub<G|a,b,c>);
IN:=sub<G1|f(a),f(b), f( c)>;

ts := [Id(G1) : i in [1 .. 72]];
ts[1] := f(t); ts[2]:=f(tˆb); ts[3]:=f(tˆc);
ts[4]:=f(tˆ(bˆ-1*c*bˆ-1)); ts[5]:=f(tˆ(cˆ2));
ts[6]:=f(tˆ(a*bˆ-2)); ts[7]:=f(tˆ(bˆ2*cˆ2*b));
ts[8]:=f(tˆ(a*bˆ-1)); ts[9]:=f(tˆ(a*bˆ2));
ts[10]:=f(tˆ(a*b*c)); ts[11]:=f(tˆ((b*c)ˆ2));
ts[12]:=f(tˆ(b*cˆ2));ts[13]:=f(tˆ(bˆ3));
ts[14]:=f(tˆ(c*b*c*b*cˆ-1)); ts[15]:=f(tˆ(a*cˆ-1));
ts[16]:=f(tˆ(a*c*b)); ts[17]:=f(tˆ(a*cˆ-1*bˆ-1*cˆ-1));
ts[18]:=f(tˆ(bˆ2*c)); ts[19]:=f(tˆ(a*bˆ-1*cˆ-1));
ts[20]:=f(tˆ(b*cˆ-1*b)); ts[21]:=f(tˆ(bˆ-1*c));
ts[22]:=f(tˆ(cˆ-1*b)); ts[23]:=f(tˆ(c*bˆ-1));
ts[24]:=f(tˆ(bˆ2*cˆ-1*bˆ-1)); ts[25]:=f(tˆ(b*c*bˆ-1));
ts[26]:=f(tˆ(cˆ2*b)); ts[27]:=f(tˆ(bˆ3*cˆ-1*bˆ-1));
ts[28]:=f(tˆ(b*cˆ2*b)); ts[29]:=f(tˆ(a*bˆ-2*c));
ts[30]:=f(tˆ(a*cˆ-1*bˆ-1)); ts[31]:=f(tˆ(cˆ2*bˆ-2));
ts[32]:=f(tˆ(cˆ2*bˆ-1)); ts[33]:=f(tˆ(b*c*bˆ-1*cˆ-1*bˆ-1));
ts[34]:=f(tˆ((b*c*bˆ-1)ˆ2)); ts[35]:=f(tˆ(bˆ3*cˆ2));
ts[36]:=f(tˆ(a*cˆ-1*bˆ2)); ts[37]:=f(tˆ(bˆ-1*cˆ2));
ts[38]:=f(tˆ(c*b*c)); ts[39]:=f(tˆ(bˆ2*cˆ2));
ts[40]:=f(tˆ(b*c*b)); ts[41]:=f(tˆ(bˆ2*cˆ-1*bˆ-1*c));
ts[42]:=f(tˆ(bˆ-1*c*bˆ3)); ts[43]:=f(tˆ(cˆ2*bˆ-1*cˆ-1));
ts[44]:=f(tˆ(bˆ2*cˆ-1*b)); ts[45]:=f(tˆ(a*cˆ-1*bˆ-2));
ts[46]:=f(tˆ(b*c*b*cˆ-1)); ts[47]:=f(tˆ(b*cˆ-1*bˆ-1));
ts[48]:=f(tˆ(bˆ2*c*bˆ-1)); ts[49]:=f(tˆ(cˆ-1*bˆ-1*cˆ-1*b));
ts[50]:=f(tˆ(bˆ3*c)); ts[51]:=f(tˆ(bˆ-2*cˆ-1*bˆ2));
ts[52]:=f(tˆ(cˆ2*b*cˆ-1)); ts[53]:=f(tˆ(a*bˆ-1*c*b));
ts[54]:=f(tˆ(a*bˆ-2*cˆ-1)); ts[55]:=f(tˆ(b*c*b*cˆ-1*b));
ts[56]:=f(tˆ(cˆ-1*bˆ-1*c)); ts[57]:=f(tˆ(bˆ-2*c*b));
ts[58]:=f(tˆ(c*b*c*bˆ-1)); ts[59]:=f(tˆ(bˆ2*c*b));
ts[60]:=f(tˆ(cˆ2*b*c*b)); ts[61]:=f(tˆ(bˆ2*cˆ-1));
ts[62]:=f(tˆ(cˆ2*b*c)); ts[63]:=f(tˆ(bˆ-2*cˆ-1*b));
ts[64]:=f(tˆ(cˆ2*bˆ-1*cˆ-1*bˆ-1));
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ts[65]:=f(tˆ(a*bˆ-2*cˆ-1*bˆ-1));
ts[66]:=f(tˆ(a*c*b*cˆ-1*bˆ-1)); ts[67]:=f(tˆ(bˆ3*cˆ-1));
ts[68]:=f(tˆ(bˆ2*c*b*cˆ-1)); ts[69]:=f(tˆ(c*b*cˆ-1));
ts[70]:=f(tˆ(bˆ-1*cˆ-1*bˆ-1*c)); ts[71]:=f(tˆ((cˆ-1*bˆ-1)ˆ2));
ts[72]:=f(tˆ(cˆ2*bˆ-1*cˆ-1*b));

prodim := function(pt, Q, I)
/*
Return the image of pt under
permutations Q[I] applied sequentially.

*/
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|a,b,c>)]]
where null is [Integers() | ];

for i := 1 to 72 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;

for i in [1..220] do if cst[i] ne [] then
m:=m+1; end if; end for; m;
N1 := Stabiliser (N, [1]);
N1; #N1;
T1:=Transversal(N,N1);
for i in [1..#T1] do
ss:=[1]ˆT1[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N1);

N12:=Stabiliser (N,[1,2]);
N12;
SSS:={[1,2]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
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if ts[1]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N12s := N12;
for n in N do if 1ˆn eq 16 and 2ˆn eq 40
then N12s:=sub<N|N12s,n>; end if; end for;
#N12s;
N12s;
[1,2]ˆN12s;
for n in IN do if ts[1]*ts[2] eq n*ts[16]*ts[40] then
n; end if; end for;

ts[1]*ts[2] eq f(a*b*c*bˆ(-2)*c*b)*ts[16]*ts[40];
N12:=Stabiliser (N,[1,2]);
N12;
N12:=sub<N|(3, 70)(4, 11)(5, 28)(6, 32)(8, 34)(9, 12)
(10, 72)(13, 39)(15, 66)(16, 67)(17, 29)(18, 60)(19, 57)
(20, 71)(21, 56)(22, 55)(23, 49)(24, 68)(25, 48)
(26, 37)(27, 46)(30, 51)(33, 58)(36, 38)(40, 61)
(41, 50)(42, 59)(43, 63)(44, 52)(45, 62)(47, 64)
(53, 54)(65, 69),(1, 16, 52, 39, 44, 19)
(2, 40, 29, 32, 17, 15)(3, 26, 60, 43, 5, 22)
(4, 36, 65, 68, 46, 23)(6, 57, 61, 13, 66, 67)
(7, 70, 10, 28, 72, 18)(8, 53, 71,35, 58, 54)
(9, 59, 50, 14, 56, 42)(11, 30, 27, 64, 69, 25)
(12, 20, 21, 34, 41, 33)(24, 48, 38, 47, 49, 51)
(31, 63, 62, 37, 45, 55),(1, 16, 6, 17, 32, 57)
(2, 40, 13, 44, 39, 66)(3, 10, 18, 43, 62, 55)
(4, 30, 24, 46, 64, 49)(5, 72, 28, 22, 31, 63)
(7, 70, 26, 45, 37, 60)(8, 41, 14,56, 34, 53)
(9, 20, 35, 58, 12, 59)(11, 36, 47, 69, 68, 48)
(15, 67, 52,19, 61, 29)(21, 42, 50, 33, 54, 71)
(23, 51, 27)(25, 38, 65)>;
#N12;
[1,2]ˆN12;
T:=Transversal(N,N12);
for i in [1..#T] do

{[1,2]ˆN12}ˆT[i];
end for;
T12:=Transversal(N,N12);
for i in [1..#T12] do
ss:=[1,2]ˆT12[i];
cst[prodim(1, ts, ss)] := ss;
end for;
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m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N12);

N15:=Stabiliser (N,[1,5]);
N15;
SSS:={[1,5]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[1]*ts[5] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N15s := N15;
for n in N do if 1ˆn eq 5 and 5ˆn eq 1
then N15s:=sub<N|N15s,n>; end if; end for;
#N15s;
N15s;
[1,5]ˆN15s;
for n in IN do if ts[1]*ts[5] eq n*ts[5]*ts[1] then
n; end if; end for;

ts[1]*ts[5] eq f(a)*ts[5]*ts[1];
N15:=Stabiliser (N,[1,5]);
N15;
N15:=sub<N|(2, 8)(3, 15)(4, 20)(6, 9)(10, 19)
(11, 44)(12, 37)(14, 28)(16, 30)(17, 38)(18, 54)
(21, 42)(22, 23)(24, 57)(25, 45)(26, 32)(27, 66)
(29, 61)(31, 39)(33, 55)(36, 40)(41, 51)(43, 62)
(46, 70)(47, 53)(48, 63)(49, 58)(50, 67)(52, 71)
(56, 69)(59, 65)(60, 64)(68, 72),(1, 5)(2, 12)
(3, 15)(4, 23)(6, 31)(7, 34)(8, 37)(9, 39)(10, 42)
(11, 46)(13, 35)(14, 26)(16, 53)(17, 56)(18, 61)
(19, 21)(20, 22)(24, 51)(25, 36)(27, 64)(28, 32)
(29, 54)(30, 47)(33, 55)(38, 69)(40, 45)(41, 57)
(43, 71)(44, 70)(48, 65)(49, 68)(50, 67)(52, 62)
(58, 72)(59, 63)(60, 66),(1, 5)(2, 37)(4, 22)(6, 39)
(7, 34)(8, 12)(9, 31)(10, 21)(11, 70)(13, 35)(14,
32)(16, 47)(17, 69)(18, 29)(19, 42)(20, 23)(24, 41)
(25, 40)(26, 28)(27, 60)(30, 53)(36, 45)(38, 56)
(43, 52)(44, 46)(48, 59)(49, 72)(51, 57)(54,
61)(58, 68)(62, 71)(63, 65)(64, 66)>;
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#N15;
[1,5]ˆN15;
T:=Transversal(N,N15);
for i in [1..#T] do

{[1,5]ˆN15}ˆT[i];
end for;
T15:=Transversal(N,N15);
for i in [1..#T15] do
ss:=[1,5]ˆT15[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N15);

N113:=Stabiliser (N,[1,13]);
N113;
SSS:={[1,13]}; SSS:=SSSˆN;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[1]*ts[13] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N113s := N113;
for n in N do if 1ˆn eq 69 and 13ˆn eq 49
then N113s:=sub<N|N113s,n>; end if; end for;
#N113s;
N113s;
[1,13]ˆN113s;
for n in IN do if ts[1]*ts[13] eq n*ts[69]*ts[49] then
n; end if; end for;

ts[1]*ts[13] eq f(bˆ3)*ts[69]*ts[49];
N113:=Stabiliser (N,[1,13]);
N113;
N113:=sub<N|(2, 8)(3, 15)(4, 20)(6, 9)(10, 19)
(11, 44)(12, 37)(14, 28)(16, 30)(17, 38)(18, 54)
(21, 42)(22, 23)(24, 57)(25, 45)(26, 32)(27, 66)
(29, 61)(31,39)(33, 55)(36, 40)(41, 51)(43, 62)
(46, 70)(47, 53)(48, 63)(49, 58)(50, 67)(52, 71)
(56, 69)(59, 65)(60, 64)(68, 72),(1, 69, 13, 49)
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(2, 38, 6, 27)(3, 22, 10, 45)(4, 37, 47, 28)(5, 30, 7, 36)
(8, 24, 9, 11)(12, 51, 14, 65)(15, 60, 19, 72)
(16, 62, 40, 43)(17, 67, 66, 52)(18, 53, 55, 20)
(21, 70, 42, 63)(23, 31, 25, 26)(29, 56, 61, 58)
(32,68, 39, 64)(33, 41, 54, 59)(34, 46, 35, 48)
(44, 50, 57, 71),(1, 69, 61, 56, 13, 49, 29, 58)
(2, 24, 71, 17, 6, 11, 50, 66)(3, 60, 32, 23,
10, 72, 39, 25)(4, 18, 59, 12, 47, 55, 41, 14)

(5, 30, 62, 16, 7, 36, 43,40)(8, 38, 67, 57, 9, 27,
52, 44)(15, 22, 31, 64, 19, 45, 26, 68)(20, 37,

51, 54, 53, 28, 65, 33)(21, 63, 34, 46, 42, 70, 35, 48)>;
#N113;
[1,13]ˆN113;
T:=Transversal(N,N113);
for i in [1..#T] do

{[1,13]ˆN113}ˆT[i];
end for;
T113:=Transversal(N,N113);
for i in [1..#T113] do
ss:=[1,13]ˆT113[i];
cst[prodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N113);
/*Relations*/
for g in IN do for h in IN do
if ts[1]*ts[7] eq g*(ts[1])ˆh then g,h; end if;

end for; end for;
ts[1]*ts[7] eq ts[35];
for g in IN do for h in IN do
if ts[1]*ts[35] eq g*(ts[1])ˆh then g,h;

end if; end for; end for;
ts[1]*ts[35] eq ts[7];
for g in IN do for h in IN do
if ts[1]*ts[21] eq g*(ts[1])ˆh then g,h;

end if; end for; end for;
ts[1]*ts[21] eq f(a * bˆ-1 * cˆ-1 * bˆ-1 * c * b)

*ts[17];
for g in IN do for h in IN do
if ts[1]*ts[3] eq g*(ts[1]*ts[13])ˆh

then g,h; end if; end for; end for;
ts[1]*ts[3] eq f(cˆ-1*bˆ-1)*ts[2]*ts[6];
for g in IN do for h in IN do
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if ts[1]*ts[4] eq g*(ts[1]*ts[5])ˆh then
g,h; end if; end for; end for;
ts[1]*ts[4] eq f(b*c*b)*ts[14]*ts[9];
for g in IN do for h in IN do
if ts[1]*ts[6] eq g*(ts[1]*ts[5])ˆh then

g,h; end if; end for; end for;
ts[1]*ts[6] eq f(a*b)*ts[18]*ts[55];
for g in IN do for h in IN do
if ts[1]*ts[10] eq g*(ts[1]*ts[5])ˆh then g,h;

end if; end for; end for;
ts[1]*ts[10] eq f(bˆ3)*ts[15]*ts[62];
for g in IN do for h in IN do
if ts[1]*ts[16] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;

ts[1]*ts[16] eq f(a * cˆ-1 * bˆ-1 * c * bˆ2 * c)

*ts[28]*ts[37];
for g in IN do for h in IN do
if ts[1]*ts[17] eq g*(ts[1]*ts[13])ˆh then g,h;

end if; end for; end for;
ts[1]*ts[17] eq f(a * b * c * b)*ts[15]*ts[29];
for g in IN do for h in IN do
if ts[1]*ts[18] eq g*(ts[1]*ts[5])ˆh then
g,h; end if; end for; end for;
ts[1]*ts[18] eq f(a * bˆ-1 * cˆ-1 * bˆ-1 * c * b)

*ts[59]*ts[41];
for g in IN do for h in IN do
if ts[1]*ts[25] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[25] eq f(a * cˆ-1 * b * c * b)*ts[53]

*ts[58];
for g in IN do for h in IN do
if ts[1]*ts[22] eq g*(ts[1])ˆh then g,h; end
if; end for; end for;
for g in IN do for h in IN do
if ts[1]*ts[2]*ts[3] eq g*(ts[1]*ts[5])ˆh then
g,h; end if; end for; end for;
ts[1]*ts[2]*ts[3] eq f(c * bˆ-1 * cˆ-1 * bˆ-1

* cˆ-1 * bˆ-1)*ts[61]*ts[33];
for g in IN do for h in IN do
if ts[1]*ts[2]*ts[4] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[2]*ts[4] eq f(c * bˆ-2 * c * b * c)

*ts[28]*ts[37];
for g in IN do for h in IN do
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if ts[1]*ts[2]*ts[8] eq g*(ts[1]*ts[13])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[2]*ts[8] eq f(cˆ-1 * b * c * b)*
ts[71]*ts[43];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[3] eq g*(ts[1]*ts[2])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[3] eq f(c * bˆ-2)*ts[63]*ts[60];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[7] eq g*(ts[1]*ts[13])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[7] eq f(a * b * cˆ2 * bˆ-1)*
ts[72]*ts[17];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[13] eq g*(ts[1]*ts[2])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[13] eq f(a * cˆ-1 * bˆ3

* cˆ-1)*ts[68]*ts[46];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[33] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[33] eq f(a * cˆ2 * bˆ-1 *
cˆ-1)*ts[2]*ts[37];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[50] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[50] eq f(bˆ2 * c * bˆ-1 * cˆ-1)

*ts[37]*ts[2];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[2] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[2] eq f(a * c * bˆ-2)*ts[44]*ts[59];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[4] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[4] eq f(b * c * bˆ2)*ts[72]*ts[57];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[6] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[6] eq f(a * bˆ-1 * c * b * cˆ2)*ts[24]*ts[68];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[10] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[10] eq f(bˆ3 * c * bˆ-1)*ts[20]*ts[53];
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for g in IN do for h in IN do
if ts[1]*ts[5]*ts[11] eq g*(ts[1])ˆh then g,h;
end if; end for; end for;
ts[1]*ts[5]*ts[11] eq f(a * cˆ-1 * b * c * bˆ-2)*ts[63];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[14] eq g*(ts[1])ˆh then g,h;

end if; end for; end for;
ts[1]*ts[5]*ts[14] eq f(a * cˆ-1 * bˆ3 * c)*ts[60];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[16] eq g*(ts[1])ˆh

then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[16] eq f(a * c * bˆ3 * cˆ-1)*ts[28];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[17] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[17] eq f(c * bˆ-1 * cˆ-1 * bˆ-1

* cˆ-1)*ts[71]*ts[21];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[18] eq g*(ts[1])ˆh then
g,h; end if; end for; end for;
ts[1]*ts[5]*ts[18] eq f(a * bˆ2 * c * bˆ-1

* cˆ-1)*ts[49];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[24] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[24] eq f(a * c * bˆ-2)*ts[42]*ts[50];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[25] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[25] eq f(a * bˆ-1 * c * bˆ-1)

*ts[64]*ts[23];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[27] eq g*(ts[1])ˆh then
g,h; end if; end for; end for;
ts[1]*ts[5]*ts[27] eq f(a * c * bˆ2 * c)*ts[48];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[43] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[43] eq f(bˆ2 * cˆ-1 * bˆ-1

* cˆ-1)*ts[50]*ts[42];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[48] eq g*(ts[1])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[48] eq f(bˆc)*ts[14];
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for g in IN do for h in IN do
if ts[1]*ts[5]*ts[49] eq g*(ts[1]*ts[13])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[49] eq f(a * cˆ-1 * bˆ-1

* cˆ-1 * bˆ2)*ts[54]*ts[42];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[1] eq g*(ts[1])ˆh

then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[1] eq ts[13];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[5] eq g*(ts[1]*ts[2])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[5] eq ts[1]*ts[34];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[2] eq g*(ts[1])ˆh

then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[2] eq f(a * bˆ-1 * c *
b * c * bˆ-1)*ts[44];

for g in IN do for h in IN do
if ts[1]*ts[13]*ts[3] eq g*(ts[1])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[3] eq f(cˆ-1 * bˆ2)*ts[27];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[4] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[4] eq f(b * c * bˆ-1 *
cˆ-1 * bˆ-1 * cˆ-1)*ts[62]*ts[15];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[21] eq g*(ts[1]*ts[5])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[21] eq ts[29]*ts[43];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[7] eq g*(ts[1]*ts[2])ˆh
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[7] eq f(c * bˆ3 * c)

*ts[66]*ts[59];
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